ruby/vm.c

3090 строки
76 KiB
C

/**********************************************************************
vm.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#define VM_CHECK_MODE 0
#include "internal.h"
#include "ruby/vm.h"
#include "ruby/st.h"
#include "gc.h"
#include "vm_core.h"
#include "iseq.h"
#include "eval_intern.h"
#include "probes.h"
#include "probes_helper.h"
static inline VALUE *
VM_EP_LEP(VALUE *ep)
{
while (!VM_EP_LEP_P(ep)) {
ep = VM_EP_PREV_EP(ep);
}
return ep;
}
static inline rb_control_frame_t *
rb_vm_search_cf_from_ep(const rb_thread_t * const th, rb_control_frame_t *cfp, const VALUE * const ep)
{
if (!ep) {
return NULL;
}
else {
const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(th); /* end of control frame pointer */
while (cfp < eocfp) {
if (cfp->ep == ep) {
return cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return NULL;
}
}
VALUE *
rb_vm_ep_local_ep(VALUE *ep)
{
return VM_EP_LEP(ep);
}
static inline VALUE *
VM_CF_LEP(const rb_control_frame_t * const cfp)
{
return VM_EP_LEP(cfp->ep);
}
static inline VALUE *
VM_CF_PREV_EP(const rb_control_frame_t * const cfp)
{
return VM_EP_PREV_EP(cfp->ep);
}
static inline rb_block_t *
VM_CF_BLOCK_PTR(const rb_control_frame_t * const cfp)
{
VALUE *ep = VM_CF_LEP(cfp);
return VM_EP_BLOCK_PTR(ep);
}
rb_block_t *
rb_vm_control_frame_block_ptr(const rb_control_frame_t *cfp)
{
return VM_CF_BLOCK_PTR(cfp);
}
static rb_cref_t *
vm_cref_new(VALUE klass, rb_method_visibility_t visi, const rb_cref_t *prev_cref)
{
union {
rb_scope_visibility_t visi;
VALUE value;
} scope_visi;
scope_visi.visi.method_visi = visi;
scope_visi.visi.module_func = 0;
return (rb_cref_t *)rb_imemo_new(imemo_cref, klass, (VALUE)prev_cref, scope_visi.value, Qnil);
}
static rb_cref_t *
vm_cref_new_toplevel(rb_thread_t *th)
{
rb_cref_t *cref = vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE /* toplevel visibility is private */, NULL);
if (th->top_wrapper) {
cref = vm_cref_new(th->top_wrapper, METHOD_VISI_PRIVATE, cref);
}
return cref;
}
rb_cref_t *
rb_vm_cref_new_toplevel(void)
{
return vm_cref_new_toplevel(GET_THREAD());
}
static void
vm_cref_dump(const char *mesg, const rb_cref_t *cref)
{
fprintf(stderr, "vm_cref_dump: %s (%p)\n", mesg, cref);
while (cref) {
fprintf(stderr, "= cref| klass: %s\n", RSTRING_PTR(rb_class_path(CREF_CLASS(cref))));
cref = CREF_NEXT(cref);
}
}
#if VM_COLLECT_USAGE_DETAILS
static void vm_collect_usage_operand(int insn, int n, VALUE op);
static void vm_collect_usage_insn(int insn);
static void vm_collect_usage_register(int reg, int isset);
#endif
static VALUE vm_make_env_object(rb_thread_t *th, rb_control_frame_t *cfp);
static VALUE
vm_invoke_bmethod(rb_thread_t *th, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, const rb_block_t *blockptr);
static VALUE
vm_invoke_proc(rb_thread_t *th, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, const rb_block_t *blockptr);
static rb_serial_t ruby_vm_global_method_state = 1;
static rb_serial_t ruby_vm_global_constant_state = 1;
static rb_serial_t ruby_vm_class_serial = 1;
#include "vm_insnhelper.h"
#include "vm_insnhelper.c"
#include "vm_exec.h"
#include "vm_exec.c"
#include "vm_method.c"
#include "vm_eval.c"
#define PROCDEBUG 0
rb_serial_t
rb_next_class_serial(void)
{
return NEXT_CLASS_SERIAL();
}
VALUE rb_cRubyVM;
VALUE rb_cThread;
VALUE rb_cEnv;
VALUE rb_mRubyVMFrozenCore;
#define ruby_vm_redefined_flag GET_VM()->redefined_flag
VALUE ruby_vm_const_missing_count = 0;
rb_thread_t *ruby_current_thread = 0;
rb_vm_t *ruby_current_vm = 0;
rb_event_flag_t ruby_vm_event_flags;
static void thread_free(void *ptr);
void
rb_vm_inc_const_missing_count(void)
{
ruby_vm_const_missing_count +=1;
}
/*
* call-seq:
* RubyVM.stat -> Hash
* RubyVM.stat(hsh) -> hsh
* RubyVM.stat(Symbol) -> Numeric
*
* Returns a Hash containing implementation-dependent counters inside the VM.
*
* This hash includes information about method/constant cache serials:
*
* {
* :global_method_state=>251,
* :global_constant_state=>481,
* :class_serial=>9029
* }
*
* The contents of the hash are implementation specific and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*/
static VALUE
vm_stat(int argc, VALUE *argv, VALUE self)
{
static VALUE sym_global_method_state, sym_global_constant_state, sym_class_serial;
VALUE arg = Qnil;
VALUE hash = Qnil, key = Qnil;
if (rb_scan_args(argc, argv, "01", &arg) == 1) {
if (SYMBOL_P(arg))
key = arg;
else if (RB_TYPE_P(arg, T_HASH))
hash = arg;
else
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
else if (NIL_P(arg)) {
hash = rb_hash_new();
}
if (sym_global_method_state == 0) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(global_method_state);
S(global_constant_state);
S(class_serial);
#undef S
}
#define SET(name, attr) \
if (key == sym_##name) \
return SERIALT2NUM(attr); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, SERIALT2NUM(attr));
SET(global_method_state, ruby_vm_global_method_state);
SET(global_constant_state, ruby_vm_global_constant_state);
SET(class_serial, ruby_vm_class_serial);
#undef SET
if (!NIL_P(key)) { /* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return hash;
}
/* control stack frame */
static void
vm_set_top_stack(rb_thread_t *th, const rb_iseq_t *iseq)
{
if (iseq->body->type != ISEQ_TYPE_TOP) {
rb_raise(rb_eTypeError, "Not a toplevel InstructionSequence");
}
/* for return */
vm_push_frame(th, iseq, VM_FRAME_MAGIC_TOP | VM_FRAME_FLAG_FINISH, th->top_self,
VM_ENVVAL_BLOCK_PTR(0),
(VALUE)vm_cref_new_toplevel(th), /* cref or me */
iseq->body->iseq_encoded, th->cfp->sp, iseq->body->local_size, iseq->body->stack_max);
}
static void
vm_set_eval_stack(rb_thread_t * th, const rb_iseq_t *iseq, const rb_cref_t *cref, rb_block_t *base_block)
{
vm_push_frame(th, iseq, VM_FRAME_MAGIC_EVAL | VM_FRAME_FLAG_FINISH,
base_block->self, VM_ENVVAL_PREV_EP_PTR(base_block->ep),
(VALUE)cref, /* cref or me */
iseq->body->iseq_encoded,
th->cfp->sp, iseq->body->local_size, iseq->body->stack_max);
}
static void
vm_set_main_stack(rb_thread_t *th, const rb_iseq_t *iseq)
{
VALUE toplevel_binding = rb_const_get(rb_cObject, rb_intern("TOPLEVEL_BINDING"));
rb_binding_t *bind;
rb_env_t *env;
GetBindingPtr(toplevel_binding, bind);
GetEnvPtr(bind->env, env);
vm_set_eval_stack(th, iseq, 0, &env->block);
/* save binding */
if (bind && iseq->body->local_size > 0) {
bind->env = vm_make_env_object(th, th->cfp);
}
}
rb_control_frame_t *
rb_vm_get_binding_creatable_next_cfp(const rb_thread_t *th, const rb_control_frame_t *cfp)
{
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, cfp)) {
if (cfp->iseq) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
rb_control_frame_t *
rb_vm_get_ruby_level_next_cfp(const rb_thread_t *th, const rb_control_frame_t *cfp)
{
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, cfp)) {
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
static rb_control_frame_t *
vm_get_ruby_level_caller_cfp(const rb_thread_t *th, const rb_control_frame_t *cfp)
{
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, cfp)) {
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
return (rb_control_frame_t *)cfp;
}
if ((cfp->flag & VM_FRAME_FLAG_PASSED) == 0) {
break;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
void
rb_vm_pop_cfunc_frame(void)
{
rb_thread_t *th = GET_THREAD();
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(th->cfp);
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, th->cfp->self, me->called_id, me->owner, Qnil);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, me->owner, me->called_id);
vm_pop_frame(th);
}
void
rb_vm_rewind_cfp(rb_thread_t *th, rb_control_frame_t *cfp)
{
/* check skipped frame */
while (th->cfp != cfp) {
#if VMDEBUG
printf("skipped frame: %s\n", vm_frametype_name(th->cfp));
#endif
if (VM_FRAME_TYPE(th->cfp) != VM_FRAME_MAGIC_CFUNC) {
vm_pop_frame(th);
}
else { /* unlikely path */
rb_vm_pop_cfunc_frame();
}
}
}
/* obsolete */
void
rb_frame_pop(void)
{
rb_thread_t *th = GET_THREAD();
vm_pop_frame(th);
}
/* at exit */
void
ruby_vm_at_exit(void (*func)(rb_vm_t *))
{
rb_ary_push((VALUE)&GET_VM()->at_exit, (VALUE)func);
}
static void
ruby_vm_run_at_exit_hooks(rb_vm_t *vm)
{
VALUE hook = (VALUE)&vm->at_exit;
while (RARRAY_LEN(hook) > 0) {
typedef void rb_vm_at_exit_func(rb_vm_t*);
rb_vm_at_exit_func *func = (rb_vm_at_exit_func*)rb_ary_pop(hook);
(*func)(vm);
}
rb_ary_free(hook);
}
/* Env */
/*
env{
env[0] // special (block or prev env)
env[1] // env object
};
*/
static void
env_mark(void * const ptr)
{
const rb_env_t * const env = ptr;
/* TODO: should mark more restricted range */
RUBY_GC_INFO("env->env\n");
rb_gc_mark_values((long)env->env_size, env->env);
RUBY_MARK_UNLESS_NULL(rb_vm_env_prev_envval(env));
RUBY_MARK_UNLESS_NULL(env->block.self);
RUBY_MARK_UNLESS_NULL(env->block.proc);
if (env->block.iseq) {
if (RUBY_VM_IFUNC_P(env->block.iseq)) {
rb_gc_mark((VALUE)env->block.iseq);
}
else {
RUBY_MARK_UNLESS_NULL((VALUE)env->block.iseq);
}
}
RUBY_MARK_LEAVE("env");
}
static size_t
env_memsize(const void *ptr)
{
const rb_env_t * const env = ptr;
size_t size = sizeof(rb_env_t);
size += (env->env_size - 1) * sizeof(VALUE);
return size;
}
static const rb_data_type_t env_data_type = {
"VM/env",
{env_mark, RUBY_TYPED_DEFAULT_FREE, env_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#define VM_EP_IN_HEAP_P(th, ep) (!((th)->stack <= (ep) && (ep) < ((th)->stack + (th)->stack_size)))
#define VM_ENV_EP_ENVVAL(ep) ((ep)[1])
static VALUE check_env_value(VALUE envval);
static int
check_env(rb_env_t * const env)
{
fprintf(stderr, "---\n");
fprintf(stderr, "envptr: %p\n", (void *)&env->block.ep[0]);
fprintf(stderr, "envval: %10p ", (void *)env->block.ep[1]);
dp(env->block.ep[1]);
fprintf(stderr, "ep: %10p\n", (void *)env->block.ep);
if (rb_vm_env_prev_envval(env)) {
fprintf(stderr, ">>\n");
check_env_value(rb_vm_env_prev_envval(env));
fprintf(stderr, "<<\n");
}
return 1;
}
static VALUE
check_env_value(VALUE envval)
{
rb_env_t *env;
GetEnvPtr(envval, env);
if (check_env(env)) {
return envval;
}
rb_bug("invalid env");
return Qnil; /* unreachable */
}
/* return Qfalse if proc was already created */
static VALUE
vm_make_proc_from_block(rb_thread_t *th, rb_block_t *block)
{
if (!block->proc) {
block->proc = rb_vm_make_proc(th, block, rb_cProc);
return block->proc;
}
else {
return Qfalse;
}
}
static VALUE
vm_make_env_each(rb_thread_t *const th, rb_control_frame_t *const cfp)
{
VALUE envval, blockprocval = 0;
VALUE * const ep = cfp->ep;
rb_env_t *env;
VALUE *new_ep;
int local_size, env_size;
if (VM_EP_IN_HEAP_P(th, ep)) {
return VM_ENV_EP_ENVVAL(ep);
}
if (!VM_EP_LEP_P(ep)) {
VALUE *prev_ep = VM_EP_PREV_EP(ep);
if (!VM_EP_IN_HEAP_P(th, prev_ep)) {
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
while (prev_cfp->ep != prev_ep) {
prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(prev_cfp);
if (VM_CHECK_MODE > 0 && prev_cfp->ep == 0) rb_bug("invalid ep");
}
vm_make_env_each(th, prev_cfp);
*ep = VM_ENVVAL_PREV_EP_PTR(prev_cfp->ep);
}
}
else {
rb_block_t *block = VM_EP_BLOCK_PTR(ep);
if (block && (blockprocval = vm_make_proc_from_block(th, block)) != Qfalse) {
rb_proc_t *p;
GetProcPtr(blockprocval, p);
*ep = VM_ENVVAL_BLOCK_PTR(&p->block);
}
}
if (!RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
local_size = 1 /* cref/me */;
}
else {
local_size = cfp->iseq->body->local_size;
}
/*
* # local variables on a stack frame (N == local_size)
* [lvar1, lvar2, ..., lvarN, SPECVAL]
* ^
* ep[0]
*
* # moved local variables
* [lvar1, lvar2, ..., lvarN, SPECVAL, Envval, BlockProcval (if needed)]
* ^ ^
* env->env[0] ep[0]
*/
env_size = local_size +
1 /* specval */ +
1 /* envval */ +
(blockprocval ? 1 : 0) /* blockprocval */;
envval = TypedData_Wrap_Struct(rb_cEnv, &env_data_type, 0);
env = xmalloc(sizeof(rb_env_t) + (env_size - 1 /* rb_env_t::env[1] */) * sizeof(VALUE));
env->env_size = env_size;
MEMCPY(env->env, ep - local_size, VALUE, local_size + 1 /* specval */);
#if 0
for (i = 0; i < local_size; i++) {
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
/* clear value stack for GC */
ep[-local_size + i] = 0;
}
}
#endif
/* be careful not to trigger GC after this */
RTYPEDDATA_DATA(envval) = env;
/*
* must happen after TypedData_Wrap_Struct to ensure penvval is markable
* in case object allocation triggers GC and clobbers penvval.
*/
*ep = envval; /* GC mark */
new_ep = &env->env[local_size];
new_ep[1] = envval;
if (blockprocval) new_ep[2] = blockprocval;
/* as Binding */
env->block.self = cfp->self;
env->block.ep = cfp->ep = new_ep;
env->block.iseq = cfp->iseq;
env->block.proc = 0;
if (!RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
/* TODO */
env->block.iseq = 0;
}
return envval;
}
static VALUE
vm_make_env_object(rb_thread_t *th, rb_control_frame_t *cfp)
{
VALUE envval = vm_make_env_each(th, cfp);
if (PROCDEBUG) {
check_env_value(envval);
}
return envval;
}
void
rb_vm_stack_to_heap(rb_thread_t *th)
{
rb_control_frame_t *cfp = th->cfp;
while ((cfp = rb_vm_get_binding_creatable_next_cfp(th, cfp)) != 0) {
vm_make_env_object(th, cfp);
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
VALUE
rb_vm_env_prev_envval(const rb_env_t *env)
{
const VALUE *ep = env->block.ep;
if (VM_EP_LEP_P(ep)) {
return Qfalse;
}
else {
return VM_ENV_EP_ENVVAL(VM_EP_PREV_EP(ep));
}
}
static int
collect_local_variables_in_iseq(const rb_iseq_t *iseq, const struct local_var_list *vars)
{
unsigned int i;
if (!iseq) return 0;
for (i = 0; i < iseq->body->local_table_size; i++) {
local_var_list_add(vars, iseq->body->local_table[i]);
}
return 1;
}
static void
collect_local_variables_in_env(const rb_env_t *env, const struct local_var_list *vars)
{
VALUE prev_envval;
while (collect_local_variables_in_iseq(env->block.iseq, vars), (prev_envval = rb_vm_env_prev_envval(env)) != Qfalse) {
GetEnvPtr(prev_envval, env);
}
}
static int
vm_collect_local_variables_in_heap(rb_thread_t *th, const VALUE *ep, const struct local_var_list *vars)
{
if (VM_EP_IN_HEAP_P(th, ep)) {
rb_env_t *env;
GetEnvPtr(VM_ENV_EP_ENVVAL(ep), env);
collect_local_variables_in_env(env, vars);
return 1;
}
else {
return 0;
}
}
VALUE
rb_vm_env_local_variables(const rb_env_t *env)
{
struct local_var_list vars;
local_var_list_init(&vars);
collect_local_variables_in_env(env, &vars);
return local_var_list_finish(&vars);
}
/* Proc */
static inline VALUE
rb_proc_create(VALUE klass, const rb_block_t *block,
int8_t safe_level, int8_t is_from_method, int8_t is_lambda)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc = RTYPEDDATA_DATA(procval);
proc->block = *block;
proc->block.proc = procval;
proc->safe_level = safe_level;
proc->is_from_method = is_from_method;
proc->is_lambda = is_lambda;
return procval;
}
VALUE
rb_vm_make_proc(rb_thread_t *th, const rb_block_t *block, VALUE klass)
{
return rb_vm_make_proc_lambda(th, block, klass, 0);
}
VALUE
rb_vm_make_proc_lambda(rb_thread_t *th, const rb_block_t *block, VALUE klass, int8_t is_lambda)
{
VALUE procval;
rb_control_frame_t *cfp = RUBY_VM_GET_CFP_FROM_BLOCK_PTR(block);
if (block->proc) {
rb_bug("rb_vm_make_proc: Proc value is already created.");
}
vm_make_env_object(th, cfp);
procval = rb_proc_create(klass, block, (int8_t)th->safe_level, 0, is_lambda);
if (VMDEBUG) {
if (th->stack < block->ep && block->ep < th->stack + th->stack_size) {
rb_bug("invalid ptr: block->ep");
}
}
return procval;
}
VALUE
rb_vm_proc_envval(const rb_proc_t *proc)
{
VALUE envval = VM_ENV_EP_ENVVAL(proc->block.ep);
return envval;
}
/* Binding */
VALUE
rb_vm_make_binding(rb_thread_t *th, const rb_control_frame_t *src_cfp)
{
rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(th, src_cfp);
rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(th, src_cfp);
VALUE bindval, envval;
rb_binding_t *bind;
if (cfp == 0 || ruby_level_cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
}
while (1) {
envval = vm_make_env_object(th, cfp);
if (cfp == ruby_level_cfp) {
break;
}
cfp = rb_vm_get_binding_creatable_next_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
}
bindval = rb_binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
bind->env = envval;
bind->path = ruby_level_cfp->iseq->body->location.path;
bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp);
return bindval;
}
VALUE *
rb_binding_add_dynavars(rb_binding_t *bind, int dyncount, const ID *dynvars)
{
VALUE envval = bind->env, path = bind->path;
rb_env_t *env;
rb_block_t *base_block;
rb_thread_t *th = GET_THREAD();
const rb_iseq_t *base_iseq, *iseq;
NODE *node = 0;
ID minibuf[4], *dyns = minibuf;
VALUE idtmp = 0;
if (dyncount < 0) return 0;
GetEnvPtr(envval, env);
base_block = &env->block;
base_iseq = base_block->iseq;
if (dyncount >= numberof(minibuf)) dyns = ALLOCV_N(ID, idtmp, dyncount + 1);
dyns[0] = dyncount;
MEMCPY(dyns + 1, dynvars, ID, dyncount);
node = NEW_NODE(NODE_SCOPE, dyns, 0, 0);
if (base_iseq) {
iseq = rb_iseq_new(node, base_iseq->body->location.label, path, path, base_iseq, ISEQ_TYPE_EVAL);
}
else {
VALUE tempstr = rb_str_new2("<temp>");
iseq = rb_iseq_new_top(node, tempstr, tempstr, tempstr, NULL);
}
node->u1.tbl = 0; /* reset table */
ALLOCV_END(idtmp);
vm_set_eval_stack(th, iseq, 0, base_block);
bind->env = vm_make_env_object(th, th->cfp);
vm_pop_frame(th);
GetEnvPtr(bind->env, env);
return env->env;
}
/* C -> Ruby: block */
static inline VALUE
invoke_block_from_c(rb_thread_t *th, const rb_block_t *block,
VALUE self, int argc, const VALUE *argv,
const rb_block_t *blockptr, const rb_cref_t *cref,
int splattable)
{
if (SPECIAL_CONST_P(block->iseq)) {
return Qnil;
}
else if (!RUBY_VM_IFUNC_P(block->iseq)) {
VALUE ret;
const rb_iseq_t *iseq = block->iseq;
const rb_control_frame_t *cfp;
int i, opt_pc, arg_size = iseq->body->param.size;
int type = block_proc_is_lambda(block->proc) ? VM_FRAME_MAGIC_LAMBDA : VM_FRAME_MAGIC_BLOCK;
const rb_callable_method_entry_t *me = th->passed_bmethod_me;
th->passed_bmethod_me = NULL;
cfp = th->cfp;
for (i=0; i<argc; i++) {
cfp->sp[i] = argv[i];
}
opt_pc = vm_yield_setup_args(th, iseq, argc, cfp->sp, blockptr,
(type == VM_FRAME_MAGIC_LAMBDA ? (splattable ? arg_setup_lambda : arg_setup_method) : arg_setup_block));
if (me != 0) {
/* bmethod */
vm_push_frame(th, iseq, type | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_BMETHOD, self,
VM_ENVVAL_PREV_EP_PTR(block->ep),
(VALUE)me, /* cref or method (TODO: can we ignore cref?) */
iseq->body->iseq_encoded + opt_pc,
cfp->sp + arg_size, iseq->body->local_size - arg_size,
iseq->body->stack_max);
RUBY_DTRACE_METHOD_ENTRY_HOOK(th, me->owner, me->called_id);
EXEC_EVENT_HOOK(th, RUBY_EVENT_CALL, self, me->called_id, me->owner, Qnil);
}
else {
vm_push_frame(th, iseq, type | VM_FRAME_FLAG_FINISH, self,
VM_ENVVAL_PREV_EP_PTR(block->ep),
(VALUE)cref, /* cref or method */
iseq->body->iseq_encoded + opt_pc,
cfp->sp + arg_size, iseq->body->local_size - arg_size,
iseq->body->stack_max);
}
ret = vm_exec(th);
if (me) {
/* bmethod */
EXEC_EVENT_HOOK(th, RUBY_EVENT_RETURN, self, me->called_id, me->owner, ret);
RUBY_DTRACE_METHOD_RETURN_HOOK(th, me->owner, me->called_id);
}
return ret;
}
else {
return vm_yield_with_cfunc(th, block, self, argc, argv, blockptr);
}
}
static inline const rb_block_t *
check_block(rb_thread_t *th)
{
const rb_block_t *blockptr = VM_CF_BLOCK_PTR(th->cfp);
if (blockptr == 0) {
rb_vm_localjump_error("no block given", Qnil, 0);
}
return blockptr;
}
static inline VALUE
vm_yield_with_cref(rb_thread_t *th, int argc, const VALUE *argv, const rb_cref_t *cref)
{
const rb_block_t *blockptr = check_block(th);
return invoke_block_from_c(th, blockptr, blockptr->self, argc, argv, 0, cref, 1);
}
static inline VALUE
vm_yield(rb_thread_t *th, int argc, const VALUE *argv)
{
const rb_block_t *blockptr = check_block(th);
return invoke_block_from_c(th, blockptr, blockptr->self, argc, argv, 0, 0, 1);
}
static inline VALUE
vm_yield_with_block(rb_thread_t *th, int argc, const VALUE *argv, const rb_block_t *blockargptr)
{
const rb_block_t *blockptr = check_block(th);
return invoke_block_from_c(th, blockptr, blockptr->self, argc, argv, blockargptr, 0, 1);
}
static VALUE
vm_invoke_proc(rb_thread_t *th, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, const rb_block_t *blockptr)
{
VALUE val = Qundef;
int state;
volatile int stored_safe = th->safe_level;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
th->safe_level = proc->safe_level;
val = invoke_block_from_c(th, &proc->block, self, argc, argv, blockptr, 0, 0);
}
TH_POP_TAG();
th->safe_level = stored_safe;
if (state) {
JUMP_TAG(state);
}
return val;
}
static VALUE
vm_invoke_bmethod(rb_thread_t *th, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, const rb_block_t *blockptr)
{
return invoke_block_from_c(th, &proc->block, self, argc, argv, blockptr, 0, 0);
}
VALUE
rb_vm_invoke_proc(rb_thread_t *th, rb_proc_t *proc,
int argc, const VALUE *argv, const rb_block_t *blockptr)
{
VALUE self = proc->block.self;
if (proc->is_from_method) {
return vm_invoke_bmethod(th, proc, self, argc, argv, blockptr);
}
else {
return vm_invoke_proc(th, proc, self, argc, argv, blockptr);
}
}
/* special variable */
static rb_control_frame_t *
vm_normal_frame(rb_thread_t *th, rb_control_frame_t *cfp)
{
while (cfp->pc == 0) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, cfp)) {
return 0;
}
}
return cfp;
}
static VALUE
vm_cfp_svar_get(rb_thread_t *th, rb_control_frame_t *cfp, VALUE key)
{
cfp = vm_normal_frame(th, cfp);
return lep_svar_get(th, cfp ? VM_CF_LEP(cfp) : 0, key);
}
static void
vm_cfp_svar_set(rb_thread_t *th, rb_control_frame_t *cfp, VALUE key, const VALUE val)
{
cfp = vm_normal_frame(th, cfp);
lep_svar_set(th, cfp ? VM_CF_LEP(cfp) : 0, key, val);
}
static VALUE
vm_svar_get(VALUE key)
{
rb_thread_t *th = GET_THREAD();
return vm_cfp_svar_get(th, th->cfp, key);
}
static void
vm_svar_set(VALUE key, VALUE val)
{
rb_thread_t *th = GET_THREAD();
vm_cfp_svar_set(th, th->cfp, key, val);
}
VALUE
rb_backref_get(void)
{
return vm_svar_get(VM_SVAR_BACKREF);
}
void
rb_backref_set(VALUE val)
{
vm_svar_set(VM_SVAR_BACKREF, val);
}
VALUE
rb_lastline_get(void)
{
return vm_svar_get(VM_SVAR_LASTLINE);
}
void
rb_lastline_set(VALUE val)
{
vm_svar_set(VM_SVAR_LASTLINE, val);
}
/* misc */
VALUE
rb_sourcefilename(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp) {
return cfp->iseq->body->location.path;
}
else {
return Qnil;
}
}
const char *
rb_sourcefile(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp) {
return RSTRING_PTR(cfp->iseq->body->location.path);
}
else {
return 0;
}
}
int
rb_sourceline(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp) {
return rb_vm_get_sourceline(cfp);
}
else {
return 0;
}
}
rb_cref_t *
rb_vm_cref(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp == 0) {
return NULL;
}
return rb_vm_get_cref(cfp->ep);
}
const rb_cref_t *
rb_vm_cref_in_context(VALUE self, VALUE cbase)
{
rb_thread_t *th = GET_THREAD();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
const rb_cref_t *cref;
if (cfp->self != self) return NULL;
cref = rb_vm_get_cref(cfp->ep);
if (CREF_CLASS(cref) != cbase) return NULL;
return cref;
}
#if 0
void
debug_cref(rb_cref_t *cref)
{
while (cref) {
dp(CREF_CLASS(cref));
printf("%ld\n", CREF_VISI(cref));
cref = CREF_NEXT(cref);
}
}
#endif
VALUE
rb_vm_cbase(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't call on top of Fiber or Thread");
}
return vm_get_cbase(cfp->ep);
}
/* jump */
static VALUE
make_localjump_error(const char *mesg, VALUE value, int reason)
{
extern VALUE rb_eLocalJumpError;
VALUE exc = rb_exc_new2(rb_eLocalJumpError, mesg);
ID id;
switch (reason) {
case TAG_BREAK:
CONST_ID(id, "break");
break;
case TAG_REDO:
CONST_ID(id, "redo");
break;
case TAG_RETRY:
CONST_ID(id, "retry");
break;
case TAG_NEXT:
CONST_ID(id, "next");
break;
case TAG_RETURN:
CONST_ID(id, "return");
break;
default:
CONST_ID(id, "noreason");
break;
}
rb_iv_set(exc, "@exit_value", value);
rb_iv_set(exc, "@reason", ID2SYM(id));
return exc;
}
void
rb_vm_localjump_error(const char *mesg, VALUE value, int reason)
{
VALUE exc = make_localjump_error(mesg, value, reason);
rb_exc_raise(exc);
}
VALUE
rb_vm_make_jump_tag_but_local_jump(int state, VALUE val)
{
VALUE result = Qnil;
if (val == Qundef) {
val = GET_THREAD()->tag->retval;
}
switch (state) {
case 0:
break;
case TAG_RETURN:
result = make_localjump_error("unexpected return", val, state);
break;
case TAG_BREAK:
result = make_localjump_error("unexpected break", val, state);
break;
case TAG_NEXT:
result = make_localjump_error("unexpected next", val, state);
break;
case TAG_REDO:
result = make_localjump_error("unexpected redo", Qnil, state);
break;
case TAG_RETRY:
result = make_localjump_error("retry outside of rescue clause", Qnil, state);
break;
default:
break;
}
return result;
}
void
rb_vm_jump_tag_but_local_jump(int state)
{
VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef);
if (!NIL_P(exc)) rb_exc_raise(exc);
JUMP_TAG(state);
}
NORETURN(static void vm_iter_break(rb_thread_t *th, VALUE val));
static void
vm_iter_break(rb_thread_t *th, VALUE val)
{
rb_control_frame_t *cfp = th->cfp;
VALUE *ep = VM_CF_PREV_EP(cfp);
rb_control_frame_t *target_cfp = rb_vm_search_cf_from_ep(th, cfp, ep);
#if 0 /* raise LocalJumpError */
if (!target_cfp) {
rb_vm_localjump_error("unexpected break", val, TAG_BREAK);
}
#endif
th->state = TAG_BREAK;
th->errinfo = (VALUE)THROW_DATA_NEW(val, target_cfp, TAG_BREAK);
TH_JUMP_TAG(th, TAG_BREAK);
}
void
rb_iter_break(void)
{
vm_iter_break(GET_THREAD(), Qnil);
}
void
rb_iter_break_value(VALUE val)
{
vm_iter_break(GET_THREAD(), val);
}
/* optimization: redefine management */
static st_table *vm_opt_method_table = 0;
static int
vm_redefinition_check_flag(VALUE klass)
{
if (klass == rb_cFixnum) return FIXNUM_REDEFINED_OP_FLAG;
if (klass == rb_cFloat) return FLOAT_REDEFINED_OP_FLAG;
if (klass == rb_cString) return STRING_REDEFINED_OP_FLAG;
if (klass == rb_cArray) return ARRAY_REDEFINED_OP_FLAG;
if (klass == rb_cHash) return HASH_REDEFINED_OP_FLAG;
if (klass == rb_cBignum) return BIGNUM_REDEFINED_OP_FLAG;
if (klass == rb_cSymbol) return SYMBOL_REDEFINED_OP_FLAG;
if (klass == rb_cTime) return TIME_REDEFINED_OP_FLAG;
if (klass == rb_cRegexp) return REGEXP_REDEFINED_OP_FLAG;
return 0;
}
static void
rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass)
{
st_data_t bop;
if (me->def->type == VM_METHOD_TYPE_CFUNC) {
if (st_lookup(vm_opt_method_table, (st_data_t)me, &bop)) {
int flag = vm_redefinition_check_flag(klass);
ruby_vm_redefined_flag[bop] |= flag;
}
}
}
static int
check_redefined_method(st_data_t key, st_data_t value, st_data_t data)
{
ID mid = (ID)key;
VALUE klass = (VALUE)data;
const rb_method_entry_t *me = (rb_method_entry_t *)value;
const rb_method_entry_t *newme = rb_method_entry(klass, mid);
if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner);
return ST_CONTINUE;
}
void
rb_vm_check_redefinition_by_prepend(VALUE klass)
{
if (!vm_redefinition_check_flag(klass)) return;
st_foreach(RCLASS_M_TBL(RCLASS_ORIGIN(klass)), check_redefined_method,
(st_data_t)klass);
}
static void
add_opt_method(VALUE klass, ID mid, VALUE bop)
{
const rb_method_entry_t *me = rb_method_entry_at(klass, mid);
if (me && me->def->type == VM_METHOD_TYPE_CFUNC) {
st_insert(vm_opt_method_table, (st_data_t)me, (st_data_t)bop);
}
else {
rb_bug("undefined optimized method: %s", rb_id2name(mid));
}
}
static void
vm_init_redefined_flag(void)
{
ID mid;
VALUE bop;
vm_opt_method_table = st_init_numtable();
#define OP(mid_, bop_) (mid = id##mid_, bop = BOP_##bop_, ruby_vm_redefined_flag[bop] = 0)
#define C(k) add_opt_method(rb_c##k, mid, bop)
OP(PLUS, PLUS), (C(Fixnum), C(Float), C(String), C(Array));
OP(MINUS, MINUS), (C(Fixnum), C(Float));
OP(MULT, MULT), (C(Fixnum), C(Float));
OP(DIV, DIV), (C(Fixnum), C(Float));
OP(MOD, MOD), (C(Fixnum), C(Float));
OP(Eq, EQ), (C(Fixnum), C(Float), C(String));
OP(Eqq, EQQ), (C(Fixnum), C(Bignum), C(Float), C(Symbol), C(String));
OP(LT, LT), (C(Fixnum), C(Float));
OP(LE, LE), (C(Fixnum), C(Float));
OP(GT, GT), (C(Fixnum), C(Float));
OP(GE, GE), (C(Fixnum), C(Float));
OP(LTLT, LTLT), (C(String), C(Array));
OP(AREF, AREF), (C(Array), C(Hash));
OP(ASET, ASET), (C(Array), C(Hash));
OP(Length, LENGTH), (C(Array), C(String), C(Hash));
OP(Size, SIZE), (C(Array), C(String), C(Hash));
OP(EmptyP, EMPTY_P), (C(Array), C(String), C(Hash));
OP(Succ, SUCC), (C(Fixnum), C(String), C(Time));
OP(EqTilde, MATCH), (C(Regexp), C(String));
OP(Freeze, FREEZE), (C(String));
#undef C
#undef OP
}
/* for vm development */
#if VMDEBUG
static const char *
vm_frametype_name(const rb_control_frame_t *cfp)
{
switch (VM_FRAME_TYPE(cfp)) {
case VM_FRAME_MAGIC_METHOD: return "method";
case VM_FRAME_MAGIC_BLOCK: return "block";
case VM_FRAME_MAGIC_CLASS: return "class";
case VM_FRAME_MAGIC_TOP: return "top";
case VM_FRAME_MAGIC_CFUNC: return "cfunc";
case VM_FRAME_MAGIC_PROC: return "proc";
case VM_FRAME_MAGIC_IFUNC: return "ifunc";
case VM_FRAME_MAGIC_EVAL: return "eval";
case VM_FRAME_MAGIC_LAMBDA: return "lambda";
case VM_FRAME_MAGIC_RESCUE: return "rescue";
default:
rb_bug("unknown frame");
}
}
#endif
static void
hook_before_rewind(rb_thread_t *th, rb_control_frame_t *cfp)
{
switch (VM_FRAME_TYPE(th->cfp)) {
case VM_FRAME_MAGIC_METHOD:
RUBY_DTRACE_METHOD_RETURN_HOOK(th, 0, 0);
EXEC_EVENT_HOOK_AND_POP_FRAME(th, RUBY_EVENT_RETURN, th->cfp->self, 0, 0, Qnil);
break;
case VM_FRAME_MAGIC_BLOCK:
case VM_FRAME_MAGIC_LAMBDA:
if (VM_FRAME_TYPE_BMETHOD_P(th->cfp)) {
EXEC_EVENT_HOOK(th, RUBY_EVENT_B_RETURN, th->cfp->self, 0, 0, Qnil);
EXEC_EVENT_HOOK_AND_POP_FRAME(th, RUBY_EVENT_RETURN, th->cfp->self,
rb_vm_frame_method_entry(th->cfp)->called_id,
rb_vm_frame_method_entry(th->cfp)->owner, Qnil);
}
else {
EXEC_EVENT_HOOK_AND_POP_FRAME(th, RUBY_EVENT_B_RETURN, th->cfp->self, 0, 0, Qnil);
}
break;
case VM_FRAME_MAGIC_CLASS:
EXEC_EVENT_HOOK_AND_POP_FRAME(th, RUBY_EVENT_END, th->cfp->self, 0, 0, Qnil);
break;
}
}
/* evaluator body */
/* finish
VMe (h1) finish
VM finish F1 F2
cfunc finish F1 F2 C1
rb_funcall finish F1 F2 C1
VMe finish F1 F2 C1
VM finish F1 F2 C1 F3
F1 - F3 : pushed by VM
C1 : pushed by send insn (CFUNC)
struct CONTROL_FRAME {
VALUE *pc; // cfp[0], program counter
VALUE *sp; // cfp[1], stack pointer
VALUE *bp; // cfp[2], base pointer
rb_iseq_t *iseq; // cfp[3], iseq
VALUE flag; // cfp[4], magic
VALUE self; // cfp[5], self
VALUE *ep; // cfp[6], env pointer
rb_iseq_t * block_iseq; // cfp[7], block iseq
VALUE proc; // cfp[8], always 0
};
struct BLOCK {
VALUE self;
VALUE *ep;
rb_iseq_t *block_iseq;
VALUE proc;
};
struct METHOD_CONTROL_FRAME {
rb_control_frame_t frame;
};
struct METHOD_FRAME {
VALUE arg0;
...
VALUE argM;
VALUE param0;
...
VALUE paramN;
VALUE cref;
VALUE special; // lep [1]
struct block_object *block_ptr | 0x01; // lep [0]
};
struct BLOCK_CONTROL_FRAME {
rb_control_frame_t frame;
};
struct BLOCK_FRAME {
VALUE arg0;
...
VALUE argM;
VALUE param0;
...
VALUE paramN;
VALUE cref;
VALUE *(prev_ptr | 0x01); // ep[0]
};
struct CLASS_CONTROL_FRAME {
rb_control_frame_t frame;
};
struct CLASS_FRAME {
VALUE param0;
...
VALUE paramN;
VALUE cref;
VALUE prev_ep; // for frame jump
};
struct C_METHOD_CONTROL_FRAME {
VALUE *pc; // 0
VALUE *sp; // stack pointer
VALUE *bp; // base pointer (used in exception)
rb_iseq_t *iseq; // cmi
VALUE magic; // C_METHOD_FRAME
VALUE self; // ?
VALUE *ep; // ep == lep
rb_iseq_t * block_iseq; //
VALUE proc; // always 0
};
struct C_BLOCK_CONTROL_FRAME {
VALUE *pc; // point only "finish" insn
VALUE *sp; // sp
rb_iseq_t *iseq; // ?
VALUE magic; // C_METHOD_FRAME
VALUE self; // needed?
VALUE *ep; // ep
rb_iseq_t * block_iseq; // 0
};
*/
static VALUE
vm_exec(rb_thread_t *th)
{
int state;
VALUE result;
VALUE initial = 0;
struct vm_throw_data *err;
TH_PUSH_TAG(th);
_tag.retval = Qnil;
if ((state = EXEC_TAG()) == 0) {
vm_loop_start:
result = vm_exec_core(th, initial);
if ((state = th->state) != 0) {
err = (struct vm_throw_data *)result;
th->state = 0;
goto exception_handler;
}
}
else {
unsigned int i;
const struct iseq_catch_table_entry *entry;
const struct iseq_catch_table *ct;
unsigned long epc, cont_pc, cont_sp;
const rb_iseq_t *catch_iseq;
rb_control_frame_t *cfp;
VALUE type;
const rb_control_frame_t *escape_cfp;
err = (struct vm_throw_data *)th->errinfo;
exception_handler:
cont_pc = cont_sp = 0;
catch_iseq = NULL;
while (th->cfp->pc == 0 || th->cfp->iseq == 0) {
if (UNLIKELY(VM_FRAME_TYPE(th->cfp) == VM_FRAME_MAGIC_CFUNC)) {
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, th->cfp->self,
rb_vm_frame_method_entry(th->cfp)->called_id,
rb_vm_frame_method_entry(th->cfp)->owner, Qnil);
RUBY_DTRACE_METHOD_RETURN_HOOK(th,
rb_vm_frame_method_entry(th->cfp)->owner,
rb_vm_frame_method_entry(th->cfp)->called_id);
}
th->cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
}
cfp = th->cfp;
epc = cfp->pc - cfp->iseq->body->iseq_encoded;
escape_cfp = NULL;
if (state == TAG_BREAK || state == TAG_RETURN) {
escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
if (state == TAG_RETURN) {
if (!VM_FRAME_TYPE_FINISH_P(cfp)) {
THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
THROW_DATA_STATE_SET(err, state = TAG_BREAK);
}
else {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
if (!catch_iseq) {
th->errinfo = Qnil;
result = THROW_DATA_VAL(err);
hook_before_rewind(th, th->cfp);
vm_pop_frame(th);
goto finish_vme;
}
}
/* through */
}
else {
/* TAG_BREAK */
#if OPT_STACK_CACHING
initial = THROW_DATA_VAL(err);
#else
*th->cfp->sp++ = THROW_DATA_VAL(err);
#endif
th->errinfo = Qnil;
goto vm_loop_start;
}
}
}
if (state == TAG_RAISE) {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_RESCUE ||
entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
}
else if (state == TAG_RETRY) {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
else if (entry->type == CATCH_TYPE_RETRY) {
const rb_control_frame_t *escape_cfp;
escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
cfp->pc = cfp->iseq->body->iseq_encoded + entry->cont;
th->errinfo = Qnil;
goto vm_loop_start;
}
}
}
}
}
else if (state == TAG_BREAK && !escape_cfp) {
type = CATCH_TYPE_BREAK;
search_restart_point:
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
else if (entry->type == type) {
cfp->pc = cfp->iseq->body->iseq_encoded + entry->cont;
cfp->sp = vm_base_ptr(cfp) + entry->sp;
if (state != TAG_REDO) {
#if OPT_STACK_CACHING
initial = THROW_DATA_VAL(err);
#else
*th->cfp->sp++ = THROW_DATA_VAL(err);
#endif
}
th->errinfo = Qnil;
th->state = 0;
goto vm_loop_start;
}
}
}
}
else if (state == TAG_REDO) {
type = CATCH_TYPE_REDO;
goto search_restart_point;
}
else if (state == TAG_NEXT) {
type = CATCH_TYPE_NEXT;
goto search_restart_point;
}
else {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
}
if (catch_iseq != 0) { /* found catch table */
/* enter catch scope */
cfp->sp = vm_base_ptr(cfp) + cont_sp;
cfp->pc = cfp->iseq->body->iseq_encoded + cont_pc;
/* push block frame */
cfp->sp[0] = (VALUE)err;
vm_push_frame(th, catch_iseq, VM_FRAME_MAGIC_RESCUE,
cfp->self,
VM_ENVVAL_PREV_EP_PTR(cfp->ep),
0, /* cref or me */
catch_iseq->body->iseq_encoded,
cfp->sp + 1 /* push value */,
catch_iseq->body->local_size - 1,
catch_iseq->body->stack_max);
state = 0;
th->state = 0;
th->errinfo = Qnil;
goto vm_loop_start;
}
else {
/* skip frame */
hook_before_rewind(th, th->cfp);
if (VM_FRAME_TYPE_FINISH_P(th->cfp)) {
vm_pop_frame(th);
th->errinfo = (VALUE)err;
TH_TMPPOP_TAG();
JUMP_TAG(state);
}
else {
th->cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
goto exception_handler;
}
}
}
finish_vme:
TH_POP_TAG();
return result;
}
/* misc */
VALUE
rb_iseq_eval(const rb_iseq_t *iseq)
{
rb_thread_t *th = GET_THREAD();
VALUE val;
vm_set_top_stack(th, iseq);
val = vm_exec(th);
return val;
}
VALUE
rb_iseq_eval_main(const rb_iseq_t *iseq)
{
rb_thread_t *th = GET_THREAD();
VALUE val;
vm_set_main_stack(th, iseq);
val = vm_exec(th);
return val;
}
int
rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, VALUE *klassp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
if (idp) *idp = me->def->original_id;
if (klassp) *klassp = me->owner;
return TRUE;
}
else {
return FALSE;
}
}
int
rb_thread_method_id_and_class(rb_thread_t *th, ID *idp, VALUE *klassp)
{
return rb_vm_control_frame_id_and_class(th->cfp, idp, klassp);
}
int
rb_frame_method_id_and_class(ID *idp, VALUE *klassp)
{
return rb_thread_method_id_and_class(GET_THREAD(), idp, klassp);
}
VALUE
rb_thread_current_status(const rb_thread_t *th)
{
const rb_control_frame_t *cfp = th->cfp;
const rb_callable_method_entry_t *me;
VALUE str = Qnil;
if (cfp->iseq != 0) {
if (cfp->pc != 0) {
const rb_iseq_t *iseq = cfp->iseq;
int line_no = rb_vm_get_sourceline(cfp);
str = rb_sprintf("%"PRIsVALUE":%d:in `%"PRIsVALUE"'",
iseq->body->location.path, line_no, iseq->body->location.label);
}
}
else if ((me = rb_vm_frame_method_entry(cfp)) && me->def->original_id) {
str = rb_sprintf("`%"PRIsVALUE"#%"PRIsVALUE"' (cfunc)",
rb_class_path(me->owner),
rb_id2str(me->def->original_id));
}
return str;
}
VALUE
rb_vm_call_cfunc(VALUE recv, VALUE (*func)(VALUE), VALUE arg,
const rb_block_t *blockptr, VALUE filename)
{
rb_thread_t *th = GET_THREAD();
const rb_control_frame_t *reg_cfp = th->cfp;
const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
VALUE val;
vm_push_frame(th, iseq, VM_FRAME_MAGIC_TOP | VM_FRAME_FLAG_FINISH,
recv, VM_ENVVAL_BLOCK_PTR(blockptr),
(VALUE)vm_cref_new_toplevel(th), /* cref or me */
0, reg_cfp->sp, 1, 0);
val = (*func)(arg);
vm_pop_frame(th);
return val;
}
/* vm */
void rb_vm_trace_mark_event_hooks(rb_hook_list_t *hooks);
void
rb_vm_mark(void *ptr)
{
int i;
RUBY_MARK_ENTER("vm");
RUBY_GC_INFO("-------------------------------------------------\n");
if (ptr) {
rb_vm_t *vm = ptr;
rb_thread_t *th = 0;
list_for_each(&vm->living_threads, th, vmlt_node) {
rb_gc_mark(th->self);
}
rb_gc_mark(vm->thgroup_default);
rb_gc_mark(vm->mark_object_ary);
rb_gc_mark(vm->load_path);
rb_gc_mark(vm->load_path_snapshot);
RUBY_MARK_UNLESS_NULL(vm->load_path_check_cache);
rb_gc_mark(vm->expanded_load_path);
rb_gc_mark(vm->loaded_features);
rb_gc_mark(vm->loaded_features_snapshot);
rb_gc_mark(vm->top_self);
RUBY_MARK_UNLESS_NULL(vm->coverages);
rb_gc_mark(vm->defined_module_hash);
if (vm->loading_table) {
rb_mark_tbl(vm->loading_table);
}
rb_vm_trace_mark_event_hooks(&vm->event_hooks);
for (i = 0; i < RUBY_NSIG; i++) {
if (vm->trap_list[i].cmd)
rb_gc_mark(vm->trap_list[i].cmd);
}
}
RUBY_MARK_LEAVE("vm");
}
void
rb_vm_register_special_exception(enum ruby_special_exceptions sp, VALUE cls, const char *mesg)
{
rb_vm_t *vm = GET_VM();
VALUE exc = rb_exc_new3(cls, rb_obj_freeze(rb_str_new2(mesg)));
OBJ_TAINT(exc);
OBJ_FREEZE(exc);
((VALUE *)vm->special_exceptions)[sp] = exc;
rb_gc_register_mark_object(exc);
}
int
rb_vm_add_root_module(ID id, VALUE module)
{
rb_vm_t *vm = GET_VM();
rb_hash_aset(vm->defined_module_hash, ID2SYM(id), module);
return TRUE;
}
int
ruby_vm_destruct(rb_vm_t *vm)
{
RUBY_FREE_ENTER("vm");
if (vm) {
rb_thread_t *th = vm->main_thread;
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
struct rb_objspace *objspace = vm->objspace;
#endif
vm->main_thread = 0;
if (th) {
rb_fiber_reset_root_local_storage(th->self);
thread_free(th);
}
rb_vm_living_threads_init(vm);
ruby_vm_run_at_exit_hooks(vm);
rb_vm_gvl_destroy(vm);
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
if (objspace) {
rb_objspace_free(objspace);
}
#endif
/* after freeing objspace, you *can't* use ruby_xfree() */
ruby_mimfree(vm);
ruby_current_vm = 0;
}
RUBY_FREE_LEAVE("vm");
return 0;
}
static size_t
vm_memsize(const void *ptr)
{
if (ptr) {
const rb_vm_t *vmobj = ptr;
size_t size = sizeof(rb_vm_t);
size += vmobj->living_thread_num * sizeof(rb_thread_t);
if (vmobj->defined_strings) {
size += DEFINED_EXPR * sizeof(VALUE);
}
return size;
}
else {
return 0;
}
}
static const rb_data_type_t vm_data_type = {
"VM",
{NULL, NULL, vm_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
vm_default_params(void)
{
rb_vm_t *vm = GET_VM();
VALUE result = rb_hash_new();
#define SET(name) rb_hash_aset(result, ID2SYM(rb_intern(#name)), SIZET2NUM(vm->default_params.name));
SET(thread_vm_stack_size);
SET(thread_machine_stack_size);
SET(fiber_vm_stack_size);
SET(fiber_machine_stack_size);
#undef SET
rb_obj_freeze(result);
return result;
}
static size_t
get_param(const char *name, size_t default_value, size_t min_value)
{
const char *envval;
size_t result = default_value;
if ((envval = getenv(name)) != 0) {
long val = atol(envval);
if (val < (long)min_value) {
val = (long)min_value;
}
result = (size_t)(((val -1 + RUBY_VM_SIZE_ALIGN) / RUBY_VM_SIZE_ALIGN) * RUBY_VM_SIZE_ALIGN);
}
if (0) fprintf(stderr, "%s: %"PRIdSIZE"\n", name, result); /* debug print */
return result;
}
static void
check_machine_stack_size(size_t *sizep)
{
#ifdef PTHREAD_STACK_MIN
size_t size = *sizep;
#endif
#ifdef PTHREAD_STACK_MIN
if (size < PTHREAD_STACK_MIN) {
*sizep = PTHREAD_STACK_MIN * 2;
}
#endif
}
static void
vm_default_params_setup(rb_vm_t *vm)
{
vm->default_params.thread_vm_stack_size =
get_param("RUBY_THREAD_VM_STACK_SIZE",
RUBY_VM_THREAD_VM_STACK_SIZE,
RUBY_VM_THREAD_VM_STACK_SIZE_MIN);
vm->default_params.thread_machine_stack_size =
get_param("RUBY_THREAD_MACHINE_STACK_SIZE",
RUBY_VM_THREAD_MACHINE_STACK_SIZE,
RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN);
vm->default_params.fiber_vm_stack_size =
get_param("RUBY_FIBER_VM_STACK_SIZE",
RUBY_VM_FIBER_VM_STACK_SIZE,
RUBY_VM_FIBER_VM_STACK_SIZE_MIN);
vm->default_params.fiber_machine_stack_size =
get_param("RUBY_FIBER_MACHINE_STACK_SIZE",
RUBY_VM_FIBER_MACHINE_STACK_SIZE,
RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN);
/* environment dependent check */
check_machine_stack_size(&vm->default_params.thread_machine_stack_size);
check_machine_stack_size(&vm->default_params.fiber_machine_stack_size);
}
static void
vm_init2(rb_vm_t *vm)
{
MEMZERO(vm, rb_vm_t, 1);
rb_vm_living_threads_init(vm);
vm->src_encoding_index = -1;
vm->at_exit.basic.flags = (T_ARRAY | RARRAY_EMBED_FLAG) & ~RARRAY_EMBED_LEN_MASK; /* len set 0 */
rb_obj_hide((VALUE)&vm->at_exit);
vm_default_params_setup(vm);
}
/* Thread */
#define USE_THREAD_DATA_RECYCLE 1
#if USE_THREAD_DATA_RECYCLE
#define RECYCLE_MAX 64
static VALUE *thread_recycle_stack_slot[RECYCLE_MAX];
static int thread_recycle_stack_count = 0;
static VALUE *
thread_recycle_stack(size_t size)
{
if (thread_recycle_stack_count) {
/* TODO: check stack size if stack sizes are variable */
return thread_recycle_stack_slot[--thread_recycle_stack_count];
}
else {
return ALLOC_N(VALUE, size);
}
}
#else
#define thread_recycle_stack(size) ALLOC_N(VALUE, (size))
#endif
void
rb_thread_recycle_stack_release(VALUE *stack)
{
#if USE_THREAD_DATA_RECYCLE
if (thread_recycle_stack_count < RECYCLE_MAX) {
thread_recycle_stack_slot[thread_recycle_stack_count++] = stack;
return;
}
#endif
ruby_xfree(stack);
}
void rb_fiber_mark_self(rb_fiber_t *fib);
void
rb_thread_mark(void *ptr)
{
rb_thread_t *th = ptr;
RUBY_MARK_ENTER("thread");
if (th->stack) {
VALUE *p = th->stack;
VALUE *sp = th->cfp->sp;
rb_control_frame_t *cfp = th->cfp;
rb_control_frame_t *limit_cfp = (void *)(th->stack + th->stack_size);
rb_gc_mark_values((long)(sp - p), p);
while (cfp != limit_cfp) {
rb_gc_mark(cfp->proc);
rb_gc_mark(cfp->self);
rb_gc_mark((VALUE)cfp->iseq);
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
/* mark ruby objects */
RUBY_MARK_UNLESS_NULL(th->first_proc);
if (th->first_proc) RUBY_MARK_UNLESS_NULL(th->first_args);
RUBY_MARK_UNLESS_NULL(th->thgroup);
RUBY_MARK_UNLESS_NULL(th->value);
RUBY_MARK_UNLESS_NULL(th->errinfo);
RUBY_MARK_UNLESS_NULL(th->pending_interrupt_queue);
RUBY_MARK_UNLESS_NULL(th->pending_interrupt_mask_stack);
RUBY_MARK_UNLESS_NULL(th->root_svar);
RUBY_MARK_UNLESS_NULL(th->top_self);
RUBY_MARK_UNLESS_NULL(th->top_wrapper);
rb_fiber_mark_self(th->fiber);
rb_fiber_mark_self(th->root_fiber);
RUBY_MARK_UNLESS_NULL(th->stat_insn_usage);
RUBY_MARK_UNLESS_NULL(th->last_status);
RUBY_MARK_UNLESS_NULL(th->locking_mutex);
rb_mark_tbl(th->local_storage);
RUBY_MARK_UNLESS_NULL(th->local_storage_recursive_hash);
RUBY_MARK_UNLESS_NULL(th->local_storage_recursive_hash_for_trace);
if (GET_THREAD() != th && th->machine.stack_start && th->machine.stack_end) {
rb_gc_mark_machine_stack(th);
rb_gc_mark_locations((VALUE *)&th->machine.regs,
(VALUE *)(&th->machine.regs) +
sizeof(th->machine.regs) / sizeof(VALUE));
}
RUBY_MARK_UNLESS_NULL(th->name);
rb_vm_trace_mark_event_hooks(&th->event_hooks);
RUBY_MARK_LEAVE("thread");
}
static void
thread_free(void *ptr)
{
rb_thread_t *th;
RUBY_FREE_ENTER("thread");
if (ptr) {
th = ptr;
if (!th->root_fiber) {
RUBY_FREE_UNLESS_NULL(th->stack);
}
if (th->locking_mutex != Qfalse) {
rb_bug("thread_free: locking_mutex must be NULL (%p:%p)", (void *)th, (void *)th->locking_mutex);
}
if (th->keeping_mutexes != NULL) {
rb_bug("thread_free: keeping_mutexes must be NULL (%p:%p)", (void *)th, (void *)th->keeping_mutexes);
}
if (th->local_storage) {
st_free_table(th->local_storage);
}
if (th->vm && th->vm->main_thread == th) {
RUBY_GC_INFO("main thread\n");
}
else {
#ifdef USE_SIGALTSTACK
if (th->altstack) {
free(th->altstack);
}
#endif
ruby_xfree(ptr);
}
if (ruby_current_thread == th)
ruby_current_thread = NULL;
}
RUBY_FREE_LEAVE("thread");
}
static size_t
thread_memsize(const void *ptr)
{
if (ptr) {
const rb_thread_t *th = ptr;
size_t size = sizeof(rb_thread_t);
if (!th->root_fiber) {
size += th->stack_size * sizeof(VALUE);
}
if (th->local_storage) {
size += st_memsize(th->local_storage);
}
return size;
}
else {
return 0;
}
}
#define thread_data_type ruby_threadptr_data_type
const rb_data_type_t ruby_threadptr_data_type = {
"VM/thread",
{
rb_thread_mark,
thread_free,
thread_memsize,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_obj_is_thread(VALUE obj)
{
if (rb_typeddata_is_kind_of(obj, &thread_data_type)) {
return Qtrue;
}
else {
return Qfalse;
}
}
static VALUE
thread_alloc(VALUE klass)
{
VALUE obj;
rb_thread_t *th;
obj = TypedData_Make_Struct(klass, rb_thread_t, &thread_data_type, th);
return obj;
}
static void
th_init(rb_thread_t *th, VALUE self)
{
th->self = self;
/* allocate thread stack */
#ifdef USE_SIGALTSTACK
/* altstack of main thread is reallocated in another place */
th->altstack = malloc(rb_sigaltstack_size());
#endif
/* th->stack_size is word number.
* th->vm->default_params.thread_vm_stack_size is byte size.
*/
th->stack_size = th->vm->default_params.thread_vm_stack_size / sizeof(VALUE);
th->stack = thread_recycle_stack(th->stack_size);
th->cfp = (void *)(th->stack + th->stack_size);
vm_push_frame(th, 0 /* dummy iseq */, VM_FRAME_MAGIC_DUMMY | VM_FRAME_FLAG_FINISH /* dummy frame */,
Qnil /* dummy self */, VM_ENVVAL_BLOCK_PTR(0) /* dummy block ptr */,
0 /* dummy cref/me */,
0 /* dummy pc */, th->stack, 1, 0);
th->status = THREAD_RUNNABLE;
th->errinfo = Qnil;
th->last_status = Qnil;
th->waiting_fd = -1;
th->root_svar = Qfalse;
th->local_storage_recursive_hash = Qnil;
th->local_storage_recursive_hash_for_trace = Qnil;
#ifdef NON_SCALAR_THREAD_ID
th->thread_id_string[0] = '\0';
#endif
#if OPT_CALL_THREADED_CODE
th->retval = Qundef;
#endif
th->name = Qnil;
}
static VALUE
ruby_thread_init(VALUE self)
{
rb_thread_t *th;
rb_vm_t *vm = GET_THREAD()->vm;
GetThreadPtr(self, th);
th->vm = vm;
th_init(th, self);
rb_ivar_set(self, rb_intern("locals"), rb_hash_new());
th->top_wrapper = 0;
th->top_self = rb_vm_top_self();
th->root_svar = Qfalse;
return self;
}
VALUE
rb_thread_alloc(VALUE klass)
{
VALUE self = thread_alloc(klass);
ruby_thread_init(self);
return self;
}
static void
vm_define_method(rb_thread_t *th, VALUE obj, ID id, VALUE iseqval,
rb_num_t is_singleton, rb_cref_t *cref)
{
VALUE klass = CREF_CLASS(cref);
const rb_scope_visibility_t *scope_visi = CREF_SCOPE_VISI(cref);
rb_method_visibility_t visi = scope_visi->method_visi;
if (NIL_P(klass)) {
rb_raise(rb_eTypeError, "no class/module to add method");
}
if (is_singleton) {
klass = rb_singleton_class(obj); /* class and frozen checked in this API */
visi = METHOD_VISI_PUBLIC;
}
rb_add_method_iseq(klass, id, (const rb_iseq_t *)iseqval, cref, visi);
if (!is_singleton && scope_visi->module_func) {
klass = rb_singleton_class(klass);
rb_add_method_iseq(klass, id, (const rb_iseq_t *)iseqval, cref, METHOD_VISI_PUBLIC);
}
}
#define REWIND_CFP(expr) do { \
rb_thread_t *th__ = GET_THREAD(); \
VALUE *const curr_sp = (th__->cfp++)->sp; \
VALUE *const saved_sp = th__->cfp->sp; \
th__->cfp->sp = curr_sp; \
expr; \
(th__->cfp--)->sp = saved_sp; \
} while (0)
static VALUE
m_core_define_method(VALUE self, VALUE cbase, VALUE sym, VALUE iseqval)
{
REWIND_CFP({
vm_define_method(GET_THREAD(), cbase, SYM2ID(sym), iseqval, 0, rb_vm_cref());
});
return sym;
}
static VALUE
m_core_define_singleton_method(VALUE self, VALUE cbase, VALUE sym, VALUE iseqval)
{
REWIND_CFP({
vm_define_method(GET_THREAD(), cbase, SYM2ID(sym), iseqval, 1, rb_vm_cref());
});
return sym;
}
static VALUE
m_core_set_method_alias(VALUE self, VALUE cbase, VALUE sym1, VALUE sym2)
{
REWIND_CFP({
rb_alias(cbase, SYM2ID(sym1), SYM2ID(sym2));
});
return Qnil;
}
static VALUE
m_core_set_variable_alias(VALUE self, VALUE sym1, VALUE sym2)
{
REWIND_CFP({
rb_alias_variable(SYM2ID(sym1), SYM2ID(sym2));
});
return Qnil;
}
static VALUE
m_core_undef_method(VALUE self, VALUE cbase, VALUE sym)
{
REWIND_CFP({
rb_undef(cbase, SYM2ID(sym));
rb_clear_method_cache_by_class(self);
});
return Qnil;
}
static VALUE
m_core_set_postexe(VALUE self)
{
rb_set_end_proc(rb_call_end_proc, rb_block_proc());
return Qnil;
}
static VALUE core_hash_merge_ary(VALUE hash, VALUE ary);
static VALUE core_hash_from_ary(VALUE ary);
static VALUE core_hash_merge_kwd(int argc, VALUE *argv);
static VALUE
core_hash_merge(VALUE hash, long argc, const VALUE *argv)
{
long i;
VM_ASSERT(argc % 2 == 0);
for (i=0; i<argc; i+=2) {
rb_hash_aset(hash, argv[i], argv[i+1]);
}
return hash;
}
static VALUE
m_core_hash_from_ary(VALUE self, VALUE ary)
{
VALUE hash;
REWIND_CFP(hash = core_hash_from_ary(ary));
return hash;
}
static VALUE
core_hash_from_ary(VALUE ary)
{
VALUE hash = rb_hash_new();
if (RUBY_DTRACE_HASH_CREATE_ENABLED()) {
RUBY_DTRACE_HASH_CREATE(RARRAY_LEN(ary), rb_sourcefile(), rb_sourceline());
}
return core_hash_merge_ary(hash, ary);
}
static VALUE
m_core_hash_merge_ary(VALUE self, VALUE hash, VALUE ary)
{
REWIND_CFP(core_hash_merge_ary(hash, ary));
return hash;
}
static VALUE
core_hash_merge_ary(VALUE hash, VALUE ary)
{
core_hash_merge(hash, RARRAY_LEN(ary), RARRAY_CONST_PTR(ary));
return hash;
}
static VALUE
m_core_hash_merge_ptr(int argc, VALUE *argv, VALUE recv)
{
VALUE hash = argv[0];
REWIND_CFP(core_hash_merge(hash, argc-1, argv+1));
return hash;
}
static int
kwmerge_i(VALUE key, VALUE value, VALUE hash)
{
if (!SYMBOL_P(key)) Check_Type(key, T_SYMBOL);
rb_hash_aset(hash, key, value);
return ST_CONTINUE;
}
static int
kwcheck_i(VALUE key, VALUE value, VALUE hash)
{
if (!SYMBOL_P(key)) Check_Type(key, T_SYMBOL);
return ST_CONTINUE;
}
static VALUE
m_core_hash_merge_kwd(int argc, VALUE *argv, VALUE recv)
{
VALUE hash;
REWIND_CFP(hash = core_hash_merge_kwd(argc, argv));
return hash;
}
static VALUE
core_hash_merge_kwd(int argc, VALUE *argv)
{
VALUE hash, kw;
rb_check_arity(argc, 1, 2);
hash = argv[0];
kw = argv[argc-1];
kw = rb_convert_type(kw, T_HASH, "Hash", "to_hash");
if (argc < 2) hash = kw;
rb_hash_foreach(kw, argc < 2 ? kwcheck_i : kwmerge_i, hash);
return hash;
}
extern VALUE *rb_gc_stack_start;
extern size_t rb_gc_stack_maxsize;
#ifdef __ia64
extern VALUE *rb_gc_register_stack_start;
#endif
/* debug functions */
/* :nodoc: */
static VALUE
sdr(void)
{
rb_vm_bugreport(NULL);
return Qnil;
}
/* :nodoc: */
static VALUE
nsdr(void)
{
VALUE ary = rb_ary_new();
#if HAVE_BACKTRACE
#include <execinfo.h>
#define MAX_NATIVE_TRACE 1024
static void *trace[MAX_NATIVE_TRACE];
int n = (int)backtrace(trace, MAX_NATIVE_TRACE);
char **syms = backtrace_symbols(trace, n);
int i;
if (syms == 0) {
rb_memerror();
}
for (i=0; i<n; i++) {
rb_ary_push(ary, rb_str_new2(syms[i]));
}
free(syms); /* OK */
#endif
return ary;
}
#if VM_COLLECT_USAGE_DETAILS
static VALUE usage_analysis_insn_stop(VALUE self);
static VALUE usage_analysis_operand_stop(VALUE self);
static VALUE usage_analysis_register_stop(VALUE self);
#endif
void
Init_VM(void)
{
VALUE opts;
VALUE klass;
VALUE fcore;
/* ::RubyVM */
rb_cRubyVM = rb_define_class("RubyVM", rb_cObject);
rb_undef_alloc_func(rb_cRubyVM);
rb_undef_method(CLASS_OF(rb_cRubyVM), "new");
rb_define_singleton_method(rb_cRubyVM, "stat", vm_stat, -1);
/* FrozenCore (hidden) */
fcore = rb_class_new(rb_cBasicObject);
RBASIC(fcore)->flags = T_ICLASS;
klass = rb_singleton_class(fcore);
rb_define_method_id(klass, id_core_set_method_alias, m_core_set_method_alias, 3);
rb_define_method_id(klass, id_core_set_variable_alias, m_core_set_variable_alias, 2);
rb_define_method_id(klass, id_core_undef_method, m_core_undef_method, 2);
rb_define_method_id(klass, id_core_define_method, m_core_define_method, 3);
rb_define_method_id(klass, id_core_define_singleton_method, m_core_define_singleton_method, 3);
rb_define_method_id(klass, id_core_set_postexe, m_core_set_postexe, 0);
rb_define_method_id(klass, id_core_hash_from_ary, m_core_hash_from_ary, 1);
rb_define_method_id(klass, id_core_hash_merge_ary, m_core_hash_merge_ary, 2);
rb_define_method_id(klass, id_core_hash_merge_ptr, m_core_hash_merge_ptr, -1);
rb_define_method_id(klass, id_core_hash_merge_kwd, m_core_hash_merge_kwd, -1);
rb_define_method_id(klass, idProc, rb_block_proc, 0);
rb_define_method_id(klass, idLambda, rb_block_lambda, 0);
rb_obj_freeze(fcore);
RBASIC_CLEAR_CLASS(klass);
rb_obj_freeze(klass);
rb_gc_register_mark_object(fcore);
rb_mRubyVMFrozenCore = fcore;
/* ::RubyVM::Env */
rb_cEnv = rb_define_class_under(rb_cRubyVM, "Env", rb_cObject);
rb_undef_alloc_func(rb_cEnv);
rb_undef_method(CLASS_OF(rb_cEnv), "new");
/*
* Document-class: Thread
*
* Threads are the Ruby implementation for a concurrent programming model.
*
* Programs that require multiple threads of execution are a perfect
* candidate for Ruby's Thread class.
*
* For example, we can create a new thread separate from the main thread's
* execution using ::new.
*
* thr = Thread.new { puts "Whats the big deal" }
*
* Then we are able to pause the execution of the main thread and allow
* our new thread to finish, using #join:
*
* thr.join #=> "Whats the big deal"
*
* If we don't call +thr.join+ before the main thread terminates, then all
* other threads including +thr+ will be killed.
*
* Alternatively, you can use an array for handling multiple threads at
* once, like in the following example:
*
* threads = []
* threads << Thread.new { puts "Whats the big deal" }
* threads << Thread.new { 3.times { puts "Threads are fun!" } }
*
* After creating a few threads we wait for them all to finish
* consecutively.
*
* threads.each { |thr| thr.join }
*
* === Thread initialization
*
* In order to create new threads, Ruby provides ::new, ::start, and
* ::fork. A block must be provided with each of these methods, otherwise
* a ThreadError will be raised.
*
* When subclassing the Thread class, the +initialize+ method of your
* subclass will be ignored by ::start and ::fork. Otherwise, be sure to
* call super in your +initialize+ method.
*
* === Thread termination
*
* For terminating threads, Ruby provides a variety of ways to do this.
*
* The class method ::kill, is meant to exit a given thread:
*
* thr = Thread.new { ... }
* Thread.kill(thr) # sends exit() to thr
*
* Alternatively, you can use the instance method #exit, or any of its
* aliases #kill or #terminate.
*
* thr.exit
*
* === Thread status
*
* Ruby provides a few instance methods for querying the state of a given
* thread. To get a string with the current thread's state use #status
*
* thr = Thread.new { sleep }
* thr.status # => "sleep"
* thr.exit
* thr.status # => false
*
* You can also use #alive? to tell if the thread is running or sleeping,
* and #stop? if the thread is dead or sleeping.
*
* === Thread variables and scope
*
* Since threads are created with blocks, the same rules apply to other
* Ruby blocks for variable scope. Any local variables created within this
* block are accessible to only this thread.
*
* ==== Fiber-local vs. Thread-local
*
* Each fiber has its own bucket for Thread#[] storage. When you set a
* new fiber-local it is only accessible within this Fiber. To illustrate:
*
* Thread.new {
* Thread.current[:foo] = "bar"
* Fiber.new {
* p Thread.current[:foo] # => nil
* }.resume
* }.join
*
* This example uses #[] for getting and #[]= for setting fiber-locals,
* you can also use #keys to list the fiber-locals for a given
* thread and #key? to check if a fiber-local exists.
*
* When it comes to thread-locals, they are accessible within the entire
* scope of the thread. Given the following example:
*
* Thread.new{
* Thread.current.thread_variable_set(:foo, 1)
* p Thread.current.thread_variable_get(:foo) # => 1
* Fiber.new{
* Thread.current.thread_variable_set(:foo, 2)
* p Thread.current.thread_variable_get(:foo) # => 2
* }.resume
* p Thread.current.thread_variable_get(:foo) # => 2
* }.join
*
* You can see that the thread-local +:foo+ carried over into the fiber
* and was changed to +2+ by the end of the thread.
*
* This example makes use of #thread_variable_set to create new
* thread-locals, and #thread_variable_get to reference them.
*
* There is also #thread_variables to list all thread-locals, and
* #thread_variable? to check if a given thread-local exists.
*
* === Exception handling
*
* Any thread can raise an exception using the #raise instance method,
* which operates similarly to Kernel#raise.
*
* However, it's important to note that an exception that occurs in any
* thread except the main thread depends on #abort_on_exception. This
* option is +false+ by default, meaning that any unhandled exception will
* cause the thread to terminate silently when waited on by either #join
* or #value. You can change this default by either #abort_on_exception=
* +true+ or setting $DEBUG to +true+.
*
* With the addition of the class method ::handle_interrupt, you can now
* handle exceptions asynchronously with threads.
*
* === Scheduling
*
* Ruby provides a few ways to support scheduling threads in your program.
*
* The first way is by using the class method ::stop, to put the current
* running thread to sleep and schedule the execution of another thread.
*
* Once a thread is asleep, you can use the instance method #wakeup to
* mark your thread as eligible for scheduling.
*
* You can also try ::pass, which attempts to pass execution to another
* thread but is dependent on the OS whether a running thread will switch
* or not. The same goes for #priority, which lets you hint to the thread
* scheduler which threads you want to take precedence when passing
* execution. This method is also dependent on the OS and may be ignored
* on some platforms.
*
*/
rb_cThread = rb_define_class("Thread", rb_cObject);
rb_undef_alloc_func(rb_cThread);
#if VM_COLLECT_USAGE_DETAILS
/* ::RubyVM::USAGE_ANALYSIS_* */
#define define_usage_analysis_hash(name) /* shut up rdoc -C */ \
rb_define_const(rb_cRubyVM, "USAGE_ANALYSIS_"#name, rb_hash_new())
define_usage_analysis_hash("INSN");
define_usage_analysis_hash("REGS");
define_usage_analysis_hash("INSN_BIGRAM");
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_STOP", usage_analysis_insn_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_STOP", usage_analysis_operand_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_STOP", usage_analysis_register_stop, 0);
#endif
/* ::RubyVM::OPTS, which shows vm build options */
rb_define_const(rb_cRubyVM, "OPTS", opts = rb_ary_new());
#if OPT_DIRECT_THREADED_CODE
rb_ary_push(opts, rb_str_new2("direct threaded code"));
#elif OPT_TOKEN_THREADED_CODE
rb_ary_push(opts, rb_str_new2("token threaded code"));
#elif OPT_CALL_THREADED_CODE
rb_ary_push(opts, rb_str_new2("call threaded code"));
#endif
#if OPT_STACK_CACHING
rb_ary_push(opts, rb_str_new2("stack caching"));
#endif
#if OPT_OPERANDS_UNIFICATION
rb_ary_push(opts, rb_str_new2("operands unification"));
#endif
#if OPT_INSTRUCTIONS_UNIFICATION
rb_ary_push(opts, rb_str_new2("instructions unification"));
#endif
#if OPT_INLINE_METHOD_CACHE
rb_ary_push(opts, rb_str_new2("inline method cache"));
#endif
#if OPT_BLOCKINLINING
rb_ary_push(opts, rb_str_new2("block inlining"));
#endif
/* ::RubyVM::INSTRUCTION_NAMES */
rb_define_const(rb_cRubyVM, "INSTRUCTION_NAMES", rb_insns_name_array());
/* ::RubyVM::DEFAULT_PARAMS
* This constant variable shows VM's default parameters.
* Note that changing these values does not affect VM execution.
* Specification is not stable and you should not depend on this value.
* Of course, this constant is MRI specific.
*/
rb_define_const(rb_cRubyVM, "DEFAULT_PARAMS", vm_default_params());
/* debug functions ::RubyVM::SDR(), ::RubyVM::NSDR() */
#if VMDEBUG
rb_define_singleton_method(rb_cRubyVM, "SDR", sdr, 0);
rb_define_singleton_method(rb_cRubyVM, "NSDR", nsdr, 0);
#else
(void)sdr;
(void)nsdr;
#endif
/* VM bootstrap: phase 2 */
{
rb_vm_t *vm = ruby_current_vm;
rb_thread_t *th = GET_THREAD();
VALUE filename = rb_str_new2("<main>");
const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
volatile VALUE th_self;
/* create vm object */
vm->self = TypedData_Wrap_Struct(rb_cRubyVM, &vm_data_type, vm);
/* create main thread */
th_self = th->self = TypedData_Wrap_Struct(rb_cThread, &thread_data_type, th);
rb_iv_set(th_self, "locals", rb_hash_new());
vm->main_thread = th;
vm->running_thread = th;
th->vm = vm;
th->top_wrapper = 0;
th->top_self = rb_vm_top_self();
rb_thread_set_current(th);
rb_vm_living_threads_insert(vm, th);
rb_gc_register_mark_object((VALUE)iseq);
th->cfp->iseq = iseq;
th->cfp->pc = iseq->body->iseq_encoded;
th->cfp->self = th->top_self;
th->cfp->ep[-1] = (VALUE)vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE, NULL);
/*
* The Binding of the top level scope
*/
rb_define_global_const("TOPLEVEL_BINDING", rb_binding_new());
}
vm_init_redefined_flag();
/* vm_backtrace.c */
Init_vm_backtrace();
VM_PROFILE_ATEXIT();
}
void
rb_vm_set_progname(VALUE filename)
{
rb_thread_t *th = GET_VM()->main_thread;
rb_control_frame_t *cfp = (void *)(th->stack + th->stack_size);
--cfp;
RB_OBJ_WRITE(cfp->iseq, &cfp->iseq->body->location.path, filename);
}
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
struct rb_objspace *rb_objspace_alloc(void);
#endif
void
Init_BareVM(void)
{
/* VM bootstrap: phase 1 */
rb_vm_t * vm = ruby_mimmalloc(sizeof(*vm));
rb_thread_t * th = ruby_mimmalloc(sizeof(*th));
if (!vm || !th) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
MEMZERO(th, rb_thread_t, 1);
rb_thread_set_current_raw(th);
vm_init2(vm);
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
vm->objspace = rb_objspace_alloc();
#endif
ruby_current_vm = vm;
Init_native_thread();
th->vm = vm;
th_init(th, 0);
ruby_thread_init_stack(th);
}
void
Init_vm_objects(void)
{
rb_vm_t *vm = GET_VM();
vm->defined_module_hash = rb_hash_new();
/* initialize mark object array, hash */
vm->mark_object_ary = rb_ary_tmp_new(128);
vm->loading_table = st_init_strtable();
}
/* top self */
static VALUE
main_to_s(VALUE obj)
{
return rb_str_new2("main");
}
VALUE
rb_vm_top_self(void)
{
return GET_VM()->top_self;
}
void
Init_top_self(void)
{
rb_vm_t *vm = GET_VM();
vm->top_self = rb_obj_alloc(rb_cObject);
rb_define_singleton_method(rb_vm_top_self(), "to_s", main_to_s, 0);
rb_define_alias(rb_singleton_class(rb_vm_top_self()), "inspect", "to_s");
}
VALUE *
ruby_vm_verbose_ptr(rb_vm_t *vm)
{
return &vm->verbose;
}
VALUE *
ruby_vm_debug_ptr(rb_vm_t *vm)
{
return &vm->debug;
}
VALUE *
rb_ruby_verbose_ptr(void)
{
return ruby_vm_verbose_ptr(GET_VM());
}
VALUE *
rb_ruby_debug_ptr(void)
{
return ruby_vm_debug_ptr(GET_VM());
}
/* iseq.c */
VALUE rb_insn_operand_intern(const rb_iseq_t *iseq,
VALUE insn, int op_no, VALUE op,
int len, size_t pos, VALUE *pnop, VALUE child);
#if VM_COLLECT_USAGE_DETAILS
#define HASH_ASET(h, k, v) rb_hash_aset((h), (st_data_t)(k), (st_data_t)(v))
/* uh = {
* insn(Fixnum) => ihash(Hash)
* }
* ihash = {
* -1(Fixnum) => count, # insn usage
* 0(Fixnum) => ophash, # operand usage
* }
* ophash = {
* val(interned string) => count(Fixnum)
* }
*/
static void
vm_analysis_insn(int insn)
{
ID usage_hash;
ID bigram_hash;
static int prev_insn = -1;
VALUE uh;
VALUE ihash;
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM");
uh = rb_const_get(rb_cRubyVM, usage_hash);
if ((ihash = rb_hash_aref(uh, INT2FIX(insn))) == Qnil) {
ihash = rb_hash_new();
HASH_ASET(uh, INT2FIX(insn), ihash);
}
if ((cv = rb_hash_aref(ihash, INT2FIX(-1))) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(ihash, INT2FIX(-1), INT2FIX(FIX2INT(cv) + 1));
/* calc bigram */
if (prev_insn != -1) {
VALUE bi;
VALUE ary[2];
VALUE cv;
ary[0] = INT2FIX(prev_insn);
ary[1] = INT2FIX(insn);
bi = rb_ary_new4(2, &ary[0]);
uh = rb_const_get(rb_cRubyVM, bigram_hash);
if ((cv = rb_hash_aref(uh, bi)) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(uh, bi, INT2FIX(FIX2INT(cv) + 1));
}
prev_insn = insn;
}
static void
vm_analysis_operand(int insn, int n, VALUE op)
{
ID usage_hash;
VALUE uh;
VALUE ihash;
VALUE ophash;
VALUE valstr;
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
uh = rb_const_get(rb_cRubyVM, usage_hash);
if ((ihash = rb_hash_aref(uh, INT2FIX(insn))) == Qnil) {
ihash = rb_hash_new();
HASH_ASET(uh, INT2FIX(insn), ihash);
}
if ((ophash = rb_hash_aref(ihash, INT2FIX(n))) == Qnil) {
ophash = rb_hash_new();
HASH_ASET(ihash, INT2FIX(n), ophash);
}
/* intern */
valstr = rb_insn_operand_intern(GET_THREAD()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
/* set count */
if ((cv = rb_hash_aref(ophash, valstr)) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(ophash, valstr, INT2FIX(FIX2INT(cv) + 1));
}
static void
vm_analysis_register(int reg, int isset)
{
ID usage_hash;
VALUE uh;
VALUE valstr;
static const char regstrs[][5] = {
"pc", /* 0 */
"sp", /* 1 */
"ep", /* 2 */
"cfp", /* 3 */
"self", /* 4 */
"iseq", /* 5 */
};
static const char getsetstr[][4] = {
"get",
"set",
};
static VALUE syms[sizeof(regstrs) / sizeof(regstrs[0])][2];
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS");
if (syms[0] == 0) {
char buff[0x10];
int i;
for (i = 0; i < (int)(sizeof(regstrs) / sizeof(regstrs[0])); i++) {
int j;
for (j = 0; j < 2; j++) {
snprintf(buff, 0x10, "%d %s %-4s", i, getsetstr[j], regstrs[i]);
syms[i][j] = ID2SYM(rb_intern(buff));
}
}
}
valstr = syms[reg][isset];
uh = rb_const_get(rb_cRubyVM, usage_hash);
if ((cv = rb_hash_aref(uh, valstr)) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(uh, valstr, INT2FIX(FIX2INT(cv) + 1));
}
#undef HASH_ASET
void (*ruby_vm_collect_usage_func_insn)(int insn) = vm_analysis_insn;
void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = vm_analysis_operand;
void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = vm_analysis_register;
/* :nodoc: */
static VALUE
usage_analysis_insn_stop(VALUE self)
{
ruby_vm_collect_usage_func_insn = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_operand_stop(VALUE self)
{
ruby_vm_collect_usage_func_operand = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_register_stop(VALUE self)
{
ruby_vm_collect_usage_func_register = 0;
return Qnil;
}
#else
void (*ruby_vm_collect_usage_func_insn)(int insn) = NULL;
void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = NULL;
void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = NULL;
#endif
#if VM_COLLECT_USAGE_DETAILS
/* @param insn instruction number */
static void
vm_collect_usage_insn(int insn)
{
if (RUBY_DTRACE_INSN_ENABLED()) {
RUBY_DTRACE_INSN(rb_insns_name(insn));
}
if (ruby_vm_collect_usage_func_insn)
(*ruby_vm_collect_usage_func_insn)(insn);
}
/* @param insn instruction number
* @param n n-th operand
* @param op operand value
*/
static void
vm_collect_usage_operand(int insn, int n, VALUE op)
{
if (RUBY_DTRACE_INSN_OPERAND_ENABLED()) {
VALUE valstr;
valstr = rb_insn_operand_intern(GET_THREAD()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
RUBY_DTRACE_INSN_OPERAND(RSTRING_PTR(valstr), rb_insns_name(insn));
RB_GC_GUARD(valstr);
}
if (ruby_vm_collect_usage_func_operand)
(*ruby_vm_collect_usage_func_operand)(insn, n, op);
}
/* @param reg register id. see code of vm_analysis_register() */
/* @param isset 0: read, 1: write */
static void
vm_collect_usage_register(int reg, int isset)
{
if (ruby_vm_collect_usage_func_register)
(*ruby_vm_collect_usage_func_register)(reg, isset);
}
#endif