зеркало из https://github.com/github/ruby.git
496 строки
14 KiB
Ruby
496 строки
14 KiB
Ruby
#
|
|
# = prime.rb
|
|
#
|
|
# Prime numbers and factorization library.
|
|
#
|
|
# Copyright::
|
|
# Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
|
|
# Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
|
|
#
|
|
# Documentation::
|
|
# Yuki Sonoda
|
|
#
|
|
|
|
require "singleton"
|
|
require "forwardable"
|
|
|
|
class Integer
|
|
# Re-composes a prime factorization and returns the product.
|
|
#
|
|
# See Prime#int_from_prime_division for more details.
|
|
def Integer.from_prime_division(pd)
|
|
Prime.int_from_prime_division(pd)
|
|
end
|
|
|
|
# Returns the factorization of +self+.
|
|
#
|
|
# See Prime#prime_division for more details.
|
|
def prime_division(generator = Prime::Generator23.new)
|
|
Prime.prime_division(self, generator)
|
|
end
|
|
|
|
# Returns true if +self+ is a prime number, false for a composite.
|
|
def prime?
|
|
Prime.prime?(self)
|
|
end
|
|
|
|
# Iterates the given block over all prime numbers.
|
|
#
|
|
# See +Prime+#each for more details.
|
|
def Integer.each_prime(ubound, &block) # :yields: prime
|
|
Prime.each(ubound, &block)
|
|
end
|
|
end
|
|
|
|
#
|
|
# The set of all prime numbers.
|
|
#
|
|
# == Example
|
|
# Prime.each(100) do |prime|
|
|
# p prime #=> 2, 3, 5, 7, 11, ...., 97
|
|
# end
|
|
#
|
|
# == Retrieving the instance
|
|
# +Prime+.new is obsolete. Now +Prime+ has the default instance and you can
|
|
# access it as +Prime+.instance.
|
|
#
|
|
# For convenience, each instance method of +Prime+.instance can be accessed
|
|
# as a class method of +Prime+.
|
|
#
|
|
# e.g.
|
|
# Prime.instance.prime?(2) #=> true
|
|
# Prime.prime?(2) #=> true
|
|
#
|
|
# == Generators
|
|
# A "generator" provides an implementation of enumerating pseudo-prime
|
|
# numbers and it remembers the position of enumeration and upper bound.
|
|
# Futhermore, it is a external iterator of prime enumeration which is
|
|
# compatible to an Enumerator.
|
|
#
|
|
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
|
|
# There are few implementations of generator.
|
|
#
|
|
# [+Prime+::+EratosthenesGenerator+]
|
|
# Uses eratosthenes's sieve.
|
|
# [+Prime+::+TrialDivisionGenerator+]
|
|
# Uses the trial division method.
|
|
# [+Prime+::+Generator23+]
|
|
# Generates all positive integers which is not divided by 2 nor 3.
|
|
# This sequence is very bad as a pseudo-prime sequence. But this
|
|
# is faster and uses much less memory than other generators. So,
|
|
# it is suitable for factorizing an integer which is not large but
|
|
# has many prime factors. e.g. for Prime#prime? .
|
|
class Prime
|
|
include Enumerable
|
|
@the_instance = Prime.new
|
|
|
|
# obsolete. Use +Prime+::+instance+ or class methods of +Prime+.
|
|
def initialize
|
|
@generator = EratosthenesGenerator.new
|
|
extend OldCompatibility
|
|
warn "Prime::new is obsolete. use Prime::instance or class methods of Prime."
|
|
end
|
|
|
|
class << self
|
|
extend Forwardable
|
|
include Enumerable
|
|
# Returns the default instance of Prime.
|
|
def instance; @the_instance end
|
|
|
|
def method_added(method) # :nodoc:
|
|
(class<< self;self;end).def_delegator :instance, method
|
|
end
|
|
end
|
|
|
|
# Iterates the given block over all prime numbers.
|
|
#
|
|
# == Parameters
|
|
# +ubound+::
|
|
# Optional. An arbitrary positive number.
|
|
# The upper bound of enumeration. The method enumerates
|
|
# prime numbers infinitely if +ubound+ is nil.
|
|
# +generator+::
|
|
# Optional. An implementation of pseudo-prime generator.
|
|
#
|
|
# == Return value
|
|
# An evaluated value of the given block at the last time.
|
|
# Or an enumerator which is compatible to an +Enumerator+
|
|
# if no block given.
|
|
#
|
|
# == Description
|
|
# Calls +block+ once for each prime number, passing the prime as
|
|
# a parameter.
|
|
#
|
|
# +ubound+::
|
|
# Upper bound of prime numbers. The iterator stops after
|
|
# yields all prime numbers p <= +ubound+.
|
|
#
|
|
# == Note
|
|
# +Prime+.+new+ returns a object extended by +Prime+::+OldCompatibility+
|
|
# in order to compatibility to Ruby 1.8, and +Prime+#each is overwritten
|
|
# by +Prime+::+OldCompatibility+#+each+.
|
|
#
|
|
# +Prime+.+new+ is now obsolete. Use +Prime+.+instance+.+each+ or simply
|
|
# +Prime+.+each+.
|
|
def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
|
|
generator.upper_bound = ubound
|
|
generator.each(&block)
|
|
end
|
|
|
|
|
|
# Returns true if +value+ is prime, false for a composite.
|
|
#
|
|
# == Parameters
|
|
# +value+:: an arbitrary integer to be checked.
|
|
# +generator+:: optional. A pseudo-prime generator.
|
|
def prime?(value, generator = Prime::Generator23.new)
|
|
value = -value if value < 0
|
|
return false if value < 2
|
|
for num in generator
|
|
q,r = value.divmod num
|
|
return true if q < num
|
|
return false if r == 0
|
|
end
|
|
end
|
|
|
|
# Re-composes a prime factorization and returns the product.
|
|
#
|
|
# == Parameters
|
|
# +pd+:: Array of pairs of integers. The each internal
|
|
# pair consists of a prime number -- a prime factor --
|
|
# and a natural number -- an exponent.
|
|
#
|
|
# == Example
|
|
# For [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]], it returns
|
|
# p_1**e_1 * p_2**e_2 * .... * p_n**e_n.
|
|
#
|
|
# Prime.int_from_prime_division([[2,2], [3,1]]) #=> 12
|
|
def int_from_prime_division(pd)
|
|
pd.inject(1){|value, (prime, index)|
|
|
value *= prime**index
|
|
}
|
|
end
|
|
|
|
# Returns the factorization of +value+.
|
|
#
|
|
# == Parameters
|
|
# +value+:: An arbitrary integer.
|
|
# +generator+:: Optional. A pseudo-prime generator.
|
|
# +generator+.succ must return the next
|
|
# pseudo-prime number in the ascendent
|
|
# order. It must generate all prime numbers,
|
|
# but may generate non prime numbers.
|
|
#
|
|
# === Exceptions
|
|
# +ZeroDivisionError+:: when +value+ is zero.
|
|
#
|
|
# == Example
|
|
# For an arbitrary integer
|
|
# n = p_1**e_1 * p_2**e_2 * .... * p_n**e_n,
|
|
# prime_division(n) returns
|
|
# [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]].
|
|
#
|
|
# Prime.prime_division(12) #=> [[2,2], [3,1]]
|
|
#
|
|
def prime_division(value, generator= Prime::Generator23.new)
|
|
raise ZeroDivisionError if value == 0
|
|
if value < 0
|
|
value = -value
|
|
pv = [[-1, 1]]
|
|
else
|
|
pv = []
|
|
end
|
|
for prime in generator
|
|
count = 0
|
|
while (value1, mod = value.divmod(prime)
|
|
mod) == 0
|
|
value = value1
|
|
count += 1
|
|
end
|
|
if count != 0
|
|
pv.push [prime, count]
|
|
end
|
|
break if value1 <= prime
|
|
end
|
|
if value > 1
|
|
pv.push [value, 1]
|
|
end
|
|
return pv
|
|
end
|
|
|
|
# An abstract class for enumerating pseudo-prime numbers.
|
|
#
|
|
# Concrete subclasses should override succ, next, rewind.
|
|
class PseudoPrimeGenerator
|
|
include Enumerable
|
|
|
|
def initialize(ubound = nil)
|
|
@ubound = ubound
|
|
end
|
|
|
|
def upper_bound=(ubound)
|
|
@ubound = ubound
|
|
end
|
|
def upper_bound
|
|
@ubound
|
|
end
|
|
|
|
# returns the next pseudo-prime number, and move the internal
|
|
# position forward.
|
|
#
|
|
# +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
|
|
def succ
|
|
raise NotImplementedError, "need to define `succ'"
|
|
end
|
|
|
|
# alias of +succ+.
|
|
def next
|
|
raise NotImplementedError, "need to define `next'"
|
|
end
|
|
|
|
# Rewinds the internal position for enumeration.
|
|
#
|
|
# See +Enumerator+#rewind.
|
|
def rewind
|
|
raise NotImplementedError, "need to define `rewind'"
|
|
end
|
|
|
|
# Iterates the given block for each prime numbers.
|
|
def each(&block)
|
|
return self.dup unless block
|
|
if @ubound
|
|
last_value = nil
|
|
loop do
|
|
prime = succ
|
|
break last_value if prime > @ubound
|
|
last_value = block.call(prime)
|
|
end
|
|
else
|
|
loop do
|
|
block.call(succ)
|
|
end
|
|
end
|
|
end
|
|
|
|
# see +Enumerator+#with_index.
|
|
alias with_index each_with_index
|
|
|
|
# see +Enumerator+#with_object.
|
|
def with_object(obj)
|
|
return enum_for(:with_object) unless block_given?
|
|
each do |prime|
|
|
yield prime, obj
|
|
end
|
|
end
|
|
end
|
|
|
|
# An implementation of +PseudoPrimeGenerator+.
|
|
#
|
|
# Uses +EratosthenesSieve+.
|
|
class EratosthenesGenerator < PseudoPrimeGenerator
|
|
def initialize
|
|
@last_prime = nil
|
|
super
|
|
end
|
|
|
|
def succ
|
|
@last_prime = @last_prime ? EratosthenesSieve.instance.next_to(@last_prime) : 2
|
|
end
|
|
def rewind
|
|
initialize
|
|
end
|
|
alias next succ
|
|
end
|
|
|
|
# An implementation of +PseudoPrimeGenerator+ which uses
|
|
# a prime table generated by trial division.
|
|
class TrialDivisionGenerator<PseudoPrimeGenerator
|
|
def initialize
|
|
@index = -1
|
|
super
|
|
end
|
|
|
|
def succ
|
|
TrialDivision.instance[@index += 1]
|
|
end
|
|
def rewind
|
|
initialize
|
|
end
|
|
alias next succ
|
|
end
|
|
|
|
# Generates all integer which are greater than 2 and
|
|
# are not divided by 2 nor 3.
|
|
#
|
|
# This is a pseudo-prime generator, suitable on
|
|
# checking primality of a integer by brute force
|
|
# method.
|
|
class Generator23<PseudoPrimeGenerator
|
|
def initialize
|
|
@prime = 1
|
|
@step = nil
|
|
super
|
|
end
|
|
|
|
def succ
|
|
loop do
|
|
if (@step)
|
|
@prime += @step
|
|
@step = 6 - @step
|
|
else
|
|
case @prime
|
|
when 1; @prime = 2
|
|
when 2; @prime = 3
|
|
when 3; @prime = 5; @step = 2
|
|
end
|
|
end
|
|
return @prime
|
|
end
|
|
end
|
|
alias next succ
|
|
def rewind
|
|
initialize
|
|
end
|
|
end
|
|
|
|
|
|
|
|
|
|
# Internal use. An implementation of prime table by trial division method.
|
|
class TrialDivision
|
|
include Singleton
|
|
|
|
def initialize # :nodoc:
|
|
# These are included as class variables to cache them for later uses. If memory
|
|
# usage is a problem, they can be put in Prime#initialize as instance variables.
|
|
|
|
# There must be no primes between @primes[-1] and @next_to_check.
|
|
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
|
|
# @next_to_check % 6 must be 1.
|
|
@next_to_check = 103 # @primes[-1] - @primes[-1] % 6 + 7
|
|
@ulticheck_index = 3 # @primes.index(@primes.reverse.find {|n|
|
|
# n < Math.sqrt(@@next_to_check) })
|
|
@ulticheck_next_squared = 121 # @primes[@ulticheck_index + 1] ** 2
|
|
end
|
|
|
|
# Returns the cached prime numbers.
|
|
def cache
|
|
return @primes
|
|
end
|
|
alias primes cache
|
|
alias primes_so_far cache
|
|
|
|
# Returns the +index+th prime number.
|
|
#
|
|
# +index+ is a 0-based index.
|
|
def [](index)
|
|
while index >= @primes.length
|
|
# Only check for prime factors up to the square root of the potential primes,
|
|
# but without the performance hit of an actual square root calculation.
|
|
if @next_to_check + 4 > @ulticheck_next_squared
|
|
@ulticheck_index += 1
|
|
@ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
|
|
end
|
|
# Only check numbers congruent to one and five, modulo six. All others
|
|
|
|
# are divisible by two or three. This also allows us to skip checking against
|
|
# two and three.
|
|
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
|
|
@next_to_check += 4
|
|
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
|
|
@next_to_check += 2
|
|
end
|
|
return @primes[index]
|
|
end
|
|
end
|
|
|
|
# Internal use. An implementation of eratosthenes's sieve
|
|
class EratosthenesSieve
|
|
include Singleton
|
|
|
|
BITS_PER_ENTRY = 16 # each entry is a set of 16-bits in a Fixnum
|
|
NUMS_PER_ENTRY = BITS_PER_ENTRY * 2 # twiced because even numbers are omitted
|
|
ENTRIES_PER_TABLE = 8
|
|
NUMS_PER_TABLE = NUMS_PER_ENTRY * ENTRIES_PER_TABLE
|
|
FILLED_ENTRY = (1 << NUMS_PER_ENTRY) - 1
|
|
|
|
def initialize # :nodoc:
|
|
# bitmap for odd prime numbers less than 256.
|
|
# For an arbitrary odd number n, @tables[i][j][k] is
|
|
# * 1 if n is prime,
|
|
# * 0 if n is composite,
|
|
# where i,j,k = indices(n)
|
|
@tables = [[0xcb6e, 0x64b4, 0x129a, 0x816d, 0x4c32, 0x864a, 0x820d, 0x2196].freeze]
|
|
end
|
|
|
|
# returns the least odd prime number which is greater than +n+.
|
|
def next_to(n)
|
|
n = (n-1).div(2)*2+3 # the next odd number to given n
|
|
table_index, integer_index, bit_index = indices(n)
|
|
loop do
|
|
extend_table until @tables.length > table_index
|
|
for j in integer_index...ENTRIES_PER_TABLE
|
|
if !@tables[table_index][j].zero?
|
|
for k in bit_index...BITS_PER_ENTRY
|
|
return NUMS_PER_TABLE*table_index + NUMS_PER_ENTRY*j + 2*k+1 if !@tables[table_index][j][k].zero?
|
|
end
|
|
end
|
|
bit_index = 0
|
|
end
|
|
table_index += 1; integer_index = 0
|
|
end
|
|
end
|
|
|
|
private
|
|
# for an odd number +n+, returns (i, j, k) such that @tables[i][j][k] represents primarity of the number
|
|
def indices(n)
|
|
# binary digits of n: |0|1|2|3|4|5|6|7|8|9|10|11|....
|
|
# indices: |-| k | j | i
|
|
# because of NUMS_PER_ENTRY, NUMS_PER_TABLE
|
|
|
|
k = (n & 0b00011111) >> 1
|
|
j = (n & 0b11100000) >> 5
|
|
i = n >> 8
|
|
return i, j, k
|
|
end
|
|
|
|
def extend_table
|
|
lbound = NUMS_PER_TABLE * @tables.length
|
|
ubound = lbound + NUMS_PER_TABLE
|
|
new_table = [FILLED_ENTRY] * ENTRIES_PER_TABLE # which represents primarity in lbound...ubound
|
|
(3..Integer(Math.sqrt(ubound))).step(2) do |p|
|
|
i, j, k = indices(p)
|
|
next if @tables[i][j][k].zero?
|
|
|
|
start = (lbound.div(p)+1)*p # least multiple of p which is >= lbound
|
|
start += p if start.even?
|
|
(start...ubound).step(2*p) do |n|
|
|
_, j, k = indices(n)
|
|
new_table[j] &= FILLED_ENTRY^(1<<k)
|
|
end
|
|
end
|
|
@tables << new_table.freeze
|
|
end
|
|
end
|
|
|
|
# Provides a +Prime+ object with compatibility to Ruby 1.8 when instanciated via +Prime+.+new+.
|
|
module OldCompatibility
|
|
# Returns the next prime number and forwards internal pointer.
|
|
def succ
|
|
@generator.succ
|
|
end
|
|
alias next succ
|
|
|
|
# Overwrites Prime#each.
|
|
#
|
|
# Iterates the given block over all prime numbers. Note that enumeration starts from
|
|
# the current position of internal pointer, not rewound.
|
|
def each(&block)
|
|
return @generator.dup unless block_given?
|
|
loop do
|
|
yield succ
|
|
end
|
|
end
|
|
end
|
|
end
|