ruby/ext/socket/raddrinfo.c

3084 строки
90 KiB
C

/************************************************
raddrinfo.c -
created at: Thu Mar 31 12:21:29 JST 1994
Copyright (C) 1993-2007 Yukihiro Matsumoto
************************************************/
#include "rubysocket.h"
// GETADDRINFO_IMPL == 0 : call getaddrinfo/getnameinfo directly
// GETADDRINFO_IMPL == 1 : call getaddrinfo/getnameinfo without gvl (but uncancellable)
// GETADDRINFO_IMPL == 2 : call getaddrinfo/getnameinfo in a dedicated pthread
// (and if the call is interrupted, the pthread is detached)
#ifndef GETADDRINFO_IMPL
# ifdef GETADDRINFO_EMU
# define GETADDRINFO_IMPL 0
# elif !defined(HAVE_PTHREAD_CREATE) || !defined(HAVE_PTHREAD_DETACH) || defined(__MINGW32__) || defined(__MINGW64__)
# define GETADDRINFO_IMPL 1
# else
# define GETADDRINFO_IMPL 2
# include "ruby/thread_native.h"
# endif
#endif
#if defined(INET6) && (defined(LOOKUP_ORDER_HACK_INET) || defined(LOOKUP_ORDER_HACK_INET6))
#define LOOKUP_ORDERS (sizeof(lookup_order_table) / sizeof(lookup_order_table[0]))
static const int lookup_order_table[] = {
#if defined(LOOKUP_ORDER_HACK_INET)
PF_INET, PF_INET6, PF_UNSPEC,
#elif defined(LOOKUP_ORDER_HACK_INET6)
PF_INET6, PF_INET, PF_UNSPEC,
#else
/* should not happen */
#endif
};
static int
ruby_getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res)
{
struct addrinfo tmp_hints;
int i, af, error;
if (hints->ai_family != PF_UNSPEC) {
return getaddrinfo(nodename, servname, hints, res);
}
for (i = 0; i < LOOKUP_ORDERS; i++) {
af = lookup_order_table[i];
MEMCPY(&tmp_hints, hints, struct addrinfo, 1);
tmp_hints.ai_family = af;
error = getaddrinfo(nodename, servname, &tmp_hints, res);
if (error) {
if (tmp_hints.ai_family == PF_UNSPEC) {
break;
}
}
else {
break;
}
}
return error;
}
#define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo((node),(serv),(hints),(res))
#endif
#if defined(_AIX)
static int
ruby_getaddrinfo__aix(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res)
{
int error = getaddrinfo(nodename, servname, hints, res);
struct addrinfo *r;
if (error)
return error;
for (r = *res; r != NULL; r = r->ai_next) {
if (r->ai_addr->sa_family == 0)
r->ai_addr->sa_family = r->ai_family;
if (r->ai_addr->sa_len == 0)
r->ai_addr->sa_len = r->ai_addrlen;
}
return 0;
}
#undef getaddrinfo
#define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo__aix((node),(serv),(hints),(res))
static int
ruby_getnameinfo__aix(const struct sockaddr *sa, size_t salen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags)
{
struct sockaddr_in6 *sa6;
u_int32_t *a6;
if (sa->sa_family == AF_INET6) {
sa6 = (struct sockaddr_in6 *)sa;
a6 = sa6->sin6_addr.u6_addr.u6_addr32;
if (a6[0] == 0 && a6[1] == 0 && a6[2] == 0 && a6[3] == 0) {
strncpy(host, "::", hostlen);
snprintf(serv, servlen, "%d", sa6->sin6_port);
return 0;
}
}
return getnameinfo(sa, salen, host, hostlen, serv, servlen, flags);
}
#undef getnameinfo
#define getnameinfo(sa, salen, host, hostlen, serv, servlen, flags) \
ruby_getnameinfo__aix((sa), (salen), (host), (hostlen), (serv), (servlen), (flags))
#endif
static int str_is_number(const char *);
#if defined(__APPLE__)
static int
ruby_getaddrinfo__darwin(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res)
{
/* fix [ruby-core:29427] */
const char *tmp_servname;
struct addrinfo tmp_hints;
int error;
tmp_servname = servname;
MEMCPY(&tmp_hints, hints, struct addrinfo, 1);
if (nodename && servname) {
if (str_is_number(tmp_servname) && atoi(servname) == 0) {
tmp_servname = NULL;
#ifdef AI_NUMERICSERV
if (tmp_hints.ai_flags) tmp_hints.ai_flags &= ~AI_NUMERICSERV;
#endif
}
}
error = getaddrinfo(nodename, tmp_servname, &tmp_hints, res);
if (error == 0) {
/* [ruby-dev:23164] */
struct addrinfo *r;
r = *res;
while (r) {
if (! r->ai_socktype) r->ai_socktype = hints->ai_socktype;
if (! r->ai_protocol) {
if (r->ai_socktype == SOCK_DGRAM) {
r->ai_protocol = IPPROTO_UDP;
}
else if (r->ai_socktype == SOCK_STREAM) {
r->ai_protocol = IPPROTO_TCP;
}
}
r = r->ai_next;
}
}
return error;
}
#undef getaddrinfo
#define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo__darwin((node),(serv),(hints),(res))
#endif
#ifdef HAVE_INET_PTON
static int
parse_numeric_port(const char *service, int *portp)
{
unsigned long u;
if (!service) {
*portp = 0;
return 1;
}
if (strspn(service, "0123456789") != strlen(service))
return 0;
errno = 0;
u = STRTOUL(service, NULL, 10);
if (errno)
return 0;
if (0x10000 <= u)
return 0;
*portp = (int)u;
return 1;
}
#endif
static int
numeric_getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res)
{
#ifdef HAVE_INET_PTON
# if defined __MINGW64__
# define inet_pton(f,s,d) rb_w32_inet_pton(f,s,d)
# endif
int port;
if (node && parse_numeric_port(service, &port)) {
static const struct {
int socktype;
int protocol;
} list[] = {
{ SOCK_STREAM, IPPROTO_TCP },
{ SOCK_DGRAM, IPPROTO_UDP },
{ SOCK_RAW, 0 }
};
struct addrinfo *ai = NULL;
int hint_family = hints ? hints->ai_family : PF_UNSPEC;
int hint_socktype = hints ? hints->ai_socktype : 0;
int hint_protocol = hints ? hints->ai_protocol : 0;
char ipv4addr[4];
#ifdef AF_INET6
char ipv6addr[16];
if ((hint_family == PF_UNSPEC || hint_family == PF_INET6) &&
strspn(node, "0123456789abcdefABCDEF.:") == strlen(node) &&
inet_pton(AF_INET6, node, ipv6addr)) {
int i;
for (i = numberof(list)-1; 0 <= i; i--) {
if ((hint_socktype == 0 || hint_socktype == list[i].socktype) &&
(hint_protocol == 0 || list[i].protocol == 0 || hint_protocol == list[i].protocol)) {
struct addrinfo *ai0 = xcalloc(1, sizeof(struct addrinfo));
struct sockaddr_in6 *sa = xmalloc(sizeof(struct sockaddr_in6));
INIT_SOCKADDR_IN6(sa, sizeof(struct sockaddr_in6));
memcpy(&sa->sin6_addr, ipv6addr, sizeof(ipv6addr));
sa->sin6_port = htons(port);
ai0->ai_family = PF_INET6;
ai0->ai_socktype = list[i].socktype;
ai0->ai_protocol = hint_protocol ? hint_protocol : list[i].protocol;
ai0->ai_addrlen = sizeof(struct sockaddr_in6);
ai0->ai_addr = (struct sockaddr *)sa;
ai0->ai_canonname = NULL;
ai0->ai_next = ai;
ai = ai0;
}
}
}
else
#endif
if ((hint_family == PF_UNSPEC || hint_family == PF_INET) &&
strspn(node, "0123456789.") == strlen(node) &&
inet_pton(AF_INET, node, ipv4addr)) {
int i;
for (i = numberof(list)-1; 0 <= i; i--) {
if ((hint_socktype == 0 || hint_socktype == list[i].socktype) &&
(hint_protocol == 0 || list[i].protocol == 0 || hint_protocol == list[i].protocol)) {
struct addrinfo *ai0 = xcalloc(1, sizeof(struct addrinfo));
struct sockaddr_in *sa = xmalloc(sizeof(struct sockaddr_in));
INIT_SOCKADDR_IN(sa, sizeof(struct sockaddr_in));
memcpy(&sa->sin_addr, ipv4addr, sizeof(ipv4addr));
sa->sin_port = htons(port);
ai0->ai_family = PF_INET;
ai0->ai_socktype = list[i].socktype;
ai0->ai_protocol = hint_protocol ? hint_protocol : list[i].protocol;
ai0->ai_addrlen = sizeof(struct sockaddr_in);
ai0->ai_addr = (struct sockaddr *)sa;
ai0->ai_canonname = NULL;
ai0->ai_next = ai;
ai = ai0;
}
}
}
if (ai) {
*res = ai;
return 0;
}
}
#endif
return EAI_FAIL;
}
void
rb_freeaddrinfo(struct rb_addrinfo *ai)
{
if (!ai->allocated_by_malloc)
freeaddrinfo(ai->ai);
else {
struct addrinfo *ai1, *ai2;
ai1 = ai->ai;
while (ai1) {
ai2 = ai1->ai_next;
xfree(ai1->ai_addr);
xfree(ai1);
ai1 = ai2;
}
}
xfree(ai);
}
#if GETADDRINFO_IMPL == 0
static int
rb_getaddrinfo(const char *hostp, const char *portp, const struct addrinfo *hints, struct addrinfo **ai)
{
return getaddrinfo(hostp, portp, hints, ai);
}
#elif GETADDRINFO_IMPL == 1
struct getaddrinfo_arg
{
const char *node;
const char *service;
const struct addrinfo *hints;
struct addrinfo **res;
};
static void *
nogvl_getaddrinfo(void *arg)
{
int ret;
struct getaddrinfo_arg *ptr = arg;
ret = getaddrinfo(ptr->node, ptr->service, ptr->hints, ptr->res);
#ifdef __linux__
/* On Linux (mainly Ubuntu 13.04) /etc/nsswitch.conf has mdns4 and
* it cause getaddrinfo to return EAI_SYSTEM/ENOENT. [ruby-list:49420]
*/
if (ret == EAI_SYSTEM && errno == ENOENT)
ret = EAI_NONAME;
#endif
return (void *)(VALUE)ret;
}
static int
rb_getaddrinfo(const char *hostp, const char *portp, const struct addrinfo *hints, struct addrinfo **ai)
{
struct getaddrinfo_arg arg;
MEMZERO(&arg, struct getaddrinfo_arg, 1);
arg.node = hostp;
arg.service = portp;
arg.hints = hints;
arg.res = ai;
return (int)(VALUE)rb_thread_call_without_gvl(nogvl_getaddrinfo, &arg, RUBY_UBF_IO, 0);
}
#elif GETADDRINFO_IMPL == 2
struct getaddrinfo_arg
{
char *node, *service;
struct addrinfo hints;
struct addrinfo *ai;
int err, gai_errno, refcount, done, cancelled;
rb_nativethread_lock_t lock;
rb_nativethread_cond_t cond;
};
static struct getaddrinfo_arg *
allocate_getaddrinfo_arg(const char *hostp, const char *portp, const struct addrinfo *hints)
{
size_t hostp_offset = sizeof(struct getaddrinfo_arg);
size_t portp_offset = hostp_offset + (hostp ? strlen(hostp) + 1 : 0);
size_t bufsize = portp_offset + (portp ? strlen(portp) + 1 : 0);
char *buf = malloc(bufsize);
if (!buf) {
rb_gc();
buf = malloc(bufsize);
if (!buf) return NULL;
}
struct getaddrinfo_arg *arg = (struct getaddrinfo_arg *)buf;
if (hostp) {
arg->node = buf + hostp_offset;
strcpy(arg->node, hostp);
}
else {
arg->node = NULL;
}
if (portp) {
arg->service = buf + portp_offset;
strcpy(arg->service, portp);
}
else {
arg->service = NULL;
}
arg->hints = *hints;
arg->ai = NULL;
arg->refcount = 2;
arg->done = arg->cancelled = 0;
rb_nativethread_lock_initialize(&arg->lock);
rb_native_cond_initialize(&arg->cond);
return arg;
}
static void
free_getaddrinfo_arg(struct getaddrinfo_arg *arg)
{
rb_native_cond_destroy(&arg->cond);
rb_nativethread_lock_destroy(&arg->lock);
free(arg);
}
static void *
do_getaddrinfo(void *ptr)
{
struct getaddrinfo_arg *arg = (struct getaddrinfo_arg *)ptr;
int err, gai_errno;
err = getaddrinfo(arg->node, arg->service, &arg->hints, &arg->ai);
gai_errno = errno;
#ifdef __linux__
/* On Linux (mainly Ubuntu 13.04) /etc/nsswitch.conf has mdns4 and
* it cause getaddrinfo to return EAI_SYSTEM/ENOENT. [ruby-list:49420]
*/
if (err == EAI_SYSTEM && errno == ENOENT)
err = EAI_NONAME;
#endif
int need_free = 0;
rb_nativethread_lock_lock(&arg->lock);
{
arg->err = err;
arg->gai_errno = gai_errno;
if (arg->cancelled) {
freeaddrinfo(arg->ai);
}
else {
arg->done = 1;
rb_native_cond_signal(&arg->cond);
}
if (--arg->refcount == 0) need_free = 1;
}
rb_nativethread_lock_unlock(&arg->lock);
if (need_free) free_getaddrinfo_arg(arg);
return 0;
}
static void *
wait_getaddrinfo(void *ptr)
{
struct getaddrinfo_arg *arg = (struct getaddrinfo_arg *)ptr;
rb_nativethread_lock_lock(&arg->lock);
while (!arg->done && !arg->cancelled) {
rb_native_cond_wait(&arg->cond, &arg->lock);
}
rb_nativethread_lock_unlock(&arg->lock);
return 0;
}
static void
cancel_getaddrinfo(void *ptr)
{
struct getaddrinfo_arg *arg = (struct getaddrinfo_arg *)ptr;
rb_nativethread_lock_lock(&arg->lock);
{
arg->cancelled = 1;
rb_native_cond_signal(&arg->cond);
}
rb_nativethread_lock_unlock(&arg->lock);
}
static int
do_pthread_create(pthread_t *th, void *(*start_routine) (void *), void *arg)
{
int limit = 3, ret;
do {
// It is said that pthread_create may fail spuriously, so we follow the JDK and retry several times.
//
// https://bugs.openjdk.org/browse/JDK-8268605
// https://github.com/openjdk/jdk/commit/e35005d5ce383ddd108096a3079b17cb0bcf76f1
ret = pthread_create(th, 0, start_routine, arg);
} while (ret == EAGAIN && limit-- > 0);
return ret;
}
static int
rb_getaddrinfo(const char *hostp, const char *portp, const struct addrinfo *hints, struct addrinfo **ai)
{
int retry;
struct getaddrinfo_arg *arg;
int err, gai_errno = 0;
start:
retry = 0;
arg = allocate_getaddrinfo_arg(hostp, portp, hints);
if (!arg) {
return EAI_MEMORY;
}
pthread_t th;
if (do_pthread_create(&th, do_getaddrinfo, arg) != 0) {
free_getaddrinfo_arg(arg);
return EAI_AGAIN;
}
pthread_detach(th);
rb_thread_call_without_gvl2(wait_getaddrinfo, arg, cancel_getaddrinfo, arg);
int need_free = 0;
rb_nativethread_lock_lock(&arg->lock);
{
if (arg->done) {
err = arg->err;
gai_errno = arg->gai_errno;
if (err == 0) *ai = arg->ai;
}
else if (arg->cancelled) {
err = EAI_AGAIN;
}
else {
// If already interrupted, rb_thread_call_without_gvl2 may return without calling wait_getaddrinfo.
// In this case, it could be !arg->done && !arg->cancelled.
arg->cancelled = 1; // to make do_getaddrinfo call freeaddrinfo
retry = 1;
}
if (--arg->refcount == 0) need_free = 1;
}
rb_nativethread_lock_unlock(&arg->lock);
if (need_free) free_getaddrinfo_arg(arg);
// If the current thread is interrupted by asynchronous exception, the following raises the exception.
// But if the current thread is interrupted by timer thread, the following returns; we need to manually retry.
rb_thread_check_ints();
if (retry) goto start;
/* Because errno is threadlocal, the errno value we got from the call to getaddrinfo() in the thread
* (in case of EAI_SYSTEM return value) is not propagated to the caller of _this_ function. Set errno
* explicitly, as round-tripped through struct getaddrinfo_arg, to deal with that */
if (gai_errno) errno = gai_errno;
return err;
}
#endif
#if GETADDRINFO_IMPL == 0
int
rb_getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags)
{
return getnameinfo(sa, salen, host, hostlen, serv, servlen, flags);
}
#elif GETADDRINFO_IMPL == 1
struct getnameinfo_arg
{
const struct sockaddr *sa;
socklen_t salen;
int flags;
char *host;
size_t hostlen;
char *serv;
size_t servlen;
};
static void *
nogvl_getnameinfo(void *arg)
{
struct getnameinfo_arg *ptr = arg;
return (void *)(VALUE)getnameinfo(ptr->sa, ptr->salen,
ptr->host, (socklen_t)ptr->hostlen,
ptr->serv, (socklen_t)ptr->servlen,
ptr->flags);
}
int
rb_getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags)
{
struct getnameinfo_arg arg;
int ret;
arg.sa = sa;
arg.salen = salen;
arg.host = host;
arg.hostlen = hostlen;
arg.serv = serv;
arg.servlen = servlen;
arg.flags = flags;
ret = (int)(VALUE)rb_thread_call_without_gvl(nogvl_getnameinfo, &arg, RUBY_UBF_IO, 0);
return ret;
}
#elif GETADDRINFO_IMPL == 2
struct getnameinfo_arg
{
struct sockaddr *sa;
socklen_t salen;
int flags;
char *host;
size_t hostlen;
char *serv;
size_t servlen;
int err, gni_errno, refcount, done, cancelled;
rb_nativethread_lock_t lock;
rb_nativethread_cond_t cond;
};
static struct getnameinfo_arg *
allocate_getnameinfo_arg(const struct sockaddr *sa, socklen_t salen, size_t hostlen, size_t servlen, int flags)
{
size_t sa_offset = sizeof(struct getnameinfo_arg);
size_t host_offset = sa_offset + salen;
size_t serv_offset = host_offset + hostlen;
size_t bufsize = serv_offset + servlen;
char *buf = malloc(bufsize);
if (!buf) {
rb_gc();
buf = malloc(bufsize);
if (!buf) return NULL;
}
struct getnameinfo_arg *arg = (struct getnameinfo_arg *)buf;
arg->sa = (struct sockaddr *)(buf + sa_offset);
memcpy(arg->sa, sa, salen);
arg->salen = salen;
arg->host = buf + host_offset;
arg->hostlen = hostlen;
arg->serv = buf + serv_offset;
arg->servlen = servlen;
arg->flags = flags;
arg->refcount = 2;
arg->done = arg->cancelled = 0;
rb_nativethread_lock_initialize(&arg->lock);
rb_native_cond_initialize(&arg->cond);
return arg;
}
static void
free_getnameinfo_arg(struct getnameinfo_arg *arg)
{
rb_native_cond_destroy(&arg->cond);
rb_nativethread_lock_destroy(&arg->lock);
free(arg);
}
static void *
do_getnameinfo(void *ptr)
{
struct getnameinfo_arg *arg = (struct getnameinfo_arg *)ptr;
int err, gni_errno;
err = getnameinfo(arg->sa, arg->salen, arg->host, (socklen_t)arg->hostlen, arg->serv, (socklen_t)arg->servlen, arg->flags);
gni_errno = errno;
int need_free = 0;
rb_nativethread_lock_lock(&arg->lock);
arg->err = err;
arg->gni_errno = gni_errno;
if (!arg->cancelled) {
arg->done = 1;
rb_native_cond_signal(&arg->cond);
}
if (--arg->refcount == 0) need_free = 1;
rb_nativethread_lock_unlock(&arg->lock);
if (need_free) free_getnameinfo_arg(arg);
return 0;
}
static void *
wait_getnameinfo(void *ptr)
{
struct getnameinfo_arg *arg = (struct getnameinfo_arg *)ptr;
rb_nativethread_lock_lock(&arg->lock);
while (!arg->done && !arg->cancelled) {
rb_native_cond_wait(&arg->cond, &arg->lock);
}
rb_nativethread_lock_unlock(&arg->lock);
return 0;
}
static void
cancel_getnameinfo(void *ptr)
{
struct getnameinfo_arg *arg = (struct getnameinfo_arg *)ptr;
rb_nativethread_lock_lock(&arg->lock);
arg->cancelled = 1;
rb_native_cond_signal(&arg->cond);
rb_nativethread_lock_unlock(&arg->lock);
}
int
rb_getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags)
{
int retry;
struct getnameinfo_arg *arg;
int err, gni_errno = 0;
start:
retry = 0;
arg = allocate_getnameinfo_arg(sa, salen, hostlen, servlen, flags);
if (!arg) {
return EAI_MEMORY;
}
pthread_t th;
if (do_pthread_create(&th, do_getnameinfo, arg) != 0) {
free_getnameinfo_arg(arg);
return EAI_AGAIN;
}
pthread_detach(th);
rb_thread_call_without_gvl2(wait_getnameinfo, arg, cancel_getnameinfo, arg);
int need_free = 0;
rb_nativethread_lock_lock(&arg->lock);
if (arg->done) {
err = arg->err;
gni_errno = arg->gni_errno;
if (err == 0) {
if (host) memcpy(host, arg->host, hostlen);
if (serv) memcpy(serv, arg->serv, servlen);
}
}
else if (arg->cancelled) {
err = EAI_AGAIN;
}
else {
// If already interrupted, rb_thread_call_without_gvl2 may return without calling wait_getnameinfo.
// In this case, it could be !arg->done && !arg->cancelled.
arg->cancelled = 1;
retry = 1;
}
if (--arg->refcount == 0) need_free = 1;
rb_nativethread_lock_unlock(&arg->lock);
if (need_free) free_getnameinfo_arg(arg);
// If the current thread is interrupted by asynchronous exception, the following raises the exception.
// But if the current thread is interrupted by timer thread, the following returns; we need to manually retry.
rb_thread_check_ints();
if (retry) goto start;
/* Make sure we copy the thread-local errno value from the getnameinfo thread back to this thread, so
* calling code sees the correct errno */
if (gni_errno) errno = gni_errno;
return err;
}
#endif
static void
make_ipaddr0(struct sockaddr *addr, socklen_t addrlen, char *buf, size_t buflen)
{
int error;
error = rb_getnameinfo(addr, addrlen, buf, buflen, NULL, 0, NI_NUMERICHOST);
if (error) {
rsock_raise_resolution_error("getnameinfo", error);
}
}
VALUE
rsock_make_ipaddr(struct sockaddr *addr, socklen_t addrlen)
{
char hbuf[1024];
make_ipaddr0(addr, addrlen, hbuf, sizeof(hbuf));
return rb_str_new2(hbuf);
}
static void
make_inetaddr(unsigned int host, char *buf, size_t buflen)
{
struct sockaddr_in sin;
INIT_SOCKADDR_IN(&sin, sizeof(sin));
sin.sin_addr.s_addr = host;
make_ipaddr0((struct sockaddr*)&sin, sizeof(sin), buf, buflen);
}
static int
str_is_number(const char *p)
{
char *ep;
if (!p || *p == '\0')
return 0;
ep = NULL;
(void)STRTOUL(p, &ep, 10);
if (ep && *ep == '\0')
return 1;
else
return 0;
}
#define str_equal(ptr, len, name) \
((ptr)[0] == name[0] && \
rb_strlen_lit(name) == (len) && memcmp(ptr, name, len) == 0)
static char*
host_str(VALUE host, char *hbuf, size_t hbuflen, int *flags_ptr)
{
if (NIL_P(host)) {
return NULL;
}
else if (rb_obj_is_kind_of(host, rb_cInteger)) {
unsigned int i = NUM2UINT(host);
make_inetaddr(htonl(i), hbuf, hbuflen);
if (flags_ptr) *flags_ptr |= AI_NUMERICHOST;
return hbuf;
}
else {
const char *name;
size_t len;
StringValueCStr(host);
RSTRING_GETMEM(host, name, len);
if (!len || str_equal(name, len, "<any>")) {
make_inetaddr(INADDR_ANY, hbuf, hbuflen);
if (flags_ptr) *flags_ptr |= AI_NUMERICHOST;
}
else if (str_equal(name, len, "<broadcast>")) {
make_inetaddr(INADDR_BROADCAST, hbuf, hbuflen);
if (flags_ptr) *flags_ptr |= AI_NUMERICHOST;
}
else if (len >= hbuflen) {
rb_raise(rb_eArgError, "hostname too long (%"PRIuSIZE")",
len);
}
else {
memcpy(hbuf, name, len);
hbuf[len] = '\0';
}
return hbuf;
}
}
static char*
port_str(VALUE port, char *pbuf, size_t pbuflen, int *flags_ptr)
{
if (NIL_P(port)) {
return 0;
}
else if (FIXNUM_P(port)) {
snprintf(pbuf, pbuflen, "%ld", FIX2LONG(port));
#ifdef AI_NUMERICSERV
if (flags_ptr) *flags_ptr |= AI_NUMERICSERV;
#endif
return pbuf;
}
else {
const char *serv;
size_t len;
StringValueCStr(port);
RSTRING_GETMEM(port, serv, len);
if (len >= pbuflen) {
rb_raise(rb_eArgError, "service name too long (%"PRIuSIZE")",
len);
}
memcpy(pbuf, serv, len);
pbuf[len] = '\0';
return pbuf;
}
}
static int
rb_scheduler_getaddrinfo(VALUE scheduler, VALUE host, const char *service,
const struct addrinfo *hints, struct rb_addrinfo **res)
{
int error, res_allocated = 0, _additional_flags = 0;
long i, len;
struct addrinfo *ai, *ai_tail = NULL;
char *hostp;
char _hbuf[NI_MAXHOST];
VALUE ip_addresses_array, ip_address;
ip_addresses_array = rb_fiber_scheduler_address_resolve(scheduler, host);
if (ip_addresses_array == Qundef) {
// Returns EAI_FAIL if the scheduler hook is not implemented:
return EAI_FAIL;
} else if (ip_addresses_array == Qnil) {
len = 0;
} else {
len = RARRAY_LEN(ip_addresses_array);
}
for(i=0; i<len; i++) {
ip_address = rb_ary_entry(ip_addresses_array, i);
hostp = host_str(ip_address, _hbuf, sizeof(_hbuf), &_additional_flags);
error = numeric_getaddrinfo(hostp, service, hints, &ai);
if (error == 0) {
if (!res_allocated) {
res_allocated = 1;
*res = (struct rb_addrinfo *)xmalloc(sizeof(struct rb_addrinfo));
(*res)->allocated_by_malloc = 1;
(*res)->ai = ai;
ai_tail = ai;
} else {
while (ai_tail->ai_next) {
ai_tail = ai_tail->ai_next;
}
ai_tail->ai_next = ai;
ai_tail = ai;
}
}
}
if (res_allocated) { // At least one valid result.
return 0;
} else {
return EAI_NONAME;
}
}
struct rb_addrinfo*
rsock_getaddrinfo(VALUE host, VALUE port, struct addrinfo *hints, int socktype_hack)
{
struct rb_addrinfo* res = NULL;
struct addrinfo *ai;
char *hostp, *portp;
int error = 0;
char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];
int additional_flags = 0;
hostp = host_str(host, hbuf, sizeof(hbuf), &additional_flags);
portp = port_str(port, pbuf, sizeof(pbuf), &additional_flags);
if (socktype_hack && hints->ai_socktype == 0 && str_is_number(portp)) {
hints->ai_socktype = SOCK_DGRAM;
}
hints->ai_flags |= additional_flags;
error = numeric_getaddrinfo(hostp, portp, hints, &ai);
if (error == 0) {
res = (struct rb_addrinfo *)xmalloc(sizeof(struct rb_addrinfo));
res->allocated_by_malloc = 1;
res->ai = ai;
} else {
VALUE scheduler = rb_fiber_scheduler_current();
int resolved = 0;
if (scheduler != Qnil && hostp && !(hints->ai_flags & AI_NUMERICHOST)) {
error = rb_scheduler_getaddrinfo(scheduler, host, portp, hints, &res);
if (error != EAI_FAIL) {
resolved = 1;
}
}
if (!resolved) {
error = rb_getaddrinfo(hostp, portp, hints, &ai);
if (error == 0) {
res = (struct rb_addrinfo *)xmalloc(sizeof(struct rb_addrinfo));
res->allocated_by_malloc = 0;
res->ai = ai;
}
}
}
if (error) {
if (hostp && hostp[strlen(hostp)-1] == '\n') {
rb_raise(rb_eSocket, "newline at the end of hostname");
}
rsock_raise_resolution_error("getaddrinfo", error);
}
return res;
}
int
rsock_fd_family(int fd)
{
struct sockaddr sa = { 0 };
socklen_t sa_len = sizeof(sa);
if (fd < 0 || getsockname(fd, &sa, &sa_len) != 0 ||
(size_t)sa_len < offsetof(struct sockaddr, sa_family) + sizeof(sa.sa_family)) {
return AF_UNSPEC;
}
return sa.sa_family;
}
struct rb_addrinfo*
rsock_addrinfo(VALUE host, VALUE port, int family, int socktype, int flags)
{
struct addrinfo hints;
MEMZERO(&hints, struct addrinfo, 1);
hints.ai_family = family;
hints.ai_socktype = socktype;
hints.ai_flags = flags;
return rsock_getaddrinfo(host, port, &hints, 1);
}
VALUE
rsock_ipaddr(struct sockaddr *sockaddr, socklen_t sockaddrlen, int norevlookup)
{
VALUE family, port, addr1, addr2;
VALUE ary;
int error;
char hbuf[1024], pbuf[1024];
ID id;
id = rsock_intern_family(sockaddr->sa_family);
if (id) {
family = rb_str_dup(rb_id2str(id));
}
else {
family = rb_sprintf("unknown:%d", sockaddr->sa_family);
}
addr1 = Qnil;
if (!norevlookup) {
error = rb_getnameinfo(sockaddr, sockaddrlen, hbuf, sizeof(hbuf),
NULL, 0, 0);
if (! error) {
addr1 = rb_str_new2(hbuf);
}
}
error = rb_getnameinfo(sockaddr, sockaddrlen, hbuf, sizeof(hbuf),
pbuf, sizeof(pbuf), NI_NUMERICHOST | NI_NUMERICSERV);
if (error) {
rsock_raise_resolution_error("getnameinfo", error);
}
addr2 = rb_str_new2(hbuf);
if (addr1 == Qnil) {
addr1 = addr2;
}
port = INT2FIX(atoi(pbuf));
ary = rb_ary_new3(4, family, port, addr1, addr2);
return ary;
}
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
static long
unixsocket_len(const struct sockaddr_un *su, socklen_t socklen)
{
const char *s = su->sun_path, *e = (const char*)su + socklen;
while (s < e && *(e-1) == '\0')
e--;
return e - s;
}
VALUE
rsock_unixpath_str(struct sockaddr_un *sockaddr, socklen_t len)
{
long n = unixsocket_len(sockaddr, len);
if (n >= 0)
return rb_str_new(sockaddr->sun_path, n);
else
return rb_str_new2("");
}
VALUE
rsock_unixaddr(struct sockaddr_un *sockaddr, socklen_t len)
{
return rb_assoc_new(rb_str_new2("AF_UNIX"),
rsock_unixpath_str(sockaddr, len));
}
socklen_t
rsock_unix_sockaddr_len(VALUE path)
{
#ifdef __linux__
if (RSTRING_LEN(path) == 0) {
/* autobind; see unix(7) for details. */
return (socklen_t) sizeof(sa_family_t);
}
else if (RSTRING_PTR(path)[0] == '\0') {
/* abstract namespace; see unix(7) for details. */
if (SOCKLEN_MAX - offsetof(struct sockaddr_un, sun_path) < (size_t)RSTRING_LEN(path))
rb_raise(rb_eArgError, "Linux abstract socket too long");
return (socklen_t) offsetof(struct sockaddr_un, sun_path) +
RSTRING_SOCKLEN(path);
}
else {
#endif
return (socklen_t) sizeof(struct sockaddr_un);
#ifdef __linux__
}
#endif
}
#endif
struct hostent_arg {
VALUE host;
struct rb_addrinfo* addr;
VALUE (*ipaddr)(struct sockaddr*, socklen_t);
};
static VALUE
make_hostent_internal(VALUE v)
{
struct hostent_arg *arg = (void *)v;
VALUE host = arg->host;
struct addrinfo* addr = arg->addr->ai;
VALUE (*ipaddr)(struct sockaddr*, socklen_t) = arg->ipaddr;
struct addrinfo *ai;
struct hostent *h;
VALUE ary, names;
char **pch;
const char* hostp;
char hbuf[NI_MAXHOST];
ary = rb_ary_new();
if (addr->ai_canonname) {
hostp = addr->ai_canonname;
}
else {
hostp = host_str(host, hbuf, sizeof(hbuf), NULL);
}
rb_ary_push(ary, rb_str_new2(hostp));
if (addr->ai_canonname && strlen(addr->ai_canonname) < NI_MAXHOST &&
(h = gethostbyname(addr->ai_canonname))) {
names = rb_ary_new();
if (h->h_aliases != NULL) {
for (pch = h->h_aliases; *pch; pch++) {
rb_ary_push(names, rb_str_new2(*pch));
}
}
}
else {
names = rb_ary_new2(0);
}
rb_ary_push(ary, names);
rb_ary_push(ary, INT2NUM(addr->ai_family));
for (ai = addr; ai; ai = ai->ai_next) {
rb_ary_push(ary, (*ipaddr)(ai->ai_addr, ai->ai_addrlen));
}
return ary;
}
VALUE
rsock_freeaddrinfo(VALUE arg)
{
struct rb_addrinfo *addr = (struct rb_addrinfo *)arg;
rb_freeaddrinfo(addr);
return Qnil;
}
VALUE
rsock_make_hostent(VALUE host, struct rb_addrinfo *addr, VALUE (*ipaddr)(struct sockaddr *, socklen_t))
{
struct hostent_arg arg;
arg.host = host;
arg.addr = addr;
arg.ipaddr = ipaddr;
return rb_ensure(make_hostent_internal, (VALUE)&arg,
rsock_freeaddrinfo, (VALUE)addr);
}
typedef struct {
VALUE inspectname;
VALUE canonname;
int pfamily;
int socktype;
int protocol;
socklen_t sockaddr_len;
union_sockaddr addr;
} rb_addrinfo_t;
static void
addrinfo_mark(void *ptr)
{
rb_addrinfo_t *rai = ptr;
rb_gc_mark(rai->inspectname);
rb_gc_mark(rai->canonname);
}
#define addrinfo_free RUBY_TYPED_DEFAULT_FREE
static size_t
addrinfo_memsize(const void *ptr)
{
return sizeof(rb_addrinfo_t);
}
static const rb_data_type_t addrinfo_type = {
"socket/addrinfo",
{addrinfo_mark, addrinfo_free, addrinfo_memsize,},
};
static VALUE
addrinfo_s_allocate(VALUE klass)
{
return TypedData_Wrap_Struct(klass, &addrinfo_type, 0);
}
#define IS_ADDRINFO(obj) rb_typeddata_is_kind_of((obj), &addrinfo_type)
static inline rb_addrinfo_t *
check_addrinfo(VALUE self)
{
return rb_check_typeddata(self, &addrinfo_type);
}
static rb_addrinfo_t *
get_addrinfo(VALUE self)
{
rb_addrinfo_t *rai = check_addrinfo(self);
if (!rai) {
rb_raise(rb_eTypeError, "uninitialized socket address");
}
return rai;
}
static rb_addrinfo_t *
alloc_addrinfo(void)
{
rb_addrinfo_t *rai = ZALLOC(rb_addrinfo_t);
rai->inspectname = Qnil;
rai->canonname = Qnil;
return rai;
}
static void
init_addrinfo(rb_addrinfo_t *rai, struct sockaddr *sa, socklen_t len,
int pfamily, int socktype, int protocol,
VALUE canonname, VALUE inspectname)
{
if ((socklen_t)sizeof(rai->addr) < len)
rb_raise(rb_eArgError, "sockaddr string too big");
memcpy((void *)&rai->addr, (void *)sa, len);
rai->sockaddr_len = len;
rai->pfamily = pfamily;
rai->socktype = socktype;
rai->protocol = protocol;
rai->canonname = canonname;
rai->inspectname = inspectname;
}
VALUE
rsock_addrinfo_new(struct sockaddr *addr, socklen_t len,
int family, int socktype, int protocol,
VALUE canonname, VALUE inspectname)
{
VALUE a;
rb_addrinfo_t *rai;
a = addrinfo_s_allocate(rb_cAddrinfo);
DATA_PTR(a) = rai = alloc_addrinfo();
init_addrinfo(rai, addr, len, family, socktype, protocol, canonname, inspectname);
return a;
}
static struct rb_addrinfo *
call_getaddrinfo(VALUE node, VALUE service,
VALUE family, VALUE socktype, VALUE protocol, VALUE flags,
int socktype_hack, VALUE timeout)
{
struct addrinfo hints;
struct rb_addrinfo *res;
MEMZERO(&hints, struct addrinfo, 1);
hints.ai_family = NIL_P(family) ? PF_UNSPEC : rsock_family_arg(family);
if (!NIL_P(socktype)) {
hints.ai_socktype = rsock_socktype_arg(socktype);
}
if (!NIL_P(protocol)) {
hints.ai_protocol = NUM2INT(protocol);
}
if (!NIL_P(flags)) {
hints.ai_flags = NUM2INT(flags);
}
res = rsock_getaddrinfo(node, service, &hints, socktype_hack);
if (res == NULL)
rb_raise(rb_eSocket, "host not found");
return res;
}
static VALUE make_inspectname(VALUE node, VALUE service, struct addrinfo *res);
static void
init_addrinfo_getaddrinfo(rb_addrinfo_t *rai, VALUE node, VALUE service,
VALUE family, VALUE socktype, VALUE protocol, VALUE flags,
VALUE inspectnode, VALUE inspectservice)
{
struct rb_addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 1, Qnil);
VALUE canonname;
VALUE inspectname = rb_str_equal(node, inspectnode) ? Qnil : make_inspectname(inspectnode, inspectservice, res->ai);
canonname = Qnil;
if (res->ai->ai_canonname) {
canonname = rb_str_new_cstr(res->ai->ai_canonname);
OBJ_FREEZE(canonname);
}
init_addrinfo(rai, res->ai->ai_addr, res->ai->ai_addrlen,
NUM2INT(family), NUM2INT(socktype), NUM2INT(protocol),
canonname, inspectname);
rb_freeaddrinfo(res);
}
static VALUE
make_inspectname(VALUE node, VALUE service, struct addrinfo *res)
{
VALUE inspectname = Qnil;
if (res) {
/* drop redundant information which also shown in address:port part. */
char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];
int ret;
ret = rb_getnameinfo(res->ai_addr, res->ai_addrlen, hbuf,
sizeof(hbuf), pbuf, sizeof(pbuf),
NI_NUMERICHOST|NI_NUMERICSERV);
if (ret == 0) {
if (RB_TYPE_P(node, T_STRING) && strcmp(hbuf, RSTRING_PTR(node)) == 0)
node = Qnil;
if (RB_TYPE_P(service, T_STRING) && strcmp(pbuf, RSTRING_PTR(service)) == 0)
service = Qnil;
else if (RB_TYPE_P(service, T_FIXNUM) && atoi(pbuf) == FIX2INT(service))
service = Qnil;
}
}
if (RB_TYPE_P(node, T_STRING)) {
inspectname = rb_str_dup(node);
}
if (RB_TYPE_P(service, T_STRING)) {
if (NIL_P(inspectname))
inspectname = rb_sprintf(":%s", StringValueCStr(service));
else
rb_str_catf(inspectname, ":%s", StringValueCStr(service));
}
else if (RB_TYPE_P(service, T_FIXNUM) && FIX2INT(service) != 0)
{
if (NIL_P(inspectname))
inspectname = rb_sprintf(":%d", FIX2INT(service));
else
rb_str_catf(inspectname, ":%d", FIX2INT(service));
}
if (!NIL_P(inspectname)) {
OBJ_FREEZE(inspectname);
}
return inspectname;
}
static VALUE
addrinfo_firstonly_new(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags)
{
VALUE ret;
VALUE canonname;
VALUE inspectname;
struct rb_addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 0, Qnil);
inspectname = make_inspectname(node, service, res->ai);
canonname = Qnil;
if (res->ai->ai_canonname) {
canonname = rb_str_new_cstr(res->ai->ai_canonname);
OBJ_FREEZE(canonname);
}
ret = rsock_addrinfo_new(res->ai->ai_addr, res->ai->ai_addrlen,
res->ai->ai_family, res->ai->ai_socktype,
res->ai->ai_protocol,
canonname, inspectname);
rb_freeaddrinfo(res);
return ret;
}
static VALUE
addrinfo_list_new(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags, VALUE timeout)
{
VALUE ret;
struct addrinfo *r;
VALUE inspectname;
struct rb_addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 0, timeout);
inspectname = make_inspectname(node, service, res->ai);
ret = rb_ary_new();
for (r = res->ai; r; r = r->ai_next) {
VALUE addr;
VALUE canonname = Qnil;
if (r->ai_canonname) {
canonname = rb_str_new_cstr(r->ai_canonname);
OBJ_FREEZE(canonname);
}
addr = rsock_addrinfo_new(r->ai_addr, r->ai_addrlen,
r->ai_family, r->ai_socktype, r->ai_protocol,
canonname, inspectname);
rb_ary_push(ret, addr);
}
rb_freeaddrinfo(res);
return ret;
}
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
static void
init_unix_addrinfo(rb_addrinfo_t *rai, VALUE path, int socktype)
{
struct sockaddr_un un;
socklen_t len;
StringValue(path);
if (sizeof(un.sun_path) < (size_t)RSTRING_LEN(path))
rb_raise(rb_eArgError,
"too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)RSTRING_LEN(path), sizeof(un.sun_path));
INIT_SOCKADDR_UN(&un, sizeof(struct sockaddr_un));
memcpy((void*)&un.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
len = rsock_unix_sockaddr_len(path);
init_addrinfo(rai, (struct sockaddr *)&un, len,
PF_UNIX, socktype, 0, Qnil, Qnil);
}
static long
rai_unixsocket_len(const rb_addrinfo_t *rai)
{
return unixsocket_len(&rai->addr.un, rai->sockaddr_len);
}
#endif
/*
* call-seq:
* Addrinfo.new(sockaddr) => addrinfo
* Addrinfo.new(sockaddr, family) => addrinfo
* Addrinfo.new(sockaddr, family, socktype) => addrinfo
* Addrinfo.new(sockaddr, family, socktype, protocol) => addrinfo
*
* returns a new instance of Addrinfo.
* The instance contains sockaddr, family, socktype, protocol.
* sockaddr means struct sockaddr which can be used for connect(2), etc.
* family, socktype and protocol are integers which is used for arguments of socket(2).
*
* sockaddr is specified as an array or a string.
* The array should be compatible to the value of IPSocket#addr or UNIXSocket#addr.
* The string should be struct sockaddr as generated by
* Socket.sockaddr_in or Socket.unpack_sockaddr_un.
*
* sockaddr examples:
* - <code>["AF_INET", 46102, "localhost.localdomain", "127.0.0.1"]</code>
* - <code>["AF_INET6", 42304, "ip6-localhost", "::1"]</code>
* - <code>["AF_UNIX", "/tmp/sock"]</code>
* - <code>Socket.sockaddr_in("smtp", "2001:DB8::1")</code>
* - <code>Socket.sockaddr_in(80, "172.18.22.42")</code>
* - <code>Socket.sockaddr_in(80, "www.ruby-lang.org")</code>
* - <code>Socket.sockaddr_un("/tmp/sock")</code>
*
* In an AF_INET/AF_INET6 sockaddr array, the 4th element,
* numeric IP address, is used to construct socket address in the Addrinfo instance.
* If the 3rd element, textual host name, is non-nil, it is also recorded but used only for Addrinfo#inspect.
*
* family is specified as an integer to specify the protocol family such as Socket::PF_INET.
* It can be a symbol or a string which is the constant name
* with or without PF_ prefix such as :INET, :INET6, :UNIX, "PF_INET", etc.
* If omitted, PF_UNSPEC is assumed.
*
* socktype is specified as an integer to specify the socket type such as Socket::SOCK_STREAM.
* It can be a symbol or a string which is the constant name
* with or without SOCK_ prefix such as :STREAM, :DGRAM, :RAW, "SOCK_STREAM", etc.
* If omitted, 0 is assumed.
*
* protocol is specified as an integer to specify the protocol such as Socket::IPPROTO_TCP.
* It must be an integer, unlike family and socktype.
* If omitted, 0 is assumed.
* Note that 0 is reasonable value for most protocols, except raw socket.
*
*/
static VALUE
addrinfo_initialize(int argc, VALUE *argv, VALUE self)
{
rb_addrinfo_t *rai;
VALUE sockaddr_arg, sockaddr_ary, pfamily, socktype, protocol;
int i_pfamily, i_socktype, i_protocol;
struct sockaddr *sockaddr_ptr;
socklen_t sockaddr_len;
VALUE canonname = Qnil, inspectname = Qnil;
if (check_addrinfo(self))
rb_raise(rb_eTypeError, "already initialized socket address");
DATA_PTR(self) = rai = alloc_addrinfo();
rb_scan_args(argc, argv, "13", &sockaddr_arg, &pfamily, &socktype, &protocol);
i_pfamily = NIL_P(pfamily) ? PF_UNSPEC : rsock_family_arg(pfamily);
i_socktype = NIL_P(socktype) ? 0 : rsock_socktype_arg(socktype);
i_protocol = NIL_P(protocol) ? 0 : NUM2INT(protocol);
sockaddr_ary = rb_check_array_type(sockaddr_arg);
if (!NIL_P(sockaddr_ary)) {
VALUE afamily = rb_ary_entry(sockaddr_ary, 0);
int af;
StringValue(afamily);
if (rsock_family_to_int(RSTRING_PTR(afamily), RSTRING_LEN(afamily), &af) == -1)
rb_raise(rb_eSocket, "unknown address family: %s", StringValueCStr(afamily));
switch (af) {
case AF_INET: /* ["AF_INET", 46102, "localhost.localdomain", "127.0.0.1"] */
#ifdef INET6
case AF_INET6: /* ["AF_INET6", 42304, "ip6-localhost", "::1"] */
#endif
{
VALUE service = rb_ary_entry(sockaddr_ary, 1);
VALUE nodename = rb_ary_entry(sockaddr_ary, 2);
VALUE numericnode = rb_ary_entry(sockaddr_ary, 3);
int flags;
service = INT2NUM(NUM2INT(service));
if (!NIL_P(nodename))
StringValue(nodename);
StringValue(numericnode);
flags = AI_NUMERICHOST;
#ifdef AI_NUMERICSERV
flags |= AI_NUMERICSERV;
#endif
init_addrinfo_getaddrinfo(rai, numericnode, service,
INT2NUM(i_pfamily ? i_pfamily : af), INT2NUM(i_socktype), INT2NUM(i_protocol),
INT2NUM(flags),
nodename, service);
break;
}
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
case AF_UNIX: /* ["AF_UNIX", "/tmp/sock"] */
{
VALUE path = rb_ary_entry(sockaddr_ary, 1);
StringValue(path);
init_unix_addrinfo(rai, path, SOCK_STREAM);
break;
}
#endif
default:
rb_raise(rb_eSocket, "unexpected address family");
}
}
else {
StringValue(sockaddr_arg);
sockaddr_ptr = (struct sockaddr *)RSTRING_PTR(sockaddr_arg);
sockaddr_len = RSTRING_SOCKLEN(sockaddr_arg);
init_addrinfo(rai, sockaddr_ptr, sockaddr_len,
i_pfamily, i_socktype, i_protocol,
canonname, inspectname);
}
return self;
}
static int
get_afamily(const struct sockaddr *addr, socklen_t len)
{
if ((socklen_t)((const char*)&addr->sa_family + sizeof(addr->sa_family) - (char*)addr) <= len)
return addr->sa_family;
else
return AF_UNSPEC;
}
static int
ai_get_afamily(const rb_addrinfo_t *rai)
{
return get_afamily(&rai->addr.addr, rai->sockaddr_len);
}
static VALUE
inspect_sockaddr(VALUE addrinfo, VALUE ret)
{
rb_addrinfo_t *rai = get_addrinfo(addrinfo);
union_sockaddr *sockaddr = &rai->addr;
socklen_t socklen = rai->sockaddr_len;
return rsock_inspect_sockaddr((struct sockaddr *)sockaddr, socklen, ret);
}
VALUE
rsock_inspect_sockaddr(struct sockaddr *sockaddr_arg, socklen_t socklen, VALUE ret)
{
union_sockaddr *sockaddr = (union_sockaddr *)sockaddr_arg;
if (socklen == 0) {
rb_str_cat2(ret, "empty-sockaddr");
}
else if ((long)socklen < ((char*)&sockaddr->addr.sa_family + sizeof(sockaddr->addr.sa_family)) - (char*)sockaddr)
rb_str_cat2(ret, "too-short-sockaddr");
else {
switch (sockaddr->addr.sa_family) {
case AF_UNSPEC:
{
rb_str_cat2(ret, "UNSPEC");
break;
}
case AF_INET:
{
struct sockaddr_in *addr;
int port;
addr = &sockaddr->in;
if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+0+1) <= socklen)
rb_str_catf(ret, "%d", ((unsigned char*)&addr->sin_addr)[0]);
else
rb_str_cat2(ret, "?");
if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+1+1) <= socklen)
rb_str_catf(ret, ".%d", ((unsigned char*)&addr->sin_addr)[1]);
else
rb_str_cat2(ret, ".?");
if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+2+1) <= socklen)
rb_str_catf(ret, ".%d", ((unsigned char*)&addr->sin_addr)[2]);
else
rb_str_cat2(ret, ".?");
if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+3+1) <= socklen)
rb_str_catf(ret, ".%d", ((unsigned char*)&addr->sin_addr)[3]);
else
rb_str_cat2(ret, ".?");
if ((socklen_t)(((char*)&addr->sin_port)-(char*)addr+(int)sizeof(addr->sin_port)) < socklen) {
port = ntohs(addr->sin_port);
if (port)
rb_str_catf(ret, ":%d", port);
}
else {
rb_str_cat2(ret, ":?");
}
if ((socklen_t)sizeof(struct sockaddr_in) != socklen)
rb_str_catf(ret, " (%d bytes for %d bytes sockaddr_in)",
(int)socklen,
(int)sizeof(struct sockaddr_in));
break;
}
#ifdef AF_INET6
case AF_INET6:
{
struct sockaddr_in6 *addr;
char hbuf[1024];
int port;
int error;
if (socklen < (socklen_t)sizeof(struct sockaddr_in6)) {
rb_str_catf(ret, "too-short-AF_INET6-sockaddr %d bytes", (int)socklen);
}
else {
addr = &sockaddr->in6;
/* use getnameinfo for scope_id.
* RFC 4007: IPv6 Scoped Address Architecture
* draft-ietf-ipv6-scope-api-00.txt: Scoped Address Extensions to the IPv6 Basic Socket API
*/
error = rb_getnameinfo(&sockaddr->addr, socklen,
hbuf, (socklen_t)sizeof(hbuf), NULL, 0,
NI_NUMERICHOST|NI_NUMERICSERV);
if (error) {
rsock_raise_resolution_error("getnameinfo", error);
}
if (addr->sin6_port == 0) {
rb_str_cat2(ret, hbuf);
}
else {
port = ntohs(addr->sin6_port);
rb_str_catf(ret, "[%s]:%d", hbuf, port);
}
if ((socklen_t)sizeof(struct sockaddr_in6) < socklen)
rb_str_catf(ret, "(sockaddr %d bytes too long)", (int)(socklen - sizeof(struct sockaddr_in6)));
}
break;
}
#endif
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
case AF_UNIX:
{
struct sockaddr_un *addr = &sockaddr->un;
char *p, *s, *e;
long len = unixsocket_len(addr, socklen);
s = addr->sun_path;
if (len < 0)
rb_str_cat2(ret, "too-short-AF_UNIX-sockaddr");
else if (len == 0)
rb_str_cat2(ret, "empty-path-AF_UNIX-sockaddr");
else {
int printable_only = 1;
e = s + len;
p = s;
while (p < e) {
printable_only = printable_only && ISPRINT(*p) && !ISSPACE(*p);
p++;
}
if (printable_only) { /* only printable, no space */
if (s[0] != '/') /* relative path */
rb_str_cat2(ret, "UNIX ");
rb_str_cat(ret, s, p - s);
}
else {
rb_str_cat2(ret, "UNIX");
while (s < e)
rb_str_catf(ret, ":%02x", (unsigned char)*s++);
}
}
break;
}
#endif
#if defined(AF_PACKET) && defined(__linux__)
/* GNU/Linux */
case AF_PACKET:
{
struct sockaddr_ll *addr;
const char *sep = "[";
#define CATSEP do { rb_str_cat2(ret, sep); sep = " "; } while (0);
addr = (struct sockaddr_ll *)sockaddr;
rb_str_cat2(ret, "PACKET");
if (offsetof(struct sockaddr_ll, sll_protocol) + sizeof(addr->sll_protocol) <= (size_t)socklen) {
CATSEP;
rb_str_catf(ret, "protocol=%d", ntohs(addr->sll_protocol));
}
if (offsetof(struct sockaddr_ll, sll_ifindex) + sizeof(addr->sll_ifindex) <= (size_t)socklen) {
char buf[IFNAMSIZ];
CATSEP;
if (if_indextoname(addr->sll_ifindex, buf) == NULL)
rb_str_catf(ret, "ifindex=%d", addr->sll_ifindex);
else
rb_str_catf(ret, "%s", buf);
}
if (offsetof(struct sockaddr_ll, sll_hatype) + sizeof(addr->sll_hatype) <= (size_t)socklen) {
CATSEP;
rb_str_catf(ret, "hatype=%d", addr->sll_hatype);
}
if (offsetof(struct sockaddr_ll, sll_pkttype) + sizeof(addr->sll_pkttype) <= (size_t)socklen) {
CATSEP;
if (addr->sll_pkttype == PACKET_HOST)
rb_str_cat2(ret, "HOST");
else if (addr->sll_pkttype == PACKET_BROADCAST)
rb_str_cat2(ret, "BROADCAST");
else if (addr->sll_pkttype == PACKET_MULTICAST)
rb_str_cat2(ret, "MULTICAST");
else if (addr->sll_pkttype == PACKET_OTHERHOST)
rb_str_cat2(ret, "OTHERHOST");
else if (addr->sll_pkttype == PACKET_OUTGOING)
rb_str_cat2(ret, "OUTGOING");
else
rb_str_catf(ret, "pkttype=%d", addr->sll_pkttype);
}
if (socklen != (socklen_t)(offsetof(struct sockaddr_ll, sll_addr) + addr->sll_halen)) {
CATSEP;
if (offsetof(struct sockaddr_ll, sll_halen) + sizeof(addr->sll_halen) <= (size_t)socklen) {
rb_str_catf(ret, "halen=%d", addr->sll_halen);
}
}
if (offsetof(struct sockaddr_ll, sll_addr) < (size_t)socklen) {
socklen_t len, i;
CATSEP;
rb_str_cat2(ret, "hwaddr");
len = addr->sll_halen;
if ((size_t)socklen < offsetof(struct sockaddr_ll, sll_addr) + len)
len = socklen - offsetof(struct sockaddr_ll, sll_addr);
for (i = 0; i < len; i++) {
rb_str_cat2(ret, i == 0 ? "=" : ":");
rb_str_catf(ret, "%02x", addr->sll_addr[i]);
}
}
if (socklen < (socklen_t)(offsetof(struct sockaddr_ll, sll_halen) + sizeof(addr->sll_halen)) ||
(socklen_t)(offsetof(struct sockaddr_ll, sll_addr) + addr->sll_halen) != socklen) {
CATSEP;
rb_str_catf(ret, "(%d bytes for %d bytes sockaddr_ll)",
(int)socklen, (int)sizeof(struct sockaddr_ll));
}
rb_str_cat2(ret, "]");
#undef CATSEP
break;
}
#endif
#if defined(AF_LINK) && defined(HAVE_TYPE_STRUCT_SOCKADDR_DL)
/* AF_LINK is defined in 4.4BSD derivations since Net2.
link_ntoa is also defined at Net2.
However Debian GNU/kFreeBSD defines AF_LINK but
don't have link_ntoa. */
case AF_LINK:
{
/*
* Simple implementation using link_ntoa():
* This doesn't work on Debian GNU/kFreeBSD 6.0.7 (squeeze).
* Also, the format is bit different.
*
* rb_str_catf(ret, "LINK %s", link_ntoa(&sockaddr->dl));
* break;
*/
struct sockaddr_dl *addr = &sockaddr->dl;
char *np = NULL, *ap = NULL, *endp;
int nlen = 0, alen = 0;
int i, off;
const char *sep = "[";
#define CATSEP do { rb_str_cat2(ret, sep); sep = " "; } while (0);
rb_str_cat2(ret, "LINK");
endp = ((char *)addr) + socklen;
if (offsetof(struct sockaddr_dl, sdl_data) < socklen) {
np = addr->sdl_data;
nlen = addr->sdl_nlen;
if (endp - np < nlen)
nlen = (int)(endp - np);
}
off = addr->sdl_nlen;
if (offsetof(struct sockaddr_dl, sdl_data) + off < socklen) {
ap = addr->sdl_data + off;
alen = addr->sdl_alen;
if (endp - ap < alen)
alen = (int)(endp - ap);
}
CATSEP;
if (np)
rb_str_catf(ret, "%.*s", nlen, np);
else
rb_str_cat2(ret, "?");
if (ap && 0 < alen) {
CATSEP;
for (i = 0; i < alen; i++)
rb_str_catf(ret, "%s%02x", i == 0 ? "" : ":", (unsigned char)ap[i]);
}
if (socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_nlen) + sizeof(addr->sdl_nlen)) ||
socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_alen) + sizeof(addr->sdl_alen)) ||
socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_slen) + sizeof(addr->sdl_slen)) ||
/* longer length is possible behavior because struct sockaddr_dl has "minimum work area, can be larger" as the last field.
* cf. Net2:/usr/src/sys/net/if_dl.h. */
socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_data) + addr->sdl_nlen + addr->sdl_alen + addr->sdl_slen)) {
CATSEP;
rb_str_catf(ret, "(%d bytes for %d bytes sockaddr_dl)",
(int)socklen, (int)sizeof(struct sockaddr_dl));
}
rb_str_cat2(ret, "]");
#undef CATSEP
break;
}
#endif
default:
{
ID id = rsock_intern_family(sockaddr->addr.sa_family);
if (id == 0)
rb_str_catf(ret, "unknown address family %d", sockaddr->addr.sa_family);
else
rb_str_catf(ret, "%s address format unknown", rb_id2name(id));
break;
}
}
}
return ret;
}
/*
* call-seq:
* addrinfo.inspect => string
*
* returns a string which shows addrinfo in human-readable form.
*
* Addrinfo.tcp("localhost", 80).inspect #=> "#<Addrinfo: 127.0.0.1:80 TCP (localhost)>"
* Addrinfo.unix("/tmp/sock").inspect #=> "#<Addrinfo: /tmp/sock SOCK_STREAM>"
*
*/
static VALUE
addrinfo_inspect(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int internet_p;
VALUE ret;
ret = rb_sprintf("#<%s: ", rb_obj_classname(self));
inspect_sockaddr(self, ret);
if (rai->pfamily && ai_get_afamily(rai) != rai->pfamily) {
ID id = rsock_intern_protocol_family(rai->pfamily);
if (id)
rb_str_catf(ret, " %s", rb_id2name(id));
else
rb_str_catf(ret, " PF_\?\?\?(%d)", rai->pfamily);
}
internet_p = rai->pfamily == PF_INET;
#ifdef INET6
internet_p = internet_p || rai->pfamily == PF_INET6;
#endif
if (internet_p && rai->socktype == SOCK_STREAM &&
(rai->protocol == 0 || rai->protocol == IPPROTO_TCP)) {
rb_str_cat2(ret, " TCP");
}
else if (internet_p && rai->socktype == SOCK_DGRAM &&
(rai->protocol == 0 || rai->protocol == IPPROTO_UDP)) {
rb_str_cat2(ret, " UDP");
}
else {
if (rai->socktype) {
ID id = rsock_intern_socktype(rai->socktype);
if (id)
rb_str_catf(ret, " %s", rb_id2name(id));
else
rb_str_catf(ret, " SOCK_\?\?\?(%d)", rai->socktype);
}
if (rai->protocol) {
if (internet_p) {
ID id = rsock_intern_ipproto(rai->protocol);
if (id)
rb_str_catf(ret, " %s", rb_id2name(id));
else
goto unknown_protocol;
}
else {
unknown_protocol:
rb_str_catf(ret, " UNKNOWN_PROTOCOL(%d)", rai->protocol);
}
}
}
if (!NIL_P(rai->canonname)) {
VALUE name = rai->canonname;
rb_str_catf(ret, " %s", StringValueCStr(name));
}
if (!NIL_P(rai->inspectname)) {
VALUE name = rai->inspectname;
rb_str_catf(ret, " (%s)", StringValueCStr(name));
}
rb_str_buf_cat2(ret, ">");
return ret;
}
/*
* call-seq:
* addrinfo.inspect_sockaddr => string
*
* returns a string which shows the sockaddr in _addrinfo_ with human-readable form.
*
* Addrinfo.tcp("localhost", 80).inspect_sockaddr #=> "127.0.0.1:80"
* Addrinfo.tcp("ip6-localhost", 80).inspect_sockaddr #=> "[::1]:80"
* Addrinfo.unix("/tmp/sock").inspect_sockaddr #=> "/tmp/sock"
*
*/
VALUE
rsock_addrinfo_inspect_sockaddr(VALUE self)
{
return inspect_sockaddr(self, rb_str_new("", 0));
}
/* :nodoc: */
static VALUE
addrinfo_mdump(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
VALUE sockaddr, afamily, pfamily, socktype, protocol, canonname, inspectname;
int afamily_int = ai_get_afamily(rai);
ID id;
id = rsock_intern_protocol_family(rai->pfamily);
if (id == 0)
rb_raise(rb_eSocket, "unknown protocol family: %d", rai->pfamily);
pfamily = rb_id2str(id);
if (rai->socktype == 0)
socktype = INT2FIX(0);
else {
id = rsock_intern_socktype(rai->socktype);
if (id == 0)
rb_raise(rb_eSocket, "unknown socktype: %d", rai->socktype);
socktype = rb_id2str(id);
}
if (rai->protocol == 0)
protocol = INT2FIX(0);
else if (IS_IP_FAMILY(afamily_int)) {
id = rsock_intern_ipproto(rai->protocol);
if (id == 0)
rb_raise(rb_eSocket, "unknown IP protocol: %d", rai->protocol);
protocol = rb_id2str(id);
}
else {
rb_raise(rb_eSocket, "unknown protocol: %d", rai->protocol);
}
canonname = rai->canonname;
inspectname = rai->inspectname;
id = rsock_intern_family(afamily_int);
if (id == 0)
rb_raise(rb_eSocket, "unknown address family: %d", afamily_int);
afamily = rb_id2str(id);
switch(afamily_int) {
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
case AF_UNIX:
{
sockaddr = rb_str_new(rai->addr.un.sun_path, rai_unixsocket_len(rai));
break;
}
#endif
default:
{
char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];
int error;
error = rb_getnameinfo(&rai->addr.addr, rai->sockaddr_len,
hbuf, (socklen_t)sizeof(hbuf), pbuf, (socklen_t)sizeof(pbuf),
NI_NUMERICHOST|NI_NUMERICSERV);
if (error) {
rsock_raise_resolution_error("getnameinfo", error);
}
sockaddr = rb_assoc_new(rb_str_new_cstr(hbuf), rb_str_new_cstr(pbuf));
break;
}
}
return rb_ary_new3(7, afamily, sockaddr, pfamily, socktype, protocol, canonname, inspectname);
}
/* :nodoc: */
static VALUE
addrinfo_mload(VALUE self, VALUE ary)
{
VALUE v;
VALUE canonname, inspectname;
int afamily, pfamily, socktype, protocol;
union_sockaddr ss;
socklen_t len;
rb_addrinfo_t *rai;
if (check_addrinfo(self))
rb_raise(rb_eTypeError, "already initialized socket address");
ary = rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
v = rb_ary_entry(ary, 0);
StringValue(v);
if (rsock_family_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &afamily) == -1)
rb_raise(rb_eTypeError, "unexpected address family");
v = rb_ary_entry(ary, 2);
StringValue(v);
if (rsock_family_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &pfamily) == -1)
rb_raise(rb_eTypeError, "unexpected protocol family");
v = rb_ary_entry(ary, 3);
if (v == INT2FIX(0))
socktype = 0;
else {
StringValue(v);
if (rsock_socktype_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &socktype) == -1)
rb_raise(rb_eTypeError, "unexpected socktype");
}
v = rb_ary_entry(ary, 4);
if (v == INT2FIX(0))
protocol = 0;
else {
StringValue(v);
if (IS_IP_FAMILY(afamily)) {
if (rsock_ipproto_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &protocol) == -1)
rb_raise(rb_eTypeError, "unexpected protocol");
}
else {
rb_raise(rb_eTypeError, "unexpected protocol");
}
}
v = rb_ary_entry(ary, 5);
if (NIL_P(v))
canonname = Qnil;
else {
StringValue(v);
canonname = v;
}
v = rb_ary_entry(ary, 6);
if (NIL_P(v))
inspectname = Qnil;
else {
StringValue(v);
inspectname = v;
}
v = rb_ary_entry(ary, 1);
switch(afamily) {
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
case AF_UNIX:
{
struct sockaddr_un uaddr;
INIT_SOCKADDR_UN(&uaddr, sizeof(struct sockaddr_un));
StringValue(v);
if (sizeof(uaddr.sun_path) < (size_t)RSTRING_LEN(v))
rb_raise(rb_eSocket,
"too long AF_UNIX path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)RSTRING_LEN(v), sizeof(uaddr.sun_path));
memcpy(uaddr.sun_path, RSTRING_PTR(v), RSTRING_LEN(v));
len = (socklen_t)sizeof(uaddr);
memcpy(&ss, &uaddr, len);
break;
}
#endif
default:
{
VALUE pair = rb_convert_type(v, T_ARRAY, "Array", "to_ary");
struct rb_addrinfo *res;
int flags = AI_NUMERICHOST;
#ifdef AI_NUMERICSERV
flags |= AI_NUMERICSERV;
#endif
res = call_getaddrinfo(rb_ary_entry(pair, 0), rb_ary_entry(pair, 1),
INT2NUM(pfamily), INT2NUM(socktype), INT2NUM(protocol),
INT2NUM(flags), 1, Qnil);
len = res->ai->ai_addrlen;
memcpy(&ss, res->ai->ai_addr, res->ai->ai_addrlen);
rb_freeaddrinfo(res);
break;
}
}
DATA_PTR(self) = rai = alloc_addrinfo();
init_addrinfo(rai, &ss.addr, len,
pfamily, socktype, protocol,
canonname, inspectname);
return self;
}
/*
* call-seq:
* addrinfo.afamily => integer
*
* returns the address family as an integer.
*
* Addrinfo.tcp("localhost", 80).afamily == Socket::AF_INET #=> true
*
*/
static VALUE
addrinfo_afamily(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
return INT2NUM(ai_get_afamily(rai));
}
/*
* call-seq:
* addrinfo.pfamily => integer
*
* returns the protocol family as an integer.
*
* Addrinfo.tcp("localhost", 80).pfamily == Socket::PF_INET #=> true
*
*/
static VALUE
addrinfo_pfamily(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
return INT2NUM(rai->pfamily);
}
/*
* call-seq:
* addrinfo.socktype => integer
*
* returns the socket type as an integer.
*
* Addrinfo.tcp("localhost", 80).socktype == Socket::SOCK_STREAM #=> true
*
*/
static VALUE
addrinfo_socktype(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
return INT2NUM(rai->socktype);
}
/*
* call-seq:
* addrinfo.protocol => integer
*
* returns the socket type as an integer.
*
* Addrinfo.tcp("localhost", 80).protocol == Socket::IPPROTO_TCP #=> true
*
*/
static VALUE
addrinfo_protocol(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
return INT2NUM(rai->protocol);
}
/*
* call-seq:
* addrinfo.to_sockaddr => string
* addrinfo.to_s => string
*
* returns the socket address as packed struct sockaddr string.
*
* Addrinfo.tcp("localhost", 80).to_sockaddr
* #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
*
*/
static VALUE
addrinfo_to_sockaddr(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
VALUE ret;
ret = rb_str_new((char*)&rai->addr, rai->sockaddr_len);
return ret;
}
/*
* call-seq:
* addrinfo.canonname => string or nil
*
* returns the canonical name as a string.
*
* nil is returned if no canonical name.
*
* The canonical name is set by Addrinfo.getaddrinfo when AI_CANONNAME is specified.
*
* list = Addrinfo.getaddrinfo("www.ruby-lang.org", 80, :INET, :STREAM, nil, Socket::AI_CANONNAME)
* p list[0] #=> #<Addrinfo: 221.186.184.68:80 TCP carbon.ruby-lang.org (www.ruby-lang.org)>
* p list[0].canonname #=> "carbon.ruby-lang.org"
*
*/
static VALUE
addrinfo_canonname(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
return rai->canonname;
}
/*
* call-seq:
* addrinfo.ip? => true or false
*
* returns true if addrinfo is internet (IPv4/IPv6) address.
* returns false otherwise.
*
* Addrinfo.tcp("127.0.0.1", 80).ip? #=> true
* Addrinfo.tcp("::1", 80).ip? #=> true
* Addrinfo.unix("/tmp/sock").ip? #=> false
*
*/
static VALUE
addrinfo_ip_p(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
return IS_IP_FAMILY(family) ? Qtrue : Qfalse;
}
/*
* call-seq:
* addrinfo.ipv4? => true or false
*
* returns true if addrinfo is IPv4 address.
* returns false otherwise.
*
* Addrinfo.tcp("127.0.0.1", 80).ipv4? #=> true
* Addrinfo.tcp("::1", 80).ipv4? #=> false
* Addrinfo.unix("/tmp/sock").ipv4? #=> false
*
*/
static VALUE
addrinfo_ipv4_p(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
return ai_get_afamily(rai) == AF_INET ? Qtrue : Qfalse;
}
/*
* call-seq:
* addrinfo.ipv6? => true or false
*
* returns true if addrinfo is IPv6 address.
* returns false otherwise.
*
* Addrinfo.tcp("127.0.0.1", 80).ipv6? #=> false
* Addrinfo.tcp("::1", 80).ipv6? #=> true
* Addrinfo.unix("/tmp/sock").ipv6? #=> false
*
*/
static VALUE
addrinfo_ipv6_p(VALUE self)
{
#ifdef AF_INET6
rb_addrinfo_t *rai = get_addrinfo(self);
return ai_get_afamily(rai) == AF_INET6 ? Qtrue : Qfalse;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* addrinfo.unix? => true or false
*
* returns true if addrinfo is UNIX address.
* returns false otherwise.
*
* Addrinfo.tcp("127.0.0.1", 80).unix? #=> false
* Addrinfo.tcp("::1", 80).unix? #=> false
* Addrinfo.unix("/tmp/sock").unix? #=> true
*
*/
static VALUE
addrinfo_unix_p(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
#ifdef AF_UNIX
return ai_get_afamily(rai) == AF_UNIX ? Qtrue : Qfalse;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* addrinfo.getnameinfo => [nodename, service]
* addrinfo.getnameinfo(flags) => [nodename, service]
*
* returns nodename and service as a pair of strings.
* This converts struct sockaddr in addrinfo to textual representation.
*
* flags should be bitwise OR of Socket::NI_??? constants.
*
* Addrinfo.tcp("127.0.0.1", 80).getnameinfo #=> ["localhost", "www"]
*
* Addrinfo.tcp("127.0.0.1", 80).getnameinfo(Socket::NI_NUMERICSERV)
* #=> ["localhost", "80"]
*/
static VALUE
addrinfo_getnameinfo(int argc, VALUE *argv, VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
VALUE vflags;
char hbuf[1024], pbuf[1024];
int flags, error;
rb_scan_args(argc, argv, "01", &vflags);
flags = NIL_P(vflags) ? 0 : NUM2INT(vflags);
if (rai->socktype == SOCK_DGRAM)
flags |= NI_DGRAM;
error = rb_getnameinfo(&rai->addr.addr, rai->sockaddr_len,
hbuf, (socklen_t)sizeof(hbuf), pbuf, (socklen_t)sizeof(pbuf),
flags);
if (error) {
rsock_raise_resolution_error("getnameinfo", error);
}
return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf));
}
/*
* call-seq:
* addrinfo.ip_unpack => [addr, port]
*
* Returns the IP address and port number as 2-element array.
*
* Addrinfo.tcp("127.0.0.1", 80).ip_unpack #=> ["127.0.0.1", 80]
* Addrinfo.tcp("::1", 80).ip_unpack #=> ["::1", 80]
*/
static VALUE
addrinfo_ip_unpack(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
VALUE vflags;
VALUE ret, portstr;
if (!IS_IP_FAMILY(family))
rb_raise(rb_eSocket, "need IPv4 or IPv6 address");
vflags = INT2NUM(NI_NUMERICHOST|NI_NUMERICSERV);
ret = addrinfo_getnameinfo(1, &vflags, self);
portstr = rb_ary_entry(ret, 1);
rb_ary_store(ret, 1, INT2NUM(atoi(StringValueCStr(portstr))));
return ret;
}
/*
* call-seq:
* addrinfo.ip_address => string
*
* Returns the IP address as a string.
*
* Addrinfo.tcp("127.0.0.1", 80).ip_address #=> "127.0.0.1"
* Addrinfo.tcp("::1", 80).ip_address #=> "::1"
*/
static VALUE
addrinfo_ip_address(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
VALUE vflags;
VALUE ret;
if (!IS_IP_FAMILY(family))
rb_raise(rb_eSocket, "need IPv4 or IPv6 address");
vflags = INT2NUM(NI_NUMERICHOST|NI_NUMERICSERV);
ret = addrinfo_getnameinfo(1, &vflags, self);
return rb_ary_entry(ret, 0);
}
/*
* call-seq:
* addrinfo.ip_port => port
*
* Returns the port number as an integer.
*
* Addrinfo.tcp("127.0.0.1", 80).ip_port #=> 80
* Addrinfo.tcp("::1", 80).ip_port #=> 80
*/
static VALUE
addrinfo_ip_port(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
int port;
if (!IS_IP_FAMILY(family)) {
bad_family:
#ifdef AF_INET6
rb_raise(rb_eSocket, "need IPv4 or IPv6 address");
#else
rb_raise(rb_eSocket, "need IPv4 address");
#endif
}
switch (family) {
case AF_INET:
if (rai->sockaddr_len != sizeof(struct sockaddr_in))
rb_raise(rb_eSocket, "unexpected sockaddr size for IPv4");
port = ntohs(rai->addr.in.sin_port);
break;
#ifdef AF_INET6
case AF_INET6:
if (rai->sockaddr_len != sizeof(struct sockaddr_in6))
rb_raise(rb_eSocket, "unexpected sockaddr size for IPv6");
port = ntohs(rai->addr.in6.sin6_port);
break;
#endif
default:
goto bad_family;
}
return INT2NUM(port);
}
static int
extract_in_addr(VALUE self, uint32_t *addrp)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
if (family != AF_INET) return 0;
*addrp = ntohl(rai->addr.in.sin_addr.s_addr);
return 1;
}
/*
* Returns true for IPv4 private address (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv4_private_p(VALUE self)
{
uint32_t a;
if (!extract_in_addr(self, &a)) return Qfalse;
if ((a & 0xff000000) == 0x0a000000 || /* 10.0.0.0/8 */
(a & 0xfff00000) == 0xac100000 || /* 172.16.0.0/12 */
(a & 0xffff0000) == 0xc0a80000) /* 192.168.0.0/16 */
return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv4 loopback address (127.0.0.0/8).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv4_loopback_p(VALUE self)
{
uint32_t a;
if (!extract_in_addr(self, &a)) return Qfalse;
if ((a & 0xff000000) == 0x7f000000) /* 127.0.0.0/8 */
return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv4 multicast address (224.0.0.0/4).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv4_multicast_p(VALUE self)
{
uint32_t a;
if (!extract_in_addr(self, &a)) return Qfalse;
if ((a & 0xf0000000) == 0xe0000000) /* 224.0.0.0/4 */
return Qtrue;
return Qfalse;
}
#ifdef INET6
static struct in6_addr *
extract_in6_addr(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
if (family != AF_INET6) return NULL;
return &rai->addr.in6.sin6_addr;
}
/*
* Returns true for IPv6 unspecified address (::).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_unspecified_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_UNSPECIFIED(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 loopback address (::1).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_loopback_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_LOOPBACK(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 multicast address (ff00::/8).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_multicast_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_MULTICAST(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 link local address (fe80::/10).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_linklocal_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_LINKLOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 site local address (fec0::/10).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_sitelocal_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_SITELOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 unique local address (fc00::/7, RFC4193).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_unique_local_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_UNIQUE_LOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv4-mapped IPv6 address (::ffff:0:0/80).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_v4mapped_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_V4MAPPED(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv4-compatible IPv6 address (::/80).
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_v4compat_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_V4COMPAT(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 multicast node-local scope address.
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_mc_nodelocal_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_MC_NODELOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 multicast link-local scope address.
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_mc_linklocal_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_MC_LINKLOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 multicast site-local scope address.
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_mc_sitelocal_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_MC_SITELOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 multicast organization-local scope address.
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_mc_orglocal_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_MC_ORGLOCAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns true for IPv6 multicast global scope address.
* It returns false otherwise.
*/
static VALUE
addrinfo_ipv6_mc_global_p(VALUE self)
{
struct in6_addr *addr = extract_in6_addr(self);
if (addr && IN6_IS_ADDR_MC_GLOBAL(addr)) return Qtrue;
return Qfalse;
}
/*
* Returns IPv4 address of IPv4 mapped/compatible IPv6 address.
* It returns nil if +self+ is not IPv4 mapped/compatible IPv6 address.
*
* Addrinfo.ip("::192.0.2.3").ipv6_to_ipv4 #=> #<Addrinfo: 192.0.2.3>
* Addrinfo.ip("::ffff:192.0.2.3").ipv6_to_ipv4 #=> #<Addrinfo: 192.0.2.3>
* Addrinfo.ip("::1").ipv6_to_ipv4 #=> nil
* Addrinfo.ip("192.0.2.3").ipv6_to_ipv4 #=> nil
* Addrinfo.unix("/tmp/sock").ipv6_to_ipv4 #=> nil
*/
static VALUE
addrinfo_ipv6_to_ipv4(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
struct in6_addr *addr;
int family = ai_get_afamily(rai);
if (family != AF_INET6) return Qnil;
addr = &rai->addr.in6.sin6_addr;
if (IN6_IS_ADDR_V4MAPPED(addr) || IN6_IS_ADDR_V4COMPAT(addr)) {
struct sockaddr_in sin4;
INIT_SOCKADDR_IN(&sin4, sizeof(sin4));
memcpy(&sin4.sin_addr, (char*)addr + sizeof(*addr) - sizeof(sin4.sin_addr), sizeof(sin4.sin_addr));
return rsock_addrinfo_new((struct sockaddr *)&sin4, (socklen_t)sizeof(sin4),
PF_INET, rai->socktype, rai->protocol,
rai->canonname, rai->inspectname);
}
else {
return Qnil;
}
}
#endif
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
/*
* call-seq:
* addrinfo.unix_path => path
*
* Returns the socket path as a string.
*
* Addrinfo.unix("/tmp/sock").unix_path #=> "/tmp/sock"
*/
static VALUE
addrinfo_unix_path(VALUE self)
{
rb_addrinfo_t *rai = get_addrinfo(self);
int family = ai_get_afamily(rai);
struct sockaddr_un *addr;
long n;
if (family != AF_UNIX)
rb_raise(rb_eSocket, "need AF_UNIX address");
addr = &rai->addr.un;
n = rai_unixsocket_len(rai);
if (n < 0)
rb_raise(rb_eSocket, "too short AF_UNIX address: %"PRIuSIZE" bytes given for minimum %"PRIuSIZE" bytes.",
(size_t)rai->sockaddr_len, offsetof(struct sockaddr_un, sun_path));
if ((long)sizeof(addr->sun_path) < n)
rb_raise(rb_eSocket,
"too long AF_UNIX path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)n, sizeof(addr->sun_path));
return rb_str_new(addr->sun_path, n);
}
#endif
static ID id_timeout;
/*
* call-seq:
* Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol, flags) => [addrinfo, ...]
* Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol) => [addrinfo, ...]
* Addrinfo.getaddrinfo(nodename, service, family, socktype) => [addrinfo, ...]
* Addrinfo.getaddrinfo(nodename, service, family) => [addrinfo, ...]
* Addrinfo.getaddrinfo(nodename, service) => [addrinfo, ...]
*
* returns a list of addrinfo objects as an array.
*
* This method converts nodename (hostname) and service (port) to addrinfo.
* Since the conversion is not unique, the result is a list of addrinfo objects.
*
* nodename or service can be nil if no conversion intended.
*
* family, socktype and protocol are hint for preferred protocol.
* If the result will be used for a socket with SOCK_STREAM,
* SOCK_STREAM should be specified as socktype.
* If so, Addrinfo.getaddrinfo returns addrinfo list appropriate for SOCK_STREAM.
* If they are omitted or nil is given, the result is not restricted.
*
* Similarly, PF_INET6 as family restricts for IPv6.
*
* flags should be bitwise OR of Socket::AI_??? constants such as follows.
* Note that the exact list of the constants depends on OS.
*
* AI_PASSIVE Get address to use with bind()
* AI_CANONNAME Fill in the canonical name
* AI_NUMERICHOST Prevent host name resolution
* AI_NUMERICSERV Prevent service name resolution
* AI_V4MAPPED Accept IPv4-mapped IPv6 addresses
* AI_ALL Allow all addresses
* AI_ADDRCONFIG Accept only if any address is assigned
*
* Note that socktype should be specified whenever application knows the usage of the address.
* Some platform causes an error when socktype is omitted and servname is specified as an integer
* because some port numbers, 512 for example, are ambiguous without socktype.
*
* Addrinfo.getaddrinfo("www.kame.net", 80, nil, :STREAM)
* #=> [#<Addrinfo: 203.178.141.194:80 TCP (www.kame.net)>,
* # #<Addrinfo: [2001:200:dff:fff1:216:3eff:feb1:44d7]:80 TCP (www.kame.net)>]
*
*/
static VALUE
addrinfo_s_getaddrinfo(int argc, VALUE *argv, VALUE self)
{
VALUE node, service, family, socktype, protocol, flags, opts, timeout;
rb_scan_args(argc, argv, "24:", &node, &service, &family, &socktype,
&protocol, &flags, &opts);
rb_get_kwargs(opts, &id_timeout, 0, 1, &timeout);
if (timeout == Qundef) {
timeout = Qnil;
}
return addrinfo_list_new(node, service, family, socktype, protocol, flags, timeout);
}
/*
* call-seq:
* Addrinfo.ip(host) => addrinfo
*
* returns an addrinfo object for IP address.
*
* The port, socktype, protocol of the result is filled by zero.
* So, it is not appropriate to create a socket.
*
* Addrinfo.ip("localhost") #=> #<Addrinfo: 127.0.0.1 (localhost)>
*/
static VALUE
addrinfo_s_ip(VALUE self, VALUE host)
{
VALUE ret;
rb_addrinfo_t *rai;
ret = addrinfo_firstonly_new(host, Qnil,
INT2NUM(PF_UNSPEC), INT2FIX(0), INT2FIX(0), INT2FIX(0));
rai = get_addrinfo(ret);
rai->socktype = 0;
rai->protocol = 0;
return ret;
}
/*
* call-seq:
* Addrinfo.tcp(host, port) => addrinfo
*
* returns an addrinfo object for TCP address.
*
* Addrinfo.tcp("localhost", "smtp") #=> #<Addrinfo: 127.0.0.1:25 TCP (localhost:smtp)>
*/
static VALUE
addrinfo_s_tcp(VALUE self, VALUE host, VALUE port)
{
return addrinfo_firstonly_new(host, port,
INT2NUM(PF_UNSPEC), INT2NUM(SOCK_STREAM), INT2NUM(IPPROTO_TCP), INT2FIX(0));
}
/*
* call-seq:
* Addrinfo.udp(host, port) => addrinfo
*
* returns an addrinfo object for UDP address.
*
* Addrinfo.udp("localhost", "daytime") #=> #<Addrinfo: 127.0.0.1:13 UDP (localhost:daytime)>
*/
static VALUE
addrinfo_s_udp(VALUE self, VALUE host, VALUE port)
{
return addrinfo_firstonly_new(host, port,
INT2NUM(PF_UNSPEC), INT2NUM(SOCK_DGRAM), INT2NUM(IPPROTO_UDP), INT2FIX(0));
}
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
/*
* call-seq:
* Addrinfo.unix(path [, socktype]) => addrinfo
*
* returns an addrinfo object for UNIX socket address.
*
* _socktype_ specifies the socket type.
* If it is omitted, :STREAM is used.
*
* Addrinfo.unix("/tmp/sock") #=> #<Addrinfo: /tmp/sock SOCK_STREAM>
* Addrinfo.unix("/tmp/sock", :DGRAM) #=> #<Addrinfo: /tmp/sock SOCK_DGRAM>
*/
static VALUE
addrinfo_s_unix(int argc, VALUE *argv, VALUE self)
{
VALUE path, vsocktype, addr;
int socktype;
rb_addrinfo_t *rai;
rb_scan_args(argc, argv, "11", &path, &vsocktype);
if (NIL_P(vsocktype))
socktype = SOCK_STREAM;
else
socktype = rsock_socktype_arg(vsocktype);
addr = addrinfo_s_allocate(rb_cAddrinfo);
DATA_PTR(addr) = rai = alloc_addrinfo();
init_unix_addrinfo(rai, path, socktype);
return addr;
}
#endif
VALUE
rsock_sockaddr_string_value(volatile VALUE *v)
{
VALUE val = *v;
if (IS_ADDRINFO(val)) {
*v = addrinfo_to_sockaddr(val);
}
StringValue(*v);
return *v;
}
VALUE
rsock_sockaddr_string_value_with_addrinfo(volatile VALUE *v, VALUE *rai_ret)
{
VALUE val = *v;
*rai_ret = Qnil;
if (IS_ADDRINFO(val)) {
*v = addrinfo_to_sockaddr(val);
*rai_ret = val;
}
StringValue(*v);
return *v;
}
char *
rsock_sockaddr_string_value_ptr(volatile VALUE *v)
{
rsock_sockaddr_string_value(v);
return RSTRING_PTR(*v);
}
VALUE
rb_check_sockaddr_string_type(VALUE val)
{
if (IS_ADDRINFO(val))
return addrinfo_to_sockaddr(val);
return rb_check_string_type(val);
}
VALUE
rsock_fd_socket_addrinfo(int fd, struct sockaddr *addr, socklen_t len)
{
int family;
int socktype;
int ret;
socklen_t optlen = (socklen_t)sizeof(socktype);
/* assumes protocol family and address family are identical */
family = get_afamily(addr, len);
ret = getsockopt(fd, SOL_SOCKET, SO_TYPE, (void*)&socktype, &optlen);
if (ret == -1) {
rb_sys_fail("getsockopt(SO_TYPE)");
}
return rsock_addrinfo_new(addr, len, family, socktype, 0, Qnil, Qnil);
}
VALUE
rsock_io_socket_addrinfo(VALUE io, struct sockaddr *addr, socklen_t len)
{
rb_io_t *fptr;
switch (TYPE(io)) {
case T_FIXNUM:
return rsock_fd_socket_addrinfo(FIX2INT(io), addr, len);
case T_BIGNUM:
return rsock_fd_socket_addrinfo(NUM2INT(io), addr, len);
case T_FILE:
GetOpenFile(io, fptr);
return rsock_fd_socket_addrinfo(fptr->fd, addr, len);
default:
rb_raise(rb_eTypeError, "neither IO nor file descriptor");
}
UNREACHABLE_RETURN(Qnil);
}
/*
* Addrinfo class
*/
void
rsock_init_addrinfo(void)
{
id_timeout = rb_intern("timeout");
/*
* The Addrinfo class maps <tt>struct addrinfo</tt> to ruby. This
* structure identifies an Internet host and a service.
*/
rb_cAddrinfo = rb_define_class("Addrinfo", rb_cObject);
rb_define_alloc_func(rb_cAddrinfo, addrinfo_s_allocate);
rb_define_method(rb_cAddrinfo, "initialize", addrinfo_initialize, -1);
rb_define_method(rb_cAddrinfo, "inspect", addrinfo_inspect, 0);
rb_define_method(rb_cAddrinfo, "inspect_sockaddr", rsock_addrinfo_inspect_sockaddr, 0);
rb_define_singleton_method(rb_cAddrinfo, "getaddrinfo", addrinfo_s_getaddrinfo, -1);
rb_define_singleton_method(rb_cAddrinfo, "ip", addrinfo_s_ip, 1);
rb_define_singleton_method(rb_cAddrinfo, "tcp", addrinfo_s_tcp, 2);
rb_define_singleton_method(rb_cAddrinfo, "udp", addrinfo_s_udp, 2);
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
rb_define_singleton_method(rb_cAddrinfo, "unix", addrinfo_s_unix, -1);
#endif
rb_define_method(rb_cAddrinfo, "afamily", addrinfo_afamily, 0);
rb_define_method(rb_cAddrinfo, "pfamily", addrinfo_pfamily, 0);
rb_define_method(rb_cAddrinfo, "socktype", addrinfo_socktype, 0);
rb_define_method(rb_cAddrinfo, "protocol", addrinfo_protocol, 0);
rb_define_method(rb_cAddrinfo, "canonname", addrinfo_canonname, 0);
rb_define_method(rb_cAddrinfo, "ipv4?", addrinfo_ipv4_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6?", addrinfo_ipv6_p, 0);
rb_define_method(rb_cAddrinfo, "unix?", addrinfo_unix_p, 0);
rb_define_method(rb_cAddrinfo, "ip?", addrinfo_ip_p, 0);
rb_define_method(rb_cAddrinfo, "ip_unpack", addrinfo_ip_unpack, 0);
rb_define_method(rb_cAddrinfo, "ip_address", addrinfo_ip_address, 0);
rb_define_method(rb_cAddrinfo, "ip_port", addrinfo_ip_port, 0);
rb_define_method(rb_cAddrinfo, "ipv4_private?", addrinfo_ipv4_private_p, 0);
rb_define_method(rb_cAddrinfo, "ipv4_loopback?", addrinfo_ipv4_loopback_p, 0);
rb_define_method(rb_cAddrinfo, "ipv4_multicast?", addrinfo_ipv4_multicast_p, 0);
#ifdef INET6
rb_define_method(rb_cAddrinfo, "ipv6_unspecified?", addrinfo_ipv6_unspecified_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_loopback?", addrinfo_ipv6_loopback_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_multicast?", addrinfo_ipv6_multicast_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_linklocal?", addrinfo_ipv6_linklocal_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_sitelocal?", addrinfo_ipv6_sitelocal_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_unique_local?", addrinfo_ipv6_unique_local_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_v4mapped?", addrinfo_ipv6_v4mapped_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_v4compat?", addrinfo_ipv6_v4compat_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_mc_nodelocal?", addrinfo_ipv6_mc_nodelocal_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_mc_linklocal?", addrinfo_ipv6_mc_linklocal_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_mc_sitelocal?", addrinfo_ipv6_mc_sitelocal_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_mc_orglocal?", addrinfo_ipv6_mc_orglocal_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_mc_global?", addrinfo_ipv6_mc_global_p, 0);
rb_define_method(rb_cAddrinfo, "ipv6_to_ipv4", addrinfo_ipv6_to_ipv4, 0);
#endif
#ifdef HAVE_TYPE_STRUCT_SOCKADDR_UN
rb_define_method(rb_cAddrinfo, "unix_path", addrinfo_unix_path, 0);
#endif
rb_define_method(rb_cAddrinfo, "to_sockaddr", addrinfo_to_sockaddr, 0);
rb_define_method(rb_cAddrinfo, "to_s", addrinfo_to_sockaddr, 0); /* compatibility for ruby before 1.9.2 */
rb_define_method(rb_cAddrinfo, "getnameinfo", addrinfo_getnameinfo, -1);
rb_define_method(rb_cAddrinfo, "marshal_dump", addrinfo_mdump, 0);
rb_define_method(rb_cAddrinfo, "marshal_load", addrinfo_mload, 1);
}