ruby/thread_pthread.c

3346 строки
92 KiB
C

/* -*-c-*- */
/**********************************************************************
thread_pthread.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
#include "internal/gc.h"
#include "rjit.h"
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#ifdef HAVE_THR_STKSEGMENT
#include <thread.h>
#endif
#if defined(HAVE_FCNTL_H)
#include <fcntl.h>
#elif defined(HAVE_SYS_FCNTL_H)
#include <sys/fcntl.h>
#endif
#ifdef HAVE_SYS_PRCTL_H
#include <sys/prctl.h>
#endif
#if defined(HAVE_SYS_TIME_H)
#include <sys/time.h>
#endif
#if defined(__HAIKU__)
#include <kernel/OS.h>
#endif
#ifdef __linux__
#include <sys/syscall.h> /* for SYS_gettid */
#endif
#include <time.h>
#include <signal.h>
#if defined __APPLE__
# include <AvailabilityMacros.h>
#endif
#if defined(HAVE_SYS_EVENTFD_H) && defined(HAVE_EVENTFD)
# define USE_EVENTFD (1)
# include <sys/eventfd.h>
#else
# define USE_EVENTFD (0)
#endif
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && \
defined(CLOCK_REALTIME) && defined(CLOCK_MONOTONIC) && \
defined(HAVE_CLOCK_GETTIME)
static pthread_condattr_t condattr_mono;
static pthread_condattr_t *condattr_monotonic = &condattr_mono;
#else
static const void *const condattr_monotonic = NULL;
#endif
#include COROUTINE_H
#ifndef HAVE_SYS_EPOLL_H
#define HAVE_SYS_EPOLL_H 0
#else
// force setting for debug
// #undef HAVE_SYS_EPOLL_H
// #define HAVE_SYS_EPOLL_H 0
#endif
#ifndef USE_MN_THREADS
#if defined(__EMSCRIPTEN__) || defined(COROUTINE_PTHREAD_CONTEXT)
// on __EMSCRIPTEN__ provides epoll* declarations, but no implementations.
// on COROUTINE_PTHREAD_CONTEXT, it doesn't worth to use it.
#define USE_MN_THREADS 0
#elif HAVE_SYS_EPOLL_H
#include <sys/epoll.h>
#define USE_MN_THREADS 1
#else
#define USE_MN_THREADS 0
#endif
#endif
// native thread wrappers
#define NATIVE_MUTEX_LOCK_DEBUG 0
static void
mutex_debug(const char *msg, void *lock)
{
if (NATIVE_MUTEX_LOCK_DEBUG) {
int r;
static pthread_mutex_t dbglock = PTHREAD_MUTEX_INITIALIZER;
if ((r = pthread_mutex_lock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
fprintf(stdout, "%s: %p\n", msg, lock);
if ((r = pthread_mutex_unlock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
}
}
void
rb_native_mutex_lock(pthread_mutex_t *lock)
{
int r;
mutex_debug("lock", lock);
if ((r = pthread_mutex_lock(lock)) != 0) {
rb_bug_errno("pthread_mutex_lock", r);
}
}
void
rb_native_mutex_unlock(pthread_mutex_t *lock)
{
int r;
mutex_debug("unlock", lock);
if ((r = pthread_mutex_unlock(lock)) != 0) {
rb_bug_errno("pthread_mutex_unlock", r);
}
}
int
rb_native_mutex_trylock(pthread_mutex_t *lock)
{
int r;
mutex_debug("trylock", lock);
if ((r = pthread_mutex_trylock(lock)) != 0) {
if (r == EBUSY) {
return EBUSY;
}
else {
rb_bug_errno("pthread_mutex_trylock", r);
}
}
return 0;
}
void
rb_native_mutex_initialize(pthread_mutex_t *lock)
{
int r = pthread_mutex_init(lock, 0);
mutex_debug("init", lock);
if (r != 0) {
rb_bug_errno("pthread_mutex_init", r);
}
}
void
rb_native_mutex_destroy(pthread_mutex_t *lock)
{
int r = pthread_mutex_destroy(lock);
mutex_debug("destroy", lock);
if (r != 0) {
rb_bug_errno("pthread_mutex_destroy", r);
}
}
void
rb_native_cond_initialize(rb_nativethread_cond_t *cond)
{
int r = pthread_cond_init(cond, condattr_monotonic);
if (r != 0) {
rb_bug_errno("pthread_cond_init", r);
}
}
void
rb_native_cond_destroy(rb_nativethread_cond_t *cond)
{
int r = pthread_cond_destroy(cond);
if (r != 0) {
rb_bug_errno("pthread_cond_destroy", r);
}
}
/*
* In OS X 10.7 (Lion), pthread_cond_signal and pthread_cond_broadcast return
* EAGAIN after retrying 8192 times. You can see them in the following page:
*
* http://www.opensource.apple.com/source/Libc/Libc-763.11/pthreads/pthread_cond.c
*
* The following rb_native_cond_signal and rb_native_cond_broadcast functions
* need to retrying until pthread functions don't return EAGAIN.
*/
void
rb_native_cond_signal(rb_nativethread_cond_t *cond)
{
int r;
do {
r = pthread_cond_signal(cond);
} while (r == EAGAIN);
if (r != 0) {
rb_bug_errno("pthread_cond_signal", r);
}
}
void
rb_native_cond_broadcast(rb_nativethread_cond_t *cond)
{
int r;
do {
r = pthread_cond_broadcast(cond);
} while (r == EAGAIN);
if (r != 0) {
rb_bug_errno("rb_native_cond_broadcast", r);
}
}
void
rb_native_cond_wait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex)
{
int r = pthread_cond_wait(cond, mutex);
if (r != 0) {
rb_bug_errno("pthread_cond_wait", r);
}
}
static int
native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const rb_hrtime_t *abs)
{
int r;
struct timespec ts;
/*
* An old Linux may return EINTR. Even though POSIX says
* "These functions shall not return an error code of [EINTR]".
* http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html
* Let's hide it from arch generic code.
*/
do {
rb_hrtime2timespec(&ts, abs);
r = pthread_cond_timedwait(cond, mutex, &ts);
} while (r == EINTR);
if (r != 0 && r != ETIMEDOUT) {
rb_bug_errno("pthread_cond_timedwait", r);
}
return r;
}
static rb_hrtime_t
native_cond_timeout(rb_nativethread_cond_t *cond, const rb_hrtime_t rel)
{
if (condattr_monotonic) {
return rb_hrtime_add(rb_hrtime_now(), rel);
}
else {
struct timespec ts;
rb_timespec_now(&ts);
return rb_hrtime_add(rb_timespec2hrtime(&ts), rel);
}
}
void
rb_native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, unsigned long msec)
{
rb_hrtime_t hrmsec = native_cond_timeout(cond, RB_HRTIME_PER_MSEC * msec);
native_cond_timedwait(cond, mutex, &hrmsec);
}
// thread scheduling
static rb_internal_thread_event_hook_t *rb_internal_thread_event_hooks = NULL;
static void rb_thread_execute_hooks(rb_event_flag_t event);
#define RB_INTERNAL_THREAD_HOOK(event) if (rb_internal_thread_event_hooks) { rb_thread_execute_hooks(event); }
static rb_serial_t current_fork_gen = 1; /* We can't use GET_VM()->fork_gen */
#if defined(SIGVTALRM) && !defined(__CYGWIN__) && !defined(__EMSCRIPTEN__)
# define USE_UBF_LIST 1
#endif
static void threadptr_trap_interrupt(rb_thread_t *);
#ifdef HAVE_SCHED_YIELD
#define native_thread_yield() (void)sched_yield()
#else
#define native_thread_yield() ((void)0)
#endif
/* 100ms. 10ms is too small for user level thread scheduling
* on recent Linux (tested on 2.6.35)
*/
#define TIME_QUANTUM_MSEC (100)
#define TIME_QUANTUM_USEC (TIME_QUANTUM_MSEC * 1000)
#define TIME_QUANTUM_NSEC (TIME_QUANTUM_USEC * 1000)
static void native_thread_dedicated_inc(rb_vm_t *vm, rb_ractor_t *cr, struct rb_native_thread *nt);
static void native_thread_dedicated_dec(rb_vm_t *vm, rb_ractor_t *cr, struct rb_native_thread *nt);
static void native_thread_assign(struct rb_native_thread *nt, rb_thread_t *th);
static void ractor_sched_enq(rb_vm_t *vm, rb_ractor_t *r);
static void timer_thread_wakeup(void);
static void timer_thread_wakeup_locked(rb_vm_t *vm);
static void timer_thread_wakeup_force(void);
static void thread_sched_switch(rb_thread_t *cth, rb_thread_t *next_th);
#define thread_sched_dump(s) thread_sched_dump_(__FILE__, __LINE__, s)
static bool
th_has_dedicated_nt(const rb_thread_t *th)
{
// TODO: th->has_dedicated_nt
return th->nt->dedicated > 0;
}
RBIMPL_ATTR_MAYBE_UNUSED()
static void
thread_sched_dump_(const char *file, int line, struct rb_thread_sched *sched)
{
fprintf(stderr, "@%s:%d running:%d\n", file, line, sched->running ? (int)sched->running->serial : -1);
rb_thread_t *th;
int i = 0;
ccan_list_for_each(&sched->readyq, th, sched.node.readyq) {
i++; if (i>10) rb_bug("too many");
fprintf(stderr, " ready:%d (%sNT:%d)\n", th->serial,
th->nt ? (th->nt->dedicated ? "D" : "S") : "x",
th->nt ? (int)th->nt->serial : -1);
}
}
#define ractor_sched_dump(s) ractor_sched_dump_(__FILE__, __LINE__, s)
RBIMPL_ATTR_MAYBE_UNUSED()
static void
ractor_sched_dump_(const char *file, int line, rb_vm_t *vm)
{
rb_ractor_t *r;
fprintf(stderr, "ractor_sched_dump %s:%d\n", file, line);
int i = 0;
ccan_list_for_each(&vm->ractor.sched.grq, r, threads.sched.grq_node) {
i++;
if (i>10) rb_bug("!!");
fprintf(stderr, " %d ready:%d\n", i, rb_ractor_id(r));
}
}
#define thread_sched_lock(a, b) thread_sched_lock_(a, b, __FILE__, __LINE__)
#define thread_sched_unlock(a, b) thread_sched_unlock_(a, b, __FILE__, __LINE__)
static void
thread_sched_lock_(struct rb_thread_sched *sched, rb_thread_t *th, const char *file, int line)
{
rb_native_mutex_lock(&sched->lock_);
#if VM_CHECK_MODE
RUBY_DEBUG_LOG2(file, line, "th:%u prev_owner:%u", rb_th_serial(th), rb_th_serial(sched->lock_owner));
VM_ASSERT(sched->lock_owner == NULL);
sched->lock_owner = th;
#else
RUBY_DEBUG_LOG2(file, line, "th:%u", rb_th_serial(th));
#endif
}
static void
thread_sched_unlock_(struct rb_thread_sched *sched, rb_thread_t *th, const char *file, int line)
{
RUBY_DEBUG_LOG2(file, line, "th:%u", rb_th_serial(th));
#if VM_CHECK_MODE
VM_ASSERT(sched->lock_owner == th);
sched->lock_owner = NULL;
#endif
rb_native_mutex_unlock(&sched->lock_);
}
static void
thread_sched_set_lock_owner(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
#if VM_CHECK_MODE > 0
sched->lock_owner = th;
#endif
}
static void
ASSERT_thread_sched_locked(struct rb_thread_sched *sched, rb_thread_t *th)
{
VM_ASSERT(rb_native_mutex_trylock(&sched->lock_) == EBUSY);
#if VM_CHECK_MODE
if (th) {
VM_ASSERT(sched->lock_owner == th);
}
else {
VM_ASSERT(sched->lock_owner != NULL);
}
#endif
}
#define ractor_sched_lock(a, b) ractor_sched_lock_(a, b, __FILE__, __LINE__)
#define ractor_sched_unlock(a, b) ractor_sched_unlock_(a, b, __FILE__, __LINE__)
RBIMPL_ATTR_MAYBE_UNUSED()
static unsigned int
rb_ractor_serial(const rb_ractor_t *r) {
if (r) {
return rb_ractor_id(r);
}
else {
return 0;
}
}
static void
ractor_sched_set_locked(rb_vm_t *vm, rb_ractor_t *cr)
{
#if VM_CHECK_MODE > 0
VM_ASSERT(vm->ractor.sched.lock_owner == NULL);
VM_ASSERT(vm->ractor.sched.locked == false);
vm->ractor.sched.lock_owner = cr;
vm->ractor.sched.locked = true;
#endif
}
static void
ractor_sched_set_unlocked(rb_vm_t *vm, rb_ractor_t *cr)
{
#if VM_CHECK_MODE > 0
VM_ASSERT(vm->ractor.sched.locked);
VM_ASSERT(vm->ractor.sched.lock_owner == cr);
vm->ractor.sched.locked = false;
vm->ractor.sched.lock_owner = NULL;
#endif
}
static void
ractor_sched_lock_(rb_vm_t *vm, rb_ractor_t *cr, const char *file, int line)
{
rb_native_mutex_lock(&vm->ractor.sched.lock);
#if VM_CHECK_MODE
RUBY_DEBUG_LOG2(file, line, "cr:%u prev_owner:%u", rb_ractor_serial(cr), rb_ractor_serial(vm->ractor.sched.lock_owner));
#else
RUBY_DEBUG_LOG2(file, line, "cr:%u", rb_ractor_serial(cr));
#endif
ractor_sched_set_locked(vm, cr);
}
static void
ractor_sched_unlock_(rb_vm_t *vm, rb_ractor_t *cr, const char *file, int line)
{
RUBY_DEBUG_LOG2(file, line, "cr:%u", rb_ractor_serial(cr));
ractor_sched_set_unlocked(vm, cr);
rb_native_mutex_unlock(&vm->ractor.sched.lock);
}
static void
ASSERT_ractor_sched_locked(rb_vm_t *vm, rb_ractor_t *cr)
{
VM_ASSERT(rb_native_mutex_trylock(&vm->ractor.sched.lock) == EBUSY);
VM_ASSERT(vm->ractor.sched.locked);
VM_ASSERT(cr == NULL || vm->ractor.sched.lock_owner == cr);
}
RBIMPL_ATTR_MAYBE_UNUSED()
static bool
ractor_sched_running_threads_contain_p(rb_vm_t *vm, rb_thread_t *th)
{
rb_thread_t *rth;
ccan_list_for_each(&vm->ractor.sched.running_threads, rth, sched.node.running_threads) {
if (rth == th) return true;
}
return false;
}
RBIMPL_ATTR_MAYBE_UNUSED()
static unsigned int
ractor_sched_running_threads_size(rb_vm_t *vm)
{
rb_thread_t *th;
unsigned int i = 0;
ccan_list_for_each(&vm->ractor.sched.running_threads, th, sched.node.running_threads) {
i++;
}
return i;
}
RBIMPL_ATTR_MAYBE_UNUSED()
static unsigned int
ractor_sched_timeslice_threads_size(rb_vm_t *vm)
{
rb_thread_t *th;
unsigned int i = 0;
ccan_list_for_each(&vm->ractor.sched.timeslice_threads, th, sched.node.timeslice_threads) {
i++;
}
return i;
}
RBIMPL_ATTR_MAYBE_UNUSED()
static bool
ractor_sched_timeslice_threads_contain_p(rb_vm_t *vm, rb_thread_t *th)
{
rb_thread_t *rth;
ccan_list_for_each(&vm->ractor.sched.timeslice_threads, rth, sched.node.timeslice_threads) {
if (rth == th) return true;
}
return false;
}
static void ractor_sched_barrier_join_signal_locked(rb_vm_t *vm);
static void ractor_sched_barrier_join_wait_locked(rb_vm_t *vm, rb_thread_t *th);
// setup timeslice signals by the timer thread.
static void
thread_sched_setup_running_threads(struct rb_thread_sched *sched, rb_ractor_t *cr, rb_vm_t *vm,
rb_thread_t *add_th, rb_thread_t *del_th, rb_thread_t *add_timeslice_th)
{
#if USE_RUBY_DEBUG_LOG
unsigned int prev_running_cnt = vm->ractor.sched.running_cnt;
#endif
rb_thread_t *del_timeslice_th;
if (del_th && sched->is_running_timeslice) {
del_timeslice_th = del_th;
sched->is_running_timeslice = false;
}
else {
del_timeslice_th = NULL;
}
RUBY_DEBUG_LOG("+:%u -:%u +ts:%u -ts:%u",
rb_th_serial(add_th), rb_th_serial(del_th),
rb_th_serial(add_timeslice_th), rb_th_serial(del_timeslice_th));
ractor_sched_lock(vm, cr);
{
// update running_threads
if (del_th) {
VM_ASSERT(ractor_sched_running_threads_contain_p(vm, del_th));
VM_ASSERT(del_timeslice_th != NULL ||
!ractor_sched_timeslice_threads_contain_p(vm, del_th));
ccan_list_del_init(&del_th->sched.node.running_threads);
vm->ractor.sched.running_cnt--;
if (UNLIKELY(vm->ractor.sched.barrier_waiting)) {
ractor_sched_barrier_join_signal_locked(vm);
}
sched->is_running = false;
}
if (add_th) {
if (UNLIKELY(vm->ractor.sched.barrier_waiting)) {
RUBY_DEBUG_LOG("barrier-wait");
ractor_sched_barrier_join_signal_locked(vm);
ractor_sched_barrier_join_wait_locked(vm, add_th);
}
VM_ASSERT(!ractor_sched_running_threads_contain_p(vm, add_th));
VM_ASSERT(!ractor_sched_timeslice_threads_contain_p(vm, add_th));
ccan_list_add(&vm->ractor.sched.running_threads, &add_th->sched.node.running_threads);
vm->ractor.sched.running_cnt++;
sched->is_running = true;
}
if (add_timeslice_th) {
// update timeslice threads
int was_empty = ccan_list_empty(&vm->ractor.sched.timeslice_threads);
VM_ASSERT(!ractor_sched_timeslice_threads_contain_p(vm, add_timeslice_th));
ccan_list_add(&vm->ractor.sched.timeslice_threads, &add_timeslice_th->sched.node.timeslice_threads);
sched->is_running_timeslice = true;
if (was_empty) {
timer_thread_wakeup_locked(vm);
}
}
if (del_timeslice_th) {
VM_ASSERT(ractor_sched_timeslice_threads_contain_p(vm, del_timeslice_th));
ccan_list_del_init(&del_timeslice_th->sched.node.timeslice_threads);
}
VM_ASSERT(ractor_sched_running_threads_size(vm) == vm->ractor.sched.running_cnt);
VM_ASSERT(ractor_sched_timeslice_threads_size(vm) <= vm->ractor.sched.running_cnt);
}
ractor_sched_unlock(vm, cr);
if (add_th && !del_th && UNLIKELY(vm->ractor.sync.lock_owner != NULL)) {
// it can be after barrier synchronization by another ractor
rb_thread_t *lock_owner = NULL;
#if VM_CHECK_MODE
lock_owner = sched->lock_owner;
#endif
thread_sched_unlock(sched, lock_owner);
{
RB_VM_LOCK_ENTER();
RB_VM_LOCK_LEAVE();
}
thread_sched_lock(sched, lock_owner);
}
//RUBY_DEBUG_LOG("+:%u -:%u +ts:%u -ts:%u run:%u->%u",
// rb_th_serial(add_th), rb_th_serial(del_th),
// rb_th_serial(add_timeslice_th), rb_th_serial(del_timeslice_th),
RUBY_DEBUG_LOG("run:%u->%u", prev_running_cnt, vm->ractor.sched.running_cnt);
}
static void
thread_sched_add_running_thread(struct rb_thread_sched *sched, rb_thread_t *th)
{
ASSERT_thread_sched_locked(sched, th);
VM_ASSERT(sched->running == th);
rb_vm_t *vm = th->vm;
thread_sched_setup_running_threads(sched, th->ractor, vm, th, NULL, ccan_list_empty(&sched->readyq) ? NULL : th);
}
static void
thread_sched_del_running_thread(struct rb_thread_sched *sched, rb_thread_t *th)
{
ASSERT_thread_sched_locked(sched, th);
rb_vm_t *vm = th->vm;
thread_sched_setup_running_threads(sched, th->ractor, vm, NULL, th, NULL);
}
void
rb_add_running_thread(rb_thread_t *th)
{
struct rb_thread_sched *sched = TH_SCHED(th);
thread_sched_lock(sched, th);
{
thread_sched_add_running_thread(sched, th);
}
thread_sched_unlock(sched, th);
}
void
rb_del_running_thread(rb_thread_t *th)
{
struct rb_thread_sched *sched = TH_SCHED(th);
thread_sched_lock(sched, th);
{
thread_sched_del_running_thread(sched, th);
}
thread_sched_unlock(sched, th);
}
// setup current or next running thread
// sched->running should be set only on this function.
//
// if th is NULL, there is no running threads.
static void
thread_sched_set_running(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u->th:%u", rb_th_serial(sched->running), rb_th_serial(th));
VM_ASSERT(sched->running != th);
sched->running = th;
}
RBIMPL_ATTR_MAYBE_UNUSED()
static bool
thread_sched_readyq_contain_p(struct rb_thread_sched *sched, rb_thread_t *th)
{
rb_thread_t *rth;
ccan_list_for_each(&sched->readyq, rth, sched.node.readyq) {
if (rth == th) return true;
}
return false;
}
// deque thread from the ready queue.
// if the ready queue is empty, return NULL.
//
// return deque'ed running thread (or NULL).
static rb_thread_t *
thread_sched_deq(struct rb_thread_sched *sched)
{
ASSERT_thread_sched_locked(sched, NULL);
rb_thread_t *next_th;
VM_ASSERT(sched->running != NULL);
if (ccan_list_empty(&sched->readyq)) {
next_th = NULL;
}
else {
next_th = ccan_list_pop(&sched->readyq, rb_thread_t, sched.node.readyq);
VM_ASSERT(sched->readyq_cnt > 0);
sched->readyq_cnt--;
ccan_list_node_init(&next_th->sched.node.readyq);
}
RUBY_DEBUG_LOG("next_th:%u readyq_cnt:%d", rb_th_serial(next_th), sched->readyq_cnt);
return next_th;
}
// enqueue ready thread to the ready queue.
static void
thread_sched_enq(struct rb_thread_sched *sched, rb_thread_t *ready_th)
{
ASSERT_thread_sched_locked(sched, NULL);
RUBY_DEBUG_LOG("ready_th:%u readyq_cnt:%d", rb_th_serial(ready_th), sched->readyq_cnt);
VM_ASSERT(sched->running != NULL);
VM_ASSERT(!thread_sched_readyq_contain_p(sched, ready_th));
if (sched->is_running) {
if (ccan_list_empty(&sched->readyq)) {
// add sched->running to timeslice
thread_sched_setup_running_threads(sched, ready_th->ractor, ready_th->vm, NULL, NULL, sched->running);
}
}
else {
VM_ASSERT(!ractor_sched_timeslice_threads_contain_p(ready_th->vm, sched->running));
}
ccan_list_add_tail(&sched->readyq, &ready_th->sched.node.readyq);
sched->readyq_cnt++;
}
// DNT: kick condvar
// SNT: TODO
static void
thread_sched_wakeup_running_thread(struct rb_thread_sched *sched, rb_thread_t *next_th, bool will_switch)
{
ASSERT_thread_sched_locked(sched, NULL);
VM_ASSERT(sched->running == next_th);
if (next_th) {
if (next_th->nt) {
if (th_has_dedicated_nt(next_th)) {
RUBY_DEBUG_LOG("pinning th:%u", next_th->serial);
rb_native_cond_signal(&next_th->nt->cond.readyq);
}
else {
// TODO
RUBY_DEBUG_LOG("th:%u is already running.", next_th->serial);
}
}
else {
if (will_switch) {
RUBY_DEBUG_LOG("th:%u (do nothing)", rb_th_serial(next_th));
}
else {
RUBY_DEBUG_LOG("th:%u (enq)", rb_th_serial(next_th));
ractor_sched_enq(next_th->vm, next_th->ractor);
}
}
}
else {
RUBY_DEBUG_LOG("no waiting threads%s", "");
}
}
// waiting -> ready (locked)
static void
thread_sched_to_ready_common(struct rb_thread_sched *sched, rb_thread_t *th, bool wakeup, bool will_switch)
{
RUBY_DEBUG_LOG("th:%u running:%u redyq_cnt:%d", rb_th_serial(th), rb_th_serial(sched->running), sched->readyq_cnt);
VM_ASSERT(sched->running != th);
VM_ASSERT(!thread_sched_readyq_contain_p(sched, th));
if (sched->running == NULL) {
thread_sched_set_running(sched, th);
if (wakeup) thread_sched_wakeup_running_thread(sched, th, will_switch);
}
else {
thread_sched_enq(sched, th);
}
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_READY);
}
// waiting -> ready
//
// `th` had became "waiting" state by `thread_sched_to_waiting`
// and `thread_sched_to_ready` enqueue `th` to the thread ready queue.
RBIMPL_ATTR_MAYBE_UNUSED()
static void
thread_sched_to_ready(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
thread_sched_lock(sched, th);
{
thread_sched_to_ready_common(sched, th, true, false);
}
thread_sched_unlock(sched, th);
}
// wait until sched->running is `th`.
static void
thread_sched_wait_running_turn(struct rb_thread_sched *sched, rb_thread_t *th, bool can_direct_transfer)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
ASSERT_thread_sched_locked(sched, th);
VM_ASSERT(th == GET_THREAD());
if (th != sched->running) {
// already deleted from running threads
// VM_ASSERT(!ractor_sched_running_threads_contain_p(th->vm, th)); // need locking
// wait for execution right
rb_thread_t *next_th;
while((next_th = sched->running) != th) {
if (th_has_dedicated_nt(th)) {
RUBY_DEBUG_LOG("(nt) sleep th:%u running:%u", rb_th_serial(th), rb_th_serial(sched->running));
thread_sched_set_lock_owner(sched, NULL);
{
RUBY_DEBUG_LOG("nt:%d cond:%p", th->nt->serial, &th->nt->cond.readyq);
rb_native_cond_wait(&th->nt->cond.readyq, &sched->lock_);
}
thread_sched_set_lock_owner(sched, th);
RUBY_DEBUG_LOG("(nt) wakeup %s", sched->running == th ? "success" : "failed");
if (th == sched->running) {
rb_ractor_thread_switch(th->ractor, th);
}
}
else {
// search another ready thread
if (can_direct_transfer &&
(next_th = sched->running) != NULL &&
!next_th->nt // next_th is running or has dedicated nt
) {
RUBY_DEBUG_LOG("th:%u->%u (direct)", rb_th_serial(th), rb_th_serial(next_th));
thread_sched_set_lock_owner(sched, NULL);
{
rb_ractor_set_current_ec(th->ractor, NULL);
thread_sched_switch(th, next_th);
}
thread_sched_set_lock_owner(sched, th);
}
else {
// search another ready ractor
struct rb_native_thread *nt = th->nt;
native_thread_assign(NULL, th);
RUBY_DEBUG_LOG("th:%u->%u (ractor scheduling)", rb_th_serial(th), rb_th_serial(next_th));
thread_sched_set_lock_owner(sched, NULL);
{
rb_ractor_set_current_ec(th->ractor, NULL);
coroutine_transfer(th->sched.context, nt->nt_context);
}
thread_sched_set_lock_owner(sched, th);
}
VM_ASSERT(GET_EC() == th->ec);
}
}
VM_ASSERT(th->nt != NULL);
VM_ASSERT(GET_EC() == th->ec);
VM_ASSERT(th->sched.waiting_reason.flags == thread_sched_waiting_none);
// add th to running threads
thread_sched_add_running_thread(sched, th);
}
// VM_ASSERT(ractor_sched_running_threads_contain_p(th->vm, th)); need locking
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_RESUMED);
}
// waiting -> ready -> running (locked)
static void
thread_sched_to_running_common(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u dedicated:%d", rb_th_serial(th), th_has_dedicated_nt(th));
VM_ASSERT(sched->running != th);
VM_ASSERT(th_has_dedicated_nt(th));
VM_ASSERT(GET_THREAD() == th);
native_thread_dedicated_dec(th->vm, th->ractor, th->nt);
// waiting -> ready
thread_sched_to_ready_common(sched, th, false, false);
if (sched->running == th) {
thread_sched_add_running_thread(sched, th);
}
// TODO: check SNT number
thread_sched_wait_running_turn(sched, th, false);
}
// waiting -> ready -> running
//
// `th` had been waiting by `thread_sched_to_waiting()`
// and run a dedicated task (like waitpid and so on).
// After the dedicated task, this function is called
// to join a normal thread-scheduling.
static void
thread_sched_to_running(struct rb_thread_sched *sched, rb_thread_t *th)
{
thread_sched_lock(sched, th);
{
thread_sched_to_running_common(sched, th);
}
thread_sched_unlock(sched, th);
}
// resume a next thread in the thread ready queue.
//
// deque next running thread from the ready thread queue and
// resume this thread if available.
//
// If the next therad has a dedicated native thraed, simply signal to resume.
// Otherwise, make the ractor ready and other nt will run the ractor and the thread.
static void
thread_sched_wakeup_next_thread(struct rb_thread_sched *sched, rb_thread_t *th, bool will_switch)
{
ASSERT_thread_sched_locked(sched, th);
VM_ASSERT(sched->running == th);
VM_ASSERT(sched->running->nt != NULL);
rb_thread_t *next_th = thread_sched_deq(sched);
RUBY_DEBUG_LOG("next_th:%u", rb_th_serial(next_th));
VM_ASSERT(th != next_th);
thread_sched_set_running(sched, next_th);
VM_ASSERT(next_th == sched->running);
thread_sched_wakeup_running_thread(sched, next_th, will_switch);
if (th != next_th) {
thread_sched_del_running_thread(sched, th);
}
}
// running -> waiting
//
// to_dead: false
// th will run dedicated task.
// run another ready thread.
// to_dead: true
// th will be dead.
// run another ready thread.
static void
thread_sched_to_waiting_common0(struct rb_thread_sched *sched, rb_thread_t *th, bool to_dead)
{
if (rb_internal_thread_event_hooks) {
rb_thread_execute_hooks(RUBY_INTERNAL_THREAD_EVENT_SUSPENDED);
}
if (!to_dead) native_thread_dedicated_inc(th->vm, th->ractor, th->nt);
RUBY_DEBUG_LOG("%sth:%u", to_dead ? "to_dead " : "", rb_th_serial(th));
bool can_switch = to_dead ? !th_has_dedicated_nt(th) : false;
thread_sched_wakeup_next_thread(sched, th, can_switch);
}
// running -> dead (locked)
static void
thread_sched_to_dead_common(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("dedicated:%d", th->nt->dedicated);
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_EXITED);
thread_sched_to_waiting_common0(sched, th, true);
}
// running -> dead
static void
thread_sched_to_dead(struct rb_thread_sched *sched, rb_thread_t *th)
{
thread_sched_lock(sched, th);
{
thread_sched_to_dead_common(sched, th);
}
thread_sched_unlock(sched, th);
}
// running -> waiting (locked)
//
// This thread will run dedicated task (th->nt->dedicated++).
static void
thread_sched_to_waiting_common(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("dedicated:%d", th->nt->dedicated);
thread_sched_to_waiting_common0(sched, th, false);
}
// running -> waiting
//
// This thread will run a dedicated task.
static void
thread_sched_to_waiting(struct rb_thread_sched *sched, rb_thread_t *th)
{
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_SUSPENDED);
thread_sched_lock(sched, th);
{
thread_sched_to_waiting_common(sched, th);
}
thread_sched_unlock(sched, th);
}
// mini utility func
static void
setup_ubf(rb_thread_t *th, rb_unblock_function_t *func, void *arg)
{
rb_native_mutex_lock(&th->interrupt_lock);
{
th->unblock.func = func;
th->unblock.arg = arg;
}
rb_native_mutex_unlock(&th->interrupt_lock);
}
static void
ubf_waiting(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
struct rb_thread_sched *sched = TH_SCHED(th);
// only once. it is safe because th->interrupt_lock is already acquired.
th->unblock.func = NULL;
th->unblock.arg = NULL;
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
thread_sched_lock(sched, th);
{
if (sched->running == th) {
// not sleeping yet.
}
else {
thread_sched_to_ready_common(sched, th, true, false);
}
}
thread_sched_unlock(sched, th);
}
// running -> waiting
//
// This thread will sleep until other thread wakeup the thread.
static void
thread_sched_to_waiting_until_wakeup(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
RB_VM_SAVE_MACHINE_CONTEXT(th);
setup_ubf(th, ubf_waiting, (void *)th);
thread_sched_lock(sched, th);
{
if (!RUBY_VM_INTERRUPTED(th->ec)) {
bool can_direct_transfer = !th_has_dedicated_nt(th);
thread_sched_wakeup_next_thread(sched, th, can_direct_transfer);
thread_sched_wait_running_turn(sched, th, can_direct_transfer);
}
else {
RUBY_DEBUG_LOG("th:%u interrupted", rb_th_serial(th));
}
}
thread_sched_unlock(sched, th);
setup_ubf(th, NULL, NULL);
}
// run another thread in the ready queue.
// continue to run if there are no ready threads.
static void
thread_sched_yield(struct rb_thread_sched *sched, rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%d sched->readyq_cnt:%d", (int)th->serial, sched->readyq_cnt);
thread_sched_lock(sched, th);
{
if (!ccan_list_empty(&sched->readyq)) {
thread_sched_wakeup_next_thread(sched, th, !th_has_dedicated_nt(th));
bool can_direct_transfer = !th_has_dedicated_nt(th);
thread_sched_to_ready_common(sched, th, false, can_direct_transfer);
thread_sched_wait_running_turn(sched, th, can_direct_transfer);
}
else {
VM_ASSERT(sched->readyq_cnt == 0);
}
}
thread_sched_unlock(sched, th);
}
void
rb_thread_sched_init(struct rb_thread_sched *sched, bool atfork)
{
rb_native_mutex_initialize(&sched->lock_);
ccan_list_head_init(&sched->readyq);
sched->readyq_cnt = 0;
#if USE_MN_THREADS
if (!atfork) sched->enable_mn_threads = true; // MN is enabled on Ractors
#endif
}
static void
thread_sched_switch0(struct coroutine_context *current_cont, rb_thread_t *next_th, struct rb_native_thread *nt)
{
VM_ASSERT(!nt->dedicated);
VM_ASSERT(next_th->nt == NULL);
RUBY_DEBUG_LOG("next_th:%u", rb_th_serial(next_th));
ruby_thread_set_native(next_th);
native_thread_assign(nt, next_th);
coroutine_transfer(current_cont, next_th->sched.context);
}
static void
thread_sched_switch(rb_thread_t *cth, rb_thread_t *next_th)
{
struct rb_native_thread *nt = cth->nt;
native_thread_assign(NULL, cth);
RUBY_DEBUG_LOG("th:%u->%u on nt:%d", rb_th_serial(cth), rb_th_serial(next_th), nt->serial);
thread_sched_switch0(cth->sched.context, next_th, nt);
}
#if VM_CHECK_MODE > 0
RBIMPL_ATTR_MAYBE_UNUSED()
static unsigned int
grq_size(rb_vm_t *vm, rb_ractor_t *cr)
{
ASSERT_ractor_sched_locked(vm, cr);
rb_ractor_t *r, *prev_r = NULL;
unsigned int i = 0;
ccan_list_for_each(&vm->ractor.sched.grq, r, threads.sched.grq_node) {
i++;
VM_ASSERT(r != prev_r);
prev_r = r;
}
return i;
}
#endif
static void
ractor_sched_enq(rb_vm_t *vm, rb_ractor_t *r)
{
struct rb_thread_sched *sched = &r->threads.sched;
rb_ractor_t *cr = NULL; // timer thread can call this function
VM_ASSERT(sched->running != NULL);
VM_ASSERT(sched->running->nt == NULL);
ractor_sched_lock(vm, cr);
{
#if VM_CHECK_MODE > 0
// check if grq contains r
rb_ractor_t *tr;
ccan_list_for_each(&vm->ractor.sched.grq, tr, threads.sched.grq_node) {
VM_ASSERT(r != tr);
}
#endif
ccan_list_add_tail(&vm->ractor.sched.grq, &sched->grq_node);
vm->ractor.sched.grq_cnt++;
VM_ASSERT(grq_size(vm, cr) == vm->ractor.sched.grq_cnt);
RUBY_DEBUG_LOG("r:%u th:%u grq_cnt:%u", rb_ractor_id(r), rb_th_serial(sched->running), vm->ractor.sched.grq_cnt);
rb_native_cond_signal(&vm->ractor.sched.cond);
// ractor_sched_dump(vm);
}
ractor_sched_unlock(vm, cr);
}
#ifndef SNT_KEEP_SECONDS
#define SNT_KEEP_SECONDS 0
#endif
#ifndef MINIMUM_SNT
// make at least MINIMUM_SNT snts for debug.
#define MINIMUM_SNT 0
#endif
static rb_ractor_t *
ractor_sched_deq(rb_vm_t *vm, rb_ractor_t *cr)
{
rb_ractor_t *r;
ractor_sched_lock(vm, cr);
{
RUBY_DEBUG_LOG("empty? %d", ccan_list_empty(&vm->ractor.sched.grq));
// ractor_sched_dump(vm);
VM_ASSERT(rb_current_execution_context(false) == NULL);
VM_ASSERT(grq_size(vm, cr) == vm->ractor.sched.grq_cnt);
while ((r = ccan_list_pop(&vm->ractor.sched.grq, rb_ractor_t, threads.sched.grq_node)) == NULL) {
RUBY_DEBUG_LOG("wait grq_cnt:%d", (int)vm->ractor.sched.grq_cnt);
#if SNT_KEEP_SECONDS > 0
rb_hrtime_t abs = rb_hrtime_add(rb_hrtime_now(), RB_HRTIME_PER_SEC * SNT_KEEP_SECONDS);
if (native_cond_timedwait(&vm->ractor.sched.cond, &vm->ractor.sched.lock, &abs) == ETIMEDOUT) {
RUBY_DEBUG_LOG("timeout, grq_cnt:%d", (int)vm->ractor.sched.grq_cnt);
VM_ASSERT(r == NULL);
vm->ractor.sched.snt_cnt--;
vm->ractor.sched.running_cnt--;
break;
}
else {
RUBY_DEBUG_LOG("wakeup grq_cnt:%d", (int)vm->ractor.sched.grq_cnt);
}
#else
ractor_sched_set_unlocked(vm, cr);
rb_native_cond_wait(&vm->ractor.sched.cond, &vm->ractor.sched.lock);
ractor_sched_set_locked(vm, cr);
RUBY_DEBUG_LOG("wakeup grq_cnt:%d", (int)vm->ractor.sched.grq_cnt);
#endif
}
VM_ASSERT(rb_current_execution_context(false) == NULL);
if (r) {
VM_ASSERT(vm->ractor.sched.grq_cnt > 0);
vm->ractor.sched.grq_cnt--;
RUBY_DEBUG_LOG("r:%d grq_cnt:%u", (int)rb_ractor_id(r), vm->ractor.sched.grq_cnt);
}
else {
VM_ASSERT(SNT_KEEP_SECONDS > 0);
// timeout
}
}
ractor_sched_unlock(vm, cr);
return r;
}
void rb_ractor_lock_self(rb_ractor_t *r);
void rb_ractor_unlock_self(rb_ractor_t *r);
void
rb_ractor_sched_sleep(rb_execution_context_t *ec, rb_ractor_t *cr, rb_unblock_function_t *ubf)
{
// ractor lock of cr is acquired
// r is sleeping statuss
rb_thread_t *th = rb_ec_thread_ptr(ec);
struct rb_thread_sched *sched = TH_SCHED(th);
cr->sync.wait.waiting_thread = th; // TODO: multi-thread
setup_ubf(th, ubf, (void *)cr);
thread_sched_lock(sched, th);
{
rb_ractor_unlock_self(cr);
{
if (RUBY_VM_INTERRUPTED(th->ec)) {
RUBY_DEBUG_LOG("interrupted");
}
else if (cr->sync.wait.wakeup_status != wakeup_none) {
RUBY_DEBUG_LOG("awaken:%d", (int)cr->sync.wait.wakeup_status);
}
else {
// sleep
RB_VM_SAVE_MACHINE_CONTEXT(th);
th->status = THREAD_STOPPED_FOREVER;
bool can_direct_transfer = !th_has_dedicated_nt(th);
thread_sched_wakeup_next_thread(sched, th, can_direct_transfer);
thread_sched_wait_running_turn(sched, th, can_direct_transfer);
th->status = THREAD_RUNNABLE;
// wakeup
}
}
}
thread_sched_unlock(sched, th);
setup_ubf(th, NULL, NULL);
rb_ractor_lock_self(cr);
cr->sync.wait.waiting_thread = NULL;
}
void
rb_ractor_sched_wakeup(rb_ractor_t *r)
{
rb_thread_t *r_th = r->sync.wait.waiting_thread;
// ractor lock of r is acquired
struct rb_thread_sched *sched = TH_SCHED(r_th);
VM_ASSERT(r->sync.wait.wakeup_status != 0);
thread_sched_lock(sched, r_th);
{
if (r_th->status == THREAD_STOPPED_FOREVER) {
thread_sched_to_ready_common(sched, r_th, true, false);
}
}
thread_sched_unlock(sched, r_th);
}
static bool
ractor_sched_barrier_completed_p(rb_vm_t *vm)
{
RUBY_DEBUG_LOG("run:%u wait:%u", vm->ractor.sched.running_cnt, vm->ractor.sched.barrier_waiting_cnt);
VM_ASSERT(vm->ractor.sched.running_cnt - 1 >= vm->ractor.sched.barrier_waiting_cnt);
return (vm->ractor.sched.running_cnt - vm->ractor.sched.barrier_waiting_cnt) == 1;
}
void
rb_ractor_sched_barrier_start(rb_vm_t *vm, rb_ractor_t *cr)
{
VM_ASSERT(cr == GET_RACTOR());
VM_ASSERT(vm->ractor.sync.lock_owner == cr); // VM is locked
VM_ASSERT(!vm->ractor.sched.barrier_waiting);
VM_ASSERT(vm->ractor.sched.barrier_waiting_cnt == 0);
RUBY_DEBUG_LOG("start serial:%u", vm->ractor.sched.barrier_serial);
unsigned int lock_rec;
ractor_sched_lock(vm, cr);
{
vm->ractor.sched.barrier_waiting = true;
// release VM lock
lock_rec = vm->ractor.sync.lock_rec;
vm->ractor.sync.lock_rec = 0;
vm->ractor.sync.lock_owner = NULL;
rb_native_mutex_unlock(&vm->ractor.sync.lock);
{
// interrupts all running threads
rb_thread_t *ith;
ccan_list_for_each(&vm->ractor.sched.running_threads, ith, sched.node.running_threads) {
if (ith->ractor != cr) {
RUBY_DEBUG_LOG("barrier int:%u", rb_th_serial(ith));
RUBY_VM_SET_VM_BARRIER_INTERRUPT(ith->ec);
}
}
// wait for other ractors
while (!ractor_sched_barrier_completed_p(vm)) {
ractor_sched_set_unlocked(vm, cr);
rb_native_cond_wait(&vm->ractor.sched.barrier_complete_cond, &vm->ractor.sched.lock);
ractor_sched_set_locked(vm, cr);
}
}
}
ractor_sched_unlock(vm, cr);
// acquire VM lock
rb_native_mutex_lock(&vm->ractor.sync.lock);
vm->ractor.sync.lock_rec = lock_rec;
vm->ractor.sync.lock_owner = cr;
RUBY_DEBUG_LOG("completed seirial:%u", vm->ractor.sched.barrier_serial);
ractor_sched_lock(vm, cr);
{
vm->ractor.sched.barrier_waiting = false;
vm->ractor.sched.barrier_serial++;
vm->ractor.sched.barrier_waiting_cnt = 0;
rb_native_cond_broadcast(&vm->ractor.sched.barrier_release_cond);
}
ractor_sched_unlock(vm, cr);
}
static void
ractor_sched_barrier_join_signal_locked(rb_vm_t *vm)
{
if (ractor_sched_barrier_completed_p(vm)) {
rb_native_cond_signal(&vm->ractor.sched.barrier_complete_cond);
}
}
static void
ractor_sched_barrier_join_wait_locked(rb_vm_t *vm, rb_thread_t *th)
{
VM_ASSERT(vm->ractor.sched.barrier_waiting);
unsigned int barrier_serial = vm->ractor.sched.barrier_serial;
while (vm->ractor.sched.barrier_serial == barrier_serial) {
RUBY_DEBUG_LOG("sleep serial:%u", barrier_serial);
RB_VM_SAVE_MACHINE_CONTEXT(th);
rb_ractor_t *cr = th->ractor;
ractor_sched_set_unlocked(vm, cr);
rb_native_cond_wait(&vm->ractor.sched.barrier_release_cond, &vm->ractor.sched.lock);
ractor_sched_set_locked(vm, cr);
RUBY_DEBUG_LOG("wakeup serial:%u", barrier_serial);
}
}
void
rb_ractor_sched_barrier_join(rb_vm_t *vm, rb_ractor_t *cr)
{
VM_ASSERT(cr->threads.sched.running != NULL); // running ractor
VM_ASSERT(cr == GET_RACTOR());
VM_ASSERT(vm->ractor.sync.lock_owner == NULL); // VM is locked, but owner == NULL
VM_ASSERT(vm->ractor.sched.barrier_waiting); // VM needs barrier sync
#if USE_RUBY_DEBUG_LOG || VM_CHECK_MODE > 0
unsigned int barrier_serial = vm->ractor.sched.barrier_serial;
#endif
RUBY_DEBUG_LOG("join");
rb_native_mutex_unlock(&vm->ractor.sync.lock);
{
VM_ASSERT(vm->ractor.sched.barrier_waiting); // VM needs barrier sync
VM_ASSERT(vm->ractor.sched.barrier_serial == barrier_serial);
ractor_sched_lock(vm, cr);
{
// running_cnt
vm->ractor.sched.barrier_waiting_cnt++;
RUBY_DEBUG_LOG("waiting_cnt:%u serial:%u", vm->ractor.sched.barrier_waiting_cnt, barrier_serial);
ractor_sched_barrier_join_signal_locked(vm);
ractor_sched_barrier_join_wait_locked(vm, cr->threads.sched.running);
}
ractor_sched_unlock(vm, cr);
}
rb_native_mutex_lock(&vm->ractor.sync.lock);
// VM locked here
}
#if 0
// TODO
static void clear_thread_cache_altstack(void);
static void
rb_thread_sched_destroy(struct rb_thread_sched *sched)
{
/*
* only called once at VM shutdown (not atfork), another thread
* may still grab vm->gvl.lock when calling gvl_release at
* the end of thread_start_func_2
*/
if (0) {
rb_native_mutex_destroy(&sched->lock);
}
clear_thread_cache_altstack();
}
#endif
#ifdef RB_THREAD_T_HAS_NATIVE_ID
static int
get_native_thread_id(void)
{
#ifdef __linux__
return (int)syscall(SYS_gettid);
#elif defined(__FreeBSD__)
return pthread_getthreadid_np();
#endif
}
#endif
#if defined(HAVE_WORKING_FORK)
static void
thread_sched_atfork(struct rb_thread_sched *sched)
{
current_fork_gen++;
rb_thread_sched_init(sched, true);
rb_thread_t *th = GET_THREAD();
rb_vm_t *vm = GET_VM();
if (th_has_dedicated_nt(th)) {
vm->ractor.sched.snt_cnt = 0;
}
else {
vm->ractor.sched.snt_cnt = 1;
}
vm->ractor.sched.running_cnt = 0;
// rb_native_cond_destroy(&vm->ractor.sched.cond);
rb_native_cond_initialize(&vm->ractor.sched.cond);
rb_native_cond_initialize(&vm->ractor.sched.barrier_complete_cond);
rb_native_cond_initialize(&vm->ractor.sched.barrier_release_cond);
ccan_list_head_init(&vm->ractor.sched.grq);
ccan_list_head_init(&vm->ractor.sched.timeslice_threads);
ccan_list_head_init(&vm->ractor.sched.running_threads);
VM_ASSERT(sched->is_running);
sched->is_running_timeslice = false;
if (sched->running != th) {
thread_sched_to_running(sched, th);
}
else {
thread_sched_setup_running_threads(sched, th->ractor, vm, th, NULL, NULL);
}
#ifdef RB_THREAD_T_HAS_NATIVE_ID
if (th->nt) {
th->nt->tid = get_native_thread_id();
}
#endif
}
#endif
#ifdef RB_THREAD_LOCAL_SPECIFIER
static RB_THREAD_LOCAL_SPECIFIER rb_thread_t *ruby_native_thread;
#else
static pthread_key_t ruby_native_thread_key;
#endif
static void
null_func(int i)
{
/* null */
// This function can be called from signal handler
// RUBY_DEBUG_LOG("i:%d", i);
}
rb_thread_t *
ruby_thread_from_native(void)
{
#ifdef RB_THREAD_LOCAL_SPECIFIER
return ruby_native_thread;
#else
return pthread_getspecific(ruby_native_thread_key);
#endif
}
int
ruby_thread_set_native(rb_thread_t *th)
{
if (th) {
#ifdef USE_UBF_LIST
ccan_list_node_init(&th->sched.node.ubf);
#endif
}
// setup TLS
if (th && th->ec) {
rb_ractor_set_current_ec(th->ractor, th->ec);
}
#ifdef RB_THREAD_LOCAL_SPECIFIER
ruby_native_thread = th;
return 1;
#else
return pthread_setspecific(ruby_native_thread_key, th) == 0;
#endif
}
static void native_thread_setup(struct rb_native_thread *nt);
static void native_thread_setup_on_thread(struct rb_native_thread *nt);
void
Init_native_thread(rb_thread_t *main_th)
{
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK)
if (condattr_monotonic) {
int r = pthread_condattr_init(condattr_monotonic);
if (r == 0) {
r = pthread_condattr_setclock(condattr_monotonic, CLOCK_MONOTONIC);
}
if (r) condattr_monotonic = NULL;
}
#endif
#ifndef RB_THREAD_LOCAL_SPECIFIER
if (pthread_key_create(&ruby_native_thread_key, 0) == EAGAIN) {
rb_bug("pthread_key_create failed (ruby_native_thread_key)");
}
if (pthread_key_create(&ruby_current_ec_key, 0) == EAGAIN) {
rb_bug("pthread_key_create failed (ruby_current_ec_key)");
}
#endif
ruby_posix_signal(SIGVTALRM, null_func);
// setup vm
rb_vm_t *vm = main_th->vm;
rb_native_mutex_initialize(&vm->ractor.sched.lock);
rb_native_cond_initialize(&vm->ractor.sched.cond);
rb_native_cond_initialize(&vm->ractor.sched.barrier_complete_cond);
rb_native_cond_initialize(&vm->ractor.sched.barrier_release_cond);
ccan_list_head_init(&vm->ractor.sched.grq);
ccan_list_head_init(&vm->ractor.sched.timeslice_threads);
ccan_list_head_init(&vm->ractor.sched.running_threads);
// setup main thread
main_th->nt->thread_id = pthread_self();
main_th->nt->serial = 1;
#ifdef RUBY_NT_SERIAL
ruby_nt_serial = 1;
#endif
ruby_thread_set_native(main_th);
native_thread_setup(main_th->nt);
native_thread_setup_on_thread(main_th->nt);
TH_SCHED(main_th)->running = main_th;
main_th->has_dedicated_nt = 1;
thread_sched_setup_running_threads(TH_SCHED(main_th), main_th->ractor, vm, main_th, NULL, NULL);
// setup main NT
main_th->nt->dedicated = 1;
main_th->nt->vm = vm;
// setup mn
vm->ractor.sched.dnt_cnt = 1;
}
extern int ruby_mn_threads_enabled;
void
ruby_mn_threads_params(void)
{
rb_vm_t *vm = GET_VM();
rb_ractor_t *main_ractor = GET_RACTOR();
const char *mn_threads_cstr = getenv("RUBY_MN_THREADS");
bool enable_mn_threads = false;
if (USE_MN_THREADS && mn_threads_cstr && (enable_mn_threads = atoi(mn_threads_cstr) > 0)) {
// enabled
ruby_mn_threads_enabled = 1;
}
main_ractor->threads.sched.enable_mn_threads = enable_mn_threads;
const char *max_cpu_cstr = getenv("RUBY_MAX_CPU");
const int default_max_cpu = 8; // TODO: CPU num?
int max_cpu = default_max_cpu;
if (USE_MN_THREADS && max_cpu_cstr && (max_cpu = atoi(max_cpu_cstr)) > 0) {
max_cpu = default_max_cpu;
}
vm->ractor.sched.max_cpu = max_cpu;
}
static void
native_thread_dedicated_inc(rb_vm_t *vm, rb_ractor_t *cr, struct rb_native_thread *nt)
{
RUBY_DEBUG_LOG("nt:%d %d->%d", nt->serial, nt->dedicated, nt->dedicated + 1);
if (nt->dedicated == 0) {
ractor_sched_lock(vm, cr);
{
vm->ractor.sched.snt_cnt--;
vm->ractor.sched.dnt_cnt++;
}
ractor_sched_unlock(vm, cr);
}
nt->dedicated++;
}
static void
native_thread_dedicated_dec(rb_vm_t *vm, rb_ractor_t *cr, struct rb_native_thread *nt)
{
RUBY_DEBUG_LOG("nt:%d %d->%d", nt->serial, nt->dedicated, nt->dedicated - 1);
VM_ASSERT(nt->dedicated > 0);
nt->dedicated--;
if (nt->dedicated == 0) {
ractor_sched_lock(vm, cr);
{
nt->vm->ractor.sched.snt_cnt++;
nt->vm->ractor.sched.dnt_cnt--;
}
ractor_sched_unlock(vm, cr);
}
}
static void
native_thread_assign(struct rb_native_thread *nt, rb_thread_t *th)
{
#if USE_RUBY_DEBUG_LOG
if (nt) {
if (th->nt) {
RUBY_DEBUG_LOG("th:%d nt:%d->%d", (int)th->serial, (int)th->nt->serial, (int)nt->serial);
}
else {
RUBY_DEBUG_LOG("th:%d nt:NULL->%d", (int)th->serial, (int)nt->serial);
}
}
else {
if (th->nt) {
RUBY_DEBUG_LOG("th:%d nt:%d->NULL", (int)th->serial, (int)th->nt->serial);
}
else {
RUBY_DEBUG_LOG("th:%d nt:NULL->NULL", (int)th->serial);
}
}
#endif
th->nt = nt;
}
static void
native_thread_destroy(struct rb_native_thread *nt)
{
if (nt) {
rb_native_cond_destroy(&nt->cond.readyq);
if (&nt->cond.readyq != &nt->cond.intr) {
rb_native_cond_destroy(&nt->cond.intr);
}
RB_ALTSTACK_FREE(nt->altstack);
ruby_xfree(nt->nt_context);
ruby_xfree(nt);
}
}
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
#define STACKADDR_AVAILABLE 1
#undef MAINSTACKADDR_AVAILABLE
#define MAINSTACKADDR_AVAILABLE 1
void *pthread_get_stackaddr_np(pthread_t);
size_t pthread_get_stacksize_np(pthread_t);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GETTHRDS_NP
#define STACKADDR_AVAILABLE 1
#elif defined __HAIKU__
#define STACKADDR_AVAILABLE 1
#endif
#ifndef MAINSTACKADDR_AVAILABLE
# ifdef STACKADDR_AVAILABLE
# define MAINSTACKADDR_AVAILABLE 1
# else
# define MAINSTACKADDR_AVAILABLE 0
# endif
#endif
#if MAINSTACKADDR_AVAILABLE && !defined(get_main_stack)
# define get_main_stack(addr, size) get_stack(addr, size)
#endif
#ifdef STACKADDR_AVAILABLE
/*
* Get the initial address and size of current thread's stack
*/
static int
get_stack(void **addr, size_t *size)
{
#define CHECK_ERR(expr) \
{int err = (expr); if (err) return err;}
#ifdef HAVE_PTHREAD_GETATTR_NP /* Linux */
pthread_attr_t attr;
size_t guard = 0;
STACK_GROW_DIR_DETECTION;
CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
# ifdef HAVE_PTHREAD_ATTR_GETGUARDSIZE
CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
# else
guard = getpagesize();
# endif
*size -= guard;
pthread_attr_destroy(&attr);
#elif defined HAVE_PTHREAD_ATTR_GET_NP /* FreeBSD, DragonFly BSD, NetBSD */
pthread_attr_t attr;
CHECK_ERR(pthread_attr_init(&attr));
CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
pthread_attr_destroy(&attr);
#elif (defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP) /* MacOS X */
pthread_t th = pthread_self();
*addr = pthread_get_stackaddr_np(th);
*size = pthread_get_stacksize_np(th);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
stack_t stk;
# if defined HAVE_THR_STKSEGMENT /* Solaris */
CHECK_ERR(thr_stksegment(&stk));
# else /* OpenBSD */
CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
# endif
*addr = stk.ss_sp;
*size = stk.ss_size;
#elif defined HAVE_PTHREAD_GETTHRDS_NP /* AIX */
pthread_t th = pthread_self();
struct __pthrdsinfo thinfo;
char reg[256];
int regsiz=sizeof(reg);
CHECK_ERR(pthread_getthrds_np(&th, PTHRDSINFO_QUERY_ALL,
&thinfo, sizeof(thinfo),
&reg, &regsiz));
*addr = thinfo.__pi_stackaddr;
/* Must not use thinfo.__pi_stacksize for size.
It is around 3KB smaller than the correct size
calculated by thinfo.__pi_stackend - thinfo.__pi_stackaddr. */
*size = thinfo.__pi_stackend - thinfo.__pi_stackaddr;
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
#elif defined __HAIKU__
thread_info info;
STACK_GROW_DIR_DETECTION;
CHECK_ERR(get_thread_info(find_thread(NULL), &info));
*addr = info.stack_base;
*size = (uintptr_t)info.stack_end - (uintptr_t)info.stack_base;
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
#else
#error STACKADDR_AVAILABLE is defined but not implemented.
#endif
return 0;
#undef CHECK_ERR
}
#endif
static struct {
rb_nativethread_id_t id;
size_t stack_maxsize;
VALUE *stack_start;
} native_main_thread;
#ifdef STACK_END_ADDRESS
extern void *STACK_END_ADDRESS;
#endif
enum {
RUBY_STACK_SPACE_LIMIT = 1024 * 1024, /* 1024KB */
RUBY_STACK_SPACE_RATIO = 5
};
static size_t
space_size(size_t stack_size)
{
size_t space_size = stack_size / RUBY_STACK_SPACE_RATIO;
if (space_size > RUBY_STACK_SPACE_LIMIT) {
return RUBY_STACK_SPACE_LIMIT;
}
else {
return space_size;
}
}
#ifdef __linux__
static __attribute__((noinline)) void
reserve_stack(volatile char *limit, size_t size)
{
# ifdef C_ALLOCA
# error needs alloca()
# endif
struct rlimit rl;
volatile char buf[0x100];
enum {stack_check_margin = 0x1000}; /* for -fstack-check */
STACK_GROW_DIR_DETECTION;
if (!getrlimit(RLIMIT_STACK, &rl) && rl.rlim_cur == RLIM_INFINITY)
return;
if (size < stack_check_margin) return;
size -= stack_check_margin;
size -= sizeof(buf); /* margin */
if (IS_STACK_DIR_UPPER()) {
const volatile char *end = buf + sizeof(buf);
limit += size;
if (limit > end) {
/* |<-bottom (=limit(a)) top->|
* | .. |<-buf 256B |<-end | stack check |
* | 256B | =size= | margin (4KB)|
* | =size= limit(b)->| 256B | |
* | | alloca(sz) | | |
* | .. |<-buf |<-limit(c) [sz-1]->0> | |
*/
size_t sz = limit - end;
limit = alloca(sz);
limit[sz-1] = 0;
}
}
else {
limit -= size;
if (buf > limit) {
/* |<-top (=limit(a)) bottom->|
* | .. | 256B buf->| | stack check |
* | 256B | =size= | margin (4KB)|
* | =size= limit(b)->| 256B | |
* | | alloca(sz) | | |
* | .. | buf->| limit(c)-><0> | |
*/
size_t sz = buf - limit;
limit = alloca(sz);
limit[0] = 0;
}
}
}
#else
# define reserve_stack(limit, size) ((void)(limit), (void)(size))
#endif
#undef ruby_init_stack
void
ruby_init_stack(volatile VALUE *addr)
{
native_main_thread.id = pthread_self();
#if MAINSTACKADDR_AVAILABLE
if (native_main_thread.stack_maxsize) return;
{
void* stackaddr;
size_t size;
if (get_main_stack(&stackaddr, &size) == 0) {
native_main_thread.stack_maxsize = size;
native_main_thread.stack_start = stackaddr;
reserve_stack(stackaddr, size);
goto bound_check;
}
}
#endif
#ifdef STACK_END_ADDRESS
native_main_thread.stack_start = STACK_END_ADDRESS;
#else
if (!native_main_thread.stack_start ||
STACK_UPPER((VALUE *)(void *)&addr,
native_main_thread.stack_start > addr,
native_main_thread.stack_start < addr)) {
native_main_thread.stack_start = (VALUE *)addr;
}
#endif
{
#if defined(HAVE_GETRLIMIT)
#if defined(PTHREAD_STACK_DEFAULT)
# if PTHREAD_STACK_DEFAULT < RUBY_STACK_SPACE*5
# error "PTHREAD_STACK_DEFAULT is too small"
# endif
size_t size = PTHREAD_STACK_DEFAULT;
#else
size_t size = RUBY_VM_THREAD_VM_STACK_SIZE;
#endif
size_t space;
int pagesize = getpagesize();
struct rlimit rlim;
STACK_GROW_DIR_DETECTION;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
size = (size_t)rlim.rlim_cur;
}
addr = native_main_thread.stack_start;
if (IS_STACK_DIR_UPPER()) {
space = ((size_t)((char *)addr + size) / pagesize) * pagesize - (size_t)addr;
}
else {
space = (size_t)addr - ((size_t)((char *)addr - size) / pagesize + 1) * pagesize;
}
native_main_thread.stack_maxsize = space;
#endif
}
#if MAINSTACKADDR_AVAILABLE
bound_check:
#endif
/* If addr is out of range of main-thread stack range estimation, */
/* it should be on co-routine (alternative stack). [Feature #2294] */
{
void *start, *end;
STACK_GROW_DIR_DETECTION;
if (IS_STACK_DIR_UPPER()) {
start = native_main_thread.stack_start;
end = (char *)native_main_thread.stack_start + native_main_thread.stack_maxsize;
}
else {
start = (char *)native_main_thread.stack_start - native_main_thread.stack_maxsize;
end = native_main_thread.stack_start;
}
if ((void *)addr < start || (void *)addr > end) {
/* out of range */
native_main_thread.stack_start = (VALUE *)addr;
native_main_thread.stack_maxsize = 0; /* unknown */
}
}
}
#define CHECK_ERR(expr) \
{int err = (expr); if (err) {rb_bug_errno(#expr, err);}}
static int
native_thread_init_stack(rb_thread_t *th)
{
rb_nativethread_id_t curr = pthread_self();
if (pthread_equal(curr, native_main_thread.id)) {
th->ec->machine.stack_start = native_main_thread.stack_start;
th->ec->machine.stack_maxsize = native_main_thread.stack_maxsize;
}
else {
#ifdef STACKADDR_AVAILABLE
if (th_has_dedicated_nt(th)) {
void *start;
size_t size;
if (get_stack(&start, &size) == 0) {
uintptr_t diff = (uintptr_t)start - (uintptr_t)&curr;
th->ec->machine.stack_start = (VALUE *)&curr;
th->ec->machine.stack_maxsize = size - diff;
}
}
#else
rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
#endif
}
return 0;
}
#ifndef __CYGWIN__
#define USE_NATIVE_THREAD_INIT 1
#endif
struct nt_param {
rb_vm_t *vm;
struct rb_native_thread *nt;
};
static void *
nt_start(void *ptr);
static int
native_thread_create0(struct rb_native_thread *nt)
{
int err = 0;
pthread_attr_t attr;
const size_t stack_size = nt->vm->default_params.thread_machine_stack_size;
const size_t space = space_size(stack_size);
nt->machine_stack_maxsize = stack_size - space;
#ifdef USE_SIGALTSTACK
nt->altstack = rb_allocate_sigaltstack();
#endif
CHECK_ERR(pthread_attr_init(&attr));
# ifdef PTHREAD_STACK_MIN
RUBY_DEBUG_LOG("stack size: %lu", (unsigned long)stack_size);
CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
# endif
# ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
# endif
CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
err = pthread_create(&nt->thread_id, &attr, nt_start, nt);
RUBY_DEBUG_LOG("nt:%d err:%d", (int)nt->serial, err);
CHECK_ERR(pthread_attr_destroy(&attr));
return err;
}
static void
native_thread_setup(struct rb_native_thread *nt)
{
// init cond
rb_native_cond_initialize(&nt->cond.readyq);
if (&nt->cond.readyq != &nt->cond.intr) {
rb_native_cond_initialize(&nt->cond.intr);
}
}
static void
native_thread_setup_on_thread(struct rb_native_thread *nt)
{
// init tid
#ifdef RB_THREAD_T_HAS_NATIVE_ID
nt->tid = get_native_thread_id();
#endif
// init signal handler
RB_ALTSTACK_INIT(nt->altstack, nt->altstack);
}
static struct rb_native_thread *
native_thread_alloc(void)
{
struct rb_native_thread *nt = ZALLOC(struct rb_native_thread);
native_thread_setup(nt);
#if USE_MN_THREADS
nt->nt_context = ruby_xmalloc(sizeof(struct coroutine_context));
#endif
#if USE_RUBY_DEBUG_LOG
static rb_atomic_t nt_serial = 2;
nt->serial = RUBY_ATOMIC_FETCH_ADD(nt_serial, 1);
#endif
return nt;
}
static int
native_thread_create_dedicated(rb_thread_t *th)
{
th->nt = native_thread_alloc();
th->nt->vm = th->vm;
th->nt->running_thread = th;
th->nt->dedicated = 1;
// vm stack
size_t vm_stack_word_size = th->vm->default_params.thread_vm_stack_size / sizeof(VALUE);
void *vm_stack = ruby_xmalloc(vm_stack_word_size * sizeof(VALUE));
th->sched.malloc_stack = true;
rb_ec_initialize_vm_stack(th->ec, vm_stack, vm_stack_word_size);
th->sched.context_stack = vm_stack;
// setup
thread_sched_to_ready(TH_SCHED(th), th);
return native_thread_create0(th->nt);
}
static void
call_thread_start_func_2(rb_thread_t *th)
{
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_STARTED);
#if defined USE_NATIVE_THREAD_INIT
native_thread_init_stack(th);
thread_start_func_2(th, th->ec->machine.stack_start);
#else
VALUE stack_start;
thread_start_func_2(th, &stack_start);
#endif
}
static void *
nt_start(void *ptr)
{
struct rb_native_thread *nt = (struct rb_native_thread *)ptr;
rb_vm_t *vm = nt->vm;
native_thread_setup_on_thread(nt);
// init tid
#ifdef RB_THREAD_T_HAS_NATIVE_ID
nt->tid = get_native_thread_id();
#endif
#if USE_RUBY_DEBUG_LOG && defined(RUBY_NT_SERIAL)
ruby_nt_serial = nt->serial;
#endif
RUBY_DEBUG_LOG("nt:%u", nt->serial);
if (!nt->dedicated) {
coroutine_initialize_main(nt->nt_context);
}
while (1) {
if (nt->dedicated) {
// wait running turn
rb_thread_t *th = nt->running_thread;
struct rb_thread_sched *sched = TH_SCHED(th);
RUBY_DEBUG_LOG("on dedicated th:%u", rb_th_serial(th));
ruby_thread_set_native(th);
thread_sched_lock(sched, th);
{
if (sched->running == th) {
thread_sched_add_running_thread(sched, th);
}
thread_sched_wait_running_turn(sched, th, false);
}
thread_sched_unlock(sched, th);
// start threads
call_thread_start_func_2(th);
break; // TODO: allow to change to the SNT
}
else {
RUBY_DEBUG_LOG("check next");
rb_ractor_t *r = ractor_sched_deq(vm, NULL);
if (r) {
struct rb_thread_sched *sched = &r->threads.sched;
thread_sched_lock(sched, NULL);
{
rb_thread_t *next_th = sched->running;
if (next_th && next_th->nt == NULL) {
RUBY_DEBUG_LOG("nt:%d next_th:%d", (int)nt->serial, (int)next_th->serial);
thread_sched_switch0(nt->nt_context, next_th, nt);
}
else {
RUBY_DEBUG_LOG("no schedulable threads -- next_th:%p", next_th);
}
}
thread_sched_unlock(sched, NULL);
}
else {
// timeout -> deleted.
break;
}
}
}
return NULL;
}
static int native_thread_create_shared(rb_thread_t *th);
#if USE_MN_THREADS
static void nt_free_stack(void *mstack);
#endif
void
rb_threadptr_remove(rb_thread_t *th)
{
#if USE_MN_THREADS
if (th->sched.malloc_stack) {
// dedicated
return;
}
else {
rb_vm_t *vm = th->vm;
th->sched.finished = false;
RB_VM_LOCK_ENTER();
{
ccan_list_add(&vm->ractor.sched.zombie_threads, &th->sched.node.zombie_threads);
}
RB_VM_LOCK_LEAVE();
}
#endif
}
void
rb_threadptr_sched_free(rb_thread_t *th)
{
#if USE_MN_THREADS
if (th->sched.malloc_stack) {
// has dedicated
ruby_xfree(th->sched.context_stack);
native_thread_destroy(th->nt);
}
else {
nt_free_stack(th->sched.context_stack);
// TODO: how to free nt and nt->altstack?
}
if (th->sched.context) {
ruby_xfree(th->sched.context);
VM_ASSERT((th->sched.context = NULL) == NULL);
}
#else
ruby_xfree(th->sched.context_stack);
native_thread_destroy(th->nt);
#endif
th->nt = NULL;
}
void
rb_thread_sched_mark_zombies(rb_vm_t *vm)
{
if (!ccan_list_empty(&vm->ractor.sched.zombie_threads)) {
rb_thread_t *zombie_th, *next_zombie_th;
ccan_list_for_each_safe(&vm->ractor.sched.zombie_threads, zombie_th, next_zombie_th, sched.node.zombie_threads) {
if (zombie_th->sched.finished) {
ccan_list_del_init(&zombie_th->sched.node.zombie_threads);
}
else {
rb_gc_mark(zombie_th->self);
}
}
}
}
static int
native_thread_create(rb_thread_t *th)
{
VM_ASSERT(th->nt == 0);
RUBY_DEBUG_LOG("th:%d has_dnt:%d", th->serial, th->has_dedicated_nt);
if (!th->ractor->threads.sched.enable_mn_threads) {
th->has_dedicated_nt = 1;
}
if (th->has_dedicated_nt) {
return native_thread_create_dedicated(th);
}
else {
return native_thread_create_shared(th);
}
}
#if USE_NATIVE_THREAD_PRIORITY
static void
native_thread_apply_priority(rb_thread_t *th)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
struct sched_param sp;
int policy;
int priority = 0 - th->priority;
int max, min;
pthread_getschedparam(th->nt->thread_id, &policy, &sp);
max = sched_get_priority_max(policy);
min = sched_get_priority_min(policy);
if (min > priority) {
priority = min;
}
else if (max < priority) {
priority = max;
}
sp.sched_priority = priority;
pthread_setschedparam(th->nt->thread_id, policy, &sp);
#else
/* not touched */
#endif
}
#endif /* USE_NATIVE_THREAD_PRIORITY */
static int
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
{
return rb_fd_select(n, readfds, writefds, exceptfds, timeout);
}
static void
ubf_pthread_cond_signal(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
RUBY_DEBUG_LOG("th:%u on nt:%d", rb_th_serial(th), (int)th->nt->serial);
rb_native_cond_signal(&th->nt->cond.intr);
}
static void
native_cond_sleep(rb_thread_t *th, rb_hrtime_t *rel)
{
rb_nativethread_lock_t *lock = &th->interrupt_lock;
rb_nativethread_cond_t *cond = &th->nt->cond.intr;
/* Solaris cond_timedwait() return EINVAL if an argument is greater than
* current_time + 100,000,000. So cut up to 100,000,000. This is
* considered as a kind of spurious wakeup. The caller to native_sleep
* should care about spurious wakeup.
*
* See also [Bug #1341] [ruby-core:29702]
* http://download.oracle.com/docs/cd/E19683-01/816-0216/6m6ngupgv/index.html
*/
const rb_hrtime_t max = (rb_hrtime_t)100000000 * RB_HRTIME_PER_SEC;
THREAD_BLOCKING_BEGIN(th);
{
rb_native_mutex_lock(lock);
th->unblock.func = ubf_pthread_cond_signal;
th->unblock.arg = th;
if (RUBY_VM_INTERRUPTED(th->ec)) {
/* interrupted. return immediate */
RUBY_DEBUG_LOG("interrupted before sleep th:%u", rb_th_serial(th));
}
else {
if (!rel) {
rb_native_cond_wait(cond, lock);
}
else {
rb_hrtime_t end;
if (*rel > max) {
*rel = max;
}
end = native_cond_timeout(cond, *rel);
native_cond_timedwait(cond, lock, &end);
}
}
th->unblock.func = 0;
rb_native_mutex_unlock(lock);
}
THREAD_BLOCKING_END(th);
RUBY_DEBUG_LOG("done th:%u", rb_th_serial(th));
}
#ifdef USE_UBF_LIST
static CCAN_LIST_HEAD(ubf_list_head);
static rb_nativethread_lock_t ubf_list_lock = RB_NATIVETHREAD_LOCK_INIT;
static void
ubf_list_atfork(void)
{
ccan_list_head_init(&ubf_list_head);
rb_native_mutex_initialize(&ubf_list_lock);
}
RBIMPL_ATTR_MAYBE_UNUSED()
static bool
ubf_list_contain_p(rb_thread_t *th)
{
rb_thread_t *list_th;
ccan_list_for_each(&ubf_list_head, list_th, sched.node.ubf) {
if (list_th == th) return true;
}
return false;
}
/* The thread 'th' is registered to be trying unblock. */
static void
register_ubf_list(rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
struct ccan_list_node *node = &th->sched.node.ubf;
VM_ASSERT(th->unblock.func != NULL);
rb_native_mutex_lock(&ubf_list_lock);
{
// check not connected yet
if (ccan_list_empty((struct ccan_list_head*)node)) {
VM_ASSERT(!ubf_list_contain_p(th));
ccan_list_add(&ubf_list_head, node);
}
}
rb_native_mutex_unlock(&ubf_list_lock);
timer_thread_wakeup();
}
/* The thread 'th' is unblocked. It no longer need to be registered. */
static void
unregister_ubf_list(rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
struct ccan_list_node *node = &th->sched.node.ubf;
/* we can't allow re-entry into ubf_list_head */
VM_ASSERT(th->unblock.func == NULL);
if (!ccan_list_empty((struct ccan_list_head*)node)) {
rb_native_mutex_lock(&ubf_list_lock);
{
VM_ASSERT(ubf_list_contain_p(th));
ccan_list_del_init(node);
}
rb_native_mutex_unlock(&ubf_list_lock);
}
}
/*
* send a signal to intent that a target thread return from blocking syscall.
* Maybe any signal is ok, but we chose SIGVTALRM.
*/
static void
ubf_wakeup_thread(rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u thread_id:%p", rb_th_serial(th), (void *)th->nt->thread_id);
int r = pthread_kill(th->nt->thread_id, SIGVTALRM);
if (r != 0) {
rb_bug_errno("pthread_kill", r);
}
}
static void
ubf_select(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
RUBY_DEBUG_LOG("wakeup th:%u", rb_th_serial(th));
ubf_wakeup_thread(th);
register_ubf_list(th);
}
static bool
ubf_threads_empty(void)
{
return ccan_list_empty(&ubf_list_head) != 0;
}
static void
ubf_wakeup_all_threads(void)
{
if (!ubf_threads_empty()) {
rb_thread_t *th;
rb_native_mutex_lock(&ubf_list_lock);
{
ccan_list_for_each(&ubf_list_head, th, sched.node.ubf) {
ubf_wakeup_thread(th);
}
}
rb_native_mutex_unlock(&ubf_list_lock);
}
}
#else /* USE_UBF_LIST */
#define register_ubf_list(th) (void)(th)
#define unregister_ubf_list(th) (void)(th)
#define ubf_select 0
static void ubf_wakeup_all_threads(void) { return; }
static bool ubf_threads_empty(void) { return true; }
#define ubf_list_atfork() do {} while (0)
#endif /* USE_UBF_LIST */
#define TT_DEBUG 0
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
void
rb_thread_wakeup_timer_thread(int sig)
{
// This function can be called from signal handlers so that
// pthread_mutex_lock() should not be used.
// wakeup timer thread
timer_thread_wakeup_force();
// interrupt main thread if main thread is available
if (system_working) {
rb_vm_t *vm = GET_VM();
rb_thread_t *main_th = vm->ractor.main_thread;
if (main_th) {
volatile rb_execution_context_t *main_th_ec = ACCESS_ONCE(rb_execution_context_t *, main_th->ec);
if (main_th_ec) {
RUBY_VM_SET_TRAP_INTERRUPT(main_th_ec);
if (vm->ubf_async_safe && main_th->unblock.func) {
(main_th->unblock.func)(main_th->unblock.arg);
}
}
}
}
}
#define CLOSE_INVALIDATE_PAIR(expr) \
close_invalidate_pair(expr,"close_invalidate: "#expr)
static void
close_invalidate(int *fdp, const char *msg)
{
int fd = *fdp;
*fdp = -1;
if (close(fd) < 0) {
async_bug_fd(msg, errno, fd);
}
}
static void
close_invalidate_pair(int fds[2], const char *msg)
{
if (USE_EVENTFD && fds[0] == fds[1]) {
fds[1] = -1; // disable write port first
close_invalidate(&fds[0], msg);
}
else {
close_invalidate(&fds[1], msg);
close_invalidate(&fds[0], msg);
}
}
static void
set_nonblock(int fd)
{
int oflags;
int err;
oflags = fcntl(fd, F_GETFL);
if (oflags == -1)
rb_sys_fail(0);
oflags |= O_NONBLOCK;
err = fcntl(fd, F_SETFL, oflags);
if (err == -1)
rb_sys_fail(0);
}
/* communication pipe with timer thread and signal handler */
static void
setup_communication_pipe_internal(int pipes[2])
{
int err;
if (pipes[0] > 0 || pipes[1] > 0) {
VM_ASSERT(pipes[0] > 0);
VM_ASSERT(pipes[1] > 0);
return;
}
/*
* Don't bother with eventfd on ancient Linux 2.6.22..2.6.26 which were
* missing EFD_* flags, they can fall back to pipe
*/
#if USE_EVENTFD && defined(EFD_NONBLOCK) && defined(EFD_CLOEXEC)
pipes[0] = pipes[1] = eventfd(0, EFD_NONBLOCK|EFD_CLOEXEC);
if (pipes[0] >= 0) {
rb_update_max_fd(pipes[0]);
return;
}
#endif
err = rb_cloexec_pipe(pipes);
if (err != 0) {
rb_bug("can not create communication pipe");
}
rb_update_max_fd(pipes[0]);
rb_update_max_fd(pipes[1]);
set_nonblock(pipes[0]);
set_nonblock(pipes[1]);
}
#if !defined(SET_CURRENT_THREAD_NAME) && defined(__linux__) && defined(PR_SET_NAME)
# define SET_CURRENT_THREAD_NAME(name) prctl(PR_SET_NAME, name)
#endif
enum {
THREAD_NAME_MAX =
#if defined(__linux__)
16
#elif defined(__APPLE__)
/* Undocumented, and main thread seems unlimited */
64
#else
16
#endif
};
static VALUE threadptr_invoke_proc_location(rb_thread_t *th);
static void
native_set_thread_name(rb_thread_t *th)
{
#ifdef SET_CURRENT_THREAD_NAME
VALUE loc;
if (!NIL_P(loc = th->name)) {
SET_CURRENT_THREAD_NAME(RSTRING_PTR(loc));
}
else if ((loc = threadptr_invoke_proc_location(th)) != Qnil) {
char *name, *p;
char buf[THREAD_NAME_MAX];
size_t len;
int n;
name = RSTRING_PTR(RARRAY_AREF(loc, 0));
p = strrchr(name, '/'); /* show only the basename of the path. */
if (p && p[1])
name = p + 1;
n = snprintf(buf, sizeof(buf), "%s:%d", name, NUM2INT(RARRAY_AREF(loc, 1)));
RB_GC_GUARD(loc);
len = (size_t)n;
if (len >= sizeof(buf)) {
buf[sizeof(buf)-2] = '*';
buf[sizeof(buf)-1] = '\0';
}
SET_CURRENT_THREAD_NAME(buf);
}
#endif
}
static void
native_set_another_thread_name(rb_nativethread_id_t thread_id, VALUE name)
{
#if defined SET_ANOTHER_THREAD_NAME || defined SET_CURRENT_THREAD_NAME
char buf[THREAD_NAME_MAX];
const char *s = "";
# if !defined SET_ANOTHER_THREAD_NAME
if (!pthread_equal(pthread_self(), thread_id)) return;
# endif
if (!NIL_P(name)) {
long n;
RSTRING_GETMEM(name, s, n);
if (n >= (int)sizeof(buf)) {
memcpy(buf, s, sizeof(buf)-1);
buf[sizeof(buf)-1] = '\0';
s = buf;
}
}
# if defined SET_ANOTHER_THREAD_NAME
SET_ANOTHER_THREAD_NAME(thread_id, s);
# elif defined SET_CURRENT_THREAD_NAME
SET_CURRENT_THREAD_NAME(s);
# endif
#endif
}
#if defined(RB_THREAD_T_HAS_NATIVE_ID) || defined(__APPLE__)
static VALUE
native_thread_native_thread_id(rb_thread_t *target_th)
{
if (!target_th->nt) return Qnil;
#ifdef RB_THREAD_T_HAS_NATIVE_ID
int tid = target_th->nt->tid;
if (tid == 0) return Qnil;
return INT2FIX(tid);
#elif defined(__APPLE__)
uint64_t tid;
/* The first condition is needed because MAC_OS_X_VERSION_10_6
is not defined on 10.5, and while __POWERPC__ takes care of ppc/ppc64,
i386 will be broken without this. Note, 10.5 is supported with GCC upstream,
so it has C++17 and everything needed to build modern Ruby. */
# if (!defined(MAC_OS_X_VERSION_10_6) || \
(MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_6) || \
defined(__POWERPC__) /* never defined for PowerPC platforms */)
const bool no_pthread_threadid_np = true;
# define NO_PTHREAD_MACH_THREAD_NP 1
# elif MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_6
const bool no_pthread_threadid_np = false;
# else
# if !(defined(__has_attribute) && __has_attribute(availability))
/* __API_AVAILABLE macro does nothing on gcc */
__attribute__((weak)) int pthread_threadid_np(pthread_t, uint64_t*);
# endif
/* Check weakly linked symbol */
const bool no_pthread_threadid_np = !&pthread_threadid_np;
# endif
if (no_pthread_threadid_np) {
return ULL2NUM(pthread_mach_thread_np(pthread_self()));
}
# ifndef NO_PTHREAD_MACH_THREAD_NP
int e = pthread_threadid_np(target_th->nt->thread_id, &tid);
if (e != 0) rb_syserr_fail(e, "pthread_threadid_np");
return ULL2NUM((unsigned long long)tid);
# endif
#endif
}
# define USE_NATIVE_THREAD_NATIVE_THREAD_ID 1
#else
# define USE_NATIVE_THREAD_NATIVE_THREAD_ID 0
#endif
static struct {
rb_serial_t created_fork_gen;
pthread_t pthread_id;
int comm_fds[2]; // r, w
#if HAVE_SYS_EPOLL_H && USE_MN_THREADS
#define EPOLL_EVENTS_MAX 0x10
int epoll_fd;
struct epoll_event finished_events[EPOLL_EVENTS_MAX];
#endif
// waiting threads list
struct ccan_list_head waiting; // waiting threads in ractors
pthread_mutex_t waiting_lock;
} timer_th = {
.created_fork_gen = 0,
};
#define TIMER_THREAD_CREATED_P() (timer_th.created_fork_gen == current_fork_gen)
static void timer_thread_check_timeslice(rb_vm_t *vm);
static int timer_thread_set_timeout(rb_vm_t *vm);
static void timer_thread_wakeup_thread(rb_thread_t *th);
#include "thread_pthread_mn.c"
static int
timer_thread_set_timeout(rb_vm_t *vm)
{
#if 0
return 10; // ms
#else
int timeout = -1;
ractor_sched_lock(vm, NULL);
{
if ( !ccan_list_empty(&vm->ractor.sched.timeslice_threads) // (1-1) Provide time slice for active NTs
|| !ubf_threads_empty() // (1-3) Periodic UBF
|| vm->ractor.sched.grq_cnt > 0 // (1-4) Lazy GRQ deq start
) {
RUBY_DEBUG_LOG("timeslice:%d ubf:%d grq:%d",
!ccan_list_empty(&vm->ractor.sched.timeslice_threads),
!ubf_threads_empty(),
(vm->ractor.sched.grq_cnt > 0));
timeout = 10; // ms
vm->ractor.sched.timeslice_wait_inf = false;
}
else {
vm->ractor.sched.timeslice_wait_inf = true;
}
}
ractor_sched_unlock(vm, NULL);
if (vm->ractor.sched.timeslice_wait_inf) {
rb_native_mutex_lock(&timer_th.waiting_lock);
{
rb_thread_t *th = ccan_list_top(&timer_th.waiting, rb_thread_t, sched.waiting_reason.node);
if (th && (th->sched.waiting_reason.flags & thread_sched_waiting_timeout)) {
rb_hrtime_t now = rb_hrtime_now();
rb_hrtime_t hrrel = rb_hrtime_sub(th->sched.waiting_reason.data.timeout, now);
RUBY_DEBUG_LOG("th:%u now:%lu rel:%lu", rb_th_serial(th), (unsigned long)now, (unsigned long)hrrel);
// TODO: overflow?
timeout = (int)(hrrel / RB_HRTIME_PER_MSEC); // ms
}
}
rb_native_mutex_unlock(&timer_th.waiting_lock);
}
RUBY_DEBUG_LOG("timeout:%d inf:%d", timeout, (int)vm->ractor.sched.timeslice_wait_inf);
// fprintf(stderr, "timeout:%d\n", timeout);
return timeout;
#endif
}
static void
timer_thread_check_signal(rb_vm_t *vm)
{
// ruby_sigchld_handler(vm); TODO
int signum = rb_signal_buff_size();
if (UNLIKELY(signum > 0) && vm->ractor.main_thread) {
RUBY_DEBUG_LOG("signum:%d", signum);
threadptr_trap_interrupt(vm->ractor.main_thread);
}
}
static bool
timer_thread_check_exceed(rb_hrtime_t abs, rb_hrtime_t now)
{
if (abs < now) {
return true;
}
else if (abs - now < RB_HRTIME_PER_MSEC) {
return true; // too short time
}
else {
return false;
}
}
static rb_thread_t *
timer_thread_deq_wakeup(rb_vm_t *vm, rb_hrtime_t now)
{
rb_thread_t *th = ccan_list_top(&timer_th.waiting, rb_thread_t, sched.waiting_reason.node);
if (th != NULL &&
(th->sched.waiting_reason.flags & thread_sched_waiting_timeout) &&
timer_thread_check_exceed(th->sched.waiting_reason.data.timeout, now)) {
RUBY_DEBUG_LOG("wakeup th:%u", rb_th_serial(th));
// delete from waiting list
ccan_list_del_init(&th->sched.waiting_reason.node);
// setup result
th->sched.waiting_reason.flags = thread_sched_waiting_none;
th->sched.waiting_reason.data.result = 0;
return th;
}
return NULL;
}
static void
timer_thread_wakeup_thread(rb_thread_t *th)
{
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
struct rb_thread_sched *sched = TH_SCHED(th);
thread_sched_lock(sched, th);
{
if (sched->running != th) {
thread_sched_to_ready_common(sched, th, true, false);
}
else {
// will be release the execution right
}
}
thread_sched_unlock(sched, th);
}
static void
timer_thread_check_timeout(rb_vm_t *vm)
{
rb_hrtime_t now = rb_hrtime_now();
rb_thread_t *th;
rb_native_mutex_lock(&timer_th.waiting_lock);
{
while ((th = timer_thread_deq_wakeup(vm, now)) != NULL) {
timer_thread_wakeup_thread(th);
}
}
rb_native_mutex_unlock(&timer_th.waiting_lock);
}
static void
timer_thread_check_timeslice(rb_vm_t *vm)
{
// TODO: check time
rb_thread_t *th;
ccan_list_for_each(&vm->ractor.sched.timeslice_threads, th, sched.node.timeslice_threads) {
RUBY_DEBUG_LOG("timeslice th:%u", rb_th_serial(th));
RUBY_VM_SET_TIMER_INTERRUPT(th->ec);
}
}
void
rb_assert_sig(void)
{
sigset_t oldmask;
pthread_sigmask(0, NULL, &oldmask);
if (sigismember(&oldmask, SIGVTALRM)) {
rb_bug("!!!");
}
else {
RUBY_DEBUG_LOG("ok");
}
}
static void *
timer_thread_func(void *ptr)
{
rb_vm_t *vm = (rb_vm_t *)ptr;
#if defined(RUBY_NT_SERIAL)
ruby_nt_serial = (rb_atomic_t)-1;
#endif
RUBY_DEBUG_LOG("started%s", "");
while (system_working) {
timer_thread_check_signal(vm);
timer_thread_check_timeout(vm);
ubf_wakeup_all_threads();
RUBY_DEBUG_LOG("system_working:%d", system_working);
timer_thread_polling(vm);
}
RUBY_DEBUG_LOG("terminated");
return NULL;
}
/* only use signal-safe system calls here */
static void
signal_communication_pipe(int fd)
{
#if USE_EVENTFD
const uint64_t buff = 1;
#else
const char buff = '!';
#endif
ssize_t result;
/* already opened */
if (fd >= 0) {
retry:
if ((result = write(fd, &buff, sizeof(buff))) <= 0) {
int e = errno;
switch (e) {
case EINTR: goto retry;
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
break;
default:
async_bug_fd("rb_thread_wakeup_timer_thread: write", e, fd);
}
}
if (TT_DEBUG) WRITE_CONST(2, "rb_thread_wakeup_timer_thread: write\n");
}
else {
// ignore wakeup
}
}
static void
timer_thread_wakeup_force(void)
{
// should not use RUBY_DEBUG_LOG() because it can be called within signal handlers.
signal_communication_pipe(timer_th.comm_fds[1]);
}
static void
timer_thread_wakeup_locked(rb_vm_t *vm)
{
// should be locked before.
ASSERT_ractor_sched_locked(vm, NULL);
if (timer_th.created_fork_gen == current_fork_gen) {
if (vm->ractor.sched.timeslice_wait_inf) {
RUBY_DEBUG_LOG("wakeup with fd:%d", timer_th.comm_fds[1]);
timer_thread_wakeup_force();
}
else {
RUBY_DEBUG_LOG("will be wakeup...");
}
}
}
static void
timer_thread_wakeup(void)
{
rb_vm_t *vm = GET_VM();
ractor_sched_lock(vm, NULL);
{
timer_thread_wakeup_locked(vm);
}
ractor_sched_unlock(vm, NULL);
}
static void
rb_thread_create_timer_thread(void)
{
rb_serial_t created_fork_gen = timer_th.created_fork_gen;
RUBY_DEBUG_LOG("fork_gen create:%d current:%d", (int)created_fork_gen, (int)current_fork_gen);
timer_th.created_fork_gen = current_fork_gen;
if (created_fork_gen != current_fork_gen) {
if (created_fork_gen != 0) {
RUBY_DEBUG_LOG("forked child process");
CLOSE_INVALIDATE_PAIR(timer_th.comm_fds);
#if HAVE_SYS_EPOLL_H && USE_MN_THREADS
close_invalidate(&timer_th.epoll_fd, "close epoll_fd");
#endif
rb_native_mutex_destroy(&timer_th.waiting_lock);
}
ccan_list_head_init(&timer_th.waiting);
rb_native_mutex_initialize(&timer_th.waiting_lock);
// open communication channel
setup_communication_pipe_internal(timer_th.comm_fds);
// open epoll fd
timer_thread_setup_nm();
}
pthread_create(&timer_th.pthread_id, NULL, timer_thread_func, GET_VM());
}
static int
native_stop_timer_thread(void)
{
int stopped;
stopped = --system_working <= 0;
if (stopped) {
RUBY_DEBUG_LOG("wakeup send %d", timer_th.comm_fds[1]);
timer_thread_wakeup_force();
RUBY_DEBUG_LOG("wakeup sent");
pthread_join(timer_th.pthread_id, NULL);
}
if (TT_DEBUG) fprintf(stderr, "stop timer thread\n");
return stopped;
}
static void
native_reset_timer_thread(void)
{
//
}
#ifdef HAVE_SIGALTSTACK
int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
void *base;
size_t size;
const size_t water_mark = 1024 * 1024;
STACK_GROW_DIR_DETECTION;
#ifdef STACKADDR_AVAILABLE
if (get_stack(&base, &size) == 0) {
# ifdef __APPLE__
if (pthread_equal(th->nt->thread_id, native_main_thread.id)) {
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0 && rlim.rlim_cur > size) {
size = (size_t)rlim.rlim_cur;
}
}
# endif
base = (char *)base + STACK_DIR_UPPER(+size, -size);
}
else
#endif
if (th) {
size = th->ec->machine.stack_maxsize;
base = (char *)th->ec->machine.stack_start - STACK_DIR_UPPER(0, size);
}
else {
return 0;
}
size /= RUBY_STACK_SPACE_RATIO;
if (size > water_mark) size = water_mark;
if (IS_STACK_DIR_UPPER()) {
if (size > ~(size_t)base+1) size = ~(size_t)base+1;
if (addr > base && addr <= (void *)((char *)base + size)) return 1;
}
else {
if (size > (size_t)base) size = (size_t)base;
if (addr > (void *)((char *)base - size) && addr <= base) return 1;
}
return 0;
}
#endif
int
rb_reserved_fd_p(int fd)
{
/* no false-positive if out-of-FD at startup */
if (fd < 0) return 0;
if (fd == timer_th.comm_fds[0] ||
fd == timer_th.comm_fds[1]
#if HAVE_SYS_EPOLL_H && USE_MN_THREADS
|| fd == timer_th.epoll_fd
#endif
) {
goto check_fork_gen;
}
return 0;
check_fork_gen:
if (timer_th.created_fork_gen == current_fork_gen) {
/* async-signal-safe */
return 1;
}
else {
return 0;
}
}
rb_nativethread_id_t
rb_nativethread_self(void)
{
return pthread_self();
}
#if defined(USE_POLL) && !defined(HAVE_PPOLL)
/* TODO: don't ignore sigmask */
static int
ruby_ppoll(struct pollfd *fds, nfds_t nfds,
const struct timespec *ts, const sigset_t *sigmask)
{
int timeout_ms;
if (ts) {
int tmp, tmp2;
if (ts->tv_sec > INT_MAX/1000)
timeout_ms = INT_MAX;
else {
tmp = (int)(ts->tv_sec * 1000);
/* round up 1ns to 1ms to avoid excessive wakeups for <1ms sleep */
tmp2 = (int)((ts->tv_nsec + 999999L) / (1000L * 1000L));
if (INT_MAX - tmp < tmp2)
timeout_ms = INT_MAX;
else
timeout_ms = (int)(tmp + tmp2);
}
}
else
timeout_ms = -1;
return poll(fds, nfds, timeout_ms);
}
# define ppoll(fds,nfds,ts,sigmask) ruby_ppoll((fds),(nfds),(ts),(sigmask))
#endif
/*
* Single CPU setups benefit from explicit sched_yield() before ppoll(),
* since threads may be too starved to enter the GVL waitqueue for
* us to detect contention. Instead, we want to kick other threads
* so they can run and possibly prevent us from entering slow paths
* in ppoll() or similar syscalls.
*
* Confirmed on FreeBSD 11.2 and Linux 4.19.
* [ruby-core:90417] [Bug #15398]
*/
#define THREAD_BLOCKING_YIELD(th) do { \
const rb_thread_t *next_th; \
struct rb_thread_sched *sched = TH_SCHED(th); \
RB_VM_SAVE_MACHINE_CONTEXT(th); \
thread_sched_to_waiting(sched, (th)); \
next_th = sched->running; \
rb_native_mutex_unlock(&sched->lock_); \
native_thread_yield(); /* TODO: needed? */ \
if (!next_th && rb_ractor_living_thread_num(th->ractor) > 1) { \
native_thread_yield(); \
}
static void
native_sleep(rb_thread_t *th, rb_hrtime_t *rel)
{
struct rb_thread_sched *sched = TH_SCHED(th);
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_SUSPENDED);
RUBY_DEBUG_LOG("rel:%d", rel ? (int)*rel : 0);
if (rel) {
if (th_has_dedicated_nt(th)) {
native_cond_sleep(th, rel);
}
else {
thread_sched_wait_events(sched, th, -1, thread_sched_waiting_timeout, rel);
}
}
else {
thread_sched_to_waiting_until_wakeup(sched, th);
}
RUBY_DEBUG_LOG("wakeup");
RB_INTERNAL_THREAD_HOOK(RUBY_INTERNAL_THREAD_EVENT_READY);
}
// thread internal event hooks (only for pthread)
struct rb_internal_thread_event_hook {
rb_internal_thread_event_callback callback;
rb_event_flag_t event;
void *user_data;
struct rb_internal_thread_event_hook *next;
};
static pthread_rwlock_t rb_internal_thread_event_hooks_rw_lock = PTHREAD_RWLOCK_INITIALIZER;
rb_internal_thread_event_hook_t *
rb_internal_thread_add_event_hook(rb_internal_thread_event_callback callback, rb_event_flag_t internal_event, void *user_data)
{
rb_internal_thread_event_hook_t *hook = ALLOC_N(rb_internal_thread_event_hook_t, 1);
hook->callback = callback;
hook->user_data = user_data;
hook->event = internal_event;
int r;
if ((r = pthread_rwlock_wrlock(&rb_internal_thread_event_hooks_rw_lock))) {
rb_bug_errno("pthread_rwlock_wrlock", r);
}
hook->next = rb_internal_thread_event_hooks;
ATOMIC_PTR_EXCHANGE(rb_internal_thread_event_hooks, hook);
if ((r = pthread_rwlock_unlock(&rb_internal_thread_event_hooks_rw_lock))) {
rb_bug_errno("pthread_rwlock_unlock", r);
}
return hook;
}
bool
rb_internal_thread_remove_event_hook(rb_internal_thread_event_hook_t * hook)
{
int r;
if ((r = pthread_rwlock_wrlock(&rb_internal_thread_event_hooks_rw_lock))) {
rb_bug_errno("pthread_rwlock_wrlock", r);
}
bool success = FALSE;
if (rb_internal_thread_event_hooks == hook) {
ATOMIC_PTR_EXCHANGE(rb_internal_thread_event_hooks, hook->next);
success = TRUE;
}
else {
rb_internal_thread_event_hook_t *h = rb_internal_thread_event_hooks;
do {
if (h->next == hook) {
h->next = hook->next;
success = TRUE;
break;
}
} while ((h = h->next));
}
if ((r = pthread_rwlock_unlock(&rb_internal_thread_event_hooks_rw_lock))) {
rb_bug_errno("pthread_rwlock_unlock", r);
}
if (success) {
ruby_xfree(hook);
}
return success;
}
static void
rb_thread_execute_hooks(rb_event_flag_t event)
{
int r;
if ((r = pthread_rwlock_rdlock(&rb_internal_thread_event_hooks_rw_lock))) {
rb_bug_errno("pthread_rwlock_rdlock", r);
}
if (rb_internal_thread_event_hooks) {
rb_internal_thread_event_hook_t *h = rb_internal_thread_event_hooks;
do {
if (h->event & event) {
(*h->callback)(event, NULL, h->user_data);
}
} while((h = h->next));
}
if ((r = pthread_rwlock_unlock(&rb_internal_thread_event_hooks_rw_lock))) {
rb_bug_errno("pthread_rwlock_unlock", r);
}
}
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */