ruby/lib/xsd/datatypes.rb

1270 строки
24 KiB
Ruby

# XSD4R - XML Schema Datatype implementation.
# Copyright (C) 2000, 2001, 2002, 2003 NAKAMURA, Hiroshi <nahi@ruby-lang.org>.
# This program is copyrighted free software by NAKAMURA, Hiroshi. You can
# redistribute it and/or modify it under the same terms of Ruby's license;
# either the dual license version in 2003, or any later version.
require 'xsd/qname'
require 'xsd/charset'
require 'uri'
###
## XMLSchamaDatatypes general definitions.
#
module XSD
Namespace = 'http://www.w3.org/2001/XMLSchema'
InstanceNamespace = 'http://www.w3.org/2001/XMLSchema-instance'
AttrType = 'type'
NilValue = 'true'
AnyTypeLiteral = 'anyType'
AnySimpleTypeLiteral = 'anySimpleType'
NilLiteral = 'nil'
StringLiteral = 'string'
BooleanLiteral = 'boolean'
DecimalLiteral = 'decimal'
FloatLiteral = 'float'
DoubleLiteral = 'double'
DurationLiteral = 'duration'
DateTimeLiteral = 'dateTime'
TimeLiteral = 'time'
DateLiteral = 'date'
GYearMonthLiteral = 'gYearMonth'
GYearLiteral = 'gYear'
GMonthDayLiteral = 'gMonthDay'
GDayLiteral = 'gDay'
GMonthLiteral = 'gMonth'
HexBinaryLiteral = 'hexBinary'
Base64BinaryLiteral = 'base64Binary'
AnyURILiteral = 'anyURI'
QNameLiteral = 'QName'
NormalizedStringLiteral = 'normalizedString'
#3.3.2 token
#3.3.3 language
#3.3.4 NMTOKEN
#3.3.5 NMTOKENS
#3.3.6 Name
#3.3.7 NCName
#3.3.8 ID
#3.3.9 IDREF
#3.3.10 IDREFS
#3.3.11 ENTITY
#3.3.12 ENTITIES
IntegerLiteral = 'integer'
NonPositiveIntegerLiteral = 'nonPositiveInteger'
NegativeIntegerLiteral = 'negativeInteger'
LongLiteral = 'long'
IntLiteral = 'int'
ShortLiteral = 'short'
ByteLiteral = 'byte'
NonNegativeIntegerLiteral = 'nonNegativeInteger'
UnsignedLongLiteral = 'unsignedLong'
UnsignedIntLiteral = 'unsignedInt'
UnsignedShortLiteral = 'unsignedShort'
UnsignedByteLiteral = 'unsignedByte'
PositiveIntegerLiteral = 'positiveInteger'
AttrTypeName = QName.new(InstanceNamespace, AttrType)
AttrNilName = QName.new(InstanceNamespace, NilLiteral)
AnyTypeName = QName.new(Namespace, AnyTypeLiteral)
AnySimpleTypeName = QName.new(Namespace, AnySimpleTypeLiteral)
class Error < StandardError; end
class ValueSpaceError < Error; end
###
## The base class of all datatypes with Namespace.
#
class NSDBase
@@types = []
attr_accessor :type
def self.inherited(klass)
@@types << klass
end
def self.types
@@types
end
def initialize
end
def init(type)
@type = type
end
end
###
## The base class of XSD datatypes.
#
class XSDAnySimpleType < NSDBase
include XSD
Type = QName.new(Namespace, AnySimpleTypeLiteral)
# @data represents canonical space (ex. Integer: 123).
attr_reader :data
# @is_nil represents this data is nil or not.
attr_accessor :is_nil
def initialize(value = nil)
init(Type, value)
end
# true or raise
def check_lexical_format(value)
screen_data(value)
true
end
# set accepts a string which follows lexical space (ex. String: "+123"), or
# an object which follows canonical space (ex. Integer: 123).
def set(value)
if value.nil?
@is_nil = true
@data = nil
_set(nil)
else
@is_nil = false
_set(screen_data(value))
end
end
# to_s creates a string which follows lexical space (ex. String: "123").
def to_s()
if @is_nil
""
else
_to_s
end
end
private
def init(type, value)
super(type)
set(value)
end
# raises ValueSpaceError if check failed
def screen_data(value)
value
end
def _set(value)
@data = value
end
def _to_s
@data.to_s
end
end
class XSDNil < XSDAnySimpleType
Type = QName.new(Namespace, NilLiteral)
Value = 'true'
def initialize(value = nil)
init(Type, value)
end
end
###
## Primitive datatypes.
#
class XSDString < XSDAnySimpleType
Type = QName.new(Namespace, StringLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
unless XSD::Charset.is_ces(value, XSD::Charset.encoding)
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
value
end
end
class XSDBoolean < XSDAnySimpleType
Type = QName.new(Namespace, BooleanLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
if value.is_a?(String)
str = value.strip
if str == 'true' || str == '1'
true
elsif str == 'false' || str == '0'
false
else
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
else
value ? true : false
end
end
end
class XSDDecimal < XSDAnySimpleType
Type = QName.new(Namespace, DecimalLiteral)
def initialize(value = nil)
init(Type, value)
end
def nonzero?
(@number != '0')
end
private
def screen_data(d)
if d.is_a?(String)
# Integer("00012") => 10 in Ruby.
d.sub!(/^([+\-]?)0*(?=\d)/, "\\1")
end
screen_data_str(d)
end
def screen_data_str(str)
/^([+\-]?)(\d*)(?:\.(\d*)?)?$/ =~ str.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
sign = $1 || '+'
int_part = $2
frac_part = $3
int_part = '0' if int_part.empty?
frac_part = frac_part ? frac_part.sub(/0+$/, '') : ''
point = - frac_part.size
number = int_part + frac_part
# normalize
if sign == '+'
sign = ''
elsif sign == '-'
if number == '0'
sign = ''
end
end
[sign, point, number]
end
def _set(data)
if data.nil?
@sign = @point = @number = @data = nil
return
end
@sign, @point, @number = data
@data = _to_s
@data.freeze
end
# 0.0 -> 0; right?
def _to_s
str = @number.dup
if @point.nonzero?
str[@number.size + @point, 0] = '.'
end
@sign + str
end
end
module FloatConstants
NaN = 0.0/0.0
POSITIVE_INF = +1.0/0.0
NEGATIVE_INF = -1.0/0.0
POSITIVE_ZERO = +1.0/POSITIVE_INF
NEGATIVE_ZERO = -1.0/POSITIVE_INF
MIN_POSITIVE_SINGLE = 2.0 ** -149
end
class XSDFloat < XSDAnySimpleType
include FloatConstants
Type = QName.new(Namespace, FloatLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
# "NaN".to_f => 0 in some environment. libc?
if value.is_a?(Float)
return narrow32bit(value)
end
str = value.to_s.strip
if str == 'NaN'
NaN
elsif str == 'INF'
POSITIVE_INF
elsif str == '-INF'
NEGATIVE_INF
else
if /^[+\-\.\deE]+$/ !~ str
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
# Float("-1.4E") might fail on some system.
str << '0' if /e$/i =~ str
begin
return narrow32bit(Float(str))
rescue ArgumentError
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
end
end
def _to_s
if @data.nan?
'NaN'
elsif @data.infinite? == 1
'INF'
elsif @data.infinite? == -1
'-INF'
else
sign = XSDFloat.positive?(@data) ? '+' : '-'
sign + sprintf("%.10g", @data.abs).sub(/[eE]([+-])?0+/) { 'e' + $1 }
end
end
# Convert to single-precision 32-bit floating point value.
def narrow32bit(f)
if f.nan? || f.infinite?
f
elsif f.abs < MIN_POSITIVE_SINGLE
XSDFloat.positive?(f) ? POSITIVE_ZERO : NEGATIVE_ZERO
else
f
end
end
def self.positive?(value)
(1 / value) > 0.0
end
end
# Ruby's Float is double-precision 64-bit floating point value.
class XSDDouble < XSDAnySimpleType
include FloatConstants
Type = QName.new(Namespace, DoubleLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
# "NaN".to_f => 0 in some environment. libc?
if value.is_a?(Float)
return value
end
str = value.to_s.strip
if str == 'NaN'
NaN
elsif str == 'INF'
POSITIVE_INF
elsif str == '-INF'
NEGATIVE_INF
else
begin
return Float(str)
rescue ArgumentError
# '1.4e' cannot be parsed on some architecture.
if /e\z/i =~ str
begin
return Float(str + '0')
rescue ArgumentError
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
else
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
end
end
end
def _to_s
if @data.nan?
'NaN'
elsif @data.infinite? == 1
'INF'
elsif @data.infinite? == -1
'-INF'
else
sign = (1 / @data > 0.0) ? '+' : '-'
sign + sprintf("%.16g", @data.abs).sub(/[eE]([+-])?0+/) { 'e' + $1 }
end
end
end
class XSDDuration < XSDAnySimpleType
Type = QName.new(Namespace, DurationLiteral)
attr_accessor :sign
attr_accessor :year
attr_accessor :month
attr_accessor :day
attr_accessor :hour
attr_accessor :min
attr_accessor :sec
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
/^([+\-]?)P(?:(\d+)Y)?(?:(\d+)M)?(?:(\d+)D)?(T(?:(\d+)H)?(?:(\d+)M)?(?:(\d+(?:\.\d+)?)S)?)?$/ =~ value.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
if ($5 and ((!$2 and !$3 and !$4) or (!$6 and !$7 and !$8)))
# Should we allow 'PT5S' here?
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
sign = $1
year = $2.to_i
month = $3.to_i
day = $4.to_i
hour = $6.to_i
min = $7.to_i
sec = $8 ? XSDDecimal.new($8) : 0
[sign, year, month, day, hour, min, sec]
end
def _set(data)
if data.nil?
@sign = @year = @month = @day = @hour = @min = @sec = @data = nil
return
end
@sign, @year, @month, @day, @hour, @min, @sec = data
@data = _to_s
@data.freeze
end
def _to_s
str = ''
str << @sign if @sign
str << 'P'
l = ''
l << "#{ @year }Y" if @year.nonzero?
l << "#{ @month }M" if @month.nonzero?
l << "#{ @day }D" if @day.nonzero?
r = ''
r << "#{ @hour }H" if @hour.nonzero?
r << "#{ @min }M" if @min.nonzero?
r << "#{ @sec }S" if @sec.nonzero?
str << l
if l.empty?
str << "0D"
end
unless r.empty?
str << "T" << r
end
str
end
end
require 'rational'
require 'date'
module XSDDateTimeImpl
SecInDay = 86400 # 24 * 60 * 60
def to_obj(klass)
if klass == Time
to_time
elsif klass == Date
to_date
elsif klass == DateTime
to_datetime
else
nil
end
end
def to_time
begin
if @data.offset * SecInDay == Time.now.utc_offset
d = @data
usec = (d.sec_fraction * SecInDay * 1000000).round
Time.local(d.year, d.month, d.mday, d.hour, d.min, d.sec, usec)
else
d = @data.newof
usec = (d.sec_fraction * SecInDay * 1000000).round
Time.gm(d.year, d.month, d.mday, d.hour, d.min, d.sec, usec)
end
rescue ArgumentError
nil
end
end
def to_date
Date.new0(@data.class.jd_to_ajd(@data.jd, 0, 0), 0, @data.start)
end
def to_datetime
data
end
def tz2of(str)
/^(?:Z|(?:([+\-])(\d\d):(\d\d))?)$/ =~ str
sign = $1
hour = $2.to_i
min = $3.to_i
of = case sign
when '+'
of = +(hour.to_r * 60 + min) / 1440 # 24 * 60
when '-'
of = -(hour.to_r * 60 + min) / 1440 # 24 * 60
else
0
end
of
end
def of2tz(offset)
diffmin = offset * 24 * 60
if diffmin.zero?
'Z'
else
((diffmin < 0) ? '-' : '+') << format('%02d:%02d',
(diffmin.abs / 60.0).to_i, (diffmin.abs % 60.0).to_i)
end
end
def screen_data(t)
# convert t to a DateTime as an internal representation.
if t.respond_to?(:to_datetime) # 1.9 or later
t.to_datetime
elsif t.is_a?(DateTime)
t
elsif t.is_a?(Date)
t = screen_data_str(t)
t <<= 12 if t.year < 0
t
elsif t.is_a?(Time)
jd = DateTime.civil_to_jd(t.year, t.mon, t.mday, DateTime::ITALY)
fr = DateTime.time_to_day_fraction(t.hour, t.min, [t.sec, 59].min) +
t.usec.to_r / 1000000 / SecInDay
of = t.utc_offset.to_r / SecInDay
DateTime.new0(DateTime.jd_to_ajd(jd, fr, of), of, DateTime::ITALY)
else
screen_data_str(t)
end
end
def add_tz(s)
s + of2tz(@data.offset)
end
end
class XSDDateTime < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, DateTimeLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^([+\-]?\d{4,})-(\d\d)-(\d\d)T(\d\d):(\d\d):(\d\d(?:\.(\d*))?)(Z|(?:[+\-]\d\d:\d\d)?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
if $1 == '0000'
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
year = $1.to_i
if year < 0
year += 1
end
mon = $2.to_i
mday = $3.to_i
hour = $4.to_i
min = $5.to_i
sec = $6.to_i
secfrac = $7
zonestr = $8
data = DateTime.civil(year, mon, mday, hour, min, sec, tz2of(zonestr))
if secfrac
diffday = secfrac.to_i.to_r / (10 ** secfrac.size) / SecInDay
data += diffday
# FYI: new0 and jd_to_rjd are not necessary to use if you don't have
# exceptional reason.
end
[data, secfrac]
end
def _set(data)
if data.nil?
@data = @secfrac = nil
return
end
@data, @secfrac = data
end
def _to_s
year = (@data.year > 0) ? @data.year : @data.year - 1
s = format('%.4d-%02d-%02dT%02d:%02d:%02d',
year, @data.mon, @data.mday, @data.hour, @data.min, @data.sec)
if @data.sec_fraction.nonzero?
if @secfrac
s << ".#{ @secfrac }"
else
s << sprintf("%.16f",
(@data.sec_fraction * SecInDay).to_f).sub(/^0/, '').sub(/0*$/, '')
end
end
add_tz(s)
end
end
class XSDTime < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, TimeLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^(\d\d):(\d\d):(\d\d(?:\.(\d*))?)(Z|(?:([+\-])(\d\d):(\d\d))?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
hour = $1.to_i
min = $2.to_i
sec = $3.to_i
secfrac = $4
zonestr = $5
data = DateTime.civil(1, 1, 1, hour, min, sec, tz2of(zonestr))
if secfrac
diffday = secfrac.to_i.to_r / (10 ** secfrac.size) / SecInDay
data += diffday
end
[data, secfrac]
end
def _set(data)
if data.nil?
@data = @secfrac = nil
return
end
@data, @secfrac = data
end
def _to_s
s = format('%02d:%02d:%02d', @data.hour, @data.min, @data.sec)
if @data.sec_fraction.nonzero?
if @secfrac
s << ".#{ @secfrac }"
else
s << sprintf("%.16f",
(@data.sec_fraction * SecInDay).to_f).sub(/^0/, '').sub(/0*$/, '')
end
end
add_tz(s)
end
end
class XSDDate < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, DateLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^([+\-]?\d{4,})-(\d\d)-(\d\d)(Z|(?:([+\-])(\d\d):(\d\d))?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
year = $1.to_i
if year < 0
year += 1
end
mon = $2.to_i
mday = $3.to_i
zonestr = $4
DateTime.civil(year, mon, mday, 0, 0, 0, tz2of(zonestr))
end
def _to_s
year = (@data.year > 0) ? @data.year : @data.year - 1
s = format('%.4d-%02d-%02d', year, @data.mon, @data.mday)
add_tz(s)
end
end
class XSDGYearMonth < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, GYearMonthLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^([+\-]?\d{4,})-(\d\d)(Z|(?:([+\-])(\d\d):(\d\d))?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
year = $1.to_i
if year < 0
year += 1
end
mon = $2.to_i
zonestr = $3
DateTime.civil(year, mon, 1, 0, 0, 0, tz2of(zonestr))
end
def _to_s
year = (@data.year > 0) ? @data.year : @data.year - 1
s = format('%.4d-%02d', year, @data.mon)
add_tz(s)
end
end
class XSDGYear < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, GYearLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^([+\-]?\d{4,})(Z|(?:([+\-])(\d\d):(\d\d))?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
year = $1.to_i
if year < 0
year += 1
end
zonestr = $2
DateTime.civil(year, 1, 1, 0, 0, 0, tz2of(zonestr))
end
def _to_s
year = (@data.year > 0) ? @data.year : @data.year - 1
s = format('%.4d', year)
add_tz(s)
end
end
class XSDGMonthDay < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, GMonthDayLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^(\d\d)-(\d\d)(Z|(?:[+\-]\d\d:\d\d)?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
mon = $1.to_i
mday = $2.to_i
zonestr = $3
DateTime.civil(1, mon, mday, 0, 0, 0, tz2of(zonestr))
end
def _to_s
s = format('%02d-%02d', @data.mon, @data.mday)
add_tz(s)
end
end
class XSDGDay < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, GDayLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^(\d\d)(Z|(?:[+\-]\d\d:\d\d)?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
mday = $1.to_i
zonestr = $2
DateTime.civil(1, 1, mday, 0, 0, 0, tz2of(zonestr))
end
def _to_s
s = format('%02d', @data.mday)
add_tz(s)
end
end
class XSDGMonth < XSDAnySimpleType
include XSDDateTimeImpl
Type = QName.new(Namespace, GMonthLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(t)
/^(\d\d)(Z|(?:[+\-]\d\d:\d\d)?)?$/ =~ t.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ t }'.")
end
mon = $1.to_i
zonestr = $2
DateTime.civil(1, mon, 1, 0, 0, 0, tz2of(zonestr))
end
def _to_s
s = format('%02d', @data.mon)
add_tz(s)
end
end
class XSDHexBinary < XSDAnySimpleType
Type = QName.new(Namespace, HexBinaryLiteral)
# String in Ruby could be a binary.
def initialize(value = nil)
init(Type, value)
end
def set_encoded(value)
if /^[0-9a-fA-F]*$/ !~ value
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
@data = String.new(value).strip
@is_nil = false
end
def string
[@data].pack("H*")
end
private
def screen_data(value)
value.unpack("H*")[0].tr('a-f', 'A-F')
end
end
class XSDBase64Binary < XSDAnySimpleType
Type = QName.new(Namespace, Base64BinaryLiteral)
# String in Ruby could be a binary.
def initialize(value = nil)
init(Type, value)
end
def set_encoded(value)
if /^[A-Za-z0-9+\/=]*$/ !~ value
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
@data = String.new(value).strip
@is_nil = false
end
def string
@data.unpack("m")[0]
end
private
def screen_data(value)
[value].pack("m").strip
end
end
class XSDAnyURI < XSDAnySimpleType
Type = QName.new(Namespace, AnyURILiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
begin
URI.parse(value.to_s.strip)
rescue URI::InvalidURIError
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
end
end
class XSDQName < XSDAnySimpleType
Type = QName.new(Namespace, QNameLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
/^(?:([^:]+):)?([^:]+)$/ =~ value.to_s.strip
unless Regexp.last_match
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
prefix = $1
localpart = $2
[prefix, localpart]
end
def _set(data)
if data.nil?
@prefix = @localpart = @data = nil
return
end
@prefix, @localpart = data
@data = _to_s
@data.freeze
end
def _to_s
if @prefix
"#{ @prefix }:#{ @localpart }"
else
"#{ @localpart }"
end
end
end
###
## Derived types
#
class XSDNormalizedString < XSDString
Type = QName.new(Namespace, NormalizedStringLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data(value)
if /[\t\r\n]/ =~ value
raise ValueSpaceError.new("#{ type }: cannot accept '#{ value }'.")
end
super
end
end
class XSDInteger < XSDDecimal
Type = QName.new(Namespace, IntegerLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def screen_data_str(str)
begin
data = Integer(str)
rescue ArgumentError
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
unless validate(data)
raise ValueSpaceError.new("#{ type }: cannot accept '#{ str }'.")
end
data
end
def _set(value)
@data = value
end
def _to_s()
@data.to_s
end
def validate(v)
max = maxinclusive
min = mininclusive
(max.nil? or v <= max) and (min.nil? or v >= min)
end
def maxinclusive
nil
end
def mininclusive
nil
end
PositiveMinInclusive = 1
def positive(v)
PositiveMinInclusive <= v
end
end
class XSDNonPositiveInteger < XSDInteger
Type = QName.new(Namespace, NonPositiveIntegerLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
0
end
def mininclusive
nil
end
end
class XSDNegativeInteger < XSDNonPositiveInteger
Type = QName.new(Namespace, NegativeIntegerLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
-1
end
def mininclusive
nil
end
end
class XSDLong < XSDInteger
Type = QName.new(Namespace, LongLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+9223372036854775807
end
def mininclusive
-9223372036854775808
end
end
class XSDInt < XSDLong
Type = QName.new(Namespace, IntLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+2147483647
end
def mininclusive
-2147483648
end
end
class XSDShort < XSDInt
Type = QName.new(Namespace, ShortLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+32767
end
def mininclusive
-32768
end
end
class XSDByte < XSDShort
Type = QName.new(Namespace, ByteLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+127
end
def mininclusive
-128
end
end
class XSDNonNegativeInteger < XSDInteger
Type = QName.new(Namespace, NonNegativeIntegerLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
nil
end
def mininclusive
0
end
end
class XSDUnsignedLong < XSDNonNegativeInteger
Type = QName.new(Namespace, UnsignedLongLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+18446744073709551615
end
def mininclusive
0
end
end
class XSDUnsignedInt < XSDUnsignedLong
Type = QName.new(Namespace, UnsignedIntLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+4294967295
end
def mininclusive
0
end
end
class XSDUnsignedShort < XSDUnsignedInt
Type = QName.new(Namespace, UnsignedShortLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+65535
end
def mininclusive
0
end
end
class XSDUnsignedByte < XSDUnsignedShort
Type = QName.new(Namespace, UnsignedByteLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
+255
end
def mininclusive
0
end
end
class XSDPositiveInteger < XSDNonNegativeInteger
Type = QName.new(Namespace, PositiveIntegerLiteral)
def initialize(value = nil)
init(Type, value)
end
private
def maxinclusive
nil
end
def mininclusive
1
end
end
end