ruby/ext/objspace/objspace.c

865 строки
23 KiB
C

/**********************************************************************
objspace.c - ObjectSpace extender for MRI.
$Author$
created at: Wed Jun 17 07:39:17 2009
NOTE: This extension library is only expected to exist with C Ruby.
All the files in this distribution are covered under the Ruby's
license (see the file COPYING).
**********************************************************************/
#include "internal.h"
#include "internal/class.h"
#include "internal/compilers.h"
#include "internal/gc.h"
#include "internal/hash.h"
#include "internal/imemo.h"
#include "internal/sanitizers.h"
#include "ruby/io.h"
#include "ruby/re.h"
#include "ruby/st.h"
#include "symbol.h"
#undef rb_funcall
#include "ruby/ruby.h"
/*
* call-seq:
* ObjectSpace.memsize_of(obj) -> Integer
*
* Return consuming memory size of obj in bytes.
*
* Note that the return size is incomplete. You need to deal with this
* information as only a *HINT*. Especially, the size of +T_DATA+ may not be
* correct.
*
* This method is only expected to work with C Ruby.
*
* From Ruby 2.2, memsize_of(obj) returns a memory size includes
* sizeof(RVALUE).
*/
static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
return SIZET2NUM(rb_obj_memsize_of(obj));
}
struct total_data {
size_t total;
VALUE klass;
};
static void
total_i(VALUE v, void *ptr)
{
struct total_data *data = (struct total_data *)ptr;
if (!rb_objspace_internal_object_p(v)) {
if (data->klass == 0 || rb_obj_is_kind_of(v, data->klass)) {
data->total += rb_obj_memsize_of(v);
}
}
}
typedef void (*each_obj_with_flags)(VALUE, void*);
struct obj_itr {
each_obj_with_flags cb;
void *data;
};
static int
heap_iter(void *vstart, void *vend, size_t stride, void *ptr)
{
struct obj_itr * ctx = (struct obj_itr *)ptr;
VALUE v;
for (v = (VALUE)vstart; v != (VALUE)vend; v += stride) {
void *poisoned = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
if (RBASIC(v)->flags) {
(*ctx->cb)(v, ctx->data);
}
if (poisoned) {
asan_poison_object(v);
}
}
return 0;
}
static void
each_object_with_flags(each_obj_with_flags cb, void *ctx)
{
struct obj_itr data;
data.cb = cb;
data.data = ctx;
rb_objspace_each_objects(heap_iter, &data);
}
/*
* call-seq:
* ObjectSpace.memsize_of_all([klass]) -> Integer
*
* Return consuming memory size of all living objects in bytes.
*
* If +klass+ (should be Class object) is given, return the total memory size
* of instances of the given class.
*
* Note that the returned size is incomplete. You need to deal with this
* information as only a *HINT*. Especially, the size of +T_DATA+ may not be
* correct.
*
* Note that this method does *NOT* return total malloc'ed memory size.
*
* This method can be defined by the following Ruby code:
*
* def memsize_of_all klass = false
* total = 0
* ObjectSpace.each_object{|e|
* total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass)
* }
* total
* end
*
* This method is only expected to work with C Ruby.
*/
static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
struct total_data data = {0, 0};
if (argc > 0) {
rb_scan_args(argc, argv, "01", &data.klass);
}
each_object_with_flags(total_i, &data);
return SIZET2NUM(data.total);
}
static int
set_zero_i(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE k = (VALUE)key;
VALUE hash = (VALUE)arg;
rb_hash_aset(hash, k, INT2FIX(0));
return ST_CONTINUE;
}
static VALUE
setup_hash(int argc, VALUE *argv)
{
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(hash, set_zero_i, (st_data_t)hash);
}
return hash;
}
static void
cos_i(VALUE v, void *data)
{
size_t *counts = (size_t *)data;
counts[BUILTIN_TYPE(v)] += rb_obj_memsize_of(v);
}
static VALUE
type2sym(enum ruby_value_type i)
{
VALUE type;
switch (i) {
#define CASE_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break;
CASE_TYPE(T_NONE);
CASE_TYPE(T_OBJECT);
CASE_TYPE(T_CLASS);
CASE_TYPE(T_MODULE);
CASE_TYPE(T_FLOAT);
CASE_TYPE(T_STRING);
CASE_TYPE(T_REGEXP);
CASE_TYPE(T_ARRAY);
CASE_TYPE(T_HASH);
CASE_TYPE(T_STRUCT);
CASE_TYPE(T_BIGNUM);
CASE_TYPE(T_FILE);
CASE_TYPE(T_DATA);
CASE_TYPE(T_MATCH);
CASE_TYPE(T_COMPLEX);
CASE_TYPE(T_RATIONAL);
CASE_TYPE(T_NIL);
CASE_TYPE(T_TRUE);
CASE_TYPE(T_FALSE);
CASE_TYPE(T_SYMBOL);
CASE_TYPE(T_FIXNUM);
CASE_TYPE(T_UNDEF);
CASE_TYPE(T_IMEMO);
CASE_TYPE(T_NODE);
CASE_TYPE(T_ICLASS);
CASE_TYPE(T_MOVED);
CASE_TYPE(T_ZOMBIE);
#undef CASE_TYPE
default: rb_bug("type2sym: unknown type (%d)", i);
}
return type;
}
/*
* call-seq:
* ObjectSpace.count_objects_size([result_hash]) -> hash
*
* Counts objects size (in bytes) for each type.
*
* Note that this information is incomplete. You need to deal with
* this information as only a *HINT*. Especially, total size of
* T_DATA may be wrong.
*
* It returns a hash as:
* {:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
*
* If the optional argument, result_hash, is given,
* it is overwritten and returned.
* This is intended to avoid probe effect.
*
* The contents of the returned hash is implementation defined.
* It may be changed in future.
*
* This method is only expected to work with C Ruby.
*/
static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
size_t counts[T_MASK+1];
size_t total = 0;
enum ruby_value_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
each_object_with_flags(cos_i, &counts[0]);
for (i = 0; i <= T_MASK; i++) {
if (counts[i]) {
VALUE type = type2sym(i);
total += counts[i];
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
return hash;
}
struct dynamic_symbol_counts {
size_t mortal;
size_t immortal;
};
static void
cs_i(VALUE v, void *n)
{
struct dynamic_symbol_counts *counts = (struct dynamic_symbol_counts *)n;
if (BUILTIN_TYPE(v) == T_SYMBOL) {
ID id = RSYMBOL(v)->id;
if ((id & ~ID_SCOPE_MASK) == 0) {
counts->mortal++;
}
else {
counts->immortal++;
}
}
}
size_t rb_sym_immortal_count(void);
/*
* call-seq:
* ObjectSpace.count_symbols([result_hash]) -> hash
*
* Counts symbols for each Symbol type.
*
* This method is only for MRI developers interested in performance and memory
* usage of Ruby programs.
*
* If the optional argument, result_hash, is given, it is overwritten and
* returned. This is intended to avoid probe effect.
*
* Note:
* The contents of the returned hash is implementation defined.
* It may be changed in future.
*
* This method is only expected to work with C Ruby.
*
* On this version of MRI, they have 3 types of Symbols (and 1 total counts).
*
* * mortal_dynamic_symbol: GC target symbols (collected by GC)
* * immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* * immortal_static_symbol: Immortal symbols (do not collected by GC)
* * immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
*/
static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
struct dynamic_symbol_counts dynamic_counts = {0, 0};
VALUE hash = setup_hash(argc, argv);
size_t immortal_symbols = rb_sym_immortal_count();
each_object_with_flags(cs_i, &dynamic_counts);
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
return hash;
}
/*
* call-seq:
* ObjectSpace.count_nodes([result_hash]) -> hash
*
* Counts nodes for each node type.
*
* This method is only for MRI developers interested in performance and memory
* usage of Ruby programs.
*
* It returns a hash as:
*
* {:NODE_METHOD=>2027, :NODE_FBODY=>1927, :NODE_CFUNC=>1798, ...}
*
* If the optional argument, result_hash, is given, it is overwritten and
* returned. This is intended to avoid probe effect.
*
* Note:
* The contents of the returned hash is implementation defined.
* It may be changed in future.
*
* This method is only expected to work with C Ruby.
*/
static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
return setup_hash(argc, argv);
}
static void
cto_i(VALUE v, void *data)
{
VALUE hash = (VALUE)data;
if (BUILTIN_TYPE(v) == T_DATA) {
VALUE counter;
VALUE key = RBASIC(v)->klass;
if (key == 0) {
const char *name = rb_objspace_data_type_name(v);
if (name == 0) name = "unknown";
key = ID2SYM(rb_intern(name));
}
counter = rb_hash_aref(hash, key);
if (NIL_P(counter)) {
counter = INT2FIX(1);
}
else {
counter = INT2FIX(FIX2INT(counter) + 1);
}
rb_hash_aset(hash, key, counter);
}
}
/*
* call-seq:
* ObjectSpace.count_tdata_objects([result_hash]) -> hash
*
* Counts objects for each +T_DATA+ type.
*
* This method is only for MRI developers interested in performance and memory
* usage of Ruby programs.
*
* It returns a hash as:
*
* {RubyVM::InstructionSequence=>504, :parser=>5, :barrier=>6,
* :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99,
* ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1,
* Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2}
* # T_DATA objects existing at startup on r32276.
*
* If the optional argument, result_hash, is given, it is overwritten and
* returned. This is intended to avoid probe effect.
*
* The contents of the returned hash is implementation specific and may change
* in the future.
*
* In this version, keys are Class object or Symbol object.
*
* If object is kind of normal (accessible) object, the key is Class object.
* If object is not a kind of normal (internal) object, the key is symbol
* name, registered by rb_data_type_struct.
*
* This method is only expected to work with C Ruby.
*/
static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
each_object_with_flags(cto_i, (void *)hash);
return hash;
}
static ID imemo_type_ids[IMEMO_MASK+1];
static void
count_imemo_objects_i(VALUE v, void *data)
{
VALUE hash = (VALUE)data;
if (BUILTIN_TYPE(v) == T_IMEMO) {
VALUE counter;
VALUE key = ID2SYM(imemo_type_ids[imemo_type(v)]);
counter = rb_hash_aref(hash, key);
if (NIL_P(counter)) {
counter = INT2FIX(1);
}
else {
counter = INT2FIX(FIX2INT(counter) + 1);
}
rb_hash_aset(hash, key, counter);
}
}
/*
* call-seq:
* ObjectSpace.count_imemo_objects([result_hash]) -> hash
*
* Counts objects for each +T_IMEMO+ type.
*
* This method is only for MRI developers interested in performance and memory
* usage of Ruby programs.
*
* It returns a hash as:
*
* {:imemo_ifunc=>8,
* :imemo_svar=>7,
* :imemo_cref=>509,
* :imemo_memo=>1,
* :imemo_throw_data=>1}
*
* If the optional argument, result_hash, is given, it is overwritten and
* returned. This is intended to avoid probe effect.
*
* The contents of the returned hash is implementation specific and may change
* in the future.
*
* In this version, keys are symbol objects.
*
* This method is only expected to work with C Ruby.
*/
static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
if (imemo_type_ids[0] == 0) {
#define INIT_IMEMO_TYPE_ID(n) (imemo_type_ids[n] = rb_intern_const(#n))
INIT_IMEMO_TYPE_ID(imemo_env);
INIT_IMEMO_TYPE_ID(imemo_cref);
INIT_IMEMO_TYPE_ID(imemo_svar);
INIT_IMEMO_TYPE_ID(imemo_throw_data);
INIT_IMEMO_TYPE_ID(imemo_ifunc);
INIT_IMEMO_TYPE_ID(imemo_memo);
INIT_IMEMO_TYPE_ID(imemo_ment);
INIT_IMEMO_TYPE_ID(imemo_iseq);
INIT_IMEMO_TYPE_ID(imemo_tmpbuf);
INIT_IMEMO_TYPE_ID(imemo_ast);
INIT_IMEMO_TYPE_ID(imemo_parser_strterm);
INIT_IMEMO_TYPE_ID(imemo_callinfo);
INIT_IMEMO_TYPE_ID(imemo_callcache);
INIT_IMEMO_TYPE_ID(imemo_constcache);
#undef INIT_IMEMO_TYPE_ID
}
each_object_with_flags(count_imemo_objects_i, (void *)hash);
return hash;
}
static void
iow_mark(void *ptr)
{
rb_gc_mark((VALUE)ptr);
}
static size_t
iow_size(const void *ptr)
{
VALUE obj = (VALUE)ptr;
return rb_obj_memsize_of(obj);
}
static const rb_data_type_t iow_data_type = {
"ObjectSpace::InternalObjectWrapper",
{iow_mark, 0, iow_size,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE rb_cInternalObjectWrapper;
static VALUE
iow_newobj(VALUE obj)
{
return TypedData_Wrap_Struct(rb_cInternalObjectWrapper, &iow_data_type, (void *)obj);
}
/* Returns the type of the internal object. */
static VALUE
iow_type(VALUE self)
{
VALUE obj = (VALUE)DATA_PTR(self);
return type2sym(BUILTIN_TYPE(obj));
}
/* See Object#inspect. */
static VALUE
iow_inspect(VALUE self)
{
VALUE obj = (VALUE)DATA_PTR(self);
VALUE type = type2sym(BUILTIN_TYPE(obj));
return rb_sprintf("#<InternalObject:%p %"PRIsVALUE">", (void *)obj, rb_sym2str(type));
}
/* Returns the Object#object_id of the internal object. */
static VALUE
iow_internal_object_id(VALUE self)
{
VALUE obj = (VALUE)DATA_PTR(self);
return rb_obj_id(obj);
}
struct rof_data {
VALUE refs;
VALUE values;
};
static void
reachable_object_from_i(VALUE obj, void *data_ptr)
{
struct rof_data *data = (struct rof_data *)data_ptr;
VALUE key = obj;
VALUE val = obj;
if (!rb_objspace_garbage_object_p(obj)) {
if (NIL_P(rb_hash_lookup(data->refs, key))) {
rb_hash_aset(data->refs, key, Qtrue);
if (rb_objspace_internal_object_p(obj)) {
val = iow_newobj(obj);
}
rb_ary_push(data->values, val);
}
}
}
static int
collect_values(st_data_t key, st_data_t value, st_data_t data)
{
VALUE ary = (VALUE)data;
rb_ary_push(ary, (VALUE)value);
return ST_CONTINUE;
}
/*
* call-seq:
* ObjectSpace.reachable_objects_from(obj) -> array or nil
*
* [MRI specific feature] Return all reachable objects from `obj'.
*
* This method returns all reachable objects from `obj'.
*
* If `obj' has two or more references to the same object `x', then returned
* array only includes one `x' object.
*
* If `obj' is a non-markable (non-heap management) object such as true,
* false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
*
* If `obj' has references to an internal object, then it returns instances of
* ObjectSpace::InternalObjectWrapper class. This object contains a reference
* to an internal object and you can check the type of internal object with
* `type' method.
*
* If `obj' is instance of ObjectSpace::InternalObjectWrapper class, then this
* method returns all reachable object from an internal object, which is
* pointed by `obj'.
*
* With this method, you can find memory leaks.
*
* This method is only expected to work with C Ruby.
*
* Example:
* ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
* #=> [Array, 'a', 'b', 'c']
*
* ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
* #=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
*
* ObjectSpace.reachable_objects_from([v = 'a', v, v])
* #=> [Array, 'a']
*
* ObjectSpace.reachable_objects_from(1)
* #=> nil # 1 is not markable (heap managed) object
*
*/
static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
if (!RB_SPECIAL_CONST_P(obj)) {
struct rof_data data;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
data.refs = rb_obj_hide(rb_ident_hash_new());
data.values = rb_ary_new();
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
return data.values;
}
else {
return Qnil;
}
}
struct rofr_data {
VALUE categories;
const char *last_category;
VALUE last_category_str;
VALUE last_category_objects;
};
static void
reachable_object_from_root_i(const char *category, VALUE obj, void *ptr)
{
struct rofr_data *data = (struct rofr_data *)ptr;
VALUE category_str;
VALUE category_objects;
if (category == data->last_category) {
category_str = data->last_category_str;
category_objects = data->last_category_objects;
}
else {
data->last_category = category;
category_str = data->last_category_str = rb_str_new2(category);
category_objects = data->last_category_objects = rb_ident_hash_new();
if (!NIL_P(rb_hash_lookup(data->categories, category_str))) {
rb_bug("reachable_object_from_root_i: category should insert at once");
}
rb_hash_aset(data->categories, category_str, category_objects);
}
if (!rb_objspace_garbage_object_p(obj) &&
obj != data->categories &&
obj != data->last_category_objects) {
if (rb_objspace_internal_object_p(obj)) {
obj = iow_newobj(obj);
}
rb_hash_aset(category_objects, obj, obj);
}
}
static int
collect_values_of_values(VALUE category, VALUE category_objects, VALUE categories)
{
VALUE ary = rb_ary_new();
rb_hash_foreach(category_objects, collect_values, ary);
rb_hash_aset(categories, category, ary);
return ST_CONTINUE;
}
/*
* call-seq:
* ObjectSpace.reachable_objects_from_root -> hash
*
* [MRI specific feature] Return all reachable objects from root.
*/
static VALUE
reachable_objects_from_root(VALUE self)
{
struct rofr_data data;
VALUE hash = data.categories = rb_ident_hash_new();
data.last_category = 0;
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
rb_hash_foreach(hash, collect_values_of_values, hash);
return hash;
}
static VALUE
wrap_klass_iow(VALUE klass)
{
if (!RTEST(klass)) {
return Qnil;
}
else if (RB_TYPE_P(klass, T_ICLASS) ||
CLASS_OF(klass) == Qfalse /* hidden object */) {
return iow_newobj(klass);
}
else {
return klass;
}
}
/*
* call-seq:
* ObjectSpace.internal_class_of(obj) -> Class or Module
*
* [MRI specific feature] Return internal class of obj.
* obj can be an instance of InternalObjectWrapper.
*
* Note that you should not use this method in your application.
*/
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
VALUE klass;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
if (RB_TYPE_P(obj, T_IMEMO)) {
return Qnil;
}
else {
klass = CLASS_OF(obj);
return wrap_klass_iow(klass);
}
}
/*
* call-seq:
* ObjectSpace.internal_super_of(cls) -> Class or Module
*
* [MRI specific feature] Return internal super class of cls (Class or Module).
* obj can be an instance of InternalObjectWrapper.
*
* Note that you should not use this method in your application.
*/
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
VALUE super;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
switch (OBJ_BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
super = RCLASS_SUPER(obj);
break;
default:
rb_raise(rb_eArgError, "class or module is expected");
}
return wrap_klass_iow(super);
}
void Init_object_tracing(VALUE rb_mObjSpace);
void Init_objspace_dump(VALUE rb_mObjSpace);
/*
* Document-module: ObjectSpace
*
* The objspace library extends the ObjectSpace module and adds several
* methods to get internal statistic information about
* object/memory management.
*
* You need to <code>require 'objspace'</code> to use this extension module.
*
* Generally, you *SHOULD* *NOT* use this library if you do not know
* about the MRI implementation. Mainly, this library is for (memory)
* profiler developers and MRI developers who need to know about MRI
* memory usage.
*/
void
Init_objspace(void)
{
#undef rb_intern
VALUE rb_mObjSpace;
#if 0
rb_mObjSpace = rb_define_module("ObjectSpace"); /* let rdoc know */
#endif
rb_mObjSpace = rb_const_get(rb_cObject, rb_intern("ObjectSpace"));
rb_define_module_function(rb_mObjSpace, "memsize_of", memsize_of_m, 1);
rb_define_module_function(rb_mObjSpace, "memsize_of_all", memsize_of_all_m, -1);
rb_define_module_function(rb_mObjSpace, "count_objects_size", count_objects_size, -1);
rb_define_module_function(rb_mObjSpace, "count_symbols", count_symbols, -1);
rb_define_module_function(rb_mObjSpace, "count_nodes", count_nodes, -1);
rb_define_module_function(rb_mObjSpace, "count_tdata_objects", count_tdata_objects, -1);
rb_define_module_function(rb_mObjSpace, "count_imemo_objects", count_imemo_objects, -1);
rb_define_module_function(rb_mObjSpace, "reachable_objects_from", reachable_objects_from, 1);
rb_define_module_function(rb_mObjSpace, "reachable_objects_from_root", reachable_objects_from_root, 0);
rb_define_module_function(rb_mObjSpace, "internal_class_of", objspace_internal_class_of, 1);
rb_define_module_function(rb_mObjSpace, "internal_super_of", objspace_internal_super_of, 1);
/*
* This class is used as a return value from
* ObjectSpace::reachable_objects_from.
*
* When ObjectSpace::reachable_objects_from returns an object with
* references to an internal object, an instance of this class is returned.
*
* You can use the #type method to check the type of the internal object.
*/
rb_cInternalObjectWrapper = rb_define_class_under(rb_mObjSpace, "InternalObjectWrapper", rb_cObject);
rb_undef_alloc_func(rb_cInternalObjectWrapper);
rb_define_method(rb_cInternalObjectWrapper, "type", iow_type, 0);
rb_define_method(rb_cInternalObjectWrapper, "inspect", iow_inspect, 0);
rb_define_method(rb_cInternalObjectWrapper, "internal_object_id", iow_internal_object_id, 0);
Init_object_tracing(rb_mObjSpace);
Init_objspace_dump(rb_mObjSpace);
}