ruby/gc.c

5556 строки
142 KiB
C

/**********************************************************************
gc.c -
$Author$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby/re.h"
#include "ruby/io.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "ruby/debug.h"
#include "eval_intern.h"
#include "vm_core.h"
#include "internal.h"
#include "gc.h"
#include "constant.h"
#include "ruby_atomic.h"
#include "probes.h"
#include <stdio.h>
#include <stdarg.h>
#include <setjmp.h>
#include <sys/types.h>
#include <assert.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if defined(__native_client__) && defined(NACL_NEWLIB)
# include "nacl/resource.h"
# undef HAVE_POSIX_MEMALIGN
# undef HAVE_MEMALIGN
#endif
#if defined _WIN32 || defined __CYGWIN__
#include <windows.h>
#elif defined(HAVE_POSIX_MEMALIGN)
#elif defined(HAVE_MEMALIGN)
#include <malloc.h>
#endif
#ifdef HAVE_VALGRIND_MEMCHECK_H
# include <valgrind/memcheck.h>
# ifndef VALGRIND_MAKE_MEM_DEFINED
# define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
# endif
# ifndef VALGRIND_MAKE_MEM_UNDEFINED
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
# endif
#else
# define VALGRIND_MAKE_MEM_DEFINED(p, n) 0
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) 0
#endif
#define rb_setjmp(env) RUBY_SETJMP(env)
#define rb_jmp_buf rb_jmpbuf_t
#if defined(HAVE_RB_GC_GUARDED_PTR) && HAVE_RB_GC_GUARDED_PTR
volatile VALUE *
rb_gc_guarded_ptr(volatile VALUE *ptr)
{
return ptr;
}
#endif
#ifndef GC_MALLOC_LIMIT
#define GC_MALLOC_LIMIT 8000000
#endif
#define HEAP_MIN_SLOTS 10000
#define FREE_MIN 4096
#define HEAP_GROWTH_FACTOR 1.8
typedef struct {
unsigned int initial_malloc_limit;
unsigned int initial_heap_min_slots;
unsigned int initial_free_min;
double initial_growth_factor;
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
VALUE gc_stress;
#endif
} ruby_gc_params_t;
static ruby_gc_params_t initial_params = {
GC_MALLOC_LIMIT,
HEAP_MIN_SLOTS,
FREE_MIN,
HEAP_GROWTH_FACTOR,
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
FALSE,
#endif
};
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
void rb_gcdebug_print_obj_condition(VALUE obj);
#if USE_RGENGC
/* RGENGC_DEBUG:
* 1: basic information
* 2: remember set operation
* 3: mark
* 4:
* 5: sweep
*/
#ifndef RGENGC_DEBUG
#define RGENGC_DEBUG 0
#endif
/* RGENGC_CHECK_MODE
* 0: disable all assertions
* 1: enable assertions (to debug RGenGC)
* 2: enable bits check (for debugging)
* 3: show all references
*/
#ifndef RGENGC_CHECK_MODE
#define RGENGC_CHECK_MODE 0
#endif
/* RGENGC_PROFILE
* 0: disable RGenGC profiling
* 1: enable profiling for basic information
* 2: enable profiling for each types
*/
#ifndef RGENGC_PROFILE
#define RGENGC_PROFILE 0
#endif
#else /* USE_RGENGC */
#define RGENGC_DEBUG 0
#define RGENGC_CHECK_MODE 0
#define RGENGC_PROFILE 0
#endif
#ifndef GC_PROFILE_MORE_DETAIL
#define GC_PROFILE_MORE_DETAIL 1
#endif
#ifndef GC_ENABLE_LAZY_SWEEP
#define GC_ENABLE_LAZY_SWEEP 1
#endif
#ifndef CALC_EXACT_MALLOC_SIZE
#define CALC_EXACT_MALLOC_SIZE 0
#endif
typedef enum {
GPR_FLAG_NONE = 0x00,
GPR_FLAG_MINOR = 0x01, /* not major gc */
GPR_FLAG_HAVE_FINALIZE = 0x02,
/* reason */
GPR_FLAG_NEWOBJ = 0x04,
GPR_FLAG_MALLOC = 0x08,
GPR_FLAG_METHOD = 0x10,
GPR_FLAG_CAPI = 0x20,
GPR_FLAG_STRESS = 0x40
} gc_profile_record_flag;
typedef struct gc_profile_record {
int flags;
double gc_time;
double gc_invoke_time;
size_t heap_total_objects;
size_t heap_use_size;
size_t heap_total_size;
#if GC_PROFILE_MORE_DETAIL
double gc_mark_time;
double gc_sweep_time;
size_t heap_use_slots;
size_t heap_live_objects;
size_t heap_free_objects;
size_t allocate_increase;
size_t allocate_limit;
#if CALC_EXACT_MALLOC_SIZE
size_t allocated_size;
#endif
double prepare_time;
size_t removing_objects;
size_t empty_objects;
#endif
} gc_profile_record;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
#endif
typedef struct RVALUE {
union {
struct {
VALUE flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RTypedData typeddata;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
struct RRational rational;
struct RComplex complex;
struct {
struct RBasic basic;
VALUE v1;
VALUE v2;
VALUE v3;
} values;
} as;
#ifdef GC_DEBUG
const char *file;
int line;
#endif
} RVALUE;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(pop)
#endif
struct heaps_slot {
struct heaps_header *header;
RVALUE *freelist;
struct heaps_slot *next;
struct heaps_slot *prev;
struct heaps_slot *free_next;
};
struct heaps_header {
struct heaps_slot *base;
uintptr_t *mark_bits;
#if USE_RGENGC
uintptr_t *rememberset_bits;
uintptr_t *oldgen_bits;
#endif
RVALUE *start;
RVALUE *end;
size_t limit;
};
struct heaps_free_bitmap {
struct heaps_free_bitmap *next;
};
struct gc_list {
VALUE *varptr;
struct gc_list *next;
};
#define STACK_CHUNK_SIZE 500
typedef struct stack_chunk {
VALUE data[STACK_CHUNK_SIZE];
struct stack_chunk *next;
} stack_chunk_t;
typedef struct mark_stack {
stack_chunk_t *chunk;
stack_chunk_t *cache;
size_t index;
size_t limit;
size_t cache_size;
size_t unused_cache_size;
} mark_stack_t;
typedef struct rb_objspace {
struct {
size_t limit;
size_t increase;
size_t increase2;
#if CALC_EXACT_MALLOC_SIZE
size_t allocated_size;
size_t allocations;
#endif
} malloc_params;
struct {
size_t increment;
struct heaps_slot *ptr;
struct heaps_slot *sweep_slots;
struct heaps_slot *free_slots;
struct heaps_header **sorted;
size_t length;
size_t used;
struct heaps_free_bitmap *free_bitmap;
RVALUE *range[2];
struct heaps_header *freed;
size_t free_num;
size_t free_min;
size_t final_num;
size_t do_heap_free;
} heap;
struct {
int dont_gc;
int dont_lazy_sweep;
int during_gc;
rb_atomic_t finalizing;
} flags;
struct {
st_table *table;
RVALUE *deferred;
} final;
mark_stack_t mark_stack;
struct {
int run;
gc_profile_record *record;
size_t next_index;
size_t size;
#if GC_PROFILE_MORE_DETAIL
double prepare_time;
#endif
double invoke_time;
#if USE_RGENGC
size_t minor_gc_count;
size_t major_gc_count;
#ifdef RGENGC_PROFILE
size_t generated_normal_object_count;
size_t generated_shady_object_count;
size_t shade_operation_count;
size_t promote_operation_count;
size_t remembered_normal_object_count;
size_t remembered_shady_object_count;
#if RGENGC_PROFILE >= 2
size_t generated_normal_object_count_types[RUBY_T_MASK];
size_t generated_shady_object_count_types[RUBY_T_MASK];
size_t shade_operation_count_types[RUBY_T_MASK];
size_t promote_operation_count_types[RUBY_T_MASK];
size_t remembered_normal_object_count_types[RUBY_T_MASK];
size_t remembered_shady_object_count_types[RUBY_T_MASK];
#endif
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
#if GC_PROFILE_MORE_DETAIL
double gc_sweep_start_time; /* temporary profiling space */
#endif
} profile;
struct gc_list *global_list;
size_t count;
size_t total_allocated_object_num;
size_t total_freed_object_num;
rb_event_flag_t hook_events; /* this place may be affinity with memory cache */
VALUE gc_stress;
struct mark_func_data_struct {
void *data;
void (*mark_func)(VALUE v, void *data);
} *mark_func_data;
struct {
int during_minor_gc;
int parent_object_is_promoted;
/* for check mode */
VALUE parent_object;
VALUE interesting_object;
int need_major_gc;
size_t remembered_shady_object_count;
size_t remembered_shady_object_limit;
size_t oldgen_object_count;
size_t oldgen_object_limit;
} rgengc;
} rb_objspace_t;
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
#define rb_objspace (*GET_VM()->objspace)
#define ruby_initial_gc_stress initial_params.gc_stress
VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
#else
static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}};
VALUE *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
#endif
#define malloc_limit objspace->malloc_params.limit
#define malloc_increase objspace->malloc_params.increase
#define malloc_increase2 objspace->malloc_params.increase2
#define malloc_allocated_size objspace->malloc_params.allocated_size
#define heaps objspace->heap.ptr
#define heaps_length objspace->heap.length
#define heaps_used objspace->heap.used
#define lomem objspace->heap.range[0]
#define himem objspace->heap.range[1]
#define heaps_inc objspace->heap.increment
#define heaps_freed objspace->heap.freed
#define dont_gc objspace->flags.dont_gc
#define during_gc objspace->flags.during_gc
#define finalizing objspace->flags.finalizing
#define finalizer_table objspace->final.table
#define deferred_final_list objspace->final.deferred
#define global_List objspace->global_list
#define ruby_gc_stress objspace->gc_stress
#define initial_malloc_limit initial_params.initial_malloc_limit
#define initial_heap_min_slots initial_params.initial_heap_min_slots
#define initial_free_min initial_params.initial_free_min
#define initial_growth_factor initial_params.initial_growth_factor
#define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0)
#if SIZEOF_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
#else
# error not supported
#endif
#define RANY(o) ((RVALUE*)(o))
#define has_free_object (objspace->heap.free_slots && objspace->heap.free_slots->freelist)
#define HEAP_HEADER(p) ((struct heaps_header *)(p))
#define GET_HEAP_HEADER(x) (HEAP_HEADER((uintptr_t)(x) & ~(HEAP_ALIGN_MASK)))
#define GET_HEAP_SLOT(x) (GET_HEAP_HEADER(x)->base)
#define GET_HEAP_MARK_BITS(x) (GET_HEAP_HEADER(x)->mark_bits)
#define GET_HEAP_REMEMBERSET_BITS(x) (GET_HEAP_HEADER(x)->rememberset_bits)
#define GET_HEAP_OLDGEN_BITS(x) (GET_HEAP_HEADER(x)->oldgen_bits)
#define NUM_IN_SLOT(p) (((uintptr_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
#define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / (sizeof(uintptr_t) * CHAR_BIT))
#define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & ((sizeof(uintptr_t) * CHAR_BIT)-1))
#define BITMAP_BIT(p) ((uintptr_t)1 << BITMAP_OFFSET(p))
/* Marking */
#define MARKED_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] & BITMAP_BIT(p))
#define MARK_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] | BITMAP_BIT(p))
#define CLEAR_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
#ifndef HEAP_ALIGN_LOG
/* default tiny heap size: 16KB */
#define HEAP_ALIGN_LOG 14
#endif
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
enum {
HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG),
HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)),
REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5),
HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC),
HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heaps_header))/sizeof(struct RVALUE)),
HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), sizeof(uintptr_t) * CHAR_BIT)
};
int ruby_gc_debug_indent = 0;
VALUE rb_mGC;
extern st_table *rb_class_tbl;
int ruby_disable_gc_stress = 0;
static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
static VALUE define_final0(VALUE obj, VALUE block);
VALUE rb_define_final(VALUE obj, VALUE block);
VALUE rb_undefine_final(VALUE obj);
static void run_final(rb_objspace_t *objspace, VALUE obj);
static void initial_expand_heap(rb_objspace_t *objspace);
static void negative_size_allocation_error(const char *);
static void *aligned_malloc(size_t, size_t);
static void aligned_free(void *);
static void init_mark_stack(mark_stack_t *stack);
static VALUE lazy_sweep_enable(void);
static int garbage_collect(rb_objspace_t *, int full_mark, int immediate_sweep, int reason);
static int garbage_collect_body(rb_objspace_t *, int full_mark, int immediate_sweep, int reason);
static int gc_prepare_free_objects(rb_objspace_t *);
static void mark_tbl(rb_objspace_t *, st_table *);
static void rest_sweep(rb_objspace_t *);
static void gc_mark_stacked_objects(rb_objspace_t *);
static void gc_mark(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
static double getrusage_time(void);
static inline void gc_prof_timer_start(rb_objspace_t *, int reason);
static inline void gc_prof_timer_stop(rb_objspace_t *);
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
static inline void gc_prof_sweep_slot_timer_start(rb_objspace_t *);
static inline void gc_prof_sweep_slot_timer_stop(rb_objspace_t *);
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
static const char *obj_type_name(VALUE obj);
#if USE_RGENGC
static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj);
static void rgengc_remember(rb_objspace_t *objspace, VALUE obj);
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace);
static size_t rgengc_rememberset_mark(rb_objspace_t *objspace);
#define FL_TEST2(x,f) ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? (rb_bug("FL_TEST2: SPECIAL_CONST"), 0) : FL_TEST_RAW((x),(f)))
#define FL_SET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_SET2: SPECIAL_CONST"); RBASIC(x)->flags |= (f);} while (0)
#define FL_UNSET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_UNSET2: SPECIAL_CONST"); RBASIC(x)->flags &= ~(f);} while (0)
#define RVALUE_SHADY(x) (!FL_TEST2((x), FL_WB_PROTECTED))
#define RVALUE_PROMOTED_FROM_BITMAP(x) MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(x),x)
static inline int
RVALUE_PROMOTED(VALUE obj)
{
int result = FL_TEST2((obj), FL_OLDGEN);
if (RGENGC_CHECK_MODE > 0) {
int bitmap_result = RVALUE_PROMOTED_FROM_BITMAP(obj) ? TRUE : FALSE;
if (!result != !bitmap_result) rb_bug("RVALUE_PROMOTED: %p (%s) flag %d but bitmap is %d\n",
(void *)obj, obj_type_name(obj), !!result, !!bitmap_result);
}
return result;
}
static inline void
RVALUE_PROMOTE(VALUE obj)
{
MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
FL_SET2(obj, FL_OLDGEN);
#if RGENGC_PROFILE >= 1
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.promote_operation_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.promote_operation_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
}
static inline void
RVALUE_DEMOTE(VALUE obj)
{
FL_UNSET2(obj, FL_OLDGEN);
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
}
#endif
static inline gc_profile_record *
gc_prof_record(rb_objspace_t *objspace)
{
size_t index = objspace->profile.next_index - 1;
return &objspace->profile.record[index];
}
static void
rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
{
if (level <= RGENGC_DEBUG) {
char buf[1024];
FILE *out = stderr;
va_list args;
const char *status = " ";
if (during_gc) {
status = objspace->rgengc.during_minor_gc ? "-" : "+";
}
va_start(args, fmt);
vsnprintf(buf, 1024, fmt, args);
va_end(args);
fprintf(out, "%s|", status);
fputs(buf, out);
}
}
#define rgengc_report if (RGENGC_DEBUG) rgengc_report_body
/*
--------------------------- ObjectSpace -----------------------------
*/
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
rb_objspace_t *
rb_objspace_alloc(void)
{
rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
memset(objspace, 0, sizeof(*objspace));
malloc_limit = initial_malloc_limit;
ruby_gc_stress = ruby_initial_gc_stress;
return objspace;
}
#endif
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
static void free_stack_chunks(mark_stack_t *);
void
rb_objspace_free(rb_objspace_t *objspace)
{
rest_sweep(objspace);
if (objspace->profile.record) {
free(objspace->profile.record);
objspace->profile.record = 0;
}
if (global_List) {
struct gc_list *list, *next;
for (list = global_List; list; list = next) {
next = list->next;
xfree(list);
}
}
if (objspace->heap.free_bitmap) {
struct heaps_free_bitmap *list, *next;
for (list = objspace->heap.free_bitmap; list; list = next) {
next = list->next;
free(list);
}
}
if (objspace->heap.sorted) {
size_t i;
for (i = 0; i < heaps_used; ++i) {
free(objspace->heap.sorted[i]->mark_bits);
#if USE_RGENGC
free(objspace->heap.sorted[i]->rememberset_bits);
free(objspace->heap.sorted[i]->oldgen_bits);
#endif
aligned_free(objspace->heap.sorted[i]);
}
free(objspace->heap.sorted);
heaps_used = 0;
heaps = 0;
}
free_stack_chunks(&objspace->mark_stack);
free(objspace);
}
#endif
void
rb_global_variable(VALUE *var)
{
rb_gc_register_address(var);
}
static void
allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length)
{
struct heaps_header **p;
struct heaps_free_bitmap *bits;
size_t size, add, i;
size = next_heaps_length*sizeof(struct heaps_header *);
add = next_heaps_length - heaps_used;
if (heaps_used > 0) {
p = (struct heaps_header **)realloc(objspace->heap.sorted, size);
if (p) objspace->heap.sorted = p;
}
else {
p = objspace->heap.sorted = (struct heaps_header **)malloc(size);
}
if (p == 0) {
during_gc = 0;
rb_memerror();
}
for (i = 0; i < add * (USE_RGENGC ? 3 : 1) /* mark bits and rememberset bits and oldgen bits */; i++) {
bits = (struct heaps_free_bitmap *)malloc(HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
if (bits == 0) {
during_gc = 0;
rb_memerror();
return;
}
bits->next = objspace->heap.free_bitmap;
objspace->heap.free_bitmap = bits;
}
}
static void
link_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
{
slot->free_next = objspace->heap.free_slots;
objspace->heap.free_slots = slot;
}
static void
unlink_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
{
objspace->heap.free_slots = slot->free_next;
slot->free_next = NULL;
}
static uintptr_t *
alloc_bitmap(rb_objspace_t *objspace)
{
uintptr_t *bits = (uintptr_t *)objspace->heap.free_bitmap;
assert(objspace->heap.free_bitmap != NULL);
objspace->heap.free_bitmap = objspace->heap.free_bitmap->next;
memset(bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
return bits;
}
static void
free_bitmap(rb_objspace_t *objspace, uintptr_t *bits)
{
((struct heaps_free_bitmap *)(bits))->next = objspace->heap.free_bitmap;
objspace->heap.free_bitmap = (struct heaps_free_bitmap *)bits;
}
static void
assign_heap_slot(rb_objspace_t *objspace)
{
RVALUE *p, *pend, *membase;
struct heaps_slot *slot;
size_t hi, lo, mid;
size_t objs;
objs = HEAP_OBJ_LIMIT;
p = (RVALUE*)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
if (p == 0) {
during_gc = 0;
rb_memerror();
}
slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot));
if (slot == 0) {
aligned_free(p);
during_gc = 0;
rb_memerror();
}
MEMZERO((void*)slot, struct heaps_slot, 1);
slot->next = heaps;
if (heaps) heaps->prev = slot;
heaps = slot;
membase = p;
p = (RVALUE*)((VALUE)p + sizeof(struct heaps_header));
if ((VALUE)p % sizeof(RVALUE) != 0) {
p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
objs = (HEAP_SIZE - (size_t)((VALUE)p - (VALUE)membase))/sizeof(RVALUE);
}
lo = 0;
hi = heaps_used;
while (lo < hi) {
register RVALUE *mid_membase;
mid = (lo + hi) / 2;
mid_membase = (RVALUE *)objspace->heap.sorted[mid];
if (mid_membase < membase) {
lo = mid + 1;
}
else if (mid_membase > membase) {
hi = mid;
}
else {
rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid);
}
}
if (hi < heaps_used) {
MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct heaps_header*, heaps_used - hi);
}
heaps->header = (struct heaps_header *)membase;
objspace->heap.sorted[hi] = heaps->header;
objspace->heap.sorted[hi]->start = p;
objspace->heap.sorted[hi]->end = (p + objs);
objspace->heap.sorted[hi]->base = heaps;
objspace->heap.sorted[hi]->limit = objs;
objspace->heap.sorted[hi]->mark_bits = alloc_bitmap(objspace);
#if USE_RGENGC
objspace->heap.sorted[hi]->rememberset_bits = alloc_bitmap(objspace);
objspace->heap.sorted[hi]->oldgen_bits = alloc_bitmap(objspace);
#endif
pend = p + objs;
if (lomem == 0 || lomem > p) lomem = p;
if (himem < pend) himem = pend;
heaps_used++;
while (p < pend) {
p->as.free.flags = 0;
rgengc_report(3, objspace, "assign_heap_slot: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p));
p->as.free.next = heaps->freelist;
heaps->freelist = p;
p++;
}
link_free_heap_slot(objspace, heaps);
}
static void
add_heap_slots(rb_objspace_t *objspace, size_t add)
{
size_t i;
size_t next_heaps_length;
next_heaps_length = heaps_used + add;
if (next_heaps_length > heaps_length) {
allocate_sorted_heaps(objspace, next_heaps_length);
heaps_length = next_heaps_length;
}
for (i = 0; i < add; i++) {
assign_heap_slot(objspace);
}
heaps_inc = 0;
}
static void
init_heap(rb_objspace_t *objspace)
{
add_heap_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT);
init_mark_stack(&objspace->mark_stack);
#ifdef USE_SIGALTSTACK
{
/* altstack of another threads are allocated in another place */
rb_thread_t *th = GET_THREAD();
void *tmp = th->altstack;
th->altstack = malloc(rb_sigaltstack_size());
free(tmp); /* free previously allocated area */
}
#endif
objspace->profile.invoke_time = getrusage_time();
finalizer_table = st_init_numtable();
}
static void
initial_expand_heap(rb_objspace_t *objspace)
{
size_t min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT;
if (min_size > heaps_used) {
add_heap_slots(objspace, min_size - heaps_used);
}
}
static void
set_heaps_increment(rb_objspace_t *objspace)
{
size_t next_heaps_length = (size_t)(heaps_used * initial_growth_factor);
if (next_heaps_length == heaps_used) {
next_heaps_length++;
}
heaps_inc = next_heaps_length - heaps_used;
rgengc_report(5, objspace, "set_heaps_increment: heaps_length: %d, next_heaps_length: %d, heaps_inc: %d\n",
heaps_length, next_heaps_length, heaps_inc);
if (next_heaps_length > heaps_length) {
allocate_sorted_heaps(objspace, next_heaps_length);
heaps_length = next_heaps_length;
}
}
static int
heaps_increment(rb_objspace_t *objspace)
{
rgengc_report(5, objspace, "heaps_increment: heaps_inc: %d\n", heaps_inc);
if (heaps_inc > 0) {
assign_heap_slot(objspace);
heaps_inc--;
return TRUE;
}
return FALSE;
}
void
rb_objspace_set_event_hook(const rb_event_flag_t event)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
}
static void
gc_event_hook_body(rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data)
{
rb_thread_t *th = GET_THREAD();
EXEC_EVENT_HOOK(th, event, th->cfp->self, 0, 0, data);
}
#define gc_event_hook(objspace, event, data) do { \
if (UNLIKELY((objspace)->hook_events & (event))) { \
gc_event_hook_body((objspace), (event), (data)); \
} \
} while (0)
static VALUE
newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE obj;
if (UNLIKELY(during_gc)) {
dont_gc = 1;
during_gc = 0;
rb_bug("object allocation during garbage collection phase");
}
if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
if (!garbage_collect(objspace, FALSE, FALSE, GPR_FLAG_NEWOBJ)) {
during_gc = 0;
rb_memerror();
}
}
if (UNLIKELY(!has_free_object)) {
if (!gc_prepare_free_objects(objspace)) {
during_gc = 0;
rb_memerror();
}
}
obj = (VALUE)objspace->heap.free_slots->freelist;
objspace->heap.free_slots->freelist = RANY(obj)->as.free.next;
if (objspace->heap.free_slots->freelist == NULL) {
unlink_free_heap_slot(objspace, objspace->heap.free_slots);
}
/* OBJSETUP */
RBASIC(obj)->flags = flags;
RBASIC_SET_CLASS(obj, klass);
if (rb_safe_level() >= 3) FL_SET((obj), FL_TAINT);
RANY(obj)->as.values.v1 = v1;
RANY(obj)->as.values.v2 = v2;
RANY(obj)->as.values.v3 = v3;
#ifdef GC_DEBUG
RANY(obj)->file = rb_sourcefile();
RANY(obj)->line = rb_sourceline();
#endif
#if RGENGC_PROFILE
if (flags & FL_WB_PROTECTED) {
objspace->profile.generated_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
else {
objspace->profile.generated_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
rgengc_report(5, objspace, "newobj: %p (%s)\n", (void *)obj, obj_type_name(obj));
#if USE_RGENGC && RGENGC_CHECK_MODE
if (RVALUE_PROMOTED(obj)) rb_bug("newobj: %p (%s) is promoted.\n", (void *)obj, obj_type_name(obj));
if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %p (%s) is remembered.\n", (void *)obj, obj_type_name(obj));
#endif
objspace->total_allocated_object_num++;
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj);
return obj;
}
VALUE
rb_newobj(void)
{
return newobj_of(0, T_NONE, 0, 0, 0);
}
VALUE
rb_newobj_of(VALUE klass, VALUE flags)
{
return newobj_of(klass, flags, 0, 0, 0);
}
NODE*
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
{
NODE *n = (NODE *)newobj_of(0, T_NODE, a0, a1, a2);
nd_set_type(n, type);
return n;
}
VALUE
rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
if (klass) Check_Type(klass, T_CLASS);
return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap);
}
VALUE
rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
{
if (klass) Check_Type(klass, T_CLASS);
return newobj_of(klass, T_DATA | type->flags, (VALUE)type, (VALUE)1, (VALUE)datap);
}
size_t
rb_objspace_data_type_memsize(VALUE obj)
{
if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
}
else {
return 0;
}
}
const char *
rb_objspace_data_type_name(VALUE obj)
{
if (RTYPEDDATA_P(obj)) {
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
}
else {
return 0;
}
}
static inline int
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
{
register RVALUE *p = RANY(ptr);
register struct heaps_header *heap;
register size_t hi, lo, mid;
if (p < lomem || p > himem) return FALSE;
if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
/* check if p looks like a pointer using bsearch*/
lo = 0;
hi = heaps_used;
while (lo < hi) {
mid = (lo + hi) / 2;
heap = objspace->heap.sorted[mid];
if (heap->start <= p) {
if (p < heap->end)
return TRUE;
lo = mid + 1;
}
else {
hi = mid;
}
}
return FALSE;
}
static int
free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
{
if (!me->mark) {
rb_free_method_entry(me);
}
return ST_CONTINUE;
}
void
rb_free_m_table(st_table *tbl)
{
st_foreach(tbl, free_method_entry_i, 0);
st_free_table(tbl);
}
static int
free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
{
xfree(ce);
return ST_CONTINUE;
}
void
rb_free_const_table(st_table *tbl)
{
st_foreach(tbl, free_const_entry_i, 0);
st_free_table(tbl);
}
static int obj_free(rb_objspace_t *, VALUE);
static inline struct heaps_slot *
add_slot_local_freelist(rb_objspace_t *objspace, RVALUE *p)
{
struct heaps_slot *slot;
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
p->as.free.flags = 0;
slot = GET_HEAP_SLOT(p);
p->as.free.next = slot->freelist;
slot->freelist = p;
rgengc_report(3, objspace, "add_slot_local_freelist: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p));
return slot;
}
static void
unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
{
if (slot->prev)
slot->prev->next = slot->next;
if (slot->next)
slot->next->prev = slot->prev;
if (heaps == slot)
heaps = slot->next;
if (objspace->heap.sweep_slots == slot)
objspace->heap.sweep_slots = slot->next;
slot->prev = NULL;
slot->next = NULL;
}
static void
free_unused_heaps(rb_objspace_t *objspace)
{
size_t i, j;
struct heaps_header *last = 0;
for (i = j = 1; j < heaps_used; i++) {
if (objspace->heap.sorted[i]->limit == 0) {
struct heaps_header* h = objspace->heap.sorted[i];
free_bitmap(objspace, h->mark_bits);
#if USE_RGENGC
free_bitmap(objspace, h->rememberset_bits);
free_bitmap(objspace, h->oldgen_bits);
#endif
if (!last) {
last = objspace->heap.sorted[i];
}
else {
aligned_free(objspace->heap.sorted[i]);
}
heaps_used--;
}
else {
if (i != j) {
objspace->heap.sorted[j] = objspace->heap.sorted[i];
}
j++;
}
}
if (last) {
if (last < heaps_freed) {
aligned_free(heaps_freed);
heaps_freed = last;
}
else {
aligned_free(last);
}
}
}
static inline void
make_deferred(RVALUE *p)
{
p->as.basic.flags = T_ZOMBIE;
}
static inline void
make_io_deferred(RVALUE *p)
{
rb_io_t *fptr = p->as.file.fptr;
make_deferred(p);
p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
p->as.data.data = fptr;
}
static int
obj_free(rb_objspace_t *objspace, VALUE obj)
{
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj);
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
FL_UNSET(obj, FL_EXIVAR);
}
#if USE_RGENGC
if (MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj))
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj);
#endif
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
RANY(obj)->as.object.as.heap.ivptr) {
xfree(RANY(obj)->as.object.as.heap.ivptr);
}
break;
case T_MODULE:
case T_CLASS:
rb_clear_cache_by_class((VALUE)obj);
if (RCLASS_M_TBL(obj)) {
rb_free_m_table(RCLASS_M_TBL(obj));
}
if (RCLASS_IV_TBL(obj)) {
st_free_table(RCLASS_IV_TBL(obj));
}
if (RCLASS_CONST_TBL(obj)) {
rb_free_const_table(RCLASS_CONST_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
st_free_table(RCLASS_IV_INDEX_TBL(obj));
}
xfree(RANY(obj)->as.klass.ptr);
break;
case T_STRING:
rb_str_free(obj);
break;
case T_ARRAY:
rb_ary_free(obj);
break;
case T_HASH:
if (RANY(obj)->as.hash.ntbl) {
st_free_table(RANY(obj)->as.hash.ntbl);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
onig_free(RANY(obj)->as.regexp.ptr);
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
if (RTYPEDDATA_P(obj)) {
RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
}
if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
xfree(DATA_PTR(obj));
}
else if (RANY(obj)->as.data.dfree) {
make_deferred(RANY(obj));
return 1;
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.rmatch) {
struct rmatch *rm = RANY(obj)->as.match.rmatch;
onig_region_free(&rm->regs, 0);
if (rm->char_offset)
xfree(rm->char_offset);
xfree(rm);
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
make_io_deferred(RANY(obj));
return 1;
}
break;
case T_RATIONAL:
case T_COMPLEX:
break;
case T_ICLASS:
/* iClass shares table with the module */
xfree(RANY(obj)->as.klass.ptr);
break;
case T_FLOAT:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
xfree(RBIGNUM_DIGITS(obj));
}
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RANY(obj)->as.node.u1.tbl) {
xfree(RANY(obj)->as.node.u1.tbl);
}
break;
case NODE_ARGS:
if (RANY(obj)->as.node.u3.args) {
xfree(RANY(obj)->as.node.u3.args);
}
break;
case NODE_ALLOCA:
xfree(RANY(obj)->as.node.u1.node);
break;
}
break; /* no need to free iv_tbl */
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RANY(obj)->as.rstruct.as.heap.ptr) {
xfree(RANY(obj)->as.rstruct.as.heap.ptr);
}
break;
default:
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
}
return 0;
}
void
Init_heap(void)
{
init_heap(&rb_objspace);
}
typedef int each_obj_callback(void *, void *, size_t, void *);
struct each_obj_args {
each_obj_callback *callback;
void *data;
};
static VALUE
objspace_each_objects(VALUE arg)
{
size_t i;
RVALUE *membase = 0;
RVALUE *pstart, *pend;
rb_objspace_t *objspace = &rb_objspace;
struct each_obj_args *args = (struct each_obj_args *)arg;
volatile VALUE v;
i = 0;
while (i < heaps_used) {
while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1])
i--;
while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i] <= (uintptr_t)membase)
i++;
if (heaps_used <= i)
break;
membase = (RVALUE *)objspace->heap.sorted[i];
pstart = objspace->heap.sorted[i]->start;
pend = pstart + objspace->heap.sorted[i]->limit;
for (; pstart != pend; pstart++) {
if (pstart->as.basic.flags) {
v = (VALUE)pstart; /* acquire to save this object */
break;
}
}
if (pstart != pend) {
if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
break;
}
}
}
RB_GC_GUARD(v);
return Qnil;
}
/*
* rb_objspace_each_objects() is special C API to walk through
* Ruby object space. This C API is too difficult to use it.
* To be frank, you should not use it. Or you need to read the
* source code of this function and understand what this function does.
*
* 'callback' will be called several times (the number of heap slot,
* at current implementation) with:
* vstart: a pointer to the first living object of the heap_slot.
* vend: a pointer to next to the valid heap_slot area.
* stride: a distance to next VALUE.
*
* If callback() returns non-zero, the iteration will be stopped.
*
* This is a sample callback code to iterate liveness objects:
*
* int
* sample_callback(void *vstart, void *vend, int stride, void *data) {
* VALUE v = (VALUE)vstart;
* for (; v != (VALUE)vend; v += stride) {
* if (RBASIC(v)->flags) { // liveness check
* // do something with live object 'v'
* }
* return 0; // continue to iteration
* }
*
* Note: 'vstart' is not a top of heap_slot. This point the first
* living object to grasp at least one object to avoid GC issue.
* This means that you can not walk through all Ruby object slot
* including freed object slot.
*
* Note: On this implementation, 'stride' is same as sizeof(RVALUE).
* However, there are possibilities to pass variable values with
* 'stride' with some reasons. You must use stride instead of
* use some constant value in the iteration.
*/
void
rb_objspace_each_objects(each_obj_callback *callback, void *data)
{
struct each_obj_args args;
rb_objspace_t *objspace = &rb_objspace;
rest_sweep(objspace);
objspace->flags.dont_lazy_sweep = TRUE;
args.callback = callback;
args.data = data;
rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
}
struct os_each_struct {
size_t num;
VALUE of;
};
static int
internal_object_p(VALUE obj)
{
RVALUE *p = (RVALUE *)obj;
if (p->as.basic.flags) {
switch (BUILTIN_TYPE(p)) {
case T_NONE:
case T_ICLASS:
case T_NODE:
case T_ZOMBIE:
break;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON))
break;
default:
if (!p->as.basic.klass) break;
return 0;
}
}
return 1;
}
int
rb_objspace_internal_object_p(VALUE obj)
{
return internal_object_p(obj);
}
static int
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
{
struct os_each_struct *oes = (struct os_each_struct *)data;
RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
for (; p != pend; p++) {
volatile VALUE v = (VALUE)p;
if (!internal_object_p(v)) {
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
rb_yield(v);
oes->num++;
}
}
}
return 0;
}
static VALUE
os_obj_of(VALUE of)
{
struct os_each_struct oes;
oes.num = 0;
oes.of = of;
rb_objspace_each_objects(os_obj_of_i, &oes);
return SIZET2NUM(oes.num);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
* ObjectSpace.each_object([module]) -> an_enumerator
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, <code>each_object</code>
* returns both the numbers we defined and several constants defined in
* the <code>Math</code> module.
*
* If no block is given, an enumerator is returned instead.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
if (argc == 0) {
of = 0;
}
else {
rb_scan_args(argc, argv, "01", &of);
}
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(VALUE os, VALUE obj)
{
return rb_undefine_final(obj);
}
VALUE
rb_undefine_final(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
st_data_t data = obj;
rb_check_frozen(obj);
st_delete(finalizer_table, &data, 0);
FL_UNSET(obj, FL_FINALIZE);
return obj;
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed.
*
*/
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
VALUE obj, block;
rb_scan_args(argc, argv, "11", &obj, &block);
rb_check_frozen(obj);
if (argc == 1) {
block = rb_block_proc();
}
else if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
return define_final0(obj, block);
}
static VALUE
define_final0(VALUE obj, VALUE block)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
if (!FL_ABLE(obj)) {
rb_raise(rb_eArgError, "cannot define finalizer for %s",
rb_obj_classname(obj));
}
RBASIC(obj)->flags |= FL_FINALIZE;
block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
OBJ_FREEZE(block);
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
rb_ary_push(table, block);
}
else {
table = rb_ary_new3(1, block);
RBASIC_CLEAR_CLASS(table);
st_add_direct(finalizer_table, obj, table);
}
return block;
}
VALUE
rb_define_final(VALUE obj, VALUE block)
{
rb_check_frozen(obj);
if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
return define_final0(obj, block);
}
void
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
st_insert(finalizer_table, dest, table);
}
FL_SET(dest, FL_FINALIZE);
}
static VALUE
run_single_final(VALUE arg)
{
VALUE *args = (VALUE *)arg;
rb_eval_cmd(args[0], args[1], (int)args[2]);
return Qnil;
}
static void
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
{
long i;
int status;
VALUE args[3];
VALUE objid = nonspecial_obj_id(obj);
if (RARRAY_LEN(table) > 0) {
args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
}
else {
args[1] = 0;
}
args[2] = (VALUE)rb_safe_level();
for (i=0; i<RARRAY_LEN(table); i++) {
VALUE final = RARRAY_AREF(table, i);
args[0] = RARRAY_AREF(final, 1);
args[2] = FIX2INT(RARRAY_AREF(final, 0));
status = 0;
rb_protect(run_single_final, (VALUE)args, &status);
if (status)
rb_set_errinfo(Qnil);
}
}
static void
run_final(rb_objspace_t *objspace, VALUE obj)
{
RUBY_DATA_FUNC free_func = 0;
st_data_t key, table;
objspace->heap.final_num--;
RBASIC_CLEAR_CLASS(obj);
if (RTYPEDDATA_P(obj)) {
free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
}
else {
free_func = RDATA(obj)->dfree;
}
if (free_func) {
(*free_func)(DATA_PTR(obj));
}
key = (st_data_t)obj;
if (st_delete(finalizer_table, &key, &table)) {
run_finalizer(objspace, obj, (VALUE)table);
}
}
static void
finalize_list(rb_objspace_t *objspace, RVALUE *p)
{
while (p) {
RVALUE *tmp = p->as.free.next;
run_final(objspace, (VALUE)p);
objspace->total_freed_object_num++;
if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
add_slot_local_freelist(objspace, p);
objspace->heap.free_num++;
}
else {
struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark;
slot->header->limit--;
}
p = tmp;
}
}
static void
finalize_deferred(rb_objspace_t *objspace)
{
RVALUE *p = deferred_final_list;
deferred_final_list = 0;
if (p) {
finalize_list(objspace, p);
}
}
static void
gc_finalize_deferred(void *dmy)
{
rb_objspace_t *objspace = &rb_objspace;
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
finalize_deferred(objspace);
ATOMIC_SET(finalizing, 0);
}
/* TODO: to keep compatibility, maybe unused. */
void
rb_gc_finalize_deferred(void)
{
gc_finalize_deferred(0);
}
static void
gc_finalize_deferred_register()
{
rb_postponed_job_register_one(0, gc_finalize_deferred, 0);
}
struct force_finalize_list {
VALUE obj;
VALUE table;
struct force_finalize_list *next;
};
static int
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
{
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
curr->obj = key;
curr->table = val;
curr->next = *prev;
*prev = curr;
return ST_CONTINUE;
}
void
rb_gc_call_finalizer_at_exit(void)
{
rb_objspace_call_finalizer(&rb_objspace);
}
static void
rb_objspace_call_finalizer(rb_objspace_t *objspace)
{
RVALUE *p, *pend;
RVALUE *final_list = 0;
size_t i;
rest_sweep(objspace);
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
/* run finalizers */
finalize_deferred(objspace);
assert(deferred_final_list == 0);
/* force to run finalizer */
while (finalizer_table->num_entries) {
struct force_finalize_list *list = 0;
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
while (list) {
struct force_finalize_list *curr = list;
st_data_t obj = (st_data_t)curr->obj;
run_finalizer(objspace, curr->obj, curr->table);
st_delete(finalizer_table, &obj, 0);
list = curr->next;
xfree(curr);
}
}
/* finalizers are part of garbage collection */
during_gc++;
/* run data object's finalizers */
for (i = 0; i < heaps_used; i++) {
p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit;
while (p < pend) {
if (BUILTIN_TYPE(p) == T_DATA &&
DATA_PTR(p) && RANY(p)->as.data.dfree &&
!rb_obj_is_thread((VALUE)p) &&
!rb_obj_is_mutex((VALUE)p) &&
!rb_obj_is_fiber((VALUE)p)) {
p->as.free.flags = 0;
if (RTYPEDDATA_P(p)) {
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
}
if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
xfree(DATA_PTR(p));
}
else if (RANY(p)->as.data.dfree) {
make_deferred(RANY(p));
RANY(p)->as.free.next = final_list;
final_list = p;
}
}
else if (BUILTIN_TYPE(p) == T_FILE) {
if (RANY(p)->as.file.fptr) {
make_io_deferred(RANY(p));
RANY(p)->as.free.next = final_list;
final_list = p;
}
}
p++;
}
}
during_gc = 0;
if (final_list) {
finalize_list(objspace, final_list);
}
st_free_table(finalizer_table);
finalizer_table = 0;
ATOMIC_SET(finalizing, 0);
}
static inline int
is_id_value(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
return TRUE;
}
static inline int
is_swept_object(rb_objspace_t *objspace, VALUE ptr)
{
struct heaps_slot *slot = objspace->heap.sweep_slots;
while (slot) {
if ((VALUE)slot->header->start <= ptr && ptr < (VALUE)(slot->header->end))
return FALSE;
slot = slot->next;
}
return TRUE;
}
static inline int
is_dead_object(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr))
return FALSE;
if (!is_swept_object(objspace, ptr))
return TRUE;
return FALSE;
}
static inline int
is_live_object(rb_objspace_t *objspace, VALUE ptr)
{
if (BUILTIN_TYPE(ptr) == 0) return FALSE;
if (RBASIC(ptr)->klass == 0) return FALSE;
if (is_dead_object(objspace, ptr)) return FALSE;
return TRUE;
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
*/
static VALUE
id2ref(VALUE obj, VALUE objid)
{
#if SIZEOF_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULONG(x)
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULL(x)
#endif
rb_objspace_t *objspace = &rb_objspace;
VALUE ptr;
void *p0;
ptr = NUM2PTR(objid);
p0 = (void *)ptr;
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
if (FLONUM_P(ptr)) return (VALUE)ptr;
ptr = obj_id_to_ref(objid);
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
if (rb_id2name(symid) == 0)
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
if (!is_id_value(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is not id value", p0);
}
if (!is_live_object(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is recycled object", p0);
}
return (VALUE)ptr;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ -> integer
* obj.object_id -> integer
*
* Returns an integer identifier for +obj+.
*
* The same number will be returned on all calls to +id+ for a given object,
* and no two active objects will share an id.
*
* Object#object_id is a different concept from the +:name+ notation, which
* returns the symbol id of +name+.
*
* Replaces the deprecated Object#id.
*/
/*
* call-seq:
* obj.hash -> fixnum
*
* Generates a Fixnum hash value for this object.
*
* This function must have the property that <code>a.eql?(b)</code> implies
* <code>a.hash == b.hash</code>.
*
* The hash value is used by Hash class.
*
* Any hash value that exceeds the capacity of a Fixnum will be truncated
* before being used.
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (SYMBOL_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
return LONG2NUM((SIGNED_VALUE)obj);
#else
return LL2NUM((SIGNED_VALUE)obj);
#endif
}
else if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return nonspecial_obj_id(obj);
}
static int
set_zero(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE k = (VALUE)key;
VALUE hash = (VALUE)arg;
rb_hash_aset(hash, k, INT2FIX(0));
return ST_CONTINUE;
}
/*
* call-seq:
* ObjectSpace.count_objects([result_hash]) -> hash
*
* Counts objects for each type.
*
* It returns a hash, such as:
* {
* :TOTAL=>10000,
* :FREE=>3011,
* :T_OBJECT=>6,
* :T_CLASS=>404,
* # ...
* }
*
* The contents of the returned hash are implementation specific.
* It may be changed in future.
*
* If the optional argument +result_hash+ is given,
* it is overwritten and returned. This is intended to avoid probe effect.
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
rb_objspace_t *objspace = &rb_objspace;
size_t counts[T_MASK+1];
size_t freed = 0;
size_t total = 0;
size_t i;
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit;
for (;p < pend; p++) {
if (p->as.basic.flags) {
counts[BUILTIN_TYPE(p)]++;
}
else {
freed++;
}
}
total += objspace->heap.sorted[i]->limit;
}
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL_RAW(hash), set_zero, hash);
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
for (i = 0; i <= T_MASK; i++) {
VALUE type;
switch (i) {
#define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
COUNT_TYPE(T_NONE);
COUNT_TYPE(T_OBJECT);
COUNT_TYPE(T_CLASS);
COUNT_TYPE(T_MODULE);
COUNT_TYPE(T_FLOAT);
COUNT_TYPE(T_STRING);
COUNT_TYPE(T_REGEXP);
COUNT_TYPE(T_ARRAY);
COUNT_TYPE(T_HASH);
COUNT_TYPE(T_STRUCT);
COUNT_TYPE(T_BIGNUM);
COUNT_TYPE(T_FILE);
COUNT_TYPE(T_DATA);
COUNT_TYPE(T_MATCH);
COUNT_TYPE(T_COMPLEX);
COUNT_TYPE(T_RATIONAL);
COUNT_TYPE(T_NIL);
COUNT_TYPE(T_TRUE);
COUNT_TYPE(T_FALSE);
COUNT_TYPE(T_SYMBOL);
COUNT_TYPE(T_FIXNUM);
COUNT_TYPE(T_UNDEF);
COUNT_TYPE(T_NODE);
COUNT_TYPE(T_ICLASS);
COUNT_TYPE(T_ZOMBIE);
#undef COUNT_TYPE
default: type = INT2NUM(i); break;
}
if (counts[i])
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
return hash;
}
/*
------------------------ Garbage Collection ------------------------
*/
/* Sweeping */
static VALUE
lazy_sweep_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->flags.dont_lazy_sweep = FALSE;
return Qnil;
}
#if !USE_RGENGC
static void
gc_clear_slot_bits(struct heaps_slot *slot)
{
memset(slot->header->mark_bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
}
#else
static void
gc_setup_mark_bits(struct heaps_slot *slot)
{
memcpy(slot->header->mark_bits, slot->header->oldgen_bits, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
}
#endif
static size_t
objspace_live_num(rb_objspace_t *objspace)
{
return objspace->total_allocated_object_num - objspace->total_freed_object_num;
}
static inline void
slot_sweep_body(rb_objspace_t *objspace, struct heaps_slot *sweep_slot, const int during_minor_gc)
{
int i;
size_t empty_num = 0, freed_num = 0, final_num = 0;
RVALUE *p, *pend,*offset;
RVALUE *final = deferred_final_list;
int deferred;
uintptr_t *bits, bitset;
#if GC_PROFILE_MORE_DETAIL
gc_profile_record *record=NULL;
#endif
#if GC_PROFILE_MORE_DETAIL
if (objspace->profile.run) {
record = gc_prof_record(objspace);
}
#endif
rgengc_report(3, objspace, "slot_sweep_body: start.\n");
p = sweep_slot->header->start; pend = p + sweep_slot->header->limit;
offset = p - NUM_IN_SLOT(p);
bits = GET_HEAP_MARK_BITS(p);
/* create guard : fill 1 out-of-range */
bits[BITMAP_INDEX(p)] |= BITMAP_BIT(p)-1;
bits[BITMAP_INDEX(pend)] |= ~(BITMAP_BIT(pend) - 1);
for (i=0; i < HEAP_BITMAP_LIMIT; i++) {
bitset = ~bits[i];
if (bitset) {
p = offset + i * (sizeof(uintptr_t) * CHAR_BIT);
do {
if ((bitset & 1) && BUILTIN_TYPE(p) != T_ZOMBIE) {
if (p->as.basic.flags) {
#if GC_PROFILE_MORE_DETAIL
if(record) record->removing_objects++;
#endif
rgengc_report(3, objspace, "slot_sweep_body: free %p (%s)\n", p, obj_type_name((VALUE)p));
#if USE_RGENGC && RGENGC_CHECK_MODE
if (objspace->rgengc.during_minor_gc && RVALUE_PROMOTED((VALUE)p)) rb_bug("slot_sweep_body: %p (%s) is promoted.\n", p, obj_type_name((VALUE)p));
if (rgengc_remembered(objspace, (VALUE)p)) rb_bug("slot_sweep_body: %p (%s) is remembered.\n", p, obj_type_name((VALUE)p));
#endif
if ((deferred = obj_free(objspace, (VALUE)p)) || (FL_TEST(p, FL_FINALIZE))) {
if (!deferred) {
p->as.free.flags = T_ZOMBIE;
RDATA(p)->dfree = 0;
}
p->as.free.next = deferred_final_list;
deferred_final_list = p;
assert(BUILTIN_TYPE(p) == T_ZOMBIE);
final_num++;
}
else {
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
p->as.free.flags = 0;
p->as.free.next = sweep_slot->freelist;
sweep_slot->freelist = p;
rgengc_report(3, objspace, "slot_sweep_body: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p));
freed_num++;
}
}
else {
#if GC_PROFILE_MORE_DETAIL
if(record)
record->empty_objects++;
#endif
empty_num++;
}
}
p++;
bitset >>= 1;
} while (bitset);
}
}
#if USE_RGENGC
gc_setup_mark_bits(sweep_slot);
#else
gc_clear_slot_bits(sweep_slot);
#endif
if (final_num + freed_num + empty_num == sweep_slot->header->limit &&
objspace->heap.free_num > objspace->heap.do_heap_free) {
RVALUE *pp;
for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) {
RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot;
pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
}
sweep_slot->header->limit = final_num;
unlink_heap_slot(objspace, sweep_slot);
}
else {
if (freed_num + empty_num > 0) {
link_free_heap_slot(objspace, sweep_slot);
}
else {
sweep_slot->free_next = NULL;
}
objspace->heap.free_num += freed_num + empty_num;
}
objspace->total_freed_object_num += freed_num;
objspace->heap.final_num += final_num;
if (deferred_final_list && !finalizing) {
rb_thread_t *th = GET_THREAD();
if (th) {
gc_finalize_deferred_register();
}
}
rgengc_report(3, objspace, "slot_sweep_body: end.\n");
}
#if USE_RGENGC
static void
slot_sweep_minor(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
{
slot_sweep_body(objspace, sweep_slot, TRUE);
}
static void
slot_sweep_major(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
{
slot_sweep_body(objspace, sweep_slot, FALSE);
}
#endif
static void
slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
{
rgengc_report(1, objspace, "slot_sweep: start\n");
gc_prof_sweep_slot_timer_start(objspace);
{
#if USE_RGENGC
if (objspace->rgengc.during_minor_gc) {
slot_sweep_minor(objspace, sweep_slot);
}
else {
slot_sweep_major(objspace, sweep_slot);
}
#else
slot_sweep_body(objspace, sweep_slot, FALSE);
#endif
}
gc_prof_sweep_slot_timer_stop(objspace);
rgengc_report(1, objspace, "slot_sweep: end\n");
}
static int
ready_to_gc(rb_objspace_t *objspace)
{
if (dont_gc || during_gc) {
if (!has_free_object) {
if (!heaps_increment(objspace)) {
set_heaps_increment(objspace);
heaps_increment(objspace);
}
}
return FALSE;
}
return TRUE;
}
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
__attribute__((noinline))
#endif
static void
before_gc_sweep(rb_objspace_t *objspace)
{
rgengc_report(1, objspace, "before_gc_sweep\n");
objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65);
objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.2);
if (objspace->heap.free_min < initial_free_min) {
objspace->heap.free_min = initial_free_min;
if (objspace->heap.do_heap_free < initial_free_min)
objspace->heap.do_heap_free = initial_free_min;
}
objspace->heap.sweep_slots = heaps;
objspace->heap.free_num = 0;
objspace->heap.free_slots = NULL;
malloc_increase2 += ATOMIC_SIZE_EXCHANGE(malloc_increase,0);
/* sweep unlinked method entries */
if (GET_VM()->unlinked_method_entry_list) {
rb_sweep_method_entry(GET_VM());
}
}
static void
after_gc_sweep(rb_objspace_t *objspace)
{
size_t inc;
rgengc_report(1, objspace, "after_gc_sweep\n");
gc_prof_set_malloc_info(objspace);
rgengc_report(5, objspace, "after_gc_sweep: objspace->heap.free_num: %d, objspace->heap.free_min: %d\n",
objspace->heap.free_num, objspace->heap.free_min);
if (objspace->heap.free_num < objspace->heap.free_min) {
set_heaps_increment(objspace);
heaps_increment(objspace);
if (objspace->rgengc.remembered_shady_object_count + objspace->rgengc.oldgen_object_count > (heaps_length * HEAP_OBJ_LIMIT) / 2) {
/* if [oldgen]+[remembered shady] > [all object count]/2, then do major GC */
objspace->rgengc.need_major_gc = TRUE;
}
}
inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
inc += malloc_increase2;
malloc_increase2 = 0;
if (inc > malloc_limit) {
malloc_limit +=
(size_t)((inc - malloc_limit) * (double)objspace_live_num(objspace) / (heaps_used * HEAP_OBJ_LIMIT));
if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit;
}
free_unused_heaps(objspace);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END, 0 /* TODO: pass minor/immediate flag? */);
}
static int
lazy_sweep(rb_objspace_t *objspace)
{
struct heaps_slot *next;
heaps_increment(objspace);
while (objspace->heap.sweep_slots) {
next = objspace->heap.sweep_slots->next;
slot_sweep(objspace, objspace->heap.sweep_slots);
objspace->heap.sweep_slots = next;
if (!next) after_gc_sweep(objspace);
if (has_free_object) {
return TRUE;
}
}
return FALSE;
}
static void
rest_sweep(rb_objspace_t *objspace)
{
if (objspace->heap.sweep_slots) {
during_gc++;
while (objspace->heap.sweep_slots) {
lazy_sweep(objspace);
}
during_gc = 0;
}
}
static void
gc_sweep(rb_objspace_t *objspace, int immediate_sweep)
{
if (immediate_sweep) {
struct heaps_slot *next;
before_gc_sweep(objspace);
while (objspace->heap.sweep_slots) {
next = objspace->heap.sweep_slots->next;
slot_sweep(objspace, objspace->heap.sweep_slots);
objspace->heap.sweep_slots = next;
}
after_gc_sweep(objspace);
}
else {
before_gc_sweep(objspace);
lazy_sweep(objspace);
}
if (!has_free_object) {
/* there is no free after slot_sweep() */
set_heaps_increment(objspace);
if (!heaps_increment(objspace)) { /* can't allocate additional free objects */
during_gc = 0;
rb_memerror();
}
}
}
static int
gc_prepare_free_objects(rb_objspace_t *objspace)
{
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_lazy_sweep) {
if (heaps_increment(objspace)) {
return TRUE;
}
else {
return garbage_collect(objspace, FALSE, TRUE, GPR_FLAG_NEWOBJ);
}
}
if (!ready_to_gc(objspace)) return TRUE;
during_gc++;
if (objspace->heap.sweep_slots) {
if (lazy_sweep(objspace)) {
during_gc = 0;
return TRUE;
}
}
else {
if (heaps_increment(objspace)) {
during_gc = 0;
return TRUE;
}
}
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = 0;
#endif
return garbage_collect_body(objspace, 0, 0, GPR_FLAG_NEWOBJ);
}
/* Marking stack */
static void push_mark_stack(mark_stack_t *, VALUE);
static int pop_mark_stack(mark_stack_t *, VALUE *);
static void shrink_stack_chunk_cache(mark_stack_t *stack);
static stack_chunk_t *
stack_chunk_alloc(void)
{
stack_chunk_t *res;
res = malloc(sizeof(stack_chunk_t));
if (!res)
rb_memerror();
return res;
}
static inline int
is_mark_stask_empty(mark_stack_t *stack)
{
return stack->chunk == NULL;
}
static void
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
{
chunk->next = stack->cache;
stack->cache = chunk;
stack->cache_size++;
}
static void
shrink_stack_chunk_cache(mark_stack_t *stack)
{
stack_chunk_t *chunk;
if (stack->unused_cache_size > (stack->cache_size/2)) {
chunk = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
free(chunk);
}
stack->unused_cache_size = stack->cache_size;
}
static void
push_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *next;
assert(stack->index == stack->limit);
if (stack->cache_size > 0) {
next = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
if (stack->unused_cache_size > stack->cache_size)
stack->unused_cache_size = stack->cache_size;
}
else {
next = stack_chunk_alloc();
}
next->next = stack->chunk;
stack->chunk = next;
stack->index = 0;
}
static void
pop_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *prev;
prev = stack->chunk->next;
assert(stack->index == 0);
add_stack_chunk_cache(stack, stack->chunk);
stack->chunk = prev;
stack->index = stack->limit;
}
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
static void
free_stack_chunks(mark_stack_t *stack)
{
stack_chunk_t *chunk = stack->chunk;
stack_chunk_t *next = NULL;
while (chunk != NULL) {
next = chunk->next;
free(chunk);
chunk = next;
}
}
#endif
static void
push_mark_stack(mark_stack_t *stack, VALUE data)
{
if (stack->index == stack->limit) {
push_mark_stack_chunk(stack);
}
stack->chunk->data[stack->index++] = data;
}
static int
pop_mark_stack(mark_stack_t *stack, VALUE *data)
{
if (is_mark_stask_empty(stack)) {
return FALSE;
}
if (stack->index == 1) {
*data = stack->chunk->data[--stack->index];
pop_mark_stack_chunk(stack);
return TRUE;
}
*data = stack->chunk->data[--stack->index];
return TRUE;
}
static void
init_mark_stack(mark_stack_t *stack)
{
int i;
push_mark_stack_chunk(stack);
stack->limit = STACK_CHUNK_SIZE;
for (i=0; i < 4; i++) {
add_stack_chunk_cache(stack, stack_chunk_alloc());
}
stack->unused_cache_size = stack->cache_size;
}
#ifdef __ia64
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
#else
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
#endif
#define STACK_START (th->machine_stack_start)
#define STACK_END (th->machine_stack_end)
#define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
#if STACK_GROW_DIRECTION < 0
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
#else
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
: (size_t)(STACK_END - STACK_START + 1))
#endif
#if !STACK_GROW_DIRECTION
int ruby_stack_grow_direction;
int
ruby_get_stack_grow_direction(volatile VALUE *addr)
{
VALUE *end;
SET_MACHINE_STACK_END(&end);
if (end > addr) return ruby_stack_grow_direction = 1;
return ruby_stack_grow_direction = -1;
}
#endif
size_t
ruby_stack_length(VALUE **p)
{
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
return STACK_LENGTH;
}
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
static int
stack_check(int water_mark)
{
int ret;
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
#ifdef __ia64
if (!ret) {
ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark;
}
#endif
return ret;
}
#endif
#define STACKFRAME_FOR_CALL_CFUNC 512
int
ruby_stack_check(void)
{
#if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
return 0;
#else
return stack_check(STACKFRAME_FOR_CALL_CFUNC);
#endif
}
static void
mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
{
VALUE v;
while (n--) {
v = *x;
gc_mark_maybe(objspace, v);
x++;
}
}
static void
gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
{
long n;
if (end <= start) return;
n = end - start;
mark_locations_array(objspace, start, n);
}
void
rb_gc_mark_locations(VALUE *start, VALUE *end)
{
gc_mark_locations(&rb_objspace, start, end);
}
#define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
struct mark_tbl_arg {
rb_objspace_t *objspace;
};
static int
mark_entry(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_tbl(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl || tbl->num_entries == 0) return;
arg.objspace = objspace;
st_foreach(tbl, mark_entry, (st_data_t)&arg);
}
static int
mark_key(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)key);
return ST_CONTINUE;
}
static void
mark_set(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_key, (st_data_t)&arg);
}
void
rb_mark_set(st_table *tbl)
{
mark_set(&rb_objspace, tbl);
}
static int
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)key);
gc_mark(arg->objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_hash(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
}
void
rb_mark_hash(st_table *tbl)
{
mark_hash(&rb_objspace, tbl);
}
static void
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
{
const rb_method_definition_t *def = me->def;
gc_mark(objspace, me->klass);
again:
if (!def) return;
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
gc_mark(objspace, def->body.iseq->self);
break;
case VM_METHOD_TYPE_BMETHOD:
gc_mark(objspace, def->body.proc);
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
gc_mark(objspace, def->body.attr.location);
break;
case VM_METHOD_TYPE_REFINED:
if (def->body.orig_me) {
def = def->body.orig_me->def;
goto again;
}
break;
default:
break; /* ignore */
}
}
void
rb_mark_method_entry(const rb_method_entry_t *me)
{
mark_method_entry(&rb_objspace, me);
}
static int
mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
mark_method_entry(arg->objspace, me);
return ST_CONTINUE;
}
static void
mark_m_tbl(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
}
static int
mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, ce->value);
gc_mark(arg->objspace, ce->file);
return ST_CONTINUE;
}
static void
mark_const_tbl(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
}
#if STACK_GROW_DIRECTION < 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
#elif STACK_GROW_DIRECTION > 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
#else
#define GET_STACK_BOUNDS(start, end, appendix) \
((STACK_END < STACK_START) ? \
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
#endif
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
{
union {
rb_jmp_buf j;
VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
} save_regs_gc_mark;
VALUE *stack_start, *stack_end;
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf (and stack) */
rb_setjmp(save_regs_gc_mark.j);
GET_STACK_BOUNDS(stack_start, stack_end, 1);
mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
#endif
#if defined(__mc68000__)
mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
(STACK_START - STACK_END));
#endif
}
void
rb_gc_mark_machine_stack(rb_thread_t *th)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE *stack_start, *stack_end;
GET_STACK_BOUNDS(stack_start, stack_end, 0);
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
#endif
}
void
rb_mark_tbl(st_table *tbl)
{
mark_tbl(&rb_objspace, tbl);
}
static void
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj)
{
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
if (is_pointer_to_heap(objspace, (void *)obj)) {
int type = BUILTIN_TYPE(obj);
if (type != T_ZOMBIE && type != T_NONE) {
gc_mark(objspace, obj);
}
}
}
void
rb_gc_mark_maybe(VALUE obj)
{
gc_mark_maybe(&rb_objspace, obj);
}
static int
gc_marked(rb_objspace_t *objspace, VALUE ptr)
{
register uintptr_t *bits = GET_HEAP_MARK_BITS(ptr);
if (MARKED_IN_BITMAP(bits, ptr)) return 1;
return 0;
}
static int
gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr)
{
register uintptr_t *bits = GET_HEAP_MARK_BITS(ptr);
if (gc_marked(objspace, ptr)) return 0;
MARK_IN_BITMAP(bits, ptr);
return 1;
}
static int
markable_object_p(rb_objspace_t *objspace, VALUE obj)
{
if (rb_special_const_p(obj)) return 0; /* special const is not markable */
if (RGENGC_CHECK_MODE) {
if (!is_pointer_to_heap(objspace, (void *)obj)) rb_bug("markable_object_p: %p is not pointer to heap", (void *)obj);
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("markable_object_p: %p is T_NONE", (void *)obj);
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("markable_object_p: %p is T_ZOMBIE", (void *)obj);
}
return 1;
}
int
rb_objspace_markable_object_p(VALUE obj)
{
return markable_object_p(&rb_objspace, obj);
}
static const char *
type_name(int type, VALUE obj)
{
switch (type) {
#define TYPE_NAME(t) case (t): return #t;
TYPE_NAME(T_NONE);
TYPE_NAME(T_OBJECT);
TYPE_NAME(T_CLASS);
TYPE_NAME(T_MODULE);
TYPE_NAME(T_FLOAT);
TYPE_NAME(T_STRING);
TYPE_NAME(T_REGEXP);
TYPE_NAME(T_ARRAY);
TYPE_NAME(T_HASH);
TYPE_NAME(T_STRUCT);
TYPE_NAME(T_BIGNUM);
TYPE_NAME(T_FILE);
TYPE_NAME(T_MATCH);
TYPE_NAME(T_COMPLEX);
TYPE_NAME(T_RATIONAL);
TYPE_NAME(T_NIL);
TYPE_NAME(T_TRUE);
TYPE_NAME(T_FALSE);
TYPE_NAME(T_SYMBOL);
TYPE_NAME(T_FIXNUM);
TYPE_NAME(T_UNDEF);
TYPE_NAME(T_NODE);
TYPE_NAME(T_ICLASS);
TYPE_NAME(T_ZOMBIE);
case T_DATA:
if (obj && rb_objspace_data_type_name(obj)) {
return rb_objspace_data_type_name(obj);
}
return "T_DATA";
#undef TYPE_NAME
}
return "unknown";
}
static const char *
obj_type_name(VALUE obj)
{
return type_name(TYPE(obj), obj);
}
static void
rgengc_check_shady(rb_objspace_t *objspace, VALUE obj)
{
#if USE_RGENGC
if (RGENGC_CHECK_MODE > 1) {
if (objspace->rgengc.interesting_object == obj) {
if (FIXNUM_P(objspace->rgengc.parent_object)) {
fprintf(stderr, "rgengc_check_shady: !!! %p (%s) is pointed at line %d\n",
(void *)obj, obj_type_name(obj), FIX2INT(objspace->rgengc.parent_object));
}
else {
fprintf(stderr, "rgengc_check_shady: !!! %p (%s) is pointed by %p (%s)\n",
(void *)obj, obj_type_name(obj),
(void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object));
}
}
if (RGENGC_CHECK_MODE == 3) {
if (objspace->rgengc.interesting_object) {
if (FIXNUM_P(objspace->rgengc.parent_object)) {
fprintf(stderr, "rgengc_check_shady: [line %d] -> %p (%s)\n",
FIX2INT(objspace->rgengc.parent_object), (void *)obj, obj_type_name(obj));
}
else {
fprintf(stderr, "rgengc_check_shady: %p (%s) -> %p (%s)\n",
(void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object),
(void *)obj, obj_type_name(obj));
}
}
}
}
if (objspace->rgengc.parent_object_is_promoted &&
RVALUE_SHADY(obj) && !rgengc_remembered(objspace, obj)) {
rgengc_remember(objspace, obj);
if (objspace->rgengc.during_minor_gc == FALSE) { /* major/full GC */
objspace->rgengc.remembered_shady_object_count++;
}
}
#endif
}
static void
gc_mark(rb_objspace_t *objspace, VALUE ptr)
{
if (!markable_object_p(objspace, ptr)) return;
if (LIKELY(objspace->mark_func_data == 0)) {
rgengc_check_shady(objspace, ptr);
if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
push_mark_stack(&objspace->mark_stack, ptr);
}
else {
objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data);
}
}
void
rb_gc_mark(VALUE ptr)
{
gc_mark(&rb_objspace, ptr);
}
static void
gc_mark_children(rb_objspace_t *objspace, VALUE ptr)
{
register RVALUE *obj = RANY(ptr);
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = (VALUE)ptr;
goto marking; /* skip */
again:
if (LIKELY(objspace->mark_func_data == 0)) {
obj = RANY(ptr);
if (!markable_object_p(objspace, ptr)) return;
rgengc_check_shady(objspace, ptr);
if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = (VALUE)ptr;
}
else {
gc_mark(objspace, ptr);
return;
}
#if USE_RGENGC
if (RGENGC_CHECK_MODE && RVALUE_SHADY(obj) && RVALUE_PROMOTED((VALUE)obj)) {
rb_bug("gc_mark_children: (0) %p (%s) is shady and promoted.\n", (void *)obj, obj_type_name((VALUE)obj));
}
#endif /* USE_RGENGC */
marking:
#if USE_RGENGC
if (LIKELY(objspace->mark_func_data == 0)) {
if (RGENGC_CHECK_MODE && RVALUE_SHADY(obj) && RVALUE_PROMOTED((VALUE)obj)) {
rb_bug("gc_mark_children: (1) %p (%s) is shady and promoted.\n", (void *)obj, obj_type_name((VALUE)obj));
}
/* minor/major common */
if (!RVALUE_SHADY(obj)) {
if (!RVALUE_PROMOTED((VALUE)obj)) {
RVALUE_PROMOTE((VALUE)obj); /* non-shady object can be promoted to OLDGEN object */
rgengc_report(3, objspace, "gc_mark_children: promote %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
}
objspace->rgengc.parent_object_is_promoted = TRUE;
objspace->rgengc.oldgen_object_count++;
}
else {
rgengc_report(3, objspace, "gc_mark_children: do not promote shady %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
objspace->rgengc.parent_object_is_promoted = FALSE;
}
if (RGENGC_CHECK_MODE && RVALUE_SHADY(obj) && RVALUE_PROMOTED((VALUE)obj)) {
rb_bug("gc_mark_children: (2) %p (%s) is shady and promoted.\n", (void *)obj, obj_type_name((VALUE)obj));
}
}
#endif /* USE_RGENGC */
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(ptr);
}
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_IF: /* 1,2,3 */
case NODE_FOR:
case NODE_ITER:
case NODE_WHEN:
case NODE_MASGN:
case NODE_RESCUE:
case NODE_RESBODY:
case NODE_CLASS:
case NODE_BLOCK_PASS:
gc_mark(objspace, (VALUE)obj->as.node.u2.node);
/* fall through */
case NODE_BLOCK: /* 1,3 */
case NODE_ARRAY:
case NODE_DSTR:
case NODE_DXSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_ENSURE:
case NODE_CALL:
case NODE_DEFS:
case NODE_OP_ASGN1:
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
/* fall through */
case NODE_SUPER: /* 3 */
case NODE_FCALL:
case NODE_DEFN:
case NODE_ARGS_AUX:
ptr = (VALUE)obj->as.node.u3.node;
goto again;
case NODE_WHILE: /* 1,2 */
case NODE_UNTIL:
case NODE_AND:
case NODE_OR:
case NODE_CASE:
case NODE_SCLASS:
case NODE_DOT2:
case NODE_DOT3:
case NODE_FLIP2:
case NODE_FLIP3:
case NODE_MATCH2:
case NODE_MATCH3:
case NODE_OP_ASGN_OR:
case NODE_OP_ASGN_AND:
case NODE_MODULE:
case NODE_ALIAS:
case NODE_VALIAS:
case NODE_ARGSCAT:
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
/* fall through */
case NODE_GASGN: /* 2 */
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_IASGN:
case NODE_IASGN2:
case NODE_CVASGN:
case NODE_COLON3:
case NODE_OPT_N:
case NODE_EVSTR:
case NODE_UNDEF:
case NODE_POSTEXE:
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_HASH: /* 1 */
case NODE_LIT:
case NODE_STR:
case NODE_XSTR:
case NODE_DEFINED:
case NODE_MATCH:
case NODE_RETURN:
case NODE_BREAK:
case NODE_NEXT:
case NODE_YIELD:
case NODE_COLON2:
case NODE_SPLAT:
case NODE_TO_ARY:
ptr = (VALUE)obj->as.node.u1.node;
goto again;
case NODE_SCOPE: /* 2,3 */
case NODE_CDECL:
case NODE_OPT_ARG:
gc_mark(objspace, (VALUE)obj->as.node.u3.node);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ARGS: /* custom */
{
struct rb_args_info *args = obj->as.node.u3.args;
if (args) {
if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init);
if (args->post_init) gc_mark(objspace, (VALUE)args->post_init);
if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args);
if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args);
if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg);
}
}
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ZARRAY: /* - */
case NODE_ZSUPER:
case NODE_VCALL:
case NODE_GVAR:
case NODE_LVAR:
case NODE_DVAR:
case NODE_IVAR:
case NODE_CVAR:
case NODE_NTH_REF:
case NODE_BACK_REF:
case NODE_REDO:
case NODE_RETRY:
case NODE_SELF:
case NODE_NIL:
case NODE_TRUE:
case NODE_FALSE:
case NODE_ERRINFO:
case NODE_BLOCK_ARG:
break;
case NODE_ALLOCA:
mark_locations_array(objspace,
(VALUE*)obj->as.node.u1.value,
obj->as.node.u3.cnt);
gc_mark(objspace, (VALUE)obj->as.node.u2.node);
break;
case NODE_CREF:
gc_mark(objspace, obj->as.node.nd_refinements);
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
ptr = (VALUE)obj->as.node.u3.node;
goto again;
default: /* unlisted NODE */
gc_mark_maybe(objspace, (VALUE)obj->as.node.u1.node);
gc_mark_maybe(objspace, (VALUE)obj->as.node.u2.node);
gc_mark_maybe(objspace, (VALUE)obj->as.node.u3.node);
}
return; /* no need to mark class. */
}
gc_mark(objspace, obj->as.basic.klass);
switch (BUILTIN_TYPE(obj)) {
case T_ICLASS:
case T_CLASS:
case T_MODULE:
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
if (!RCLASS_EXT(obj)) break;
mark_tbl(objspace, RCLASS_IV_TBL(obj));
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
ptr = RCLASS_SUPER((VALUE)obj);
goto again;
case T_ARRAY:
if (FL_TEST(obj, ELTS_SHARED)) {
ptr = obj->as.array.as.heap.aux.shared;
goto again;
}
else {
long i, len = RARRAY_LEN(obj);
VALUE *ptr = RARRAY_RAWPTR(obj);
for (i=0; i < len; i++) {
gc_mark(objspace, *ptr++);
}
}
break;
case T_HASH:
mark_hash(objspace, obj->as.hash.ntbl);
ptr = obj->as.hash.ifnone;
goto again;
case T_STRING:
#define STR_ASSOC FL_USER3 /* copied from string.c */
if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
ptr = obj->as.string.as.heap.aux.shared;
goto again;
}
break;
case T_DATA:
if (RTYPEDDATA_P(obj)) {
RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
if (mark_func) (*mark_func)(DATA_PTR(obj));
}
else {
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
}
break;
case T_OBJECT:
{
long i, len = ROBJECT_NUMIV(obj);
VALUE *ptr = ROBJECT_IVPTR(obj);
for (i = 0; i < len; i++) {
gc_mark(objspace, *ptr++);
}
}
break;
case T_FILE:
if (obj->as.file.fptr) {
gc_mark(objspace, obj->as.file.fptr->pathv);
gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing);
gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat);
gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts);
gc_mark(objspace, obj->as.file.fptr->encs.ecopts);
gc_mark(objspace, obj->as.file.fptr->write_lock);
}
break;
case T_REGEXP:
ptr = obj->as.regexp.src;
goto again;
case T_FLOAT:
case T_BIGNUM:
break;
case T_MATCH:
gc_mark(objspace, obj->as.match.regexp);
if (obj->as.match.str) {
ptr = obj->as.match.str;
goto again;
}
break;
case T_RATIONAL:
gc_mark(objspace, obj->as.rational.num);
ptr = obj->as.rational.den;
goto again;
case T_COMPLEX:
gc_mark(objspace, obj->as.complex.real);
ptr = obj->as.complex.imag;
goto again;
case T_STRUCT:
{
long len = RSTRUCT_LEN(obj);
VALUE *ptr = RSTRUCT_PTR(obj);
while (len--) {
gc_mark(objspace, *ptr++);
}
}
break;
default:
#ifdef GC_DEBUG
rb_gcdebug_print_obj_condition((VALUE)obj);
#endif
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
BUILTIN_TYPE(obj), (void *)obj,
is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
}
}
static void
gc_mark_stacked_objects(rb_objspace_t *objspace)
{
mark_stack_t *mstack = &objspace->mark_stack;
VALUE obj = 0;
if (!mstack->index) return;
while (pop_mark_stack(mstack, &obj)) {
gc_mark_children(objspace, obj);
}
shrink_stack_chunk_cache(mstack);
}
static void
gc_marks_body(rb_objspace_t *objspace, rb_thread_t *th, int minor_gc)
{
struct gc_list *list;
/* start marking */
rgengc_report(1, objspace, "gc_marks_body: start.\n");
objspace->rgengc.parent_object_is_promoted = FALSE;
objspace->rgengc.parent_object = Qundef;
objspace->rgengc.during_minor_gc = minor_gc;
#if USE_RGENGC
if (objspace->rgengc.during_minor_gc) {
objspace->profile.minor_gc_count++;
objspace->rgengc.remembered_shady_object_count = rgengc_rememberset_mark(objspace);
}
else {
objspace->profile.major_gc_count++;
rgengc_mark_and_rememberset_clear(objspace);
}
#endif
SET_STACK_END;
th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
mark_tbl(objspace, finalizer_table);
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
mark_current_machine_context(objspace, th);
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
rb_gc_mark_symbols();
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
rb_gc_mark_encodings();
/* mark protected global variables */
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
for (list = global_List; list; list = list->next) {
rb_gc_mark_maybe(*list->varptr);
}
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
rb_mark_end_proc();
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
rb_gc_mark_global_tbl();
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
mark_tbl(objspace, rb_class_tbl);
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
/* mark generic instance variables for special constants */
rb_mark_generic_ivar_tbl();
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
rb_gc_mark_parser();
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = INT2FIX(__LINE__);
rb_gc_mark_unlinked_live_method_entries(th->vm);
if (RGENGC_CHECK_MODE > 1) objspace->rgengc.parent_object = Qundef;
/* marking-loop */
gc_mark_stacked_objects(objspace);
/* cleanup */
rgengc_report(1, objspace, "gc_marks_body: end.\n");
}
static uintptr_t *
gc_store_bitmaps(rb_objspace_t *objspace)
{
uintptr_t *stored_bitmaps = (uintptr_t *)malloc((HEAP_BITMAP_LIMIT * sizeof(uintptr_t)) * heaps_used * 3);
size_t i;
if (stored_bitmaps == 0) rb_bug("gc_store_bitmaps: not enough memory to test.\n");
for (i=0; i<heaps_used; i++) {
memcpy(&stored_bitmaps[(3*i+0)*HEAP_BITMAP_LIMIT], objspace->heap.sorted[i]->mark_bits, sizeof(uintptr_t) * HEAP_BITMAP_LIMIT);
memcpy(&stored_bitmaps[(3*i+1)*HEAP_BITMAP_LIMIT], objspace->heap.sorted[i]->rememberset_bits, sizeof(uintptr_t) * HEAP_BITMAP_LIMIT);
memcpy(&stored_bitmaps[(3*i+2)*HEAP_BITMAP_LIMIT], objspace->heap.sorted[i]->oldgen_bits, sizeof(uintptr_t) * HEAP_BITMAP_LIMIT);
}
return stored_bitmaps;
}
static void
gc_restore_bitmaps(rb_objspace_t *objspace, uintptr_t *stored_bitmaps)
{
size_t i;
for (i=0; i<heaps_used; i++) {
uintptr_t *oldgen_bits = objspace->heap.sorted[i]->oldgen_bits;
RVALUE *p = objspace->heap.sorted[i]->start;
RVALUE *pend = p + objspace->heap.sorted[i]->limit;
/* restore bitmaps */
memcpy(objspace->heap.sorted[i]->mark_bits, &stored_bitmaps[(3*i+0)*HEAP_BITMAP_LIMIT], sizeof(uintptr_t) * HEAP_BITMAP_LIMIT);
memcpy(objspace->heap.sorted[i]->rememberset_bits, &stored_bitmaps[(3*i+1)*HEAP_BITMAP_LIMIT], sizeof(uintptr_t) * HEAP_BITMAP_LIMIT);
memcpy(objspace->heap.sorted[i]->oldgen_bits, &stored_bitmaps[(3*i+2)*HEAP_BITMAP_LIMIT], sizeof(uintptr_t) * HEAP_BITMAP_LIMIT);
/* resotre oldgen bits */
while (p < pend) {
if (MARKED_IN_BITMAP(oldgen_bits, p)) FL_SET2(p, FL_OLDGEN);
else FL_UNSET2(p, FL_OLDGEN);
p++;
}
}
}
static void
gc_free_stored_bitmaps(rb_objspace_t *objspace, uintptr_t *stored_bitmaps)
{
free(stored_bitmaps);
}
static void
gc_marks_test(rb_objspace_t *objspace, rb_thread_t *th, uintptr_t *before_stored_bitmaps)
{
#if USE_RGENGC
uintptr_t *stored_bitmaps = gc_store_bitmaps(objspace);
size_t i;
rgengc_report(1, objspace, "gc_marks_test: test-full-gc\n");
/* run major (full) gc with temporary mark/rememberset */
gc_marks_body(objspace, th, FALSE);
objspace->rgengc.during_minor_gc = TRUE;
/* check */
for (i=0; i<heaps_used; i++) {
uintptr_t *minor_mark_bits = &stored_bitmaps[(3*i+0)*HEAP_BITMAP_LIMIT];
uintptr_t *major_mark_bits = objspace->heap.sorted[i]->mark_bits;
RVALUE *p = objspace->heap.sorted[i]->start;
RVALUE *pend = p + objspace->heap.sorted[i]->limit;
while (p < pend) {
if (MARKED_IN_BITMAP(major_mark_bits, p) && /* should be lived */
!MARKED_IN_BITMAP(minor_mark_bits, p)) {
fprintf(stderr, "gc_marks_test: %p (%s) is living, but not marked && not promoted.\n", p, obj_type_name((VALUE)p));
objspace->rgengc.interesting_object = (VALUE)p;
}
p++;
}
}
if (objspace->rgengc.interesting_object) {
fprintf(stderr, "!!! restart minor gc\n");
gc_restore_bitmaps(objspace, before_stored_bitmaps);
gc_marks_body(objspace, th, FALSE);
fprintf(stderr, "!!! restart major gc\n");
gc_restore_bitmaps(objspace, before_stored_bitmaps);
gc_marks_body(objspace, th, TRUE);
rb_bug("gc_marks_test (again): %p (%s) is living, but not marked && not promoted.\n",
(void *)objspace->rgengc.interesting_object, obj_type_name((VALUE)objspace->rgengc.interesting_object));
}
else {
gc_restore_bitmaps(objspace, stored_bitmaps);
gc_free_stored_bitmaps(objspace, stored_bitmaps);
}
#endif
}
static void
gc_marks(rb_objspace_t *objspace, int minor_gc)
{
struct mark_func_data_struct *prev_mark_func_data;
rb_thread_t *th = GET_THREAD();
gc_prof_mark_timer_start(objspace);
{
/* setup marking */
prev_mark_func_data = objspace->mark_func_data;
objspace->mark_func_data = 0;
if (minor_gc == FALSE) { /* major/full GC */
objspace->rgengc.remembered_shady_object_count = 0;
objspace->rgengc.oldgen_object_count = 0;
gc_marks_body(objspace, th, FALSE);
/* Do full GC if old/remembered_shady object counts is greater than counts two times at last full GC counts */
objspace->rgengc.remembered_shady_object_limit = objspace->rgengc.remembered_shady_object_count * 2;
objspace->rgengc.oldgen_object_limit = objspace->rgengc.oldgen_object_count * 2;
}
else { /* minor GC */
if (RGENGC_CHECK_MODE > 1) {
uintptr_t *before_mark_stored_bitmaps = gc_store_bitmaps(objspace);
gc_marks_body(objspace, th, TRUE);
gc_marks_test(objspace, th, before_mark_stored_bitmaps);
gc_free_stored_bitmaps(objspace, before_mark_stored_bitmaps);
}
else {
gc_marks_body(objspace, th, FALSE);
}
}
objspace->mark_func_data = prev_mark_func_data;
}
gc_prof_mark_timer_stop(objspace);
}
/* RGENGC */
#if USE_RGENGC
/* bit operations */
static int
rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj)
{
uintptr_t *bits = GET_HEAP_REMEMBERSET_BITS(obj);
return MARKED_IN_BITMAP(bits, obj) ? 1 : 0;
}
static void
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
{
uintptr_t *bits = GET_HEAP_REMEMBERSET_BITS(obj);
MARK_IN_BITMAP(bits, obj);
}
/* wb, etc */
static void
rgengc_remember(rb_objspace_t *objspace, VALUE obj)
{
rgengc_report(2, objspace, "rgengc_remember: %p (%s, %s) %s\n", (void *)obj, obj_type_name(obj),
RVALUE_SHADY(obj) ? "shady" : "non-shady",
rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now");
#if RGENGC_CHECK_MODE > 0
{
switch (BUILTIN_TYPE(obj)) {
case T_NONE:
case T_ZOMBIE:
rb_bug("rgengc_remember: should not remember %p (%s)\n",
(void *)obj, obj_type_name(obj));
default:
;
}
}
#endif
if (RGENGC_PROFILE) {
if (!rgengc_remembered(objspace, obj)) {
if (!RVALUE_SHADY(obj)) {
objspace->profile.remembered_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
else {
objspace->profile.remembered_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
}
}
rgengc_remembersetbits_set(objspace, obj);
}
static int
rgengc_remembered(rb_objspace_t *objspace, VALUE obj)
{
int result = rgengc_remembersetbits_get(objspace, obj);
rgengc_report(6, objspace, "gc_remembered: %p (%s) => %d\n", (void *)obj, obj_type_name(obj), result);
return result;
}
static size_t
rgengc_rememberset_mark(rb_objspace_t *objspace)
{
size_t i, j;
size_t shady_object_count = 0, clear_count = 0;
RVALUE *p, *offset;
uintptr_t *bits, bitset;
for (i=0; i<heaps_used; i++) {
p = objspace->heap.sorted[i]->start;
bits = GET_HEAP_REMEMBERSET_BITS(p);
offset = p - NUM_IN_SLOT(p);
for (j=0; j < HEAP_BITMAP_LIMIT; j++) {
if (bits[j]) {
p = offset + j * (sizeof(uintptr_t) * CHAR_BIT);
bitset = bits[j];
do {
if (bitset & 1) {
gc_mark_ptr(objspace, (VALUE)p);
push_mark_stack(&objspace->mark_stack, (VALUE) p);
rgengc_report(2, objspace, "rgengc_rememberset_mark: mark %p (%s)\n", p, obj_type_name((VALUE)p));
if (!RVALUE_SHADY(p)) {
rgengc_report(2, objspace, "rgengc_rememberset_mark: clear %p (%s)\n", p, obj_type_name((VALUE)p));
CLEAR_IN_BITMAP(bits, p);
clear_count++;
}
else {
shady_object_count++;
}
}
p++;
bitset >>= 1;
} while (bitset);
}
}
}
rgengc_report(2, objspace, "rgengc_rememberset_mark: clear_count: %"PRIdSIZE", shady_object_count: %"PRIdSIZE"\n", clear_count, shady_object_count);
return shady_object_count;
}
static void
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace)
{
size_t i;
for (i=0; i<heaps_used; i++) {
memset(objspace->heap.sorted[i]->mark_bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
memset(objspace->heap.sorted[i]->rememberset_bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
}
}
/* RGENGC: APIs */
void
rb_gc_writebarrier(VALUE a, VALUE b)
{
rb_objspace_t *objspace = &rb_objspace;
if (RGENGC_CHECK_MODE) {
if (!RVALUE_PROMOTED(a)) rb_bug("rb_gc_wb: referer object %p (%s) is not promoted.\n", (void *)a, obj_type_name(a));
if (RVALUE_PROMOTED(b)) rb_bug("rb_gc_wb: refered object %p (%s) is promoted.\n", (void *)b, obj_type_name(b));
}
if (!rgengc_remembered(objspace, a)) {
rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n",
(void *)a, obj_type_name(a), (void *)b, obj_type_name(b));
rgengc_remember(objspace, a);
}
}
void
rb_gc_giveup_promoted_writebarrier(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
if (RGENGC_CHECK_MODE) {
if (!RVALUE_PROMOTED(obj)) rb_bug("rb_gc_giveup_promoted_writebarrier: called on non-promoted object");
if (!RVALUE_SHADY(obj)) rb_bug("rb_gc_giveup_promoted_writebarrier: called on non-shady object");
}
rgengc_report(2, objspace, "rb_gc_giveup_writebarrier: %p (%s)%s\n", (void *)obj, obj_type_name(obj),
rgengc_remembered(objspace, obj) ? " (already remembered)" : "");
/* need to sweep all slots before demote */
/* TODO: check delayed sweeping slot or not
* if delayed sweepling slot, then mark it
* else demote simple
*/
rest_sweep(objspace);
RVALUE_DEMOTE(obj);
rgengc_remember(objspace, obj);
#if RGENGC_PROFILE
objspace->profile.shade_operation_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
#endif /* RGENGC_PROFILE >= 2 */
#endif
}
#endif /* USE_RGENGC */
/* RGENGC analysis information */
VALUE
rb_obj_rgengc_writebarrier_protected_p(VALUE obj)
{
return OBJ_WB_PROTECTED(obj) ? Qtrue : Qfalse;
}
VALUE
rb_obj_rgengc_promoted_p(VALUE obj)
{
return OBJ_PROMOTED(obj) ? Qtrue : Qfalse;
}
/* GC */
void
rb_gc_force_recycle(VALUE p)
{
rb_objspace_t *objspace = &rb_objspace;
struct heaps_slot *slot;
#if USE_RGENGC
CLEAR_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(p), p);
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(p), p);
#endif
objspace->total_freed_object_num++;
if (MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) {
add_slot_local_freelist(objspace, (RVALUE *)p);
}
else {
objspace->heap.free_num++;
slot = add_slot_local_freelist(objspace, (RVALUE *)p);
if (slot->free_next == NULL) {
link_free_heap_slot(objspace, slot);
}
}
}
void
rb_gc_register_mark_object(VALUE obj)
{
VALUE ary = GET_THREAD()->vm->mark_object_ary;
rb_ary_push(ary, obj);
}
void
rb_gc_register_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_List;
tmp->varptr = addr;
global_List = tmp;
}
void
rb_gc_unregister_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp = global_List;
if (tmp->varptr == addr) {
global_List = tmp->next;
xfree(tmp);
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
xfree(t);
break;
}
tmp = tmp->next;
}
}
#define GC_NOTIFY 0
static int
garbage_collect_body(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
{
int minor_gc;
if (ruby_gc_stress && !ruby_disable_gc_stress) {
minor_gc = FALSE;
immediate_sweep = TRUE;
if (FIXNUM_P(ruby_gc_stress)) {
int flag = FIX2INT(ruby_gc_stress);
if (flag & 0x01) minor_gc = TRUE;
if (flag & 0x02) immediate_sweep = FALSE;
}
}
else {
if (full_mark) {
minor_gc = FALSE;
}
else {
if (objspace->rgengc.need_major_gc ||
objspace->rgengc.remembered_shady_object_count > objspace->rgengc.remembered_shady_object_limit ||
objspace->rgengc.oldgen_object_count > objspace->rgengc.oldgen_object_limit) {
objspace->rgengc.need_major_gc = FALSE;
minor_gc = FALSE;
}
else {
minor_gc = TRUE;
}
}
}
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_lazy_sweep) {
immediate_sweep = TRUE;
}
if (GC_NOTIFY) fprintf(stderr, "start garbage_collect(%d, %d, %d)\n", full_mark, immediate_sweep, reason);
objspace->count++;
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */);
gc_prof_timer_start(objspace, reason | (minor_gc ? GPR_FLAG_MINOR : 0));
{
assert(during_gc > 0);
gc_marks(objspace, minor_gc);
gc_sweep(objspace, immediate_sweep);
during_gc = 0;
}
gc_prof_timer_stop(objspace);
if (GC_NOTIFY) fprintf(stderr, "end garbage_collect()\n");
return TRUE;
}
static int
garbage_collect(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
{
if (!heaps) {
during_gc = 0;
return FALSE;
}
if (!ready_to_gc(objspace)) {
during_gc = 0;
return TRUE;
}
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time();
#endif
rest_sweep(objspace);
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
#endif
during_gc++;
return garbage_collect_body(objspace, full_mark, immediate_sweep, reason);
}
struct objspace_and_reason {
rb_objspace_t *objspace;
int reason;
int full_mark;
int immediate_sweep;
};
static void *
gc_with_gvl(void *ptr)
{
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
return (void *)(VALUE)garbage_collect(oar->objspace, oar->full_mark, oar->immediate_sweep, oar->reason);
}
static int
garbage_collect_with_gvl(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
{
if (dont_gc) return TRUE;
if (ruby_thread_has_gvl_p()) {
return garbage_collect(objspace, full_mark, immediate_sweep, reason);
}
else {
if (ruby_native_thread_p()) {
struct objspace_and_reason oar;
oar.objspace = objspace;
oar.reason = reason;
oar.full_mark = full_mark;
oar.immediate_sweep = immediate_sweep;
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
int
rb_garbage_collect(void)
{
return garbage_collect(&rb_objspace, TRUE, TRUE, GPR_FLAG_CAPI);
}
#undef Init_stack
void
Init_stack(volatile VALUE *addr)
{
ruby_init_stack(addr);
}
/*
* call-seq:
* GC.start -> nil
* gc.garbage_collect -> nil
* ObjectSpace.garbage_collect -> nil
*
* Initiates garbage collection, unless manually disabled.
*
*/
VALUE
rb_gc_start(void)
{
rb_gc();
return Qnil;
}
void
rb_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
garbage_collect(objspace, TRUE, TRUE, GPR_FLAG_METHOD);
if (!finalizing) finalize_deferred(objspace);
free_unused_heaps(objspace);
}
int
rb_during_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
return during_gc;
}
#if RGENGC_PROFILE >= 2
static void
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
{
VALUE result = rb_hash_new();
int i;
for (i=0; i<T_MASK; i++) {
const char *type = type_name(i, 0);
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
}
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
}
#endif
size_t
rb_gc_count(void)
{
return rb_objspace.count;
}
/*
* call-seq:
* GC.count -> Integer
*
* The number of times GC occurred.
*
* It returns the number of times GC occurred since the process started.
*
*/
static VALUE
gc_count(VALUE self)
{
return SIZET2NUM(rb_gc_count());
}
/*
* call-seq:
* GC.stat -> Hash
*
* Returns a Hash containing information about the GC.
*
* The hash includes information about internal statistics about GC such as:
*
* {
* :count=>0,
* :heap_used=>12,
* :heap_length=>12,
* :heap_increment=>0,
* :heap_live_num=>7539,
* :heap_free_num=>88,
* :heap_final_num=>0,
* :total_allocated_object=>7630,
* :total_freed_object=>88
* }
*
* The contents of the hash are implementation specific and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
gc_stat(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE hash;
static VALUE sym_count;
static VALUE sym_heap_used, sym_heap_length, sym_heap_increment;
static VALUE sym_heap_live_num, sym_heap_free_num, sym_heap_final_num;
static VALUE sym_total_allocated_object, sym_total_freed_object;
#if USE_RGENGC
static VALUE sym_minor_gc_count, sym_major_gc_count;
#if RGENGC_PROFILE
static VALUE sym_generated_normal_object_count, sym_generated_shady_object_count;
static VALUE sym_shade_operation_count, sym_promote_operation_count;
static VALUE sym_remembered_normal_object_count, sym_remembered_shady_object_count;
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
if (sym_count == 0) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(count);
S(heap_used);
S(heap_length);
S(heap_increment);
S(heap_live_num);
S(heap_free_num);
S(heap_final_num);
S(total_allocated_object);
S(total_freed_object);
#if USE_RGENGC
S(minor_gc_count);
S(major_gc_count);
#if RGENGC_PROFILE
S(generated_normal_object_count);
S(generated_shady_object_count);
S(shade_operation_count);
S(promote_operation_count);
S(remembered_normal_object_count);
S(remembered_shady_object_count);
#endif /* USE_RGENGC */
#endif /* RGENGC_PROFILE */
#undef S
}
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH)) {
rb_raise(rb_eTypeError, "non-hash given");
}
}
if (hash == Qnil) {
hash = rb_hash_new();
}
rb_hash_aset(hash, sym_count, SIZET2NUM(objspace->count));
/* implementation dependent counters */
rb_hash_aset(hash, sym_heap_used, SIZET2NUM(objspace->heap.used));
rb_hash_aset(hash, sym_heap_length, SIZET2NUM(objspace->heap.length));
rb_hash_aset(hash, sym_heap_increment, SIZET2NUM(objspace->heap.increment));
rb_hash_aset(hash, sym_heap_live_num, SIZET2NUM(objspace_live_num(objspace)));
rb_hash_aset(hash, sym_heap_free_num, SIZET2NUM(objspace->heap.free_num));
rb_hash_aset(hash, sym_heap_final_num, SIZET2NUM(objspace->heap.final_num));
rb_hash_aset(hash, sym_total_allocated_object, SIZET2NUM(objspace->total_allocated_object_num));
rb_hash_aset(hash, sym_total_freed_object, SIZET2NUM(objspace->total_freed_object_num));
#if USE_RGENGC
rb_hash_aset(hash, sym_minor_gc_count, SIZET2NUM(objspace->profile.minor_gc_count));
rb_hash_aset(hash, sym_major_gc_count, SIZET2NUM(objspace->profile.major_gc_count));
#if RGENGC_PROFILE
rb_hash_aset(hash, sym_generated_normal_object_count, SIZET2NUM(objspace->profile.generated_normal_object_count));
rb_hash_aset(hash, sym_generated_shady_object_count, SIZET2NUM(objspace->profile.generated_shady_object_count));
rb_hash_aset(hash, sym_shade_operation_count, SIZET2NUM(objspace->profile.shade_operation_count));
rb_hash_aset(hash, sym_promote_operation_count, SIZET2NUM(objspace->profile.promote_operation_count));
rb_hash_aset(hash, sym_remembered_normal_object_count, SIZET2NUM(objspace->profile.remembered_normal_object_count));
rb_hash_aset(hash, sym_remembered_shady_object_count, SIZET2NUM(objspace->profile.remembered_shady_object_count));
#if RGENGC_PROFILE >= 2
{
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
gc_count_add_each_types(hash, "promote_operation_count_types", objspace->profile.promote_operation_count_types);
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
}
#endif
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
return hash;
}
/*
* call-seq:
* GC.stress -> fixnum, true or false
*
* Returns current status of GC stress mode.
*/
static VALUE
gc_stress_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return ruby_gc_stress;
}
/*
* call-seq:
* GC.stress = bool -> bool
*
* Updates the GC stress mode.
*
* When stress mode is enabled, the GC is invoked at every GC opportunity:
* all memory and object allocations.
*
* Enabling stress mode will degrade performance, it is only for debugging.
*/
static VALUE
gc_stress_set(VALUE self, VALUE flag)
{
rb_objspace_t *objspace = &rb_objspace;
rb_secure(2);
ruby_gc_stress = FIXNUM_P(flag) ? flag : (RTEST(flag) ? Qtrue : Qfalse);
return flag;
}
/*
* call-seq:
* GC.enable -> true or false
*
* Enables garbage collection, returning +true+ if garbage
* collection was previously disabled.
*
* GC.disable #=> false
* GC.enable #=> true
* GC.enable #=> false
*
*/
VALUE
rb_gc_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
dont_gc = FALSE;
return old ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC.disable -> true or false
*
* Disables garbage collection, returning +true+ if garbage
* collection was already disabled.
*
* GC.disable #=> false
* GC.disable #=> true
*
*/
VALUE
rb_gc_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
dont_gc = TRUE;
return old ? Qtrue : Qfalse;
}
void
rb_gc_set_params(void)
{
char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr, *growth_factor_ptr;
if (rb_safe_level() > 0) return;
malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT");
if (malloc_limit_ptr != NULL) {
int malloc_limit_i = atoi(malloc_limit_ptr);
if (RTEST(ruby_verbose))
fprintf(stderr, "malloc_limit=%d (%d)\n",
malloc_limit_i, initial_malloc_limit);
if (malloc_limit_i > 0) {
initial_malloc_limit = malloc_limit_i;
}
}
heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS");
if (heap_min_slots_ptr != NULL) {
int heap_min_slots_i = atoi(heap_min_slots_ptr);
if (RTEST(ruby_verbose))
fprintf(stderr, "heap_min_slots=%d (%d)\n",
heap_min_slots_i, initial_heap_min_slots);
if (heap_min_slots_i > 0) {
initial_heap_min_slots = heap_min_slots_i;
initial_expand_heap(&rb_objspace);
}
}
growth_factor_ptr = getenv("RUBY_HEAP_SLOTS_GROWTH_FACTOR");
if (growth_factor_ptr != NULL) {
double growth_factor_f = strtod(growth_factor_ptr, NULL);
if (RTEST(ruby_verbose))
fprintf(stderr, "heap_slots_growth_factor=%f (%f)\n",
growth_factor_f, initial_growth_factor);
if (growth_factor_f > 1) {
initial_growth_factor = growth_factor_f;
}
}
free_min_ptr = getenv("RUBY_FREE_MIN");
if (free_min_ptr != NULL) {
int free_min_i = atoi(free_min_ptr);
if (RTEST(ruby_verbose))
fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min);
if (free_min_i > 0) {
initial_free_min = free_min_i;
}
}
}
void
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
{
rb_objspace_t *objspace = &rb_objspace;
if (markable_object_p(objspace, obj)) {
struct mark_func_data_struct mfd;
mfd.mark_func = func;
mfd.data = data;
objspace->mark_func_data = &mfd;
gc_mark_children(objspace, obj);
objspace->mark_func_data = 0;
}
}
/*
------------------------ Extended allocator ------------------------
*/
static void vm_xfree(rb_objspace_t *objspace, void *ptr);
static void *
negative_size_allocation_error_with_gvl(void *ptr)
{
rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
return 0; /* should not be reached */
}
static void
negative_size_allocation_error(const char *msg)
{
if (ruby_thread_has_gvl_p()) {
rb_raise(rb_eNoMemError, "%s", msg);
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
}
else {
fprintf(stderr, "[FATAL] %s\n", msg);
exit(EXIT_FAILURE);
}
}
}
static void *
ruby_memerror_body(void *dummy)
{
rb_memerror();
return 0;
}
static void
ruby_memerror(void)
{
if (ruby_thread_has_gvl_p()) {
rb_memerror();
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(ruby_memerror_body, 0);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
void
rb_memerror(void)
{
rb_thread_t *th = GET_THREAD();
if (!nomem_error ||
(rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
rb_thread_raised_clear(th);
GET_THREAD()->errinfo = nomem_error;
JUMP_TAG(TAG_RAISE);
}
rb_thread_raised_set(th, RAISED_NOMEMORY);
rb_exc_raise(nomem_error);
}
static void *
aligned_malloc(size_t alignment, size_t size)
{
void *res;
#if defined __MINGW32__
res = __mingw_aligned_malloc(size, alignment);
#elif defined _WIN32 && !defined __CYGWIN__
void *_aligned_malloc(size_t, size_t);
res = _aligned_malloc(size, alignment);
#elif defined(HAVE_POSIX_MEMALIGN)
if (posix_memalign(&res, alignment, size) == 0) {
return res;
}
else {
return NULL;
}
#elif defined(HAVE_MEMALIGN)
res = memalign(alignment, size);
#else
char* aligned;
res = malloc(alignment + size + sizeof(void*));
aligned = (char*)res + alignment + sizeof(void*);
aligned -= ((VALUE)aligned & (alignment - 1));
((void**)aligned)[-1] = res;
res = (void*)aligned;
#endif
#if defined(_DEBUG) || defined(GC_DEBUG)
/* alignment must be a power of 2 */
assert((alignment - 1) & alignment == 0);
assert(alignment % sizeof(void*) == 0);
#endif
return res;
}
static void
aligned_free(void *ptr)
{
#if defined __MINGW32__
__mingw_aligned_free(ptr);
#elif defined _WIN32 && !defined __CYGWIN__
_aligned_free(ptr);
#elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
free(ptr);
#else
free(((void**)ptr)[-1]);
#endif
}
static inline size_t
vm_malloc_prepare(rb_objspace_t *objspace, size_t size)
{
if ((ssize_t)size < 0) {
negative_size_allocation_error("negative allocation size (or too big)");
}
if (size == 0) size = 1;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
ATOMIC_SIZE_ADD(malloc_increase, size);
if ((ruby_gc_stress && !ruby_disable_gc_stress) ||
malloc_increase > malloc_limit) {
garbage_collect_with_gvl(objspace, 0, 0, GPR_FLAG_MALLOC);
}
return size;
}
static inline void *
vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
{
#if CALC_EXACT_MALLOC_SIZE
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size);
ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
((size_t *)mem)[0] = size;
mem = (size_t *)mem + 1;
#endif
return mem;
}
#define TRY_WITH_GC(alloc) do { \
if (!(alloc) && \
(!garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC) || /* full mark && immediate sweep */ \
!(alloc))) { \
ruby_memerror(); \
} \
} while (0)
static void *
vm_xmalloc(rb_objspace_t *objspace, size_t size)
{
void *mem;
size = vm_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = malloc(size));
return vm_malloc_fixup(objspace, mem, size);
}
static void *
vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size)
{
void *mem;
#if CALC_EXACT_MALLOC_SIZE
size_t oldsize;
#endif
if ((ssize_t)size < 0) {
negative_size_allocation_error("negative re-allocation size");
}
if (!ptr) return vm_xmalloc(objspace, size);
/*
* The behavior of realloc(ptr, 0) is implementation defined.
* Therefore we don't use realloc(ptr, 0) for portability reason.
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
*/
if (size == 0) {
vm_xfree(objspace, ptr);
return 0;
}
if (ruby_gc_stress && !ruby_disable_gc_stress)
garbage_collect_with_gvl(objspace, 0, 0, GPR_FLAG_MALLOC);
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
ptr = (size_t *)ptr - 1;
oldsize = ((size_t *)ptr)[0];
#endif
mem = realloc(ptr, size);
if (!mem) {
if (garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC)) {
mem = realloc(ptr, size);
}
if (!mem) {
ruby_memerror();
}
}
ATOMIC_SIZE_ADD(malloc_increase, size);
#if CALC_EXACT_MALLOC_SIZE
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size - oldsize);
((size_t *)mem)[0] = size;
mem = (size_t *)mem + 1;
#endif
return mem;
}
static void
vm_xfree(rb_objspace_t *objspace, void *ptr)
{
#if CALC_EXACT_MALLOC_SIZE
size_t size;
ptr = ((size_t *)ptr) - 1;
size = ((size_t*)ptr)[0];
if (size) {
ATOMIC_SIZE_SUB(objspace->malloc_params.allocated_size, size);
ATOMIC_SIZE_DEC(objspace->malloc_params.allocations);
}
#endif
free(ptr);
}
void *
ruby_xmalloc(size_t size)
{
return vm_xmalloc(&rb_objspace, size);
}
static inline size_t
xmalloc2_size(size_t n, size_t size)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "malloc: possible integer overflow");
}
return len;
}
void *
ruby_xmalloc2(size_t n, size_t size)
{
return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size));
}
static void *
vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
{
void *mem;
size_t size;
size = xmalloc2_size(count, elsize);
size = vm_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = calloc(1, size));
return vm_malloc_fixup(objspace, mem, size);
}
void *
ruby_xcalloc(size_t n, size_t size)
{
return vm_xcalloc(&rb_objspace, n, size);
}
void *
ruby_xrealloc(void *ptr, size_t size)
{
return vm_xrealloc(&rb_objspace, ptr, size);
}
void *
ruby_xrealloc2(void *ptr, size_t n, size_t size)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "realloc: possible integer overflow");
}
return ruby_xrealloc(ptr, len);
}
void
ruby_xfree(void *x)
{
if (x)
vm_xfree(&rb_objspace, x);
}
/* Mimic ruby_xmalloc, but need not rb_objspace.
* should return pointer suitable for ruby_xfree
*/
void *
ruby_mimmalloc(size_t size)
{
void *mem;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
mem = malloc(size);
#if CALC_EXACT_MALLOC_SIZE
/* set 0 for consistency of allocated_size/allocations */
((size_t *)mem)[0] = 0;
mem = (size_t *)mem + 1;
#endif
return mem;
}
#if CALC_EXACT_MALLOC_SIZE
/*
* call-seq:
* GC.malloc_allocated_size -> Integer
*
* Returns the size of memory allocated by malloc().
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocated_size(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocated_size);
}
/*
* call-seq:
* GC.malloc_allocations -> Integer
*
* Returns the number of malloc() allocations.
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocations(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocations);
}
#endif
/*
------------------------------ WeakMap ------------------------------
*/
struct weakmap {
st_table *obj2wmap; /* obj -> [ref,...] */
st_table *wmap2obj; /* ref -> obj */
VALUE final;
};
static int
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
{
gc_mark_ptr((rb_objspace_t *)arg, (VALUE)val);
return ST_CONTINUE;
}
static void
wmap_mark(void *ptr)
{
struct weakmap *w = ptr;
if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
rb_gc_mark(w->final);
}
static int
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
{
rb_ary_resize((VALUE)val, 0);
return ST_CONTINUE;
}
static void
wmap_free(void *ptr)
{
struct weakmap *w = ptr;
st_foreach(w->obj2wmap, wmap_free_map, 0);
st_free_table(w->obj2wmap);
st_free_table(w->wmap2obj);
}
size_t rb_ary_memsize(VALUE ary);
static int
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
{
*(size_t *)arg += rb_ary_memsize((VALUE)val);
return ST_CONTINUE;
}
static size_t
wmap_memsize(const void *ptr)
{
size_t size;
const struct weakmap *w = ptr;
if (!w) return 0;
size = sizeof(*w);
size += st_memsize(w->obj2wmap);
size += st_memsize(w->wmap2obj);
st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
return size;
}
static const rb_data_type_t weakmap_type = {
"weakmap",
{
wmap_mark,
wmap_free,
wmap_memsize,
}
};
static VALUE
wmap_allocate(VALUE klass)
{
struct weakmap *w;
VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
w->obj2wmap = st_init_numtable();
w->wmap2obj = st_init_numtable();
w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
return obj;
}
static int
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
VALUE wmap, ary;
if (!existing) return ST_STOP;
wmap = (VALUE)arg, ary = (VALUE)*value;
rb_ary_delete_same(ary, wmap);
if (!RARRAY_LEN(ary)) return ST_DELETE;
return ST_CONTINUE;
}
static VALUE
wmap_finalize(VALUE self, VALUE objid)
{
st_data_t orig, wmap, data;
VALUE obj, rids;
long i;
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
/* Get reference from object id. */
obj = obj_id_to_ref(objid);
/* obj is original referenced object and/or weak reference. */
orig = (st_data_t)obj;
if (st_delete(w->obj2wmap, &orig, &data)) {
rids = (VALUE)data;
for (i = 0; i < RARRAY_LEN(rids); ++i) {
wmap = (st_data_t)RARRAY_AREF(rids, i);
st_delete(w->wmap2obj, &wmap, NULL);
}
}
wmap = (st_data_t)obj;
if (st_delete(w->wmap2obj, &wmap, &orig)) {
wmap = (st_data_t)obj;
st_update(w->obj2wmap, orig, wmap_final_func, wmap);
}
return self;
}
/* Creates a weak reference from the given key to the given value */
static VALUE
wmap_aset(VALUE self, VALUE wmap, VALUE orig)
{
st_data_t data;
VALUE rids;
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
rb_define_final(orig, w->final);
rb_define_final(wmap, w->final);
if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) {
rids = (VALUE)data;
}
else {
rids = rb_ary_tmp_new(1);
st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids);
}
rb_ary_push(rids, wmap);
st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
return nonspecial_obj_id(orig);
}
/* Retrieves a weakly referenced object with the given key */
static VALUE
wmap_aref(VALUE self, VALUE wmap)
{
st_data_t data;
VALUE obj;
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
obj = (VALUE)data;
if (!is_id_value(objspace, obj)) return Qnil;
if (!is_live_object(objspace, obj)) return Qnil;
return obj;
}
/*
------------------------------ GC profiler ------------------------------
*/
static inline void gc_prof_set_heap_info(rb_objspace_t *, gc_profile_record *);
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
static double
getrusage_time(void)
{
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
struct timespec ts;
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) {
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
return 0.0;
#elif defined RUSAGE_SELF
struct rusage usage;
struct timeval time;
getrusage(RUSAGE_SELF, &usage);
time = usage.ru_utime;
return time.tv_sec + time.tv_usec * 1e-6;
#elif defined _WIN32
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER ui;
LONG_LONG q;
double t;
if (GetProcessTimes(GetCurrentProcess(),
&creation_time, &exit_time, &kernel_time, &user_time) == 0)
{
return 0.0;
}
memcpy(&ui, &user_time, sizeof(FILETIME));
q = ui.QuadPart / 10L;
t = (DWORD)(q % 1000000L) * 1e-6;
q /= 1000000L;
#ifdef __GNUC__
t += q;
#else
t += (double)(DWORD)(q >> 16) * (1 << 16);
t += (DWORD)q & ~(~0 << 16);
#endif
return t;
#else
return 0.0;
#endif
}
static inline void
gc_prof_timer_start(rb_objspace_t *objspace, int reason)
{
if (objspace->profile.run) {
size_t index = objspace->profile.next_index;
gc_profile_record *record;
/* create new record */
objspace->profile.next_index++;
if (!objspace->profile.record) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);
}
if (index >= objspace->profile.size) {
objspace->profile.size += 1000;
objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
}
if (!objspace->profile.record) {
rb_bug("gc_profile malloc or realloc miss");
}
record = gc_prof_record(objspace);
MEMZERO(record, gc_profile_record, 1);
#if GC_PROFILE_MORE_DETAIL
record->prepare_time = objspace->profile.prepare_time;
#endif
record->gc_time = getrusage_time();
record->gc_invoke_time = record->gc_time - objspace->profile.invoke_time;
record->flags = reason | ((ruby_gc_stress && !ruby_disable_gc_stress) ? GPR_FLAG_STRESS : 0);
}
}
static inline void
gc_prof_timer_stop(rb_objspace_t *objspace)
{
if (objspace->profile.run) {
double gc_time = 0;
gc_profile_record *record = gc_prof_record(objspace);
gc_time = getrusage_time() - record->gc_time;
if (gc_time < 0) gc_time = 0;
record->gc_time = gc_time;
gc_prof_set_heap_info(objspace, record);
}
}
static inline void
gc_prof_mark_timer_start(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
RUBY_DTRACE_GC_MARK_BEGIN();
}
#if GC_PROFILE_MORE_DETAIL
if (objspace->profile.run) {
gc_prof_record(objspace)->gc_mark_time = getrusage_time();
}
#endif
}
static inline void
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
RUBY_DTRACE_GC_MARK_END();
}
#if GC_PROFILE_MORE_DETAIL
if (objspace->profile.run) {
double mark_time = 0;
gc_profile_record *record = gc_prof_record(objspace);
mark_time = getrusage_time() - record->gc_mark_time;
if (mark_time < 0) mark_time = 0;
record->gc_mark_time = mark_time;
}
#endif
}
static inline void
gc_prof_sweep_slot_timer_start(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
RUBY_DTRACE_GC_SWEEP_BEGIN();
}
#if GC_PROFILE_MORE_DETAIL
if (objspace->profile.run) {
objspace->profile.gc_sweep_start_time = getrusage_time();
}
#endif
}
static inline void
gc_prof_sweep_slot_timer_stop(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
RUBY_DTRACE_GC_SWEEP_END();
}
#if GC_PROFILE_MORE_DETAIL
if (objspace->profile.run) {
double sweep_time = 0;
gc_profile_record *record = gc_prof_record(objspace);
sweep_time = getrusage_time() - objspace->profile.gc_sweep_start_time;
if (sweep_time < 0) sweep_time = 0;
record->gc_sweep_time += sweep_time;
if (deferred_final_list) record->flags |= GPR_FLAG_HAVE_FINALIZE;
}
#endif
}
static inline void
gc_prof_set_malloc_info(rb_objspace_t *objspace)
{
#if GC_PROFILE_MORE_DETAIL
if (objspace->profile.run) {
gc_profile_record *record = gc_prof_record(objspace);
record->allocate_increase = malloc_increase + malloc_increase2;
record->allocate_limit = malloc_limit;
#if CALC_EXACT_MALLOC_SIZE
record->allocated_size = malloc_allocated_size;
#endif
}
#endif
}
static inline void
gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
{
size_t live = objspace_live_num(objspace);
size_t total = heaps_used * HEAP_OBJ_LIMIT;
#if GC_PROFILE_MORE_DETAIL
record->heap_use_slots = heaps_used;
record->heap_live_objects = live;
record->heap_free_objects = total - live;
#endif
record->heap_total_objects = total;
record->heap_use_size = live * sizeof(RVALUE);
record->heap_total_size = total * sizeof(RVALUE);
}
/*
* call-seq:
* GC::Profiler.clear -> nil
*
* Clears the GC profiler data.
*
*/
static VALUE
gc_profile_clear(void)
{
rb_objspace_t *objspace = &rb_objspace;
if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2;
objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
if (!objspace->profile.record) {
rb_memerror();
}
}
MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size);
objspace->profile.next_index = 0;
return Qnil;
}
static VALUE
gc_profile_flags(int flags)
{
VALUE result = rb_ary_new();
rb_ary_push(result, ID2SYM(rb_intern(flags & GPR_FLAG_MINOR ? "minor_gc" : "major_gc")));
if (flags & GPR_FLAG_HAVE_FINALIZE) rb_ary_push(result, ID2SYM(rb_intern("HAVE_FINALIZE")));
if (flags & GPR_FLAG_NEWOBJ) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_NEWOBJ")));
if (flags & GPR_FLAG_MALLOC) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_MALLOC")));
if (flags & GPR_FLAG_METHOD) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_METHOD")));
if (flags & GPR_FLAG_STRESS) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_STRESS")));
return result;
}
/*
* call-seq:
* GC::Profiler.raw_data -> [Hash, ...]
*
* Returns an Array of individual raw profile data Hashes ordered
* from earliest to latest by +:GC_INVOKE_TIME+.
*
* For example:
*
* [
* {
* :GC_TIME=>1.3000000000000858e-05,
* :GC_INVOKE_TIME=>0.010634999999999999,
* :HEAP_USE_SIZE=>289640,
* :HEAP_TOTAL_SIZE=>588960,
* :HEAP_TOTAL_OBJECTS=>14724,
* :GC_IS_MARKED=>false
* },
* # ...
* ]
*
* The keys mean:
*
* +:GC_TIME+::
* Time elapsed in seconds for this GC run
* +:GC_INVOKE_TIME+::
* Time elapsed in seconds from startup to when the GC was invoked
* +:HEAP_USE_SIZE+::
* Total bytes of heap used
* +:HEAP_TOTAL_SIZE+::
* Total size of heap in bytes
* +:HEAP_TOTAL_OBJECTS+::
* Total number of objects
* +:GC_IS_MARKED+::
* Returns +true+ if the GC is in mark phase
*
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
* to the following hash keys:
*
* +:GC_MARK_TIME+::
* +:GC_SWEEP_TIME+::
* +:ALLOCATE_INCREASE+::
* +:ALLOCATE_LIMIT+::
* +:HEAP_USE_SLOTS+::
* +:HEAP_LIVE_OBJECTS+::
* +:HEAP_FREE_OBJECTS+::
* +:HAVE_FINALIZE+::
*
*/
static VALUE
gc_profile_record_get(void)
{
VALUE prof;
VALUE gc_profile = rb_ary_new();
size_t i;
rb_objspace_t *objspace = (&rb_objspace);
if (!objspace->profile.run) {
return Qnil;
}
for (i =0; i < objspace->profile.next_index; i++) {
prof = rb_hash_new();
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_profile_flags(objspace->profile.record[i].flags));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_use_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_total_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_total_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
#if GC_PROFILE_MORE_DETAIL
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(objspace->profile.record[i].allocate_increase));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(objspace->profile.record[i].allocate_limit));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(objspace->profile.record[i].heap_use_slots));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_live_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_free_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (objspace->profile.record[i].flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
#endif
rb_ary_push(gc_profile, prof);
}
return gc_profile;
}
static void
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
{
rb_objspace_t *objspace = &rb_objspace;
size_t count = objspace->profile.next_index;
if (objspace->profile.run && count /* > 1 */) {
size_t i;
const gc_profile_record *record;
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->count));
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.record[i];
append(out, rb_sprintf("%5"PRIdSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
i+1, record->gc_invoke_time, record->heap_use_size,
record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
}
#if GC_PROFILE_MORE_DETAIL
append(out, rb_str_new_cstr("\n\n" \
"More detail.\n" \
"Prepare Time = Previously GC's rest sweep time\n"
"Index Flags Allocate Inc. Allocate Limit"
#if CALC_EXACT_MALLOC_SIZE
" Allocated Size"
#endif
" Use Slot Mark Time(ms) Sweep Time(ms) Prepare Time(ms) Removing Obj. Empty Obj.\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.record[i];
append(out, rb_sprintf("%5"PRIdSIZE" %c/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
#if CALC_EXACT_MALLOC_SIZE
" %15"PRIuSIZE
#endif
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %14"PRIuSIZE" %11"PRIuSIZE" \n",
i+1,
(record->flags & GPR_FLAG_MINOR) ? '-' : '+',
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
(record->flags & GPR_FLAG_METHOD) ? "METHOD" :
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
record->allocate_increase, record->allocate_limit,
#if CALC_EXACT_MALLOC_SIZE
record->allocated_size,
#endif
record->heap_use_slots,
record->gc_mark_time*1000, record->gc_sweep_time*1000,
record->prepare_time*1000,
record->removing_objects,
record->empty_objects
));
}
#endif
}
}
/*
* call-seq:
* GC::Profiler.result -> String
*
* Returns a profile data report such as:
*
* GC 1 invokes.
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
* 1 0.012 159240 212940 10647 0.00000000000001530000
*/
static VALUE
gc_profile_result(void)
{
VALUE str = rb_str_buf_new(0);
gc_profile_dump_on(str, rb_str_buf_append);
return str;
}
/*
* call-seq:
* GC::Profiler.report
* GC::Profiler.report(io)
*
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
*
*/
static VALUE
gc_profile_report(int argc, VALUE *argv, VALUE self)
{
VALUE out;
if (argc == 0) {
out = rb_stdout;
}
else {
rb_scan_args(argc, argv, "01", &out);
}
gc_profile_dump_on(out, rb_io_write);
return Qnil;
}
/*
* call-seq:
* GC::Profiler.total_time -> float
*
* The total time used for garbage collection in seconds
*/
static VALUE
gc_profile_total_time(VALUE self)
{
double time = 0;
rb_objspace_t *objspace = &rb_objspace;
size_t i;
size_t count = objspace->profile.next_index - 1;
if (objspace->profile.run && count > 0) {
for (i = 0; i < count; i++) {
time += objspace->profile.record[i].gc_time;
}
}
return DBL2NUM(time);
}
/*
* call-seq:
* GC::Profiler.enabled? -> true or false
*
* The current status of GC profile mode.
*/
static VALUE
gc_profile_enable_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return objspace->profile.run ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC::Profiler.enable -> nil
*
* Starts the GC profiler.
*
*/
static VALUE
gc_profile_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
rest_sweep(objspace);
objspace->profile.run = TRUE;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.disable -> nil
*
* Stops the GC profiler.
*
*/
static VALUE
gc_profile_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = FALSE;
return Qnil;
}
#ifdef GC_DEBUG
/*
------------------------------ DEBUG ------------------------------
*/
void
rb_gcdebug_print_obj_condition(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
if (is_pointer_to_heap(objspace, (void *)obj)) {
fprintf(stderr, "pointer to heap?: true\n");
}
else {
fprintf(stderr, "pointer to heap?: false\n");
return;
}
fprintf(stderr, "marked?: %s\n",
MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false");
if (is_lazy_sweeping(objspace)) {
fprintf(stderr, "lazy sweeping?: true\n");
fprintf(stderr, "swept?: %s\n",
is_swept_object(objspace, obj) ? "done" : "not yet");
}
else {
fprintf(stderr, "lazy sweeping?: false\n");
}
}
static VALUE
gcdebug_sential(VALUE obj, VALUE name)
{
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
return Qnil;
}
void
rb_gcdebug_sentinel(VALUE obj, const char *name)
{
rb_define_final(obj, rb_proc_new(gcdebug_sential, (VALUE)name));
}
#endif /* GC_DEBUG */
/*
* Document-module: ObjectSpace
*
* The ObjectSpace module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* ObjectSpace also provides support for object finalizers, procs that will be
* called when a specific object is about to be destroyed by garbage
* collection.
*
* a = "A"
* b = "B"
*
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
*
* _produces:_
*
* Finalizer two on 537763470
* Finalizer one on 537763480
*/
/*
* Document-class: ObjectSpace::WeakMap
*
* An ObjectSpace::WeakMap object holds references to
* any objects, but those objects can get garbage collected.
*
* This class is mostly used internally by WeakRef, please use
* +lib/weakref.rb+ for the public interface.
*/
/* Document-class: GC::Profiler
*
* The GC profiler provides access to information on GC runs including time,
* length and object space size.
*
* Example:
*
* GC::Profiler.enable
*
* require 'rdoc/rdoc'
*
* GC::Profiler.report
*
* GC::Profiler.disable
*
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
*/
/*
* The GC module provides an interface to Ruby's mark and
* sweep garbage collection mechanism.
*
* Some of the underlying methods are also available via the ObjectSpace
* module.
*
* You may obtain information about the operation of the GC through
* GC::Profiler.
*/
void
Init_GC(void)
{
VALUE rb_mObjSpace;
VALUE rb_mProfiler;
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
rb_mObjSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObjSpace, "garbage_collect", rb_gc_start, 0);
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObjSpace, "_id2ref", id2ref, 1);
nomem_error = rb_exc_new3(rb_eNoMemError,
rb_obj_freeze(rb_str_new2("failed to allocate memory")));
OBJ_TAINT(nomem_error);
OBJ_FREEZE(nomem_error);
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
{
VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject);
rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
}
#if CALC_EXACT_MALLOC_SIZE
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
#endif
}