ruby/prism/static_literals.c

607 строки
24 KiB
C

#include "prism/static_literals.h"
/**
* A small struct used for passing around a subset of the information that is
* stored on the parser. We use this to avoid having static literals explicitly
* depend on the parser struct.
*/
typedef struct {
/** The list of newline offsets to use to calculate line numbers. */
const pm_newline_list_t *newline_list;
/** The line number that the parser starts on. */
int32_t start_line;
/** The name of the encoding that the parser is using. */
const char *encoding_name;
} pm_static_literals_metadata_t;
static inline uint32_t
murmur_scramble(uint32_t value) {
value *= 0xcc9e2d51;
value = (value << 15) | (value >> 17);
value *= 0x1b873593;
return value;
}
/**
* Murmur hash (https://en.wikipedia.org/wiki/MurmurHash) is a non-cryptographic
* general-purpose hash function. It is fast, which is what we care about in
* this case.
*/
static uint32_t
murmur_hash(const uint8_t *key, size_t length) {
uint32_t hash = 0x9747b28c;
uint32_t segment;
for (size_t index = length >> 2; index; index--) {
memcpy(&segment, key, sizeof(uint32_t));
key += sizeof(uint32_t);
hash ^= murmur_scramble(segment);
hash = (hash << 13) | (hash >> 19);
hash = hash * 5 + 0xe6546b64;
}
segment = 0;
for (size_t index = length & 3; index; index--) {
segment <<= 8;
segment |= key[index - 1];
}
hash ^= murmur_scramble(segment);
hash ^= (uint32_t) length;
hash ^= hash >> 16;
hash *= 0x85ebca6b;
hash ^= hash >> 13;
hash *= 0xc2b2ae35;
hash ^= hash >> 16;
return hash;
}
/**
* Hash the value of an integer and return it.
*/
static uint32_t
integer_hash(const pm_integer_t *integer) {
uint32_t hash;
if (integer->values) {
hash = murmur_hash((const uint8_t *) integer->values, sizeof(uint32_t) * integer->length);
} else {
hash = murmur_hash((const uint8_t *) &integer->value, sizeof(uint32_t));
}
if (integer->negative) {
hash ^= murmur_scramble((uint32_t) 1);
}
return hash;
}
/**
* Return the hash of the given node. It is important that nodes that have
* equivalent static literal values have the same hash. This is because we use
* these hashes to look for duplicates.
*/
static uint32_t
node_hash(const pm_static_literals_metadata_t *metadata, const pm_node_t *node) {
switch (PM_NODE_TYPE(node)) {
case PM_INTEGER_NODE: {
// Integers hash their value.
const pm_integer_node_t *cast = (const pm_integer_node_t *) node;
return integer_hash(&cast->value);
}
case PM_SOURCE_LINE_NODE: {
// Source lines hash their line number.
const pm_line_column_t line_column = pm_newline_list_line_column(metadata->newline_list, node->location.start, metadata->start_line);
const int32_t *value = &line_column.line;
return murmur_hash((const uint8_t *) value, sizeof(int32_t));
}
case PM_FLOAT_NODE: {
// Floats hash their value.
const double *value = &((const pm_float_node_t *) node)->value;
return murmur_hash((const uint8_t *) value, sizeof(double));
}
case PM_RATIONAL_NODE: {
// Rationals hash their numerator and denominator.
const pm_rational_node_t *cast = (const pm_rational_node_t *) node;
return integer_hash(&cast->numerator) ^ integer_hash(&cast->denominator) ^ murmur_scramble((uint32_t) cast->base.type);
}
case PM_IMAGINARY_NODE: {
// Imaginaries hash their numeric value. Because their numeric value
// is stored as a subnode, we hash that node and then mix in the
// fact that this is an imaginary node.
const pm_node_t *numeric = ((const pm_imaginary_node_t *) node)->numeric;
return node_hash(metadata, numeric) ^ murmur_scramble((uint32_t) node->type);
}
case PM_STRING_NODE: {
// Strings hash their value and mix in their flags so that different
// encodings are not considered equal.
const pm_string_t *value = &((const pm_string_node_t *) node)->unescaped;
pm_node_flags_t flags = node->flags;
flags &= (PM_STRING_FLAGS_FORCED_BINARY_ENCODING | PM_STRING_FLAGS_FORCED_UTF8_ENCODING);
return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t)) ^ murmur_scramble((uint32_t) flags);
}
case PM_SOURCE_FILE_NODE: {
// Source files hash their value and mix in their flags so that
// different encodings are not considered equal.
const pm_string_t *value = &((const pm_source_file_node_t *) node)->filepath;
return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t));
}
case PM_REGULAR_EXPRESSION_NODE: {
// Regular expressions hash their value and mix in their flags so
// that different encodings are not considered equal.
const pm_string_t *value = &((const pm_regular_expression_node_t *) node)->unescaped;
return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t)) ^ murmur_scramble((uint32_t) node->flags);
}
case PM_SYMBOL_NODE: {
// Symbols hash their value and mix in their flags so that different
// encodings are not considered equal.
const pm_string_t *value = &((const pm_symbol_node_t *) node)->unescaped;
return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t)) ^ murmur_scramble((uint32_t) node->flags);
}
default:
assert(false && "unreachable");
return 0;
}
}
/**
* Insert a node into the node hash. It accepts the hash that should hold the
* new node, the parser that generated the node, the node to insert, and a
* comparison function. The comparison function is used for collision detection,
* and must be able to compare all node types that will be stored in this hash.
*/
static pm_node_t *
pm_node_hash_insert(pm_node_hash_t *hash, const pm_static_literals_metadata_t *metadata, pm_node_t *node, int (*compare)(const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right)) {
// If we are out of space, we need to resize the hash. This will cause all
// of the nodes to be rehashed and reinserted into the new hash.
if (hash->size * 2 >= hash->capacity) {
// First, allocate space for the new node list.
uint32_t new_capacity = hash->capacity == 0 ? 4 : hash->capacity * 2;
pm_node_t **new_nodes = xcalloc(new_capacity, sizeof(pm_node_t *));
if (new_nodes == NULL) return NULL;
// It turns out to be more efficient to mask the hash value than to use
// the modulo operator. Because our capacities are always powers of two,
// we can use a bitwise AND to get the same result as the modulo
// operator.
uint32_t mask = new_capacity - 1;
// Now, rehash all of the nodes into the new list.
for (uint32_t index = 0; index < hash->capacity; index++) {
pm_node_t *node = hash->nodes[index];
if (node != NULL) {
uint32_t index = node_hash(metadata, node) & mask;
new_nodes[index] = node;
}
}
// Finally, free the old node list and update the hash.
xfree(hash->nodes);
hash->nodes = new_nodes;
hash->capacity = new_capacity;
}
// Now, insert the node into the hash.
uint32_t mask = hash->capacity - 1;
uint32_t index = node_hash(metadata, node) & mask;
// We use linear probing to resolve collisions. This means that if the
// current index is occupied, we will move to the next index and try again.
// We are guaranteed that this will eventually find an empty slot because we
// resize the hash when it gets too full.
while (hash->nodes[index] != NULL) {
if (compare(metadata, hash->nodes[index], node) == 0) break;
index = (index + 1) & mask;
}
// If the current index is occupied, we need to return the node that was
// already in the hash. Otherwise, we can just increment the size and insert
// the new node.
pm_node_t *result = hash->nodes[index];
if (result == NULL) hash->size++;
hash->nodes[index] = node;
return result;
}
/**
* Free the internal memory associated with the given node hash.
*/
static void
pm_node_hash_free(pm_node_hash_t *hash) {
if (hash->capacity > 0) xfree(hash->nodes);
}
/**
* Compare two values that can be compared with a simple numeric comparison.
*/
#define PM_NUMERIC_COMPARISON(left, right) ((left < right) ? -1 : (left > right) ? 1 : 0)
/**
* Return the integer value of the given node as an int64_t.
*/
static int64_t
pm_int64_value(const pm_static_literals_metadata_t *metadata, const pm_node_t *node) {
switch (PM_NODE_TYPE(node)) {
case PM_INTEGER_NODE: {
const pm_integer_t *integer = &((const pm_integer_node_t *) node)->value;
if (integer->values) return integer->negative ? INT64_MIN : INT64_MAX;
int64_t value = (int64_t) integer->value;
return integer->negative ? -value : value;
}
case PM_SOURCE_LINE_NODE:
return (int64_t) pm_newline_list_line_column(metadata->newline_list, node->location.start, metadata->start_line).line;
default:
assert(false && "unreachable");
return 0;
}
}
/**
* A comparison function for comparing two IntegerNode or SourceLineNode
* instances.
*/
static int
pm_compare_integer_nodes(const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
if (PM_NODE_TYPE_P(left, PM_SOURCE_LINE_NODE) || PM_NODE_TYPE_P(right, PM_SOURCE_LINE_NODE)) {
int64_t left_value = pm_int64_value(metadata, left);
int64_t right_value = pm_int64_value(metadata, right);
return PM_NUMERIC_COMPARISON(left_value, right_value);
}
const pm_integer_t *left_integer = &((const pm_integer_node_t *) left)->value;
const pm_integer_t *right_integer = &((const pm_integer_node_t *) right)->value;
return pm_integer_compare(left_integer, right_integer);
}
/**
* A comparison function for comparing two FloatNode instances.
*/
static int
pm_compare_float_nodes(PRISM_ATTRIBUTE_UNUSED const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
const double left_value = ((const pm_float_node_t *) left)->value;
const double right_value = ((const pm_float_node_t *) right)->value;
return PM_NUMERIC_COMPARISON(left_value, right_value);
}
/**
* A comparison function for comparing two nodes that have attached numbers.
*/
static int
pm_compare_number_nodes(const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
if (PM_NODE_TYPE(left) != PM_NODE_TYPE(right)) {
return PM_NUMERIC_COMPARISON(PM_NODE_TYPE(left), PM_NODE_TYPE(right));
}
switch (PM_NODE_TYPE(left)) {
case PM_IMAGINARY_NODE:
return pm_compare_number_nodes(metadata, ((const pm_imaginary_node_t *) left)->numeric, ((const pm_imaginary_node_t *) right)->numeric);
case PM_RATIONAL_NODE: {
const pm_rational_node_t *left_rational = (const pm_rational_node_t *) left;
const pm_rational_node_t *right_rational = (const pm_rational_node_t *) right;
int result = pm_integer_compare(&left_rational->denominator, &right_rational->denominator);
if (result != 0) return result;
return pm_integer_compare(&left_rational->numerator, &right_rational->numerator);
}
case PM_INTEGER_NODE:
return pm_compare_integer_nodes(metadata, left, right);
case PM_FLOAT_NODE:
return pm_compare_float_nodes(metadata, left, right);
default:
assert(false && "unreachable");
return 0;
}
}
/**
* Return a pointer to the string value of the given node.
*/
static const pm_string_t *
pm_string_value(const pm_node_t *node) {
switch (PM_NODE_TYPE(node)) {
case PM_STRING_NODE:
return &((const pm_string_node_t *) node)->unescaped;
case PM_SOURCE_FILE_NODE:
return &((const pm_source_file_node_t *) node)->filepath;
case PM_SYMBOL_NODE:
return &((const pm_symbol_node_t *) node)->unescaped;
default:
assert(false && "unreachable");
return NULL;
}
}
/**
* A comparison function for comparing two nodes that have attached strings.
*/
static int
pm_compare_string_nodes(PRISM_ATTRIBUTE_UNUSED const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
const pm_string_t *left_string = pm_string_value(left);
const pm_string_t *right_string = pm_string_value(right);
return pm_string_compare(left_string, right_string);
}
/**
* A comparison function for comparing two RegularExpressionNode instances.
*/
static int
pm_compare_regular_expression_nodes(PRISM_ATTRIBUTE_UNUSED const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
const pm_regular_expression_node_t *left_regexp = (const pm_regular_expression_node_t *) left;
const pm_regular_expression_node_t *right_regexp = (const pm_regular_expression_node_t *) right;
int result = pm_string_compare(&left_regexp->unescaped, &right_regexp->unescaped);
if (result != 0) return result;
return PM_NUMERIC_COMPARISON(left_regexp->base.flags, right_regexp->base.flags);
}
#undef PM_NUMERIC_COMPARISON
/**
* Add a node to the set of static literals.
*/
pm_node_t *
pm_static_literals_add(const pm_newline_list_t *newline_list, int32_t start_line, pm_static_literals_t *literals, pm_node_t *node) {
switch (PM_NODE_TYPE(node)) {
case PM_INTEGER_NODE:
case PM_SOURCE_LINE_NODE:
return pm_node_hash_insert(
&literals->integer_nodes,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = NULL
},
node,
pm_compare_integer_nodes
);
case PM_FLOAT_NODE:
return pm_node_hash_insert(
&literals->float_nodes,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = NULL
},
node,
pm_compare_float_nodes
);
case PM_RATIONAL_NODE:
case PM_IMAGINARY_NODE:
return pm_node_hash_insert(
&literals->number_nodes,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = NULL
},
node,
pm_compare_number_nodes
);
case PM_STRING_NODE:
case PM_SOURCE_FILE_NODE:
return pm_node_hash_insert(
&literals->string_nodes,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = NULL
},
node,
pm_compare_string_nodes
);
case PM_REGULAR_EXPRESSION_NODE:
return pm_node_hash_insert(
&literals->regexp_nodes,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = NULL
},
node,
pm_compare_regular_expression_nodes
);
case PM_SYMBOL_NODE:
return pm_node_hash_insert(
&literals->symbol_nodes,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = NULL
},
node,
pm_compare_string_nodes
);
case PM_TRUE_NODE: {
pm_node_t *duplicated = literals->true_node;
literals->true_node = node;
return duplicated;
}
case PM_FALSE_NODE: {
pm_node_t *duplicated = literals->false_node;
literals->false_node = node;
return duplicated;
}
case PM_NIL_NODE: {
pm_node_t *duplicated = literals->nil_node;
literals->nil_node = node;
return duplicated;
}
case PM_SOURCE_ENCODING_NODE: {
pm_node_t *duplicated = literals->source_encoding_node;
literals->source_encoding_node = node;
return duplicated;
}
default:
return NULL;
}
}
/**
* Free the internal memory associated with the given static literals set.
*/
void
pm_static_literals_free(pm_static_literals_t *literals) {
pm_node_hash_free(&literals->integer_nodes);
pm_node_hash_free(&literals->float_nodes);
pm_node_hash_free(&literals->number_nodes);
pm_node_hash_free(&literals->string_nodes);
pm_node_hash_free(&literals->regexp_nodes);
pm_node_hash_free(&literals->symbol_nodes);
}
/**
* A helper to determine if the given node is a static literal that is positive.
* This is used for formatting imaginary nodes.
*/
static bool
pm_static_literal_positive_p(const pm_node_t *node) {
switch (PM_NODE_TYPE(node)) {
case PM_FLOAT_NODE:
return ((const pm_float_node_t *) node)->value > 0;
case PM_INTEGER_NODE:
return !((const pm_integer_node_t *) node)->value.negative;
case PM_RATIONAL_NODE:
return !((const pm_rational_node_t *) node)->numerator.negative;
case PM_IMAGINARY_NODE:
return pm_static_literal_positive_p(((const pm_imaginary_node_t *) node)->numeric);
default:
assert(false && "unreachable");
return false;
}
}
/**
* Create a string-based representation of the given static literal.
*/
static inline void
pm_static_literal_inspect_node(pm_buffer_t *buffer, const pm_static_literals_metadata_t *metadata, const pm_node_t *node) {
switch (PM_NODE_TYPE(node)) {
case PM_FALSE_NODE:
pm_buffer_append_string(buffer, "false", 5);
break;
case PM_FLOAT_NODE: {
const double value = ((const pm_float_node_t *) node)->value;
if (isinf(value)) {
if (*node->location.start == '-') {
pm_buffer_append_byte(buffer, '-');
}
pm_buffer_append_string(buffer, "Infinity", 8);
} else if (value == 0.0) {
if (*node->location.start == '-') {
pm_buffer_append_byte(buffer, '-');
}
pm_buffer_append_string(buffer, "0.0", 3);
} else {
pm_buffer_append_format(buffer, "%g", value);
// %g will not insert a .0 for 1e100 (we'll get back 1e+100). So
// we check for the decimal point and add it in here if it's not
// present.
if (pm_buffer_index(buffer, '.') == SIZE_MAX) {
size_t exponent_index = pm_buffer_index(buffer, 'e');
size_t index = exponent_index == SIZE_MAX ? pm_buffer_length(buffer) : exponent_index;
pm_buffer_insert(buffer, index, ".0", 2);
}
}
break;
}
case PM_IMAGINARY_NODE: {
const pm_node_t *numeric = ((const pm_imaginary_node_t *) node)->numeric;
pm_buffer_append_string(buffer, "(0", 2);
if (pm_static_literal_positive_p(numeric)) pm_buffer_append_byte(buffer, '+');
pm_static_literal_inspect_node(buffer, metadata, numeric);
if (PM_NODE_TYPE_P(numeric, PM_RATIONAL_NODE)) {
pm_buffer_append_byte(buffer, '*');
}
pm_buffer_append_string(buffer, "i)", 2);
break;
}
case PM_INTEGER_NODE:
pm_integer_string(buffer, &((const pm_integer_node_t *) node)->value);
break;
case PM_NIL_NODE:
pm_buffer_append_string(buffer, "nil", 3);
break;
case PM_RATIONAL_NODE: {
const pm_rational_node_t *rational = (const pm_rational_node_t *) node;
pm_buffer_append_byte(buffer, '(');
pm_integer_string(buffer, &rational->numerator);
pm_buffer_append_byte(buffer, '/');
pm_integer_string(buffer, &rational->denominator);
pm_buffer_append_byte(buffer, ')');
break;
}
case PM_REGULAR_EXPRESSION_NODE: {
const pm_string_t *unescaped = &((const pm_regular_expression_node_t *) node)->unescaped;
pm_buffer_append_byte(buffer, '/');
pm_buffer_append_source(buffer, pm_string_source(unescaped), pm_string_length(unescaped), PM_BUFFER_ESCAPING_RUBY);
pm_buffer_append_byte(buffer, '/');
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE)) pm_buffer_append_string(buffer, "m", 1);
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE)) pm_buffer_append_string(buffer, "i", 1);
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EXTENDED)) pm_buffer_append_string(buffer, "x", 1);
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT)) pm_buffer_append_string(buffer, "n", 1);
break;
}
case PM_SOURCE_ENCODING_NODE:
pm_buffer_append_format(buffer, "#<Encoding:%s>", metadata->encoding_name);
break;
case PM_SOURCE_FILE_NODE: {
const pm_string_t *filepath = &((const pm_source_file_node_t *) node)->filepath;
pm_buffer_append_byte(buffer, '"');
pm_buffer_append_source(buffer, pm_string_source(filepath), pm_string_length(filepath), PM_BUFFER_ESCAPING_RUBY);
pm_buffer_append_byte(buffer, '"');
break;
}
case PM_SOURCE_LINE_NODE:
pm_buffer_append_format(buffer, "%d", pm_newline_list_line_column(metadata->newline_list, node->location.start, metadata->start_line).line);
break;
case PM_STRING_NODE: {
const pm_string_t *unescaped = &((const pm_string_node_t *) node)->unescaped;
pm_buffer_append_byte(buffer, '"');
pm_buffer_append_source(buffer, pm_string_source(unescaped), pm_string_length(unescaped), PM_BUFFER_ESCAPING_RUBY);
pm_buffer_append_byte(buffer, '"');
break;
}
case PM_SYMBOL_NODE: {
const pm_string_t *unescaped = &((const pm_symbol_node_t *) node)->unescaped;
pm_buffer_append_byte(buffer, ':');
pm_buffer_append_source(buffer, pm_string_source(unescaped), pm_string_length(unescaped), PM_BUFFER_ESCAPING_RUBY);
break;
}
case PM_TRUE_NODE:
pm_buffer_append_string(buffer, "true", 4);
break;
default:
assert(false && "unreachable");
break;
}
}
/**
* Create a string-based representation of the given static literal.
*/
PRISM_EXPORTED_FUNCTION void
pm_static_literal_inspect(pm_buffer_t *buffer, const pm_newline_list_t *newline_list, int32_t start_line, const char *encoding_name, const pm_node_t *node) {
pm_static_literal_inspect_node(
buffer,
&(pm_static_literals_metadata_t) {
.newline_list = newline_list,
.start_line = start_line,
.encoding_name = encoding_name
},
node
);
}