зеркало из https://github.com/github/ruby.git
4705 строки
116 KiB
C
4705 строки
116 KiB
C
/**********************************************************************
|
|
|
|
array.c -
|
|
|
|
$Author$
|
|
created at: Fri Aug 6 09:46:12 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
|
|
Copyright (C) 2000 Information-technology Promotion Agency, Japan
|
|
|
|
**********************************************************************/
|
|
|
|
#include "ruby/ruby.h"
|
|
#include "ruby/util.h"
|
|
#include "ruby/st.h"
|
|
|
|
#ifndef ARRAY_DEBUG
|
|
# define NDEBUG
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
|
|
|
|
VALUE rb_cArray;
|
|
|
|
static ID id_cmp;
|
|
|
|
#define ARY_DEFAULT_SIZE 16
|
|
#define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE))
|
|
|
|
void
|
|
rb_mem_clear(register VALUE *mem, register long size)
|
|
{
|
|
while (size--) {
|
|
*mem++ = Qnil;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
memfill(register VALUE *mem, register long size, register VALUE val)
|
|
{
|
|
while (size--) {
|
|
*mem++ = val;
|
|
}
|
|
}
|
|
|
|
# define ARY_SHARED_P(ary) \
|
|
(assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
|
|
FL_TEST((ary),ELTS_SHARED)!=0)
|
|
# define ARY_EMBED_P(ary) \
|
|
(assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
|
|
FL_TEST((ary), RARRAY_EMBED_FLAG)!=0)
|
|
|
|
#define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr)
|
|
#define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len)
|
|
#define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary)
|
|
#define ARY_EMBED_LEN(a) \
|
|
(assert(ARY_EMBED_P(a)), \
|
|
(long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \
|
|
(RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT)))
|
|
|
|
#define ARY_OWNS_HEAP_P(a) (!FL_TEST((a), ELTS_SHARED|RARRAY_EMBED_FLAG))
|
|
#define FL_SET_EMBED(a) do { \
|
|
assert(!ARY_SHARED_P(a)); \
|
|
assert(!OBJ_FROZEN(a)); \
|
|
FL_SET((a), RARRAY_EMBED_FLAG); \
|
|
} while (0)
|
|
#define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK)
|
|
#define FL_SET_SHARED(ary) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
FL_SET((ary), ELTS_SHARED); \
|
|
} while (0)
|
|
#define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED)
|
|
|
|
#define ARY_SET_PTR(ary, p) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RARRAY(ary)->as.heap.ptr = (p); \
|
|
} while (0)
|
|
#define ARY_SET_EMBED_LEN(ary, n) do { \
|
|
long tmp_n = (n); \
|
|
assert(ARY_EMBED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \
|
|
RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \
|
|
} while (0)
|
|
#define ARY_SET_HEAP_LEN(ary, n) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
RARRAY(ary)->as.heap.len = (n); \
|
|
} while (0)
|
|
#define ARY_SET_LEN(ary, n) do { \
|
|
if (ARY_EMBED_P(ary)) { \
|
|
ARY_SET_EMBED_LEN((ary), (n)); \
|
|
} \
|
|
else { \
|
|
ARY_SET_HEAP_LEN((ary), (n)); \
|
|
} \
|
|
assert(RARRAY_LEN(ary) == (n)); \
|
|
} while (0)
|
|
#define ARY_INCREASE_PTR(ary, n) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RARRAY(ary)->as.heap.ptr += (n); \
|
|
} while (0)
|
|
#define ARY_INCREASE_LEN(ary, n) do { \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
if (ARY_EMBED_P(ary)) { \
|
|
ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \
|
|
} \
|
|
else { \
|
|
RARRAY(ary)->as.heap.len += (n); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \
|
|
ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : RARRAY(ary)->as.heap.aux.capa)
|
|
#define ARY_SET_CAPA(ary, n) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!ARY_SHARED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RARRAY(ary)->as.heap.aux.capa = (n); \
|
|
} while (0)
|
|
|
|
#define ARY_SHARED(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared)
|
|
#define ARY_SET_SHARED(ary, value) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(ARY_SHARED_P(ary)); \
|
|
assert(ARY_SHARED_ROOT_P(value)); \
|
|
RARRAY(ary)->as.heap.aux.shared = (value); \
|
|
} while (0)
|
|
#define RARRAY_SHARED_ROOT_FLAG FL_USER5
|
|
#define ARY_SHARED_ROOT_P(ary) (FL_TEST((ary), RARRAY_SHARED_ROOT_FLAG))
|
|
#define ARY_SHARED_NUM(ary) \
|
|
(assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa)
|
|
#define ARY_SET_SHARED_NUM(ary, value) do { \
|
|
assert(ARY_SHARED_ROOT_P(ary)); \
|
|
RARRAY(ary)->as.heap.aux.capa = (value); \
|
|
} while (0)
|
|
#define FL_SET_SHARED_ROOT(ary) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \
|
|
} while (0)
|
|
|
|
static void
|
|
ary_resize_capa(VALUE ary, long capacity)
|
|
{
|
|
assert(RARRAY_LEN(ary) <= capacity);
|
|
assert(!OBJ_FROZEN(ary));
|
|
assert(!ARY_SHARED_P(ary));
|
|
if (capacity > RARRAY_EMBED_LEN_MAX) {
|
|
if (ARY_EMBED_P(ary)) {
|
|
long len = ARY_EMBED_LEN(ary);
|
|
VALUE *ptr = ALLOC_N(VALUE, (capacity));
|
|
MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len);
|
|
FL_UNSET_EMBED(ary);
|
|
ARY_SET_PTR(ary, ptr);
|
|
ARY_SET_HEAP_LEN(ary, len);
|
|
}
|
|
else {
|
|
REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, (capacity));
|
|
}
|
|
ARY_SET_CAPA(ary, (capacity));
|
|
}
|
|
else {
|
|
if (!ARY_EMBED_P(ary)) {
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE *ptr = RARRAY_PTR(ary);
|
|
if (len > capacity) len = capacity;
|
|
MEMCPY(RARRAY(ary)->as.ary, ptr, VALUE, len);
|
|
FL_SET_EMBED(ary);
|
|
ARY_SET_LEN(ary, len);
|
|
xfree(ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_double_capa(VALUE ary, long min)
|
|
{
|
|
long new_capa = ARY_CAPA(ary) / 2;
|
|
|
|
if (new_capa < ARY_DEFAULT_SIZE) {
|
|
new_capa = ARY_DEFAULT_SIZE;
|
|
}
|
|
if (new_capa >= ARY_MAX_SIZE - min) {
|
|
new_capa = (ARY_MAX_SIZE - min) / 2;
|
|
}
|
|
new_capa += min;
|
|
ary_resize_capa(ary, new_capa);
|
|
}
|
|
|
|
static void
|
|
rb_ary_decrement_share(VALUE shared)
|
|
{
|
|
if (shared) {
|
|
long num = ARY_SHARED_NUM(shared) - 1;
|
|
if (num == 0) {
|
|
rb_ary_free(shared);
|
|
rb_gc_force_recycle(shared);
|
|
}
|
|
else if (num > 0) {
|
|
ARY_SET_SHARED_NUM(shared, num);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_ary_unshare(VALUE ary)
|
|
{
|
|
VALUE shared = RARRAY(ary)->as.heap.aux.shared;
|
|
rb_ary_decrement_share(shared);
|
|
FL_UNSET_SHARED(ary);
|
|
}
|
|
|
|
static inline void
|
|
rb_ary_unshare_safe(VALUE ary)
|
|
{
|
|
if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
|
|
rb_ary_unshare(ary);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_increment_share(VALUE shared)
|
|
{
|
|
long num = ARY_SHARED_NUM(shared);
|
|
if (num >= 0) {
|
|
ARY_SET_SHARED_NUM(shared, num + 1);
|
|
}
|
|
return shared;
|
|
}
|
|
|
|
static void
|
|
rb_ary_set_shared(VALUE ary, VALUE shared)
|
|
{
|
|
rb_ary_increment_share(shared);
|
|
FL_SET_SHARED(ary);
|
|
ARY_SET_SHARED(ary, shared);
|
|
}
|
|
|
|
static inline void
|
|
rb_ary_modify_check(VALUE ary)
|
|
{
|
|
rb_check_frozen(ary);
|
|
if (!OBJ_UNTRUSTED(ary) && rb_safe_level() >= 4)
|
|
rb_raise(rb_eSecurityError, "Insecure: can't modify array");
|
|
}
|
|
|
|
void
|
|
rb_ary_modify(VALUE ary)
|
|
{
|
|
rb_ary_modify_check(ary);
|
|
if (ARY_SHARED_P(ary)) {
|
|
long len = RARRAY_LEN(ary);
|
|
if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE *ptr = ARY_HEAP_PTR(ary);
|
|
VALUE shared = ARY_SHARED(ary);
|
|
FL_UNSET_SHARED(ary);
|
|
FL_SET_EMBED(ary);
|
|
MEMCPY(ARY_EMBED_PTR(ary), ptr, VALUE, len);
|
|
rb_ary_decrement_share(shared);
|
|
ARY_SET_EMBED_LEN(ary, len);
|
|
}
|
|
else {
|
|
VALUE *ptr = ALLOC_N(VALUE, len);
|
|
MEMCPY(ptr, RARRAY_PTR(ary), VALUE, len);
|
|
rb_ary_unshare(ary);
|
|
ARY_SET_CAPA(ary, len);
|
|
ARY_SET_PTR(ary, ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_freeze(VALUE ary)
|
|
{
|
|
return rb_obj_freeze(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.frozen? -> true or false
|
|
*
|
|
* Return <code>true</code> if this array is frozen (or temporarily frozen
|
|
* while being sorted).
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_frozen_p(VALUE ary)
|
|
{
|
|
if (OBJ_FROZEN(ary)) return Qtrue;
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
ary_alloc(VALUE klass)
|
|
{
|
|
NEWOBJ(ary, struct RArray);
|
|
OBJSETUP(ary, klass, T_ARRAY);
|
|
FL_SET_EMBED((VALUE)ary);
|
|
ARY_SET_EMBED_LEN((VALUE)ary, 0);
|
|
|
|
return (VALUE)ary;
|
|
}
|
|
|
|
static VALUE
|
|
ary_new(VALUE klass, long capa)
|
|
{
|
|
VALUE ary;
|
|
|
|
if (capa < 0) {
|
|
rb_raise(rb_eArgError, "negative array size (or size too big)");
|
|
}
|
|
if (capa > ARY_MAX_SIZE) {
|
|
rb_raise(rb_eArgError, "array size too big");
|
|
}
|
|
ary = ary_alloc(klass);
|
|
if (capa > RARRAY_EMBED_LEN_MAX) {
|
|
FL_UNSET_EMBED(ary);
|
|
ARY_SET_PTR(ary, ALLOC_N(VALUE, capa));
|
|
ARY_SET_CAPA(ary, capa);
|
|
ARY_SET_HEAP_LEN(ary, 0);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_new2(long capa)
|
|
{
|
|
return ary_new(rb_cArray, capa);
|
|
}
|
|
|
|
|
|
VALUE
|
|
rb_ary_new(void)
|
|
{
|
|
return rb_ary_new2(RARRAY_EMBED_LEN_MAX);
|
|
}
|
|
|
|
#include <stdarg.h>
|
|
|
|
VALUE
|
|
rb_ary_new3(long n, ...)
|
|
{
|
|
va_list ar;
|
|
VALUE ary;
|
|
long i;
|
|
|
|
ary = rb_ary_new2(n);
|
|
|
|
va_start(ar, n);
|
|
for (i=0; i<n; i++) {
|
|
RARRAY_PTR(ary)[i] = va_arg(ar, VALUE);
|
|
}
|
|
va_end(ar);
|
|
|
|
ARY_SET_LEN(ary, n);
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_new4(long n, const VALUE *elts)
|
|
{
|
|
VALUE ary;
|
|
|
|
ary = rb_ary_new2(n);
|
|
if (n > 0 && elts) {
|
|
MEMCPY(RARRAY_PTR(ary), elts, VALUE, n);
|
|
ARY_SET_LEN(ary, n);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_tmp_new(long capa)
|
|
{
|
|
return ary_new(0, capa);
|
|
}
|
|
|
|
void
|
|
rb_ary_free(VALUE ary)
|
|
{
|
|
if (ARY_OWNS_HEAP_P(ary)) {
|
|
xfree(ARY_HEAP_PTR(ary));
|
|
}
|
|
}
|
|
|
|
RUBY_FUNC_EXPORTED size_t
|
|
rb_ary_memsize(VALUE ary)
|
|
{
|
|
if (ARY_OWNS_HEAP_P(ary)) {
|
|
return RARRAY(ary)->as.heap.aux.capa * sizeof(VALUE);
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
ary_discard(VALUE ary)
|
|
{
|
|
rb_ary_free(ary);
|
|
RBASIC(ary)->flags |= RARRAY_EMBED_FLAG;
|
|
RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_shared(VALUE ary)
|
|
{
|
|
assert(!ARY_EMBED_P(ary));
|
|
if (ARY_SHARED_P(ary)) {
|
|
return ARY_SHARED(ary);
|
|
}
|
|
else if (ARY_SHARED_ROOT_P(ary)) {
|
|
return ary;
|
|
}
|
|
else if (OBJ_FROZEN(ary)) {
|
|
ary_resize_capa(ary, ARY_HEAP_LEN(ary));
|
|
FL_SET_SHARED_ROOT(ary);
|
|
ARY_SET_SHARED_NUM(ary, 1);
|
|
return ary;
|
|
}
|
|
else {
|
|
NEWOBJ(shared, struct RArray);
|
|
OBJSETUP(shared, 0, T_ARRAY);
|
|
FL_UNSET_EMBED(shared);
|
|
|
|
ARY_SET_LEN((VALUE)shared, RARRAY_LEN(ary));
|
|
ARY_SET_PTR((VALUE)shared, RARRAY_PTR(ary));
|
|
FL_SET_SHARED_ROOT(shared);
|
|
ARY_SET_SHARED_NUM((VALUE)shared, 1);
|
|
FL_SET_SHARED(ary);
|
|
ARY_SET_SHARED(ary, (VALUE)shared);
|
|
OBJ_FREEZE(shared);
|
|
return (VALUE)shared;
|
|
}
|
|
}
|
|
|
|
|
|
static VALUE
|
|
ary_make_substitution(VALUE ary)
|
|
{
|
|
if (RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE subst = rb_ary_new2(RARRAY_LEN(ary));
|
|
MEMCPY(ARY_EMBED_PTR(subst), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
|
|
ARY_SET_EMBED_LEN(subst, RARRAY_LEN(ary));
|
|
return subst;
|
|
}
|
|
else {
|
|
return rb_ary_increment_share(ary_make_shared(ary));
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_assoc_new(VALUE car, VALUE cdr)
|
|
{
|
|
return rb_ary_new3(2, car, cdr);
|
|
}
|
|
|
|
static VALUE
|
|
to_ary(VALUE ary)
|
|
{
|
|
return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
|
|
}
|
|
|
|
VALUE
|
|
rb_check_array_type(VALUE ary)
|
|
{
|
|
return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Array.try_convert(obj) -> array or nil
|
|
*
|
|
* Try to convert <i>obj</i> into an array, using +to_ary+ method.
|
|
* Returns converted array or +nil+ if <i>obj</i> cannot be converted
|
|
* for any reason. This method can be used to check if an argument is an
|
|
* array.
|
|
*
|
|
* Array.try_convert([1]) #=> [1]
|
|
* Array.try_convert("1") #=> nil
|
|
*
|
|
* if tmp = Array.try_convert(arg)
|
|
* # the argument is an array
|
|
* elsif tmp = String.try_convert(arg)
|
|
* # the argument is a string
|
|
* end
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
|
|
{
|
|
return rb_check_array_type(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Array.new(size=0, obj=nil)
|
|
* Array.new(array)
|
|
* Array.new(size) {|index| block }
|
|
*
|
|
* Returns a new array. In the first form, the new array is
|
|
* empty. In the second it is created with _size_ copies of _obj_
|
|
* (that is, _size_ references to the same
|
|
* _obj_). The third form creates a copy of the array
|
|
* passed as a parameter (the array is generated by calling
|
|
* to_ary on the parameter). In the last form, an array
|
|
* of the given size is created. Each element in this array is
|
|
* calculated by passing the element's index to the given block and
|
|
* storing the return value.
|
|
*
|
|
* Array.new
|
|
* Array.new(2)
|
|
* Array.new(5, "A")
|
|
*
|
|
* # only one copy of the object is created
|
|
* a = Array.new(2, Hash.new)
|
|
* a[0]['cat'] = 'feline'
|
|
* a
|
|
* a[1]['cat'] = 'Felix'
|
|
* a
|
|
*
|
|
* # here multiple copies are created
|
|
* a = Array.new(2) { Hash.new }
|
|
* a[0]['cat'] = 'feline'
|
|
* a
|
|
*
|
|
* squares = Array.new(5) {|i| i*i}
|
|
* squares
|
|
*
|
|
* copy = Array.new(squares)
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long len;
|
|
VALUE size, val;
|
|
|
|
rb_ary_modify(ary);
|
|
if (argc == 0) {
|
|
if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) {
|
|
xfree(RARRAY_PTR(ary));
|
|
}
|
|
rb_ary_unshare_safe(ary);
|
|
FL_SET_EMBED(ary);
|
|
ARY_SET_EMBED_LEN(ary, 0);
|
|
if (rb_block_given_p()) {
|
|
rb_warning("given block not used");
|
|
}
|
|
return ary;
|
|
}
|
|
rb_scan_args(argc, argv, "02", &size, &val);
|
|
if (argc == 1 && !FIXNUM_P(size)) {
|
|
val = rb_check_array_type(size);
|
|
if (!NIL_P(val)) {
|
|
rb_ary_replace(ary, val);
|
|
return ary;
|
|
}
|
|
}
|
|
|
|
len = NUM2LONG(size);
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "negative array size");
|
|
}
|
|
if (len > ARY_MAX_SIZE) {
|
|
rb_raise(rb_eArgError, "array size too big");
|
|
}
|
|
rb_ary_modify(ary);
|
|
ary_resize_capa(ary, len);
|
|
if (rb_block_given_p()) {
|
|
long i;
|
|
|
|
if (argc == 2) {
|
|
rb_warn("block supersedes default value argument");
|
|
}
|
|
for (i=0; i<len; i++) {
|
|
rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
|
|
ARY_SET_LEN(ary, i + 1);
|
|
}
|
|
}
|
|
else {
|
|
memfill(RARRAY_PTR(ary), len, val);
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns a new array populated with the given objects.
|
|
*
|
|
* Array.[]( 1, 'a', /^A/ )
|
|
* Array[ 1, 'a', /^A/ ]
|
|
* [ 1, 'a', /^A/ ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE ary = ary_new(klass, argc);
|
|
if (argc > 0 && argv) {
|
|
MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
|
|
ARY_SET_LEN(ary, argc);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
void
|
|
rb_ary_store(VALUE ary, long idx, VALUE val)
|
|
{
|
|
if (idx < 0) {
|
|
idx += RARRAY_LEN(ary);
|
|
if (idx < 0) {
|
|
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
|
|
idx - RARRAY_LEN(ary), -RARRAY_LEN(ary));
|
|
}
|
|
}
|
|
else if (idx >= ARY_MAX_SIZE) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", idx);
|
|
}
|
|
|
|
rb_ary_modify(ary);
|
|
if (idx >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, idx);
|
|
}
|
|
if (idx > RARRAY_LEN(ary)) {
|
|
rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary),
|
|
idx-RARRAY_LEN(ary) + 1);
|
|
}
|
|
|
|
if (idx >= RARRAY_LEN(ary)) {
|
|
ARY_SET_LEN(ary, idx + 1);
|
|
}
|
|
RARRAY_PTR(ary)[idx] = val;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_partial(VALUE ary, VALUE klass, long offset, long len)
|
|
{
|
|
assert(offset >= 0);
|
|
assert(len >= 0);
|
|
assert(offset+len <= RARRAY_LEN(ary));
|
|
|
|
if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE result = ary_alloc(klass);
|
|
MEMCPY(ARY_EMBED_PTR(result), RARRAY_PTR(ary) + offset, VALUE, len);
|
|
ARY_SET_EMBED_LEN(result, len);
|
|
return result;
|
|
}
|
|
else {
|
|
VALUE shared, result = ary_alloc(klass);
|
|
FL_UNSET_EMBED(result);
|
|
|
|
shared = ary_make_shared(ary);
|
|
ARY_SET_PTR(result, RARRAY_PTR(ary));
|
|
ARY_SET_LEN(result, RARRAY_LEN(ary));
|
|
rb_ary_set_shared(result, shared);
|
|
|
|
ARY_INCREASE_PTR(result, offset);
|
|
ARY_SET_LEN(result, len);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_shared_copy(VALUE ary)
|
|
{
|
|
return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary));
|
|
}
|
|
|
|
enum ary_take_pos_flags
|
|
{
|
|
ARY_TAKE_FIRST = 0,
|
|
ARY_TAKE_LAST = 1
|
|
};
|
|
|
|
static VALUE
|
|
ary_take_first_or_last(int argc, VALUE *argv, VALUE ary, enum ary_take_pos_flags last)
|
|
{
|
|
VALUE nv;
|
|
long n;
|
|
long offset = 0;
|
|
|
|
rb_scan_args(argc, argv, "1", &nv);
|
|
n = NUM2LONG(nv);
|
|
if (n > RARRAY_LEN(ary)) {
|
|
n = RARRAY_LEN(ary);
|
|
}
|
|
else if (n < 0) {
|
|
rb_raise(rb_eArgError, "negative array size");
|
|
}
|
|
if (last) {
|
|
offset = RARRAY_LEN(ary) - n;
|
|
}
|
|
return ary_make_partial(ary, rb_cArray, offset, n);
|
|
}
|
|
|
|
static VALUE rb_ary_push_1(VALUE ary, VALUE item);
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary << obj -> ary
|
|
*
|
|
* Append---Pushes the given object on to the end of this array. This
|
|
* expression returns the array itself, so several appends
|
|
* may be chained together.
|
|
*
|
|
* [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
|
|
* #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_push(VALUE ary, VALUE item)
|
|
{
|
|
rb_ary_modify(ary);
|
|
return rb_ary_push_1(ary, item);
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_push_1(VALUE ary, VALUE item)
|
|
{
|
|
long idx = RARRAY_LEN(ary);
|
|
|
|
if (idx >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, idx);
|
|
}
|
|
RARRAY_PTR(ary)[idx] = item;
|
|
ARY_SET_LEN(ary, idx + 1);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.push(obj, ... ) -> ary
|
|
*
|
|
* Append---Pushes the given object(s) on to the end of this array. This
|
|
* expression returns the array itself, so several appends
|
|
* may be chained together.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.push("d", "e", "f")
|
|
* #=> ["a", "b", "c", "d", "e", "f"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
rb_ary_modify(ary);
|
|
while (argc--) {
|
|
rb_ary_push_1(ary, *argv++);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_pop(VALUE ary)
|
|
{
|
|
long n;
|
|
rb_ary_modify_check(ary);
|
|
if (RARRAY_LEN(ary) == 0) return Qnil;
|
|
if (ARY_OWNS_HEAP_P(ary) &&
|
|
RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) &&
|
|
ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
|
|
{
|
|
ary_resize_capa(ary, RARRAY_LEN(ary) * 2);
|
|
}
|
|
n = RARRAY_LEN(ary)-1;
|
|
ARY_SET_LEN(ary, n);
|
|
return RARRAY_PTR(ary)[n];
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.pop -> obj or nil
|
|
* ary.pop(n) -> new_ary
|
|
*
|
|
* Removes the last element from +self+ and returns it, or
|
|
* <code>nil</code> if the array is empty.
|
|
*
|
|
* If a number _n_ is given, returns an array of the last n elements
|
|
* (or less) just like <code>array.slice!(-n, n)</code> does.
|
|
*
|
|
* a = [ "a", "b", "c", "d" ]
|
|
* a.pop #=> "d"
|
|
* a.pop(2) #=> ["b", "c"]
|
|
* a #=> ["a"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE result;
|
|
|
|
if (argc == 0) {
|
|
return rb_ary_pop(ary);
|
|
}
|
|
|
|
rb_ary_modify_check(ary);
|
|
result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
|
|
ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
|
|
return result;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_shift(VALUE ary)
|
|
{
|
|
VALUE top;
|
|
|
|
rb_ary_modify_check(ary);
|
|
if (RARRAY_LEN(ary) == 0) return Qnil;
|
|
top = RARRAY_PTR(ary)[0];
|
|
if (!ARY_SHARED_P(ary)) {
|
|
if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) {
|
|
MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1);
|
|
ARY_INCREASE_LEN(ary, -1);
|
|
return top;
|
|
}
|
|
assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */
|
|
|
|
RARRAY_PTR(ary)[0] = Qnil;
|
|
ary_make_shared(ary);
|
|
}
|
|
else if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
|
|
RARRAY_PTR(ary)[0] = Qnil;
|
|
}
|
|
ARY_INCREASE_PTR(ary, 1); /* shift ptr */
|
|
ARY_INCREASE_LEN(ary, -1);
|
|
|
|
return top;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.shift -> obj or nil
|
|
* ary.shift(n) -> new_ary
|
|
*
|
|
* Returns the first element of +self+ and removes it (shifting all
|
|
* other elements down by one). Returns <code>nil</code> if the array
|
|
* is empty.
|
|
*
|
|
* If a number _n_ is given, returns an array of the first n elements
|
|
* (or less) just like <code>array.slice!(0, n)</code> does.
|
|
*
|
|
* args = [ "-m", "-q", "filename" ]
|
|
* args.shift #=> "-m"
|
|
* args #=> ["-q", "filename"]
|
|
*
|
|
* args = [ "-m", "-q", "filename" ]
|
|
* args.shift(2) #=> ["-m", "-q"]
|
|
* args #=> ["filename"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE result;
|
|
long n;
|
|
|
|
if (argc == 0) {
|
|
return rb_ary_shift(ary);
|
|
}
|
|
|
|
rb_ary_modify_check(ary);
|
|
result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
|
|
n = RARRAY_LEN(result);
|
|
if (ARY_SHARED_P(ary)) {
|
|
if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
|
|
rb_mem_clear(RARRAY_PTR(ary), n);
|
|
}
|
|
ARY_INCREASE_PTR(ary, n);
|
|
}
|
|
else {
|
|
MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
|
|
}
|
|
ARY_INCREASE_LEN(ary, -n);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.unshift(obj, ...) -> ary
|
|
*
|
|
* Prepends objects to the front of +self+,
|
|
* moving other elements upwards.
|
|
*
|
|
* a = [ "b", "c", "d" ]
|
|
* a.unshift("a") #=> ["a", "b", "c", "d"]
|
|
* a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long len;
|
|
|
|
rb_ary_modify(ary);
|
|
if (argc == 0) return ary;
|
|
if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) {
|
|
ary_double_capa(ary, len + argc);
|
|
}
|
|
|
|
/* sliding items */
|
|
MEMMOVE(RARRAY_PTR(ary) + argc, RARRAY_PTR(ary), VALUE, len);
|
|
MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
|
|
ARY_INCREASE_LEN(ary, argc);
|
|
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_unshift(VALUE ary, VALUE item)
|
|
{
|
|
return rb_ary_unshift_m(1,&item,ary);
|
|
}
|
|
|
|
/* faster version - use this if you don't need to treat negative offset */
|
|
static inline VALUE
|
|
rb_ary_elt(VALUE ary, long offset)
|
|
{
|
|
if (RARRAY_LEN(ary) == 0) return Qnil;
|
|
if (offset < 0 || RARRAY_LEN(ary) <= offset) {
|
|
return Qnil;
|
|
}
|
|
return RARRAY_PTR(ary)[offset];
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_entry(VALUE ary, long offset)
|
|
{
|
|
if (offset < 0) {
|
|
offset += RARRAY_LEN(ary);
|
|
}
|
|
return rb_ary_elt(ary, offset);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_subseq(VALUE ary, long beg, long len)
|
|
{
|
|
VALUE klass;
|
|
|
|
if (beg > RARRAY_LEN(ary)) return Qnil;
|
|
if (beg < 0 || len < 0) return Qnil;
|
|
|
|
if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
|
|
len = RARRAY_LEN(ary) - beg;
|
|
}
|
|
klass = rb_obj_class(ary);
|
|
if (len == 0) return ary_new(klass, 0);
|
|
|
|
return ary_make_partial(ary, klass, beg, len);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary[index] -> obj or nil
|
|
* ary[start, length] -> new_ary or nil
|
|
* ary[range] -> new_ary or nil
|
|
* ary.slice(index) -> obj or nil
|
|
* ary.slice(start, length) -> new_ary or nil
|
|
* ary.slice(range) -> new_ary or nil
|
|
*
|
|
* Element Reference---Returns the element at _index_,
|
|
* or returns a subarray starting at _start_ and
|
|
* continuing for _length_ elements, or returns a subarray
|
|
* specified by _range_.
|
|
* Negative indices count backward from the end of the
|
|
* array (-1 is the last element). Returns +nil+ if the index
|
|
* (or starting index) are out of range.
|
|
*
|
|
* a = [ "a", "b", "c", "d", "e" ]
|
|
* a[2] + a[0] + a[1] #=> "cab"
|
|
* a[6] #=> nil
|
|
* a[1, 2] #=> [ "b", "c" ]
|
|
* a[1..3] #=> [ "b", "c", "d" ]
|
|
* a[4..7] #=> [ "e" ]
|
|
* a[6..10] #=> nil
|
|
* a[-3, 3] #=> [ "c", "d", "e" ]
|
|
* # special cases
|
|
* a[5] #=> nil
|
|
* a[5, 1] #=> []
|
|
* a[5..10] #=> []
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE arg;
|
|
long beg, len;
|
|
|
|
if (argc == 2) {
|
|
beg = NUM2LONG(argv[0]);
|
|
len = NUM2LONG(argv[1]);
|
|
if (beg < 0) {
|
|
beg += RARRAY_LEN(ary);
|
|
}
|
|
return rb_ary_subseq(ary, beg, len);
|
|
}
|
|
if (argc != 1) {
|
|
rb_scan_args(argc, argv, "11", 0, 0);
|
|
}
|
|
arg = argv[0];
|
|
/* special case - speeding up */
|
|
if (FIXNUM_P(arg)) {
|
|
return rb_ary_entry(ary, FIX2LONG(arg));
|
|
}
|
|
/* check if idx is Range */
|
|
switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
|
|
case Qfalse:
|
|
break;
|
|
case Qnil:
|
|
return Qnil;
|
|
default:
|
|
return rb_ary_subseq(ary, beg, len);
|
|
}
|
|
return rb_ary_entry(ary, NUM2LONG(arg));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.at(index) -> obj or nil
|
|
*
|
|
* Returns the element at _index_. A
|
|
* negative index counts from the end of +self+. Returns +nil+
|
|
* if the index is out of range. See also <code>Array#[]</code>.
|
|
*
|
|
* a = [ "a", "b", "c", "d", "e" ]
|
|
* a.at(0) #=> "a"
|
|
* a.at(-1) #=> "e"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_at(VALUE ary, VALUE pos)
|
|
{
|
|
return rb_ary_entry(ary, NUM2LONG(pos));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.first -> obj or nil
|
|
* ary.first(n) -> new_ary
|
|
*
|
|
* Returns the first element, or the first +n+ elements, of the array.
|
|
* If the array is empty, the first form returns <code>nil</code>, and the
|
|
* second form returns an empty array.
|
|
*
|
|
* a = [ "q", "r", "s", "t" ]
|
|
* a.first #=> "q"
|
|
* a.first(2) #=> ["q", "r"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_first(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
if (argc == 0) {
|
|
if (RARRAY_LEN(ary) == 0) return Qnil;
|
|
return RARRAY_PTR(ary)[0];
|
|
}
|
|
else {
|
|
return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.last -> obj or nil
|
|
* ary.last(n) -> new_ary
|
|
*
|
|
* Returns the last element(s) of +self+. If the array is empty,
|
|
* the first form returns <code>nil</code>.
|
|
*
|
|
* a = [ "w", "x", "y", "z" ]
|
|
* a.last #=> "z"
|
|
* a.last(2) #=> ["y", "z"]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_last(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
if (argc == 0) {
|
|
if (RARRAY_LEN(ary) == 0) return Qnil;
|
|
return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
|
|
}
|
|
else {
|
|
return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.fetch(index) -> obj
|
|
* ary.fetch(index, default ) -> obj
|
|
* ary.fetch(index) {|index| block } -> obj
|
|
*
|
|
* Tries to return the element at position <i>index</i>. If the index
|
|
* lies outside the array, the first form throws an
|
|
* <code>IndexError</code> exception, the second form returns
|
|
* <i>default</i>, and the third form returns the value of invoking
|
|
* the block, passing in the index. Negative values of <i>index</i>
|
|
* count from the end of the array.
|
|
*
|
|
* a = [ 11, 22, 33, 44 ]
|
|
* a.fetch(1) #=> 22
|
|
* a.fetch(-1) #=> 44
|
|
* a.fetch(4, 'cat') #=> "cat"
|
|
* a.fetch(4) { |i| i*i } #=> 16
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE pos, ifnone;
|
|
long block_given;
|
|
long idx;
|
|
|
|
rb_scan_args(argc, argv, "11", &pos, &ifnone);
|
|
block_given = rb_block_given_p();
|
|
if (block_given && argc == 2) {
|
|
rb_warn("block supersedes default value argument");
|
|
}
|
|
idx = NUM2LONG(pos);
|
|
|
|
if (idx < 0) {
|
|
idx += RARRAY_LEN(ary);
|
|
}
|
|
if (idx < 0 || RARRAY_LEN(ary) <= idx) {
|
|
if (block_given) return rb_yield(pos);
|
|
if (argc == 1) {
|
|
rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
|
|
idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
|
|
}
|
|
return ifnone;
|
|
}
|
|
return RARRAY_PTR(ary)[idx];
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.index(obj) -> int or nil
|
|
* ary.index {|item| block} -> int or nil
|
|
* ary.index -> an_enumerator
|
|
*
|
|
* Returns the index of the first object in +self+ such that is
|
|
* <code>==</code> to <i>obj</i>. If a block is given instead of an
|
|
* argument, returns first object for which <em>block</em> is true.
|
|
* Returns <code>nil</code> if no match is found.
|
|
* See also <code>Array#rindex</code>.
|
|
*
|
|
* If neither block nor argument is given, an enumerator is returned instead.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.index("b") #=> 1
|
|
* a.index("z") #=> nil
|
|
* a.index{|x|x=="b"} #=> 1
|
|
*
|
|
* This is an alias of <code>#find_index</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_index(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE val;
|
|
long i;
|
|
|
|
if (argc == 0) {
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
|
|
return LONG2NUM(i);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
rb_scan_args(argc, argv, "1", &val);
|
|
if (rb_block_given_p())
|
|
rb_warn("given block not used");
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
if (rb_equal(RARRAY_PTR(ary)[i], val))
|
|
return LONG2NUM(i);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.rindex(obj) -> int or nil
|
|
* ary.rindex {|item| block} -> int or nil
|
|
* ary.rindex -> an_enumerator
|
|
*
|
|
* Returns the index of the last object in +self+
|
|
* <code>==</code> to <i>obj</i>. If a block is given instead of an
|
|
* argument, returns first object for which <em>block</em> is
|
|
* true, starting from the last object.
|
|
* Returns <code>nil</code> if no match is found.
|
|
* See also <code>Array#index</code>.
|
|
*
|
|
* If neither block nor argument is given, an enumerator is returned instead.
|
|
*
|
|
* a = [ "a", "b", "b", "b", "c" ]
|
|
* a.rindex("b") #=> 3
|
|
* a.rindex("z") #=> nil
|
|
* a.rindex{|x|x=="b"} #=> 3
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE val;
|
|
long i = RARRAY_LEN(ary);
|
|
|
|
if (argc == 0) {
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
while (i--) {
|
|
if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
|
|
return LONG2NUM(i);
|
|
if (i > RARRAY_LEN(ary)) {
|
|
i = RARRAY_LEN(ary);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
rb_scan_args(argc, argv, "1", &val);
|
|
if (rb_block_given_p())
|
|
rb_warn("given block not used");
|
|
while (i--) {
|
|
if (rb_equal(RARRAY_PTR(ary)[i], val))
|
|
return LONG2NUM(i);
|
|
if (i > RARRAY_LEN(ary)) {
|
|
i = RARRAY_LEN(ary);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_to_ary(VALUE obj)
|
|
{
|
|
VALUE tmp = rb_check_array_type(obj);
|
|
|
|
if (!NIL_P(tmp)) return tmp;
|
|
return rb_ary_new3(1, obj);
|
|
}
|
|
|
|
static void
|
|
rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
|
|
{
|
|
long rlen;
|
|
|
|
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
|
|
if (beg < 0) {
|
|
beg += RARRAY_LEN(ary);
|
|
if (beg < 0) {
|
|
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
|
|
beg - RARRAY_LEN(ary), -RARRAY_LEN(ary));
|
|
}
|
|
}
|
|
if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
|
|
len = RARRAY_LEN(ary) - beg;
|
|
}
|
|
|
|
if (rpl == Qundef) {
|
|
rlen = 0;
|
|
}
|
|
else {
|
|
rpl = rb_ary_to_ary(rpl);
|
|
rlen = RARRAY_LEN(rpl);
|
|
}
|
|
rb_ary_modify(ary);
|
|
if (beg >= RARRAY_LEN(ary)) {
|
|
if (beg > ARY_MAX_SIZE - rlen) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", beg);
|
|
}
|
|
len = beg + rlen;
|
|
if (len >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, len);
|
|
}
|
|
rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary));
|
|
if (rlen > 0) {
|
|
MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
|
|
}
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
else {
|
|
long alen;
|
|
|
|
alen = RARRAY_LEN(ary) + rlen - len;
|
|
if (alen >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, alen);
|
|
}
|
|
|
|
if (len != rlen) {
|
|
MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len,
|
|
VALUE, RARRAY_LEN(ary) - (beg + len));
|
|
ARY_SET_LEN(ary, alen);
|
|
}
|
|
if (rlen > 0) {
|
|
MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* expands or shrinks \a ary to \a len elements.
|
|
* expanded region will be filled with Qnil.
|
|
* \param ary an arrray
|
|
* \param len new size
|
|
* \return \a ary
|
|
* \post the size of \a ary is \a len.
|
|
*/
|
|
VALUE
|
|
rb_ary_resize(VALUE ary, long len)
|
|
{
|
|
long olen;
|
|
|
|
rb_ary_modify(ary);
|
|
olen = RARRAY_LEN(ary);
|
|
if (len == olen) return ary;
|
|
if (len > ARY_MAX_SIZE) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", len);
|
|
}
|
|
if (len > olen) {
|
|
if (len >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, len);
|
|
}
|
|
rb_mem_clear(RARRAY_PTR(ary) + olen, len - olen);
|
|
ARY_SET_HEAP_LEN(ary, len);
|
|
}
|
|
else if (ARY_EMBED_P(ary)) {
|
|
ARY_SET_EMBED_LEN(ary, len);
|
|
}
|
|
else if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE tmp[RARRAY_EMBED_LEN_MAX];
|
|
MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len);
|
|
ary_discard(ary);
|
|
MEMCPY(ARY_EMBED_PTR(ary), tmp, VALUE, len);
|
|
ARY_SET_EMBED_LEN(ary, len);
|
|
}
|
|
else {
|
|
if (olen > len + ARY_DEFAULT_SIZE) {
|
|
REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, len);
|
|
}
|
|
ARY_SET_HEAP_LEN(ary, len);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary[index] = obj -> obj
|
|
* ary[start, length] = obj or other_ary or nil -> obj or other_ary or nil
|
|
* ary[range] = obj or other_ary or nil -> obj or other_ary or nil
|
|
*
|
|
* Element Assignment---Sets the element at _index_,
|
|
* or replaces a subarray starting at _start_ and
|
|
* continuing for _length_ elements, or replaces a subarray
|
|
* specified by _range_. If indices are greater than
|
|
* the current capacity of the array, the array grows
|
|
* automatically. A negative indices will count backward
|
|
* from the end of the array. Inserts elements if _length_ is
|
|
* zero. An +IndexError+ is raised if a negative index points
|
|
* past the beginning of the array. See also
|
|
* <code>Array#push</code>, and <code>Array#unshift</code>.
|
|
*
|
|
* a = Array.new
|
|
* a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
|
|
* a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
|
|
* a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
|
|
* a[0, 2] = "?" #=> ["?", 2, nil, "4"]
|
|
* a[0..2] = "A" #=> ["A", "4"]
|
|
* a[-1] = "Z" #=> ["A", "Z"]
|
|
* a[1..-1] = nil #=> ["A", nil]
|
|
* a[1..-1] = [] #=> ["A"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long offset, beg, len;
|
|
|
|
if (argc == 3) {
|
|
rb_ary_modify_check(ary);
|
|
beg = NUM2LONG(argv[0]);
|
|
len = NUM2LONG(argv[1]);
|
|
rb_ary_splice(ary, beg, len, argv[2]);
|
|
return argv[2];
|
|
}
|
|
if (argc != 2) {
|
|
rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
|
|
}
|
|
rb_ary_modify_check(ary);
|
|
if (FIXNUM_P(argv[0])) {
|
|
offset = FIX2LONG(argv[0]);
|
|
goto fixnum;
|
|
}
|
|
if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
|
|
/* check if idx is Range */
|
|
rb_ary_splice(ary, beg, len, argv[1]);
|
|
return argv[1];
|
|
}
|
|
|
|
offset = NUM2LONG(argv[0]);
|
|
fixnum:
|
|
rb_ary_store(ary, offset, argv[1]);
|
|
return argv[1];
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.insert(index, obj...) -> ary
|
|
*
|
|
* Inserts the given values before the element with the given index
|
|
* (which may be negative).
|
|
*
|
|
* a = %w{ a b c d }
|
|
* a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
|
|
* a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long pos;
|
|
|
|
if (argc < 1) {
|
|
rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
|
|
}
|
|
rb_ary_modify_check(ary);
|
|
if (argc == 1) return ary;
|
|
pos = NUM2LONG(argv[0]);
|
|
if (pos == -1) {
|
|
pos = RARRAY_LEN(ary);
|
|
}
|
|
if (pos < 0) {
|
|
pos++;
|
|
}
|
|
rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.each {|item| block } -> ary
|
|
* ary.each -> an_enumerator
|
|
*
|
|
* Calls <i>block</i> once for each element in +self+, passing that
|
|
* element as a parameter.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.each {|x| print x, " -- " }
|
|
*
|
|
* produces:
|
|
*
|
|
* a -- b -- c --
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_each(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_yield(RARRAY_PTR(ary)[i]);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.each_index {|index| block } -> ary
|
|
* ary.each_index -> an_enumerator
|
|
*
|
|
* Same as <code>Array#each</code>, but passes the index of the element
|
|
* instead of the element itself.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.each_index {|x| print x, " -- " }
|
|
*
|
|
* produces:
|
|
*
|
|
* 0 -- 1 -- 2 --
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_each_index(VALUE ary)
|
|
{
|
|
long i;
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_yield(LONG2NUM(i));
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.reverse_each {|item| block } -> ary
|
|
* ary.reverse_each -> an_enumerator
|
|
*
|
|
* Same as <code>Array#each</code>, but traverses +self+ in reverse
|
|
* order.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.reverse_each {|x| print x, " " }
|
|
*
|
|
* produces:
|
|
*
|
|
* c b a
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reverse_each(VALUE ary)
|
|
{
|
|
long len;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
len = RARRAY_LEN(ary);
|
|
while (len--) {
|
|
rb_yield(RARRAY_PTR(ary)[len]);
|
|
if (RARRAY_LEN(ary) < len) {
|
|
len = RARRAY_LEN(ary);
|
|
}
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.length -> int
|
|
*
|
|
* Returns the number of elements in +self+. May be zero.
|
|
*
|
|
* [ 1, 2, 3, 4, 5 ].length #=> 5
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_length(VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
return LONG2NUM(len);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.empty? -> true or false
|
|
*
|
|
* Returns <code>true</code> if +self+ contains no elements.
|
|
*
|
|
* [].empty? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_empty_p(VALUE ary)
|
|
{
|
|
if (RARRAY_LEN(ary) == 0)
|
|
return Qtrue;
|
|
return Qfalse;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_dup(VALUE ary)
|
|
{
|
|
VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
|
|
MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
|
|
ARY_SET_LEN(dup, RARRAY_LEN(ary));
|
|
return dup;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_resurrect(VALUE ary)
|
|
{
|
|
return rb_ary_new4(RARRAY_LEN(ary), RARRAY_PTR(ary));
|
|
}
|
|
|
|
extern VALUE rb_output_fs;
|
|
|
|
static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result);
|
|
|
|
static VALUE
|
|
recursive_join(VALUE obj, VALUE argp, int recur)
|
|
{
|
|
VALUE *arg = (VALUE *)argp;
|
|
VALUE ary = arg[0];
|
|
VALUE sep = arg[1];
|
|
VALUE result = arg[2];
|
|
|
|
if (recur) {
|
|
rb_raise(rb_eArgError, "recursive array join");
|
|
}
|
|
else {
|
|
ary_join_1(obj, ary, sep, 0, result);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static void
|
|
ary_join_0(VALUE ary, VALUE sep, long max, VALUE result)
|
|
{
|
|
long i;
|
|
VALUE val;
|
|
|
|
for (i=0; i<max; i++) {
|
|
val = RARRAY_PTR(ary)[i];
|
|
if (i > 0 && !NIL_P(sep))
|
|
rb_str_buf_append(result, sep);
|
|
rb_str_buf_append(result, val);
|
|
if (OBJ_TAINTED(val)) OBJ_TAINT(result);
|
|
if (OBJ_UNTRUSTED(val)) OBJ_TAINT(result);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result)
|
|
{
|
|
VALUE val, tmp;
|
|
|
|
for (; i<RARRAY_LEN(ary); i++) {
|
|
if (i > 0 && !NIL_P(sep))
|
|
rb_str_buf_append(result, sep);
|
|
|
|
val = RARRAY_PTR(ary)[i];
|
|
switch (TYPE(val)) {
|
|
case T_STRING:
|
|
str_join:
|
|
rb_str_buf_append(result, val);
|
|
break;
|
|
case T_ARRAY:
|
|
obj = val;
|
|
ary_join:
|
|
if (val == ary) {
|
|
rb_raise(rb_eArgError, "recursive array join");
|
|
}
|
|
else {
|
|
VALUE args[3];
|
|
|
|
args[0] = val;
|
|
args[1] = sep;
|
|
args[2] = result;
|
|
rb_exec_recursive(recursive_join, obj, (VALUE)args);
|
|
}
|
|
break;
|
|
default:
|
|
tmp = rb_check_string_type(val);
|
|
if (!NIL_P(tmp)) {
|
|
val = tmp;
|
|
goto str_join;
|
|
}
|
|
tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_ary");
|
|
if (!NIL_P(tmp)) {
|
|
obj = val;
|
|
val = tmp;
|
|
goto ary_join;
|
|
}
|
|
val = rb_obj_as_string(val);
|
|
goto str_join;
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_join(VALUE ary, VALUE sep)
|
|
{
|
|
long len = 1, i;
|
|
int taint = FALSE;
|
|
int untrust = FALSE;
|
|
VALUE val, tmp, result;
|
|
|
|
if (RARRAY_LEN(ary) == 0) return rb_str_new(0, 0);
|
|
if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = TRUE;
|
|
if (OBJ_UNTRUSTED(ary) || OBJ_UNTRUSTED(sep)) untrust = TRUE;
|
|
|
|
if (!NIL_P(sep)) {
|
|
StringValue(sep);
|
|
len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
|
|
}
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
val = RARRAY_PTR(ary)[i];
|
|
tmp = rb_check_string_type(val);
|
|
|
|
if (NIL_P(tmp) || tmp != val) {
|
|
result = rb_str_buf_new(len + (RARRAY_LEN(ary)-i)*10);
|
|
if (taint) OBJ_TAINT(result);
|
|
if (untrust) OBJ_UNTRUST(result);
|
|
ary_join_0(ary, sep, i, result);
|
|
ary_join_1(ary, ary, sep, i, result);
|
|
return result;
|
|
}
|
|
|
|
len += RSTRING_LEN(tmp);
|
|
}
|
|
|
|
result = rb_str_buf_new(len);
|
|
if (taint) OBJ_TAINT(result);
|
|
if (untrust) OBJ_UNTRUST(result);
|
|
ary_join_0(ary, sep, RARRAY_LEN(ary), result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.join(sep=$,) -> str
|
|
*
|
|
* Returns a string created by converting each element of the array to
|
|
* a string, separated by <i>sep</i>.
|
|
*
|
|
* [ "a", "b", "c" ].join #=> "abc"
|
|
* [ "a", "b", "c" ].join("-") #=> "a-b-c"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE sep;
|
|
|
|
rb_scan_args(argc, argv, "01", &sep);
|
|
if (NIL_P(sep)) sep = rb_output_fs;
|
|
|
|
return rb_ary_join(ary, sep);
|
|
}
|
|
|
|
static VALUE
|
|
inspect_ary(VALUE ary, VALUE dummy, int recur)
|
|
{
|
|
int tainted = OBJ_TAINTED(ary);
|
|
int untrust = OBJ_UNTRUSTED(ary);
|
|
long i;
|
|
VALUE s, str;
|
|
|
|
if (recur) return rb_tainted_str_new2("[...]");
|
|
str = rb_str_buf_new2("[");
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
s = rb_inspect(RARRAY_PTR(ary)[i]);
|
|
if (OBJ_TAINTED(s)) tainted = TRUE;
|
|
if (OBJ_UNTRUSTED(s)) untrust = TRUE;
|
|
if (i > 0) rb_str_buf_cat2(str, ", ");
|
|
rb_str_buf_append(str, s);
|
|
}
|
|
rb_str_buf_cat2(str, "]");
|
|
if (tainted) OBJ_TAINT(str);
|
|
if (untrust) OBJ_UNTRUST(str);
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.to_s -> string
|
|
* ary.inspect -> string
|
|
*
|
|
* Creates a string representation of +self+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_inspect(VALUE ary)
|
|
{
|
|
if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
|
|
return rb_exec_recursive(inspect_ary, ary, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_to_s(VALUE ary)
|
|
{
|
|
return rb_ary_inspect(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.to_a -> ary
|
|
*
|
|
* Returns +self+. If called on a subclass of Array, converts
|
|
* the receiver to an Array object.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_to_a(VALUE ary)
|
|
{
|
|
if (rb_obj_class(ary) != rb_cArray) {
|
|
VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
|
|
rb_ary_replace(dup, ary);
|
|
return dup;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.to_ary -> ary
|
|
*
|
|
* Returns +self+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_to_ary_m(VALUE ary)
|
|
{
|
|
return ary;
|
|
}
|
|
|
|
static void
|
|
ary_reverse(p1, p2)
|
|
VALUE *p1, *p2;
|
|
{
|
|
while (p1 < p2) {
|
|
VALUE tmp = *p1;
|
|
*p1++ = *p2;
|
|
*p2-- = tmp;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_reverse(VALUE ary)
|
|
{
|
|
VALUE *p1, *p2;
|
|
|
|
rb_ary_modify(ary);
|
|
if (RARRAY_LEN(ary) > 1) {
|
|
p1 = RARRAY_PTR(ary);
|
|
p2 = p1 + RARRAY_LEN(ary) - 1; /* points last item */
|
|
ary_reverse(p1, p2);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.reverse! -> ary
|
|
*
|
|
* Reverses +self+ in place.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.reverse! #=> ["c", "b", "a"]
|
|
* a #=> ["c", "b", "a"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reverse_bang(VALUE ary)
|
|
{
|
|
return rb_ary_reverse(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.reverse -> new_ary
|
|
*
|
|
* Returns a new array containing +self+'s elements in reverse order.
|
|
*
|
|
* [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
|
|
* [ 1 ].reverse #=> [1]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reverse_m(VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE dup = rb_ary_new2(len);
|
|
|
|
if (len > 0) {
|
|
VALUE *p1 = RARRAY_PTR(ary);
|
|
VALUE *p2 = RARRAY_PTR(dup) + len - 1;
|
|
do *p2-- = *p1++; while (--len > 0);
|
|
}
|
|
ARY_SET_LEN(dup, RARRAY_LEN(ary));
|
|
return dup;
|
|
}
|
|
|
|
static inline long
|
|
rotate_count(long cnt, long len)
|
|
{
|
|
return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_rotate(VALUE ary, long cnt)
|
|
{
|
|
rb_ary_modify(ary);
|
|
|
|
if (cnt != 0) {
|
|
VALUE *ptr = RARRAY_PTR(ary);
|
|
long len = RARRAY_LEN(ary);
|
|
|
|
if (len > 0 && (cnt = rotate_count(cnt, len)) > 0) {
|
|
--len;
|
|
if (cnt < len) ary_reverse(ptr + cnt, ptr + len);
|
|
if (--cnt > 0) ary_reverse(ptr, ptr + cnt);
|
|
if (len > 0) ary_reverse(ptr, ptr + len);
|
|
return ary;
|
|
}
|
|
}
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.rotate!(cnt=1) -> ary
|
|
*
|
|
* Rotates +self+ in place so that the element at +cnt+ comes first,
|
|
* and returns +self+. If +cnt+ is negative then it rotates in
|
|
* counter direction.
|
|
*
|
|
* a = [ "a", "b", "c", "d" ]
|
|
* a.rotate! #=> ["b", "c", "d", "a"]
|
|
* a #=> ["b", "c", "d", "a"]
|
|
* a.rotate!(2) #=> ["d", "a", "b", "c"]
|
|
* a.rotate!(-3) #=> ["a", "b", "c", "d"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long n = 1;
|
|
|
|
switch (argc) {
|
|
case 1: n = NUM2LONG(argv[0]);
|
|
case 0: break;
|
|
default: rb_scan_args(argc, argv, "01", NULL);
|
|
}
|
|
rb_ary_rotate(ary, n);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.rotate([cnt = 1]) -> new_ary
|
|
*
|
|
* Returns new array by rotating +self+, whose first element is the
|
|
* element at +cnt+ in +self+. If +cnt+ is negative then it rotates
|
|
* in counter direction.
|
|
*
|
|
* a = [ "a", "b", "c", "d" ]
|
|
* a.rotate #=> ["b", "c", "d", "a"]
|
|
* a #=> ["a", "b", "c", "d"]
|
|
* a.rotate(2) #=> ["c", "d", "a", "b"]
|
|
* a.rotate(-3) #=> ["b", "c", "d", "a"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE rotated, *ptr, *ptr2;
|
|
long len, cnt = 1;
|
|
|
|
switch (argc) {
|
|
case 1: cnt = NUM2LONG(argv[0]);
|
|
case 0: break;
|
|
default: rb_scan_args(argc, argv, "01", NULL);
|
|
}
|
|
|
|
len = RARRAY_LEN(ary);
|
|
rotated = rb_ary_new2(len);
|
|
if (len > 0) {
|
|
cnt = rotate_count(cnt, len);
|
|
ptr = RARRAY_PTR(ary);
|
|
ptr2 = RARRAY_PTR(rotated);
|
|
len -= cnt;
|
|
MEMCPY(ptr2, ptr + cnt, VALUE, len);
|
|
MEMCPY(ptr2 + len, ptr, VALUE, cnt);
|
|
}
|
|
ARY_SET_LEN(rotated, RARRAY_LEN(ary));
|
|
return rotated;
|
|
}
|
|
|
|
struct ary_sort_data {
|
|
VALUE ary;
|
|
int opt_methods;
|
|
int opt_inited;
|
|
};
|
|
|
|
enum {
|
|
sort_opt_Fixnum,
|
|
sort_opt_String,
|
|
sort_optimizable_count
|
|
};
|
|
|
|
#define STRING_P(s) (TYPE(s) == T_STRING && CLASS_OF(s) == rb_cString)
|
|
|
|
#define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type))
|
|
#define SORT_OPTIMIZABLE(data, type) \
|
|
(((data)->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \
|
|
((data)->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \
|
|
(((data)->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \
|
|
rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \
|
|
((data)->opt_methods |= SORT_OPTIMIZABLE_BIT(type))))
|
|
|
|
static VALUE
|
|
sort_reentered(VALUE ary)
|
|
{
|
|
if (RBASIC(ary)->klass) {
|
|
rb_raise(rb_eRuntimeError, "sort reentered");
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static int
|
|
sort_1(const void *ap, const void *bp, void *dummy)
|
|
{
|
|
struct ary_sort_data *data = dummy;
|
|
VALUE retval = sort_reentered(data->ary);
|
|
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
|
|
int n;
|
|
|
|
retval = rb_yield_values(2, a, b);
|
|
n = rb_cmpint(retval, a, b);
|
|
sort_reentered(data->ary);
|
|
return n;
|
|
}
|
|
|
|
static int
|
|
sort_2(const void *ap, const void *bp, void *dummy)
|
|
{
|
|
struct ary_sort_data *data = dummy;
|
|
VALUE retval = sort_reentered(data->ary);
|
|
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
|
|
int n;
|
|
|
|
if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) {
|
|
if ((long)a > (long)b) return 1;
|
|
if ((long)a < (long)b) return -1;
|
|
return 0;
|
|
}
|
|
if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) {
|
|
return rb_str_cmp(a, b);
|
|
}
|
|
|
|
retval = rb_funcall(a, id_cmp, 1, b);
|
|
n = rb_cmpint(retval, a, b);
|
|
sort_reentered(data->ary);
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.sort! -> ary
|
|
* ary.sort! {| a,b | block } -> ary
|
|
*
|
|
* Sorts +self+. Comparisons for
|
|
* the sort will be done using the <code><=></code> operator or using
|
|
* an optional code block. The block implements a comparison between
|
|
* <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
|
|
* <code>Enumerable#sort_by</code>.
|
|
*
|
|
* a = [ "d", "a", "e", "c", "b" ]
|
|
* a.sort #=> ["a", "b", "c", "d", "e"]
|
|
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_sort_bang(VALUE ary)
|
|
{
|
|
rb_ary_modify(ary);
|
|
assert(!ARY_SHARED_P(ary));
|
|
if (RARRAY_LEN(ary) > 1) {
|
|
VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
|
|
struct ary_sort_data data;
|
|
|
|
RBASIC(tmp)->klass = 0;
|
|
data.ary = tmp;
|
|
data.opt_methods = 0;
|
|
data.opt_inited = 0;
|
|
ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
|
|
rb_block_given_p()?sort_1:sort_2, &data);
|
|
|
|
if (ARY_EMBED_P(tmp)) {
|
|
assert(ARY_EMBED_P(tmp));
|
|
if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
|
|
rb_ary_unshare(ary);
|
|
}
|
|
FL_SET_EMBED(ary);
|
|
MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp));
|
|
ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
|
|
}
|
|
else {
|
|
assert(!ARY_EMBED_P(tmp));
|
|
if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
|
|
assert(!ARY_EMBED_P(ary));
|
|
FL_UNSET_SHARED(ary);
|
|
ARY_SET_CAPA(ary, ARY_CAPA(tmp));
|
|
}
|
|
else {
|
|
assert(!ARY_SHARED_P(tmp));
|
|
if (ARY_EMBED_P(ary)) {
|
|
FL_UNSET_EMBED(ary);
|
|
}
|
|
else if (ARY_SHARED_P(ary)) {
|
|
/* ary might be destructively operated in the given block */
|
|
rb_ary_unshare(ary);
|
|
}
|
|
else {
|
|
xfree(ARY_HEAP_PTR(ary));
|
|
}
|
|
ARY_SET_PTR(ary, RARRAY_PTR(tmp));
|
|
ARY_SET_HEAP_LEN(ary, RARRAY_LEN(tmp));
|
|
ARY_SET_CAPA(ary, ARY_CAPA(tmp));
|
|
}
|
|
/* tmp was lost ownership for the ptr */
|
|
FL_UNSET(tmp, FL_FREEZE);
|
|
FL_SET_EMBED(tmp);
|
|
ARY_SET_EMBED_LEN(tmp, 0);
|
|
FL_SET(tmp, FL_FREEZE);
|
|
}
|
|
/* tmp will be GC'ed. */
|
|
RBASIC(tmp)->klass = rb_cArray;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.sort -> new_ary
|
|
* ary.sort {| a,b | block } -> new_ary
|
|
*
|
|
* Returns a new array created by sorting +self+. Comparisons for
|
|
* the sort will be done using the <code><=></code> operator or using
|
|
* an optional code block. The block implements a comparison between
|
|
* <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
|
|
* <code>Enumerable#sort_by</code>.
|
|
*
|
|
* a = [ "d", "a", "e", "c", "b" ]
|
|
* a.sort #=> ["a", "b", "c", "d", "e"]
|
|
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_sort(VALUE ary)
|
|
{
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_sort_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
|
|
static VALUE
|
|
sort_by_i(VALUE i)
|
|
{
|
|
return rb_yield(i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.sort_by! {| obj | block } -> ary
|
|
* ary.sort_by! -> an_enumerator
|
|
*
|
|
* Sorts +self+ in place using a set of keys generated by mapping the
|
|
* values in +self+ through the given block.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_sort_by_bang(VALUE ary)
|
|
{
|
|
VALUE sorted;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
rb_ary_modify(ary);
|
|
sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
|
|
rb_ary_replace(ary, sorted);
|
|
return ary;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.collect {|item| block } -> new_ary
|
|
* ary.map {|item| block } -> new_ary
|
|
* ary.collect -> an_enumerator
|
|
* ary.map -> an_enumerator
|
|
*
|
|
* Invokes <i>block</i> once for each element of +self+. Creates a
|
|
* new array containing the values returned by the block.
|
|
* See also <code>Enumerable#collect</code>.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = [ "a", "b", "c", "d" ]
|
|
* a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
|
|
* a #=> ["a", "b", "c", "d"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_collect(VALUE ary)
|
|
{
|
|
long i;
|
|
VALUE collect;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
collect = rb_ary_new2(RARRAY_LEN(ary));
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
|
|
}
|
|
return collect;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.collect! {|item| block } -> ary
|
|
* ary.map! {|item| block } -> ary
|
|
* ary.collect -> an_enumerator
|
|
* ary.map -> an_enumerator
|
|
*
|
|
* Invokes the block once for each element of +self+, replacing the
|
|
* element with the value returned by _block_.
|
|
* See also <code>Enumerable#collect</code>.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = [ "a", "b", "c", "d" ]
|
|
* a.collect! {|x| x + "!" }
|
|
* a #=> [ "a!", "b!", "c!", "d!" ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_collect_bang(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
rb_ary_modify(ary);
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long))
|
|
{
|
|
VALUE result = rb_ary_new2(argc);
|
|
long beg, len, i, j;
|
|
|
|
for (i=0; i<argc; i++) {
|
|
if (FIXNUM_P(argv[i])) {
|
|
rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
|
|
continue;
|
|
}
|
|
/* check if idx is Range */
|
|
switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
|
|
case Qfalse:
|
|
break;
|
|
case Qnil:
|
|
continue;
|
|
default:
|
|
for (j=0; j<len; j++) {
|
|
rb_ary_push(result, (*func)(obj, j+beg));
|
|
}
|
|
continue;
|
|
}
|
|
rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.values_at(selector,... ) -> new_ary
|
|
*
|
|
* Returns an array containing the elements in
|
|
* +self+ corresponding to the given selector(s). The selectors
|
|
* may be either integer indices or ranges.
|
|
* See also <code>Array#select</code>.
|
|
*
|
|
* a = %w{ a b c d e f }
|
|
* a.values_at(1, 3, 5)
|
|
* a.values_at(1, 3, 5, 7)
|
|
* a.values_at(-1, -3, -5, -7)
|
|
* a.values_at(1..3, 2...5)
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.select {|item| block } -> new_ary
|
|
* ary.select -> an_enumerator
|
|
*
|
|
* Invokes the block passing in successive elements from +self+,
|
|
* returning an array containing those elements for which the block
|
|
* returns a true value (equivalent to <code>Enumerable#select</code>).
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = %w{ a b c d e f }
|
|
* a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_select(VALUE ary)
|
|
{
|
|
VALUE result;
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
result = rb_ary_new2(RARRAY_LEN(ary));
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
|
|
rb_ary_push(result, rb_ary_elt(ary, i));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.select! {|item| block } -> new_ary or nil
|
|
* ary.select! -> an_enumerator
|
|
*
|
|
* Invokes the block passing in successive elements from
|
|
* +self+, deleting elements for which the block returns a
|
|
* false value. It returns +self+ if changes were made,
|
|
* otherwise it returns <code>nil</code>.
|
|
* See also <code>Array#keep_if</code>
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_select_bang(VALUE ary)
|
|
{
|
|
long i1, i2;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
rb_ary_modify(ary);
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
|
|
VALUE v = RARRAY_PTR(ary)[i1];
|
|
if (!RTEST(rb_yield(v))) continue;
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, v);
|
|
}
|
|
i2++;
|
|
}
|
|
|
|
if (RARRAY_LEN(ary) == i2) return Qnil;
|
|
if (i2 < RARRAY_LEN(ary))
|
|
ARY_SET_LEN(ary, i2);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.keep_if {|item| block } -> ary
|
|
* ary.keep_if -> an_enumerator
|
|
*
|
|
* Deletes every element of +self+ for which <i>block</i> evaluates
|
|
* to false.
|
|
* See also <code>Array#select!</code>
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = %w{ a b c d e f }
|
|
* a.keep_if {|v| v =~ /[aeiou]/} #=> ["a", "e"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_keep_if(VALUE ary)
|
|
{
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
rb_ary_select_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.delete(obj) -> obj or nil
|
|
* ary.delete(obj) { block } -> obj or nil
|
|
*
|
|
* Deletes items from +self+ that are equal to <i>obj</i>.
|
|
* If any items are found, returns <i>obj</i>. If
|
|
* the item is not found, returns <code>nil</code>. If the optional
|
|
* code block is given, returns the result of <i>block</i> if the item
|
|
* is not found. (To remove <code>nil</code> elements and
|
|
* get an informative return value, use #compact!)
|
|
*
|
|
* a = [ "a", "b", "b", "b", "c" ]
|
|
* a.delete("b") #=> "b"
|
|
* a #=> ["a", "c"]
|
|
* a.delete("z") #=> nil
|
|
* a.delete("z") { "not found" } #=> "not found"
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_delete(VALUE ary, VALUE item)
|
|
{
|
|
VALUE v = item;
|
|
long i1, i2;
|
|
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
|
|
VALUE e = RARRAY_PTR(ary)[i1];
|
|
|
|
if (rb_equal(e, item)) {
|
|
v = e;
|
|
continue;
|
|
}
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, e);
|
|
}
|
|
i2++;
|
|
}
|
|
if (RARRAY_LEN(ary) == i2) {
|
|
if (rb_block_given_p()) {
|
|
return rb_yield(item);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
rb_ary_modify(ary);
|
|
if (RARRAY_LEN(ary) > i2) {
|
|
ARY_SET_LEN(ary, i2);
|
|
if (i2 * 2 < ARY_CAPA(ary) &&
|
|
ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
|
|
ary_resize_capa(ary, i2*2);
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_delete_at(VALUE ary, long pos)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE del;
|
|
|
|
if (pos >= len) return Qnil;
|
|
if (pos < 0) {
|
|
pos += len;
|
|
if (pos < 0) return Qnil;
|
|
}
|
|
|
|
rb_ary_modify(ary);
|
|
del = RARRAY_PTR(ary)[pos];
|
|
MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE,
|
|
RARRAY_LEN(ary)-pos-1);
|
|
ARY_INCREASE_LEN(ary, -1);
|
|
|
|
return del;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.delete_at(index) -> obj or nil
|
|
*
|
|
* Deletes the element at the specified index, returning that element,
|
|
* or <code>nil</code> if the index is out of range. See also
|
|
* <code>Array#slice!</code>.
|
|
*
|
|
* a = %w( ant bat cat dog )
|
|
* a.delete_at(2) #=> "cat"
|
|
* a #=> ["ant", "bat", "dog"]
|
|
* a.delete_at(99) #=> nil
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_delete_at_m(VALUE ary, VALUE pos)
|
|
{
|
|
return rb_ary_delete_at(ary, NUM2LONG(pos));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.slice!(index) -> obj or nil
|
|
* ary.slice!(start, length) -> new_ary or nil
|
|
* ary.slice!(range) -> new_ary or nil
|
|
*
|
|
* Deletes the element(s) given by an index (optionally with a length)
|
|
* or by a range. Returns the deleted object (or objects), or
|
|
* <code>nil</code> if the index is out of range.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.slice!(1) #=> "b"
|
|
* a #=> ["a", "c"]
|
|
* a.slice!(-1) #=> "c"
|
|
* a #=> ["a"]
|
|
* a.slice!(100) #=> nil
|
|
* a #=> ["a"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE arg1, arg2;
|
|
long pos, len, orig_len;
|
|
|
|
rb_ary_modify_check(ary);
|
|
if (argc == 2) {
|
|
pos = NUM2LONG(argv[0]);
|
|
len = NUM2LONG(argv[1]);
|
|
delete_pos_len:
|
|
if (len < 0) return Qnil;
|
|
orig_len = RARRAY_LEN(ary);
|
|
if (pos < 0) {
|
|
pos += orig_len;
|
|
if (pos < 0) return Qnil;
|
|
}
|
|
else if (orig_len < pos) return Qnil;
|
|
if (orig_len < pos + len) {
|
|
len = orig_len - pos;
|
|
}
|
|
if (len == 0) return rb_ary_new2(0);
|
|
arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
|
|
RBASIC(arg2)->klass = rb_obj_class(ary);
|
|
rb_ary_splice(ary, pos, len, Qundef);
|
|
return arg2;
|
|
}
|
|
|
|
if (argc != 1) {
|
|
/* error report */
|
|
rb_scan_args(argc, argv, "11", NULL, NULL);
|
|
}
|
|
arg1 = argv[0];
|
|
|
|
if (!FIXNUM_P(arg1)) {
|
|
switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
|
|
case Qtrue:
|
|
/* valid range */
|
|
goto delete_pos_len;
|
|
case Qnil:
|
|
/* invalid range */
|
|
return Qnil;
|
|
default:
|
|
/* not a range */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rb_ary_delete_at(ary, NUM2LONG(arg1));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.reject! {|item| block } -> ary or nil
|
|
* ary.reject! -> an_enumerator
|
|
*
|
|
* Equivalent to <code>Array#delete_if</code>, deleting elements from
|
|
* +self+ for which the block evaluates to true, but returns
|
|
* <code>nil</code> if no changes were made.
|
|
* See also <code>Enumerable#reject</code> and <code>Array#delete_if</code>.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reject_bang(VALUE ary)
|
|
{
|
|
long i1, i2;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
rb_ary_modify(ary);
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
|
|
VALUE v = RARRAY_PTR(ary)[i1];
|
|
if (RTEST(rb_yield(v))) continue;
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, v);
|
|
}
|
|
i2++;
|
|
}
|
|
|
|
if (RARRAY_LEN(ary) == i2) return Qnil;
|
|
if (i2 < RARRAY_LEN(ary))
|
|
ARY_SET_LEN(ary, i2);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.reject {|item| block } -> new_ary
|
|
* ary.reject -> an_enumerator
|
|
*
|
|
* Returns a new array containing the items in +self+
|
|
* for which the block is not true.
|
|
* See also <code>Array#delete_if</code>
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reject(VALUE ary)
|
|
{
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_reject_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.delete_if {|item| block } -> ary
|
|
* ary.delete_if -> an_enumerator
|
|
*
|
|
* Deletes every element of +self+ for which <i>block</i> evaluates
|
|
* to true.
|
|
* See also <code>Array#reject!</code>
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.delete_if {|x| x >= "b" } #=> ["a"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_delete_if(VALUE ary)
|
|
{
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
rb_ary_reject_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
take_i(VALUE val, VALUE *args, int argc, VALUE *argv)
|
|
{
|
|
if (args[1]-- == 0) rb_iter_break();
|
|
if (argc > 1) val = rb_ary_new4(argc, argv);
|
|
rb_ary_push(args[0], val);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
take_items(VALUE obj, long n)
|
|
{
|
|
VALUE result = rb_check_array_type(obj);
|
|
VALUE args[2];
|
|
|
|
if (!NIL_P(result)) return rb_ary_subseq(result, 0, n);
|
|
result = rb_ary_new2(n);
|
|
args[0] = result; args[1] = (VALUE)n;
|
|
rb_block_call(obj, rb_intern("each"), 0, 0, take_i, (VALUE)args);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.zip(arg, ...) -> new_ary
|
|
* ary.zip(arg, ...) {| arr | block } -> nil
|
|
*
|
|
* Converts any arguments to arrays, then merges elements of
|
|
* +self+ with corresponding elements from each argument. This
|
|
* generates a sequence of <code>self.size</code> <em>n</em>-element
|
|
* arrays, where <em>n</em> is one more that the count of arguments. If
|
|
* the size of any argument is less than <code>enumObj.size</code>,
|
|
* <code>nil</code> values are supplied. If a block is given, it is
|
|
* invoked for each output array, otherwise an array of arrays is
|
|
* returned.
|
|
*
|
|
* a = [ 4, 5, 6 ]
|
|
* b = [ 7, 8, 9 ]
|
|
* [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
|
|
* [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
|
|
* a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int i, j;
|
|
long len;
|
|
VALUE result = Qnil;
|
|
|
|
len = RARRAY_LEN(ary);
|
|
for (i=0; i<argc; i++) {
|
|
argv[i] = take_items(argv[i], len);
|
|
}
|
|
if (!rb_block_given_p()) {
|
|
result = rb_ary_new2(len);
|
|
}
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
VALUE tmp = rb_ary_new2(argc+1);
|
|
|
|
rb_ary_push(tmp, rb_ary_elt(ary, i));
|
|
for (j=0; j<argc; j++) {
|
|
rb_ary_push(tmp, rb_ary_elt(argv[j], i));
|
|
}
|
|
if (NIL_P(result)) {
|
|
rb_yield(tmp);
|
|
}
|
|
else {
|
|
rb_ary_push(result, tmp);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.transpose -> new_ary
|
|
*
|
|
* Assumes that +self+ is an array of arrays and transposes the
|
|
* rows and columns.
|
|
*
|
|
* a = [[1,2], [3,4], [5,6]]
|
|
* a.transpose #=> [[1, 3, 5], [2, 4, 6]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_transpose(VALUE ary)
|
|
{
|
|
long elen = -1, alen, i, j;
|
|
VALUE tmp, result = 0;
|
|
|
|
alen = RARRAY_LEN(ary);
|
|
if (alen == 0) return rb_ary_dup(ary);
|
|
for (i=0; i<alen; i++) {
|
|
tmp = to_ary(rb_ary_elt(ary, i));
|
|
if (elen < 0) { /* first element */
|
|
elen = RARRAY_LEN(tmp);
|
|
result = rb_ary_new2(elen);
|
|
for (j=0; j<elen; j++) {
|
|
rb_ary_store(result, j, rb_ary_new2(alen));
|
|
}
|
|
}
|
|
else if (elen != RARRAY_LEN(tmp)) {
|
|
rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
|
|
RARRAY_LEN(tmp), elen);
|
|
}
|
|
for (j=0; j<elen; j++) {
|
|
rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.replace(other_ary) -> ary
|
|
*
|
|
* Replaces the contents of +self+ with the contents of
|
|
* <i>other_ary</i>, truncating or expanding if necessary.
|
|
*
|
|
* a = [ "a", "b", "c", "d", "e" ]
|
|
* a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
|
|
* a #=> ["x", "y", "z"]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_replace(VALUE copy, VALUE orig)
|
|
{
|
|
rb_ary_modify_check(copy);
|
|
orig = to_ary(orig);
|
|
if (copy == orig) return copy;
|
|
|
|
if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE *ptr;
|
|
VALUE shared = 0;
|
|
|
|
if (ARY_OWNS_HEAP_P(copy)) {
|
|
xfree(RARRAY_PTR(copy));
|
|
}
|
|
else if (ARY_SHARED_P(copy)) {
|
|
shared = ARY_SHARED(copy);
|
|
FL_UNSET_SHARED(copy);
|
|
}
|
|
FL_SET_EMBED(copy);
|
|
ptr = RARRAY_PTR(orig);
|
|
MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
|
|
if (shared) {
|
|
rb_ary_decrement_share(shared);
|
|
}
|
|
ARY_SET_LEN(copy, RARRAY_LEN(orig));
|
|
}
|
|
else {
|
|
VALUE shared = ary_make_shared(orig);
|
|
if (ARY_OWNS_HEAP_P(copy)) {
|
|
xfree(RARRAY_PTR(copy));
|
|
}
|
|
else {
|
|
rb_ary_unshare_safe(copy);
|
|
}
|
|
FL_UNSET_EMBED(copy);
|
|
ARY_SET_PTR(copy, RARRAY_PTR(orig));
|
|
ARY_SET_LEN(copy, RARRAY_LEN(orig));
|
|
rb_ary_set_shared(copy, shared);
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.clear -> ary
|
|
*
|
|
* Removes all elements from +self+.
|
|
*
|
|
* a = [ "a", "b", "c", "d", "e" ]
|
|
* a.clear #=> [ ]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_clear(VALUE ary)
|
|
{
|
|
rb_ary_modify_check(ary);
|
|
ARY_SET_LEN(ary, 0);
|
|
if (ARY_SHARED_P(ary)) {
|
|
if (!ARY_EMBED_P(ary)) {
|
|
rb_ary_unshare(ary);
|
|
FL_SET_EMBED(ary);
|
|
}
|
|
}
|
|
else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
|
|
ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.fill(obj) -> ary
|
|
* ary.fill(obj, start [, length]) -> ary
|
|
* ary.fill(obj, range ) -> ary
|
|
* ary.fill {|index| block } -> ary
|
|
* ary.fill(start [, length] ) {|index| block } -> ary
|
|
* ary.fill(range) {|index| block } -> ary
|
|
*
|
|
* The first three forms set the selected elements of +self+ (which
|
|
* may be the entire array) to <i>obj</i>. A <i>start</i> of
|
|
* <code>nil</code> is equivalent to zero. A <i>length</i> of
|
|
* <code>nil</code> is equivalent to <i>self.length</i>. The last three
|
|
* forms fill the array with the value of the block. The block is
|
|
* passed the absolute index of each element to be filled.
|
|
* Negative values of <i>start</i> count from the end of the array.
|
|
*
|
|
* a = [ "a", "b", "c", "d" ]
|
|
* a.fill("x") #=> ["x", "x", "x", "x"]
|
|
* a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
|
|
* a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
|
|
* a.fill {|i| i*i} #=> [0, 1, 4, 9]
|
|
* a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE item, arg1, arg2;
|
|
long beg = 0, end = 0, len = 0;
|
|
VALUE *p, *pend;
|
|
int block_p = FALSE;
|
|
|
|
if (rb_block_given_p()) {
|
|
block_p = TRUE;
|
|
rb_scan_args(argc, argv, "02", &arg1, &arg2);
|
|
argc += 1; /* hackish */
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
|
|
}
|
|
switch (argc) {
|
|
case 1:
|
|
beg = 0;
|
|
len = RARRAY_LEN(ary);
|
|
break;
|
|
case 2:
|
|
if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 3:
|
|
beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
|
|
if (beg < 0) {
|
|
beg = RARRAY_LEN(ary) + beg;
|
|
if (beg < 0) beg = 0;
|
|
}
|
|
len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
|
|
break;
|
|
}
|
|
rb_ary_modify(ary);
|
|
if (len < 0) {
|
|
return ary;
|
|
}
|
|
if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
|
|
rb_raise(rb_eArgError, "argument too big");
|
|
}
|
|
end = beg + len;
|
|
if (RARRAY_LEN(ary) < end) {
|
|
if (end >= ARY_CAPA(ary)) {
|
|
ary_resize_capa(ary, end);
|
|
}
|
|
rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
|
|
ARY_SET_LEN(ary, end);
|
|
}
|
|
|
|
if (block_p) {
|
|
VALUE v;
|
|
long i;
|
|
|
|
for (i=beg; i<end; i++) {
|
|
v = rb_yield(LONG2NUM(i));
|
|
if (i>=RARRAY_LEN(ary)) break;
|
|
RARRAY_PTR(ary)[i] = v;
|
|
}
|
|
}
|
|
else {
|
|
p = RARRAY_PTR(ary) + beg;
|
|
pend = p + len;
|
|
while (p < pend) {
|
|
*p++ = item;
|
|
}
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary + other_ary -> new_ary
|
|
*
|
|
* Concatenation---Returns a new array built by concatenating the
|
|
* two arrays together to produce a third array.
|
|
*
|
|
* [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_plus(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
long len;
|
|
|
|
y = to_ary(y);
|
|
len = RARRAY_LEN(x) + RARRAY_LEN(y);
|
|
z = rb_ary_new2(len);
|
|
MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
|
|
MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
|
|
ARY_SET_LEN(z, len);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.concat(other_ary) -> ary
|
|
*
|
|
* Appends the elements of <i>other_ary</i> to +self+.
|
|
*
|
|
* [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
|
|
*/
|
|
|
|
|
|
VALUE
|
|
rb_ary_concat(VALUE x, VALUE y)
|
|
{
|
|
rb_ary_modify_check(x);
|
|
y = to_ary(y);
|
|
if (RARRAY_LEN(y) > 0) {
|
|
rb_ary_splice(x, RARRAY_LEN(x), 0, y);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary * int -> new_ary
|
|
* ary * str -> new_string
|
|
*
|
|
* Repetition---With a String argument, equivalent to
|
|
* self.join(str). Otherwise, returns a new array
|
|
* built by concatenating the _int_ copies of +self+.
|
|
*
|
|
*
|
|
* [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
|
|
* [ 1, 2, 3 ] * "," #=> "1,2,3"
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_times(VALUE ary, VALUE times)
|
|
{
|
|
VALUE ary2, tmp, *ptr, *ptr2;
|
|
long i, t, len;
|
|
|
|
tmp = rb_check_string_type(times);
|
|
if (!NIL_P(tmp)) {
|
|
return rb_ary_join(ary, tmp);
|
|
}
|
|
|
|
len = NUM2LONG(times);
|
|
if (len == 0) {
|
|
ary2 = ary_new(rb_obj_class(ary), 0);
|
|
goto out;
|
|
}
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "negative argument");
|
|
}
|
|
if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
|
|
rb_raise(rb_eArgError, "argument too big");
|
|
}
|
|
len *= RARRAY_LEN(ary);
|
|
|
|
ary2 = ary_new(rb_obj_class(ary), len);
|
|
ARY_SET_LEN(ary2, len);
|
|
|
|
ptr = RARRAY_PTR(ary);
|
|
ptr2 = RARRAY_PTR(ary2);
|
|
t = RARRAY_LEN(ary);
|
|
for (i=0; i<len; i+=t) {
|
|
MEMCPY(ptr2+i, ptr, VALUE, t);
|
|
}
|
|
out:
|
|
OBJ_INFECT(ary2, ary);
|
|
|
|
return ary2;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.assoc(obj) -> new_ary or nil
|
|
*
|
|
* Searches through an array whose elements are also arrays
|
|
* comparing _obj_ with the first element of each contained array
|
|
* using obj.==.
|
|
* Returns the first contained array that matches (that
|
|
* is, the first associated array),
|
|
* or +nil+ if no match is found.
|
|
* See also <code>Array#rassoc</code>.
|
|
*
|
|
* s1 = [ "colors", "red", "blue", "green" ]
|
|
* s2 = [ "letters", "a", "b", "c" ]
|
|
* s3 = "foo"
|
|
* a = [ s1, s2, s3 ]
|
|
* a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
|
|
* a.assoc("foo") #=> nil
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_assoc(VALUE ary, VALUE key)
|
|
{
|
|
long i;
|
|
VALUE v;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
v = rb_check_array_type(RARRAY_PTR(ary)[i]);
|
|
if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
|
|
rb_equal(RARRAY_PTR(v)[0], key))
|
|
return v;
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.rassoc(obj) -> new_ary or nil
|
|
*
|
|
* Searches through the array whose elements are also arrays. Compares
|
|
* _obj_ with the second element of each contained array using
|
|
* <code>==</code>. Returns the first contained array that matches. See
|
|
* also <code>Array#assoc</code>.
|
|
*
|
|
* a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
|
|
* a.rassoc("two") #=> [2, "two"]
|
|
* a.rassoc("four") #=> nil
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_rassoc(VALUE ary, VALUE value)
|
|
{
|
|
long i;
|
|
VALUE v;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
v = RARRAY_PTR(ary)[i];
|
|
if (TYPE(v) == T_ARRAY &&
|
|
RARRAY_LEN(v) > 1 &&
|
|
rb_equal(RARRAY_PTR(v)[1], value))
|
|
return v;
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
recursive_equal(VALUE ary1, VALUE ary2, int recur)
|
|
{
|
|
long i;
|
|
|
|
if (recur) return Qtrue; /* Subtle! */
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
if (!rb_equal(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
|
|
return Qfalse;
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary == other_ary -> bool
|
|
*
|
|
* Equality---Two arrays are equal if they contain the same number
|
|
* of elements and if each element is equal to (according to
|
|
* Object.==) the corresponding element in the other array.
|
|
*
|
|
* [ "a", "c" ] == [ "a", "c", 7 ] #=> false
|
|
* [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
|
|
* [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_equal(VALUE ary1, VALUE ary2)
|
|
{
|
|
if (ary1 == ary2) return Qtrue;
|
|
if (TYPE(ary2) != T_ARRAY) {
|
|
if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
|
|
return Qfalse;
|
|
}
|
|
return rb_equal(ary2, ary1);
|
|
}
|
|
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
|
|
return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
|
|
}
|
|
|
|
static VALUE
|
|
recursive_eql(VALUE ary1, VALUE ary2, int recur)
|
|
{
|
|
long i;
|
|
|
|
if (recur) return Qtrue; /* Subtle! */
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
|
|
return Qfalse;
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.eql?(other) -> true or false
|
|
*
|
|
* Returns <code>true</code> if +self+ and _other_ are the same object,
|
|
* or are both arrays with the same content.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_eql(VALUE ary1, VALUE ary2)
|
|
{
|
|
if (ary1 == ary2) return Qtrue;
|
|
if (TYPE(ary2) != T_ARRAY) return Qfalse;
|
|
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
|
|
return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
|
|
}
|
|
|
|
static VALUE
|
|
recursive_hash(VALUE ary, VALUE dummy, int recur)
|
|
{
|
|
long i;
|
|
st_index_t h;
|
|
VALUE n;
|
|
|
|
h = rb_hash_start(RARRAY_LEN(ary));
|
|
if (recur) {
|
|
h = rb_hash_uint(h, NUM2LONG(rb_hash(rb_cArray)));
|
|
}
|
|
else {
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
n = rb_hash(RARRAY_PTR(ary)[i]);
|
|
h = rb_hash_uint(h, NUM2LONG(n));
|
|
}
|
|
}
|
|
h = rb_hash_end(h);
|
|
return LONG2FIX(h);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.hash -> fixnum
|
|
*
|
|
* Compute a hash-code for this array. Two arrays with the same content
|
|
* will have the same hash code (and will compare using <code>eql?</code>).
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_hash(VALUE ary)
|
|
{
|
|
return rb_exec_recursive_outer(recursive_hash, ary, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.include?(obj) -> true or false
|
|
*
|
|
* Returns <code>true</code> if the given object is present in
|
|
* +self+ (that is, if any object <code>==</code> <i>anObject</i>),
|
|
* <code>false</code> otherwise.
|
|
*
|
|
* a = [ "a", "b", "c" ]
|
|
* a.include?("b") #=> true
|
|
* a.include?("z") #=> false
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_includes(VALUE ary, VALUE item)
|
|
{
|
|
long i;
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
if (rb_equal(RARRAY_PTR(ary)[i], item)) {
|
|
return Qtrue;
|
|
}
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
|
|
static VALUE
|
|
recursive_cmp(VALUE ary1, VALUE ary2, int recur)
|
|
{
|
|
long i, len;
|
|
|
|
if (recur) return Qundef; /* Subtle! */
|
|
len = RARRAY_LEN(ary1);
|
|
if (len > RARRAY_LEN(ary2)) {
|
|
len = RARRAY_LEN(ary2);
|
|
}
|
|
for (i=0; i<len; i++) {
|
|
VALUE v = rb_funcall(rb_ary_elt(ary1, i), id_cmp, 1, rb_ary_elt(ary2, i));
|
|
if (v != INT2FIX(0)) {
|
|
return v;
|
|
}
|
|
}
|
|
return Qundef;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary <=> other_ary -> -1, 0, +1 or nil
|
|
*
|
|
* Comparison---Returns an integer (-1, 0,
|
|
* or +1) if this array is less than, equal to, or greater than
|
|
* <i>other_ary</i>. Each object in each array is compared
|
|
* (using <=>). If any value isn't
|
|
* equal, then that inequality is the return value. If all the
|
|
* values found are equal, then the return is based on a
|
|
* comparison of the array lengths. Thus, two arrays are
|
|
* ``equal'' according to <code>Array#<=></code> if and only if they have
|
|
* the same length and the value of each element is equal to the
|
|
* value of the corresponding element in the other array.
|
|
*
|
|
* [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
|
|
* [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_cmp(VALUE ary1, VALUE ary2)
|
|
{
|
|
long len;
|
|
VALUE v;
|
|
|
|
ary2 = rb_check_array_type(ary2);
|
|
if (NIL_P(ary2)) return Qnil;
|
|
if (ary1 == ary2) return INT2FIX(0);
|
|
v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
|
|
if (v != Qundef) return v;
|
|
len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
|
|
if (len == 0) return INT2FIX(0);
|
|
if (len > 0) return INT2FIX(1);
|
|
return INT2FIX(-1);
|
|
}
|
|
|
|
static VALUE
|
|
ary_add_hash(VALUE hash, VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_hash_aset(hash, RARRAY_PTR(ary)[i], Qtrue);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static inline VALUE
|
|
ary_tmp_hash_new(void)
|
|
{
|
|
VALUE hash = rb_hash_new();
|
|
|
|
RBASIC(hash)->klass = 0;
|
|
return hash;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_hash(VALUE ary)
|
|
{
|
|
VALUE hash = ary_tmp_hash_new();
|
|
return ary_add_hash(hash, ary);
|
|
}
|
|
|
|
static VALUE
|
|
ary_add_hash_by(VALUE hash, VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
VALUE v = rb_ary_elt(ary, i), k = rb_yield(v);
|
|
if (rb_hash_lookup2(hash, k, Qundef) == Qundef) {
|
|
rb_hash_aset(hash, k, v);
|
|
}
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_hash_by(VALUE ary)
|
|
{
|
|
VALUE hash = ary_tmp_hash_new();
|
|
return ary_add_hash_by(hash, ary);
|
|
}
|
|
|
|
static inline void
|
|
ary_recycle_hash(VALUE hash)
|
|
{
|
|
if (RHASH(hash)->ntbl) {
|
|
st_table *tbl = RHASH(hash)->ntbl;
|
|
RHASH(hash)->ntbl = 0;
|
|
st_free_table(tbl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary - other_ary -> new_ary
|
|
*
|
|
* Array Difference---Returns a new array that is a copy of
|
|
* the original array, removing any items that also appear in
|
|
* <i>other_ary</i>. (If you need set-like behavior, see the
|
|
* library class Set.)
|
|
*
|
|
* [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_diff(VALUE ary1, VALUE ary2)
|
|
{
|
|
VALUE ary3;
|
|
volatile VALUE hash;
|
|
long i;
|
|
|
|
hash = ary_make_hash(to_ary(ary2));
|
|
ary3 = rb_ary_new();
|
|
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
|
|
rb_ary_push(ary3, rb_ary_elt(ary1, i));
|
|
}
|
|
ary_recycle_hash(hash);
|
|
return ary3;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary & other_ary -> new_ary
|
|
*
|
|
* Set Intersection---Returns a new array
|
|
* containing elements common to the two arrays, with no duplicates.
|
|
*
|
|
* [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
|
|
*/
|
|
|
|
|
|
static VALUE
|
|
rb_ary_and(VALUE ary1, VALUE ary2)
|
|
{
|
|
VALUE hash, ary3, v;
|
|
st_data_t vv;
|
|
long i;
|
|
|
|
ary2 = to_ary(ary2);
|
|
ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
|
|
RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
|
|
hash = ary_make_hash(ary2);
|
|
|
|
if (RHASH_EMPTY_P(hash))
|
|
return ary3;
|
|
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
vv = (st_data_t)(v = rb_ary_elt(ary1, i));
|
|
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
|
|
rb_ary_push(ary3, v);
|
|
}
|
|
}
|
|
ary_recycle_hash(hash);
|
|
|
|
return ary3;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary | other_ary -> new_ary
|
|
*
|
|
* Set Union---Returns a new array by joining this array with
|
|
* <i>other_ary</i>, removing duplicates.
|
|
*
|
|
* [ "a", "b", "c" ] | [ "c", "d", "a" ]
|
|
* #=> [ "a", "b", "c", "d" ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_or(VALUE ary1, VALUE ary2)
|
|
{
|
|
VALUE hash, ary3, v;
|
|
st_data_t vv;
|
|
long i;
|
|
|
|
ary2 = to_ary(ary2);
|
|
ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
|
|
hash = ary_add_hash(ary_make_hash(ary1), ary2);
|
|
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
vv = (st_data_t)(v = rb_ary_elt(ary1, i));
|
|
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
|
|
rb_ary_push(ary3, v);
|
|
}
|
|
}
|
|
for (i=0; i<RARRAY_LEN(ary2); i++) {
|
|
vv = (st_data_t)(v = rb_ary_elt(ary2, i));
|
|
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
|
|
rb_ary_push(ary3, v);
|
|
}
|
|
}
|
|
ary_recycle_hash(hash);
|
|
return ary3;
|
|
}
|
|
|
|
static int
|
|
push_value(st_data_t key, st_data_t val, st_data_t ary)
|
|
{
|
|
rb_ary_push((VALUE)ary, (VALUE)val);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.uniq! -> ary or nil
|
|
*
|
|
* Removes duplicate elements from +self+.
|
|
* Returns <code>nil</code> if no changes are made (that is, no
|
|
* duplicates are found).
|
|
*
|
|
* a = [ "a", "a", "b", "b", "c" ]
|
|
* a.uniq! #=> ["a", "b", "c"]
|
|
* b = [ "a", "b", "c" ]
|
|
* b.uniq! #=> nil
|
|
* c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
|
|
* c.uniq! {|s| s[/^\w+/]} #=> [ "a:def", "b:abc", "c:jkl" ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_uniq_bang(VALUE ary)
|
|
{
|
|
VALUE hash, v;
|
|
long i, j;
|
|
|
|
rb_ary_modify_check(ary);
|
|
if (RARRAY_LEN(ary) <= 1)
|
|
return Qnil;
|
|
if (rb_block_given_p()) {
|
|
hash = ary_make_hash_by(ary);
|
|
if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
|
|
return Qnil;
|
|
}
|
|
ary_resize_capa(ary, i);
|
|
ARY_SET_LEN(ary, 0);
|
|
st_foreach(RHASH_TBL(hash), push_value, ary);
|
|
}
|
|
else {
|
|
hash = ary_make_hash(ary);
|
|
if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) {
|
|
return Qnil;
|
|
}
|
|
for (i=j=0; i<RARRAY_LEN(ary); i++) {
|
|
st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
|
|
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
|
|
rb_ary_store(ary, j++, v);
|
|
}
|
|
}
|
|
ARY_SET_LEN(ary, j);
|
|
}
|
|
ary_recycle_hash(hash);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.uniq -> new_ary
|
|
*
|
|
* Returns a new array by removing duplicate values in +self+.
|
|
*
|
|
* a = [ "a", "a", "b", "b", "c" ]
|
|
* a.uniq #=> ["a", "b", "c"]
|
|
* c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
|
|
* c.uniq {|s| s[/^\w+/]} #=> [ "a:def", "b:abc", "c:jkl" ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_uniq(VALUE ary)
|
|
{
|
|
VALUE hash, uniq, v;
|
|
long i;
|
|
|
|
if (RARRAY_LEN(ary) <= 1)
|
|
return rb_ary_dup(ary);
|
|
if (rb_block_given_p()) {
|
|
hash = ary_make_hash_by(ary);
|
|
uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
|
|
st_foreach(RHASH_TBL(hash), push_value, uniq);
|
|
}
|
|
else {
|
|
hash = ary_make_hash(ary);
|
|
uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
|
|
if (st_delete(RHASH_TBL(hash), &vv, 0)) {
|
|
rb_ary_push(uniq, v);
|
|
}
|
|
}
|
|
}
|
|
ary_recycle_hash(hash);
|
|
|
|
return uniq;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.compact! -> ary or nil
|
|
*
|
|
* Removes +nil+ elements from the array.
|
|
* Returns +nil+ if no changes were made, otherwise returns
|
|
* </i>ary</i>.
|
|
*
|
|
* [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
|
|
* [ "a", "b", "c" ].compact! #=> nil
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_compact_bang(VALUE ary)
|
|
{
|
|
VALUE *p, *t, *end;
|
|
long n;
|
|
|
|
rb_ary_modify(ary);
|
|
p = t = RARRAY_PTR(ary);
|
|
end = p + RARRAY_LEN(ary);
|
|
|
|
while (t < end) {
|
|
if (NIL_P(*t)) t++;
|
|
else *p++ = *t++;
|
|
}
|
|
n = p - RARRAY_PTR(ary);
|
|
if (RARRAY_LEN(ary) == n) {
|
|
return Qnil;
|
|
}
|
|
ARY_SET_LEN(ary, n);
|
|
if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
|
|
ary_resize_capa(ary, n * 2);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.compact -> new_ary
|
|
*
|
|
* Returns a copy of +self+ with all +nil+ elements removed.
|
|
*
|
|
* [ "a", nil, "b", nil, "c", nil ].compact
|
|
* #=> [ "a", "b", "c" ]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_compact(VALUE ary)
|
|
{
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_compact_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.count -> int
|
|
* ary.count(obj) -> int
|
|
* ary.count { |item| block } -> int
|
|
*
|
|
* Returns the number of elements. If an argument is given, counts
|
|
* the number of elements which equals to <i>obj</i>. If a block is
|
|
* given, counts the number of elements yielding a true value.
|
|
*
|
|
* ary = [1, 2, 4, 2]
|
|
* ary.count #=> 4
|
|
* ary.count(2) #=> 2
|
|
* ary.count{|x|x%2==0} #=> 3
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_count(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long n = 0;
|
|
|
|
if (argc == 0) {
|
|
VALUE *p, *pend;
|
|
|
|
if (!rb_block_given_p())
|
|
return LONG2NUM(RARRAY_LEN(ary));
|
|
|
|
for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
|
|
if (RTEST(rb_yield(*p))) n++;
|
|
}
|
|
}
|
|
else {
|
|
VALUE obj, *p, *pend;
|
|
|
|
rb_scan_args(argc, argv, "1", &obj);
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
|
|
if (rb_equal(*p, obj)) n++;
|
|
}
|
|
}
|
|
|
|
return LONG2NUM(n);
|
|
}
|
|
|
|
static VALUE
|
|
flatten(VALUE ary, int level, int *modified)
|
|
{
|
|
long i = 0;
|
|
VALUE stack, result, tmp, elt;
|
|
st_table *memo;
|
|
st_data_t id;
|
|
|
|
stack = ary_new(0, ARY_DEFAULT_SIZE);
|
|
result = ary_new(0, RARRAY_LEN(ary));
|
|
memo = st_init_numtable();
|
|
st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
|
|
*modified = 0;
|
|
|
|
while (1) {
|
|
while (i < RARRAY_LEN(ary)) {
|
|
elt = RARRAY_PTR(ary)[i++];
|
|
tmp = rb_check_array_type(elt);
|
|
if (RBASIC(result)->klass) {
|
|
rb_raise(rb_eRuntimeError, "flatten reentered");
|
|
}
|
|
if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) {
|
|
rb_ary_push(result, elt);
|
|
}
|
|
else {
|
|
*modified = 1;
|
|
id = (st_data_t)tmp;
|
|
if (st_lookup(memo, id, 0)) {
|
|
st_free_table(memo);
|
|
rb_raise(rb_eArgError, "tried to flatten recursive array");
|
|
}
|
|
st_insert(memo, id, (st_data_t)Qtrue);
|
|
rb_ary_push(stack, ary);
|
|
rb_ary_push(stack, LONG2NUM(i));
|
|
ary = tmp;
|
|
i = 0;
|
|
}
|
|
}
|
|
if (RARRAY_LEN(stack) == 0) {
|
|
break;
|
|
}
|
|
id = (st_data_t)ary;
|
|
st_delete(memo, &id, 0);
|
|
tmp = rb_ary_pop(stack);
|
|
i = NUM2LONG(tmp);
|
|
ary = rb_ary_pop(stack);
|
|
}
|
|
|
|
st_free_table(memo);
|
|
|
|
RBASIC(result)->klass = rb_class_of(ary);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.flatten! -> ary or nil
|
|
* ary.flatten!(level) -> array or nil
|
|
*
|
|
* Flattens +self+ in place.
|
|
* Returns <code>nil</code> if no modifications were made (i.e.,
|
|
* <i>ary</i> contains no subarrays.) If the optional <i>level</i>
|
|
* argument determines the level of recursion to flatten.
|
|
*
|
|
* a = [ 1, 2, [3, [4, 5] ] ]
|
|
* a.flatten! #=> [1, 2, 3, 4, 5]
|
|
* a.flatten! #=> nil
|
|
* a #=> [1, 2, 3, 4, 5]
|
|
* a = [ 1, 2, [3, [4, 5] ] ]
|
|
* a.flatten!(1) #=> [1, 2, 3, [4, 5]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int mod = 0, level = -1;
|
|
VALUE result, lv;
|
|
|
|
rb_scan_args(argc, argv, "01", &lv);
|
|
rb_ary_modify_check(ary);
|
|
if (!NIL_P(lv)) level = NUM2INT(lv);
|
|
if (level == 0) return Qnil;
|
|
|
|
result = flatten(ary, level, &mod);
|
|
if (mod == 0) {
|
|
ary_discard(result);
|
|
return Qnil;
|
|
}
|
|
if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
|
|
rb_ary_replace(ary, result);
|
|
if (mod) ARY_SET_EMBED_LEN(result, 0);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.flatten -> new_ary
|
|
* ary.flatten(level) -> new_ary
|
|
*
|
|
* Returns a new array that is a one-dimensional flattening of this
|
|
* array (recursively). That is, for every element that is an array,
|
|
* extract its elements into the new array. If the optional
|
|
* <i>level</i> argument determines the level of recursion to flatten.
|
|
*
|
|
* s = [ 1, 2, 3 ] #=> [1, 2, 3]
|
|
* t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
|
|
* a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
|
|
* a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
|
* a = [ 1, 2, [3, [4, 5] ] ]
|
|
* a.flatten(1) #=> [1, 2, 3, [4, 5]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int mod = 0, level = -1;
|
|
VALUE result, lv;
|
|
|
|
rb_scan_args(argc, argv, "01", &lv);
|
|
if (!NIL_P(lv)) level = NUM2INT(lv);
|
|
if (level == 0) return ary_make_shared_copy(ary);
|
|
|
|
result = flatten(ary, level, &mod);
|
|
OBJ_INFECT(result, ary);
|
|
|
|
return result;
|
|
}
|
|
|
|
#define OPTHASH_GIVEN_P(opts) \
|
|
(argc > 0 && !NIL_P((opts) = rb_check_hash_type(argv[argc-1])) && (--argc, 1))
|
|
static VALUE sym_random;
|
|
|
|
#define RAND_UPTO(max) (long)(rb_random_real(randgen)*(max))
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.shuffle! -> ary
|
|
* ary.shuffle!(random: rng) -> ary
|
|
*
|
|
* Shuffles elements in +self+ in place.
|
|
* If +rng+ is given, it will be used as the random number generator.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom;
|
|
long i, snap_len;
|
|
|
|
if (OPTHASH_GIVEN_P(opts)) {
|
|
randgen = rb_hash_lookup2(opts, sym_random, randgen);
|
|
}
|
|
if (argc > 0) {
|
|
rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc);
|
|
}
|
|
rb_ary_modify(ary);
|
|
i = RARRAY_LEN(ary);
|
|
ptr = RARRAY_PTR(ary);
|
|
snap_len = i;
|
|
snap_ptr = ptr;
|
|
while (i) {
|
|
long j = RAND_UPTO(i);
|
|
VALUE tmp;
|
|
if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) {
|
|
rb_raise(rb_eRuntimeError, "modified during shuffle");
|
|
}
|
|
tmp = ptr[--i];
|
|
ptr[i] = ptr[j];
|
|
ptr[j] = tmp;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.shuffle -> new_ary
|
|
* ary.shuffle(random: rng) -> new_ary
|
|
*
|
|
* Returns a new array with elements of this array shuffled.
|
|
*
|
|
* a = [ 1, 2, 3 ] #=> [1, 2, 3]
|
|
* a.shuffle #=> [2, 3, 1]
|
|
*
|
|
* If +rng+ is given, it will be used as the random number generator.
|
|
*
|
|
* a.shuffle(random: Random.new(1)) #=> [1, 3, 2]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_shuffle_bang(argc, argv, ary);
|
|
return ary;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.sample -> obj
|
|
* ary.sample(random: rng) -> obj
|
|
* ary.sample(n) -> new_ary
|
|
* ary.sample(n, random: rng) -> new_ary
|
|
*
|
|
* Choose a random element or +n+ random elements from the array. The elements
|
|
* are chosen by using random and unique indices into the array in order to
|
|
* ensure that an element doesn't repeat itself unless the array already
|
|
* contained duplicate elements. If the array is empty the first form returns
|
|
* <code>nil</code> and the second form returns an empty array.
|
|
*
|
|
* If +rng+ is given, it will be used as the random number generator.
|
|
*/
|
|
|
|
|
|
static VALUE
|
|
rb_ary_sample(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE nv, result, *ptr;
|
|
VALUE opts, randgen = rb_cRandom;
|
|
long n, len, i, j, k, idx[10];
|
|
double rnds[numberof(idx)];
|
|
|
|
if (OPTHASH_GIVEN_P(opts)) {
|
|
randgen = rb_hash_lookup2(opts, sym_random, randgen);
|
|
}
|
|
ptr = RARRAY_PTR(ary);
|
|
len = RARRAY_LEN(ary);
|
|
if (argc == 0) {
|
|
if (len == 0) return Qnil;
|
|
if (len == 1) {
|
|
i = 0;
|
|
}
|
|
else {
|
|
double x = rb_random_real(randgen);
|
|
if ((len = RARRAY_LEN(ary)) == 0) return Qnil;
|
|
i = (long)(x * len);
|
|
}
|
|
return RARRAY_PTR(ary)[i];
|
|
}
|
|
rb_scan_args(argc, argv, "1", &nv);
|
|
n = NUM2LONG(nv);
|
|
if (n < 0) rb_raise(rb_eArgError, "negative sample number");
|
|
if (n > len) n = len;
|
|
if (n <= numberof(idx)) {
|
|
for (i = 0; i < n; ++i) {
|
|
rnds[i] = rb_random_real(randgen);
|
|
}
|
|
}
|
|
len = RARRAY_LEN(ary);
|
|
ptr = RARRAY_PTR(ary);
|
|
if (n > len) n = len;
|
|
switch (n) {
|
|
case 0:
|
|
return rb_ary_new2(0);
|
|
case 1:
|
|
i = (long)(rnds[0] * len);
|
|
return rb_ary_new4(1, &ptr[i]);
|
|
case 2:
|
|
i = (long)(rnds[0] * len);
|
|
j = (long)(rnds[1] * (len-1));
|
|
if (j >= i) j++;
|
|
return rb_ary_new3(2, ptr[i], ptr[j]);
|
|
case 3:
|
|
i = (long)(rnds[0] * len);
|
|
j = (long)(rnds[1] * (len-1));
|
|
k = (long)(rnds[2] * (len-2));
|
|
{
|
|
long l = j, g = i;
|
|
if (j >= i) l = i, g = ++j;
|
|
if (k >= l && (++k >= g)) ++k;
|
|
}
|
|
return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
|
|
}
|
|
if (n <= numberof(idx)) {
|
|
VALUE *ptr_result;
|
|
long sorted[numberof(idx)];
|
|
sorted[0] = idx[0] = (long)(rnds[0] * len);
|
|
for (i=1; i<n; i++) {
|
|
k = (long)(rnds[i] * --len);
|
|
for (j = 0; j < i; ++j) {
|
|
if (k < sorted[j]) break;
|
|
++k;
|
|
}
|
|
memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
|
|
sorted[j] = idx[i] = k;
|
|
}
|
|
result = rb_ary_new2(n);
|
|
ptr_result = RARRAY_PTR(result);
|
|
for (i=0; i<n; i++) {
|
|
ptr_result[i] = ptr[idx[i]];
|
|
}
|
|
}
|
|
else {
|
|
VALUE *ptr_result;
|
|
result = rb_ary_new4(len, ptr);
|
|
RBASIC(result)->klass = 0;
|
|
ptr_result = RARRAY_PTR(result);
|
|
RB_GC_GUARD(ary);
|
|
for (i=0; i<n; i++) {
|
|
j = RAND_UPTO(len-i) + i;
|
|
nv = ptr_result[j];
|
|
ptr_result[j] = ptr_result[i];
|
|
ptr_result[i] = nv;
|
|
}
|
|
RBASIC(result)->klass = rb_cArray;
|
|
}
|
|
ARY_SET_LEN(result, n);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.cycle(n=nil) {|obj| block } -> nil
|
|
* ary.cycle(n=nil) -> an_enumerator
|
|
*
|
|
* Calls <i>block</i> for each element repeatedly _n_ times or
|
|
* forever if none or +nil+ is given. If a non-positive number is
|
|
* given or the array is empty, does nothing. Returns +nil+ if the
|
|
* loop has finished without getting interrupted.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
*
|
|
* a = ["a", "b", "c"]
|
|
* a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
|
|
* a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long n, i;
|
|
VALUE nv = Qnil;
|
|
|
|
rb_scan_args(argc, argv, "01", &nv);
|
|
|
|
RETURN_ENUMERATOR(ary, argc, argv);
|
|
if (NIL_P(nv)) {
|
|
n = -1;
|
|
}
|
|
else {
|
|
n = NUM2LONG(nv);
|
|
if (n <= 0) return Qnil;
|
|
}
|
|
|
|
while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_yield(RARRAY_PTR(ary)[i]);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
#define tmpbuf(n, size) rb_str_tmp_new((n)*(size))
|
|
#define tmpbuf_discard(s) (rb_str_resize((s), 0L), RBASIC(s)->klass = rb_cString)
|
|
#define tmpary(n) rb_ary_tmp_new(n)
|
|
#define tmpary_discard(a) (ary_discard(a), RBASIC(a)->klass = rb_cArray)
|
|
|
|
/*
|
|
* Recursively compute permutations of r elements of the set [0..n-1].
|
|
* When we have a complete permutation of array indexes, copy the values
|
|
* at those indexes into a new array and yield that array.
|
|
*
|
|
* n: the size of the set
|
|
* r: the number of elements in each permutation
|
|
* p: the array (of size r) that we're filling in
|
|
* index: what index we're filling in now
|
|
* used: an array of booleans: whether a given index is already used
|
|
* values: the Ruby array that holds the actual values to permute
|
|
*/
|
|
static void
|
|
permute0(long n, long r, long *p, long index, char *used, VALUE values)
|
|
{
|
|
long i,j;
|
|
for (i = 0; i < n; i++) {
|
|
if (used[i] == 0) {
|
|
p[index] = i;
|
|
if (index < r-1) { /* if not done yet */
|
|
used[i] = 1; /* mark index used */
|
|
permute0(n, r, p, index+1, /* recurse */
|
|
used, values);
|
|
used[i] = 0; /* index unused */
|
|
}
|
|
else {
|
|
/* We have a complete permutation of array indexes */
|
|
/* Build a ruby array of the corresponding values */
|
|
/* And yield it to the associated block */
|
|
VALUE result = rb_ary_new2(r);
|
|
VALUE *result_array = RARRAY_PTR(result);
|
|
const VALUE *values_array = RARRAY_PTR(values);
|
|
|
|
for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
|
|
ARY_SET_LEN(result, r);
|
|
rb_yield(result);
|
|
if (RBASIC(values)->klass) {
|
|
rb_raise(rb_eRuntimeError, "permute reentered");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.permutation { |p| block } -> ary
|
|
* ary.permutation -> an_enumerator
|
|
* ary.permutation(n) { |p| block } -> ary
|
|
* ary.permutation(n) -> an_enumerator
|
|
*
|
|
* When invoked with a block, yield all permutations of length <i>n</i>
|
|
* of the elements of <i>ary</i>, then return the array itself.
|
|
* If <i>n</i> is not specified, yield all permutations of all elements.
|
|
* The implementation makes no guarantees about the order in which
|
|
* the permutations are yielded.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* Examples:
|
|
*
|
|
* a = [1, 2, 3]
|
|
* a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
|
|
* a.permutation(1).to_a #=> [[1],[2],[3]]
|
|
* a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
|
|
* a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
|
|
* a.permutation(0).to_a #=> [[]] # one permutation of length 0
|
|
* a.permutation(4).to_a #=> [] # no permutations of length 4
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE num;
|
|
long r, n, i;
|
|
|
|
n = RARRAY_LEN(ary); /* Array length */
|
|
RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */
|
|
rb_scan_args(argc, argv, "01", &num);
|
|
r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */
|
|
|
|
if (r < 0 || n < r) {
|
|
/* no permutations: yield nothing */
|
|
}
|
|
else if (r == 0) { /* exactly one permutation: the zero-length array */
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (r == 1) { /* this is a special, easy case */
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
|
|
}
|
|
}
|
|
else { /* this is the general case */
|
|
volatile VALUE t0 = tmpbuf(n,sizeof(long));
|
|
long *p = (long*)RSTRING_PTR(t0);
|
|
volatile VALUE t1 = tmpbuf(n,sizeof(char));
|
|
char *used = (char*)RSTRING_PTR(t1);
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
RBASIC(ary0)->klass = 0;
|
|
|
|
MEMZERO(used, char, n); /* initialize array */
|
|
|
|
permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
|
|
tmpbuf_discard(t0);
|
|
tmpbuf_discard(t1);
|
|
RBASIC(ary0)->klass = rb_cArray;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.combination(n) { |c| block } -> ary
|
|
* ary.combination(n) -> an_enumerator
|
|
*
|
|
* When invoked with a block, yields all combinations of length <i>n</i>
|
|
* of elements from <i>ary</i> and then returns <i>ary</i> itself.
|
|
* The implementation makes no guarantees about the order in which
|
|
* the combinations are yielded.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* Examples:
|
|
*
|
|
* a = [1, 2, 3, 4]
|
|
* a.combination(1).to_a #=> [[1],[2],[3],[4]]
|
|
* a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
|
|
* a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
|
|
* a.combination(4).to_a #=> [[1,2,3,4]]
|
|
* a.combination(0).to_a #=> [[]] # one combination of length 0
|
|
* a.combination(5).to_a #=> [] # no combinations of length 5
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_combination(VALUE ary, VALUE num)
|
|
{
|
|
long n, i, len;
|
|
|
|
n = NUM2LONG(num);
|
|
RETURN_ENUMERATOR(ary, 1, &num);
|
|
len = RARRAY_LEN(ary);
|
|
if (n < 0 || len < n) {
|
|
/* yield nothing */
|
|
}
|
|
else if (n == 0) {
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (n == 1) {
|
|
for (i = 0; i < len; i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
|
|
}
|
|
}
|
|
else {
|
|
volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
|
|
long *stack = (long*)RSTRING_PTR(t0);
|
|
volatile VALUE cc = tmpary(n);
|
|
VALUE *chosen = RARRAY_PTR(cc);
|
|
long lev = 0;
|
|
|
|
MEMZERO(stack, long, n);
|
|
stack[0] = -1;
|
|
for (;;) {
|
|
chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
|
|
for (lev++; lev < n; lev++) {
|
|
chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
|
|
}
|
|
rb_yield(rb_ary_new4(n, chosen));
|
|
if (RBASIC(t0)->klass) {
|
|
rb_raise(rb_eRuntimeError, "combination reentered");
|
|
}
|
|
do {
|
|
if (lev == 0) goto done;
|
|
stack[lev--]++;
|
|
} while (stack[lev+1]+n == len+lev+1);
|
|
}
|
|
done:
|
|
tmpbuf_discard(t0);
|
|
tmpary_discard(cc);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* Recursively compute repeated permutations of r elements of the set
|
|
* [0..n-1].
|
|
* When we have a complete repeated permutation of array indexes, copy the
|
|
* values at those indexes into a new array and yield that array.
|
|
*
|
|
* n: the size of the set
|
|
* r: the number of elements in each permutation
|
|
* p: the array (of size r) that we're filling in
|
|
* index: what index we're filling in now
|
|
* values: the Ruby array that holds the actual values to permute
|
|
*/
|
|
static void
|
|
rpermute0(long n, long r, long *p, long index, VALUE values)
|
|
{
|
|
long i, j;
|
|
for (i = 0; i < n; i++) {
|
|
p[index] = i;
|
|
if (index < r-1) { /* if not done yet */
|
|
rpermute0(n, r, p, index+1, values); /* recurse */
|
|
}
|
|
else {
|
|
/* We have a complete permutation of array indexes */
|
|
/* Build a ruby array of the corresponding values */
|
|
/* And yield it to the associated block */
|
|
VALUE result = rb_ary_new2(r);
|
|
VALUE *result_array = RARRAY_PTR(result);
|
|
const VALUE *values_array = RARRAY_PTR(values);
|
|
|
|
for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
|
|
ARY_SET_LEN(result, r);
|
|
rb_yield(result);
|
|
if (RBASIC(values)->klass) {
|
|
rb_raise(rb_eRuntimeError, "repeated permute reentered");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.repeated_permutation(n) { |p| block } -> ary
|
|
* ary.repeated_permutation(n) -> an_enumerator
|
|
*
|
|
* When invoked with a block, yield all repeated permutations of length
|
|
* <i>n</i> of the elements of <i>ary</i>, then return the array itself.
|
|
* The implementation makes no guarantees about the order in which
|
|
* the repeated permutations are yielded.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* Examples:
|
|
*
|
|
* a = [1, 2]
|
|
* a.repeated_permutation(1).to_a #=> [[1], [2]]
|
|
* a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]]
|
|
* a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
|
|
* # [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
|
|
* a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_repeated_permutation(VALUE ary, VALUE num)
|
|
{
|
|
long r, n, i;
|
|
|
|
n = RARRAY_LEN(ary); /* Array length */
|
|
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
|
|
r = NUM2LONG(num); /* Permutation size from argument */
|
|
|
|
if (r < 0) {
|
|
/* no permutations: yield nothing */
|
|
}
|
|
else if (r == 0) { /* exactly one permutation: the zero-length array */
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (r == 1) { /* this is a special, easy case */
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
|
|
}
|
|
}
|
|
else { /* this is the general case */
|
|
volatile VALUE t0 = tmpbuf(r, sizeof(long));
|
|
long *p = (long*)RSTRING_PTR(t0);
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
RBASIC(ary0)->klass = 0;
|
|
|
|
rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
|
|
tmpbuf_discard(t0);
|
|
RBASIC(ary0)->klass = rb_cArray;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
static void
|
|
rcombinate0(long n, long r, long *p, long index, long rest, VALUE values)
|
|
{
|
|
long j;
|
|
if (rest > 0) {
|
|
for (; index < n; ++index) {
|
|
p[r-rest] = index;
|
|
rcombinate0(n, r, p, index, rest-1, values);
|
|
}
|
|
}
|
|
else {
|
|
VALUE result = rb_ary_new2(r);
|
|
VALUE *result_array = RARRAY_PTR(result);
|
|
const VALUE *values_array = RARRAY_PTR(values);
|
|
|
|
for (j = 0; j < r; ++j) result_array[j] = values_array[p[j]];
|
|
ARY_SET_LEN(result, r);
|
|
rb_yield(result);
|
|
if (RBASIC(values)->klass) {
|
|
rb_raise(rb_eRuntimeError, "repeated combination reentered");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.repeated_combination(n) { |c| block } -> ary
|
|
* ary.repeated_combination(n) -> an_enumerator
|
|
*
|
|
* When invoked with a block, yields all repeated combinations of
|
|
* length <i>n</i> of elements from <i>ary</i> and then returns
|
|
* <i>ary</i> itself.
|
|
* The implementation makes no guarantees about the order in which
|
|
* the repeated combinations are yielded.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* Examples:
|
|
*
|
|
* a = [1, 2, 3]
|
|
* a.repeated_combination(1).to_a #=> [[1], [2], [3]]
|
|
* a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
|
|
* a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
|
|
* # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
|
|
* a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
|
|
* # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
|
|
* # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
|
|
* a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_repeated_combination(VALUE ary, VALUE num)
|
|
{
|
|
long n, i, len;
|
|
|
|
n = NUM2LONG(num); /* Combination size from argument */
|
|
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
|
|
len = RARRAY_LEN(ary);
|
|
if (n < 0) {
|
|
/* yield nothing */
|
|
}
|
|
else if (n == 0) {
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (n == 1) {
|
|
for (i = 0; i < len; i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
|
|
}
|
|
}
|
|
else if (len == 0) {
|
|
/* yield nothing */
|
|
}
|
|
else {
|
|
volatile VALUE t0 = tmpbuf(n, sizeof(long));
|
|
long *p = (long*)RSTRING_PTR(t0);
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
RBASIC(ary0)->klass = 0;
|
|
|
|
rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
|
|
tmpbuf_discard(t0);
|
|
RBASIC(ary0)->klass = rb_cArray;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.product(other_ary, ...) -> new_ary
|
|
* ary.product(other_ary, ...) { |p| block } -> ary
|
|
*
|
|
* Returns an array of all combinations of elements from all arrays,
|
|
* The length of the returned array is the product of the length
|
|
* of +self+ and the argument arrays.
|
|
* If given a block, <i>product</i> will yield all combinations
|
|
* and return +self+ instead.
|
|
*
|
|
*
|
|
* [1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
|
|
* [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]]
|
|
* [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
|
|
* # [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
|
|
* [1,2].product() #=> [[1],[2]]
|
|
* [1,2].product([]) #=> []
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_product(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int n = argc+1; /* How many arrays we're operating on */
|
|
volatile VALUE t0 = tmpary(n);
|
|
volatile VALUE t1 = tmpbuf(n, sizeof(int));
|
|
VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
|
|
int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
|
|
VALUE result = Qnil; /* The array we'll be returning, when no block given */
|
|
long i,j;
|
|
long resultlen = 1;
|
|
|
|
RBASIC(t0)->klass = 0;
|
|
RBASIC(t1)->klass = 0;
|
|
|
|
/* initialize the arrays of arrays */
|
|
ARY_SET_LEN(t0, n);
|
|
arrays[0] = ary;
|
|
for (i = 1; i < n; i++) arrays[i] = Qnil;
|
|
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
|
|
|
|
/* initialize the counters for the arrays */
|
|
for (i = 0; i < n; i++) counters[i] = 0;
|
|
|
|
/* Otherwise, allocate and fill in an array of results */
|
|
if (rb_block_given_p()) {
|
|
/* Make defensive copies of arrays; exit if any is empty */
|
|
for (i = 0; i < n; i++) {
|
|
if (RARRAY_LEN(arrays[i]) == 0) goto done;
|
|
arrays[i] = ary_make_shared_copy(arrays[i]);
|
|
}
|
|
}
|
|
else {
|
|
/* Compute the length of the result array; return [] if any is empty */
|
|
for (i = 0; i < n; i++) {
|
|
long k = RARRAY_LEN(arrays[i]), l = resultlen;
|
|
if (k == 0) {
|
|
result = rb_ary_new2(0);
|
|
goto done;
|
|
}
|
|
resultlen *= k;
|
|
if (resultlen < k || resultlen < l || resultlen / k != l) {
|
|
rb_raise(rb_eRangeError, "too big to product");
|
|
}
|
|
}
|
|
result = rb_ary_new2(resultlen);
|
|
}
|
|
for (;;) {
|
|
int m;
|
|
/* fill in one subarray */
|
|
VALUE subarray = rb_ary_new2(n);
|
|
for (j = 0; j < n; j++) {
|
|
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
|
|
}
|
|
|
|
/* put it on the result array */
|
|
if(NIL_P(result)) {
|
|
FL_SET(t0, FL_USER5);
|
|
rb_yield(subarray);
|
|
if (! FL_TEST(t0, FL_USER5)) {
|
|
rb_raise(rb_eRuntimeError, "product reentered");
|
|
}
|
|
else {
|
|
FL_UNSET(t0, FL_USER5);
|
|
}
|
|
}
|
|
else {
|
|
rb_ary_push(result, subarray);
|
|
}
|
|
|
|
/*
|
|
* Increment the last counter. If it overflows, reset to 0
|
|
* and increment the one before it.
|
|
*/
|
|
m = n-1;
|
|
counters[m]++;
|
|
while (counters[m] == RARRAY_LEN(arrays[m])) {
|
|
counters[m] = 0;
|
|
/* If the first counter overlows, we are done */
|
|
if (--m < 0) goto done;
|
|
counters[m]++;
|
|
}
|
|
}
|
|
done:
|
|
tmpary_discard(t0);
|
|
tmpbuf_discard(t1);
|
|
|
|
return NIL_P(result) ? ary : result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.take(n) -> new_ary
|
|
*
|
|
* Returns first n elements from <i>ary</i>.
|
|
*
|
|
* a = [1, 2, 3, 4, 5, 0]
|
|
* a.take(3) #=> [1, 2, 3]
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_take(VALUE obj, VALUE n)
|
|
{
|
|
long len = NUM2LONG(n);
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "attempt to take negative size");
|
|
}
|
|
return rb_ary_subseq(obj, 0, len);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.take_while {|arr| block } -> new_ary
|
|
* ary.take_while -> an_enumerator
|
|
*
|
|
* Passes elements to the block until the block returns +nil+ or +false+,
|
|
* then stops iterating and returns an array of all prior elements.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = [1, 2, 3, 4, 5, 0]
|
|
* a.take_while {|i| i < 3 } #=> [1, 2]
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_take_while(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
|
|
}
|
|
return rb_ary_take(ary, LONG2FIX(i));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.drop(n) -> new_ary
|
|
*
|
|
* Drops first n elements from <i>ary</i>, and returns rest elements
|
|
* in an array.
|
|
*
|
|
* a = [1, 2, 3, 4, 5, 0]
|
|
* a.drop(3) #=> [4, 5, 0]
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_drop(VALUE ary, VALUE n)
|
|
{
|
|
VALUE result;
|
|
long pos = NUM2LONG(n);
|
|
if (pos < 0) {
|
|
rb_raise(rb_eArgError, "attempt to drop negative size");
|
|
}
|
|
|
|
result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
|
|
if (result == Qnil) result = rb_ary_new();
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ary.drop_while {|arr| block } -> new_ary
|
|
* ary.drop_while -> an_enumerator
|
|
*
|
|
* Drops elements up to, but not including, the first element for
|
|
* which the block returns +nil+ or +false+ and returns an array
|
|
* containing the remaining elements.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = [1, 2, 3, 4, 5, 0]
|
|
* a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0]
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_drop_while(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
|
|
}
|
|
return rb_ary_drop(ary, LONG2FIX(i));
|
|
}
|
|
|
|
|
|
|
|
/* Arrays are ordered, integer-indexed collections of any object.
|
|
* Array indexing starts at 0, as in C or Java. A negative index is
|
|
* assumed to be relative to the end of the array---that is, an index of -1
|
|
* indicates the last element of the array, -2 is the next to last
|
|
* element in the array, and so on.
|
|
*/
|
|
|
|
void
|
|
Init_Array(void)
|
|
{
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
rb_cArray = rb_define_class("Array", rb_cObject);
|
|
rb_include_module(rb_cArray, rb_mEnumerable);
|
|
|
|
rb_define_alloc_func(rb_cArray, ary_alloc);
|
|
rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
|
|
rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
|
|
rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
|
|
rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
|
|
|
|
rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
|
|
rb_define_alias(rb_cArray, "to_s", "inspect");
|
|
rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
|
|
rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
|
|
rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0);
|
|
|
|
rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
|
|
rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
|
|
rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
|
|
|
|
rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
|
|
rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
|
|
rb_define_method(rb_cArray, "at", rb_ary_at, 1);
|
|
rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
|
|
rb_define_method(rb_cArray, "first", rb_ary_first, -1);
|
|
rb_define_method(rb_cArray, "last", rb_ary_last, -1);
|
|
rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
|
|
rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
|
|
rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
|
|
rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
|
|
rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
|
|
rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
|
|
rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
|
|
rb_define_method(rb_cArray, "each", rb_ary_each, 0);
|
|
rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
|
|
rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
|
|
rb_define_method(rb_cArray, "length", rb_ary_length, 0);
|
|
rb_define_alias(rb_cArray, "size", "length");
|
|
rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
|
|
rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
|
|
rb_define_method(rb_cArray, "index", rb_ary_index, -1);
|
|
rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
|
|
rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
|
|
rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
|
|
rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
|
|
rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1);
|
|
rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1);
|
|
rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
|
|
rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
|
|
rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0);
|
|
rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
|
|
rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
|
|
rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
|
|
rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
|
|
rb_define_method(rb_cArray, "select", rb_ary_select, 0);
|
|
rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0);
|
|
rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0);
|
|
rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
|
|
rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
|
|
rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
|
|
rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
|
|
rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
|
|
rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
|
|
rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
|
|
rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
|
|
rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
|
|
rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
|
|
rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
|
|
rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
|
|
rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
|
|
|
|
rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
|
|
rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
|
|
|
|
rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
|
|
rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
|
|
|
|
rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
|
|
rb_define_method(rb_cArray, "*", rb_ary_times, 1);
|
|
|
|
rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
|
|
rb_define_method(rb_cArray, "&", rb_ary_and, 1);
|
|
rb_define_method(rb_cArray, "|", rb_ary_or, 1);
|
|
|
|
rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
|
|
rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
|
|
rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
|
|
rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
|
|
rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
|
|
rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
|
|
rb_define_method(rb_cArray, "count", rb_ary_count, -1);
|
|
rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, -1);
|
|
rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, -1);
|
|
rb_define_method(rb_cArray, "sample", rb_ary_sample, -1);
|
|
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
|
|
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
|
|
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
|
|
rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
|
|
rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
|
|
rb_define_method(rb_cArray, "product", rb_ary_product, -1);
|
|
|
|
rb_define_method(rb_cArray, "take", rb_ary_take, 1);
|
|
rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
|
|
rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
|
|
rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
|
|
|
|
id_cmp = rb_intern("<=>");
|
|
sym_random = ID2SYM(rb_intern("random"));
|
|
}
|