зеркало из https://github.com/github/ruby.git
5089 строки
118 KiB
C
5089 строки
118 KiB
C
/**********************************************************************
|
|
|
|
bignum.c -
|
|
|
|
$Author$
|
|
created at: Fri Jun 10 00:48:55 JST 1994
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
|
|
**********************************************************************/
|
|
|
|
#include "ruby/ruby.h"
|
|
#include "ruby/thread.h"
|
|
#include "ruby/util.h"
|
|
#include "internal.h"
|
|
|
|
#ifdef HAVE_STRINGS_H
|
|
#include <strings.h>
|
|
#endif
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <ctype.h>
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
VALUE rb_cBignum;
|
|
|
|
static VALUE big_three = Qnil;
|
|
|
|
#if defined __MINGW32__
|
|
#define USHORT _USHORT
|
|
#endif
|
|
|
|
#define BDIGITS(x) (RBIGNUM_DIGITS(x))
|
|
#define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
|
|
#define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
|
|
#define BIGRAD_HALF ((BDIGIT)(BIGRAD >> 1))
|
|
#if SIZEOF_LONG >= SIZEOF_BDIGITS
|
|
# define DIGSPERLONG (SIZEOF_LONG/SIZEOF_BDIGITS)
|
|
#endif
|
|
#if defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG >= SIZEOF_BDIGITS
|
|
# define DIGSPERLL (SIZEOF_LONG_LONG/SIZEOF_BDIGITS)
|
|
#endif
|
|
#define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG)
|
|
#define BIGDN(x) RSHIFT((x),BITSPERDIG)
|
|
#define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1)))
|
|
#define BDIGMAX ((BDIGIT)-1)
|
|
|
|
#define BIGZEROP(x) (RBIGNUM_LEN(x) == 0 || \
|
|
(BDIGITS(x)[0] == 0 && \
|
|
(RBIGNUM_LEN(x) == 1 || bigzero_p(x))))
|
|
|
|
#define BIGDIVREM_EXTRA_WORDS 2
|
|
#define roomof(n, m) ((int)(((n)+(m)-1) / (m)))
|
|
#define bdigit_roomof(n) roomof(n, sizeof(BDIGIT))
|
|
#define BARY_ARGS(ary) ary, numberof(ary)
|
|
|
|
#define BARY_ADD(z, x, y) bary_add(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
|
|
#define BARY_SUB(z, x, y) bary_sub(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
|
|
#define BARY_MUL(z, x, y) bary_mul(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
|
|
#define BARY_DIVMOD(q, r, x, y) bary_divmod(BARY_ARGS(q), BARY_ARGS(r), BARY_ARGS(x), BARY_ARGS(y))
|
|
#define BARY_ZERO_P(x) bary_zero_p(BARY_ARGS(x))
|
|
|
|
static int nlz(BDIGIT x);
|
|
static BDIGIT bary_small_lshift(BDIGIT *zds, BDIGIT *xds, long n, int shift);
|
|
static void bary_small_rshift(BDIGIT *zds, BDIGIT *xds, long n, int shift, int sign_bit);
|
|
static void bary_unpack(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags);
|
|
static void bary_mul(BDIGIT *zds, size_t zl, BDIGIT *xds, size_t xl, BDIGIT *yds, size_t yl);
|
|
static void bary_sub(BDIGIT *zds, size_t zn, BDIGIT *xds, size_t xn, BDIGIT *yds, size_t yn);
|
|
static void bary_divmod(BDIGIT *qds, size_t nq, BDIGIT *rds, size_t nr, BDIGIT *xds, size_t nx, BDIGIT *yds, size_t ny);
|
|
static void bary_add(BDIGIT *zds, size_t zn, BDIGIT *xds, size_t xn, BDIGIT *yds, size_t yn);
|
|
static int bary_pack(int sign, BDIGIT *ds, size_t num_bdigits, void *words, size_t numwords, size_t wordsize, size_t nails, int flags);
|
|
static BDIGIT bary_2comp(BDIGIT *ds, size_t n);
|
|
|
|
#define BIGNUM_DEBUG 0
|
|
#if BIGNUM_DEBUG
|
|
#define ON_DEBUG(x) do { x; } while (0)
|
|
static void
|
|
dump_bignum(VALUE x)
|
|
{
|
|
long i;
|
|
printf("%c0x0", RBIGNUM_SIGN(x) ? '+' : '-');
|
|
for (i = RBIGNUM_LEN(x); i--; ) {
|
|
printf("_%08"PRIxBDIGIT, BDIGITS(x)[i]);
|
|
}
|
|
printf(", len=%lu", RBIGNUM_LEN(x));
|
|
puts("");
|
|
}
|
|
|
|
static VALUE
|
|
rb_big_dump(VALUE x)
|
|
{
|
|
dump_bignum(x);
|
|
return x;
|
|
}
|
|
#else
|
|
#define ON_DEBUG(x)
|
|
#endif
|
|
|
|
static int
|
|
bary_zero_p(BDIGIT *xds, size_t nx)
|
|
{
|
|
if (nx == 0)
|
|
return 1;
|
|
do {
|
|
if (xds[--nx]) return 0;
|
|
} while (nx);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bigzero_p(VALUE x)
|
|
{
|
|
return bary_zero_p(BDIGITS(x), RBIGNUM_LEN(x));
|
|
}
|
|
|
|
int
|
|
rb_bigzero_p(VALUE x)
|
|
{
|
|
return BIGZEROP(x);
|
|
}
|
|
|
|
int
|
|
rb_cmpint(VALUE val, VALUE a, VALUE b)
|
|
{
|
|
if (NIL_P(val)) {
|
|
rb_cmperr(a, b);
|
|
}
|
|
if (FIXNUM_P(val)) {
|
|
long l = FIX2LONG(val);
|
|
if (l > 0) return 1;
|
|
if (l < 0) return -1;
|
|
return 0;
|
|
}
|
|
if (RB_TYPE_P(val, T_BIGNUM)) {
|
|
if (BIGZEROP(val)) return 0;
|
|
if (RBIGNUM_SIGN(val)) return 1;
|
|
return -1;
|
|
}
|
|
if (RTEST(rb_funcall(val, '>', 1, INT2FIX(0)))) return 1;
|
|
if (RTEST(rb_funcall(val, '<', 1, INT2FIX(0)))) return -1;
|
|
return 0;
|
|
}
|
|
|
|
#define RBIGNUM_SET_LEN(b,l) \
|
|
((RBASIC(b)->flags & RBIGNUM_EMBED_FLAG) ? \
|
|
(void)(RBASIC(b)->flags = \
|
|
(RBASIC(b)->flags & ~RBIGNUM_EMBED_LEN_MASK) | \
|
|
((l) << RBIGNUM_EMBED_LEN_SHIFT)) : \
|
|
(void)(RBIGNUM(b)->as.heap.len = (l)))
|
|
|
|
static void
|
|
rb_big_realloc(VALUE big, long len)
|
|
{
|
|
BDIGIT *ds;
|
|
if (RBASIC(big)->flags & RBIGNUM_EMBED_FLAG) {
|
|
if (RBIGNUM_EMBED_LEN_MAX < len) {
|
|
ds = ALLOC_N(BDIGIT, len);
|
|
MEMCPY(ds, RBIGNUM(big)->as.ary, BDIGIT, RBIGNUM_EMBED_LEN_MAX);
|
|
RBIGNUM(big)->as.heap.len = RBIGNUM_LEN(big);
|
|
RBIGNUM(big)->as.heap.digits = ds;
|
|
RBASIC(big)->flags &= ~RBIGNUM_EMBED_FLAG;
|
|
}
|
|
}
|
|
else {
|
|
if (len <= RBIGNUM_EMBED_LEN_MAX) {
|
|
ds = RBIGNUM(big)->as.heap.digits;
|
|
RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG;
|
|
RBIGNUM_SET_LEN(big, len);
|
|
if (ds) {
|
|
MEMCPY(RBIGNUM(big)->as.ary, ds, BDIGIT, len);
|
|
xfree(ds);
|
|
}
|
|
}
|
|
else {
|
|
if (RBIGNUM_LEN(big) == 0) {
|
|
RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
|
|
}
|
|
else {
|
|
REALLOC_N(RBIGNUM(big)->as.heap.digits, BDIGIT, len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_big_resize(VALUE big, long len)
|
|
{
|
|
rb_big_realloc(big, len);
|
|
RBIGNUM_SET_LEN(big, len);
|
|
}
|
|
|
|
static VALUE
|
|
bignew_1(VALUE klass, long len, int sign)
|
|
{
|
|
NEWOBJ_OF(big, struct RBignum, klass, T_BIGNUM | (RGENGC_WB_PROTECTED_BIGNUM ? FL_WB_PROTECTED : 0));
|
|
RBIGNUM_SET_SIGN(big, sign?1:0);
|
|
if (len <= RBIGNUM_EMBED_LEN_MAX) {
|
|
RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG;
|
|
RBIGNUM_SET_LEN(big, len);
|
|
}
|
|
else {
|
|
RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
|
|
RBIGNUM(big)->as.heap.len = len;
|
|
}
|
|
OBJ_FREEZE(big);
|
|
return (VALUE)big;
|
|
}
|
|
|
|
#define bignew(len,sign) bignew_1(rb_cBignum,(len),(sign))
|
|
|
|
VALUE
|
|
rb_big_new(long len, int sign)
|
|
{
|
|
return bignew(len, sign != 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_big_clone(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
VALUE z = bignew_1(CLASS_OF(x), len, RBIGNUM_SIGN(x));
|
|
|
|
MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, len);
|
|
return z;
|
|
}
|
|
|
|
static BDIGIT
|
|
bary_2comp(BDIGIT *ds, size_t n)
|
|
{
|
|
size_t i = n;
|
|
BDIGIT_DBL num;
|
|
if (!n) return 1;
|
|
while (i--) ds[i] = ~ds[i];
|
|
i = 0; num = 1;
|
|
do {
|
|
num += ds[i];
|
|
ds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
} while (i < n);
|
|
return (BDIGIT)num;
|
|
}
|
|
|
|
/* modify a bignum by 2's complement */
|
|
static void
|
|
get2comp(VALUE x)
|
|
{
|
|
long i = RBIGNUM_LEN(x);
|
|
BDIGIT *ds = BDIGITS(x);
|
|
BDIGIT_DBL num;
|
|
|
|
if (!i) return;
|
|
while (i--) ds[i] = ~ds[i];
|
|
i = 0; num = 1;
|
|
do {
|
|
num += ds[i];
|
|
ds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
} while (i < RBIGNUM_LEN(x));
|
|
if (num != 0) {
|
|
rb_big_resize(x, RBIGNUM_LEN(x)+1);
|
|
ds = BDIGITS(x);
|
|
ds[RBIGNUM_LEN(x)-1] = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_big_2comp(VALUE x) /* get 2's complement */
|
|
{
|
|
get2comp(x);
|
|
}
|
|
|
|
static inline VALUE
|
|
bigtrunc(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT *ds = BDIGITS(x);
|
|
|
|
if (len == 0) return x;
|
|
while (--len && !ds[len]);
|
|
if (RBIGNUM_LEN(x) > len+1) {
|
|
rb_big_resize(x, len+1);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static inline VALUE
|
|
bigfixize(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT *ds = BDIGITS(x);
|
|
|
|
if (len == 0) return INT2FIX(0);
|
|
if (rb_absint_size(x, NULL) <= sizeof(long)) {
|
|
long num = 0;
|
|
#if 2*SIZEOF_BDIGITS > SIZEOF_LONG
|
|
num = (long)ds[0];
|
|
#else
|
|
while (len--) {
|
|
num = (long)(BIGUP(num) + ds[len]);
|
|
}
|
|
#endif
|
|
if (num >= 0) {
|
|
if (RBIGNUM_SIGN(x)) {
|
|
if (POSFIXABLE(num)) return LONG2FIX(num);
|
|
}
|
|
else {
|
|
if (NEGFIXABLE(-num)) return LONG2FIX(-num);
|
|
}
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static VALUE
|
|
bignorm(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_BIGNUM)) {
|
|
x = bigfixize(bigtrunc(x));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
VALUE
|
|
rb_big_norm(VALUE x)
|
|
{
|
|
return bignorm(x);
|
|
}
|
|
|
|
VALUE
|
|
rb_uint2big(VALUE n)
|
|
{
|
|
long i = 0;
|
|
BDIGIT *digits;
|
|
VALUE big;
|
|
|
|
#if SIZEOF_BDIGITS >= SIZEOF_VALUE
|
|
big = bignew(1, 1);
|
|
digits = BDIGITS(big);
|
|
digits[0] = n;
|
|
#else
|
|
BDIGIT_DBL num = n;
|
|
big = bignew(bdigit_roomof(SIZEOF_VALUE), 1);
|
|
digits = BDIGITS(big);
|
|
while (i < bdigit_roomof(SIZEOF_VALUE)) {
|
|
digits[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
#endif
|
|
|
|
i = bdigit_roomof(SIZEOF_VALUE);;
|
|
while (--i && !digits[i]) ;
|
|
RBIGNUM_SET_LEN(big, i+1);
|
|
return big;
|
|
}
|
|
|
|
VALUE
|
|
rb_int2big(SIGNED_VALUE n)
|
|
{
|
|
long neg = 0;
|
|
VALUE u;
|
|
VALUE big;
|
|
|
|
if (n < 0) {
|
|
u = 1 + (VALUE)(-(n + 1)); /* u = -n avoiding overflow */
|
|
neg = 1;
|
|
}
|
|
else {
|
|
u = n;
|
|
}
|
|
big = rb_uint2big(u);
|
|
if (neg) {
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return big;
|
|
}
|
|
|
|
VALUE
|
|
rb_uint2inum(VALUE n)
|
|
{
|
|
if (POSFIXABLE(n)) return LONG2FIX(n);
|
|
return rb_uint2big(n);
|
|
}
|
|
|
|
VALUE
|
|
rb_int2inum(SIGNED_VALUE n)
|
|
{
|
|
if (FIXABLE(n)) return LONG2FIX(n);
|
|
return rb_int2big(n);
|
|
}
|
|
|
|
#if 0
|
|
#if SIZEOF_LONG % SIZEOF_BDIGITS != 0
|
|
# error unexpected SIZEOF_LONG : SIZEOF_BDIGITS ratio
|
|
#endif
|
|
|
|
/*
|
|
* buf is an array of long integers.
|
|
* buf is ordered from least significant word to most significant word.
|
|
* buf[0] is the least significant word and
|
|
* buf[num_longs-1] is the most significant word.
|
|
* This means words in buf is little endian.
|
|
* However each word in buf is native endian.
|
|
* (buf[i]&1) is the least significant bit and
|
|
* (buf[i]&(1<<(SIZEOF_LONG*CHAR_BIT-1))) is the most significant bit
|
|
* for each 0 <= i < num_longs.
|
|
* So buf is little endian at whole on a little endian machine.
|
|
* But buf is mixed endian on a big endian machine.
|
|
*
|
|
* The buf represents negative integers as two's complement.
|
|
* So, the most significant bit of the most significant word,
|
|
* (buf[num_longs-1]>>(SIZEOF_LONG*CHAR_BIT-1)),
|
|
* is the sign bit: 1 means negative and 0 means zero or positive.
|
|
*
|
|
* If given size of buf (num_longs) is not enough to represent val,
|
|
* higher words (including a sign bit) are ignored.
|
|
*/
|
|
|
|
void
|
|
rb_big_pack(VALUE val, unsigned long *buf, long num_longs)
|
|
{
|
|
val = rb_to_int(val);
|
|
if (num_longs == 0)
|
|
return;
|
|
if (FIXNUM_P(val)) {
|
|
long i;
|
|
long tmp = FIX2LONG(val);
|
|
buf[0] = (unsigned long)tmp;
|
|
tmp = tmp < 0 ? ~0L : 0;
|
|
for (i = 1; i < num_longs; i++)
|
|
buf[i] = (unsigned long)tmp;
|
|
return;
|
|
}
|
|
else {
|
|
long len = RBIGNUM_LEN(val);
|
|
BDIGIT *ds = BDIGITS(val), *dend = ds + len;
|
|
long i, j;
|
|
for (i = 0; i < num_longs && ds < dend; i++) {
|
|
unsigned long l = 0;
|
|
for (j = 0; j < DIGSPERLONG && ds < dend; j++, ds++) {
|
|
l |= ((unsigned long)*ds << (j * BITSPERDIG));
|
|
}
|
|
buf[i] = l;
|
|
}
|
|
for (; i < num_longs; i++)
|
|
buf[i] = 0;
|
|
if (RBIGNUM_NEGATIVE_P(val)) {
|
|
for (i = 0; i < num_longs; i++) {
|
|
buf[i] = ~buf[i];
|
|
}
|
|
for (i = 0; i < num_longs; i++) {
|
|
buf[i]++;
|
|
if (buf[i] != 0)
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See rb_big_pack comment for endianness and sign of buf. */
|
|
VALUE
|
|
rb_big_unpack(unsigned long *buf, long num_longs)
|
|
{
|
|
while (2 <= num_longs) {
|
|
if (buf[num_longs-1] == 0 && (long)buf[num_longs-2] >= 0)
|
|
num_longs--;
|
|
else if (buf[num_longs-1] == ~0UL && (long)buf[num_longs-2] < 0)
|
|
num_longs--;
|
|
else
|
|
break;
|
|
}
|
|
if (num_longs == 0)
|
|
return INT2FIX(0);
|
|
else if (num_longs == 1)
|
|
return LONG2NUM((long)buf[0]);
|
|
else {
|
|
VALUE big;
|
|
BDIGIT *ds;
|
|
long len = num_longs * DIGSPERLONG;
|
|
long i;
|
|
big = bignew(len, 1);
|
|
ds = BDIGITS(big);
|
|
for (i = 0; i < num_longs; i++) {
|
|
unsigned long d = buf[i];
|
|
#if SIZEOF_LONG == SIZEOF_BDIGITS
|
|
*ds++ = d;
|
|
#else
|
|
int j;
|
|
for (j = 0; j < DIGSPERLONG; j++) {
|
|
*ds++ = BIGLO(d);
|
|
d = BIGDN(d);
|
|
}
|
|
#endif
|
|
}
|
|
if ((long)buf[num_longs-1] < 0) {
|
|
get2comp(big);
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return bignorm(big);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
rb_big_pack(VALUE val, unsigned long *buf, long num_longs)
|
|
{
|
|
rb_integer_pack(val, buf, num_longs, sizeof(long), 0,
|
|
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
|
|
INTEGER_PACK_2COMP);
|
|
}
|
|
|
|
VALUE
|
|
rb_big_unpack(unsigned long *buf, long num_longs)
|
|
{
|
|
return rb_integer_unpack(buf, num_longs, sizeof(long), 0,
|
|
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
|
|
INTEGER_PACK_2COMP);
|
|
}
|
|
|
|
/* number of bytes of abs(val). additionaly number of leading zeros can be returned. */
|
|
|
|
/*
|
|
* Calculate the number of bytes to be required to represent
|
|
* the absolute value of the integer given as _val_.
|
|
*
|
|
* [val] an integer.
|
|
* [nlz_bits_ret] number of leading zero bits in the most significant byte is returned if not NULL.
|
|
*
|
|
* This function returns ((val_numbits * CHAR_BIT + CHAR_BIT - 1) / CHAR_BIT)
|
|
* where val_numbits is the number of bits of abs(val).
|
|
* This function should not overflow.
|
|
*
|
|
* If nlz_bits_ret is not NULL,
|
|
* (return_value * CHAR_BIT - val_numbits) is stored in *nlz_bits_ret.
|
|
* In this case, 0 <= *nlz_bits_ret < CHAR_BIT.
|
|
*
|
|
*/
|
|
size_t
|
|
rb_absint_size(VALUE val, int *nlz_bits_ret)
|
|
{
|
|
BDIGIT *dp;
|
|
BDIGIT *de;
|
|
BDIGIT fixbuf[(sizeof(long) + SIZEOF_BDIGITS - 1) / SIZEOF_BDIGITS];
|
|
|
|
int num_leading_zeros;
|
|
|
|
val = rb_to_int(val);
|
|
|
|
if (FIXNUM_P(val)) {
|
|
long v = FIX2LONG(val);
|
|
if (v < 0) {
|
|
v = -v;
|
|
}
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
fixbuf[0] = v;
|
|
#else
|
|
{
|
|
int i;
|
|
for (i = 0; i < numberof(fixbuf); i++) {
|
|
fixbuf[i] = BIGLO(v);
|
|
v = BIGDN(v);
|
|
}
|
|
}
|
|
#endif
|
|
dp = fixbuf;
|
|
de = fixbuf + numberof(fixbuf);
|
|
}
|
|
else {
|
|
dp = BDIGITS(val);
|
|
de = dp + RBIGNUM_LEN(val);
|
|
}
|
|
while (dp < de && de[-1] == 0)
|
|
de--;
|
|
if (dp == de) {
|
|
if (nlz_bits_ret)
|
|
*nlz_bits_ret = 0;
|
|
return 0;
|
|
}
|
|
num_leading_zeros = nlz(de[-1]);
|
|
if (nlz_bits_ret)
|
|
*nlz_bits_ret = num_leading_zeros % CHAR_BIT;
|
|
return (de - dp) * SIZEOF_BDIGITS - num_leading_zeros / CHAR_BIT;
|
|
}
|
|
|
|
static size_t
|
|
absint_numwords_small(size_t numbytes, int nlz_bits_in_msbyte, size_t word_numbits, size_t *nlz_bits_ret)
|
|
{
|
|
size_t val_numbits = numbytes * CHAR_BIT - nlz_bits_in_msbyte;
|
|
size_t div = val_numbits / word_numbits;
|
|
size_t mod = val_numbits % word_numbits;
|
|
size_t numwords;
|
|
size_t nlz_bits;
|
|
numwords = mod == 0 ? div : div + 1;
|
|
nlz_bits = mod == 0 ? 0 : word_numbits - mod;
|
|
*nlz_bits_ret = nlz_bits;
|
|
return numwords;
|
|
}
|
|
|
|
static size_t
|
|
absint_numwords_generic(size_t numbytes, int nlz_bits_in_msbyte, size_t word_numbits, size_t *nlz_bits_ret)
|
|
{
|
|
BDIGIT numbytes_bary[bdigit_roomof(sizeof(numbytes))];
|
|
BDIGIT char_bit[1] = { CHAR_BIT };
|
|
BDIGIT val_numbits_bary[bdigit_roomof(sizeof(numbytes) + 1)];
|
|
BDIGIT nlz_bits_in_msbyte_bary[1] = { nlz_bits_in_msbyte };
|
|
BDIGIT word_numbits_bary[bdigit_roomof(sizeof(word_numbits))];
|
|
BDIGIT div_bary[numberof(val_numbits_bary) + BIGDIVREM_EXTRA_WORDS];
|
|
BDIGIT mod_bary[numberof(word_numbits_bary)];
|
|
BDIGIT one[1] = { 1 };
|
|
size_t nlz_bits;
|
|
size_t mod;
|
|
int sign;
|
|
size_t numwords;
|
|
|
|
/*
|
|
* val_numbits = numbytes * CHAR_BIT - nlz_bits_in_msbyte
|
|
* div, mod = val_numbits.divmod(word_numbits)
|
|
* numwords = mod == 0 ? div : div + 1
|
|
* nlz_bits = mod == 0 ? 0 : word_numbits - mod
|
|
*/
|
|
|
|
bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER);
|
|
BARY_MUL(val_numbits_bary, numbytes_bary, char_bit);
|
|
if (nlz_bits_in_msbyte)
|
|
BARY_SUB(val_numbits_bary, val_numbits_bary, nlz_bits_in_msbyte_bary);
|
|
bary_unpack(BARY_ARGS(word_numbits_bary), &word_numbits, 1, sizeof(word_numbits), 0,
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER);
|
|
BARY_DIVMOD(div_bary, mod_bary, val_numbits_bary, word_numbits_bary);
|
|
if (BARY_ZERO_P(mod_bary)) {
|
|
nlz_bits = 0;
|
|
}
|
|
else {
|
|
BARY_ADD(div_bary, div_bary, one);
|
|
bary_pack(+1, BARY_ARGS(mod_bary), &mod, 1, sizeof(mod), 0,
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER);
|
|
nlz_bits = word_numbits - mod;
|
|
}
|
|
sign = bary_pack(+1, BARY_ARGS(div_bary), &numwords, 1, sizeof(numwords), 0,
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER);
|
|
|
|
if (sign == 2)
|
|
return (size_t)-1;
|
|
*nlz_bits_ret = nlz_bits;
|
|
return numwords;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of words to be required to represent
|
|
* the absolute value of the integer given as _val_.
|
|
*
|
|
* [val] an integer.
|
|
* [word_numbits] number of bits in a word.
|
|
* [nlz_bits_ret] number of leading zero bits in the most significant word is returned if not NULL.
|
|
*
|
|
* This function returns ((val_numbits * CHAR_BIT + word_numbits - 1) / word_numbits)
|
|
* where val_numbits is the number of bits of abs(val).
|
|
*
|
|
* This function can overflow.
|
|
* When overflow occur, (size_t)-1 is returned.
|
|
*
|
|
* If nlz_bits_ret is not NULL and overflow is not occur,
|
|
* (return_value * word_numbits - val_numbits) is stored in *nlz_bits_ret.
|
|
* In this case, 0 <= *nlz_bits_ret < word_numbits.
|
|
*
|
|
*/
|
|
size_t
|
|
rb_absint_numwords(VALUE val, size_t word_numbits, size_t *nlz_bits_ret)
|
|
{
|
|
size_t numbytes;
|
|
int nlz_bits_in_msbyte;
|
|
size_t numwords;
|
|
size_t nlz_bits;
|
|
|
|
if (word_numbits == 0)
|
|
return (size_t)-1;
|
|
|
|
numbytes = rb_absint_size(val, &nlz_bits_in_msbyte);
|
|
|
|
if (numbytes <= SIZE_MAX / CHAR_BIT) {
|
|
numwords = absint_numwords_small(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits);
|
|
#ifdef DEBUG_INTEGER_PACK
|
|
{
|
|
size_t numwords0, nlz_bits0;
|
|
numwords0 = absint_numwords_generic(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits0);
|
|
assert(numwords0 == numwords);
|
|
assert(nlz_bits0 == nlz_bits);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
numwords = absint_numwords_generic(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits);
|
|
}
|
|
if (numwords == (size_t)-1)
|
|
return numwords;
|
|
|
|
if (nlz_bits_ret)
|
|
*nlz_bits_ret = nlz_bits;
|
|
|
|
return numwords;
|
|
}
|
|
|
|
int
|
|
rb_absint_singlebit_p(VALUE val)
|
|
{
|
|
BDIGIT *dp;
|
|
BDIGIT *de;
|
|
BDIGIT fixbuf[(sizeof(long) + SIZEOF_BDIGITS - 1) / SIZEOF_BDIGITS];
|
|
BDIGIT d;
|
|
|
|
val = rb_to_int(val);
|
|
|
|
if (FIXNUM_P(val)) {
|
|
long v = FIX2LONG(val);
|
|
if (v < 0) {
|
|
v = -v;
|
|
}
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
fixbuf[0] = v;
|
|
#else
|
|
{
|
|
int i;
|
|
for (i = 0; i < numberof(fixbuf); i++) {
|
|
fixbuf[i] = BIGLO(v);
|
|
v = BIGDN(v);
|
|
}
|
|
}
|
|
#endif
|
|
dp = fixbuf;
|
|
de = fixbuf + numberof(fixbuf);
|
|
}
|
|
else {
|
|
dp = BDIGITS(val);
|
|
de = dp + RBIGNUM_LEN(val);
|
|
}
|
|
while (dp < de && de[-1] == 0)
|
|
de--;
|
|
while (dp < de && dp[0] == 0)
|
|
dp++;
|
|
if (dp == de) /* no bit set. */
|
|
return 0;
|
|
if (dp != de-1) /* two non-zero words. two bits set, at least. */
|
|
return 0;
|
|
d = *dp;
|
|
d = d & (d - 1); /* Clear the least significant bit set */
|
|
return d == 0;
|
|
}
|
|
|
|
#define INTEGER_PACK_WORDORDER_MASK \
|
|
(INTEGER_PACK_MSWORD_FIRST | \
|
|
INTEGER_PACK_LSWORD_FIRST)
|
|
#define INTEGER_PACK_BYTEORDER_MASK \
|
|
(INTEGER_PACK_MSBYTE_FIRST | \
|
|
INTEGER_PACK_LSBYTE_FIRST | \
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER)
|
|
|
|
static void
|
|
validate_integer_pack_format(size_t numwords, size_t wordsize, size_t nails, int flags, int supported_flags)
|
|
{
|
|
int wordorder_bits = flags & INTEGER_PACK_WORDORDER_MASK;
|
|
int byteorder_bits = flags & INTEGER_PACK_BYTEORDER_MASK;
|
|
|
|
if (flags & ~supported_flags) {
|
|
rb_raise(rb_eArgError, "unsupported flags specified");
|
|
}
|
|
if (wordorder_bits == 0) {
|
|
if (1 < numwords)
|
|
rb_raise(rb_eArgError, "word order not specified");
|
|
}
|
|
else if (wordorder_bits != INTEGER_PACK_MSWORD_FIRST &&
|
|
wordorder_bits != INTEGER_PACK_LSWORD_FIRST)
|
|
rb_raise(rb_eArgError, "unexpected word order");
|
|
if (byteorder_bits == 0) {
|
|
rb_raise(rb_eArgError, "byte order not specified");
|
|
}
|
|
else if (byteorder_bits != INTEGER_PACK_MSBYTE_FIRST &&
|
|
byteorder_bits != INTEGER_PACK_LSBYTE_FIRST &&
|
|
byteorder_bits != INTEGER_PACK_NATIVE_BYTE_ORDER)
|
|
rb_raise(rb_eArgError, "unexpected byte order");
|
|
if (wordsize == 0)
|
|
rb_raise(rb_eArgError, "invalid wordsize: %"PRI_SIZE_PREFIX"u", wordsize);
|
|
if (SSIZE_MAX < wordsize)
|
|
rb_raise(rb_eArgError, "too big wordsize: %"PRI_SIZE_PREFIX"u", wordsize);
|
|
if (wordsize <= nails / CHAR_BIT)
|
|
rb_raise(rb_eArgError, "too big nails: %"PRI_SIZE_PREFIX"u", nails);
|
|
if (SIZE_MAX / wordsize < numwords)
|
|
rb_raise(rb_eArgError, "too big numwords * wordsize: %"PRI_SIZE_PREFIX"u * %"PRI_SIZE_PREFIX"u", numwords, wordsize);
|
|
}
|
|
|
|
static void
|
|
integer_pack_loop_setup(
|
|
size_t numwords, size_t wordsize, size_t nails, int flags,
|
|
size_t *word_num_fullbytes_ret,
|
|
int *word_num_partialbits_ret,
|
|
size_t *word_start_ret,
|
|
ssize_t *word_step_ret,
|
|
size_t *word_last_ret,
|
|
size_t *byte_start_ret,
|
|
int *byte_step_ret)
|
|
{
|
|
int wordorder_bits = flags & INTEGER_PACK_WORDORDER_MASK;
|
|
int byteorder_bits = flags & INTEGER_PACK_BYTEORDER_MASK;
|
|
size_t word_num_fullbytes;
|
|
int word_num_partialbits;
|
|
size_t word_start;
|
|
ssize_t word_step;
|
|
size_t word_last;
|
|
size_t byte_start;
|
|
int byte_step;
|
|
|
|
word_num_partialbits = CHAR_BIT - (int)(nails % CHAR_BIT);
|
|
if (word_num_partialbits == CHAR_BIT)
|
|
word_num_partialbits = 0;
|
|
word_num_fullbytes = wordsize - (nails / CHAR_BIT);
|
|
if (word_num_partialbits != 0) {
|
|
word_num_fullbytes--;
|
|
}
|
|
|
|
if (wordorder_bits == INTEGER_PACK_MSWORD_FIRST) {
|
|
word_start = wordsize*(numwords-1);
|
|
word_step = -(ssize_t)wordsize;
|
|
word_last = 0;
|
|
}
|
|
else {
|
|
word_start = 0;
|
|
word_step = wordsize;
|
|
word_last = wordsize*(numwords-1);
|
|
}
|
|
|
|
if (byteorder_bits == INTEGER_PACK_NATIVE_BYTE_ORDER) {
|
|
#ifdef WORDS_BIGENDIAN
|
|
byteorder_bits = INTEGER_PACK_MSBYTE_FIRST;
|
|
#else
|
|
byteorder_bits = INTEGER_PACK_LSBYTE_FIRST;
|
|
#endif
|
|
}
|
|
if (byteorder_bits == INTEGER_PACK_MSBYTE_FIRST) {
|
|
byte_start = wordsize-1;
|
|
byte_step = -1;
|
|
}
|
|
else {
|
|
byte_start = 0;
|
|
byte_step = 1;
|
|
}
|
|
|
|
*word_num_partialbits_ret = word_num_partialbits;
|
|
*word_num_fullbytes_ret = word_num_fullbytes;
|
|
*word_start_ret = word_start;
|
|
*word_step_ret = word_step;
|
|
*word_last_ret = word_last;
|
|
*byte_start_ret = byte_start;
|
|
*byte_step_ret = byte_step;
|
|
}
|
|
|
|
static inline void
|
|
integer_pack_fill_dd(BDIGIT **dpp, BDIGIT **dep, BDIGIT_DBL *ddp, int *numbits_in_dd_p)
|
|
{
|
|
if (*dpp < *dep && SIZEOF_BDIGITS * CHAR_BIT <= (int)sizeof(*ddp) * CHAR_BIT - *numbits_in_dd_p) {
|
|
*ddp |= (BDIGIT_DBL)(*(*dpp)++) << *numbits_in_dd_p;
|
|
*numbits_in_dd_p += SIZEOF_BDIGITS * CHAR_BIT;
|
|
}
|
|
else if (*dpp == *dep) {
|
|
/* higher bits are infinity zeros */
|
|
*numbits_in_dd_p = (int)sizeof(*ddp) * CHAR_BIT;
|
|
}
|
|
}
|
|
|
|
static inline BDIGIT_DBL
|
|
integer_pack_take_lowbits(int n, BDIGIT_DBL *ddp, int *numbits_in_dd_p)
|
|
{
|
|
BDIGIT_DBL ret;
|
|
ret = (*ddp) & (((BDIGIT_DBL)1 << n) - 1);
|
|
*ddp >>= n;
|
|
*numbits_in_dd_p -= n;
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bary_pack(int sign, BDIGIT *ds, size_t num_bdigits, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
|
|
{
|
|
BDIGIT *dp, *de;
|
|
unsigned char *buf, *bufend;
|
|
|
|
dp = ds;
|
|
de = ds + num_bdigits;
|
|
|
|
validate_integer_pack_format(numwords, wordsize, nails, flags,
|
|
INTEGER_PACK_MSWORD_FIRST|
|
|
INTEGER_PACK_LSWORD_FIRST|
|
|
INTEGER_PACK_MSBYTE_FIRST|
|
|
INTEGER_PACK_LSBYTE_FIRST|
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER|
|
|
INTEGER_PACK_2COMP);
|
|
|
|
while (dp < de && de[-1] == 0)
|
|
de--;
|
|
if (dp == de) {
|
|
sign = 0;
|
|
}
|
|
|
|
buf = words;
|
|
bufend = buf + numwords * wordsize;
|
|
|
|
if (buf == bufend) {
|
|
/* overflow if non-zero*/
|
|
if (!(flags & INTEGER_PACK_2COMP) || 0 <= sign)
|
|
sign *= 2;
|
|
else {
|
|
if (de - dp == 1 && dp[0] == 1)
|
|
sign = -1; /* val == -1 == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
|
|
else
|
|
sign = -2; /* val < -1 == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
|
|
}
|
|
}
|
|
else if (dp == de) {
|
|
memset(buf, '\0', bufend - buf);
|
|
}
|
|
else if (dp < de && buf < bufend) {
|
|
int word_num_partialbits;
|
|
size_t word_num_fullbytes;
|
|
|
|
ssize_t word_step;
|
|
size_t byte_start;
|
|
int byte_step;
|
|
|
|
size_t word_start, word_last;
|
|
unsigned char *wordp, *last_wordp;
|
|
BDIGIT_DBL dd;
|
|
int numbits_in_dd;
|
|
|
|
integer_pack_loop_setup(numwords, wordsize, nails, flags,
|
|
&word_num_fullbytes, &word_num_partialbits,
|
|
&word_start, &word_step, &word_last, &byte_start, &byte_step);
|
|
|
|
wordp = buf + word_start;
|
|
last_wordp = buf + word_last;
|
|
|
|
dd = 0;
|
|
numbits_in_dd = 0;
|
|
|
|
#define FILL_DD \
|
|
integer_pack_fill_dd(&dp, &de, &dd, &numbits_in_dd)
|
|
#define TAKE_LOWBITS(n) \
|
|
integer_pack_take_lowbits(n, &dd, &numbits_in_dd)
|
|
|
|
while (1) {
|
|
size_t index_in_word = 0;
|
|
unsigned char *bytep = wordp + byte_start;
|
|
while (index_in_word < word_num_fullbytes) {
|
|
FILL_DD;
|
|
*bytep = TAKE_LOWBITS(CHAR_BIT);
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
if (word_num_partialbits) {
|
|
FILL_DD;
|
|
*bytep = TAKE_LOWBITS(word_num_partialbits);
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
while (index_in_word < wordsize) {
|
|
*bytep = 0;
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
|
|
if (wordp == last_wordp)
|
|
break;
|
|
|
|
wordp += word_step;
|
|
}
|
|
FILL_DD;
|
|
/* overflow tests */
|
|
if (dp != de || 1 < dd) {
|
|
/* 2**(numwords*(wordsize*CHAR_BIT-nails)+1) <= abs(val) */
|
|
sign *= 2;
|
|
}
|
|
else if (dd == 1) {
|
|
/* 2**(numwords*(wordsize*CHAR_BIT-nails)) <= abs(val) < 2**(numwords*(wordsize*CHAR_BIT-nails)+1) */
|
|
if (!(flags & INTEGER_PACK_2COMP) || 0 <= sign)
|
|
sign *= 2;
|
|
else { /* overflow_2comp && sign == -1 */
|
|
/* test lower bits are all zero. */
|
|
dp = ds;
|
|
while (dp < de && *dp == 0)
|
|
dp++;
|
|
if (de - dp == 1 && /* only one non-zero word. */
|
|
(*dp & (*dp-1)) == 0) /* *dp contains only one bit set. */
|
|
sign = -1; /* val == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
|
|
else
|
|
sign = -2; /* val < -2**(numwords*(wordsize*CHAR_BIT-nails)) */
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((flags & INTEGER_PACK_2COMP) && (sign < 0 && numwords != 0)) {
|
|
unsigned char *buf;
|
|
|
|
int word_num_partialbits;
|
|
size_t word_num_fullbytes;
|
|
|
|
ssize_t word_step;
|
|
size_t byte_start;
|
|
int byte_step;
|
|
|
|
size_t word_start, word_last;
|
|
unsigned char *wordp, *last_wordp;
|
|
|
|
unsigned int partialbits_mask;
|
|
int carry;
|
|
|
|
integer_pack_loop_setup(numwords, wordsize, nails, flags,
|
|
&word_num_fullbytes, &word_num_partialbits,
|
|
&word_start, &word_step, &word_last, &byte_start, &byte_step);
|
|
|
|
partialbits_mask = (1 << word_num_partialbits) - 1;
|
|
|
|
buf = words;
|
|
wordp = buf + word_start;
|
|
last_wordp = buf + word_last;
|
|
|
|
carry = 1;
|
|
while (1) {
|
|
size_t index_in_word = 0;
|
|
unsigned char *bytep = wordp + byte_start;
|
|
while (index_in_word < word_num_fullbytes) {
|
|
carry += (unsigned char)~*bytep;
|
|
*bytep = (unsigned char)carry;
|
|
carry >>= CHAR_BIT;
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
if (word_num_partialbits) {
|
|
carry += (*bytep & partialbits_mask) ^ partialbits_mask;
|
|
*bytep = carry & partialbits_mask;
|
|
carry >>= word_num_partialbits;
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
|
|
if (wordp == last_wordp)
|
|
break;
|
|
|
|
wordp += word_step;
|
|
}
|
|
}
|
|
|
|
return sign;
|
|
#undef FILL_DD
|
|
#undef TAKE_LOWBITS
|
|
}
|
|
|
|
/*
|
|
* Export an integer into a buffer.
|
|
*
|
|
* This function fills the buffer specified by _words_ and _numwords_ as
|
|
* val in the format specified by _wordsize_, _nails_ and _flags_.
|
|
*
|
|
* [val] Fixnum, Bignum or another integer like object which has to_int method.
|
|
* [words] buffer to export abs(val).
|
|
* [numwords] the size of given buffer as number of words.
|
|
* [wordsize] the size of word as number of bytes.
|
|
* [nails] number of padding bits in a word.
|
|
* Most significant nails bits of each word are filled by zero.
|
|
* [flags] bitwise or of constants which name starts "INTEGER_PACK_".
|
|
*
|
|
* flags:
|
|
* [INTEGER_PACK_MSWORD_FIRST] Store the most significant word as the first word.
|
|
* [INTEGER_PACK_LSWORD_FIRST] Store the least significant word as the first word.
|
|
* [INTEGER_PACK_MSBYTE_FIRST] Store the most significant byte in a word as the first byte in the word.
|
|
* [INTEGER_PACK_LSBYTE_FIRST] Store the least significant byte in a word as the first byte in the word.
|
|
* [INTEGER_PACK_NATIVE_BYTE_ORDER] INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST corresponding to the host's endian.
|
|
* [INTEGER_PACK_2COMP] Use 2's complement representation.
|
|
* [INTEGER_PACK_LITTLE_ENDIAN] Same as INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_LSBYTE_FIRST
|
|
* [INTEGER_PACK_BIG_ENDIAN] Same as INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_MSBYTE_FIRST
|
|
*
|
|
* This function fills the buffer specified by _words_
|
|
* as abs(val) if INTEGER_PACK_2COMP is not specified in _flags_.
|
|
* If INTEGER_PACK_2COMP is specified, 2's complement representation of val is
|
|
* filled in the buffer.
|
|
*
|
|
* This function returns the signedness and overflow condition.
|
|
* The overflow condition depends on INTEGER_PACK_2COMP.
|
|
*
|
|
* INTEGER_PACK_2COMP is not specified:
|
|
* -2 : negative overflow. val <= -2**(numwords*(wordsize*CHAR_BIT-nails))
|
|
* -1 : negative without overflow. -2**(numwords*(wordsize*CHAR_BIT-nails)) < val < 0
|
|
* 0 : zero. val == 0
|
|
* 1 : positive without overflow. 0 < val < 2**(numwords*(wordsize*CHAR_BIT-nails))
|
|
* 2 : positive overflow. 2**(numwords*(wordsize*CHAR_BIT-nails)) <= val
|
|
*
|
|
* INTEGER_PACK_2COMP is specified:
|
|
* -2 : negative overflow. val < -2**(numwords*(wordsize*CHAR_BIT-nails))
|
|
* -1 : negative without overflow. -2**(numwords*(wordsize*CHAR_BIT-nails)) <= val < 0
|
|
* 0 : zero. val == 0
|
|
* 1 : positive without overflow. 0 < val < 2**(numwords*(wordsize*CHAR_BIT-nails))
|
|
* 2 : positive overflow. 2**(numwords*(wordsize*CHAR_BIT-nails)) <= val
|
|
*
|
|
* The value, -2**(numwords*(wordsize*CHAR_BIT-nails)), is representable
|
|
* in 2's complement representation but not representable in absolute value.
|
|
* So -1 is returned for the value if INTEGER_PACK_2COMP is specified
|
|
* but returns -2 if INTEGER_PACK_2COMP is not specified.
|
|
*
|
|
* The least significant words are filled in the buffer when overflow occur.
|
|
*/
|
|
|
|
int
|
|
rb_integer_pack(VALUE val, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
|
|
{
|
|
int sign;
|
|
BDIGIT *ds;
|
|
size_t num_bdigits;
|
|
BDIGIT fixbuf[(sizeof(long) + SIZEOF_BDIGITS - 1) / SIZEOF_BDIGITS];
|
|
|
|
RB_GC_GUARD(val) = rb_to_int(val);
|
|
|
|
if (FIXNUM_P(val)) {
|
|
long v = FIX2LONG(val);
|
|
if (v < 0) {
|
|
sign = -1;
|
|
v = -v;
|
|
}
|
|
else {
|
|
sign = 1;
|
|
}
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
fixbuf[0] = v;
|
|
#else
|
|
{
|
|
int i;
|
|
for (i = 0; i < numberof(fixbuf); i++) {
|
|
fixbuf[i] = BIGLO(v);
|
|
v = BIGDN(v);
|
|
}
|
|
}
|
|
#endif
|
|
ds = fixbuf;
|
|
num_bdigits = numberof(fixbuf);
|
|
}
|
|
else {
|
|
sign = RBIGNUM_POSITIVE_P(val) ? 1 : -1;
|
|
ds = BDIGITS(val);
|
|
num_bdigits = RBIGNUM_LEN(val);
|
|
}
|
|
|
|
return bary_pack(sign, ds, num_bdigits, words, numwords, wordsize, nails, flags);
|
|
}
|
|
|
|
static size_t
|
|
integer_unpack_num_bdigits_small(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
|
|
{
|
|
/* nlp_bits stands for number of leading padding bits */
|
|
size_t num_bits = (wordsize * CHAR_BIT - nails) * numwords;
|
|
size_t num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG;
|
|
*nlp_bits_ret = (int)(num_bdigits * BITSPERDIG - num_bits);
|
|
return num_bdigits;
|
|
}
|
|
|
|
static size_t
|
|
integer_unpack_num_bdigits_generic(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
|
|
{
|
|
/* BITSPERDIG = SIZEOF_BDIGITS * CHAR_BIT */
|
|
/* num_bits = (wordsize * CHAR_BIT - nails) * numwords */
|
|
/* num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG */
|
|
|
|
/* num_bits = CHAR_BIT * (wordsize * numwords) - nails * numwords = CHAR_BIT * num_bytes1 - nails * numwords */
|
|
size_t num_bytes1 = wordsize * numwords;
|
|
|
|
/* q1 * CHAR_BIT + r1 = numwords */
|
|
size_t q1 = numwords / CHAR_BIT;
|
|
size_t r1 = numwords % CHAR_BIT;
|
|
|
|
/* num_bits = CHAR_BIT * num_bytes1 - nails * (q1 * CHAR_BIT + r1) = CHAR_BIT * num_bytes2 - nails * r1 */
|
|
size_t num_bytes2 = num_bytes1 - nails * q1;
|
|
|
|
/* q2 * CHAR_BIT + r2 = nails */
|
|
size_t q2 = nails / CHAR_BIT;
|
|
size_t r2 = nails % CHAR_BIT;
|
|
|
|
/* num_bits = CHAR_BIT * num_bytes2 - (q2 * CHAR_BIT + r2) * r1 = CHAR_BIT * num_bytes3 - r1 * r2 */
|
|
size_t num_bytes3 = num_bytes2 - q2 * r1;
|
|
|
|
/* q3 * BITSPERDIG + r3 = num_bytes3 */
|
|
size_t q3 = num_bytes3 / BITSPERDIG;
|
|
size_t r3 = num_bytes3 % BITSPERDIG;
|
|
|
|
/* num_bits = CHAR_BIT * (q3 * BITSPERDIG + r3) - r1 * r2 = BITSPERDIG * num_digits1 + CHAR_BIT * r3 - r1 * r2 */
|
|
size_t num_digits1 = CHAR_BIT * q3;
|
|
|
|
/*
|
|
* if CHAR_BIT * r3 >= r1 * r2
|
|
* CHAR_BIT * r3 - r1 * r2 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2))
|
|
* q4 * BITSPERDIG + r4 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2)
|
|
* num_bits = BITSPERDIG * num_digits1 + CHAR_BIT * BITSPERDIG - (q4 * BITSPERDIG + r4) = BITSPERDIG * num_digits2 - r4
|
|
* else
|
|
* q4 * BITSPERDIG + r4 = -(CHAR_BIT * r3 - r1 * r2)
|
|
* num_bits = BITSPERDIG * num_digits1 - (q4 * BITSPERDIG + r4) = BITSPERDIG * num_digits2 - r4
|
|
* end
|
|
*/
|
|
|
|
if (CHAR_BIT * r3 >= r1 * r2) {
|
|
size_t tmp1 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2);
|
|
size_t q4 = tmp1 / BITSPERDIG;
|
|
int r4 = (int)(tmp1 % BITSPERDIG);
|
|
size_t num_digits2 = num_digits1 + CHAR_BIT - q4;
|
|
*nlp_bits_ret = r4;
|
|
return num_digits2;
|
|
}
|
|
else {
|
|
size_t tmp1 = r1 * r2 - CHAR_BIT * r3;
|
|
size_t q4 = tmp1 / BITSPERDIG;
|
|
int r4 = (int)(tmp1 % BITSPERDIG);
|
|
size_t num_digits2 = num_digits1 - q4;
|
|
*nlp_bits_ret = r4;
|
|
return num_digits2;
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
integer_unpack_num_bdigits(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
|
|
{
|
|
size_t num_bdigits;
|
|
|
|
if (numwords <= (SIZE_MAX - (BITSPERDIG-1)) / CHAR_BIT / wordsize) {
|
|
num_bdigits = integer_unpack_num_bdigits_small(numwords, wordsize, nails, nlp_bits_ret);
|
|
#ifdef DEBUG_INTEGER_PACK
|
|
{
|
|
int nlp_bits1;
|
|
size_t num_bdigits1 = integer_unpack_num_bdigits_generic(numwords, wordsize, nails, &nlp_bits1);
|
|
assert(num_bdigits == num_bdigits1);
|
|
assert(*nlp_bits_ret == nlp_bits1);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
num_bdigits = integer_unpack_num_bdigits_generic(numwords, wordsize, nails, nlp_bits_ret);
|
|
}
|
|
return num_bdigits;
|
|
}
|
|
|
|
static inline void
|
|
integer_unpack_push_bits(int data, int numbits, BDIGIT_DBL *ddp, int *numbits_in_dd_p, BDIGIT **dpp)
|
|
{
|
|
(*ddp) |= ((BDIGIT_DBL)data) << (*numbits_in_dd_p);
|
|
*numbits_in_dd_p += numbits;
|
|
while (SIZEOF_BDIGITS*CHAR_BIT <= *numbits_in_dd_p) {
|
|
*(*dpp)++ = (BDIGIT)((*ddp) & (((BDIGIT_DBL)1 << (SIZEOF_BDIGITS*CHAR_BIT))-1));
|
|
*ddp >>= SIZEOF_BDIGITS*CHAR_BIT;
|
|
*numbits_in_dd_p -= SIZEOF_BDIGITS*CHAR_BIT;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bary_unpack_internal(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags, int nlp_bits)
|
|
{
|
|
int sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
|
|
|
|
const unsigned char *buf = words;
|
|
|
|
BDIGIT *dp;
|
|
BDIGIT *de;
|
|
|
|
int word_num_partialbits;
|
|
size_t word_num_fullbytes;
|
|
|
|
ssize_t word_step;
|
|
size_t byte_start;
|
|
int byte_step;
|
|
|
|
size_t word_start, word_last;
|
|
const unsigned char *wordp, *last_wordp;
|
|
BDIGIT_DBL dd;
|
|
int numbits_in_dd;
|
|
|
|
if (num_bdigits) {
|
|
dp = bdigits;
|
|
de = dp + num_bdigits;
|
|
|
|
integer_pack_loop_setup(numwords, wordsize, nails, flags,
|
|
&word_num_fullbytes, &word_num_partialbits,
|
|
&word_start, &word_step, &word_last, &byte_start, &byte_step);
|
|
|
|
wordp = buf + word_start;
|
|
last_wordp = buf + word_last;
|
|
|
|
dd = 0;
|
|
numbits_in_dd = 0;
|
|
|
|
#define PUSH_BITS(data, numbits) \
|
|
integer_unpack_push_bits(data, numbits, &dd, &numbits_in_dd, &dp)
|
|
|
|
while (1) {
|
|
size_t index_in_word = 0;
|
|
const unsigned char *bytep = wordp + byte_start;
|
|
while (index_in_word < word_num_fullbytes) {
|
|
PUSH_BITS(*bytep, CHAR_BIT);
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
if (word_num_partialbits) {
|
|
PUSH_BITS(*bytep & ((1 << word_num_partialbits) - 1), word_num_partialbits);
|
|
bytep += byte_step;
|
|
index_in_word++;
|
|
}
|
|
|
|
if (wordp == last_wordp)
|
|
break;
|
|
|
|
wordp += word_step;
|
|
}
|
|
if (dd)
|
|
*dp++ = (BDIGIT)dd;
|
|
assert(dp <= de);
|
|
while (dp < de)
|
|
*dp++ = 0;
|
|
#undef PUSH_BITS
|
|
}
|
|
|
|
if (flags & INTEGER_PACK_2COMP) {
|
|
if (num_bdigits == 0) {
|
|
if (flags & INTEGER_PACK_NEGATIVE)
|
|
sign = -1;
|
|
else
|
|
sign = 0;
|
|
}
|
|
else if ((flags & INTEGER_PACK_NEGATIVE) ||
|
|
(num_bdigits != 0 &&
|
|
(bdigits[num_bdigits-1] >> (BITSPERDIG - nlp_bits - 1)))) {
|
|
if (nlp_bits)
|
|
bdigits[num_bdigits-1] |= (~(BDIGIT)0) << (BITSPERDIG - nlp_bits);
|
|
bary_2comp(bdigits, num_bdigits);
|
|
sign = -1;
|
|
}
|
|
}
|
|
|
|
return sign;
|
|
}
|
|
|
|
static void
|
|
bary_unpack(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
|
|
{
|
|
size_t num_bdigits0;
|
|
int nlp_bits;
|
|
|
|
validate_integer_pack_format(numwords, wordsize, nails, flags,
|
|
INTEGER_PACK_MSWORD_FIRST|
|
|
INTEGER_PACK_LSWORD_FIRST|
|
|
INTEGER_PACK_MSBYTE_FIRST|
|
|
INTEGER_PACK_LSBYTE_FIRST|
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER|
|
|
INTEGER_PACK_2COMP|
|
|
INTEGER_PACK_FORCE_BIGNUM|
|
|
INTEGER_PACK_NEGATIVE);
|
|
|
|
num_bdigits0 = integer_unpack_num_bdigits(numwords, wordsize, nails, &nlp_bits);
|
|
|
|
assert(num_bdigits0 <= num_bdigits);
|
|
|
|
bary_unpack_internal(bdigits, num_bdigits, words, numwords, wordsize, nails, flags, nlp_bits);
|
|
}
|
|
|
|
/*
|
|
* Import an integer into a buffer.
|
|
*
|
|
* [words] buffer to import.
|
|
* [numwords] the size of given buffer as number of words.
|
|
* [wordsize] the size of word as number of bytes.
|
|
* [nails] number of padding bits in a word.
|
|
* Most significant nails bits of each word are ignored.
|
|
* [flags] bitwise or of constants which name starts "INTEGER_PACK_".
|
|
*
|
|
* flags:
|
|
* [INTEGER_PACK_MSWORD_FIRST] Interpret the first word as the most significant word.
|
|
* [INTEGER_PACK_LSWORD_FIRST] Interpret the first word as the least significant word.
|
|
* [INTEGER_PACK_MSBYTE_FIRST] Interpret the first byte in a word as the most significant byte in the word.
|
|
* [INTEGER_PACK_LSBYTE_FIRST] Interpret the first byte in a word as the least significant byte in the word.
|
|
* [INTEGER_PACK_NATIVE_BYTE_ORDER] INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST corresponding to the host's endian.
|
|
* [INTEGER_PACK_2COMP] Use 2's complement representation.
|
|
* [INTEGER_PACK_LITTLE_ENDIAN] Same as INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_LSBYTE_FIRST
|
|
* [INTEGER_PACK_BIG_ENDIAN] Same as INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_MSBYTE_FIRST
|
|
* [INTEGER_PACK_FORCE_BIGNUM] the result will be a Bignum
|
|
* even if it is representable as a Fixnum.
|
|
* [INTEGER_PACK_NEGATIVE] Returns non-positive value.
|
|
* (Returns non-negative value if not specified.)
|
|
*
|
|
* This function returns the imported integer as Fixnum or Bignum.
|
|
*
|
|
* The range of the result value depends on INTEGER_PACK_2COMP and INTEGER_PACK_NEGATIVE.
|
|
*
|
|
* INTEGER_PACK_2COMP is not set:
|
|
* 0 <= val < 2**(numwords*(wordsize*CHAR_BIT-nails)) if !INTEGER_PACK_NEGATIVE
|
|
* -2**(numwords*(wordsize*CHAR_BIT-nails)) < val <= 0 if INTEGER_PACK_NEGATIVE
|
|
*
|
|
* INTEGER_PACK_2COMP is set:
|
|
* -2**(numwords*(wordsize*CHAR_BIT-nails)-1) <= val <= 2**(numwords*(wordsize*CHAR_BIT-nails)-1)-1 if !INTEGER_PACK_NEGATIVE
|
|
* -2**(numwords*(wordsize*CHAR_BIT-nails)) <= val <= -1 if INTEGER_PACK_NEGATIVE
|
|
*
|
|
* INTEGER_PACK_2COMP without INTEGER_PACK_NEGATIVE means sign extension.
|
|
* INTEGER_PACK_2COMP with INTEGER_PACK_NEGATIVE mean assuming the higher bits are 1.
|
|
*
|
|
* Note that this function returns 0 when numwords is zero and
|
|
* INTEGER_PACK_2COMP is set but INTEGER_PACK_NEGATIVE is not set.
|
|
*/
|
|
|
|
VALUE
|
|
rb_integer_unpack(const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
|
|
{
|
|
VALUE val;
|
|
size_t num_bdigits;
|
|
int sign;
|
|
int nlp_bits;
|
|
BDIGIT *ds;
|
|
|
|
validate_integer_pack_format(numwords, wordsize, nails, flags,
|
|
INTEGER_PACK_MSWORD_FIRST|
|
|
INTEGER_PACK_LSWORD_FIRST|
|
|
INTEGER_PACK_MSBYTE_FIRST|
|
|
INTEGER_PACK_LSBYTE_FIRST|
|
|
INTEGER_PACK_NATIVE_BYTE_ORDER|
|
|
INTEGER_PACK_2COMP|
|
|
INTEGER_PACK_FORCE_BIGNUM|
|
|
INTEGER_PACK_NEGATIVE);
|
|
|
|
num_bdigits = integer_unpack_num_bdigits(numwords, wordsize, nails, &nlp_bits);
|
|
|
|
if (LONG_MAX < num_bdigits)
|
|
rb_raise(rb_eArgError, "too big to unpack as an integer");
|
|
val = bignew((long)num_bdigits, 0);
|
|
ds = BDIGITS(val);
|
|
sign = bary_unpack_internal(ds, num_bdigits, words, numwords, wordsize, nails, flags, nlp_bits);
|
|
|
|
if ((flags & INTEGER_PACK_2COMP) && num_bdigits == 0 && sign < 0) {
|
|
rb_big_resize(val, 1);
|
|
ds[0] = 1;
|
|
}
|
|
RBIGNUM_SET_SIGN(val, 0 <= sign);
|
|
|
|
if (flags & INTEGER_PACK_FORCE_BIGNUM)
|
|
return bigtrunc(val);
|
|
return bignorm(val);
|
|
}
|
|
|
|
#define QUAD_SIZE 8
|
|
|
|
#if SIZEOF_LONG_LONG == QUAD_SIZE && SIZEOF_BDIGITS*2 == SIZEOF_LONG_LONG
|
|
|
|
void
|
|
rb_quad_pack(char *buf, VALUE val)
|
|
{
|
|
LONG_LONG q;
|
|
|
|
val = rb_to_int(val);
|
|
if (FIXNUM_P(val)) {
|
|
q = FIX2LONG(val);
|
|
}
|
|
else {
|
|
long len = RBIGNUM_LEN(val);
|
|
BDIGIT *ds;
|
|
|
|
if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) {
|
|
len = SIZEOF_LONG_LONG/SIZEOF_BDIGITS;
|
|
}
|
|
ds = BDIGITS(val);
|
|
q = 0;
|
|
while (len--) {
|
|
q = BIGUP(q);
|
|
q += ds[len];
|
|
}
|
|
if (!RBIGNUM_SIGN(val)) q = -q;
|
|
}
|
|
memcpy(buf, (char*)&q, SIZEOF_LONG_LONG);
|
|
}
|
|
|
|
VALUE
|
|
rb_quad_unpack(const char *buf, int sign)
|
|
{
|
|
unsigned LONG_LONG q;
|
|
long neg = 0;
|
|
long i;
|
|
BDIGIT *digits;
|
|
VALUE big;
|
|
|
|
memcpy(&q, buf, SIZEOF_LONG_LONG);
|
|
if (sign) {
|
|
if (FIXABLE((LONG_LONG)q)) return LONG2FIX((LONG_LONG)q);
|
|
if ((LONG_LONG)q < 0) {
|
|
q = -(LONG_LONG)q;
|
|
neg = 1;
|
|
}
|
|
}
|
|
else {
|
|
if (POSFIXABLE(q)) return LONG2FIX(q);
|
|
}
|
|
|
|
i = 0;
|
|
big = bignew(DIGSPERLL, 1);
|
|
digits = BDIGITS(big);
|
|
while (i < DIGSPERLL) {
|
|
digits[i++] = BIGLO(q);
|
|
q = BIGDN(q);
|
|
}
|
|
|
|
i = DIGSPERLL;
|
|
while (i-- && !digits[i]) ;
|
|
RBIGNUM_SET_LEN(big, i+1);
|
|
|
|
if (neg) {
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return bignorm(big);
|
|
}
|
|
|
|
#else
|
|
|
|
static int
|
|
quad_buf_complement(char *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = ~buf[i];
|
|
for (i = 0; i < len; i++) {
|
|
buf[i]++;
|
|
if (buf[i] != 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
rb_quad_pack(char *buf, VALUE val)
|
|
{
|
|
long len;
|
|
|
|
memset(buf, 0, QUAD_SIZE);
|
|
val = rb_to_int(val);
|
|
if (FIXNUM_P(val)) {
|
|
val = rb_int2big(FIX2LONG(val));
|
|
}
|
|
len = RBIGNUM_LEN(val) * SIZEOF_BDIGITS;
|
|
if (len > QUAD_SIZE) {
|
|
len = QUAD_SIZE;
|
|
}
|
|
memcpy(buf, (char*)BDIGITS(val), len);
|
|
if (RBIGNUM_NEGATIVE_P(val)) {
|
|
quad_buf_complement(buf, QUAD_SIZE);
|
|
}
|
|
}
|
|
|
|
#define BNEG(b) (RSHIFT(((BDIGIT*)(b))[QUAD_SIZE/SIZEOF_BDIGITS-1],BITSPERDIG-1) != 0)
|
|
|
|
VALUE
|
|
rb_quad_unpack(const char *buf, int sign)
|
|
{
|
|
VALUE big = bignew(QUAD_SIZE/SIZEOF_BDIGITS, 1);
|
|
|
|
memcpy((char*)BDIGITS(big), buf, QUAD_SIZE);
|
|
if (sign && BNEG(buf)) {
|
|
char *tmp = (char*)BDIGITS(big);
|
|
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
quad_buf_complement(tmp, QUAD_SIZE);
|
|
}
|
|
|
|
return bignorm(big);
|
|
}
|
|
|
|
#endif
|
|
|
|
VALUE
|
|
rb_cstr_to_inum(const char *str, int base, int badcheck)
|
|
{
|
|
const char *s = str;
|
|
char *end;
|
|
char sign = 1, nondigit = 0;
|
|
int c;
|
|
BDIGIT_DBL num;
|
|
long len, blen = 1;
|
|
long i;
|
|
VALUE z;
|
|
BDIGIT *zds;
|
|
|
|
#undef ISDIGIT
|
|
#define ISDIGIT(c) ('0' <= (c) && (c) <= '9')
|
|
#define conv_digit(c) \
|
|
(!ISASCII(c) ? -1 : \
|
|
ISDIGIT(c) ? ((c) - '0') : \
|
|
ISLOWER(c) ? ((c) - 'a' + 10) : \
|
|
ISUPPER(c) ? ((c) - 'A' + 10) : \
|
|
-1)
|
|
|
|
if (!str) {
|
|
if (badcheck) goto bad;
|
|
return INT2FIX(0);
|
|
}
|
|
while (ISSPACE(*str)) str++;
|
|
|
|
if (str[0] == '+') {
|
|
str++;
|
|
}
|
|
else if (str[0] == '-') {
|
|
str++;
|
|
sign = 0;
|
|
}
|
|
if (str[0] == '+' || str[0] == '-') {
|
|
if (badcheck) goto bad;
|
|
return INT2FIX(0);
|
|
}
|
|
if (base <= 0) {
|
|
if (str[0] == '0') {
|
|
switch (str[1]) {
|
|
case 'x': case 'X':
|
|
base = 16;
|
|
break;
|
|
case 'b': case 'B':
|
|
base = 2;
|
|
break;
|
|
case 'o': case 'O':
|
|
base = 8;
|
|
break;
|
|
case 'd': case 'D':
|
|
base = 10;
|
|
break;
|
|
default:
|
|
base = 8;
|
|
}
|
|
}
|
|
else if (base < -1) {
|
|
base = -base;
|
|
}
|
|
else {
|
|
base = 10;
|
|
}
|
|
}
|
|
switch (base) {
|
|
case 2:
|
|
len = 1;
|
|
if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) {
|
|
str += 2;
|
|
}
|
|
break;
|
|
case 3:
|
|
len = 2;
|
|
break;
|
|
case 8:
|
|
if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) {
|
|
str += 2;
|
|
}
|
|
case 4: case 5: case 6: case 7:
|
|
len = 3;
|
|
break;
|
|
case 10:
|
|
if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) {
|
|
str += 2;
|
|
}
|
|
case 9: case 11: case 12: case 13: case 14: case 15:
|
|
len = 4;
|
|
break;
|
|
case 16:
|
|
len = 4;
|
|
if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) {
|
|
str += 2;
|
|
}
|
|
break;
|
|
default:
|
|
if (base < 2 || 36 < base) {
|
|
rb_raise(rb_eArgError, "invalid radix %d", base);
|
|
}
|
|
if (base <= 32) {
|
|
len = 5;
|
|
}
|
|
else {
|
|
len = 6;
|
|
}
|
|
break;
|
|
}
|
|
if (*str == '0') { /* squeeze preceding 0s */
|
|
int us = 0;
|
|
while ((c = *++str) == '0' || c == '_') {
|
|
if (c == '_') {
|
|
if (++us >= 2)
|
|
break;
|
|
} else
|
|
us = 0;
|
|
}
|
|
if (!(c = *str) || ISSPACE(c)) --str;
|
|
}
|
|
c = *str;
|
|
c = conv_digit(c);
|
|
if (c < 0 || c >= base) {
|
|
if (badcheck) goto bad;
|
|
return INT2FIX(0);
|
|
}
|
|
len *= strlen(str)*sizeof(char);
|
|
|
|
if ((size_t)len <= (sizeof(long)*CHAR_BIT)) {
|
|
unsigned long val = STRTOUL(str, &end, base);
|
|
|
|
if (str < end && *end == '_') goto bigparse;
|
|
if (badcheck) {
|
|
if (end == str) goto bad; /* no number */
|
|
while (*end && ISSPACE(*end)) end++;
|
|
if (*end) goto bad; /* trailing garbage */
|
|
}
|
|
|
|
if (POSFIXABLE(val)) {
|
|
if (sign) return LONG2FIX(val);
|
|
else {
|
|
long result = -(long)val;
|
|
return LONG2FIX(result);
|
|
}
|
|
}
|
|
else {
|
|
VALUE big = rb_uint2big(val);
|
|
RBIGNUM_SET_SIGN(big, sign);
|
|
return bignorm(big);
|
|
}
|
|
}
|
|
bigparse:
|
|
len = (len/BITSPERDIG)+1;
|
|
if (badcheck && *str == '_') goto bad;
|
|
|
|
z = bignew(len, sign);
|
|
zds = BDIGITS(z);
|
|
for (i=len;i--;) zds[i]=0;
|
|
while ((c = *str++) != 0) {
|
|
if (c == '_') {
|
|
if (nondigit) {
|
|
if (badcheck) goto bad;
|
|
break;
|
|
}
|
|
nondigit = (char) c;
|
|
continue;
|
|
}
|
|
else if ((c = conv_digit(c)) < 0) {
|
|
break;
|
|
}
|
|
if (c >= base) break;
|
|
nondigit = 0;
|
|
i = 0;
|
|
num = c;
|
|
for (;;) {
|
|
while (i<blen) {
|
|
num += (BDIGIT_DBL)zds[i]*base;
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
if (num) {
|
|
blen++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (badcheck) {
|
|
str--;
|
|
if (s+1 < str && str[-1] == '_') goto bad;
|
|
while (*str && ISSPACE(*str)) str++;
|
|
if (*str) {
|
|
bad:
|
|
rb_invalid_str(s, "Integer()");
|
|
}
|
|
}
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
VALUE
|
|
rb_str_to_inum(VALUE str, int base, int badcheck)
|
|
{
|
|
char *s;
|
|
long len;
|
|
VALUE v = 0;
|
|
VALUE ret;
|
|
|
|
StringValue(str);
|
|
rb_must_asciicompat(str);
|
|
if (badcheck) {
|
|
s = StringValueCStr(str);
|
|
}
|
|
else {
|
|
s = RSTRING_PTR(str);
|
|
}
|
|
if (s) {
|
|
len = RSTRING_LEN(str);
|
|
if (s[len]) { /* no sentinel somehow */
|
|
char *p = ALLOCV(v, len+1);
|
|
|
|
MEMCPY(p, s, char, len);
|
|
p[len] = '\0';
|
|
s = p;
|
|
}
|
|
}
|
|
ret = rb_cstr_to_inum(s, base, badcheck);
|
|
if (v)
|
|
ALLOCV_END(v);
|
|
return ret;
|
|
}
|
|
|
|
#if HAVE_LONG_LONG
|
|
|
|
static VALUE
|
|
rb_ull2big(unsigned LONG_LONG n)
|
|
{
|
|
BDIGIT_DBL num = n;
|
|
long i = 0;
|
|
BDIGIT *digits;
|
|
VALUE big;
|
|
|
|
big = bignew(DIGSPERLL, 1);
|
|
digits = BDIGITS(big);
|
|
while (i < DIGSPERLL) {
|
|
digits[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
|
|
i = DIGSPERLL;
|
|
while (i-- && !digits[i]) ;
|
|
RBIGNUM_SET_LEN(big, i+1);
|
|
return big;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ll2big(LONG_LONG n)
|
|
{
|
|
long neg = 0;
|
|
unsigned LONG_LONG u;
|
|
VALUE big;
|
|
|
|
if (n < 0) {
|
|
u = 1 + (unsigned LONG_LONG)(-(n + 1)); /* u = -n avoiding overflow */
|
|
neg = 1;
|
|
}
|
|
else {
|
|
u = n;
|
|
}
|
|
big = rb_ull2big(u);
|
|
if (neg) {
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return big;
|
|
}
|
|
|
|
VALUE
|
|
rb_ull2inum(unsigned LONG_LONG n)
|
|
{
|
|
if (POSFIXABLE(n)) return LONG2FIX(n);
|
|
return rb_ull2big(n);
|
|
}
|
|
|
|
VALUE
|
|
rb_ll2inum(LONG_LONG n)
|
|
{
|
|
if (FIXABLE(n)) return LONG2FIX(n);
|
|
return rb_ll2big(n);
|
|
}
|
|
|
|
#endif /* HAVE_LONG_LONG */
|
|
|
|
VALUE
|
|
rb_cstr2inum(const char *str, int base)
|
|
{
|
|
return rb_cstr_to_inum(str, base, base==0);
|
|
}
|
|
|
|
VALUE
|
|
rb_str2inum(VALUE str, int base)
|
|
{
|
|
return rb_str_to_inum(str, base, base==0);
|
|
}
|
|
|
|
const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
|
|
static VALUE bigsqr(VALUE x);
|
|
static void bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp);
|
|
|
|
#define POW2_P(x) (((x)&((x)-1))==0)
|
|
|
|
static inline int
|
|
ones(register unsigned long x)
|
|
{
|
|
#if GCC_VERSION_SINCE(3, 4, 0)
|
|
return __builtin_popcountl(x);
|
|
#else
|
|
# if SIZEOF_LONG == 8
|
|
# define MASK_55 0x5555555555555555UL
|
|
# define MASK_33 0x3333333333333333UL
|
|
# define MASK_0f 0x0f0f0f0f0f0f0f0fUL
|
|
# else
|
|
# define MASK_55 0x55555555UL
|
|
# define MASK_33 0x33333333UL
|
|
# define MASK_0f 0x0f0f0f0fUL
|
|
# endif
|
|
x -= (x >> 1) & MASK_55;
|
|
x = ((x >> 2) & MASK_33) + (x & MASK_33);
|
|
x = ((x >> 4) + x) & MASK_0f;
|
|
x += (x >> 8);
|
|
x += (x >> 16);
|
|
# if SIZEOF_LONG == 8
|
|
x += (x >> 32);
|
|
# endif
|
|
return (int)(x & 0x7f);
|
|
# undef MASK_0f
|
|
# undef MASK_33
|
|
# undef MASK_55
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long
|
|
next_pow2(register unsigned long x)
|
|
{
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
#if SIZEOF_LONG == 8
|
|
x |= x >> 32;
|
|
#endif
|
|
return x + 1;
|
|
}
|
|
|
|
static inline int
|
|
floor_log2(register unsigned long x)
|
|
{
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
#if SIZEOF_LONG == 8
|
|
x |= x >> 32;
|
|
#endif
|
|
return (int)ones(x) - 1;
|
|
}
|
|
|
|
static inline int
|
|
ceil_log2(register unsigned long x)
|
|
{
|
|
return floor_log2(x) + !POW2_P(x);
|
|
}
|
|
|
|
#define LOG2_KARATSUBA_DIGITS 7
|
|
#define KARATSUBA_DIGITS (1L<<LOG2_KARATSUBA_DIGITS)
|
|
#define MAX_BIG2STR_TABLE_ENTRIES 64
|
|
|
|
static VALUE big2str_power_cache[35][MAX_BIG2STR_TABLE_ENTRIES];
|
|
|
|
static void
|
|
power_cache_init(void)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < 35; ++i) {
|
|
for (j = 0; j < MAX_BIG2STR_TABLE_ENTRIES; ++j) {
|
|
big2str_power_cache[i][j] = Qnil;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline VALUE
|
|
power_cache_get_power0(int base, int i)
|
|
{
|
|
if (NIL_P(big2str_power_cache[base - 2][i])) {
|
|
big2str_power_cache[base - 2][i] =
|
|
i == 0 ? rb_big_pow(rb_int2big(base), INT2FIX(KARATSUBA_DIGITS))
|
|
: bigsqr(power_cache_get_power0(base, i - 1));
|
|
rb_gc_register_mark_object(big2str_power_cache[base - 2][i]);
|
|
}
|
|
return big2str_power_cache[base - 2][i];
|
|
}
|
|
|
|
static VALUE
|
|
power_cache_get_power(int base, long n1, long* m1)
|
|
{
|
|
int i, m;
|
|
long j;
|
|
VALUE t;
|
|
|
|
if (n1 <= KARATSUBA_DIGITS)
|
|
rb_bug("n1 > KARATSUBA_DIGITS");
|
|
|
|
m = ceil_log2(n1);
|
|
if (m1) *m1 = 1 << m;
|
|
i = m - LOG2_KARATSUBA_DIGITS;
|
|
if (i >= MAX_BIG2STR_TABLE_ENTRIES)
|
|
i = MAX_BIG2STR_TABLE_ENTRIES - 1;
|
|
t = power_cache_get_power0(base, i);
|
|
|
|
j = KARATSUBA_DIGITS*(1 << i);
|
|
while (n1 > j) {
|
|
t = bigsqr(t);
|
|
j *= 2;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* big2str_muraken_find_n1
|
|
*
|
|
* Let a natural number x is given by:
|
|
* x = 2^0 * x_0 + 2^1 * x_1 + ... + 2^(B*n_0 - 1) * x_{B*n_0 - 1},
|
|
* where B is BITSPERDIG (i.e. BDIGITS*CHAR_BIT) and n_0 is
|
|
* RBIGNUM_LEN(x).
|
|
*
|
|
* Now, we assume n_1 = min_n \{ n | 2^(B*n_0/2) <= b_1^(n_1) \}, so
|
|
* it is realized that 2^(B*n_0) <= {b_1}^{2*n_1}, where b_1 is a
|
|
* given radix number. And then, we have n_1 <= (B*n_0) /
|
|
* (2*log_2(b_1)), therefore n_1 is given by ceil((B*n_0) /
|
|
* (2*log_2(b_1))).
|
|
*/
|
|
static long
|
|
big2str_find_n1(VALUE x, int base)
|
|
{
|
|
static const double log_2[] = {
|
|
1.0, 1.58496250072116, 2.0,
|
|
2.32192809488736, 2.58496250072116, 2.8073549220576,
|
|
3.0, 3.16992500144231, 3.32192809488736,
|
|
3.4594316186373, 3.58496250072116, 3.70043971814109,
|
|
3.8073549220576, 3.90689059560852, 4.0,
|
|
4.08746284125034, 4.16992500144231, 4.24792751344359,
|
|
4.32192809488736, 4.39231742277876, 4.4594316186373,
|
|
4.52356195605701, 4.58496250072116, 4.64385618977472,
|
|
4.70043971814109, 4.75488750216347, 4.8073549220576,
|
|
4.85798099512757, 4.90689059560852, 4.95419631038688,
|
|
5.0, 5.04439411935845, 5.08746284125034,
|
|
5.12928301694497, 5.16992500144231
|
|
};
|
|
long bits;
|
|
|
|
if (base < 2 || 36 < base)
|
|
rb_bug("invalid radix %d", base);
|
|
|
|
if (FIXNUM_P(x)) {
|
|
bits = (SIZEOF_LONG*CHAR_BIT - 1)/2 + 1;
|
|
}
|
|
else if (BIGZEROP(x)) {
|
|
return 0;
|
|
}
|
|
else if (RBIGNUM_LEN(x) >= LONG_MAX/BITSPERDIG) {
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
|
|
}
|
|
else {
|
|
bits = BITSPERDIG*RBIGNUM_LEN(x);
|
|
}
|
|
|
|
/* @shyouhei note: vvvvvvvvvvvvv this cast is suspicious. But I believe it is OK, because if that cast loses data, this x value is too big, and should have raised RangeError. */
|
|
return (long)ceil(((double)bits)/log_2[base - 2]);
|
|
}
|
|
|
|
static long
|
|
big2str_orig(VALUE x, int base, char* ptr, long len, BDIGIT hbase, int hbase_numdigits, int trim)
|
|
{
|
|
long i = RBIGNUM_LEN(x), j = len;
|
|
BDIGIT* ds = BDIGITS(x);
|
|
|
|
while (i && j > 0) {
|
|
long k = i;
|
|
BDIGIT_DBL num = 0;
|
|
|
|
while (k--) { /* x / hbase */
|
|
num = BIGUP(num) + ds[k];
|
|
ds[k] = (BDIGIT)(num / hbase);
|
|
num %= hbase;
|
|
}
|
|
if (trim && ds[i-1] == 0) i--;
|
|
k = hbase_numdigits;
|
|
while (k--) {
|
|
ptr[--j] = ruby_digitmap[num % base];
|
|
num /= base;
|
|
if (j <= 0) break;
|
|
if (trim && i == 0 && num == 0) break;
|
|
}
|
|
}
|
|
if (trim) {
|
|
while (j < len && ptr[j] == '0') j++;
|
|
MEMMOVE(ptr, ptr + j, char, len - j);
|
|
len -= j;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static long
|
|
big2str_karatsuba(VALUE x, int base, char* ptr,
|
|
long n1, long len, BDIGIT hbase, int hbase_numdigits, int trim)
|
|
{
|
|
long lh, ll, m1;
|
|
VALUE b, q, r;
|
|
|
|
if (BIGZEROP(x)) {
|
|
if (trim) return 0;
|
|
else {
|
|
memset(ptr, '0', len);
|
|
return len;
|
|
}
|
|
}
|
|
|
|
if (n1 <= KARATSUBA_DIGITS) {
|
|
return big2str_orig(x, base, ptr, len, hbase, hbase_numdigits, trim);
|
|
}
|
|
|
|
b = power_cache_get_power(base, n1, &m1);
|
|
bigdivmod(x, b, &q, &r);
|
|
rb_obj_hide(q);
|
|
rb_obj_hide(r);
|
|
lh = big2str_karatsuba(q, base, ptr, (len - m1)/2,
|
|
len - m1, hbase, hbase_numdigits, trim);
|
|
rb_big_resize(q, 0);
|
|
ll = big2str_karatsuba(r, base, ptr + lh, m1/2,
|
|
m1, hbase, hbase_numdigits, !lh && trim);
|
|
rb_big_resize(r, 0);
|
|
|
|
return lh + ll;
|
|
}
|
|
|
|
static void
|
|
calc_hbase(int base, BDIGIT *hbase_p, int *hbase_numdigits_p)
|
|
{
|
|
BDIGIT hbase;
|
|
int hbase_numdigits;
|
|
|
|
hbase = base;
|
|
hbase_numdigits = 1;
|
|
while (hbase <= (~(BDIGIT)0) / base) {
|
|
hbase *= base;
|
|
hbase_numdigits++;
|
|
}
|
|
|
|
*hbase_p = hbase;
|
|
*hbase_numdigits_p = hbase_numdigits;
|
|
}
|
|
|
|
static VALUE
|
|
big2str_base_powerof2(VALUE x, size_t len, int base, int trim)
|
|
{
|
|
int word_numbits = ffs(base) - 1;
|
|
size_t numwords;
|
|
VALUE result;
|
|
char *ptr;
|
|
numwords = trim ? rb_absint_numwords(x, word_numbits, NULL) : len;
|
|
if (RBIGNUM_NEGATIVE_P(x) || !trim) {
|
|
if (LONG_MAX-1 < numwords)
|
|
rb_raise(rb_eArgError, "too big number");
|
|
result = rb_usascii_str_new(0, 1+numwords);
|
|
ptr = RSTRING_PTR(result);
|
|
*ptr++ = RBIGNUM_POSITIVE_P(x) ? '+' : '-';
|
|
}
|
|
else {
|
|
if (LONG_MAX < numwords)
|
|
rb_raise(rb_eArgError, "too big number");
|
|
result = rb_usascii_str_new(0, numwords);
|
|
ptr = RSTRING_PTR(result);
|
|
}
|
|
rb_integer_pack(x, ptr, numwords, 1, CHAR_BIT-word_numbits,
|
|
INTEGER_PACK_BIG_ENDIAN);
|
|
while (0 < numwords) {
|
|
*ptr = ruby_digitmap[*(unsigned char *)ptr];
|
|
ptr++;
|
|
numwords--;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2str0(VALUE x, int base, int trim)
|
|
{
|
|
int off;
|
|
VALUE ss, xx;
|
|
long n1, n2, len;
|
|
BDIGIT hbase;
|
|
int hbase_numdigits;
|
|
char* ptr;
|
|
|
|
if (FIXNUM_P(x)) {
|
|
return rb_fix2str(x, base);
|
|
}
|
|
if (BIGZEROP(x)) {
|
|
return rb_usascii_str_new2("0");
|
|
}
|
|
|
|
if (base < 2 || 36 < base)
|
|
rb_raise(rb_eArgError, "invalid radix %d", base);
|
|
|
|
n2 = big2str_find_n1(x, base);
|
|
|
|
if (base & (base - 1) == 0) {
|
|
/* base == 2 || base == 4 || base == 8 || base == 16 || base == 32 */
|
|
return big2str_base_powerof2(x, (size_t)n2, base, trim);
|
|
}
|
|
|
|
n1 = (n2 + 1) / 2;
|
|
ss = rb_usascii_str_new(0, n2 + 1); /* plus one for sign */
|
|
ptr = RSTRING_PTR(ss);
|
|
ptr[0] = RBIGNUM_SIGN(x) ? '+' : '-';
|
|
|
|
calc_hbase(base, &hbase, &hbase_numdigits);
|
|
off = !(trim && RBIGNUM_SIGN(x)); /* erase plus sign if trim */
|
|
xx = rb_big_clone(x);
|
|
RBIGNUM_SET_SIGN(xx, 1);
|
|
if (n1 <= KARATSUBA_DIGITS) {
|
|
len = off + big2str_orig(xx, base, ptr + off, n2, hbase, hbase_numdigits, trim);
|
|
}
|
|
else {
|
|
len = off + big2str_karatsuba(xx, base, ptr + off, n1,
|
|
n2, hbase, hbase_numdigits, trim);
|
|
}
|
|
rb_big_resize(xx, 0);
|
|
|
|
ptr[len] = '\0';
|
|
rb_str_resize(ss, len);
|
|
|
|
return ss;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2str(VALUE x, int base)
|
|
{
|
|
return rb_big2str0(x, base, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.to_s(base=10) -> string
|
|
*
|
|
* Returns a string containing the representation of <i>big</i> radix
|
|
* <i>base</i> (2 through 36).
|
|
*
|
|
* 12345654321.to_s #=> "12345654321"
|
|
* 12345654321.to_s(2) #=> "1011011111110110111011110000110001"
|
|
* 12345654321.to_s(8) #=> "133766736061"
|
|
* 12345654321.to_s(16) #=> "2dfdbbc31"
|
|
* 78546939656932.to_s(36) #=> "rubyrules"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_to_s(int argc, VALUE *argv, VALUE x)
|
|
{
|
|
int base;
|
|
|
|
if (argc == 0) base = 10;
|
|
else {
|
|
VALUE b;
|
|
|
|
rb_scan_args(argc, argv, "01", &b);
|
|
base = NUM2INT(b);
|
|
}
|
|
return rb_big2str(x, base);
|
|
}
|
|
|
|
static VALUE
|
|
big2ulong(VALUE x, const char *type, int check)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT_DBL num;
|
|
BDIGIT *ds;
|
|
|
|
if (rb_absint_size(x, NULL) > sizeof(long)) {
|
|
if (check)
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
|
|
len = bdigit_roomof(sizeof(long));
|
|
}
|
|
ds = BDIGITS(x);
|
|
num = 0;
|
|
while (len--) {
|
|
num = BIGUP(num);
|
|
num += ds[len];
|
|
}
|
|
return (VALUE)(unsigned long)num;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2ulong_pack(VALUE x)
|
|
{
|
|
VALUE num = big2ulong(x, "unsigned long", FALSE);
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
return (VALUE)(-(SIGNED_VALUE)num);
|
|
}
|
|
return num;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2ulong(VALUE x)
|
|
{
|
|
VALUE num = big2ulong(x, "unsigned long", TRUE);
|
|
|
|
if (RBIGNUM_POSITIVE_P(x)) {
|
|
return num;
|
|
}
|
|
else {
|
|
if (num <= LONG_MAX)
|
|
return -(long)num;
|
|
if (num == 1+(unsigned long)(-(LONG_MIN+1)))
|
|
return LONG_MIN;
|
|
}
|
|
rb_raise(rb_eRangeError, "bignum out of range of unsigned long");
|
|
}
|
|
|
|
SIGNED_VALUE
|
|
rb_big2long(VALUE x)
|
|
{
|
|
VALUE num = big2ulong(x, "long", TRUE);
|
|
|
|
if (RBIGNUM_POSITIVE_P(x)) {
|
|
if (num <= LONG_MAX)
|
|
return num;
|
|
}
|
|
else {
|
|
if (num <= LONG_MAX)
|
|
return -(long)num;
|
|
if (num == 1+(unsigned long)(-(LONG_MIN+1)))
|
|
return LONG_MIN;
|
|
}
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `long'");
|
|
}
|
|
|
|
#if HAVE_LONG_LONG
|
|
|
|
static unsigned LONG_LONG
|
|
big2ull(VALUE x, const char *type)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT_DBL num;
|
|
BDIGIT *ds;
|
|
|
|
if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS)
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
|
|
ds = BDIGITS(x);
|
|
num = 0;
|
|
while (len--) {
|
|
num = BIGUP(num);
|
|
num += ds[len];
|
|
}
|
|
return num;
|
|
}
|
|
|
|
unsigned LONG_LONG
|
|
rb_big2ull(VALUE x)
|
|
{
|
|
unsigned LONG_LONG num = big2ull(x, "unsigned long long");
|
|
|
|
if (RBIGNUM_POSITIVE_P(x)) {
|
|
return num;
|
|
}
|
|
else {
|
|
if (num <= LLONG_MAX)
|
|
return -(LONG_LONG)num;
|
|
if (num == 1+(unsigned LONG_LONG)(-(LLONG_MIN+1)))
|
|
return LLONG_MIN;
|
|
}
|
|
rb_raise(rb_eRangeError, "bignum out of range of unsigned long long");
|
|
}
|
|
|
|
LONG_LONG
|
|
rb_big2ll(VALUE x)
|
|
{
|
|
unsigned LONG_LONG num = big2ull(x, "long long");
|
|
|
|
if (RBIGNUM_POSITIVE_P(x)) {
|
|
if (num <= LLONG_MAX)
|
|
return num;
|
|
}
|
|
else {
|
|
if (num <= LLONG_MAX)
|
|
return -(LONG_LONG)num;
|
|
if (num == 1+(unsigned LONG_LONG)(-(LLONG_MIN+1)))
|
|
return LLONG_MIN;
|
|
}
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `long long'");
|
|
}
|
|
|
|
#endif /* HAVE_LONG_LONG */
|
|
|
|
static VALUE
|
|
dbl2big(double d)
|
|
{
|
|
long i = 0;
|
|
BDIGIT c;
|
|
BDIGIT *digits;
|
|
VALUE z;
|
|
double u = (d < 0)?-d:d;
|
|
|
|
if (isinf(d)) {
|
|
rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity");
|
|
}
|
|
if (isnan(d)) {
|
|
rb_raise(rb_eFloatDomainError, "NaN");
|
|
}
|
|
|
|
while (!POSFIXABLE(u) || 0 != (long)u) {
|
|
u /= (double)(BIGRAD);
|
|
i++;
|
|
}
|
|
z = bignew(i, d>=0);
|
|
digits = BDIGITS(z);
|
|
while (i--) {
|
|
u *= BIGRAD;
|
|
c = (BDIGIT)u;
|
|
u -= c;
|
|
digits[i] = c;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
|
|
VALUE
|
|
rb_dbl2big(double d)
|
|
{
|
|
return bignorm(dbl2big(d));
|
|
}
|
|
|
|
static int
|
|
nlz(BDIGIT x)
|
|
{
|
|
BDIGIT y;
|
|
int n = BITSPERDIG;
|
|
#if BITSPERDIG > 64
|
|
y = x >> 64; if (y) {n -= 64; x = y;}
|
|
#endif
|
|
#if BITSPERDIG > 32
|
|
y = x >> 32; if (y) {n -= 32; x = y;}
|
|
#endif
|
|
#if BITSPERDIG > 16
|
|
y = x >> 16; if (y) {n -= 16; x = y;}
|
|
#endif
|
|
y = x >> 8; if (y) {n -= 8; x = y;}
|
|
y = x >> 4; if (y) {n -= 4; x = y;}
|
|
y = x >> 2; if (y) {n -= 2; x = y;}
|
|
y = x >> 1; if (y) {return n - 2;}
|
|
return (int)(n - x);
|
|
}
|
|
|
|
static double
|
|
big2dbl(VALUE x)
|
|
{
|
|
double d = 0.0;
|
|
long i = (bigtrunc(x), RBIGNUM_LEN(x)), lo = 0, bits;
|
|
BDIGIT *ds = BDIGITS(x), dl;
|
|
|
|
if (i) {
|
|
bits = i * BITSPERDIG - nlz(ds[i-1]);
|
|
if (bits > DBL_MANT_DIG+DBL_MAX_EXP) {
|
|
d = HUGE_VAL;
|
|
}
|
|
else {
|
|
if (bits > DBL_MANT_DIG+1)
|
|
lo = (bits -= DBL_MANT_DIG+1) / BITSPERDIG;
|
|
else
|
|
bits = 0;
|
|
while (--i > lo) {
|
|
d = ds[i] + BIGRAD*d;
|
|
}
|
|
dl = ds[i];
|
|
if (bits && (dl & (1UL << (bits %= BITSPERDIG)))) {
|
|
int carry = (dl & ~(~(BDIGIT)0 << bits)) != 0;
|
|
if (!carry) {
|
|
while (i-- > 0) {
|
|
carry = ds[i] != 0;
|
|
if (carry) break;
|
|
}
|
|
}
|
|
if (carry) {
|
|
dl &= (BDIGIT)~0 << bits;
|
|
dl += (BDIGIT)1 << bits;
|
|
if (!dl) d += 1;
|
|
}
|
|
}
|
|
d = dl + BIGRAD*d;
|
|
if (lo) {
|
|
if (lo > INT_MAX / BITSPERDIG)
|
|
d = HUGE_VAL;
|
|
else if (lo < INT_MIN / BITSPERDIG)
|
|
d = 0.0;
|
|
else
|
|
d = ldexp(d, (int)(lo * BITSPERDIG));
|
|
}
|
|
}
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) d = -d;
|
|
return d;
|
|
}
|
|
|
|
double
|
|
rb_big2dbl(VALUE x)
|
|
{
|
|
double d = big2dbl(x);
|
|
|
|
if (isinf(d)) {
|
|
rb_warning("Bignum out of Float range");
|
|
if (d < 0.0)
|
|
d = -HUGE_VAL;
|
|
else
|
|
d = HUGE_VAL;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.to_f -> float
|
|
*
|
|
* Converts <i>big</i> to a <code>Float</code>. If <i>big</i> doesn't
|
|
* fit in a <code>Float</code>, the result is infinity.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_to_f(VALUE x)
|
|
{
|
|
return DBL2NUM(rb_big2dbl(x));
|
|
}
|
|
|
|
VALUE
|
|
rb_integer_float_cmp(VALUE x, VALUE y)
|
|
{
|
|
double yd = RFLOAT_VALUE(y);
|
|
double yi, yf;
|
|
VALUE rel;
|
|
|
|
if (isnan(yd))
|
|
return Qnil;
|
|
if (isinf(yd)) {
|
|
if (yd > 0.0) return INT2FIX(-1);
|
|
else return INT2FIX(1);
|
|
}
|
|
yf = modf(yd, &yi);
|
|
if (FIXNUM_P(x)) {
|
|
#if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
|
|
double xd = (double)FIX2LONG(x);
|
|
if (xd < yd)
|
|
return INT2FIX(-1);
|
|
if (xd > yd)
|
|
return INT2FIX(1);
|
|
return INT2FIX(0);
|
|
#else
|
|
long xl, yl;
|
|
if (yi < FIXNUM_MIN)
|
|
return INT2FIX(1);
|
|
if (FIXNUM_MAX+1 <= yi)
|
|
return INT2FIX(-1);
|
|
xl = FIX2LONG(x);
|
|
yl = (long)yi;
|
|
if (xl < yl)
|
|
return INT2FIX(-1);
|
|
if (xl > yl)
|
|
return INT2FIX(1);
|
|
if (yf < 0.0)
|
|
return INT2FIX(1);
|
|
if (0.0 < yf)
|
|
return INT2FIX(-1);
|
|
return INT2FIX(0);
|
|
#endif
|
|
}
|
|
y = rb_dbl2big(yi);
|
|
rel = rb_big_cmp(x, y);
|
|
if (yf == 0.0 || rel != INT2FIX(0))
|
|
return rel;
|
|
if (yf < 0.0)
|
|
return INT2FIX(1);
|
|
return INT2FIX(-1);
|
|
}
|
|
|
|
VALUE
|
|
rb_integer_float_eq(VALUE x, VALUE y)
|
|
{
|
|
double yd = RFLOAT_VALUE(y);
|
|
double yi, yf;
|
|
|
|
if (isnan(yd) || isinf(yd))
|
|
return Qfalse;
|
|
yf = modf(yd, &yi);
|
|
if (yf != 0)
|
|
return Qfalse;
|
|
if (FIXNUM_P(x)) {
|
|
#if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
|
|
double xd = (double)FIX2LONG(x);
|
|
if (xd != yd)
|
|
return Qfalse;
|
|
return Qtrue;
|
|
#else
|
|
long xl, yl;
|
|
if (yi < LONG_MIN || LONG_MAX < yi)
|
|
return Qfalse;
|
|
xl = FIX2LONG(x);
|
|
yl = (long)yi;
|
|
if (xl != yl)
|
|
return Qfalse;
|
|
return Qtrue;
|
|
#endif
|
|
}
|
|
y = rb_dbl2big(yi);
|
|
return rb_big_eq(x, y);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big <=> numeric -> -1, 0, +1 or nil
|
|
*
|
|
* Comparison---Returns -1, 0, or +1 depending on whether +big+ is
|
|
* less than, equal to, or greater than +numeric+. This is the
|
|
* basis for the tests in Comparable.
|
|
*
|
|
* +nil+ is returned if the two values are incomparable.
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_cmp(VALUE x, VALUE y)
|
|
{
|
|
long xlen = RBIGNUM_LEN(x);
|
|
BDIGIT *xds, *yds;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
return rb_integer_float_cmp(x, y);
|
|
|
|
default:
|
|
return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
|
|
}
|
|
|
|
if (RBIGNUM_SIGN(x) > RBIGNUM_SIGN(y)) return INT2FIX(1);
|
|
if (RBIGNUM_SIGN(x) < RBIGNUM_SIGN(y)) return INT2FIX(-1);
|
|
if (xlen < RBIGNUM_LEN(y))
|
|
return (RBIGNUM_SIGN(x)) ? INT2FIX(-1) : INT2FIX(1);
|
|
if (xlen > RBIGNUM_LEN(y))
|
|
return (RBIGNUM_SIGN(x)) ? INT2FIX(1) : INT2FIX(-1);
|
|
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
|
|
while (xlen-- && (xds[xlen]==yds[xlen]));
|
|
if (-1 == xlen) return INT2FIX(0);
|
|
return (xds[xlen] > yds[xlen]) ?
|
|
(RBIGNUM_SIGN(x) ? INT2FIX(1) : INT2FIX(-1)) :
|
|
(RBIGNUM_SIGN(x) ? INT2FIX(-1) : INT2FIX(1));
|
|
}
|
|
|
|
enum big_op_t {
|
|
big_op_gt,
|
|
big_op_ge,
|
|
big_op_lt,
|
|
big_op_le
|
|
};
|
|
|
|
static VALUE
|
|
big_op(VALUE x, VALUE y, enum big_op_t op)
|
|
{
|
|
VALUE rel;
|
|
int n;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
rel = rb_big_cmp(x, y);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
rel = rb_integer_float_cmp(x, y);
|
|
break;
|
|
|
|
default:
|
|
{
|
|
ID id = 0;
|
|
switch (op) {
|
|
case big_op_gt: id = '>'; break;
|
|
case big_op_ge: id = rb_intern(">="); break;
|
|
case big_op_lt: id = '<'; break;
|
|
case big_op_le: id = rb_intern("<="); break;
|
|
}
|
|
return rb_num_coerce_relop(x, y, id);
|
|
}
|
|
}
|
|
|
|
if (NIL_P(rel)) return Qfalse;
|
|
n = FIX2INT(rel);
|
|
|
|
switch (op) {
|
|
case big_op_gt: return n > 0 ? Qtrue : Qfalse;
|
|
case big_op_ge: return n >= 0 ? Qtrue : Qfalse;
|
|
case big_op_lt: return n < 0 ? Qtrue : Qfalse;
|
|
case big_op_le: return n <= 0 ? Qtrue : Qfalse;
|
|
}
|
|
return Qundef;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big > real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* greater than that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_gt(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_gt);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big >= real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* greater than or equal to that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_ge(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_ge);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big < real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* less than that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_lt(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_lt);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big <= real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* less than or equal to that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_le(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_le);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big == obj -> true or false
|
|
*
|
|
* Returns <code>true</code> only if <i>obj</i> has the same value
|
|
* as <i>big</i>. Contrast this with <code>Bignum#eql?</code>, which
|
|
* requires <i>obj</i> to be a <code>Bignum</code>.
|
|
*
|
|
* 68719476736 == 68719476736.0 #=> true
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_eq(VALUE x, VALUE y)
|
|
{
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
if (bignorm(x) == y) return Qtrue;
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
case T_BIGNUM:
|
|
break;
|
|
case T_FLOAT:
|
|
return rb_integer_float_eq(x, y);
|
|
default:
|
|
return rb_equal(y, x);
|
|
}
|
|
if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
|
|
if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
|
|
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.eql?(obj) -> true or false
|
|
*
|
|
* Returns <code>true</code> only if <i>obj</i> is a
|
|
* <code>Bignum</code> with the same value as <i>big</i>. Contrast this
|
|
* with <code>Bignum#==</code>, which performs type conversions.
|
|
*
|
|
* 68719476736.eql?(68719476736.0) #=> false
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_eql(VALUE x, VALUE y)
|
|
{
|
|
if (!RB_TYPE_P(y, T_BIGNUM)) return Qfalse;
|
|
if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
|
|
if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
|
|
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* -big -> integer
|
|
*
|
|
* Unary minus (returns an integer whose value is 0-big)
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_uminus(VALUE x)
|
|
{
|
|
VALUE z = rb_big_clone(x);
|
|
|
|
RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x));
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ~big -> integer
|
|
*
|
|
* Inverts the bits in big. As Bignums are conceptually infinite
|
|
* length, the result acts as if it had an infinite number of one
|
|
* bits to the left. In hex representations, this is displayed
|
|
* as two periods to the left of the digits.
|
|
*
|
|
* sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_neg(VALUE x)
|
|
{
|
|
VALUE z = rb_big_clone(x);
|
|
BDIGIT *ds;
|
|
long i;
|
|
|
|
if (!RBIGNUM_SIGN(x)) get2comp(z);
|
|
ds = BDIGITS(z);
|
|
i = RBIGNUM_LEN(x);
|
|
if (!i) return INT2FIX(~(SIGNED_VALUE)0);
|
|
while (i--) {
|
|
ds[i] = ~ds[i];
|
|
}
|
|
RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(z));
|
|
if (RBIGNUM_SIGN(x)) get2comp(z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
static void
|
|
bigsub_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
|
|
{
|
|
BDIGIT_DBL_SIGNED num;
|
|
long i;
|
|
|
|
for (i = 0, num = 0; i < yn; i++) {
|
|
num += (BDIGIT_DBL_SIGNED)xds[i] - yds[i];
|
|
zds[i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (num && i < xn) {
|
|
num += xds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
if (xds == zds && xn == zn)
|
|
return;
|
|
while (i < xn) {
|
|
zds[i] = xds[i];
|
|
i++;
|
|
}
|
|
assert(i <= zn);
|
|
while (i < zn) {
|
|
zds[i++] = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bary_sub(BDIGIT *zds, size_t zn, BDIGIT *xds, size_t xn, BDIGIT *yds, size_t yn)
|
|
{
|
|
assert(yn <= xn);
|
|
assert(xn <= zn);
|
|
|
|
bigsub_core(xds, xn, yds, yn, zds, zn);
|
|
}
|
|
|
|
static VALUE
|
|
bigsub(VALUE x, VALUE y)
|
|
{
|
|
VALUE z = 0;
|
|
long i = RBIGNUM_LEN(x);
|
|
BDIGIT *xds, *yds;
|
|
|
|
/* if x is smaller than y, swap */
|
|
if (RBIGNUM_LEN(x) < RBIGNUM_LEN(y)) {
|
|
z = x; x = y; y = z; /* swap x y */
|
|
}
|
|
else if (RBIGNUM_LEN(x) == RBIGNUM_LEN(y)) {
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
while (i > 0) {
|
|
i--;
|
|
if (xds[i] > yds[i]) {
|
|
break;
|
|
}
|
|
if (xds[i] < yds[i]) {
|
|
z = x; x = y; y = z; /* swap x y */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
z = bignew(RBIGNUM_LEN(x), z==0);
|
|
bigsub_core(BDIGITS(x), RBIGNUM_LEN(x),
|
|
BDIGITS(y), RBIGNUM_LEN(y),
|
|
BDIGITS(z), RBIGNUM_LEN(z));
|
|
|
|
return z;
|
|
}
|
|
|
|
static VALUE bigadd_int(VALUE x, long y);
|
|
|
|
static VALUE
|
|
bigsub_int(VALUE x, long y0)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn;
|
|
BDIGIT_DBL_SIGNED num;
|
|
long i, y;
|
|
|
|
y = y0;
|
|
xds = BDIGITS(x);
|
|
xn = RBIGNUM_LEN(x);
|
|
|
|
z = bignew(xn, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
num = (BDIGIT_DBL_SIGNED)xds[0] - y;
|
|
if (xn == 1 && num < 0) {
|
|
RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x));
|
|
zds[0] = (BDIGIT)-num;
|
|
RB_GC_GUARD(x);
|
|
return bignorm(z);
|
|
}
|
|
zds[0] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
i = 1;
|
|
#else
|
|
num = 0;
|
|
for (i=0; i<(int)(sizeof(y)/SIZEOF_BDIGITS); i++) {
|
|
num += (BDIGIT_DBL_SIGNED)xds[i] - BIGLO(y);
|
|
zds[i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
y = BIGDN(y);
|
|
}
|
|
#endif
|
|
while (num && i < xn) {
|
|
num += xds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (i < xn) {
|
|
zds[i] = xds[i];
|
|
i++;
|
|
}
|
|
if (num < 0) {
|
|
z = bigsub(x, rb_int2big(y0));
|
|
}
|
|
RB_GC_GUARD(x);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
bigadd_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
BDIGIT_DBL num;
|
|
long i;
|
|
|
|
xds = BDIGITS(x);
|
|
xn = RBIGNUM_LEN(x);
|
|
|
|
if (xn < 2) {
|
|
zn = 3;
|
|
}
|
|
else {
|
|
zn = xn + 1;
|
|
}
|
|
z = bignew(zn, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
num = (BDIGIT_DBL)xds[0] + y;
|
|
zds[0] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
i = 1;
|
|
#else
|
|
num = 0;
|
|
for (i=0; i<(int)(sizeof(y)/SIZEOF_BDIGITS); i++) {
|
|
num += (BDIGIT_DBL)xds[i] + BIGLO(y);
|
|
zds[i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
y = BIGDN(y);
|
|
}
|
|
#endif
|
|
while (num && i < xn) {
|
|
num += xds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
if (num) zds[i++] = (BDIGIT)num;
|
|
else while (i < xn) {
|
|
zds[i] = xds[i];
|
|
i++;
|
|
}
|
|
assert(i <= zn);
|
|
while (i < zn) {
|
|
zds[i++] = 0;
|
|
}
|
|
RB_GC_GUARD(x);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static void
|
|
bigadd_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
|
|
{
|
|
BDIGIT_DBL num = 0;
|
|
long i;
|
|
|
|
if (xn > yn) {
|
|
BDIGIT *tds;
|
|
tds = xds; xds = yds; yds = tds;
|
|
i = xn; xn = yn; yn = i;
|
|
}
|
|
|
|
i = 0;
|
|
while (i < xn) {
|
|
num += (BDIGIT_DBL)xds[i] + yds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (num && i < yn) {
|
|
num += yds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (i < yn) {
|
|
zds[i] = yds[i];
|
|
i++;
|
|
}
|
|
if (num) zds[i++] = (BDIGIT)num;
|
|
assert(i <= zn);
|
|
while (i < zn) {
|
|
zds[i++] = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bary_add(BDIGIT *zds, size_t zn, BDIGIT *xds, size_t xn, BDIGIT *yds, size_t yn)
|
|
{
|
|
bigadd_core(xds, xn, yds, yn, zds, zn);
|
|
}
|
|
|
|
static VALUE
|
|
bigadd(VALUE x, VALUE y, int sign)
|
|
{
|
|
VALUE z;
|
|
long len;
|
|
|
|
sign = (sign == RBIGNUM_SIGN(y));
|
|
if (RBIGNUM_SIGN(x) != sign) {
|
|
if (sign) return bigsub(y, x);
|
|
return bigsub(x, y);
|
|
}
|
|
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
len = RBIGNUM_LEN(x) + 1;
|
|
}
|
|
else {
|
|
len = RBIGNUM_LEN(y) + 1;
|
|
}
|
|
z = bignew(len, sign);
|
|
|
|
bigadd_core(BDIGITS(x), RBIGNUM_LEN(x),
|
|
BDIGITS(y), RBIGNUM_LEN(y),
|
|
BDIGITS(z), RBIGNUM_LEN(z));
|
|
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big + other -> Numeric
|
|
*
|
|
* Adds big and other, returning the result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_plus(VALUE x, VALUE y)
|
|
{
|
|
long n;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
n = FIX2LONG(y);
|
|
if ((n > 0) != RBIGNUM_SIGN(x)) {
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigsub_int(x, n);
|
|
}
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigadd_int(x, n);
|
|
|
|
case T_BIGNUM:
|
|
return bignorm(bigadd(x, y, 1));
|
|
|
|
case T_FLOAT:
|
|
return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '+');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big - other -> Numeric
|
|
*
|
|
* Subtracts other from big, returning the result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_minus(VALUE x, VALUE y)
|
|
{
|
|
long n;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
n = FIX2LONG(y);
|
|
if ((n > 0) != RBIGNUM_SIGN(x)) {
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigadd_int(x, n);
|
|
}
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigsub_int(x, n);
|
|
|
|
case T_BIGNUM:
|
|
return bignorm(bigadd(x, y, 0));
|
|
|
|
case T_FLOAT:
|
|
return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '-');
|
|
}
|
|
}
|
|
|
|
static long
|
|
big_real_len(VALUE x)
|
|
{
|
|
long i = RBIGNUM_LEN(x);
|
|
BDIGIT *xds = BDIGITS(x);
|
|
while (--i && !xds[i]);
|
|
return i + 1;
|
|
}
|
|
|
|
static void
|
|
bary_mul_single(BDIGIT *zds, size_t zl, BDIGIT x, BDIGIT y)
|
|
{
|
|
BDIGIT_DBL n;
|
|
|
|
assert(2 <= zl);
|
|
|
|
n = (BDIGIT_DBL)x * y;
|
|
zds[0] = BIGLO(n);
|
|
zds[1] = (BDIGIT)BIGDN(n);
|
|
}
|
|
|
|
static VALUE
|
|
bigmul1_single(VALUE x, VALUE y)
|
|
{
|
|
VALUE z = bignew(2, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
BDIGIT *xds, *yds, *zds;
|
|
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
zds = BDIGITS(z);
|
|
|
|
bary_mul_single(zds, 2, xds[0], yds[0]);
|
|
|
|
return z;
|
|
}
|
|
|
|
static void
|
|
bary_mul_normal(BDIGIT *zds, size_t zl, BDIGIT *xds, size_t xl, BDIGIT *yds, size_t yl)
|
|
{
|
|
size_t i;
|
|
size_t j = zl;
|
|
BDIGIT_DBL n = 0;
|
|
|
|
assert(xl + yl <= zl);
|
|
|
|
while (j--) zds[j] = 0;
|
|
for (i = 0; i < xl; i++) {
|
|
BDIGIT_DBL dd;
|
|
dd = xds[i];
|
|
if (dd == 0) continue;
|
|
n = 0;
|
|
for (j = 0; j < yl; j++) {
|
|
BDIGIT_DBL ee = n + (BDIGIT_DBL)dd * yds[j];
|
|
n = zds[i + j] + ee;
|
|
if (ee) zds[i + j] = BIGLO(n);
|
|
n = BIGDN(n);
|
|
}
|
|
if (n) {
|
|
zds[i + j] = (BDIGIT)n;
|
|
}
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
bigmul1_normal(VALUE x, VALUE y)
|
|
{
|
|
size_t xl = RBIGNUM_LEN(x), yl = RBIGNUM_LEN(y), zl = xl + yl;
|
|
VALUE z = bignew(zl, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
BDIGIT *xds, *yds, *zds;
|
|
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
zds = BDIGITS(z);
|
|
|
|
bary_mul_normal(zds, zl, xds, xl, yds, yl);
|
|
|
|
rb_thread_check_ints();
|
|
return z;
|
|
}
|
|
|
|
static void
|
|
bary_mul(BDIGIT *zds, size_t zl, BDIGIT *xds, size_t xl, BDIGIT *yds, size_t yl)
|
|
{
|
|
size_t l;
|
|
if (xl == 1 && yl == 1) {
|
|
l = 2;
|
|
bary_mul_single(zds, zl, xds[0], yds[0]);
|
|
}
|
|
else {
|
|
l = xl + yl;
|
|
bary_mul_normal(zds, zl, xds, xl, yds, yl);
|
|
}
|
|
MEMZERO(zds + l, BDIGIT, zl - l);
|
|
}
|
|
|
|
static VALUE bigmul0(VALUE x, VALUE y);
|
|
|
|
/* balancing multiplication by slicing larger argument */
|
|
static VALUE
|
|
bigmul1_balance(VALUE x, VALUE y)
|
|
{
|
|
VALUE z, t1, t2;
|
|
long i, xn, yn, r, n;
|
|
BDIGIT *yds, *zds, *t1ds;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
assert(2 * xn <= yn || 3 * xn <= 2*(yn+2));
|
|
|
|
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
t1 = bignew(xn, 1);
|
|
|
|
yds = BDIGITS(y);
|
|
zds = BDIGITS(z);
|
|
t1ds = BDIGITS(t1);
|
|
|
|
for (i = 0; i < xn + yn; i++) zds[i] = 0;
|
|
|
|
n = 0;
|
|
while (yn > 0) {
|
|
r = xn > yn ? yn : xn;
|
|
MEMCPY(t1ds, yds + n, BDIGIT, r);
|
|
RBIGNUM_SET_LEN(t1, r);
|
|
t2 = bigmul0(x, t1);
|
|
bigadd_core(zds + n, RBIGNUM_LEN(z) - n,
|
|
BDIGITS(t2), big_real_len(t2),
|
|
zds + n, RBIGNUM_LEN(z) - n);
|
|
yn -= r;
|
|
n += r;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
|
|
/* split a bignum into high and low bignums */
|
|
static void
|
|
big_split(VALUE v, long n, volatile VALUE *ph, volatile VALUE *pl)
|
|
{
|
|
long hn = 0, ln = RBIGNUM_LEN(v);
|
|
VALUE h, l;
|
|
BDIGIT *vds = BDIGITS(v);
|
|
|
|
if (ln > n) {
|
|
hn = ln - n;
|
|
ln = n;
|
|
}
|
|
|
|
if (!hn) {
|
|
h = rb_uint2big(0);
|
|
}
|
|
else {
|
|
while (--hn && !vds[hn + ln]);
|
|
h = bignew(hn += 2, 1);
|
|
MEMCPY(BDIGITS(h), vds + ln, BDIGIT, hn - 1);
|
|
BDIGITS(h)[hn - 1] = 0; /* margin for carry */
|
|
}
|
|
|
|
while (--ln && !vds[ln]);
|
|
l = bignew(ln += 2, 1);
|
|
MEMCPY(BDIGITS(l), vds, BDIGIT, ln - 1);
|
|
BDIGITS(l)[ln - 1] = 0; /* margin for carry */
|
|
|
|
*pl = l;
|
|
*ph = h;
|
|
}
|
|
|
|
/* multiplication by karatsuba method */
|
|
static VALUE
|
|
bigmul1_karatsuba(VALUE x, VALUE y)
|
|
{
|
|
long i, n, xn, yn, t1n, t2n;
|
|
VALUE xh, xl, yh, yl, z, t1, t2, t3;
|
|
BDIGIT *zds;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
n = yn / 2;
|
|
big_split(x, n, &xh, &xl);
|
|
if (x == y) {
|
|
yh = xh; yl = xl;
|
|
}
|
|
else big_split(y, n, &yh, &yl);
|
|
|
|
/* x = xh * b + xl
|
|
* y = yh * b + yl
|
|
*
|
|
* Karatsuba method:
|
|
* x * y = z2 * b^2 + z1 * b + z0
|
|
* where
|
|
* z2 = xh * yh
|
|
* z0 = xl * yl
|
|
* z1 = (xh + xl) * (yh + yl) - z2 - z0
|
|
*
|
|
* ref: http://en.wikipedia.org/wiki/Karatsuba_algorithm
|
|
*/
|
|
|
|
/* allocate a result bignum */
|
|
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
|
|
/* t1 <- xh * yh */
|
|
t1 = bigmul0(xh, yh);
|
|
t1n = big_real_len(t1);
|
|
|
|
/* copy t1 into high bytes of the result (z2) */
|
|
MEMCPY(zds + 2 * n, BDIGITS(t1), BDIGIT, t1n);
|
|
for (i = 2 * n + t1n; i < xn + yn; i++) zds[i] = 0;
|
|
|
|
if (!BIGZEROP(xl) && !BIGZEROP(yl)) {
|
|
/* t2 <- xl * yl */
|
|
t2 = bigmul0(xl, yl);
|
|
t2n = big_real_len(t2);
|
|
|
|
/* copy t2 into low bytes of the result (z0) */
|
|
MEMCPY(zds, BDIGITS(t2), BDIGIT, t2n);
|
|
for (i = t2n; i < 2 * n; i++) zds[i] = 0;
|
|
}
|
|
else {
|
|
t2 = Qundef;
|
|
t2n = 0;
|
|
|
|
/* copy 0 into low bytes of the result (z0) */
|
|
for (i = 0; i < 2 * n; i++) zds[i] = 0;
|
|
}
|
|
|
|
/* xh <- xh + xl */
|
|
if (RBIGNUM_LEN(xl) > RBIGNUM_LEN(xh)) {
|
|
t3 = xl; xl = xh; xh = t3;
|
|
}
|
|
/* xh has a margin for carry */
|
|
bigadd_core(BDIGITS(xh), RBIGNUM_LEN(xh),
|
|
BDIGITS(xl), RBIGNUM_LEN(xl),
|
|
BDIGITS(xh), RBIGNUM_LEN(xh));
|
|
|
|
/* yh <- yh + yl */
|
|
if (x != y) {
|
|
if (RBIGNUM_LEN(yl) > RBIGNUM_LEN(yh)) {
|
|
t3 = yl; yl = yh; yh = t3;
|
|
}
|
|
/* yh has a margin for carry */
|
|
bigadd_core(BDIGITS(yh), RBIGNUM_LEN(yh),
|
|
BDIGITS(yl), RBIGNUM_LEN(yl),
|
|
BDIGITS(yh), RBIGNUM_LEN(yh));
|
|
}
|
|
else yh = xh;
|
|
|
|
/* t3 <- xh * yh */
|
|
t3 = bigmul0(xh, yh);
|
|
|
|
i = xn + yn - n;
|
|
/* subtract t1 from t3 */
|
|
bigsub_core(BDIGITS(t3), big_real_len(t3), BDIGITS(t1), t1n, BDIGITS(t3), big_real_len(t3));
|
|
|
|
/* subtract t2 from t3; t3 is now the middle term of the product */
|
|
if (t2 != Qundef) bigsub_core(BDIGITS(t3), big_real_len(t3), BDIGITS(t2), t2n, BDIGITS(t3), big_real_len(t3));
|
|
|
|
/* add t3 to middle bytes of the result (z1) */
|
|
bigadd_core(zds + n, i, BDIGITS(t3), big_real_len(t3), zds + n, i);
|
|
|
|
return z;
|
|
}
|
|
|
|
static void
|
|
biglsh_bang(BDIGIT *xds, long xn, unsigned long shift)
|
|
{
|
|
long const s1 = shift/BITSPERDIG;
|
|
int const s2 = (int)(shift%BITSPERDIG);
|
|
int const s3 = BITSPERDIG-s2;
|
|
BDIGIT* zds;
|
|
BDIGIT num;
|
|
long i;
|
|
if (s1 >= xn) {
|
|
MEMZERO(xds, BDIGIT, xn);
|
|
return;
|
|
}
|
|
zds = xds + xn - 1;
|
|
xn -= s1 + 1;
|
|
num = xds[xn]<<s2;
|
|
do {
|
|
*zds-- = num | xds[--xn]>>s3;
|
|
num = xds[xn]<<s2;
|
|
}
|
|
while (xn > 0);
|
|
*zds = num;
|
|
for (i = s1; i > 0; --i)
|
|
*zds-- = 0;
|
|
}
|
|
|
|
static void
|
|
bigrsh_bang(BDIGIT* xds, long xn, unsigned long shift)
|
|
{
|
|
long s1 = shift/BITSPERDIG;
|
|
int s2 = (int)(shift%BITSPERDIG);
|
|
int s3 = BITSPERDIG - s2;
|
|
int i;
|
|
BDIGIT num;
|
|
BDIGIT* zds;
|
|
if (s1 >= xn) {
|
|
MEMZERO(xds, BDIGIT, xn);
|
|
return;
|
|
}
|
|
|
|
i = 0;
|
|
zds = xds + s1;
|
|
num = *zds++>>s2;
|
|
do {
|
|
xds[i++] = (BDIGIT)(*zds<<s3) | num;
|
|
num = *zds++>>s2;
|
|
}
|
|
while (i < xn - s1 - 1);
|
|
xds[i] = num;
|
|
MEMZERO(xds + xn - s1, BDIGIT, s1);
|
|
}
|
|
|
|
static void
|
|
big_split3(VALUE v, long n, volatile VALUE* p0, volatile VALUE* p1, volatile VALUE* p2)
|
|
{
|
|
VALUE v0, v12, v1, v2;
|
|
|
|
big_split(v, n, &v12, &v0);
|
|
big_split(v12, n, &v2, &v1);
|
|
|
|
*p0 = bigtrunc(v0);
|
|
*p1 = bigtrunc(v1);
|
|
*p2 = bigtrunc(v2);
|
|
}
|
|
|
|
static VALUE big_lshift(VALUE, unsigned long);
|
|
static VALUE big_rshift(VALUE, unsigned long);
|
|
static VALUE bigdivrem(VALUE, VALUE, volatile VALUE*, volatile VALUE*);
|
|
|
|
static VALUE
|
|
bigmul1_toom3(VALUE x, VALUE y)
|
|
{
|
|
long n, xn, yn, zn;
|
|
VALUE x0, x1, x2, y0, y1, y2;
|
|
VALUE u0, u1, u2, u3, u4, v1, v2, v3;
|
|
VALUE z0, z1, z2, z3, z4, z, t;
|
|
BDIGIT* zds;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
assert(xn <= yn); /* assume y >= x */
|
|
|
|
n = (yn + 2) / 3;
|
|
big_split3(x, n, &x0, &x1, &x2);
|
|
if (x == y) {
|
|
y0 = x0; y1 = x1; y2 = x2;
|
|
}
|
|
else big_split3(y, n, &y0, &y1, &y2);
|
|
|
|
/*
|
|
* ref. http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
|
|
*
|
|
* x(b) = x0 * b^0 + x1 * b^1 + x2 * b^2
|
|
* y(b) = y0 * b^0 + y1 * b^1 + y2 * b^2
|
|
*
|
|
* z(b) = x(b) * y(b)
|
|
* z(b) = z0 * b^0 + z1 * b^1 + z2 * b^2 + z3 * b^3 + z4 * b^4
|
|
* where:
|
|
* z0 = x0 * y0
|
|
* z1 = x0 * y1 + x1 * y0
|
|
* z2 = x0 * y2 + x1 * y1 + x2 * y0
|
|
* z3 = x1 * y2 + x2 * y1
|
|
* z4 = x2 * y2
|
|
*
|
|
* Toom3 method (a.k.a. Toom-Cook method):
|
|
* (Step1) calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4),
|
|
* where:
|
|
* b0 = 0, b1 = 1, b2 = -1, b3 = -2, b4 = inf,
|
|
* z(0) = x(0) * y(0) = x0 * y0
|
|
* z(1) = x(1) * y(1) = (x0 + x1 + x2) * (y0 + y1 + y2)
|
|
* z(-1) = x(-1) * y(-1) = (x0 - x1 + x2) * (y0 - y1 + y2)
|
|
* z(-2) = x(-2) * y(-2) = (x0 - 2 * (x1 - 2 * x2)) * (y0 - 2 * (y1 - 2 * y2))
|
|
* z(inf) = x(inf) * y(inf) = x2 * y2
|
|
*
|
|
* (Step2) interpolating z0, z1, z2, z3, z4, and z5.
|
|
*
|
|
* (Step3) Substituting base value into b of the polynomial z(b),
|
|
*/
|
|
|
|
/*
|
|
* [Step1] calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4)
|
|
*/
|
|
|
|
/* u1 <- x0 + x2 */
|
|
u1 = bigtrunc(bigadd(x0, x2, 1));
|
|
|
|
/* x(-1) : u2 <- u1 - x1 = x0 - x1 + x2 */
|
|
u2 = bigtrunc(bigsub(u1, x1));
|
|
|
|
/* x(1) : u1 <- u1 + x1 = x0 + x1 + x2 */
|
|
u1 = bigtrunc(bigadd(u1, x1, 1));
|
|
|
|
/* x(-2) : u3 <- 2 * (u2 + x2) - x0 = x0 - 2 * (x1 - 2 * x2) */
|
|
u3 = bigadd(u2, x2, 1);
|
|
if (BDIGITS(u3)[RBIGNUM_LEN(u3)-1] & BIGRAD_HALF) {
|
|
rb_big_resize(u3, RBIGNUM_LEN(u3) + 1);
|
|
BDIGITS(u3)[RBIGNUM_LEN(u3)-1] = 0;
|
|
}
|
|
biglsh_bang(BDIGITS(u3), RBIGNUM_LEN(u3), 1);
|
|
u3 = bigtrunc(bigadd(bigtrunc(u3), x0, 0));
|
|
|
|
if (x == y) {
|
|
v1 = u1; v2 = u2; v3 = u3;
|
|
}
|
|
else {
|
|
/* v1 <- y0 + y2 */
|
|
v1 = bigtrunc(bigadd(y0, y2, 1));
|
|
|
|
/* y(-1) : v2 <- v1 - y1 = y0 - y1 + y2 */
|
|
v2 = bigtrunc(bigsub(v1, y1));
|
|
|
|
/* y(1) : v1 <- v1 + y1 = y0 + y1 + y2 */
|
|
v1 = bigtrunc(bigadd(v1, y1, 1));
|
|
|
|
/* y(-2) : v3 <- 2 * (v2 + y2) - y0 = y0 - 2 * (y1 - 2 * y2) */
|
|
v3 = bigadd(v2, y2, 1);
|
|
if (BDIGITS(v3)[RBIGNUM_LEN(v3)-1] & BIGRAD_HALF) {
|
|
rb_big_resize(v3, RBIGNUM_LEN(v3) + 1);
|
|
BDIGITS(v3)[RBIGNUM_LEN(v3)-1] = 0;
|
|
}
|
|
biglsh_bang(BDIGITS(v3), RBIGNUM_LEN(v3), 1);
|
|
v3 = bigtrunc(bigadd(bigtrunc(v3), y0, 0));
|
|
}
|
|
|
|
/* z(0) : u0 <- x0 * y0 */
|
|
u0 = bigtrunc(bigmul0(x0, y0));
|
|
|
|
/* z(1) : u1 <- u1 * v1 */
|
|
u1 = bigtrunc(bigmul0(u1, v1));
|
|
|
|
/* z(-1) : u2 <- u2 * v2 */
|
|
u2 = bigtrunc(bigmul0(u2, v2));
|
|
|
|
/* z(-2) : u3 <- u3 * v3 */
|
|
u3 = bigtrunc(bigmul0(u3, v3));
|
|
|
|
/* z(inf) : u4 <- x2 * y2 */
|
|
u4 = bigtrunc(bigmul0(x2, y2));
|
|
|
|
/* for GC */
|
|
v1 = v2 = v3 = Qnil;
|
|
|
|
/*
|
|
* [Step2] interpolating z0, z1, z2, z3, z4, and z5.
|
|
*/
|
|
|
|
/* z0 <- z(0) == u0 */
|
|
z0 = u0;
|
|
|
|
/* z4 <- z(inf) == u4 */
|
|
z4 = u4;
|
|
|
|
/* z3 <- (z(-2) - z(1)) / 3 == (u3 - u1) / 3 */
|
|
z3 = bigadd(u3, u1, 0);
|
|
bigdivrem(z3, big_three, &z3, NULL); /* TODO: optimize */
|
|
bigtrunc(z3);
|
|
|
|
/* z1 <- (z(1) - z(-1)) / 2 == (u1 - u2) / 2 */
|
|
z1 = bigtrunc(bigadd(u1, u2, 0));
|
|
bigrsh_bang(BDIGITS(z1), RBIGNUM_LEN(z1), 1);
|
|
|
|
/* z2 <- z(-1) - z(0) == u2 - u0 */
|
|
z2 = bigtrunc(bigadd(u2, u0, 0));
|
|
|
|
/* z3 <- (z2 - z3) / 2 + 2 * z(inf) == (z2 - z3) / 2 + 2 * u4 */
|
|
z3 = bigtrunc(bigadd(z2, z3, 0));
|
|
bigrsh_bang(BDIGITS(z3), RBIGNUM_LEN(z3), 1);
|
|
t = big_lshift(u4, 1); /* TODO: combining with next addition */
|
|
z3 = bigtrunc(bigadd(z3, t, 1));
|
|
|
|
/* z2 <- z2 + z1 - z(inf) == z2 + z1 - u4 */
|
|
z2 = bigtrunc(bigadd(z2, z1, 1));
|
|
z2 = bigtrunc(bigadd(z2, u4, 0));
|
|
|
|
/* z1 <- z1 - z3 */
|
|
z1 = bigtrunc(bigadd(z1, z3, 0));
|
|
|
|
/*
|
|
* [Step3] Substituting base value into b of the polynomial z(b),
|
|
*/
|
|
|
|
zn = 6*n + 1;
|
|
z = bignew(zn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
MEMCPY(zds, BDIGITS(z0), BDIGIT, RBIGNUM_LEN(z0));
|
|
MEMZERO(zds + RBIGNUM_LEN(z0), BDIGIT, zn - RBIGNUM_LEN(z0));
|
|
bigadd_core(zds + n, zn - n, BDIGITS(z1), big_real_len(z1), zds + n, zn - n);
|
|
bigadd_core(zds + 2*n, zn - 2*n, BDIGITS(z2), big_real_len(z2), zds + 2*n, zn - 2*n);
|
|
bigadd_core(zds + 3*n, zn - 3*n, BDIGITS(z3), big_real_len(z3), zds + 3*n, zn - 3*n);
|
|
bigadd_core(zds + 4*n, zn - 4*n, BDIGITS(z4), big_real_len(z4), zds + 4*n, zn - 4*n);
|
|
z = bignorm(z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/* efficient squaring (2 times faster than normal multiplication)
|
|
* ref: Handbook of Applied Cryptography, Algorithm 14.16
|
|
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
|
*/
|
|
static VALUE
|
|
bigsqr_fast(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x), i, j;
|
|
VALUE z = bignew(2 * len + 1, 1);
|
|
BDIGIT *xds = BDIGITS(x), *zds = BDIGITS(z);
|
|
BDIGIT_DBL c, v, w;
|
|
|
|
for (i = 2 * len + 1; i--; ) zds[i] = 0;
|
|
for (i = 0; i < len; i++) {
|
|
v = (BDIGIT_DBL)xds[i];
|
|
if (!v) continue;
|
|
c = (BDIGIT_DBL)zds[i + i] + v * v;
|
|
zds[i + i] = BIGLO(c);
|
|
c = BIGDN(c);
|
|
v *= 2;
|
|
for (j = i + 1; j < len; j++) {
|
|
w = (BDIGIT_DBL)xds[j];
|
|
c += (BDIGIT_DBL)zds[i + j] + BIGLO(v) * w;
|
|
zds[i + j] = BIGLO(c);
|
|
c = BIGDN(c);
|
|
if (BIGDN(v)) c += w;
|
|
}
|
|
if (c) {
|
|
c += (BDIGIT_DBL)zds[i + len];
|
|
zds[i + len] = BIGLO(c);
|
|
c = BIGDN(c);
|
|
}
|
|
if (c) zds[i + len + 1] += (BDIGIT)c;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
#define KARATSUBA_MUL_DIGITS 70
|
|
#define TOOM3_MUL_DIGITS 150
|
|
|
|
|
|
/* determine whether a bignum is sparse or not by random sampling */
|
|
static inline VALUE
|
|
big_sparse_p(VALUE x)
|
|
{
|
|
long c = 0, n = RBIGNUM_LEN(x);
|
|
|
|
if ( BDIGITS(x)[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
|
|
if (c <= 1 && BDIGITS(x)[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
|
|
if (c <= 1 && BDIGITS(x)[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
|
|
|
|
return (c <= 1) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
bigmul0(VALUE x, VALUE y)
|
|
{
|
|
long xn, yn;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
|
|
/* make sure that y is longer than x */
|
|
if (xn > yn) {
|
|
VALUE t;
|
|
long tn;
|
|
t = x; x = y; y = t;
|
|
tn = xn; xn = yn; yn = tn;
|
|
}
|
|
assert(xn <= yn);
|
|
|
|
/* normal multiplication when x is small */
|
|
if (xn < KARATSUBA_MUL_DIGITS) {
|
|
normal:
|
|
if (x == y) return bigsqr_fast(x);
|
|
if (xn == 1 && yn == 1) return bigmul1_single(x, y);
|
|
return bigmul1_normal(x, y);
|
|
}
|
|
|
|
/* normal multiplication when x or y is a sparse bignum */
|
|
if (big_sparse_p(x)) goto normal;
|
|
if (big_sparse_p(y)) return bigmul1_normal(y, x);
|
|
|
|
/* balance multiplication by slicing y when x is much smaller than y */
|
|
if (2 * xn <= yn) return bigmul1_balance(x, y);
|
|
|
|
if (xn < TOOM3_MUL_DIGITS) {
|
|
/* multiplication by karatsuba method */
|
|
return bigmul1_karatsuba(x, y);
|
|
}
|
|
else if (3*xn <= 2*(yn + 2))
|
|
return bigmul1_balance(x, y);
|
|
return bigmul1_toom3(x, y);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big * other -> Numeric
|
|
*
|
|
* Multiplies big and other, returning the result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_mul(VALUE x, VALUE y)
|
|
{
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '*');
|
|
}
|
|
|
|
return bignorm(bigmul0(x, y));
|
|
}
|
|
|
|
struct big_div_struct {
|
|
long nx, ny, j, nyzero;
|
|
BDIGIT *yds, *zds;
|
|
volatile VALUE stop;
|
|
};
|
|
|
|
static void *
|
|
bigdivrem1(void *ptr)
|
|
{
|
|
struct big_div_struct *bds = (struct big_div_struct*)ptr;
|
|
long ny = bds->ny;
|
|
long i, j;
|
|
BDIGIT *yds = bds->yds, *zds = bds->zds;
|
|
BDIGIT_DBL t2;
|
|
BDIGIT_DBL_SIGNED num;
|
|
BDIGIT q;
|
|
|
|
j = bds->j;
|
|
do {
|
|
if (bds->stop) {
|
|
bds->j = j;
|
|
return 0;
|
|
}
|
|
if (zds[j] == yds[ny-1]) q = (BDIGIT)BIGRAD-1;
|
|
else q = (BDIGIT)((BIGUP(zds[j]) + zds[j-1])/yds[ny-1]);
|
|
if (q) {
|
|
i = bds->nyzero; num = 0; t2 = 0;
|
|
do { /* multiply and subtract */
|
|
BDIGIT_DBL ee;
|
|
t2 += (BDIGIT_DBL)yds[i] * q;
|
|
ee = num - BIGLO(t2);
|
|
num = (BDIGIT_DBL)zds[j - ny + i] + ee;
|
|
if (ee) zds[j - ny + i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
t2 = BIGDN(t2);
|
|
} while (++i < ny);
|
|
num += zds[j - ny + i] - t2;/* borrow from high digit; don't update */
|
|
while (num) { /* "add back" required */
|
|
i = 0; num = 0; q--;
|
|
do {
|
|
BDIGIT_DBL ee = num + yds[i];
|
|
num = (BDIGIT_DBL)zds[j - ny + i] + ee;
|
|
if (ee) zds[j - ny + i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
} while (++i < ny);
|
|
num--;
|
|
}
|
|
}
|
|
zds[j] = q;
|
|
} while (--j >= ny);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rb_big_stop(void *ptr)
|
|
{
|
|
struct big_div_struct *bds = ptr;
|
|
bds->stop = Qtrue;
|
|
}
|
|
|
|
static inline int
|
|
bigdivrem_num_extra_words(long nx, long ny)
|
|
{
|
|
int ret = nx==ny ? 2 : 1;
|
|
assert(ret <= BIGDIVREM_EXTRA_WORDS);
|
|
return ret;
|
|
}
|
|
|
|
static BDIGIT
|
|
bigdivrem_single(BDIGIT *qds, BDIGIT *xds, long nx, BDIGIT y)
|
|
{
|
|
long i;
|
|
BDIGIT_DBL t2;
|
|
t2 = 0;
|
|
i = nx;
|
|
while (i--) {
|
|
t2 = BIGUP(t2) + xds[i];
|
|
qds[i] = (BDIGIT)(t2 / y);
|
|
t2 %= y;
|
|
}
|
|
return (BDIGIT)t2;
|
|
}
|
|
|
|
static void
|
|
bigdivrem_normal(BDIGIT *zds, long nz, BDIGIT *xds, long nx, BDIGIT *yds, long ny, int needs_mod)
|
|
{
|
|
struct big_div_struct bds;
|
|
BDIGIT q;
|
|
int shift;
|
|
|
|
q = yds[ny-1];
|
|
shift = nlz(q);
|
|
if (shift) {
|
|
bary_small_lshift(yds, yds, ny, shift);
|
|
zds[nx] = bary_small_lshift(zds, xds, nx, shift);
|
|
}
|
|
else {
|
|
MEMCPY(zds, xds, BDIGIT, nx);
|
|
zds[nx] = 0;
|
|
}
|
|
if (nx+1 < nz) zds[nx+1] = 0;
|
|
|
|
bds.nx = nx;
|
|
bds.ny = ny;
|
|
bds.zds = zds;
|
|
bds.yds = yds;
|
|
bds.stop = Qfalse;
|
|
bds.j = nz - 1;
|
|
for (bds.nyzero = 0; !yds[bds.nyzero]; bds.nyzero++);
|
|
if (nx > 10000 || ny > 10000) {
|
|
retry:
|
|
bds.stop = Qfalse;
|
|
rb_thread_call_without_gvl(bigdivrem1, &bds, rb_big_stop, &bds);
|
|
|
|
if (bds.stop == Qtrue) {
|
|
/* execute trap handler, but exception was not raised. */
|
|
goto retry;
|
|
}
|
|
}
|
|
else {
|
|
bigdivrem1(&bds);
|
|
}
|
|
|
|
if (needs_mod && shift) {
|
|
bary_small_rshift(zds, zds, ny, shift, 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bary_divmod(BDIGIT *qds, size_t nq, BDIGIT *rds, size_t nr, BDIGIT *xds, size_t nx, BDIGIT *yds, size_t ny)
|
|
{
|
|
assert(nx <= nq);
|
|
assert(ny <= nr);
|
|
|
|
while (0 < ny && !yds[ny-1]) ny--;
|
|
if (ny == 0)
|
|
rb_num_zerodiv();
|
|
|
|
while (0 < nx && !xds[nx-1]) nx--;
|
|
if (nx == 0) {
|
|
MEMZERO(qds, BDIGIT, nq);
|
|
MEMZERO(rds, BDIGIT, nr);
|
|
return;
|
|
}
|
|
|
|
if (ny == 1) {
|
|
MEMCPY(qds, xds, BDIGIT, nx);
|
|
MEMZERO(qds+nx, BDIGIT, nq-nx);
|
|
rds[0] = bigdivrem_single(qds, xds, nx, yds[0]);
|
|
MEMZERO(rds+1, BDIGIT, nr-1);
|
|
}
|
|
else {
|
|
int extra_words;
|
|
long j;
|
|
long nz;
|
|
BDIGIT *zds;
|
|
VALUE tmpz = 0;
|
|
BDIGIT *tds;
|
|
|
|
extra_words = bigdivrem_num_extra_words(nx, ny);
|
|
nz = nx + extra_words;
|
|
if (nx + extra_words <= nq)
|
|
zds = qds;
|
|
else
|
|
zds = ALLOCV_N(BDIGIT, tmpz, nx + extra_words);
|
|
MEMCPY(zds, xds, BDIGIT, nx);
|
|
MEMZERO(zds+nx, BDIGIT, nz-nx);
|
|
|
|
if ((yds[ny-1] >> (BITSPERDIG-1)) & 1) {
|
|
/* bigdivrem_normal will not modify y.
|
|
* So use yds directly. */
|
|
tds = yds;
|
|
}
|
|
else {
|
|
/* bigdivrem_normal will modify y.
|
|
* So use rds as a temporary buffer. */
|
|
MEMCPY(rds, yds, BDIGIT, ny);
|
|
tds = rds;
|
|
}
|
|
|
|
bigdivrem_normal(zds, nz, xds, nx, tds, ny, 1);
|
|
|
|
/* copy remainder */
|
|
MEMCPY(rds, zds, BDIGIT, ny);
|
|
MEMZERO(rds+ny, BDIGIT, nr-ny);
|
|
|
|
/* move quotient */
|
|
j = nz - ny;
|
|
MEMMOVE(qds, zds+ny, BDIGIT, j);
|
|
MEMZERO(qds+j, BDIGIT, nq-j);
|
|
|
|
if (tmpz)
|
|
ALLOCV_END(tmpz);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
bigdivrem(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
|
|
{
|
|
long nx = RBIGNUM_LEN(x), ny = RBIGNUM_LEN(y), nz;
|
|
long j;
|
|
VALUE z, zz;
|
|
VALUE tmpy = 0, tmpz = 0;
|
|
BDIGIT *xds, *yds, *zds, *tds;
|
|
BDIGIT dd;
|
|
|
|
yds = BDIGITS(y);
|
|
while (0 < ny && !yds[ny-1]) ny--;
|
|
if (ny == 0)
|
|
rb_num_zerodiv();
|
|
|
|
xds = BDIGITS(x);
|
|
while (0 < nx && !xds[nx-1]) nx--;
|
|
|
|
if (nx < ny || (nx == ny && xds[nx - 1] < yds[ny - 1])) {
|
|
if (divp) *divp = rb_int2big(0);
|
|
if (modp) *modp = x;
|
|
return Qnil;
|
|
}
|
|
if (ny == 1) {
|
|
dd = yds[0];
|
|
z = bignew(nx, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
dd = bigdivrem_single(zds, xds, nx, dd);
|
|
if (modp) {
|
|
*modp = rb_uint2big((VALUE)dd);
|
|
RBIGNUM_SET_SIGN(*modp, RBIGNUM_SIGN(x));
|
|
}
|
|
if (divp) *divp = z;
|
|
return Qnil;
|
|
}
|
|
|
|
if (((yds[ny-1] >> (BITSPERDIG-1)) & 1) == 0) {
|
|
/* Make yds modifiable. */
|
|
tds = ALLOCV_N(BDIGIT, tmpy, ny);
|
|
MEMCPY(tds, yds, BDIGIT, ny);
|
|
yds = tds;
|
|
}
|
|
|
|
nz = nx + bigdivrem_num_extra_words(nx, ny);
|
|
zds = ALLOCV_N(BDIGIT, tmpz, nz);
|
|
bigdivrem_normal(zds, nz, xds, nx, yds, ny, modp != NULL);
|
|
|
|
if (divp) { /* move quotient down in z */
|
|
j = nz - ny;
|
|
while (0 < j && !zds[j-1+ny])
|
|
j--;
|
|
*divp = zz = bignew(j, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
MEMCPY(BDIGITS(zz), zds+ny, BDIGIT, j);
|
|
}
|
|
if (modp) { /* normalize remainder */
|
|
while (ny > 0 && !zds[ny-1]) --ny;
|
|
*modp = zz = bignew(ny, RBIGNUM_SIGN(x));
|
|
MEMCPY(BDIGITS(zz), zds, BDIGIT, ny);
|
|
}
|
|
if (tmpy)
|
|
ALLOCV_END(tmpy);
|
|
if (tmpz)
|
|
ALLOCV_END(tmpz);
|
|
return Qnil;
|
|
}
|
|
|
|
static void
|
|
bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
|
|
{
|
|
VALUE mod;
|
|
|
|
bigdivrem(x, y, divp, &mod);
|
|
if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y) && !BIGZEROP(mod)) {
|
|
if (divp) *divp = bigadd(*divp, rb_int2big(1), 0);
|
|
if (modp) *modp = bigadd(mod, y, 1);
|
|
}
|
|
else if (modp) {
|
|
*modp = mod;
|
|
}
|
|
}
|
|
|
|
|
|
static VALUE
|
|
rb_big_divide(VALUE x, VALUE y, ID op)
|
|
{
|
|
VALUE z;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
{
|
|
if (op == '/') {
|
|
return DBL2NUM(rb_big2dbl(x) / RFLOAT_VALUE(y));
|
|
}
|
|
else {
|
|
double dy = RFLOAT_VALUE(y);
|
|
if (dy == 0.0) rb_num_zerodiv();
|
|
return rb_dbl2big(rb_big2dbl(x) / dy);
|
|
}
|
|
}
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, op);
|
|
}
|
|
bigdivmod(x, y, &z, 0);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big / other -> Numeric
|
|
*
|
|
* Performs division: the class of the resulting object depends on
|
|
* the class of <code>numeric</code> and on the magnitude of the
|
|
* result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_div(VALUE x, VALUE y)
|
|
{
|
|
return rb_big_divide(x, y, '/');
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.div(other) -> integer
|
|
*
|
|
* Performs integer division: returns integer value.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_idiv(VALUE x, VALUE y)
|
|
{
|
|
return rb_big_divide(x, y, rb_intern("div"));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big % other -> Numeric
|
|
* big.modulo(other) -> Numeric
|
|
*
|
|
* Returns big modulo other. See Numeric.divmod for more
|
|
* information.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_modulo(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '%');
|
|
}
|
|
bigdivmod(x, y, 0, &z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.remainder(numeric) -> number
|
|
*
|
|
* Returns the remainder after dividing <i>big</i> by <i>numeric</i>.
|
|
*
|
|
* -1234567890987654321.remainder(13731) #=> -6966
|
|
* -1234567890987654321.remainder(13731.24) #=> -9906.22531493148
|
|
*/
|
|
static VALUE
|
|
rb_big_remainder(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("remainder"));
|
|
}
|
|
bigdivrem(x, y, 0, &z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.divmod(numeric) -> array
|
|
*
|
|
* See <code>Numeric#divmod</code>.
|
|
*
|
|
*/
|
|
VALUE
|
|
rb_big_divmod(VALUE x, VALUE y)
|
|
{
|
|
VALUE div, mod;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("divmod"));
|
|
}
|
|
bigdivmod(x, y, &div, &mod);
|
|
|
|
return rb_assoc_new(bignorm(div), bignorm(mod));
|
|
}
|
|
|
|
static VALUE
|
|
big_shift(VALUE x, long n)
|
|
{
|
|
if (n < 0)
|
|
return big_lshift(x, (unsigned long)-n);
|
|
else if (n > 0)
|
|
return big_rshift(x, (unsigned long)n);
|
|
return x;
|
|
}
|
|
|
|
static VALUE
|
|
big_fdiv(VALUE x, VALUE y)
|
|
{
|
|
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
|
|
VALUE z;
|
|
long l, ex, ey;
|
|
int i;
|
|
|
|
bigtrunc(x);
|
|
l = RBIGNUM_LEN(x);
|
|
ex = l * BITSPERDIG - nlz(BDIGITS(x)[l-1]);
|
|
ex -= 2 * DBL_BIGDIG * BITSPERDIG;
|
|
if (ex) x = big_shift(x, ex);
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
case T_BIGNUM:
|
|
bigtrunc(y);
|
|
l = RBIGNUM_LEN(y);
|
|
ey = l * BITSPERDIG - nlz(BDIGITS(y)[l-1]);
|
|
ey -= DBL_BIGDIG * BITSPERDIG;
|
|
if (ey) y = big_shift(y, ey);
|
|
break;
|
|
case T_FLOAT:
|
|
y = dbl2big(ldexp(frexp(RFLOAT_VALUE(y), &i), DBL_MANT_DIG));
|
|
ey = i - DBL_MANT_DIG;
|
|
break;
|
|
default:
|
|
rb_bug("big_fdiv");
|
|
}
|
|
bigdivrem(x, y, &z, 0);
|
|
l = ex - ey;
|
|
#if SIZEOF_LONG > SIZEOF_INT
|
|
{
|
|
/* Visual C++ can't be here */
|
|
if (l > INT_MAX) return DBL2NUM(INFINITY);
|
|
if (l < INT_MIN) return DBL2NUM(0.0);
|
|
}
|
|
#endif
|
|
return DBL2NUM(ldexp(big2dbl(z), (int)l));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.fdiv(numeric) -> float
|
|
*
|
|
* Returns the floating point result of dividing <i>big</i> by
|
|
* <i>numeric</i>.
|
|
*
|
|
* -1234567890987654321.fdiv(13731) #=> -89910996357705.5
|
|
* -1234567890987654321.fdiv(13731.24) #=> -89909424858035.7
|
|
*
|
|
*/
|
|
|
|
|
|
VALUE
|
|
rb_big_fdiv(VALUE x, VALUE y)
|
|
{
|
|
double dx, dy;
|
|
|
|
dx = big2dbl(x);
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
dy = (double)FIX2LONG(y);
|
|
if (isinf(dx))
|
|
return big_fdiv(x, y);
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
dy = rb_big2dbl(y);
|
|
if (isinf(dx) || isinf(dy))
|
|
return big_fdiv(x, y);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
dy = RFLOAT_VALUE(y);
|
|
if (isnan(dy))
|
|
return y;
|
|
if (isinf(dx))
|
|
return big_fdiv(x, y);
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
|
|
}
|
|
return DBL2NUM(dx / dy);
|
|
}
|
|
|
|
static VALUE
|
|
bigsqr(VALUE x)
|
|
{
|
|
return bigtrunc(bigmul0(x, x));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big ** exponent -> numeric
|
|
*
|
|
* Raises _big_ to the _exponent_ power (which may be an integer, float,
|
|
* or anything that will coerce to a number). The result may be
|
|
* a Fixnum, Bignum, or Float
|
|
*
|
|
* 123456789 ** 2 #=> 15241578750190521
|
|
* 123456789 ** 1.2 #=> 5126464716.09932
|
|
* 123456789 ** -2 #=> 6.5610001194102e-17
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_pow(VALUE x, VALUE y)
|
|
{
|
|
double d;
|
|
SIGNED_VALUE yy;
|
|
|
|
if (y == INT2FIX(0)) return INT2FIX(1);
|
|
switch (TYPE(y)) {
|
|
case T_FLOAT:
|
|
d = RFLOAT_VALUE(y);
|
|
if ((!RBIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d))
|
|
return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
rb_warn("in a**b, b may be too big");
|
|
d = rb_big2dbl(y);
|
|
break;
|
|
|
|
case T_FIXNUM:
|
|
yy = FIX2LONG(y);
|
|
|
|
if (yy < 0)
|
|
return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
|
|
else {
|
|
VALUE z = 0;
|
|
SIGNED_VALUE mask;
|
|
const long xlen = RBIGNUM_LEN(x);
|
|
const long xbits = BITSPERDIG*xlen - nlz(RBIGNUM_DIGITS(x)[xlen-1]);
|
|
const long BIGLEN_LIMIT = 32*1024*1024;
|
|
|
|
if ((xbits > BIGLEN_LIMIT) || (xbits * yy > BIGLEN_LIMIT)) {
|
|
rb_warn("in a**b, b may be too big");
|
|
d = (double)yy;
|
|
break;
|
|
}
|
|
for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
|
|
if (z) z = bigsqr(z);
|
|
if (yy & mask) {
|
|
z = z ? bigtrunc(bigmul0(z, x)) : x;
|
|
}
|
|
}
|
|
return bignorm(z);
|
|
}
|
|
/* NOTREACHED */
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("**"));
|
|
}
|
|
return DBL2NUM(pow(rb_big2dbl(x), d));
|
|
}
|
|
|
|
static VALUE
|
|
bigand_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
long i;
|
|
char sign;
|
|
|
|
if (y == 0) return INT2FIX(0);
|
|
sign = (y > 0);
|
|
xds = BDIGITS(x);
|
|
zn = xn = RBIGNUM_LEN(x);
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
if (sign) {
|
|
y &= xds[0];
|
|
return LONG2NUM(y);
|
|
}
|
|
#endif
|
|
|
|
z = bignew(zn, RBIGNUM_SIGN(x) || sign);
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
i = 1;
|
|
zds[0] = xds[0] & y;
|
|
#else
|
|
{
|
|
BDIGIT_DBL num = y;
|
|
|
|
for (i=0; i<(int)(sizeof(y)/SIZEOF_BDIGITS); i++) {
|
|
zds[i] = xds[i] & BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
#endif
|
|
while (i < xn) {
|
|
zds[i] = sign?0:xds[i];
|
|
i++;
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big & numeric -> integer
|
|
*
|
|
* Performs bitwise +and+ between _big_ and _numeric_.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_and(VALUE xx, VALUE yy)
|
|
{
|
|
volatile VALUE x, y, z;
|
|
BDIGIT *ds1, *ds2, *zds;
|
|
long i, l1, l2;
|
|
char sign;
|
|
|
|
if (!FIXNUM_P(yy) && !RB_TYPE_P(yy, T_BIGNUM)) {
|
|
return rb_num_coerce_bit(xx, yy, '&');
|
|
}
|
|
|
|
x = xx;
|
|
y = yy;
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
if (FIXNUM_P(y)) {
|
|
return bigand_int(x, FIX2LONG(y));
|
|
}
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
y = rb_big_clone(y);
|
|
get2comp(y);
|
|
}
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
l1 = RBIGNUM_LEN(y);
|
|
l2 = RBIGNUM_LEN(x);
|
|
ds1 = BDIGITS(y);
|
|
ds2 = BDIGITS(x);
|
|
sign = RBIGNUM_SIGN(y);
|
|
}
|
|
else {
|
|
l1 = RBIGNUM_LEN(x);
|
|
l2 = RBIGNUM_LEN(y);
|
|
ds1 = BDIGITS(x);
|
|
ds2 = BDIGITS(y);
|
|
sign = RBIGNUM_SIGN(x);
|
|
}
|
|
z = bignew(l2, RBIGNUM_SIGN(x) || RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
|
|
for (i=0; i<l1; i++) {
|
|
zds[i] = ds1[i] & ds2[i];
|
|
}
|
|
for (; i<l2; i++) {
|
|
zds[i] = sign?0:ds2[i];
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
bigor_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
long i;
|
|
char sign;
|
|
|
|
sign = (y >= 0);
|
|
xds = BDIGITS(x);
|
|
zn = xn = RBIGNUM_LEN(x);
|
|
z = bignew(zn, RBIGNUM_SIGN(x) && sign);
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
i = 1;
|
|
zds[0] = xds[0] | y;
|
|
#else
|
|
{
|
|
BDIGIT_DBL num = y;
|
|
|
|
for (i=0; i<(int)(sizeof(y)/SIZEOF_BDIGITS); i++) {
|
|
zds[i] = xds[i] | BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
#endif
|
|
while (i < xn) {
|
|
zds[i] = sign?xds[i]:(BDIGIT)(BIGRAD-1);
|
|
i++;
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big | numeric -> integer
|
|
*
|
|
* Performs bitwise +or+ between _big_ and _numeric_.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_or(VALUE xx, VALUE yy)
|
|
{
|
|
volatile VALUE x, y, z;
|
|
BDIGIT *ds1, *ds2, *zds;
|
|
long i, l1, l2;
|
|
char sign;
|
|
|
|
if (!FIXNUM_P(yy) && !RB_TYPE_P(yy, T_BIGNUM)) {
|
|
return rb_num_coerce_bit(xx, yy, '|');
|
|
}
|
|
|
|
x = xx;
|
|
y = yy;
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
if (FIXNUM_P(y)) {
|
|
return bigor_int(x, FIX2LONG(y));
|
|
}
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
y = rb_big_clone(y);
|
|
get2comp(y);
|
|
}
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
l1 = RBIGNUM_LEN(y);
|
|
l2 = RBIGNUM_LEN(x);
|
|
ds1 = BDIGITS(y);
|
|
ds2 = BDIGITS(x);
|
|
sign = RBIGNUM_SIGN(y);
|
|
}
|
|
else {
|
|
l1 = RBIGNUM_LEN(x);
|
|
l2 = RBIGNUM_LEN(y);
|
|
ds1 = BDIGITS(x);
|
|
ds2 = BDIGITS(y);
|
|
sign = RBIGNUM_SIGN(x);
|
|
}
|
|
z = bignew(l2, RBIGNUM_SIGN(x) && RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
|
|
for (i=0; i<l1; i++) {
|
|
zds[i] = ds1[i] | ds2[i];
|
|
}
|
|
for (; i<l2; i++) {
|
|
zds[i] = sign?ds2[i]:(BDIGIT)(BIGRAD-1);
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
bigxor_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
long i;
|
|
char sign;
|
|
|
|
sign = (y >= 0) ? 1 : 0;
|
|
xds = BDIGITS(x);
|
|
zn = xn = RBIGNUM_LEN(x);
|
|
z = bignew(zn, !(RBIGNUM_SIGN(x) ^ sign));
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS >= SIZEOF_LONG
|
|
i = 1;
|
|
zds[0] = xds[0] ^ y;
|
|
#else
|
|
{
|
|
BDIGIT_DBL num = y;
|
|
|
|
for (i=0; i<(int)(sizeof(y)/SIZEOF_BDIGITS); i++) {
|
|
zds[i] = xds[i] ^ BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
#endif
|
|
while (i < xn) {
|
|
zds[i] = sign?xds[i]:~xds[i];
|
|
i++;
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
/*
|
|
* call-seq:
|
|
* big ^ numeric -> integer
|
|
*
|
|
* Performs bitwise +exclusive or+ between _big_ and _numeric_.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_xor(VALUE xx, VALUE yy)
|
|
{
|
|
volatile VALUE x, y;
|
|
VALUE z;
|
|
BDIGIT *ds1, *ds2, *zds;
|
|
long i, l1, l2;
|
|
char sign;
|
|
|
|
if (!FIXNUM_P(yy) && !RB_TYPE_P(yy, T_BIGNUM)) {
|
|
return rb_num_coerce_bit(xx, yy, '^');
|
|
}
|
|
|
|
x = xx;
|
|
y = yy;
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
if (FIXNUM_P(y)) {
|
|
return bigxor_int(x, FIX2LONG(y));
|
|
}
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
y = rb_big_clone(y);
|
|
get2comp(y);
|
|
}
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
l1 = RBIGNUM_LEN(y);
|
|
l2 = RBIGNUM_LEN(x);
|
|
ds1 = BDIGITS(y);
|
|
ds2 = BDIGITS(x);
|
|
sign = RBIGNUM_SIGN(y);
|
|
}
|
|
else {
|
|
l1 = RBIGNUM_LEN(x);
|
|
l2 = RBIGNUM_LEN(y);
|
|
ds1 = BDIGITS(x);
|
|
ds2 = BDIGITS(y);
|
|
sign = RBIGNUM_SIGN(x);
|
|
}
|
|
z = bignew(l2, !(RBIGNUM_SIGN(x) ^ RBIGNUM_SIGN(y)));
|
|
zds = BDIGITS(z);
|
|
|
|
for (i=0; i<l1; i++) {
|
|
zds[i] = ds1[i] ^ ds2[i];
|
|
}
|
|
for (; i<l2; i++) {
|
|
zds[i] = sign?ds2[i]:~ds2[i];
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
check_shiftdown(VALUE y, VALUE x)
|
|
{
|
|
if (!RBIGNUM_LEN(x)) return INT2FIX(0);
|
|
if (rb_absint_size(y, NULL) > SIZEOF_LONG) {
|
|
return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(-1);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big << numeric -> integer
|
|
*
|
|
* Shifts big left _numeric_ positions (right if _numeric_ is negative).
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_lshift(VALUE x, VALUE y)
|
|
{
|
|
long shift;
|
|
int neg = 0;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(y)) {
|
|
shift = FIX2LONG(y);
|
|
if (shift < 0) {
|
|
neg = 1;
|
|
shift = -shift;
|
|
}
|
|
break;
|
|
}
|
|
else if (RB_TYPE_P(y, T_BIGNUM)) {
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
VALUE t = check_shiftdown(y, x);
|
|
if (!NIL_P(t)) return t;
|
|
neg = 1;
|
|
}
|
|
shift = big2ulong(y, "long", TRUE);
|
|
break;
|
|
}
|
|
y = rb_to_int(y);
|
|
}
|
|
|
|
x = neg ? big_rshift(x, shift) : big_lshift(x, shift);
|
|
return bignorm(x);
|
|
}
|
|
|
|
static BDIGIT
|
|
bary_small_lshift(BDIGIT *zds, BDIGIT *xds, long n, int shift)
|
|
{
|
|
long i;
|
|
BDIGIT_DBL num = 0;
|
|
|
|
for (i=0; i<n; i++) {
|
|
num = num | (BDIGIT_DBL)*xds++ << shift;
|
|
*zds++ = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
return BIGLO(num);
|
|
}
|
|
|
|
static VALUE
|
|
big_lshift(VALUE x, unsigned long shift)
|
|
{
|
|
BDIGIT *xds, *zds;
|
|
long s1 = shift/BITSPERDIG;
|
|
int s2 = (int)(shift%BITSPERDIG);
|
|
VALUE z;
|
|
long len, i;
|
|
|
|
len = RBIGNUM_LEN(x);
|
|
z = bignew(len+s1+1, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
for (i=0; i<s1; i++) {
|
|
*zds++ = 0;
|
|
}
|
|
xds = BDIGITS(x);
|
|
zds[len] = bary_small_lshift(zds, xds, len, s2);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big >> numeric -> integer
|
|
*
|
|
* Shifts big right _numeric_ positions (left if _numeric_ is negative).
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_rshift(VALUE x, VALUE y)
|
|
{
|
|
long shift;
|
|
int neg = 0;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(y)) {
|
|
shift = FIX2LONG(y);
|
|
if (shift < 0) {
|
|
neg = 1;
|
|
shift = -shift;
|
|
}
|
|
break;
|
|
}
|
|
else if (RB_TYPE_P(y, T_BIGNUM)) {
|
|
if (RBIGNUM_SIGN(y)) {
|
|
VALUE t = check_shiftdown(y, x);
|
|
if (!NIL_P(t)) return t;
|
|
}
|
|
else {
|
|
neg = 1;
|
|
}
|
|
shift = big2ulong(y, "long", TRUE);
|
|
break;
|
|
}
|
|
y = rb_to_int(y);
|
|
}
|
|
|
|
x = neg ? big_lshift(x, shift) : big_rshift(x, shift);
|
|
return bignorm(x);
|
|
}
|
|
|
|
static void
|
|
bary_small_rshift(BDIGIT *zds, BDIGIT *xds, long n, int shift, int sign_bit)
|
|
{
|
|
BDIGIT_DBL num = 0;
|
|
BDIGIT x;
|
|
if (sign_bit) {
|
|
num = (~(BDIGIT_DBL)0) << BITSPERDIG;
|
|
}
|
|
while (n--) {
|
|
num = (num | xds[n]) >> shift;
|
|
x = xds[n];
|
|
zds[n] = BIGLO(num);
|
|
num = BIGUP(x);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
big_rshift(VALUE x, unsigned long shift)
|
|
{
|
|
BDIGIT *xds, *zds;
|
|
long s1 = shift/BITSPERDIG;
|
|
int s2 = (int)(shift%BITSPERDIG);
|
|
VALUE z;
|
|
long i, j;
|
|
volatile VALUE save_x;
|
|
|
|
if (s1 > RBIGNUM_LEN(x)) {
|
|
if (RBIGNUM_SIGN(x))
|
|
return INT2FIX(0);
|
|
else
|
|
return INT2FIX(-1);
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
save_x = x;
|
|
xds = BDIGITS(x);
|
|
i = RBIGNUM_LEN(x); j = i - s1;
|
|
if (j == 0) {
|
|
if (RBIGNUM_SIGN(x)) return INT2FIX(0);
|
|
else return INT2FIX(-1);
|
|
}
|
|
z = bignew(j, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
bary_small_rshift(zds, xds+s1, j, s2, !RBIGNUM_SIGN(x));
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
get2comp(z);
|
|
}
|
|
RB_GC_GUARD(save_x);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big[n] -> 0, 1
|
|
*
|
|
* Bit Reference---Returns the <em>n</em>th bit in the (assumed) binary
|
|
* representation of <i>big</i>, where <i>big</i>[0] is the least
|
|
* significant bit.
|
|
*
|
|
* a = 9**15
|
|
* 50.downto(0) do |n|
|
|
* print a[n]
|
|
* end
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* 000101110110100000111000011110010100111100010111001
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_aref(VALUE x, VALUE y)
|
|
{
|
|
BDIGIT *xds;
|
|
BDIGIT_DBL num;
|
|
VALUE shift;
|
|
long i, s1, s2;
|
|
|
|
if (RB_TYPE_P(y, T_BIGNUM)) {
|
|
if (!RBIGNUM_SIGN(y))
|
|
return INT2FIX(0);
|
|
bigtrunc(y);
|
|
if (rb_absint_size(y, NULL) > sizeof(long)) {
|
|
out_of_range:
|
|
return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
|
|
}
|
|
shift = big2ulong(y, "long", FALSE);
|
|
}
|
|
else {
|
|
i = NUM2LONG(y);
|
|
if (i < 0) return INT2FIX(0);
|
|
shift = (VALUE)i;
|
|
}
|
|
s1 = shift/BITSPERDIG;
|
|
s2 = shift%BITSPERDIG;
|
|
|
|
if (s1 >= RBIGNUM_LEN(x)) goto out_of_range;
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
xds = BDIGITS(x);
|
|
i = 0; num = 1;
|
|
while (num += BIGLO(~xds[i]), ++i <= s1) {
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
else {
|
|
num = BDIGITS(x)[s1];
|
|
}
|
|
if (num & ((BDIGIT_DBL)1<<s2))
|
|
return INT2FIX(1);
|
|
return INT2FIX(0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.hash -> fixnum
|
|
*
|
|
* Compute a hash based on the value of _big_.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_hash(VALUE x)
|
|
{
|
|
st_index_t hash;
|
|
|
|
hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*RBIGNUM_LEN(x)) ^ RBIGNUM_SIGN(x);
|
|
return INT2FIX(hash);
|
|
}
|
|
|
|
/*
|
|
* MISSING: documentation
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_coerce(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y)) {
|
|
y = rb_int2big(FIX2LONG(y));
|
|
}
|
|
else if (!RB_TYPE_P(y, T_BIGNUM)) {
|
|
rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
|
|
rb_obj_classname(y));
|
|
}
|
|
return rb_assoc_new(y, x);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.abs -> aBignum
|
|
* big.magnitude -> aBignum
|
|
*
|
|
* Returns the absolute value of <i>big</i>.
|
|
*
|
|
* -1234567890987654321.abs #=> 1234567890987654321
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_abs(VALUE x)
|
|
{
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
RBIGNUM_SET_SIGN(x, 1);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.size -> integer
|
|
*
|
|
* Returns the number of bytes in the machine representation of
|
|
* <i>big</i>.
|
|
*
|
|
* (256**10 - 1).size #=> 12
|
|
* (256**20 - 1).size #=> 20
|
|
* (256**40 - 1).size #=> 40
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_size(VALUE big)
|
|
{
|
|
return LONG2FIX(RBIGNUM_LEN(big)*SIZEOF_BDIGITS);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.odd? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>big</i> is an odd number.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_odd_p(VALUE num)
|
|
{
|
|
if (BDIGITS(num)[0] & 1) {
|
|
return Qtrue;
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.even? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>big</i> is an even number.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_even_p(VALUE num)
|
|
{
|
|
if (BDIGITS(num)[0] & 1) {
|
|
return Qfalse;
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* Bignum objects hold integers outside the range of
|
|
* Fixnum. Bignum objects are created
|
|
* automatically when integer calculations would otherwise overflow a
|
|
* Fixnum. When a calculation involving
|
|
* Bignum objects returns a result that will fit in a
|
|
* Fixnum, the result is automatically converted.
|
|
*
|
|
* For the purposes of the bitwise operations and <code>[]</code>, a
|
|
* Bignum is treated as if it were an infinite-length
|
|
* bitstring with 2's complement representation.
|
|
*
|
|
* While Fixnum values are immediate, Bignum
|
|
* objects are not---assignment and parameter passing work with
|
|
* references to objects, not the objects themselves.
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Bignum(void)
|
|
{
|
|
rb_cBignum = rb_define_class("Bignum", rb_cInteger);
|
|
|
|
rb_define_method(rb_cBignum, "to_s", rb_big_to_s, -1);
|
|
rb_define_alias(rb_cBignum, "inspect", "to_s");
|
|
rb_define_method(rb_cBignum, "coerce", rb_big_coerce, 1);
|
|
rb_define_method(rb_cBignum, "-@", rb_big_uminus, 0);
|
|
rb_define_method(rb_cBignum, "+", rb_big_plus, 1);
|
|
rb_define_method(rb_cBignum, "-", rb_big_minus, 1);
|
|
rb_define_method(rb_cBignum, "*", rb_big_mul, 1);
|
|
rb_define_method(rb_cBignum, "/", rb_big_div, 1);
|
|
rb_define_method(rb_cBignum, "%", rb_big_modulo, 1);
|
|
rb_define_method(rb_cBignum, "div", rb_big_idiv, 1);
|
|
rb_define_method(rb_cBignum, "divmod", rb_big_divmod, 1);
|
|
rb_define_method(rb_cBignum, "modulo", rb_big_modulo, 1);
|
|
rb_define_method(rb_cBignum, "remainder", rb_big_remainder, 1);
|
|
rb_define_method(rb_cBignum, "fdiv", rb_big_fdiv, 1);
|
|
rb_define_method(rb_cBignum, "**", rb_big_pow, 1);
|
|
rb_define_method(rb_cBignum, "&", rb_big_and, 1);
|
|
rb_define_method(rb_cBignum, "|", rb_big_or, 1);
|
|
rb_define_method(rb_cBignum, "^", rb_big_xor, 1);
|
|
rb_define_method(rb_cBignum, "~", rb_big_neg, 0);
|
|
rb_define_method(rb_cBignum, "<<", rb_big_lshift, 1);
|
|
rb_define_method(rb_cBignum, ">>", rb_big_rshift, 1);
|
|
rb_define_method(rb_cBignum, "[]", rb_big_aref, 1);
|
|
|
|
rb_define_method(rb_cBignum, "<=>", rb_big_cmp, 1);
|
|
rb_define_method(rb_cBignum, "==", rb_big_eq, 1);
|
|
rb_define_method(rb_cBignum, ">", big_gt, 1);
|
|
rb_define_method(rb_cBignum, ">=", big_ge, 1);
|
|
rb_define_method(rb_cBignum, "<", big_lt, 1);
|
|
rb_define_method(rb_cBignum, "<=", big_le, 1);
|
|
rb_define_method(rb_cBignum, "===", rb_big_eq, 1);
|
|
rb_define_method(rb_cBignum, "eql?", rb_big_eql, 1);
|
|
rb_define_method(rb_cBignum, "hash", rb_big_hash, 0);
|
|
rb_define_method(rb_cBignum, "to_f", rb_big_to_f, 0);
|
|
rb_define_method(rb_cBignum, "abs", rb_big_abs, 0);
|
|
rb_define_method(rb_cBignum, "magnitude", rb_big_abs, 0);
|
|
rb_define_method(rb_cBignum, "size", rb_big_size, 0);
|
|
rb_define_method(rb_cBignum, "odd?", rb_big_odd_p, 0);
|
|
rb_define_method(rb_cBignum, "even?", rb_big_even_p, 0);
|
|
|
|
power_cache_init();
|
|
|
|
big_three = rb_uint2big(3);
|
|
rb_gc_register_mark_object(big_three);
|
|
}
|