ruby/thread_pthread.c

1783 строки
44 KiB
C

/* -*-c-*- */
/**********************************************************************
thread_pthread.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
#include "gc.h"
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#ifdef HAVE_THR_STKSEGMENT
#include <thread.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#elif HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_SYS_PRCTL_H
#include <sys/prctl.h>
#endif
#if defined(__native_client__) && defined(NACL_NEWLIB)
# include "nacl/select.h"
#endif
#if defined(HAVE_SYS_TIME_H)
#include <sys/time.h>
#endif
#if defined(__HAIKU__)
#include <kernel/OS.h>
#endif
static void native_mutex_lock(rb_nativethread_lock_t *lock);
static void native_mutex_unlock(rb_nativethread_lock_t *lock);
static int native_mutex_trylock(rb_nativethread_lock_t *lock);
static void native_mutex_initialize(rb_nativethread_lock_t *lock);
static void native_mutex_destroy(rb_nativethread_lock_t *lock);
static void native_cond_signal(rb_nativethread_cond_t *cond);
static void native_cond_broadcast(rb_nativethread_cond_t *cond);
static void native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex);
static void native_cond_initialize(rb_nativethread_cond_t *cond, int flags);
static void native_cond_destroy(rb_nativethread_cond_t *cond);
static void rb_thread_wakeup_timer_thread_low(void);
static struct {
pthread_t id;
int created;
} timer_thread;
#define TIMER_THREAD_CREATED_P() (timer_thread.created != 0)
#define RB_CONDATTR_CLOCK_MONOTONIC 1
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCKID_T) && \
defined(CLOCK_REALTIME) && defined(CLOCK_MONOTONIC) && \
defined(HAVE_CLOCK_GETTIME) && defined(HAVE_PTHREAD_CONDATTR_INIT)
#define USE_MONOTONIC_COND 1
#else
#define USE_MONOTONIC_COND 0
#endif
#if defined(HAVE_POLL) && defined(HAVE_FCNTL) && defined(F_GETFL) && defined(F_SETFL) && defined(O_NONBLOCK) && !defined(__native_client__)
/* The timer thread sleeps while only one Ruby thread is running. */
# define USE_SLEEPY_TIMER_THREAD 1
#else
# define USE_SLEEPY_TIMER_THREAD 0
#endif
static void
gvl_acquire_common(rb_vm_t *vm)
{
if (vm->gvl.acquired) {
vm->gvl.waiting++;
if (vm->gvl.waiting == 1) {
/*
* Wake up timer thread iff timer thread is slept.
* When timer thread is polling mode, we don't want to
* make confusing timer thread interval time.
*/
rb_thread_wakeup_timer_thread_low();
}
while (vm->gvl.acquired) {
native_cond_wait(&vm->gvl.cond, &vm->gvl.lock);
}
vm->gvl.waiting--;
if (vm->gvl.need_yield) {
vm->gvl.need_yield = 0;
native_cond_signal(&vm->gvl.switch_cond);
}
}
vm->gvl.acquired = 1;
}
static void
gvl_acquire(rb_vm_t *vm, rb_thread_t *th)
{
native_mutex_lock(&vm->gvl.lock);
gvl_acquire_common(vm);
native_mutex_unlock(&vm->gvl.lock);
}
static void
gvl_release_common(rb_vm_t *vm)
{
vm->gvl.acquired = 0;
if (vm->gvl.waiting > 0)
native_cond_signal(&vm->gvl.cond);
}
static void
gvl_release(rb_vm_t *vm)
{
native_mutex_lock(&vm->gvl.lock);
gvl_release_common(vm);
native_mutex_unlock(&vm->gvl.lock);
}
static void
gvl_yield(rb_vm_t *vm, rb_thread_t *th)
{
native_mutex_lock(&vm->gvl.lock);
gvl_release_common(vm);
/* An another thread is processing GVL yield. */
if (UNLIKELY(vm->gvl.wait_yield)) {
while (vm->gvl.wait_yield)
native_cond_wait(&vm->gvl.switch_wait_cond, &vm->gvl.lock);
goto acquire;
}
if (vm->gvl.waiting > 0) {
/* Wait until another thread task take GVL. */
vm->gvl.need_yield = 1;
vm->gvl.wait_yield = 1;
while (vm->gvl.need_yield)
native_cond_wait(&vm->gvl.switch_cond, &vm->gvl.lock);
vm->gvl.wait_yield = 0;
}
else {
native_mutex_unlock(&vm->gvl.lock);
sched_yield();
native_mutex_lock(&vm->gvl.lock);
}
native_cond_broadcast(&vm->gvl.switch_wait_cond);
acquire:
gvl_acquire_common(vm);
native_mutex_unlock(&vm->gvl.lock);
}
static void
gvl_init(rb_vm_t *vm)
{
native_mutex_initialize(&vm->gvl.lock);
native_cond_initialize(&vm->gvl.cond, RB_CONDATTR_CLOCK_MONOTONIC);
native_cond_initialize(&vm->gvl.switch_cond, RB_CONDATTR_CLOCK_MONOTONIC);
native_cond_initialize(&vm->gvl.switch_wait_cond, RB_CONDATTR_CLOCK_MONOTONIC);
vm->gvl.acquired = 0;
vm->gvl.waiting = 0;
vm->gvl.need_yield = 0;
vm->gvl.wait_yield = 0;
}
static void
gvl_destroy(rb_vm_t *vm)
{
native_cond_destroy(&vm->gvl.switch_wait_cond);
native_cond_destroy(&vm->gvl.switch_cond);
native_cond_destroy(&vm->gvl.cond);
native_mutex_destroy(&vm->gvl.lock);
}
#if defined(HAVE_WORKING_FORK)
static void
gvl_atfork(rb_vm_t *vm)
{
gvl_init(vm);
gvl_acquire(vm, GET_THREAD());
}
#endif
#define NATIVE_MUTEX_LOCK_DEBUG 0
static void
mutex_debug(const char *msg, void *lock)
{
if (NATIVE_MUTEX_LOCK_DEBUG) {
int r;
static pthread_mutex_t dbglock = PTHREAD_MUTEX_INITIALIZER;
if ((r = pthread_mutex_lock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
fprintf(stdout, "%s: %p\n", msg, lock);
if ((r = pthread_mutex_unlock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
}
}
static void
native_mutex_lock(pthread_mutex_t *lock)
{
int r;
mutex_debug("lock", lock);
if ((r = pthread_mutex_lock(lock)) != 0) {
rb_bug_errno("pthread_mutex_lock", r);
}
}
static void
native_mutex_unlock(pthread_mutex_t *lock)
{
int r;
mutex_debug("unlock", lock);
if ((r = pthread_mutex_unlock(lock)) != 0) {
rb_bug_errno("pthread_mutex_unlock", r);
}
}
static inline int
native_mutex_trylock(pthread_mutex_t *lock)
{
int r;
mutex_debug("trylock", lock);
if ((r = pthread_mutex_trylock(lock)) != 0) {
if (r == EBUSY) {
return EBUSY;
}
else {
rb_bug_errno("pthread_mutex_trylock", r);
}
}
return 0;
}
static void
native_mutex_initialize(pthread_mutex_t *lock)
{
int r = pthread_mutex_init(lock, 0);
mutex_debug("init", lock);
if (r != 0) {
rb_bug_errno("pthread_mutex_init", r);
}
}
static void
native_mutex_destroy(pthread_mutex_t *lock)
{
int r = pthread_mutex_destroy(lock);
mutex_debug("destroy", lock);
if (r != 0) {
rb_bug_errno("pthread_mutex_destroy", r);
}
}
static void
native_cond_initialize(rb_nativethread_cond_t *cond, int flags)
{
#ifdef HAVE_PTHREAD_COND_INIT
int r;
# if USE_MONOTONIC_COND
pthread_condattr_t attr;
pthread_condattr_init(&attr);
cond->clockid = CLOCK_REALTIME;
if (flags & RB_CONDATTR_CLOCK_MONOTONIC) {
r = pthread_condattr_setclock(&attr, CLOCK_MONOTONIC);
if (r == 0) {
cond->clockid = CLOCK_MONOTONIC;
}
}
r = pthread_cond_init(&cond->cond, &attr);
pthread_condattr_destroy(&attr);
# else
r = pthread_cond_init(&cond->cond, NULL);
# endif
if (r != 0) {
rb_bug_errno("pthread_cond_init", r);
}
return;
#endif
}
static void
native_cond_destroy(rb_nativethread_cond_t *cond)
{
#ifdef HAVE_PTHREAD_COND_INIT
int r = pthread_cond_destroy(&cond->cond);
if (r != 0) {
rb_bug_errno("pthread_cond_destroy", r);
}
#endif
}
/*
* In OS X 10.7 (Lion), pthread_cond_signal and pthread_cond_broadcast return
* EAGAIN after retrying 8192 times. You can see them in the following page:
*
* http://www.opensource.apple.com/source/Libc/Libc-763.11/pthreads/pthread_cond.c
*
* The following native_cond_signal and native_cond_broadcast functions
* need to retrying until pthread functions don't return EAGAIN.
*/
static void
native_cond_signal(rb_nativethread_cond_t *cond)
{
int r;
do {
r = pthread_cond_signal(&cond->cond);
} while (r == EAGAIN);
if (r != 0) {
rb_bug_errno("pthread_cond_signal", r);
}
}
static void
native_cond_broadcast(rb_nativethread_cond_t *cond)
{
int r;
do {
r = pthread_cond_broadcast(&cond->cond);
} while (r == EAGAIN);
if (r != 0) {
rb_bug_errno("native_cond_broadcast", r);
}
}
static void
native_cond_wait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex)
{
int r = pthread_cond_wait(&cond->cond, mutex);
if (r != 0) {
rb_bug_errno("pthread_cond_wait", r);
}
}
static int
native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *ts)
{
int r;
/*
* An old Linux may return EINTR. Even though POSIX says
* "These functions shall not return an error code of [EINTR]".
* http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html
* Let's hide it from arch generic code.
*/
do {
r = pthread_cond_timedwait(&cond->cond, mutex, ts);
} while (r == EINTR);
if (r != 0 && r != ETIMEDOUT) {
rb_bug_errno("pthread_cond_timedwait", r);
}
return r;
}
static struct timespec
native_cond_timeout(rb_nativethread_cond_t *cond, struct timespec timeout_rel)
{
int ret;
struct timeval tv;
struct timespec timeout;
struct timespec now;
#if USE_MONOTONIC_COND
if (cond->clockid == CLOCK_MONOTONIC) {
ret = clock_gettime(cond->clockid, &now);
if (ret != 0)
rb_sys_fail("clock_gettime()");
goto out;
}
if (cond->clockid != CLOCK_REALTIME)
rb_bug("unsupported clockid %"PRIdVALUE, (SIGNED_VALUE)cond->clockid);
#endif
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail(0);
now.tv_sec = tv.tv_sec;
now.tv_nsec = tv.tv_usec * 1000;
#if USE_MONOTONIC_COND
out:
#endif
timeout.tv_sec = now.tv_sec;
timeout.tv_nsec = now.tv_nsec;
timeout.tv_sec += timeout_rel.tv_sec;
timeout.tv_nsec += timeout_rel.tv_nsec;
if (timeout.tv_nsec >= 1000*1000*1000) {
timeout.tv_sec++;
timeout.tv_nsec -= 1000*1000*1000;
}
if (timeout.tv_sec < now.tv_sec)
timeout.tv_sec = TIMET_MAX;
return timeout;
}
#define native_cleanup_push pthread_cleanup_push
#define native_cleanup_pop pthread_cleanup_pop
#ifdef HAVE_SCHED_YIELD
#define native_thread_yield() (void)sched_yield()
#else
#define native_thread_yield() ((void)0)
#endif
#if defined(SIGVTALRM) && !defined(__CYGWIN__)
#define USE_UBF_LIST 1
static rb_nativethread_lock_t ubf_list_lock;
#endif
static pthread_key_t ruby_native_thread_key;
static void
null_func(int i)
{
/* null */
}
static rb_thread_t *
ruby_thread_from_native(void)
{
return pthread_getspecific(ruby_native_thread_key);
}
static int
ruby_thread_set_native(rb_thread_t *th)
{
return pthread_setspecific(ruby_native_thread_key, th) == 0;
}
static void native_thread_init(rb_thread_t *th);
void
Init_native_thread(void)
{
rb_thread_t *th = GET_THREAD();
pthread_key_create(&ruby_native_thread_key, NULL);
th->thread_id = pthread_self();
fill_thread_id_str(th);
native_thread_init(th);
#ifdef USE_UBF_LIST
native_mutex_initialize(&ubf_list_lock);
#endif
#ifndef __native_client__
posix_signal(SIGVTALRM, null_func);
#endif
}
static void
native_thread_init(rb_thread_t *th)
{
native_thread_data_t *nd = &th->native_thread_data;
#ifdef USE_UBF_LIST
list_node_init(&nd->ubf_list);
#endif
native_cond_initialize(&nd->sleep_cond, RB_CONDATTR_CLOCK_MONOTONIC);
ruby_thread_set_native(th);
}
static void
native_thread_destroy(rb_thread_t *th)
{
native_cond_destroy(&th->native_thread_data.sleep_cond);
}
#ifndef USE_THREAD_CACHE
#define USE_THREAD_CACHE 0
#endif
#if USE_THREAD_CACHE
static rb_thread_t *register_cached_thread_and_wait(void);
#endif
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
#define STACKADDR_AVAILABLE 1
#undef MAINSTACKADDR_AVAILABLE
#define MAINSTACKADDR_AVAILABLE 1
void *pthread_get_stackaddr_np(pthread_t);
size_t pthread_get_stacksize_np(pthread_t);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GETTHRDS_NP
#define STACKADDR_AVAILABLE 1
#elif defined __HAIKU__
#define STACKADDR_AVAILABLE 1
#elif defined __ia64 && defined _HPUX_SOURCE
#include <sys/dyntune.h>
#define STACKADDR_AVAILABLE 1
/*
* Do not lower the thread's stack to PTHREAD_STACK_MIN,
* otherwise one would receive a 'sendsig: useracc failed.'
* and a coredump.
*/
#undef PTHREAD_STACK_MIN
#define HAVE_PTHREAD_ATTR_GET_NP 1
#undef HAVE_PTHREAD_ATTR_GETSTACK
/*
* As the PTHREAD_STACK_MIN is undefined and
* no one touches the default stacksize,
* it is just fine to use the default.
*/
#define pthread_attr_get_np(thid, attr) 0
/*
* Using value of sp is very rough... To make it more real,
* addr would need to be aligned to vps_pagesize.
* The vps_pagesize is 'Default user page size (kBytes)'
* and could be retrieved by gettune().
*/
static int
hpux_attr_getstackaddr(const pthread_attr_t *attr, void **addr)
{
static uint64_t pagesize;
size_t size;
if (!pagesize) {
if (gettune("vps_pagesize", &pagesize)) {
pagesize = 16;
}
pagesize *= 1024;
}
pthread_attr_getstacksize(attr, &size);
*addr = (void *)((size_t)((char *)_Asm_get_sp() - size) & ~(pagesize - 1));
return 0;
}
#define pthread_attr_getstackaddr(attr, addr) hpux_attr_getstackaddr(attr, addr)
#endif
#ifndef MAINSTACKADDR_AVAILABLE
# ifdef STACKADDR_AVAILABLE
# define MAINSTACKADDR_AVAILABLE 1
# else
# define MAINSTACKADDR_AVAILABLE 0
# endif
#endif
#if MAINSTACKADDR_AVAILABLE && !defined(get_main_stack)
# define get_main_stack(addr, size) get_stack(addr, size)
#endif
#ifdef STACKADDR_AVAILABLE
/*
* Get the initial address and size of current thread's stack
*/
static int
get_stack(void **addr, size_t *size)
{
#define CHECK_ERR(expr) \
{int err = (expr); if (err) return err;}
#ifdef HAVE_PTHREAD_GETATTR_NP /* Linux */
pthread_attr_t attr;
size_t guard = 0;
STACK_GROW_DIR_DETECTION;
CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
*size -= guard;
pthread_attr_destroy(&attr);
#elif defined HAVE_PTHREAD_ATTR_GET_NP /* FreeBSD, DragonFly BSD, NetBSD */
pthread_attr_t attr;
CHECK_ERR(pthread_attr_init(&attr));
CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
pthread_attr_destroy(&attr);
#elif (defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP) /* MacOS X */
pthread_t th = pthread_self();
*addr = pthread_get_stackaddr_np(th);
*size = pthread_get_stacksize_np(th);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
stack_t stk;
# if defined HAVE_THR_STKSEGMENT /* Solaris */
CHECK_ERR(thr_stksegment(&stk));
# else /* OpenBSD */
CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
# endif
*addr = stk.ss_sp;
*size = stk.ss_size;
#elif defined HAVE_PTHREAD_GETTHRDS_NP /* AIX */
pthread_t th = pthread_self();
struct __pthrdsinfo thinfo;
char reg[256];
int regsiz=sizeof(reg);
CHECK_ERR(pthread_getthrds_np(&th, PTHRDSINFO_QUERY_ALL,
&thinfo, sizeof(thinfo),
&reg, &regsiz));
*addr = thinfo.__pi_stackaddr;
/* Must not use thinfo.__pi_stacksize for size.
It is around 3KB smaller than the correct size
calculated by thinfo.__pi_stackend - thinfo.__pi_stackaddr. */
*size = thinfo.__pi_stackend - thinfo.__pi_stackaddr;
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
#elif defined __HAIKU__
thread_info info;
STACK_GROW_DIR_DETECTION;
CHECK_ERR(get_thread_info(find_thread(NULL), &info));
*addr = info.stack_base;
*size = (uintptr_t)info.stack_end - (uintptr_t)info.stack_base;
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
#else
#error STACKADDR_AVAILABLE is defined but not implemented.
#endif
return 0;
#undef CHECK_ERR
}
#endif
static struct {
rb_nativethread_id_t id;
size_t stack_maxsize;
VALUE *stack_start;
#ifdef __ia64
VALUE *register_stack_start;
#endif
} native_main_thread;
#ifdef STACK_END_ADDRESS
extern void *STACK_END_ADDRESS;
#endif
enum {
RUBY_STACK_SPACE_LIMIT = 1024 * 1024, /* 1024KB */
RUBY_STACK_SPACE_RATIO = 5
};
static size_t
space_size(size_t stack_size)
{
size_t space_size = stack_size / RUBY_STACK_SPACE_RATIO;
if (space_size > RUBY_STACK_SPACE_LIMIT) {
return RUBY_STACK_SPACE_LIMIT;
}
else {
return space_size;
}
}
#ifdef __linux__
static __attribute__((noinline)) void
reserve_stack(volatile char *limit, size_t size)
{
# ifdef C_ALLOCA
# error needs alloca()
# endif
struct rlimit rl;
volatile char buf[0x100];
enum {stack_check_margin = 0x1000}; /* for -fstack-check */
STACK_GROW_DIR_DETECTION;
if (!getrlimit(RLIMIT_STACK, &rl) && rl.rlim_cur == RLIM_INFINITY)
return;
if (size < stack_check_margin) return;
size -= stack_check_margin;
size -= sizeof(buf); /* margin */
if (IS_STACK_DIR_UPPER()) {
const volatile char *end = buf + sizeof(buf);
limit += size;
if (limit > end) {
/* |<-bottom (=limit(a)) top->|
* | .. |<-buf 256B |<-end | stack check |
* | 256B | =size= | margin (4KB)|
* | =size= limit(b)->| 256B | |
* | | alloca(sz) | | |
* | .. |<-buf |<-limit(c) [sz-1]->0> | |
*/
size_t sz = limit - end;
limit = alloca(sz);
limit[sz-1] = 0;
}
}
else {
limit -= size;
if (buf > limit) {
/* |<-top (=limit(a)) bottom->|
* | .. | 256B buf->| | stack check |
* | 256B | =size= | margin (4KB)|
* | =size= limit(b)->| 256B | |
* | | alloca(sz) | | |
* | .. | buf->| limit(c)-><0> | |
*/
size_t sz = buf - limit;
limit = alloca(sz);
limit[0] = 0;
}
}
}
#else
# define reserve_stack(limit, size) ((void)(limit), (void)(size))
#endif
#undef ruby_init_stack
/* Set stack bottom of Ruby implementation.
*
* You must call this function before any heap allocation by Ruby implementation.
* Or GC will break living objects */
void
ruby_init_stack(volatile VALUE *addr
#ifdef __ia64
, void *bsp
#endif
)
{
native_main_thread.id = pthread_self();
#ifdef __ia64
if (!native_main_thread.register_stack_start ||
(VALUE*)bsp < native_main_thread.register_stack_start) {
native_main_thread.register_stack_start = (VALUE*)bsp;
}
#endif
#if MAINSTACKADDR_AVAILABLE
if (native_main_thread.stack_maxsize) return;
{
void* stackaddr;
size_t size;
if (get_main_stack(&stackaddr, &size) == 0) {
native_main_thread.stack_maxsize = size;
native_main_thread.stack_start = stackaddr;
reserve_stack(stackaddr, size);
goto bound_check;
}
}
#endif
#ifdef STACK_END_ADDRESS
native_main_thread.stack_start = STACK_END_ADDRESS;
#else
if (!native_main_thread.stack_start ||
STACK_UPPER((VALUE *)(void *)&addr,
native_main_thread.stack_start > addr,
native_main_thread.stack_start < addr)) {
native_main_thread.stack_start = (VALUE *)addr;
}
#endif
{
#if defined(HAVE_GETRLIMIT)
#if defined(PTHREAD_STACK_DEFAULT)
# if PTHREAD_STACK_DEFAULT < RUBY_STACK_SPACE*5
# error "PTHREAD_STACK_DEFAULT is too small"
# endif
size_t size = PTHREAD_STACK_DEFAULT;
#else
size_t size = RUBY_VM_THREAD_VM_STACK_SIZE;
#endif
size_t space;
int pagesize = getpagesize();
struct rlimit rlim;
STACK_GROW_DIR_DETECTION;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
size = (size_t)rlim.rlim_cur;
}
addr = native_main_thread.stack_start;
if (IS_STACK_DIR_UPPER()) {
space = ((size_t)((char *)addr + size) / pagesize) * pagesize - (size_t)addr;
}
else {
space = (size_t)addr - ((size_t)((char *)addr - size) / pagesize + 1) * pagesize;
}
native_main_thread.stack_maxsize = space;
#endif
}
#if MAINSTACKADDR_AVAILABLE
bound_check:
#endif
/* If addr is out of range of main-thread stack range estimation, */
/* it should be on co-routine (alternative stack). [Feature #2294] */
{
void *start, *end;
STACK_GROW_DIR_DETECTION;
if (IS_STACK_DIR_UPPER()) {
start = native_main_thread.stack_start;
end = (char *)native_main_thread.stack_start + native_main_thread.stack_maxsize;
}
else {
start = (char *)native_main_thread.stack_start - native_main_thread.stack_maxsize;
end = native_main_thread.stack_start;
}
if ((void *)addr < start || (void *)addr > end) {
/* out of range */
native_main_thread.stack_start = (VALUE *)addr;
native_main_thread.stack_maxsize = 0; /* unknown */
}
}
}
#define CHECK_ERR(expr) \
{int err = (expr); if (err) {rb_bug_errno(#expr, err);}}
static int
native_thread_init_stack(rb_thread_t *th)
{
rb_nativethread_id_t curr = pthread_self();
if (pthread_equal(curr, native_main_thread.id)) {
th->machine.stack_start = native_main_thread.stack_start;
th->machine.stack_maxsize = native_main_thread.stack_maxsize;
}
else {
#ifdef STACKADDR_AVAILABLE
void *start;
size_t size;
if (get_stack(&start, &size) == 0) {
th->machine.stack_start = start;
th->machine.stack_maxsize = size;
}
#elif defined get_stack_of
if (!th->machine.stack_maxsize) {
native_mutex_lock(&th->interrupt_lock);
native_mutex_unlock(&th->interrupt_lock);
}
#else
rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
#endif
}
#ifdef __ia64
th->machine.register_stack_start = native_main_thread.register_stack_start;
th->machine.stack_maxsize /= 2;
th->machine.register_stack_maxsize = th->machine.stack_maxsize;
#endif
return 0;
}
#ifndef __CYGWIN__
#define USE_NATIVE_THREAD_INIT 1
#endif
static void *
thread_start_func_1(void *th_ptr)
{
#if USE_THREAD_CACHE
thread_start:
#endif
{
rb_thread_t *th = th_ptr;
#if !defined USE_NATIVE_THREAD_INIT
VALUE stack_start;
#endif
fill_thread_id_str(th);
#if defined USE_NATIVE_THREAD_INIT
native_thread_init_stack(th);
#endif
native_thread_init(th);
/* run */
#if defined USE_NATIVE_THREAD_INIT
thread_start_func_2(th, th->machine.stack_start, rb_ia64_bsp());
#else
thread_start_func_2(th, &stack_start, rb_ia64_bsp());
#endif
}
#if USE_THREAD_CACHE
if (1) {
/* cache thread */
rb_thread_t *th;
if ((th = register_cached_thread_and_wait()) != 0) {
th_ptr = (void *)th;
th->thread_id = pthread_self();
goto thread_start;
}
}
#endif
return 0;
}
struct cached_thread_entry {
volatile rb_thread_t **th_area;
rb_nativethread_cond_t *cond;
struct cached_thread_entry *next;
};
#if USE_THREAD_CACHE
static rb_nativethread_lock_t thread_cache_lock = RB_NATIVETHREAD_LOCK_INIT;
struct cached_thread_entry *cached_thread_root;
static rb_thread_t *
register_cached_thread_and_wait(void)
{
rb_nativethread_cond_t cond = RB_NATIVETHREAD_COND_INIT;
volatile rb_thread_t *th_area = 0;
struct timeval tv;
struct timespec ts;
struct cached_thread_entry *entry =
(struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry));
if (entry == 0) {
return 0; /* failed -> terminate thread immediately */
}
gettimeofday(&tv, 0);
ts.tv_sec = tv.tv_sec + 60;
ts.tv_nsec = tv.tv_usec * 1000;
native_mutex_lock(&thread_cache_lock);
{
entry->th_area = &th_area;
entry->cond = &cond;
entry->next = cached_thread_root;
cached_thread_root = entry;
native_cond_timedwait(&cond, &thread_cache_lock, &ts);
{
struct cached_thread_entry *e, **prev = &cached_thread_root;
while ((e = *prev) != 0) {
if (e == entry) {
*prev = e->next;
break;
}
prev = &e->next;
}
}
free(entry); /* ok */
native_cond_destroy(&cond);
}
native_mutex_unlock(&thread_cache_lock);
return (rb_thread_t *)th_area;
}
#endif
static int
use_cached_thread(rb_thread_t *th)
{
int result = 0;
#if USE_THREAD_CACHE
struct cached_thread_entry *entry;
if (cached_thread_root) {
native_mutex_lock(&thread_cache_lock);
entry = cached_thread_root;
{
if (cached_thread_root) {
cached_thread_root = entry->next;
*entry->th_area = th;
result = 1;
}
}
if (result) {
native_cond_signal(entry->cond);
}
native_mutex_unlock(&thread_cache_lock);
}
#endif
return result;
}
static int
native_thread_create(rb_thread_t *th)
{
int err = 0;
if (use_cached_thread(th)) {
thread_debug("create (use cached thread): %p\n", (void *)th);
}
else {
#ifdef HAVE_PTHREAD_ATTR_INIT
pthread_attr_t attr;
pthread_attr_t *const attrp = &attr;
#else
pthread_attr_t *const attrp = NULL;
#endif
const size_t stack_size = th->vm->default_params.thread_machine_stack_size;
const size_t space = space_size(stack_size);
th->machine.stack_maxsize = stack_size - space;
#ifdef __ia64
th->machine.stack_maxsize /= 2;
th->machine.register_stack_maxsize = th->machine.stack_maxsize;
#endif
#ifdef HAVE_PTHREAD_ATTR_INIT
CHECK_ERR(pthread_attr_init(&attr));
# ifdef PTHREAD_STACK_MIN
thread_debug("create - stack size: %lu\n", (unsigned long)stack_size);
CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
# endif
# ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
# endif
CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
#endif
#ifdef get_stack_of
native_mutex_lock(&th->interrupt_lock);
#endif
err = pthread_create(&th->thread_id, attrp, thread_start_func_1, th);
#ifdef get_stack_of
if (!err) {
get_stack_of(th->thread_id,
&th->machine.stack_start,
&th->machine.stack_maxsize);
}
native_mutex_unlock(&th->interrupt_lock);
#endif
thread_debug("create: %p (%d)\n", (void *)th, err);
/* should be done in the created thread */
fill_thread_id_str(th);
#ifdef HAVE_PTHREAD_ATTR_INIT
CHECK_ERR(pthread_attr_destroy(&attr));
#endif
}
return err;
}
#if USE_SLEEPY_TIMER_THREAD
static void
native_thread_join(pthread_t th)
{
int err = pthread_join(th, 0);
if (err) {
rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
}
}
#endif
#if USE_NATIVE_THREAD_PRIORITY
static void
native_thread_apply_priority(rb_thread_t *th)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
struct sched_param sp;
int policy;
int priority = 0 - th->priority;
int max, min;
pthread_getschedparam(th->thread_id, &policy, &sp);
max = sched_get_priority_max(policy);
min = sched_get_priority_min(policy);
if (min > priority) {
priority = min;
}
else if (max < priority) {
priority = max;
}
sp.sched_priority = priority;
pthread_setschedparam(th->thread_id, policy, &sp);
#else
/* not touched */
#endif
}
#endif /* USE_NATIVE_THREAD_PRIORITY */
static int
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
{
return rb_fd_select(n, readfds, writefds, exceptfds, timeout);
}
static void
ubf_pthread_cond_signal(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
native_cond_signal(&th->native_thread_data.sleep_cond);
}
static void
native_sleep(rb_thread_t *th, struct timeval *timeout_tv)
{
struct timespec timeout;
rb_nativethread_lock_t *lock = &th->interrupt_lock;
rb_nativethread_cond_t *cond = &th->native_thread_data.sleep_cond;
if (timeout_tv) {
struct timespec timeout_rel;
timeout_rel.tv_sec = timeout_tv->tv_sec;
timeout_rel.tv_nsec = timeout_tv->tv_usec * 1000;
/* Solaris cond_timedwait() return EINVAL if an argument is greater than
* current_time + 100,000,000. So cut up to 100,000,000. This is
* considered as a kind of spurious wakeup. The caller to native_sleep
* should care about spurious wakeup.
*
* See also [Bug #1341] [ruby-core:29702]
* http://download.oracle.com/docs/cd/E19683-01/816-0216/6m6ngupgv/index.html
*/
if (timeout_rel.tv_sec > 100000000) {
timeout_rel.tv_sec = 100000000;
timeout_rel.tv_nsec = 0;
}
timeout = native_cond_timeout(cond, timeout_rel);
}
GVL_UNLOCK_BEGIN();
{
native_mutex_lock(lock);
th->unblock.func = ubf_pthread_cond_signal;
th->unblock.arg = th;
if (RUBY_VM_INTERRUPTED(th)) {
/* interrupted. return immediate */
thread_debug("native_sleep: interrupted before sleep\n");
}
else {
if (!timeout_tv)
native_cond_wait(cond, lock);
else
native_cond_timedwait(cond, lock, &timeout);
}
th->unblock.func = 0;
th->unblock.arg = 0;
native_mutex_unlock(lock);
}
GVL_UNLOCK_END();
thread_debug("native_sleep done\n");
}
#ifdef USE_UBF_LIST
static LIST_HEAD(ubf_list_head);
/* The thread 'th' is registered to be trying unblock. */
static void
register_ubf_list(rb_thread_t *th)
{
struct list_node *node = &th->native_thread_data.ubf_list;
if (list_empty((struct list_head*)node)) {
native_mutex_lock(&ubf_list_lock);
list_add(&ubf_list_head, node);
native_mutex_unlock(&ubf_list_lock);
}
}
/* The thread 'th' is unblocked. It no longer need to be registered. */
static void
unregister_ubf_list(rb_thread_t *th)
{
struct list_node *node = &th->native_thread_data.ubf_list;
if (!list_empty((struct list_head*)node)) {
native_mutex_lock(&ubf_list_lock);
list_del_init(node);
native_mutex_unlock(&ubf_list_lock);
}
}
/*
* send a signal to intent that a target thread return from blocking syscall.
* Maybe any signal is ok, but we chose SIGVTALRM.
*/
static void
ubf_wakeup_thread(rb_thread_t *th)
{
thread_debug("thread_wait_queue_wakeup (%"PRI_THREAD_ID")\n", thread_id_str(th));
if (th)
pthread_kill(th->thread_id, SIGVTALRM);
}
static void
ubf_select(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
register_ubf_list(th);
/*
* ubf_wakeup_thread() doesn't guarantee to wake up a target thread.
* Therefore, we repeatedly call ubf_wakeup_thread() until a target thread
* exit from ubf function.
* In the other hands, we shouldn't call rb_thread_wakeup_timer_thread()
* if running on timer thread because it may make endless wakeups.
*/
if (!pthread_equal(pthread_self(), timer_thread.id))
rb_thread_wakeup_timer_thread();
ubf_wakeup_thread(th);
}
static int
ubf_threads_empty(void)
{
return list_empty(&ubf_list_head);
}
static void
ubf_wakeup_all_threads(void)
{
rb_thread_t *th;
if (!ubf_threads_empty()) {
native_mutex_lock(&ubf_list_lock);
list_for_each(&ubf_list_head, th,
native_thread_data.ubf_list) {
ubf_wakeup_thread(th);
}
native_mutex_unlock(&ubf_list_lock);
}
}
#else /* USE_UBF_LIST */
#define register_ubf_list(th) (void)(th)
#define unregister_ubf_list(th) (void)(th)
#define ubf_select 0
static void ubf_wakeup_all_threads(void) { return; }
static int ubf_threads_empty(void) { return 1; }
#endif /* USE_UBF_LIST */
#define TT_DEBUG 0
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
/* 100ms. 10ms is too small for user level thread scheduling
* on recent Linux (tested on 2.6.35)
*/
#define TIME_QUANTUM_USEC (100 * 1000)
#if USE_SLEEPY_TIMER_THREAD
static struct {
/*
* Read end of each pipe is closed inside timer thread for shutdown
* Write ends are closed by a normal Ruby thread during shutdown
*/
int normal[2];
int low[2];
/* volatile for signal handler use: */
volatile rb_pid_t owner_process;
rb_atomic_t writing;
} timer_thread_pipe = {
{-1, -1},
{-1, -1}, /* low priority */
};
NORETURN(static void async_bug_fd(const char *mesg, int errno_arg, int fd));
static void
async_bug_fd(const char *mesg, int errno_arg, int fd)
{
char buff[64];
size_t n = strlcpy(buff, mesg, sizeof(buff));
if (n < sizeof(buff)-3) {
ruby_snprintf(buff, sizeof(buff)-n, "(%d)", fd);
}
rb_async_bug_errno(buff, errno_arg);
}
/* only use signal-safe system calls here */
static void
rb_thread_wakeup_timer_thread_fd(volatile int *fdp)
{
ssize_t result;
int fd = *fdp; /* access fdp exactly once here and do not reread fdp */
/* already opened */
if (fd >= 0 && timer_thread_pipe.owner_process == getpid()) {
static const char buff[1] = {'!'};
retry:
if ((result = write(fd, buff, 1)) <= 0) {
int e = errno;
switch (e) {
case EINTR: goto retry;
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
break;
default:
async_bug_fd("rb_thread_wakeup_timer_thread: write", e, fd);
}
}
if (TT_DEBUG) WRITE_CONST(2, "rb_thread_wakeup_timer_thread: write\n");
}
else {
/* ignore wakeup */
}
}
void
rb_thread_wakeup_timer_thread(void)
{
/* must be safe inside sighandler, so no mutex */
ATOMIC_INC(timer_thread_pipe.writing);
rb_thread_wakeup_timer_thread_fd(&timer_thread_pipe.normal[1]);
ATOMIC_DEC(timer_thread_pipe.writing);
}
static void
rb_thread_wakeup_timer_thread_low(void)
{
ATOMIC_INC(timer_thread_pipe.writing);
rb_thread_wakeup_timer_thread_fd(&timer_thread_pipe.low[1]);
ATOMIC_DEC(timer_thread_pipe.writing);
}
/* VM-dependent API is not available for this function */
static void
consume_communication_pipe(int fd)
{
#define CCP_READ_BUFF_SIZE 1024
/* buffer can be shared because no one refers to them. */
static char buff[CCP_READ_BUFF_SIZE];
ssize_t result;
while (1) {
result = read(fd, buff, sizeof(buff));
if (result == 0) {
return;
}
else if (result < 0) {
int e = errno;
switch (e) {
case EINTR:
continue; /* retry */
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
return;
default:
async_bug_fd("consume_communication_pipe: read", e, fd);
}
}
}
}
#define CLOSE_INVALIDATE(expr) \
close_invalidate(&timer_thread_pipe.expr,"close_invalidate: "#expr)
static void
close_invalidate(volatile int *fdp, const char *msg)
{
int fd = *fdp; /* access fdp exactly once here and do not reread fdp */
*fdp = -1;
if (close(fd) < 0) {
async_bug_fd(msg, errno, fd);
}
}
static void
set_nonblock(int fd)
{
int oflags;
int err;
oflags = fcntl(fd, F_GETFL);
if (oflags == -1)
rb_sys_fail(0);
oflags |= O_NONBLOCK;
err = fcntl(fd, F_SETFL, oflags);
if (err == -1)
rb_sys_fail(0);
}
static int
setup_communication_pipe_internal(int pipes[2])
{
int err;
err = rb_cloexec_pipe(pipes);
if (err != 0) {
rb_warn("Failed to create communication pipe for timer thread: %s",
strerror(errno));
return -1;
}
rb_update_max_fd(pipes[0]);
rb_update_max_fd(pipes[1]);
set_nonblock(pipes[0]);
set_nonblock(pipes[1]);
return 0;
}
/* communication pipe with timer thread and signal handler */
static int
setup_communication_pipe(void)
{
VM_ASSERT(timer_thread_pipe.owner_process == 0);
VM_ASSERT(timer_thread_pipe.normal[0] == -1);
VM_ASSERT(timer_thread_pipe.normal[1] == -1);
VM_ASSERT(timer_thread_pipe.low[0] == -1);
VM_ASSERT(timer_thread_pipe.low[1] == -1);
if (setup_communication_pipe_internal(timer_thread_pipe.normal) < 0) {
return errno;
}
if (setup_communication_pipe_internal(timer_thread_pipe.low) < 0) {
int e = errno;
CLOSE_INVALIDATE(normal[0]);
CLOSE_INVALIDATE(normal[1]);
return e;
}
return 0;
}
/**
* Let the timer thread sleep a while.
*
* The timer thread sleeps until woken up by rb_thread_wakeup_timer_thread() if only one Ruby thread is running.
* @pre the calling context is in the timer thread.
*/
static inline void
timer_thread_sleep(rb_global_vm_lock_t* gvl)
{
int result;
int need_polling;
struct pollfd pollfds[2];
pollfds[0].fd = timer_thread_pipe.normal[0];
pollfds[0].events = POLLIN;
pollfds[1].fd = timer_thread_pipe.low[0];
pollfds[1].events = POLLIN;
need_polling = !ubf_threads_empty();
if (gvl->waiting > 0 || need_polling) {
/* polling (TIME_QUANTUM_USEC usec) */
result = poll(pollfds, 1, TIME_QUANTUM_USEC/1000);
}
else {
/* wait (infinite) */
result = poll(pollfds, numberof(pollfds), -1);
}
if (result == 0) {
/* maybe timeout */
}
else if (result > 0) {
consume_communication_pipe(timer_thread_pipe.normal[0]);
consume_communication_pipe(timer_thread_pipe.low[0]);
}
else { /* result < 0 */
int e = errno;
switch (e) {
case EBADF:
case EINVAL:
case ENOMEM: /* from Linux man */
case EFAULT: /* from FreeBSD man */
rb_async_bug_errno("thread_timer: select", e);
default:
/* ignore */;
}
}
}
#else /* USE_SLEEPY_TIMER_THREAD */
# define PER_NANO 1000000000
void rb_thread_wakeup_timer_thread(void) {}
static void rb_thread_wakeup_timer_thread_low(void) {}
static rb_nativethread_lock_t timer_thread_lock;
static rb_nativethread_cond_t timer_thread_cond;
static inline void
timer_thread_sleep(rb_global_vm_lock_t* unused)
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = TIME_QUANTUM_USEC * 1000;
ts = native_cond_timeout(&timer_thread_cond, ts);
native_cond_timedwait(&timer_thread_cond, &timer_thread_lock, &ts);
}
#endif /* USE_SLEEPY_TIMER_THREAD */
#if !defined(SET_CURRENT_THREAD_NAME) && defined(__linux__) && defined(PR_SET_NAME)
# define SET_CURRENT_THREAD_NAME(name) prctl(PR_SET_NAME, name)
#endif
static void
native_set_thread_name(rb_thread_t *th)
{
#ifdef SET_CURRENT_THREAD_NAME
if (!th->first_func && th->first_proc) {
VALUE loc;
if (!NIL_P(loc = th->name)) {
SET_CURRENT_THREAD_NAME(RSTRING_PTR(loc));
}
else if (!NIL_P(loc = rb_proc_location(th->first_proc))) {
const VALUE *ptr = RARRAY_CONST_PTR(loc); /* [ String, Integer ] */
char *name, *p;
char buf[16];
size_t len;
int n;
name = RSTRING_PTR(ptr[0]);
p = strrchr(name, '/'); /* show only the basename of the path. */
if (p && p[1])
name = p + 1;
n = snprintf(buf, sizeof(buf), "%s:%d", name, NUM2INT(ptr[1]));
rb_gc_force_recycle(loc); /* acts as a GC guard, too */
len = (size_t)n;
if (len >= sizeof(buf)) {
buf[sizeof(buf)-2] = '*';
buf[sizeof(buf)-1] = '\0';
}
SET_CURRENT_THREAD_NAME(buf);
}
}
#endif
}
static void *
thread_timer(void *p)
{
rb_global_vm_lock_t *gvl = (rb_global_vm_lock_t *)p;
if (TT_DEBUG) WRITE_CONST(2, "start timer thread\n");
#ifdef SET_CURRENT_THREAD_NAME
SET_CURRENT_THREAD_NAME("ruby-timer-thr");
#endif
#if !USE_SLEEPY_TIMER_THREAD
native_mutex_initialize(&timer_thread_lock);
native_cond_initialize(&timer_thread_cond, RB_CONDATTR_CLOCK_MONOTONIC);
native_mutex_lock(&timer_thread_lock);
#endif
while (system_working > 0) {
/* timer function */
ubf_wakeup_all_threads();
timer_thread_function(0);
if (TT_DEBUG) WRITE_CONST(2, "tick\n");
/* wait */
timer_thread_sleep(gvl);
}
#if USE_SLEEPY_TIMER_THREAD
CLOSE_INVALIDATE(normal[0]);
CLOSE_INVALIDATE(low[0]);
#else
native_mutex_unlock(&timer_thread_lock);
native_cond_destroy(&timer_thread_cond);
native_mutex_destroy(&timer_thread_lock);
#endif
if (TT_DEBUG) WRITE_CONST(2, "finish timer thread\n");
return NULL;
}
static void
rb_thread_create_timer_thread(void)
{
if (!timer_thread.created) {
int err;
#ifdef HAVE_PTHREAD_ATTR_INIT
pthread_attr_t attr;
rb_vm_t *vm = GET_VM();
err = pthread_attr_init(&attr);
if (err != 0) {
rb_warn("pthread_attr_init failed for timer: %s, scheduling broken",
strerror(err));
return;
}
# ifdef PTHREAD_STACK_MIN
{
const size_t min_size = (4096 * 4);
/* Allocate the machine stack for the timer thread
* at least 16KB (4 pages). FreeBSD 8.2 AMD64 causes
* machine stack overflow only with PTHREAD_STACK_MIN.
*/
enum {
needs_more_stack =
#if defined HAVE_VALGRIND_MEMCHECK_H && defined __APPLE__
1
#else
THREAD_DEBUG != 0
#endif
};
size_t stack_size = PTHREAD_STACK_MIN; /* may be dynamic, get only once */
if (stack_size < min_size) stack_size = min_size;
if (needs_more_stack) stack_size += BUFSIZ;
pthread_attr_setstacksize(&attr, stack_size);
}
# endif
#endif
#if USE_SLEEPY_TIMER_THREAD
err = setup_communication_pipe();
if (err != 0) {
rb_warn("pipe creation failed for timer: %s, scheduling broken",
strerror(err));
return;
}
#endif /* USE_SLEEPY_TIMER_THREAD */
/* create timer thread */
if (timer_thread.created) {
rb_bug("rb_thread_create_timer_thread: Timer thread was already created\n");
}
#ifdef HAVE_PTHREAD_ATTR_INIT
err = pthread_create(&timer_thread.id, &attr, thread_timer, &vm->gvl);
pthread_attr_destroy(&attr);
if (err == EINVAL) {
/*
* Even if we are careful with our own stack use in thread_timer(),
* any third-party libraries (eg libkqueue) which rely on __thread
* storage can cause small stack sizes to fail. So lets hope the
* default stack size is enough for them:
*/
err = pthread_create(&timer_thread.id, NULL, thread_timer, &vm->gvl);
}
#else
err = pthread_create(&timer_thread.id, NULL, thread_timer, &vm->gvl);
#endif
if (err != 0) {
rb_warn("pthread_create failed for timer: %s, scheduling broken",
strerror(err));
#if USE_SLEEPY_TIMER_THREAD
CLOSE_INVALIDATE(normal[0]);
CLOSE_INVALIDATE(normal[1]);
CLOSE_INVALIDATE(low[0]);
CLOSE_INVALIDATE(low[1]);
#endif
return;
}
/* validate pipe on this process */
timer_thread_pipe.owner_process = getpid();
timer_thread.created = 1;
}
}
static int
native_stop_timer_thread(void)
{
int stopped;
stopped = --system_working <= 0;
if (TT_DEBUG) fprintf(stderr, "stop timer thread\n");
#if USE_SLEEPY_TIMER_THREAD
if (stopped) {
/* prevent wakeups from signal handler ASAP */
timer_thread_pipe.owner_process = 0;
/*
* however, the above was not enough: the FD may already be
* captured and in the middle of a write while we are running,
* so wait for that to finish:
*/
while (ATOMIC_CAS(timer_thread_pipe.writing, (rb_atomic_t)0, 0)) {
native_thread_yield();
}
/* stop writing ends of pipes so timer thread notices EOF */
CLOSE_INVALIDATE(normal[1]);
CLOSE_INVALIDATE(low[1]);
/* timer thread will stop looping when system_working <= 0: */
native_thread_join(timer_thread.id);
/* timer thread will close the read end on exit: */
VM_ASSERT(timer_thread_pipe.normal[0] == -1);
VM_ASSERT(timer_thread_pipe.low[0] == -1);
if (TT_DEBUG) fprintf(stderr, "joined timer thread\n");
timer_thread.created = 0;
}
#endif
return stopped;
}
static void
native_reset_timer_thread(void)
{
if (TT_DEBUG) fprintf(stderr, "reset timer thread\n");
}
#ifdef HAVE_SIGALTSTACK
int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
void *base;
size_t size;
const size_t water_mark = 1024 * 1024;
STACK_GROW_DIR_DETECTION;
#ifdef STACKADDR_AVAILABLE
if (get_stack(&base, &size) == 0) {
# ifdef __APPLE__
if (pthread_equal(th->thread_id, native_main_thread.id)) {
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0 && rlim.rlim_cur > size) {
size = (size_t)rlim.rlim_cur;
}
}
# endif
base = (char *)base + STACK_DIR_UPPER(+size, -size);
}
else
#endif
if (th) {
size = th->machine.stack_maxsize;
base = (char *)th->machine.stack_start - STACK_DIR_UPPER(0, size);
}
else {
return 0;
}
size /= RUBY_STACK_SPACE_RATIO;
if (size > water_mark) size = water_mark;
if (IS_STACK_DIR_UPPER()) {
if (size > ~(size_t)base+1) size = ~(size_t)base+1;
if (addr > base && addr <= (void *)((char *)base + size)) return 1;
}
else {
if (size > (size_t)base) size = (size_t)base;
if (addr > (void *)((char *)base - size) && addr <= base) return 1;
}
return 0;
}
#endif
int
rb_reserved_fd_p(int fd)
{
#if USE_SLEEPY_TIMER_THREAD
if ((fd == timer_thread_pipe.normal[0] ||
fd == timer_thread_pipe.normal[1] ||
fd == timer_thread_pipe.low[0] ||
fd == timer_thread_pipe.low[1]) &&
timer_thread_pipe.owner_process == getpid()) { /* async-signal-safe */
return 1;
}
else {
return 0;
}
#else
return 0;
#endif
}
rb_nativethread_id_t
rb_nativethread_self(void)
{
return pthread_self();
}
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */