ruby/prism_compile.c

11069 строки
436 KiB
C

#include "prism.h"
/**
* This compiler defines its own concept of the location of a node. We do this
* because we want to pair line information with node identifier so that we can
* have reproducible parses.
*/
typedef struct {
/** This is the line number of a node. */
int32_t line;
/** This is a unique identifier for the node. */
uint32_t node_id;
} pm_node_location_t;
/******************************************************************************/
/* These macros operate on pm_node_location_t structs as opposed to NODE*s. */
/******************************************************************************/
#define PUSH_ADJUST(seq, location, label) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_adjust_body(iseq, (label), (int) (location).line))
#define PUSH_ADJUST_RESTORE(seq, label) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_adjust_body(iseq, (label), -1))
#define PUSH_INSN(seq, location, insn) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 0))
#define PUSH_INSN1(seq, location, insn, op1) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 1, (VALUE)(op1)))
#define PUSH_INSN2(seq, location, insn, op1, op2) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 2, (VALUE)(op1), (VALUE)(op2)))
#define PUSH_INSN3(seq, location, insn, op1, op2, op3) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 3, (VALUE)(op1), (VALUE)(op2), (VALUE)(op3)))
#define PUSH_INSNL(seq, location, insn, label) \
(PUSH_INSN1(seq, location, insn, label), LABEL_REF(label))
#define PUSH_LABEL(seq, label) \
ADD_ELEM((seq), (LINK_ELEMENT *) (label))
#define PUSH_SEND_R(seq, location, id, argc, block, flag, keywords) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_send(iseq, (int) (location).line, (int) (location).node_id, (id), (VALUE)(argc), (block), (VALUE)(flag), (keywords)))
#define PUSH_SEND(seq, location, id, argc) \
PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(0), NULL)
#define PUSH_SEND_WITH_FLAG(seq, location, id, argc, flag) \
PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)(flag), NULL)
#define PUSH_SEND_WITH_BLOCK(seq, location, id, argc, block) \
PUSH_SEND_R((seq), location, (id), (argc), (block), (VALUE)INT2FIX(0), NULL)
#define PUSH_CALL(seq, location, id, argc) \
PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(VM_CALL_FCALL), NULL)
#define PUSH_CALL_WITH_BLOCK(seq, location, id, argc, block) \
PUSH_SEND_R((seq), location, (id), (argc), (block), (VALUE)INT2FIX(VM_CALL_FCALL), NULL)
#define PUSH_TRACE(seq, event) \
ADD_ELEM((seq), (LINK_ELEMENT *) new_trace_body(iseq, (event), 0))
#define PUSH_CATCH_ENTRY(type, ls, le, iseqv, lc) \
ADD_CATCH_ENTRY((type), (ls), (le), (iseqv), (lc))
#define PUSH_SEQ(seq1, seq2) \
APPEND_LIST((seq1), (seq2))
#define PUSH_SYNTHETIC_PUTNIL(seq, iseq) \
do { \
int lineno = ISEQ_COMPILE_DATA(iseq)->last_line; \
if (lineno == 0) lineno = FIX2INT(rb_iseq_first_lineno(iseq)); \
ADD_SYNTHETIC_INSN(seq, lineno, -1, putnil); \
} while (0)
/******************************************************************************/
/* These functions compile getlocal/setlocal instructions but operate on */
/* prism locations instead of NODEs. */
/******************************************************************************/
static void
pm_iseq_add_getlocal(rb_iseq_t *iseq, LINK_ANCHOR *const seq, int line, int node_id, int idx, int level)
{
if (iseq_local_block_param_p(iseq, idx, level)) {
ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(getblockparam), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
}
else {
ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(getlocal), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
}
if (level > 0) access_outer_variables(iseq, level, iseq_lvar_id(iseq, idx, level), Qfalse);
}
static void
pm_iseq_add_setlocal(rb_iseq_t *iseq, LINK_ANCHOR *const seq, int line, int node_id, int idx, int level)
{
if (iseq_local_block_param_p(iseq, idx, level)) {
ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(setblockparam), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
}
else {
ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(setlocal), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
}
if (level > 0) access_outer_variables(iseq, level, iseq_lvar_id(iseq, idx, level), Qtrue);
}
#define PUSH_GETLOCAL(seq, location, idx, level) \
pm_iseq_add_getlocal(iseq, (seq), (int) (location).line, (int) (location).node_id, (idx), (level))
#define PUSH_SETLOCAL(seq, location, idx, level) \
pm_iseq_add_setlocal(iseq, (seq), (int) (location).line, (int) (location).node_id, (idx), (level))
/******************************************************************************/
/* These are helper macros for the compiler. */
/******************************************************************************/
#define OLD_ISEQ NEW_ISEQ
#undef NEW_ISEQ
#define NEW_ISEQ(node, name, type, line_no) \
pm_new_child_iseq(iseq, (node), rb_fstring(name), 0, (type), (line_no))
#define OLD_CHILD_ISEQ NEW_CHILD_ISEQ
#undef NEW_CHILD_ISEQ
#define NEW_CHILD_ISEQ(node, name, type, line_no) \
pm_new_child_iseq(iseq, (node), rb_fstring(name), iseq, (type), (line_no))
#define PM_COMPILE(node) \
pm_compile_node(iseq, (node), ret, popped, scope_node)
#define PM_COMPILE_INTO_ANCHOR(_ret, node) \
pm_compile_node(iseq, (node), _ret, popped, scope_node)
#define PM_COMPILE_POPPED(node) \
pm_compile_node(iseq, (node), ret, true, scope_node)
#define PM_COMPILE_NOT_POPPED(node) \
pm_compile_node(iseq, (node), ret, false, scope_node)
#define PM_SPECIAL_CONSTANT_FLAG ((pm_constant_id_t)(1 << 31))
#define PM_CONSTANT_AND ((pm_constant_id_t)(idAnd | PM_SPECIAL_CONSTANT_FLAG))
#define PM_CONSTANT_DOT3 ((pm_constant_id_t)(idDot3 | PM_SPECIAL_CONSTANT_FLAG))
#define PM_CONSTANT_MULT ((pm_constant_id_t)(idMULT | PM_SPECIAL_CONSTANT_FLAG))
#define PM_CONSTANT_POW ((pm_constant_id_t)(idPow | PM_SPECIAL_CONSTANT_FLAG))
#define PM_NODE_START_LOCATION(parser, node) \
((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, ((const pm_node_t *) (node))->location.start, (parser)->start_line), .node_id = ((const pm_node_t *) (node))->node_id })
#define PM_NODE_END_LOCATION(parser, node) \
((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, ((const pm_node_t *) (node))->location.end, (parser)->start_line), .node_id = ((const pm_node_t *) (node))->node_id })
#define PM_LOCATION_START_LOCATION(parser, location, id) \
((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, (location)->start, (parser)->start_line), .node_id = id })
#define PM_NODE_START_LINE_COLUMN(parser, node) \
pm_newline_list_line_column(&(parser)->newline_list, ((const pm_node_t *) (node))->location.start, (parser)->start_line)
#define PM_NODE_END_LINE_COLUMN(parser, node) \
pm_newline_list_line_column(&(parser)->newline_list, ((const pm_node_t *) (node))->location.end, (parser)->start_line)
#define PM_LOCATION_START_LINE_COLUMN(parser, location) \
pm_newline_list_line_column(&(parser)->newline_list, (location)->start, (parser)->start_line)
static int
pm_node_line_number(const pm_parser_t *parser, const pm_node_t *node)
{
return (int) pm_newline_list_line(&parser->newline_list, node->location.start, parser->start_line);
}
static int
pm_location_line_number(const pm_parser_t *parser, const pm_location_t *location) {
return (int) pm_newline_list_line(&parser->newline_list, location->start, parser->start_line);
}
/**
* Parse the value of a pm_integer_t into a Ruby Integer.
*/
static VALUE
parse_integer_value(const pm_integer_t *integer)
{
VALUE result;
if (integer->values == NULL) {
result = UINT2NUM(integer->value);
}
else {
VALUE string = rb_str_new(NULL, integer->length * 8);
unsigned char *bytes = (unsigned char *) RSTRING_PTR(string);
size_t offset = integer->length * 8;
for (size_t value_index = 0; value_index < integer->length; value_index++) {
uint32_t value = integer->values[value_index];
for (int index = 0; index < 8; index++) {
int byte = (value >> (4 * index)) & 0xf;
bytes[--offset] = byte < 10 ? byte + '0' : byte - 10 + 'a';
}
}
result = rb_funcall(string, rb_intern("to_i"), 1, UINT2NUM(16));
}
if (integer->negative) {
result = rb_funcall(result, rb_intern("-@"), 0);
}
return result;
}
/**
* Convert the value of an integer node into a Ruby Integer.
*/
static inline VALUE
parse_integer(const pm_integer_node_t *node)
{
return parse_integer_value(&node->value);
}
/**
* Convert the value of a float node into a Ruby Float.
*/
static VALUE
parse_float(const pm_float_node_t *node)
{
return DBL2NUM(node->value);
}
/**
* Convert the value of a rational node into a Ruby Rational. Rational nodes can
* either be wrapping an integer node or a float node. If it's an integer node,
* we can reuse our parsing. If it's not, then we'll parse the numerator and
* then parse the denominator and create the rational from those two values.
*/
static VALUE
parse_rational(const pm_rational_node_t *node)
{
VALUE numerator = parse_integer_value(&node->numerator);
VALUE denominator = parse_integer_value(&node->denominator);
return rb_rational_new(numerator, denominator);
}
/**
* Convert the value of an imaginary node into a Ruby Complex. Imaginary nodes
* can be wrapping an integer node, a float node, or a rational node. In all
* cases we will reuse parsing functions seen above to get the inner value, and
* then convert into an imaginary with rb_complex_raw.
*/
static VALUE
parse_imaginary(const pm_imaginary_node_t *node)
{
VALUE imaginary_part;
switch (PM_NODE_TYPE(node->numeric)) {
case PM_FLOAT_NODE: {
imaginary_part = parse_float((const pm_float_node_t *) node->numeric);
break;
}
case PM_INTEGER_NODE: {
imaginary_part = parse_integer((const pm_integer_node_t *) node->numeric);
break;
}
case PM_RATIONAL_NODE: {
imaginary_part = parse_rational((const pm_rational_node_t *) node->numeric);
break;
}
default:
rb_bug("Unexpected numeric type on imaginary number %s\n", pm_node_type_to_str(PM_NODE_TYPE(node->numeric)));
}
return rb_complex_raw(INT2FIX(0), imaginary_part);
}
static inline VALUE
parse_string(const pm_scope_node_t *scope_node, const pm_string_t *string)
{
return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), scope_node->encoding);
}
/**
* Certain strings can have their encoding differ from the parser's encoding due
* to bytes or escape sequences that have the top bit set. This function handles
* creating those strings based on the flags set on the owning node.
*/
static inline VALUE
parse_string_encoded(const pm_node_t *node, const pm_string_t *string, rb_encoding *default_encoding)
{
rb_encoding *encoding;
if (node->flags & PM_ENCODING_FLAGS_FORCED_BINARY_ENCODING) {
encoding = rb_ascii8bit_encoding();
}
else if (node->flags & PM_ENCODING_FLAGS_FORCED_UTF8_ENCODING) {
encoding = rb_utf8_encoding();
}
else {
encoding = default_encoding;
}
return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), encoding);
}
static inline VALUE
parse_static_literal_string(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *string)
{
rb_encoding *encoding;
if (node->flags & PM_STRING_FLAGS_FORCED_BINARY_ENCODING) {
encoding = rb_ascii8bit_encoding();
}
else if (node->flags & PM_STRING_FLAGS_FORCED_UTF8_ENCODING) {
encoding = rb_utf8_encoding();
}
else {
encoding = scope_node->encoding;
}
VALUE value = rb_enc_literal_str((const char *) pm_string_source(string), pm_string_length(string), encoding);
rb_enc_str_coderange(value);
if (ISEQ_COMPILE_DATA(iseq)->option->debug_frozen_string_literal || RTEST(ruby_debug)) {
int line_number = pm_node_line_number(scope_node->parser, node);
value = rb_str_with_debug_created_info(value, rb_iseq_path(iseq), line_number);
}
return value;
}
static inline ID
parse_string_symbol(const pm_scope_node_t *scope_node, const pm_symbol_node_t *symbol)
{
rb_encoding *encoding;
if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_UTF8_ENCODING) {
encoding = rb_utf8_encoding();
}
else if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_BINARY_ENCODING) {
encoding = rb_ascii8bit_encoding();
}
else if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_US_ASCII_ENCODING) {
encoding = rb_usascii_encoding();
}
else {
encoding = scope_node->encoding;
}
return rb_intern3((const char *) pm_string_source(&symbol->unescaped), pm_string_length(&symbol->unescaped), encoding);
}
static int
pm_optimizable_range_item_p(const pm_node_t *node)
{
return (!node || PM_NODE_TYPE_P(node, PM_INTEGER_NODE) || PM_NODE_TYPE_P(node, PM_NIL_NODE));
}
/** Raise an error corresponding to the invalid regular expression. */
static VALUE
parse_regexp_error(rb_iseq_t *iseq, int32_t line_number, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
VALUE error = rb_syntax_error_append(Qnil, rb_iseq_path(iseq), line_number, -1, NULL, "%" PRIsVALUE, args);
va_end(args);
rb_exc_raise(error);
}
static VALUE
parse_regexp_string_part(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *unescaped, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding)
{
// If we were passed an explicit regexp encoding, then we need to double
// check that it's okay here for this fragment of the string.
rb_encoding *encoding;
if (explicit_regexp_encoding != NULL) {
encoding = explicit_regexp_encoding;
}
else if (node->flags & PM_STRING_FLAGS_FORCED_BINARY_ENCODING) {
encoding = rb_ascii8bit_encoding();
}
else if (node->flags & PM_STRING_FLAGS_FORCED_UTF8_ENCODING) {
encoding = rb_utf8_encoding();
}
else {
encoding = implicit_regexp_encoding;
}
VALUE string = rb_enc_str_new((const char *) pm_string_source(unescaped), pm_string_length(unescaped), encoding);
VALUE error = rb_reg_check_preprocess(string);
if (error != Qnil) parse_regexp_error(iseq, pm_node_line_number(scope_node->parser, node), "%" PRIsVALUE, rb_obj_as_string(error));
return string;
}
static VALUE
pm_static_literal_concat(rb_iseq_t *iseq, const pm_node_list_t *nodes, const pm_scope_node_t *scope_node, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding, bool top)
{
VALUE current = Qnil;
for (size_t index = 0; index < nodes->size; index++) {
const pm_node_t *part = nodes->nodes[index];
VALUE string;
switch (PM_NODE_TYPE(part)) {
case PM_STRING_NODE:
if (implicit_regexp_encoding != NULL) {
if (top) {
string = parse_regexp_string_part(iseq, scope_node, part, &((const pm_string_node_t *) part)->unescaped, implicit_regexp_encoding, explicit_regexp_encoding);
}
else {
string = parse_string_encoded(part, &((const pm_string_node_t *) part)->unescaped, scope_node->encoding);
VALUE error = rb_reg_check_preprocess(string);
if (error != Qnil) parse_regexp_error(iseq, pm_node_line_number(scope_node->parser, part), "%" PRIsVALUE, rb_obj_as_string(error));
}
}
else {
string = parse_string_encoded(part, &((const pm_string_node_t *) part)->unescaped, scope_node->encoding);
}
break;
case PM_INTERPOLATED_STRING_NODE:
string = pm_static_literal_concat(iseq, &((const pm_interpolated_string_node_t *) part)->parts, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false);
break;
case PM_EMBEDDED_STATEMENTS_NODE: {
const pm_embedded_statements_node_t *cast = (const pm_embedded_statements_node_t *) part;
string = pm_static_literal_concat(iseq, &cast->statements->body, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false);
break;
}
default:
RUBY_ASSERT(false && "unexpected node type in pm_static_literal_concat");
return Qnil;
}
if (current != Qnil) {
current = rb_str_concat(current, string);
}
else {
current = string;
}
}
return top ? rb_fstring(current) : current;
}
#define RE_OPTION_ENCODING_SHIFT 8
#define RE_OPTION_ENCODING(encoding) (((encoding) & 0xFF) << RE_OPTION_ENCODING_SHIFT)
#define ARG_ENCODING_NONE 32
#define ARG_ENCODING_FIXED 16
#define ENC_ASCII8BIT 1
#define ENC_EUC_JP 2
#define ENC_Windows_31J 3
#define ENC_UTF8 4
/**
* Check the prism flags of a regular expression-like node and return the flags
* that are expected by the CRuby VM.
*/
static int
parse_regexp_flags(const pm_node_t *node)
{
int flags = 0;
// Check "no encoding" first so that flags don't get clobbered
// We're calling `rb_char_to_option_kcode` in this case so that
// we don't need to have access to `ARG_ENCODING_NONE`
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT)) {
flags |= ARG_ENCODING_NONE;
}
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EUC_JP)) {
flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_EUC_JP));
}
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J)) {
flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_Windows_31J));
}
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_UTF_8)) {
flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_UTF8));
}
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE)) {
flags |= ONIG_OPTION_IGNORECASE;
}
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE)) {
flags |= ONIG_OPTION_MULTILINE;
}
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EXTENDED)) {
flags |= ONIG_OPTION_EXTEND;
}
return flags;
}
#undef RE_OPTION_ENCODING_SHIFT
#undef RE_OPTION_ENCODING
#undef ARG_ENCODING_FIXED
#undef ARG_ENCODING_NONE
#undef ENC_ASCII8BIT
#undef ENC_EUC_JP
#undef ENC_Windows_31J
#undef ENC_UTF8
static rb_encoding *
parse_regexp_encoding(const pm_scope_node_t *scope_node, const pm_node_t *node)
{
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_FORCED_BINARY_ENCODING) || PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT)) {
return rb_ascii8bit_encoding();
}
else if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_UTF_8)) {
return rb_utf8_encoding();
}
else if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EUC_JP)) {
return rb_enc_get_from_index(ENCINDEX_EUC_JP);
}
else if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J)) {
return rb_enc_get_from_index(ENCINDEX_Windows_31J);
}
else {
return NULL;
}
}
static VALUE
parse_regexp(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, VALUE string)
{
VALUE errinfo = rb_errinfo();
int32_t line_number = pm_node_line_number(scope_node->parser, node);
VALUE regexp = rb_reg_compile(string, parse_regexp_flags(node), (const char *) pm_string_source(&scope_node->parser->filepath), line_number);
if (NIL_P(regexp)) {
VALUE message = rb_attr_get(rb_errinfo(), idMesg);
rb_set_errinfo(errinfo);
parse_regexp_error(iseq, line_number, "%" PRIsVALUE, message);
return Qnil;
}
rb_obj_freeze(regexp);
return regexp;
}
static inline VALUE
parse_regexp_literal(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *unescaped)
{
rb_encoding *regexp_encoding = parse_regexp_encoding(scope_node, node);
if (regexp_encoding == NULL) regexp_encoding = scope_node->encoding;
VALUE string = rb_enc_str_new((const char *) pm_string_source(unescaped), pm_string_length(unescaped), regexp_encoding);
return parse_regexp(iseq, scope_node, node, string);
}
static inline VALUE
parse_regexp_concat(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_node_list_t *parts)
{
rb_encoding *explicit_regexp_encoding = parse_regexp_encoding(scope_node, node);
rb_encoding *implicit_regexp_encoding = explicit_regexp_encoding != NULL ? explicit_regexp_encoding : scope_node->encoding;
VALUE string = pm_static_literal_concat(iseq, parts, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false);
return parse_regexp(iseq, scope_node, node, string);
}
static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node);
static int
pm_interpolated_node_compile(rb_iseq_t *iseq, const pm_node_list_t *parts, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding)
{
int stack_size = 0;
size_t parts_size = parts->size;
bool interpolated = false;
if (parts_size > 0) {
VALUE current_string = Qnil;
pm_node_location_t current_location = *node_location;
for (size_t index = 0; index < parts_size; index++) {
const pm_node_t *part = parts->nodes[index];
if (PM_NODE_TYPE_P(part, PM_STRING_NODE)) {
const pm_string_node_t *string_node = (const pm_string_node_t *) part;
VALUE string_value;
if (implicit_regexp_encoding == NULL) {
string_value = parse_string_encoded(part, &string_node->unescaped, scope_node->encoding);
}
else {
string_value = parse_regexp_string_part(iseq, scope_node, (const pm_node_t *) string_node, &string_node->unescaped, implicit_regexp_encoding, explicit_regexp_encoding);
}
if (RTEST(current_string)) {
current_string = rb_str_concat(current_string, string_value);
}
else {
current_string = string_value;
if (index != 0) current_location = PM_NODE_END_LOCATION(scope_node->parser, part);
}
}
else {
interpolated = true;
if (
PM_NODE_TYPE_P(part, PM_EMBEDDED_STATEMENTS_NODE) &&
((const pm_embedded_statements_node_t *) part)->statements != NULL &&
((const pm_embedded_statements_node_t *) part)->statements->body.size == 1 &&
PM_NODE_TYPE_P(((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0], PM_STRING_NODE)
) {
const pm_string_node_t *string_node = (const pm_string_node_t *) ((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0];
VALUE string_value;
if (implicit_regexp_encoding == NULL) {
string_value = parse_string_encoded(part, &string_node->unescaped, scope_node->encoding);
}
else {
string_value = parse_regexp_string_part(iseq, scope_node, (const pm_node_t *) string_node, &string_node->unescaped, implicit_regexp_encoding, explicit_regexp_encoding);
}
if (RTEST(current_string)) {
current_string = rb_str_concat(current_string, string_value);
}
else {
current_string = string_value;
current_location = PM_NODE_START_LOCATION(scope_node->parser, part);
}
}
else {
if (!RTEST(current_string)) {
rb_encoding *encoding;
if (implicit_regexp_encoding != NULL) {
if (explicit_regexp_encoding != NULL) {
encoding = explicit_regexp_encoding;
}
else if (scope_node->parser->encoding == PM_ENCODING_US_ASCII_ENTRY) {
encoding = rb_ascii8bit_encoding();
}
else {
encoding = implicit_regexp_encoding;
}
}
else {
encoding = scope_node->encoding;
}
if (parts_size == 1) {
current_string = rb_enc_str_new(NULL, 0, encoding);
}
}
if (RTEST(current_string)) {
VALUE operand = rb_fstring(current_string);
PUSH_INSN1(ret, current_location, putobject, operand);
stack_size++;
}
PM_COMPILE_NOT_POPPED(part);
const pm_node_location_t current_location = PM_NODE_START_LOCATION(scope_node->parser, part);
PUSH_INSN(ret, current_location, dup);
{
const struct rb_callinfo *callinfo = new_callinfo(iseq, idTo_s, 0, VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE, NULL, FALSE);
PUSH_INSN1(ret, current_location, objtostring, callinfo);
}
PUSH_INSN(ret, current_location, anytostring);
current_string = Qnil;
stack_size++;
}
}
}
if (RTEST(current_string)) {
current_string = rb_fstring(current_string);
if (stack_size == 0 && interpolated) {
PUSH_INSN1(ret, current_location, putstring, current_string);
}
else {
PUSH_INSN1(ret, current_location, putobject, current_string);
}
current_string = Qnil;
stack_size++;
}
}
else {
PUSH_INSN(ret, *node_location, putnil);
}
return stack_size;
}
static void
pm_compile_regexp_dynamic(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *parts, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
rb_encoding *explicit_regexp_encoding = parse_regexp_encoding(scope_node, node);
rb_encoding *implicit_regexp_encoding = explicit_regexp_encoding != NULL ? explicit_regexp_encoding : scope_node->encoding;
int length = pm_interpolated_node_compile(iseq, parts, node_location, ret, popped, scope_node, implicit_regexp_encoding, explicit_regexp_encoding);
PUSH_INSN2(ret, *node_location, toregexp, INT2FIX(parse_regexp_flags(node) & 0xFF), INT2FIX(length));
}
static VALUE
pm_source_file_value(const pm_source_file_node_t *node, const pm_scope_node_t *scope_node)
{
const pm_string_t *filepath = &node->filepath;
size_t length = pm_string_length(filepath);
if (length > 0) {
rb_encoding *filepath_encoding = scope_node->filepath_encoding != NULL ? scope_node->filepath_encoding : rb_utf8_encoding();
return rb_enc_interned_str((const char *) pm_string_source(filepath), length, filepath_encoding);
}
else {
return rb_fstring_lit("<compiled>");
}
}
/**
* Return a static literal string, optionally with attached debugging
* information.
*/
static VALUE
pm_static_literal_string(rb_iseq_t *iseq, VALUE string, int line_number)
{
if (ISEQ_COMPILE_DATA(iseq)->option->debug_frozen_string_literal || RTEST(ruby_debug)) {
return rb_str_with_debug_created_info(string, rb_iseq_path(iseq), line_number);
}
else {
return rb_fstring(string);
}
}
/**
* Certain nodes can be compiled literally. This function returns the literal
* value described by the given node. For example, an array node with all static
* literal values can be compiled into a literal array.
*/
static VALUE
pm_static_literal_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_scope_node_t *scope_node)
{
// Every node that comes into this function should already be marked as
// static literal. If it's not, then we have a bug somewhere.
RUBY_ASSERT(PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL));
switch (PM_NODE_TYPE(node)) {
case PM_ARRAY_NODE: {
const pm_array_node_t *cast = (const pm_array_node_t *) node;
const pm_node_list_t *elements = &cast->elements;
VALUE value = rb_ary_hidden_new(elements->size);
for (size_t index = 0; index < elements->size; index++) {
rb_ary_push(value, pm_static_literal_value(iseq, elements->nodes[index], scope_node));
}
OBJ_FREEZE(value);
return value;
}
case PM_FALSE_NODE:
return Qfalse;
case PM_FLOAT_NODE:
return parse_float((const pm_float_node_t *) node);
case PM_HASH_NODE: {
const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
const pm_node_list_t *elements = &cast->elements;
VALUE array = rb_ary_hidden_new(elements->size * 2);
for (size_t index = 0; index < elements->size; index++) {
RUBY_ASSERT(PM_NODE_TYPE_P(elements->nodes[index], PM_ASSOC_NODE));
const pm_assoc_node_t *cast = (const pm_assoc_node_t *) elements->nodes[index];
VALUE pair[2] = { pm_static_literal_value(iseq, cast->key, scope_node), pm_static_literal_value(iseq, cast->value, scope_node) };
rb_ary_cat(array, pair, 2);
}
VALUE value = rb_hash_new_with_size(elements->size);
rb_hash_bulk_insert(RARRAY_LEN(array), RARRAY_CONST_PTR(array), value);
value = rb_obj_hide(value);
OBJ_FREEZE(value);
return value;
}
case PM_IMAGINARY_NODE:
return parse_imaginary((const pm_imaginary_node_t *) node);
case PM_INTEGER_NODE:
return parse_integer((const pm_integer_node_t *) node);
case PM_INTERPOLATED_MATCH_LAST_LINE_NODE: {
const pm_interpolated_match_last_line_node_t *cast = (const pm_interpolated_match_last_line_node_t *) node;
return parse_regexp_concat(iseq, scope_node, (const pm_node_t *) cast, &cast->parts);
}
case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: {
const pm_interpolated_regular_expression_node_t *cast = (const pm_interpolated_regular_expression_node_t *) node;
return parse_regexp_concat(iseq, scope_node, (const pm_node_t *) cast, &cast->parts);
}
case PM_INTERPOLATED_STRING_NODE: {
VALUE string = pm_static_literal_concat(iseq, &((const pm_interpolated_string_node_t *) node)->parts, scope_node, NULL, NULL, false);
int line_number = pm_node_line_number(scope_node->parser, node);
return pm_static_literal_string(iseq, string, line_number);
}
case PM_INTERPOLATED_SYMBOL_NODE: {
const pm_interpolated_symbol_node_t *cast = (const pm_interpolated_symbol_node_t *) node;
VALUE string = pm_static_literal_concat(iseq, &cast->parts, scope_node, NULL, NULL, true);
return ID2SYM(rb_intern_str(string));
}
case PM_MATCH_LAST_LINE_NODE: {
const pm_match_last_line_node_t *cast = (const pm_match_last_line_node_t *) node;
return parse_regexp_literal(iseq, scope_node, (const pm_node_t *) cast, &cast->unescaped);
}
case PM_NIL_NODE:
return Qnil;
case PM_RATIONAL_NODE:
return parse_rational((const pm_rational_node_t *) node);
case PM_REGULAR_EXPRESSION_NODE: {
const pm_regular_expression_node_t *cast = (const pm_regular_expression_node_t *) node;
return parse_regexp_literal(iseq, scope_node, (const pm_node_t *) cast, &cast->unescaped);
}
case PM_SOURCE_ENCODING_NODE:
return rb_enc_from_encoding(scope_node->encoding);
case PM_SOURCE_FILE_NODE: {
const pm_source_file_node_t *cast = (const pm_source_file_node_t *) node;
return pm_source_file_value(cast, scope_node);
}
case PM_SOURCE_LINE_NODE:
return INT2FIX(pm_node_line_number(scope_node->parser, node));
case PM_STRING_NODE: {
const pm_string_node_t *cast = (const pm_string_node_t *) node;
return parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
}
case PM_SYMBOL_NODE:
return ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) node));
case PM_TRUE_NODE:
return Qtrue;
default:
rb_bug("Don't have a literal value for node type %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
return Qfalse;
}
}
/**
* A helper for converting a pm_location_t into a rb_code_location_t.
*/
static rb_code_location_t
pm_code_location(const pm_scope_node_t *scope_node, const pm_node_t *node)
{
const pm_line_column_t start_location = PM_NODE_START_LINE_COLUMN(scope_node->parser, node);
const pm_line_column_t end_location = PM_NODE_END_LINE_COLUMN(scope_node->parser, node);
return (rb_code_location_t) {
.beg_pos = { .lineno = start_location.line, .column = start_location.column },
.end_pos = { .lineno = end_location.line, .column = end_location.column }
};
}
/**
* A macro for determining if we should go through the work of adding branch
* coverage to the current iseq. We check this manually each time because we
* want to avoid the overhead of creating rb_code_location_t objects.
*/
#define PM_BRANCH_COVERAGE_P(iseq) (ISEQ_COVERAGE(iseq) && ISEQ_BRANCH_COVERAGE(iseq))
static void
pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond,
LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node);
static void
pm_compile_logical(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, cond);
DECL_ANCHOR(seq);
INIT_ANCHOR(seq);
LABEL *label = NEW_LABEL(location.line);
if (!then_label) then_label = label;
else if (!else_label) else_label = label;
pm_compile_branch_condition(iseq, seq, cond, then_label, else_label, popped, scope_node);
if (LIST_INSN_SIZE_ONE(seq)) {
INSN *insn = (INSN *) ELEM_FIRST_INSN(FIRST_ELEMENT(seq));
if (insn->insn_id == BIN(jump) && (LABEL *)(insn->operands[0]) == label) return;
}
if (!label->refcnt) {
if (popped) PUSH_INSN(ret, location, putnil);
}
else {
PUSH_LABEL(seq, label);
}
PUSH_SEQ(ret, seq);
return;
}
static void
pm_compile_flip_flop_bound(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = { .line = ISEQ_BODY(iseq)->location.first_lineno, .node_id = -1 };
if (PM_NODE_TYPE_P(node, PM_INTEGER_NODE)) {
PM_COMPILE_NOT_POPPED(node);
VALUE operand = ID2SYM(rb_intern("$."));
PUSH_INSN1(ret, location, getglobal, operand);
PUSH_SEND(ret, location, idEq, INT2FIX(1));
if (popped) PUSH_INSN(ret, location, pop);
}
else {
PM_COMPILE(node);
}
}
static void
pm_compile_flip_flop(const pm_flip_flop_node_t *flip_flop_node, LABEL *else_label, LABEL *then_label, rb_iseq_t *iseq, const int lineno, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = { .line = ISEQ_BODY(iseq)->location.first_lineno, .node_id = -1 };
LABEL *lend = NEW_LABEL(location.line);
int again = !(flip_flop_node->base.flags & PM_RANGE_FLAGS_EXCLUDE_END);
rb_num_t count = ISEQ_FLIP_CNT_INCREMENT(ISEQ_BODY(iseq)->local_iseq) + VM_SVAR_FLIPFLOP_START;
VALUE key = INT2FIX(count);
PUSH_INSN2(ret, location, getspecial, key, INT2FIX(0));
PUSH_INSNL(ret, location, branchif, lend);
if (flip_flop_node->left) {
pm_compile_flip_flop_bound(iseq, flip_flop_node->left, ret, popped, scope_node);
}
else {
PUSH_INSN(ret, location, putnil);
}
PUSH_INSNL(ret, location, branchunless, else_label);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSN1(ret, location, setspecial, key);
if (!again) {
PUSH_INSNL(ret, location, jump, then_label);
}
PUSH_LABEL(ret, lend);
if (flip_flop_node->right) {
pm_compile_flip_flop_bound(iseq, flip_flop_node->right, ret, popped, scope_node);
}
else {
PUSH_INSN(ret, location, putnil);
}
PUSH_INSNL(ret, location, branchunless, then_label);
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSN1(ret, location, setspecial, key);
PUSH_INSNL(ret, location, jump, then_label);
}
static void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition);
static void
pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, cond);
again:
switch (PM_NODE_TYPE(cond)) {
case PM_AND_NODE: {
const pm_and_node_t *cast = (const pm_and_node_t *) cond;
pm_compile_logical(iseq, ret, cast->left, NULL, else_label, popped, scope_node);
cond = cast->right;
goto again;
}
case PM_OR_NODE: {
const pm_or_node_t *cast = (const pm_or_node_t *) cond;
pm_compile_logical(iseq, ret, cast->left, then_label, NULL, popped, scope_node);
cond = cast->right;
goto again;
}
case PM_FALSE_NODE:
case PM_NIL_NODE:
PUSH_INSNL(ret, location, jump, else_label);
return;
case PM_FLOAT_NODE:
case PM_IMAGINARY_NODE:
case PM_INTEGER_NODE:
case PM_LAMBDA_NODE:
case PM_RATIONAL_NODE:
case PM_REGULAR_EXPRESSION_NODE:
case PM_STRING_NODE:
case PM_SYMBOL_NODE:
case PM_TRUE_NODE:
PUSH_INSNL(ret, location, jump, then_label);
return;
case PM_FLIP_FLOP_NODE:
pm_compile_flip_flop((const pm_flip_flop_node_t *) cond, else_label, then_label, iseq, location.line, ret, popped, scope_node);
return;
case PM_DEFINED_NODE: {
const pm_defined_node_t *cast = (const pm_defined_node_t *) cond;
pm_compile_defined_expr(iseq, cast->value, &location, ret, popped, scope_node, true);
break;
}
default: {
DECL_ANCHOR(cond_seq);
INIT_ANCHOR(cond_seq);
pm_compile_node(iseq, cond, cond_seq, false, scope_node);
if (LIST_INSN_SIZE_ONE(cond_seq)) {
INSN *insn = (INSN *) ELEM_FIRST_INSN(FIRST_ELEMENT(cond_seq));
if (insn->insn_id == BIN(putobject)) {
if (RTEST(insn->operands[0])) {
PUSH_INSNL(ret, location, jump, then_label);
// maybe unreachable
return;
}
else {
PUSH_INSNL(ret, location, jump, else_label);
return;
}
}
}
PUSH_SEQ(ret, cond_seq);
break;
}
}
PUSH_INSNL(ret, location, branchunless, else_label);
PUSH_INSNL(ret, location, jump, then_label);
}
/**
* Compile an if or unless node.
*/
static void
pm_compile_conditional(rb_iseq_t *iseq, const pm_node_location_t *node_location, pm_node_type_t type, const pm_node_t *node, const pm_statements_node_t *statements, const pm_node_t *subsequent, const pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
LABEL *then_label = NEW_LABEL(location.line);
LABEL *else_label = NEW_LABEL(location.line);
LABEL *end_label = NULL;
DECL_ANCHOR(cond_seq);
INIT_ANCHOR(cond_seq);
pm_compile_branch_condition(iseq, cond_seq, predicate, then_label, else_label, false, scope_node);
PUSH_SEQ(ret, cond_seq);
rb_code_location_t conditional_location = { 0 };
VALUE branches = Qfalse;
if (then_label->refcnt && else_label->refcnt && PM_BRANCH_COVERAGE_P(iseq)) {
conditional_location = pm_code_location(scope_node, node);
branches = decl_branch_base(iseq, PTR2NUM(node), &conditional_location, type == PM_IF_NODE ? "if" : "unless");
}
if (then_label->refcnt) {
PUSH_LABEL(ret, then_label);
DECL_ANCHOR(then_seq);
INIT_ANCHOR(then_seq);
if (statements != NULL) {
pm_compile_node(iseq, (const pm_node_t *) statements, then_seq, popped, scope_node);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(then_seq, iseq);
}
if (else_label->refcnt) {
// Establish branch coverage for the then block.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location;
if (statements != NULL) {
branch_location = pm_code_location(scope_node, (const pm_node_t *) statements);
} else if (type == PM_IF_NODE) {
pm_line_column_t predicate_end = PM_NODE_END_LINE_COLUMN(scope_node->parser, predicate);
branch_location = (rb_code_location_t) {
.beg_pos = { .lineno = predicate_end.line, .column = predicate_end.column },
.end_pos = { .lineno = predicate_end.line, .column = predicate_end.column }
};
} else {
branch_location = conditional_location;
}
add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 0, type == PM_IF_NODE ? "then" : "else", branches);
}
end_label = NEW_LABEL(location.line);
PUSH_INSNL(then_seq, location, jump, end_label);
if (!popped) PUSH_INSN(then_seq, location, pop);
}
PUSH_SEQ(ret, then_seq);
}
if (else_label->refcnt) {
PUSH_LABEL(ret, else_label);
DECL_ANCHOR(else_seq);
INIT_ANCHOR(else_seq);
if (subsequent != NULL) {
pm_compile_node(iseq, subsequent, else_seq, popped, scope_node);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(else_seq, iseq);
}
// Establish branch coverage for the else block.
if (then_label->refcnt && PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location;
if (subsequent == NULL) {
branch_location = conditional_location;
} else if (PM_NODE_TYPE_P(subsequent, PM_ELSE_NODE)) {
const pm_else_node_t *else_node = (const pm_else_node_t *) subsequent;
branch_location = pm_code_location(scope_node, else_node->statements != NULL ? ((const pm_node_t *) else_node->statements) : (const pm_node_t *) else_node);
} else {
branch_location = pm_code_location(scope_node, (const pm_node_t *) subsequent);
}
add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 1, type == PM_IF_NODE ? "else" : "then", branches);
}
PUSH_SEQ(ret, else_seq);
}
if (end_label) {
PUSH_LABEL(ret, end_label);
}
return;
}
/**
* Compile a while or until loop.
*/
static void
pm_compile_loop(rb_iseq_t *iseq, const pm_node_location_t *node_location, pm_node_flags_t flags, enum pm_node_type type, const pm_node_t *node, const pm_statements_node_t *statements, const pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
LABEL *prev_start_label = ISEQ_COMPILE_DATA(iseq)->start_label;
LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label;
LABEL *prev_redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label;
LABEL *next_label = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(location.line); /* next */
LABEL *redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label = NEW_LABEL(location.line); /* redo */
LABEL *break_label = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(location.line); /* break */
LABEL *end_label = NEW_LABEL(location.line);
LABEL *adjust_label = NEW_LABEL(location.line);
LABEL *next_catch_label = NEW_LABEL(location.line);
LABEL *tmp_label = NULL;
// We're pushing onto the ensure stack because breaks need to break out of
// this loop and not break into the ensure statements within the same
// lexical scope.
struct iseq_compile_data_ensure_node_stack enl;
push_ensure_entry(iseq, &enl, NULL, NULL);
// begin; end while true
if (flags & PM_LOOP_FLAGS_BEGIN_MODIFIER) {
tmp_label = NEW_LABEL(location.line);
PUSH_INSNL(ret, location, jump, tmp_label);
}
else {
// while true; end
PUSH_INSNL(ret, location, jump, next_label);
}
PUSH_LABEL(ret, adjust_label);
PUSH_INSN(ret, location, putnil);
PUSH_LABEL(ret, next_catch_label);
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, next_label);
if (tmp_label) PUSH_LABEL(ret, tmp_label);
PUSH_LABEL(ret, redo_label);
// Establish branch coverage for the loop.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t loop_location = pm_code_location(scope_node, node);
VALUE branches = decl_branch_base(iseq, PTR2NUM(node), &loop_location, type == PM_WHILE_NODE ? "while" : "until");
rb_code_location_t branch_location = statements != NULL ? pm_code_location(scope_node, (const pm_node_t *) statements) : loop_location;
add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 0, "body", branches);
}
if (statements != NULL) PM_COMPILE_POPPED((const pm_node_t *) statements);
PUSH_LABEL(ret, next_label);
if (type == PM_WHILE_NODE) {
pm_compile_branch_condition(iseq, ret, predicate, redo_label, end_label, popped, scope_node);
}
else if (type == PM_UNTIL_NODE) {
pm_compile_branch_condition(iseq, ret, predicate, end_label, redo_label, popped, scope_node);
}
PUSH_LABEL(ret, end_label);
PUSH_ADJUST_RESTORE(ret, adjust_label);
PUSH_INSN(ret, location, putnil);
PUSH_LABEL(ret, break_label);
if (popped) PUSH_INSN(ret, location, pop);
PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, redo_label, break_label, NULL, break_label);
PUSH_CATCH_ENTRY(CATCH_TYPE_NEXT, redo_label, break_label, NULL, next_catch_label);
PUSH_CATCH_ENTRY(CATCH_TYPE_REDO, redo_label, break_label, NULL, ISEQ_COMPILE_DATA(iseq)->redo_label);
ISEQ_COMPILE_DATA(iseq)->start_label = prev_start_label;
ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label;
ISEQ_COMPILE_DATA(iseq)->redo_label = prev_redo_label;
ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->prev;
return;
}
// This recurses through scopes and finds the local index at any scope level
// It also takes a pointer to depth, and increments depth appropriately
// according to the depth of the local.
static pm_local_index_t
pm_lookup_local_index(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, pm_constant_id_t constant_id, int start_depth)
{
pm_local_index_t lindex = { 0 };
st_data_t local_index;
int level;
for (level = 0; level < start_depth; level++) {
scope_node = scope_node->previous;
}
while (!st_lookup(scope_node->index_lookup_table, constant_id, &local_index)) {
level++;
if (scope_node->previous) {
scope_node = scope_node->previous;
}
else {
// We have recursed up all scope nodes
// and have not found the local yet
rb_bug("Local with constant_id %u does not exist", (unsigned int) constant_id);
}
}
lindex.level = level;
lindex.index = scope_node->local_table_for_iseq_size - (int) local_index;
return lindex;
}
// This returns the CRuby ID which maps to the pm_constant_id_t
//
// Constant_ids in prism are indexes of the constants in prism's constant pool.
// We add a constants mapping on the scope_node which is a mapping from
// these constant_id indexes to the CRuby IDs that they represent.
// This helper method allows easy access to those IDs
static ID
pm_constant_id_lookup(const pm_scope_node_t *scope_node, pm_constant_id_t constant_id)
{
if (constant_id < 1 || constant_id > scope_node->parser->constant_pool.size) {
rb_bug("constant_id out of range: %u", (unsigned int)constant_id);
}
return scope_node->constants[constant_id - 1];
}
static rb_iseq_t *
pm_new_child_iseq(rb_iseq_t *iseq, pm_scope_node_t *node, VALUE name, const rb_iseq_t *parent, enum rb_iseq_type type, int line_no)
{
debugs("[new_child_iseq]> ---------------------------------------\n");
int isolated_depth = ISEQ_COMPILE_DATA(iseq)->isolated_depth;
rb_iseq_t *ret_iseq = pm_iseq_new_with_opt(node, name,
rb_iseq_path(iseq), rb_iseq_realpath(iseq),
line_no, parent,
isolated_depth ? isolated_depth + 1 : 0,
type, ISEQ_COMPILE_DATA(iseq)->option);
debugs("[new_child_iseq]< ---------------------------------------\n");
return ret_iseq;
}
static int
pm_compile_class_path(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
if (PM_NODE_TYPE_P(node, PM_CONSTANT_PATH_NODE)) {
const pm_node_t *parent = ((const pm_constant_path_node_t *) node)->parent;
if (parent) {
/* Bar::Foo */
PM_COMPILE(parent);
return VM_DEFINECLASS_FLAG_SCOPED;
}
else {
/* toplevel class ::Foo */
PUSH_INSN1(ret, *node_location, putobject, rb_cObject);
return VM_DEFINECLASS_FLAG_SCOPED;
}
}
else {
/* class at cbase Foo */
PUSH_INSN1(ret, *node_location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
return 0;
}
}
/**
* Compile either a call and write node or a call or write node. These look like
* method calls that are followed by a ||= or &&= operator.
*/
static void
pm_compile_call_and_or_write_node(rb_iseq_t *iseq, bool and_node, const pm_node_t *receiver, const pm_node_t *value, pm_constant_id_t write_name, pm_constant_id_t read_name, bool safe_nav, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
LABEL *lfin = NEW_LABEL(location.line);
LABEL *lcfin = NEW_LABEL(location.line);
LABEL *lskip = NULL;
int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0;
ID id_read_name = pm_constant_id_lookup(scope_node, read_name);
PM_COMPILE_NOT_POPPED(receiver);
if (safe_nav) {
lskip = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchnil, lskip);
}
PUSH_INSN(ret, location, dup);
PUSH_SEND_WITH_FLAG(ret, location, id_read_name, INT2FIX(0), INT2FIX(flag));
if (!popped) PUSH_INSN(ret, location, dup);
if (and_node) {
PUSH_INSNL(ret, location, branchunless, lcfin);
}
else {
PUSH_INSNL(ret, location, branchif, lcfin);
}
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(value);
if (!popped) {
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, topn, INT2FIX(1));
}
ID id_write_name = pm_constant_id_lookup(scope_node, write_name);
PUSH_SEND_WITH_FLAG(ret, location, id_write_name, INT2FIX(1), INT2FIX(flag));
PUSH_INSNL(ret, location, jump, lfin);
PUSH_LABEL(ret, lcfin);
if (!popped) PUSH_INSN(ret, location, swap);
PUSH_LABEL(ret, lfin);
if (lskip && popped) PUSH_LABEL(ret, lskip);
PUSH_INSN(ret, location, pop);
if (lskip && !popped) PUSH_LABEL(ret, lskip);
}
/**
* This function compiles a hash onto the stack. It is used to compile hash
* literals and keyword arguments. It is assumed that if we get here that the
* contents of the hash are not popped.
*/
static void
pm_compile_hash_elements(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *elements, bool argument, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
// If this element is not popped, then we need to create the hash on the
// stack. Neighboring plain assoc nodes should be grouped together (either
// by newhash or hash merge). Double splat nodes should be merged using the
// merge_kwd method call.
const int max_stack_length = 0x100;
const unsigned int min_tmp_hash_length = 0x800;
int stack_length = 0;
bool first_chunk = true;
// This is an optimization wherein we keep track of whether or not the
// previous element was a static literal. If it was, then we do not attempt
// to check if we have a subhash that can be optimized. If it was not, then
// we do check.
bool static_literal = false;
DECL_ANCHOR(anchor);
INIT_ANCHOR(anchor);
// Convert pushed elements to a hash, and merge if needed.
#define FLUSH_CHUNK \
if (stack_length) { \
if (first_chunk) { \
PUSH_SEQ(ret, anchor); \
PUSH_INSN1(ret, location, newhash, INT2FIX(stack_length)); \
first_chunk = false; \
} \
else { \
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); \
PUSH_INSN(ret, location, swap); \
PUSH_SEQ(ret, anchor); \
PUSH_SEND(ret, location, id_core_hash_merge_ptr, INT2FIX(stack_length + 1)); \
} \
INIT_ANCHOR(anchor); \
stack_length = 0; \
}
for (size_t index = 0; index < elements->size; index++) {
const pm_node_t *element = elements->nodes[index];
switch (PM_NODE_TYPE(element)) {
case PM_ASSOC_NODE: {
// Pre-allocation check (this branch can be omitted).
if (
PM_NODE_FLAG_P(element, PM_NODE_FLAG_STATIC_LITERAL) && (
(!static_literal && ((index + min_tmp_hash_length) < elements->size)) ||
(first_chunk && stack_length == 0)
)
) {
// Count the elements that are statically-known.
size_t count = 1;
while (index + count < elements->size && PM_NODE_FLAG_P(elements->nodes[index + count], PM_NODE_FLAG_STATIC_LITERAL)) count++;
if ((first_chunk && stack_length == 0) || count >= min_tmp_hash_length) {
// The subsequence of elements in this hash is long enough
// to merit its own hash.
VALUE ary = rb_ary_hidden_new(count);
// Create a hidden hash.
for (size_t tmp_end = index + count; index < tmp_end; index++) {
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[index];
VALUE elem[2] = {
pm_static_literal_value(iseq, assoc->key, scope_node),
pm_static_literal_value(iseq, assoc->value, scope_node)
};
rb_ary_cat(ary, elem, 2);
}
index --;
VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary) / 2);
rb_hash_bulk_insert(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary), hash);
hash = rb_obj_hide(hash);
OBJ_FREEZE(hash);
// Emit optimized code.
FLUSH_CHUNK;
if (first_chunk) {
PUSH_INSN1(ret, location, duphash, hash);
first_chunk = false;
}
else {
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, putobject, hash);
PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2));
}
break;
}
else {
static_literal = true;
}
}
else {
static_literal = false;
}
// If this is a plain assoc node, then we can compile it directly
// and then add the total number of values on the stack.
pm_compile_node(iseq, element, anchor, false, scope_node);
if ((stack_length += 2) >= max_stack_length) FLUSH_CHUNK;
break;
}
case PM_ASSOC_SPLAT_NODE: {
FLUSH_CHUNK;
const pm_assoc_splat_node_t *assoc_splat = (const pm_assoc_splat_node_t *) element;
bool empty_hash = assoc_splat->value != NULL && (
(PM_NODE_TYPE_P(assoc_splat->value, PM_HASH_NODE) && ((const pm_hash_node_t *) assoc_splat->value)->elements.size == 0) ||
PM_NODE_TYPE_P(assoc_splat->value, PM_NIL_NODE)
);
bool first_element = first_chunk && stack_length == 0;
bool last_element = index == elements->size - 1;
bool only_element = first_element && last_element;
if (empty_hash) {
if (only_element && argument) {
// **{} appears at the only keyword argument in method call,
// so it won't be modified.
//
// This is only done for method calls and not for literal
// hashes, because literal hashes should always result in a
// new hash.
PUSH_INSN(ret, location, putnil);
}
else if (first_element) {
// **{} appears as the first keyword argument, so it may be
// modified. We need to create a fresh hash object.
PUSH_INSN1(ret, location, newhash, INT2FIX(0));
}
// Any empty keyword splats that are not the first can be
// ignored since merging an empty hash into the existing hash is
// the same as not merging it.
}
else {
if (only_element && argument) {
// ** is only keyword argument in the method call. Use it
// directly. This will be not be flagged as mutable. This is
// only done for method calls and not for literal hashes,
// because literal hashes should always result in a new
// hash.
PM_COMPILE_NOT_POPPED(element);
}
else {
// There is more than one keyword argument, or this is not a
// method call. In that case, we need to add an empty hash
// (if first keyword), or merge the hash to the accumulated
// hash (if not the first keyword).
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
if (first_element) {
PUSH_INSN1(ret, location, newhash, INT2FIX(0));
}
else {
PUSH_INSN(ret, location, swap);
}
PM_COMPILE_NOT_POPPED(element);
PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2));
}
}
first_chunk = false;
static_literal = false;
break;
}
default:
RUBY_ASSERT("Invalid node type for hash" && false);
break;
}
}
FLUSH_CHUNK;
#undef FLUSH_CHUNK
}
#define SPLATARRAY_FALSE 0
#define SPLATARRAY_TRUE 1
#define DUP_SINGLE_KW_SPLAT 2
// This is details. Users should call pm_setup_args() instead.
static int
pm_setup_args_core(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, const bool has_regular_blockarg, struct rb_callinfo_kwarg **kw_arg, int *dup_rest, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_node_location_t *node_location)
{
const pm_node_location_t location = *node_location;
int orig_argc = 0;
bool has_splat = false;
bool has_keyword_splat = false;
if (arguments_node == NULL) {
if (*flags & VM_CALL_FCALL) {
*flags |= VM_CALL_VCALL;
}
}
else {
const pm_node_list_t *arguments = &arguments_node->arguments;
has_keyword_splat = PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT);
// We count the number of elements post the splat node that are not keyword elements to
// eventually pass as an argument to newarray
int post_splat_counter = 0;
const pm_node_t *argument;
PM_NODE_LIST_FOREACH(arguments, index, argument) {
switch (PM_NODE_TYPE(argument)) {
// A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes
case PM_KEYWORD_HASH_NODE: {
const pm_keyword_hash_node_t *keyword_arg = (const pm_keyword_hash_node_t *) argument;
const pm_node_list_t *elements = &keyword_arg->elements;
if (has_keyword_splat || has_splat) {
*flags |= VM_CALL_KW_SPLAT;
has_keyword_splat = true;
if (elements->size > 1 || !(elements->size == 1 && PM_NODE_TYPE_P(elements->nodes[0], PM_ASSOC_SPLAT_NODE))) {
// A new hash will be created for the keyword arguments
// in this case, so mark the method as passing mutable
// keyword splat.
*flags |= VM_CALL_KW_SPLAT_MUT;
pm_compile_hash_elements(iseq, argument, elements, true, ret, scope_node);
}
else if (*dup_rest & DUP_SINGLE_KW_SPLAT) {
*flags |= VM_CALL_KW_SPLAT_MUT;
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, newhash, INT2FIX(0));
pm_compile_hash_elements(iseq, argument, elements, true, ret, scope_node);
PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2));
}
else {
pm_compile_hash_elements(iseq, argument, elements, true, ret, scope_node);
}
}
else {
// We need to first figure out if all elements of the
// KeywordHashNode are AssocNodes with symbol keys.
if (PM_NODE_FLAG_P(keyword_arg, PM_KEYWORD_HASH_NODE_FLAGS_SYMBOL_KEYS)) {
// If they are all symbol keys then we can pass them as
// keyword arguments. The first thing we need to do is
// deduplicate. We'll do this using the combination of a
// Ruby hash and a Ruby array.
VALUE stored_indices = rb_hash_new();
VALUE keyword_indices = rb_ary_new_capa(elements->size);
size_t size = 0;
for (size_t element_index = 0; element_index < elements->size; element_index++) {
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index];
// Retrieve the stored index from the hash for this
// keyword.
VALUE keyword = pm_static_literal_value(iseq, assoc->key, scope_node);
VALUE stored_index = rb_hash_aref(stored_indices, keyword);
// If this keyword was already seen in the hash,
// then mark the array at that index as false and
// decrement the keyword size.
if (!NIL_P(stored_index)) {
rb_ary_store(keyword_indices, NUM2LONG(stored_index), Qfalse);
size--;
}
// Store (and possibly overwrite) the index for this
// keyword in the hash, mark the array at that index
// as true, and increment the keyword size.
rb_hash_aset(stored_indices, keyword, ULONG2NUM(element_index));
rb_ary_store(keyword_indices, (long) element_index, Qtrue);
size++;
}
*kw_arg = rb_xmalloc_mul_add(size, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg));
*flags |= VM_CALL_KWARG;
VALUE *keywords = (*kw_arg)->keywords;
(*kw_arg)->references = 0;
(*kw_arg)->keyword_len = (int) size;
size_t keyword_index = 0;
for (size_t element_index = 0; element_index < elements->size; element_index++) {
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index];
bool popped = true;
if (rb_ary_entry(keyword_indices, (long) element_index) == Qtrue) {
keywords[keyword_index++] = pm_static_literal_value(iseq, assoc->key, scope_node);
popped = false;
}
PM_COMPILE(assoc->value);
}
RUBY_ASSERT(keyword_index == size);
}
else {
// If they aren't all symbol keys then we need to
// construct a new hash and pass that as an argument.
orig_argc++;
*flags |= VM_CALL_KW_SPLAT;
size_t size = elements->size;
if (size > 1) {
// A new hash will be created for the keyword
// arguments in this case, so mark the method as
// passing mutable keyword splat.
*flags |= VM_CALL_KW_SPLAT_MUT;
}
for (size_t element_index = 0; element_index < size; element_index++) {
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index];
PM_COMPILE_NOT_POPPED(assoc->key);
PM_COMPILE_NOT_POPPED(assoc->value);
}
PUSH_INSN1(ret, location, newhash, INT2FIX(size * 2));
}
}
break;
}
case PM_SPLAT_NODE: {
*flags |= VM_CALL_ARGS_SPLAT;
const pm_splat_node_t *splat_node = (const pm_splat_node_t *) argument;
if (splat_node->expression) {
PM_COMPILE_NOT_POPPED(splat_node->expression);
}
else {
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0);
PUSH_GETLOCAL(ret, location, index.index, index.level);
}
bool first_splat = !has_splat;
if (first_splat) {
// If this is the first splat array seen and it's not the
// last parameter, we want splatarray to dup it.
//
// foo(a, *b, c)
// ^^
if (index + 1 < arguments->size || has_regular_blockarg) {
PUSH_INSN1(ret, location, splatarray, (*dup_rest & SPLATARRAY_TRUE) ? Qtrue : Qfalse);
if (*dup_rest & SPLATARRAY_TRUE) *dup_rest &= ~SPLATARRAY_TRUE;
}
// If this is the first spalt array seen and it's the last
// parameter, we don't want splatarray to dup it.
//
// foo(a, *b)
// ^^
else {
PUSH_INSN1(ret, location, splatarray, Qfalse);
}
}
else {
// If this is not the first splat array seen and it is also
// the last parameter, we don't want splatarray to dup it
// and we need to concat the array.
//
// foo(a, *b, *c)
// ^^
PUSH_INSN(ret, location, concattoarray);
}
has_splat = true;
post_splat_counter = 0;
break;
}
case PM_FORWARDING_ARGUMENTS_NODE: { // not counted in argc return value
if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) {
*flags |= VM_CALL_FORWARDING;
pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_DOT3, 0);
PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level);
break;
}
orig_argc += 2;
*flags |= VM_CALL_ARGS_SPLAT | VM_CALL_ARGS_SPLAT_MUT | VM_CALL_ARGS_BLOCKARG | VM_CALL_KW_SPLAT;
// Forwarding arguments nodes are treated as foo(*, **, &)
// So foo(...) equals foo(*, **, &) and as such the local
// table for this method is known in advance
//
// Push the *
pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0);
PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level);
PUSH_INSN1(ret, location, splatarray, Qtrue);
// Push the **
pm_local_index_t pow_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0);
PUSH_GETLOCAL(ret, location, pow_local.index, pow_local.level);
// Push the &
pm_local_index_t and_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0);
PUSH_INSN2(ret, location, getblockparamproxy, INT2FIX(and_local.index + VM_ENV_DATA_SIZE - 1), INT2FIX(and_local.level));
PUSH_INSN(ret, location, splatkw);
break;
}
default: {
post_splat_counter++;
PM_COMPILE_NOT_POPPED(argument);
// If we have a splat and we've seen a splat, we need to process
// everything after the splat.
if (has_splat) {
// Stack items are turned into an array and concatenated in
// the following cases:
//
// If the next node is a splat:
//
// foo(*a, b, *c)
//
// If the next node is a kwarg or kwarg splat:
//
// foo(*a, b, c: :d)
// foo(*a, b, **c)
//
// If the next node is NULL (we have hit the end):
//
// foo(*a, b)
if (index == arguments->size - 1) {
RUBY_ASSERT(post_splat_counter > 0);
PUSH_INSN1(ret, location, pushtoarray, INT2FIX(post_splat_counter));
}
else {
pm_node_t *next_arg = arguments->nodes[index + 1];
switch (PM_NODE_TYPE(next_arg)) {
// A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes
case PM_KEYWORD_HASH_NODE: {
PUSH_INSN1(ret, location, newarray, INT2FIX(post_splat_counter));
PUSH_INSN(ret, location, concatarray);
break;
}
case PM_SPLAT_NODE: {
PUSH_INSN1(ret, location, newarray, INT2FIX(post_splat_counter));
PUSH_INSN(ret, location, concatarray);
break;
}
default:
break;
}
}
}
else {
orig_argc++;
}
}
}
}
}
if (has_splat) orig_argc++;
if (has_keyword_splat) orig_argc++;
return orig_argc;
}
/**
* True if the given kind of node could potentially mutate the array that is
* being splatted in a set of call arguments.
*/
static inline bool
pm_setup_args_dup_rest_p(const pm_node_t *node)
{
switch (PM_NODE_TYPE(node)) {
case PM_BACK_REFERENCE_READ_NODE:
case PM_CLASS_VARIABLE_READ_NODE:
case PM_CONSTANT_PATH_NODE:
case PM_CONSTANT_READ_NODE:
case PM_FALSE_NODE:
case PM_FLOAT_NODE:
case PM_GLOBAL_VARIABLE_READ_NODE:
case PM_IMAGINARY_NODE:
case PM_INSTANCE_VARIABLE_READ_NODE:
case PM_INTEGER_NODE:
case PM_LAMBDA_NODE:
case PM_LOCAL_VARIABLE_READ_NODE:
case PM_NIL_NODE:
case PM_NUMBERED_REFERENCE_READ_NODE:
case PM_RATIONAL_NODE:
case PM_REGULAR_EXPRESSION_NODE:
case PM_SELF_NODE:
case PM_STRING_NODE:
case PM_SYMBOL_NODE:
case PM_TRUE_NODE:
return false;
case PM_IMPLICIT_NODE:
return pm_setup_args_dup_rest_p(((const pm_implicit_node_t *) node)->value);
default:
return true;
}
}
/**
* Compile the argument parts of a call.
*/
static int
pm_setup_args(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, struct rb_callinfo_kwarg **kw_arg, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_node_location_t *node_location)
{
int dup_rest = SPLATARRAY_TRUE;
const pm_node_list_t *arguments;
size_t arguments_size;
// Calls like foo(1, *f, **hash) that use splat and kwsplat could be
// eligible for eliding duping the rest array (dup_reset=false).
if (
arguments_node != NULL &&
(arguments = &arguments_node->arguments, arguments_size = arguments->size) >= 2 &&
PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_SPLAT) &&
!PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_MULTIPLE_SPLATS) &&
PM_NODE_TYPE_P(arguments->nodes[arguments_size - 1], PM_KEYWORD_HASH_NODE)
) {
// Start by assuming that dup_rest=false, then check each element of the
// hash to ensure we don't need to flip it back to true (in case one of
// the elements could potentially mutate the array).
dup_rest = SPLATARRAY_FALSE;
const pm_keyword_hash_node_t *keyword_hash = (const pm_keyword_hash_node_t *) arguments->nodes[arguments_size - 1];
const pm_node_list_t *elements = &keyword_hash->elements;
for (size_t index = 0; dup_rest == SPLATARRAY_FALSE && index < elements->size; index++) {
const pm_node_t *element = elements->nodes[index];
switch (PM_NODE_TYPE(element)) {
case PM_ASSOC_NODE: {
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
if (pm_setup_args_dup_rest_p(assoc->key) || pm_setup_args_dup_rest_p(assoc->value)) dup_rest = SPLATARRAY_TRUE;
break;
}
case PM_ASSOC_SPLAT_NODE: {
const pm_assoc_splat_node_t *assoc = (const pm_assoc_splat_node_t *) element;
if (assoc->value != NULL && pm_setup_args_dup_rest_p(assoc->value)) dup_rest = SPLATARRAY_TRUE;
break;
}
default:
break;
}
}
}
int initial_dup_rest = dup_rest;
int argc;
if (block && PM_NODE_TYPE_P(block, PM_BLOCK_ARGUMENT_NODE)) {
// We compile the `&block_arg` expression first and stitch it later
// since the nature of the expression influences whether splat should
// duplicate the array.
bool regular_block_arg = true;
const pm_node_t *block_expr = ((const pm_block_argument_node_t *)block)->expression;
if (block_expr && pm_setup_args_dup_rest_p(block_expr)) {
dup_rest = SPLATARRAY_TRUE | DUP_SINGLE_KW_SPLAT;
initial_dup_rest = dup_rest;
}
DECL_ANCHOR(block_arg);
INIT_ANCHOR(block_arg);
pm_compile_node(iseq, block, block_arg, false, scope_node);
*flags |= VM_CALL_ARGS_BLOCKARG;
if (LIST_INSN_SIZE_ONE(block_arg)) {
LINK_ELEMENT *elem = FIRST_ELEMENT(block_arg);
if (IS_INSN(elem)) {
INSN *iobj = (INSN *) elem;
if (iobj->insn_id == BIN(getblockparam)) {
iobj->insn_id = BIN(getblockparamproxy);
}
// Allow splat without duplication for simple one-instruction
// block arguments like `&arg`. It is known that this
// optimization can be too aggressive in some cases. See
// [Bug #16504].
regular_block_arg = false;
}
}
argc = pm_setup_args_core(arguments_node, block, flags, regular_block_arg, kw_arg, &dup_rest, iseq, ret, scope_node, node_location);
PUSH_SEQ(ret, block_arg);
}
else {
argc = pm_setup_args_core(arguments_node, block, flags, false, kw_arg, &dup_rest, iseq, ret, scope_node, node_location);
}
// If the dup_rest flag was consumed while compiling the arguments (which
// effectively means we found the splat node), then it would have changed
// during the call to pm_setup_args_core. In this case, we want to add the
// VM_CALL_ARGS_SPLAT_MUT flag.
if (*flags & VM_CALL_ARGS_SPLAT && dup_rest != initial_dup_rest) {
*flags |= VM_CALL_ARGS_SPLAT_MUT;
}
return argc;
}
/**
* Compile an index operator write node, which is a node that is writing a value
* using the [] and []= methods. It looks like:
*
* foo[bar] += baz
*
* This breaks down to caching the receiver and arguments on the stack, calling
* the [] method, calling the operator method with the result of the [] method,
* and then calling the []= method with the result of the operator method.
*/
static void
pm_compile_index_operator_write_node(rb_iseq_t *iseq, const pm_index_operator_write_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
if (!popped) PUSH_INSN(ret, location, putnil);
PM_COMPILE_NOT_POPPED(node->receiver);
int boff = (node->block == NULL ? 0 : 1);
int flag = PM_NODE_TYPE_P(node->receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0;
struct rb_callinfo_kwarg *keywords = NULL;
int argc = pm_setup_args(node->arguments, (const pm_node_t *) node->block, &flag, &keywords, iseq, ret, scope_node, node_location);
if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) {
if (boff) {
PUSH_INSN(ret, location, splatkw);
}
else {
PUSH_INSN(ret, location, dup);
PUSH_INSN(ret, location, splatkw);
PUSH_INSN(ret, location, pop);
}
}
int dup_argn = argc + 1 + boff;
int keyword_len = 0;
if (keywords) {
keyword_len = keywords->keyword_len;
dup_argn += keyword_len;
}
PUSH_INSN1(ret, location, dupn, INT2FIX(dup_argn));
PUSH_SEND_R(ret, location, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords);
PM_COMPILE_NOT_POPPED(node->value);
ID id_operator = pm_constant_id_lookup(scope_node, node->binary_operator);
PUSH_SEND(ret, location, id_operator, INT2FIX(1));
if (!popped) {
PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1));
}
if (flag & VM_CALL_ARGS_SPLAT) {
if (flag & VM_CALL_KW_SPLAT) {
PUSH_INSN1(ret, location, topn, INT2FIX(2 + boff));
if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
PUSH_INSN1(ret, location, splatarray, Qtrue);
flag |= VM_CALL_ARGS_SPLAT_MUT;
}
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
PUSH_INSN1(ret, location, setn, INT2FIX(2 + boff));
PUSH_INSN(ret, location, pop);
}
else {
if (boff > 0) {
PUSH_INSN1(ret, location, dupn, INT2FIX(3));
PUSH_INSN(ret, location, swap);
PUSH_INSN(ret, location, pop);
}
if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, splatarray, Qtrue);
PUSH_INSN(ret, location, swap);
flag |= VM_CALL_ARGS_SPLAT_MUT;
}
PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
if (boff > 0) {
PUSH_INSN1(ret, location, setn, INT2FIX(3));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
}
}
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords);
}
else if (flag & VM_CALL_KW_SPLAT) {
if (boff > 0) {
PUSH_INSN1(ret, location, topn, INT2FIX(2));
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, setn, INT2FIX(3));
PUSH_INSN(ret, location, pop);
}
PUSH_INSN(ret, location, swap);
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
}
else if (keyword_len) {
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 2));
PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 1));
PUSH_INSN(ret, location, pop);
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
}
else {
if (boff > 0) {
PUSH_INSN(ret, location, swap);
}
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
}
PUSH_INSN(ret, location, pop);
}
/**
* Compile an index control flow write node, which is a node that is writing a
* value using the [] and []= methods and the &&= and ||= operators. It looks
* like:
*
* foo[bar] ||= baz
*
* This breaks down to caching the receiver and arguments on the stack, calling
* the [] method, checking the result and then changing control flow based on
* it. If the value would result in a write, then the value is written using the
* []= method.
*/
static void
pm_compile_index_control_flow_write_node(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_t *receiver, const pm_arguments_node_t *arguments, const pm_block_argument_node_t *block, const pm_node_t *value, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
if (!popped) PUSH_INSN(ret, location, putnil);
PM_COMPILE_NOT_POPPED(receiver);
int boff = (block == NULL ? 0 : 1);
int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0;
struct rb_callinfo_kwarg *keywords = NULL;
int argc = pm_setup_args(arguments, (const pm_node_t *) block, &flag, &keywords, iseq, ret, scope_node, node_location);
if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) {
if (boff) {
PUSH_INSN(ret, location, splatkw);
}
else {
PUSH_INSN(ret, location, dup);
PUSH_INSN(ret, location, splatkw);
PUSH_INSN(ret, location, pop);
}
}
int dup_argn = argc + 1 + boff;
int keyword_len = 0;
if (keywords) {
keyword_len = keywords->keyword_len;
dup_argn += keyword_len;
}
PUSH_INSN1(ret, location, dupn, INT2FIX(dup_argn));
PUSH_SEND_R(ret, location, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords);
LABEL *label = NEW_LABEL(location.line);
LABEL *lfin = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
if (PM_NODE_TYPE_P(node, PM_INDEX_AND_WRITE_NODE)) {
PUSH_INSNL(ret, location, branchunless, label);
}
else {
PUSH_INSNL(ret, location, branchif, label);
}
PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(value);
if (!popped) {
PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1));
}
if (flag & VM_CALL_ARGS_SPLAT) {
if (flag & VM_CALL_KW_SPLAT) {
PUSH_INSN1(ret, location, topn, INT2FIX(2 + boff));
if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
PUSH_INSN1(ret, location, splatarray, Qtrue);
flag |= VM_CALL_ARGS_SPLAT_MUT;
}
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
PUSH_INSN1(ret, location, setn, INT2FIX(2 + boff));
PUSH_INSN(ret, location, pop);
}
else {
if (boff > 0) {
PUSH_INSN1(ret, location, dupn, INT2FIX(3));
PUSH_INSN(ret, location, swap);
PUSH_INSN(ret, location, pop);
}
if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, splatarray, Qtrue);
PUSH_INSN(ret, location, swap);
flag |= VM_CALL_ARGS_SPLAT_MUT;
}
PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
if (boff > 0) {
PUSH_INSN1(ret, location, setn, INT2FIX(3));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
}
}
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords);
}
else if (flag & VM_CALL_KW_SPLAT) {
if (boff > 0) {
PUSH_INSN1(ret, location, topn, INT2FIX(2));
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, setn, INT2FIX(3));
PUSH_INSN(ret, location, pop);
}
PUSH_INSN(ret, location, swap);
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
}
else if (keyword_len) {
PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 1));
PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 0));
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
}
else {
if (boff > 0) {
PUSH_INSN(ret, location, swap);
}
PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
}
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, lfin);
PUSH_LABEL(ret, label);
if (!popped) {
PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1));
}
PUSH_INSN1(ret, location, adjuststack, INT2FIX(dup_argn + 1));
PUSH_LABEL(ret, lfin);
}
// When we compile a pattern matching expression, we use the stack as a scratch
// space to store lots of different values (consider it like we have a pattern
// matching function and we need space for a bunch of different local
// variables). The "base index" refers to the index on the stack where we
// started compiling the pattern matching expression. These offsets from that
// base index indicate the location of the various locals we need.
#define PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE 0
#define PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING 1
#define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P 2
#define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE 3
#define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY 4
// A forward declaration because this is the recursive function that handles
// compiling a pattern. It can be reentered by nesting patterns, as in the case
// of arrays or hashes.
static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index);
/**
* This function generates the code to set up the error string and error_p
* locals depending on whether or not the pattern matched.
*/
static int
pm_compile_pattern_generic_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, unsigned int base_index)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
LABEL *match_succeeded_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, match_succeeded_label);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, putobject, message);
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(2));
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_succeeded_label);
return COMPILE_OK;
}
/**
* This function generates the code to set up the error string and error_p
* locals depending on whether or not the pattern matched when the value needs
* to match a specific deconstructed length.
*/
static int
pm_compile_pattern_length_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, VALUE length, unsigned int base_index)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
LABEL *match_succeeded_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, match_succeeded_label);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, putobject, message);
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idLength, INT2FIX(0));
PUSH_INSN1(ret, location, putobject, length);
PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(4));
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_succeeded_label);
return COMPILE_OK;
}
/**
* This function generates the code to set up the error string and error_p
* locals depending on whether or not the pattern matched when the value needs
* to pass a specific #=== method call.
*/
static int
pm_compile_pattern_eqq_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, unsigned int base_index)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
LABEL *match_succeeded_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, match_succeeded_label);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
VALUE operand = rb_fstring_lit("%p === %p does not return true");
PUSH_INSN1(ret, location, putobject, operand);
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_INSN1(ret, location, topn, INT2FIX(5));
PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3));
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_succeeded_label);
PUSH_INSN1(ret, location, setn, INT2FIX(2));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
return COMPILE_OK;
}
/**
* This is a variation on compiling a pattern matching expression that is used
* to have the pattern matching instructions fall through to immediately after
* the pattern if it passes. Otherwise it jumps to the given unmatched_label
* label.
*/
static int
pm_compile_pattern_match(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index)
{
LABEL *matched_label = NEW_LABEL(pm_node_line_number(scope_node->parser, node));
CHECK(pm_compile_pattern(iseq, scope_node, node, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index));
PUSH_LABEL(ret, matched_label);
return COMPILE_OK;
}
/**
* This function compiles in the code necessary to call #deconstruct on the
* value to match against. It raises appropriate errors if the method does not
* exist or if it returns the wrong type.
*/
static int
pm_compile_pattern_deconstruct(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *deconstruct_label, LABEL *match_failed_label, LABEL *deconstructed_label, LABEL *type_error_label, bool in_single_pattern, bool use_deconstructed_cache, unsigned int base_index)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
if (use_deconstructed_cache) {
PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE));
PUSH_INSNL(ret, location, branchnil, deconstruct_label);
PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE));
PUSH_INSNL(ret, location, branchunless, match_failed_label);
PUSH_INSN(ret, location, pop);
PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE - 1));
PUSH_INSNL(ret, location, jump, deconstructed_label);
}
else {
PUSH_INSNL(ret, location, jump, deconstruct_label);
}
PUSH_LABEL(ret, deconstruct_label);
PUSH_INSN(ret, location, dup);
VALUE operand = ID2SYM(rb_intern("deconstruct"));
PUSH_INSN1(ret, location, putobject, operand);
PUSH_SEND(ret, location, idRespond_to, INT2FIX(1));
if (use_deconstructed_cache) {
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE + 1));
}
if (in_single_pattern) {
CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct"), base_index + 1));
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
PUSH_SEND(ret, location, rb_intern("deconstruct"), INT2FIX(0));
if (use_deconstructed_cache) {
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE));
}
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, checktype, INT2FIX(T_ARRAY));
PUSH_INSNL(ret, location, branchunless, type_error_label);
PUSH_LABEL(ret, deconstructed_label);
return COMPILE_OK;
}
/**
* This function compiles in the code necessary to match against the optional
* constant path that is attached to an array, find, or hash pattern.
*/
static int
pm_compile_pattern_constant(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *match_failed_label, bool in_single_pattern, unsigned int base_index)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
PUSH_INSN(ret, location, dup);
PM_COMPILE_NOT_POPPED(node);
if (in_single_pattern) {
PUSH_INSN1(ret, location, dupn, INT2FIX(2));
}
PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE));
if (in_single_pattern) {
CHECK(pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 3));
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
return COMPILE_OK;
}
/**
* When matching fails, an appropriate error must be raised. This function is
* responsible for compiling in those error raising instructions.
*/
static void
pm_compile_pattern_error_handler(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *done_label, bool popped)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
LABEL *key_error_label = NEW_LABEL(location.line);
LABEL *cleanup_label = NEW_LABEL(location.line);
struct rb_callinfo_kwarg *kw_arg = rb_xmalloc_mul_add(2, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg));
kw_arg->references = 0;
kw_arg->keyword_len = 2;
kw_arg->keywords[0] = ID2SYM(rb_intern("matchee"));
kw_arg->keywords[1] = ID2SYM(rb_intern("key"));
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
PUSH_INSNL(ret, location, branchif, key_error_label);
PUSH_INSN1(ret, location, putobject, rb_eNoMatchingPatternError);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
{
VALUE operand = rb_fstring_lit("%p: %s");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_INSN1(ret, location, topn, INT2FIX(4));
PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6));
PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3));
PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
PUSH_INSNL(ret, location, jump, cleanup_label);
PUSH_LABEL(ret, key_error_label);
PUSH_INSN1(ret, location, putobject, rb_eNoMatchingPatternKeyError);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
{
VALUE operand = rb_fstring_lit("%p: %s");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_INSN1(ret, location, topn, INT2FIX(4));
PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6));
PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3));
PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4));
PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5));
PUSH_SEND_R(ret, location, rb_intern("new"), INT2FIX(1), NULL, INT2FIX(VM_CALL_KWARG), kw_arg);
PUSH_SEND(ret, location, id_core_raise, INT2FIX(1));
PUSH_LABEL(ret, cleanup_label);
PUSH_INSN1(ret, location, adjuststack, INT2FIX(7));
if (!popped) PUSH_INSN(ret, location, putnil);
PUSH_INSNL(ret, location, jump, done_label);
PUSH_INSN1(ret, location, dupn, INT2FIX(5));
if (popped) PUSH_INSN(ret, location, putnil);
}
/**
* Compile a pattern matching expression.
*/
static int
pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
switch (PM_NODE_TYPE(node)) {
case PM_ARRAY_PATTERN_NODE: {
// Array patterns in pattern matching are triggered by using commas in
// a pattern or wrapping it in braces. They are represented by a
// ArrayPatternNode. This looks like:
//
// foo => [1, 2, 3]
//
// It can optionally have a splat in the middle of it, which can
// optionally have a name attached.
const pm_array_pattern_node_t *cast = (const pm_array_pattern_node_t *) node;
const size_t requireds_size = cast->requireds.size;
const size_t posts_size = cast->posts.size;
const size_t minimum_size = requireds_size + posts_size;
bool rest_named = false;
bool use_rest_size = false;
if (cast->rest != NULL) {
rest_named = (PM_NODE_TYPE_P(cast->rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) cast->rest)->expression != NULL);
use_rest_size = (rest_named || (!rest_named && posts_size > 0));
}
LABEL *match_failed_label = NEW_LABEL(location.line);
LABEL *type_error_label = NEW_LABEL(location.line);
LABEL *deconstruct_label = NEW_LABEL(location.line);
LABEL *deconstructed_label = NEW_LABEL(location.line);
if (use_rest_size) {
PUSH_INSN1(ret, location, putobject, INT2FIX(0));
PUSH_INSN(ret, location, swap);
base_index++;
}
if (cast->constant != NULL) {
CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index));
}
CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index));
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idLength, INT2FIX(0));
PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size));
PUSH_SEND(ret, location, cast->rest == NULL ? idEq : idGE, INT2FIX(1));
if (in_single_pattern) {
VALUE message = cast->rest == NULL ? rb_fstring_lit("%p length mismatch (given %p, expected %p)") : rb_fstring_lit("%p length mismatch (given %p, expected %p+)");
CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, message, INT2FIX(minimum_size), base_index + 1));
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
for (size_t index = 0; index < requireds_size; index++) {
const pm_node_t *required = cast->requireds.nodes[index];
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, INT2FIX(index));
PUSH_SEND(ret, location, idAREF, INT2FIX(1));
CHECK(pm_compile_pattern_match(iseq, scope_node, required, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
}
if (cast->rest != NULL) {
if (rest_named) {
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, INT2FIX(requireds_size));
PUSH_INSN1(ret, location, topn, INT2FIX(1));
PUSH_SEND(ret, location, idLength, INT2FIX(0));
PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size));
PUSH_SEND(ret, location, idMINUS, INT2FIX(1));
PUSH_INSN1(ret, location, setn, INT2FIX(4));
PUSH_SEND(ret, location, idAREF, INT2FIX(2));
CHECK(pm_compile_pattern_match(iseq, scope_node, ((const pm_splat_node_t *) cast->rest)->expression, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
}
else if (posts_size > 0) {
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idLength, INT2FIX(0));
PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size));
PUSH_SEND(ret, location, idMINUS, INT2FIX(1));
PUSH_INSN1(ret, location, setn, INT2FIX(2));
PUSH_INSN(ret, location, pop);
}
}
for (size_t index = 0; index < posts_size; index++) {
const pm_node_t *post = cast->posts.nodes[index];
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, INT2FIX(requireds_size + index));
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
PUSH_SEND(ret, location, idAREF, INT2FIX(1));
CHECK(pm_compile_pattern_match(iseq, scope_node, post, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
}
PUSH_INSN(ret, location, pop);
if (use_rest_size) {
PUSH_INSN(ret, location, pop);
}
PUSH_INSNL(ret, location, jump, matched_label);
PUSH_INSN(ret, location, putnil);
if (use_rest_size) {
PUSH_INSN(ret, location, putnil);
}
PUSH_LABEL(ret, type_error_label);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, putobject, rb_eTypeError);
{
VALUE operand = rb_fstring_lit("deconstruct must return Array");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_failed_label);
PUSH_INSN(ret, location, pop);
if (use_rest_size) {
PUSH_INSN(ret, location, pop);
}
PUSH_INSNL(ret, location, jump, unmatched_label);
break;
}
case PM_FIND_PATTERN_NODE: {
// Find patterns in pattern matching are triggered by using commas in
// a pattern or wrapping it in braces and using a splat on both the left
// and right side of the pattern. This looks like:
//
// foo => [*, 1, 2, 3, *]
//
// There can be any number of requireds in the middle. The splats on
// both sides can optionally have names attached.
const pm_find_pattern_node_t *cast = (const pm_find_pattern_node_t *) node;
const size_t size = cast->requireds.size;
LABEL *match_failed_label = NEW_LABEL(location.line);
LABEL *type_error_label = NEW_LABEL(location.line);
LABEL *deconstruct_label = NEW_LABEL(location.line);
LABEL *deconstructed_label = NEW_LABEL(location.line);
if (cast->constant) {
CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index));
}
CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index));
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idLength, INT2FIX(0));
PUSH_INSN1(ret, location, putobject, INT2FIX(size));
PUSH_SEND(ret, location, idGE, INT2FIX(1));
if (in_single_pattern) {
CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, rb_fstring_lit("%p length mismatch (given %p, expected %p+)"), INT2FIX(size), base_index + 1));
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
{
LABEL *while_begin_label = NEW_LABEL(location.line);
LABEL *next_loop_label = NEW_LABEL(location.line);
LABEL *find_succeeded_label = NEW_LABEL(location.line);
LABEL *find_failed_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idLength, INT2FIX(0));
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, INT2FIX(size));
PUSH_SEND(ret, location, idMINUS, INT2FIX(1));
PUSH_INSN1(ret, location, putobject, INT2FIX(0));
PUSH_LABEL(ret, while_begin_label);
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, topn, INT2FIX(2));
PUSH_SEND(ret, location, idLE, INT2FIX(1));
PUSH_INSNL(ret, location, branchunless, find_failed_label);
for (size_t index = 0; index < size; index++) {
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_INSN1(ret, location, topn, INT2FIX(1));
if (index != 0) {
PUSH_INSN1(ret, location, putobject, INT2FIX(index));
PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
}
PUSH_SEND(ret, location, idAREF, INT2FIX(1));
CHECK(pm_compile_pattern_match(iseq, scope_node, cast->requireds.nodes[index], ret, next_loop_label, in_single_pattern, in_alternation_pattern, false, base_index + 4));
}
const pm_splat_node_t *left = cast->left;
if (left->expression != NULL) {
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_INSN1(ret, location, putobject, INT2FIX(0));
PUSH_INSN1(ret, location, topn, INT2FIX(2));
PUSH_SEND(ret, location, idAREF, INT2FIX(2));
CHECK(pm_compile_pattern_match(iseq, scope_node, left->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4));
}
RUBY_ASSERT(PM_NODE_TYPE_P(cast->right, PM_SPLAT_NODE));
const pm_splat_node_t *right = (const pm_splat_node_t *) cast->right;
if (right->expression != NULL) {
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_INSN1(ret, location, topn, INT2FIX(1));
PUSH_INSN1(ret, location, putobject, INT2FIX(size));
PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_SEND(ret, location, idAREF, INT2FIX(2));
pm_compile_pattern_match(iseq, scope_node, right->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4);
}
PUSH_INSNL(ret, location, jump, find_succeeded_label);
PUSH_LABEL(ret, next_loop_label);
PUSH_INSN1(ret, location, putobject, INT2FIX(1));
PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
PUSH_INSNL(ret, location, jump, while_begin_label);
PUSH_LABEL(ret, find_failed_label);
PUSH_INSN1(ret, location, adjuststack, INT2FIX(3));
if (in_single_pattern) {
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
{
VALUE operand = rb_fstring_lit("%p does not match to find pattern");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_INSN1(ret, location, topn, INT2FIX(2));
PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(2));
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
}
PUSH_INSNL(ret, location, jump, match_failed_label);
PUSH_INSN1(ret, location, dupn, INT2FIX(3));
PUSH_LABEL(ret, find_succeeded_label);
PUSH_INSN1(ret, location, adjuststack, INT2FIX(3));
}
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, matched_label);
PUSH_INSN(ret, location, putnil);
PUSH_LABEL(ret, type_error_label);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, putobject, rb_eTypeError);
{
VALUE operand = rb_fstring_lit("deconstruct must return Array");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_failed_label);
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, unmatched_label);
break;
}
case PM_HASH_PATTERN_NODE: {
// Hash patterns in pattern matching are triggered by using labels and
// values in a pattern or by using the ** operator. They are represented
// by the HashPatternNode. This looks like:
//
// foo => { a: 1, b: 2, **bar }
//
// It can optionally have an assoc splat in the middle of it, which can
// optionally have a name.
const pm_hash_pattern_node_t *cast = (const pm_hash_pattern_node_t *) node;
// We don't consider it a "rest" parameter if it's a ** that is unnamed.
bool has_rest = cast->rest != NULL && !(PM_NODE_TYPE_P(cast->rest, PM_ASSOC_SPLAT_NODE) && ((const pm_assoc_splat_node_t *) cast->rest)->value == NULL);
bool has_keys = cast->elements.size > 0 || cast->rest != NULL;
LABEL *match_failed_label = NEW_LABEL(location.line);
LABEL *type_error_label = NEW_LABEL(location.line);
VALUE keys = Qnil;
if (has_keys && !has_rest) {
keys = rb_ary_new_capa(cast->elements.size);
for (size_t index = 0; index < cast->elements.size; index++) {
const pm_node_t *element = cast->elements.nodes[index];
RUBY_ASSERT(PM_NODE_TYPE_P(element, PM_ASSOC_NODE));
const pm_node_t *key = ((const pm_assoc_node_t *) element)->key;
RUBY_ASSERT(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE));
VALUE symbol = ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) key));
rb_ary_push(keys, symbol);
}
}
if (cast->constant) {
CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index));
}
PUSH_INSN(ret, location, dup);
{
VALUE operand = ID2SYM(rb_intern("deconstruct_keys"));
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_SEND(ret, location, idRespond_to, INT2FIX(1));
if (in_single_pattern) {
CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct_keys"), base_index + 1));
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
if (NIL_P(keys)) {
PUSH_INSN(ret, location, putnil);
}
else {
PUSH_INSN1(ret, location, duparray, keys);
RB_OBJ_WRITTEN(iseq, Qundef, rb_obj_hide(keys));
}
PUSH_SEND(ret, location, rb_intern("deconstruct_keys"), INT2FIX(1));
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, checktype, INT2FIX(T_HASH));
PUSH_INSNL(ret, location, branchunless, type_error_label);
if (has_rest) {
PUSH_SEND(ret, location, rb_intern("dup"), INT2FIX(0));
}
if (has_keys) {
DECL_ANCHOR(match_values);
INIT_ANCHOR(match_values);
for (size_t index = 0; index < cast->elements.size; index++) {
const pm_node_t *element = cast->elements.nodes[index];
RUBY_ASSERT(PM_NODE_TYPE_P(element, PM_ASSOC_NODE));
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
const pm_node_t *key = assoc->key;
RUBY_ASSERT(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE));
VALUE symbol = ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) key));
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, symbol);
PUSH_SEND(ret, location, rb_intern("key?"), INT2FIX(1));
if (in_single_pattern) {
LABEL *match_succeeded_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, match_succeeded_label);
{
VALUE operand = rb_str_freeze(rb_sprintf("key not found: %+"PRIsVALUE, symbol));
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 2));
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 3));
PUSH_INSN1(ret, location, topn, INT2FIX(3));
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4));
PUSH_INSN1(ret, location, putobject, symbol);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5));
PUSH_INSN1(ret, location, adjuststack, INT2FIX(4));
PUSH_LABEL(ret, match_succeeded_label);
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
PUSH_INSN(match_values, location, dup);
PUSH_INSN1(match_values, location, putobject, symbol);
PUSH_SEND(match_values, location, has_rest ? rb_intern("delete") : idAREF, INT2FIX(1));
const pm_node_t *value = assoc->value;
if (PM_NODE_TYPE_P(value, PM_IMPLICIT_NODE)) {
value = ((const pm_implicit_node_t *) value)->value;
}
CHECK(pm_compile_pattern_match(iseq, scope_node, value, match_values, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
}
PUSH_SEQ(ret, match_values);
}
else {
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idEmptyP, INT2FIX(0));
if (in_single_pattern) {
CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p is not empty"), base_index + 1));
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
}
if (has_rest) {
switch (PM_NODE_TYPE(cast->rest)) {
case PM_NO_KEYWORDS_PARAMETER_NODE: {
PUSH_INSN(ret, location, dup);
PUSH_SEND(ret, location, idEmptyP, INT2FIX(0));
if (in_single_pattern) {
pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("rest of %p is not empty"), base_index + 1);
}
PUSH_INSNL(ret, location, branchunless, match_failed_label);
break;
}
case PM_ASSOC_SPLAT_NODE: {
const pm_assoc_splat_node_t *splat = (const pm_assoc_splat_node_t *) cast->rest;
PUSH_INSN(ret, location, dup);
pm_compile_pattern_match(iseq, scope_node, splat->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1);
break;
}
default:
rb_bug("unreachable");
break;
}
}
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, matched_label);
PUSH_INSN(ret, location, putnil);
PUSH_LABEL(ret, type_error_label);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, putobject, rb_eTypeError);
{
VALUE operand = rb_fstring_lit("deconstruct_keys must return Hash");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_failed_label);
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, unmatched_label);
break;
}
case PM_CAPTURE_PATTERN_NODE: {
// Capture patterns allow you to pattern match against an element in a
// pattern and also capture the value into a local variable. This looks
// like:
//
// [1] => [Integer => foo]
//
// In this case the `Integer => foo` will be represented by a
// CapturePatternNode, which has both a value (the pattern to match
// against) and a target (the place to write the variable into).
const pm_capture_pattern_node_t *cast = (const pm_capture_pattern_node_t *) node;
LABEL *match_failed_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
CHECK(pm_compile_pattern_match(iseq, scope_node, cast->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index + 1));
CHECK(pm_compile_pattern(iseq, scope_node, (const pm_node_t *) cast->target, ret, matched_label, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index));
PUSH_INSN(ret, location, putnil);
PUSH_LABEL(ret, match_failed_label);
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, unmatched_label);
break;
}
case PM_LOCAL_VARIABLE_TARGET_NODE: {
// Local variables can be targeted by placing identifiers in the place
// of a pattern. For example, foo in bar. This results in the value
// being matched being written to that local variable.
const pm_local_variable_target_node_t *cast = (const pm_local_variable_target_node_t *) node;
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
// If this local variable is being written from within an alternation
// pattern, then it cannot actually be added to the local table since
// it's ambiguous which value should be used. So instead we indicate
// this with a compile error.
if (in_alternation_pattern) {
ID id = pm_constant_id_lookup(scope_node, cast->name);
const char *name = rb_id2name(id);
if (name && strlen(name) > 0 && name[0] != '_') {
COMPILE_ERROR(iseq, location.line, "illegal variable in alternative pattern (%"PRIsVALUE")", rb_id2str(id));
return COMPILE_NG;
}
}
PUSH_SETLOCAL(ret, location, index.index, index.level);
PUSH_INSNL(ret, location, jump, matched_label);
break;
}
case PM_ALTERNATION_PATTERN_NODE: {
// Alternation patterns allow you to specify multiple patterns in a
// single expression using the | operator.
const pm_alternation_pattern_node_t *cast = (const pm_alternation_pattern_node_t *) node;
LABEL *matched_left_label = NEW_LABEL(location.line);
LABEL *unmatched_left_label = NEW_LABEL(location.line);
// First, we're going to attempt to match against the left pattern. If
// that pattern matches, then we'll skip matching the right pattern.
PUSH_INSN(ret, location, dup);
CHECK(pm_compile_pattern(iseq, scope_node, cast->left, ret, matched_left_label, unmatched_left_label, in_single_pattern, true, true, base_index + 1));
// If we get here, then we matched on the left pattern. In this case we
// should pop out the duplicate value that we preemptively added to
// match against the right pattern and then jump to the match label.
PUSH_LABEL(ret, matched_left_label);
PUSH_INSN(ret, location, pop);
PUSH_INSNL(ret, location, jump, matched_label);
PUSH_INSN(ret, location, putnil);
// If we get here, then we didn't match on the left pattern. In this
// case we attempt to match against the right pattern.
PUSH_LABEL(ret, unmatched_left_label);
CHECK(pm_compile_pattern(iseq, scope_node, cast->right, ret, matched_label, unmatched_label, in_single_pattern, true, true, base_index));
break;
}
case PM_PARENTHESES_NODE:
// Parentheses are allowed to wrap expressions in pattern matching and
// they do nothing since they can only wrap individual expressions and
// not groups. In this case we'll recurse back into this same function
// with the body of the parentheses.
return pm_compile_pattern(iseq, scope_node, ((const pm_parentheses_node_t *) node)->body, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index);
case PM_PINNED_EXPRESSION_NODE:
// Pinned expressions are a way to match against the value of an
// expression that should be evaluated at runtime. This looks like:
// foo in ^(bar). To compile these, we compile the expression as if it
// were a literal value by falling through to the literal case.
node = ((const pm_pinned_expression_node_t *) node)->expression;
/* fallthrough */
case PM_ARRAY_NODE:
case PM_CLASS_VARIABLE_READ_NODE:
case PM_CONSTANT_PATH_NODE:
case PM_CONSTANT_READ_NODE:
case PM_FALSE_NODE:
case PM_FLOAT_NODE:
case PM_GLOBAL_VARIABLE_READ_NODE:
case PM_IMAGINARY_NODE:
case PM_INSTANCE_VARIABLE_READ_NODE:
case PM_INTEGER_NODE:
case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE:
case PM_INTERPOLATED_STRING_NODE:
case PM_INTERPOLATED_SYMBOL_NODE:
case PM_INTERPOLATED_X_STRING_NODE:
case PM_LAMBDA_NODE:
case PM_LOCAL_VARIABLE_READ_NODE:
case PM_NIL_NODE:
case PM_SOURCE_ENCODING_NODE:
case PM_SOURCE_FILE_NODE:
case PM_SOURCE_LINE_NODE:
case PM_RANGE_NODE:
case PM_RATIONAL_NODE:
case PM_REGULAR_EXPRESSION_NODE:
case PM_SELF_NODE:
case PM_STRING_NODE:
case PM_SYMBOL_NODE:
case PM_TRUE_NODE:
case PM_X_STRING_NODE: {
// These nodes are all simple patterns, which means we'll use the
// checkmatch instruction to match against them, which is effectively a
// VM-level === operator.
PM_COMPILE_NOT_POPPED(node);
if (in_single_pattern) {
PUSH_INSN1(ret, location, dupn, INT2FIX(2));
}
PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE));
if (in_single_pattern) {
pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 2);
}
PUSH_INSNL(ret, location, branchif, matched_label);
PUSH_INSNL(ret, location, jump, unmatched_label);
break;
}
case PM_PINNED_VARIABLE_NODE: {
// Pinned variables are a way to match against the value of a variable
// without it looking like you're trying to write to the variable. This
// looks like: foo in ^@bar. To compile these, we compile the variable
// that they hold.
const pm_pinned_variable_node_t *cast = (const pm_pinned_variable_node_t *) node;
CHECK(pm_compile_pattern(iseq, scope_node, cast->variable, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, true, base_index));
break;
}
case PM_IF_NODE:
case PM_UNLESS_NODE: {
// If and unless nodes can show up here as guards on `in` clauses. This
// looks like:
//
// case foo
// in bar if baz?
// qux
// end
//
// Because we know they're in the modifier form and they can't have any
// variation on this pattern, we compile them differently (more simply)
// here than we would in the normal compilation path.
const pm_node_t *predicate;
const pm_node_t *statement;
if (PM_NODE_TYPE_P(node, PM_IF_NODE)) {
const pm_if_node_t *cast = (const pm_if_node_t *) node;
predicate = cast->predicate;
RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1);
statement = cast->statements->body.nodes[0];
}
else {
const pm_unless_node_t *cast = (const pm_unless_node_t *) node;
predicate = cast->predicate;
RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1);
statement = cast->statements->body.nodes[0];
}
CHECK(pm_compile_pattern_match(iseq, scope_node, statement, ret, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index));
PM_COMPILE_NOT_POPPED(predicate);
if (in_single_pattern) {
LABEL *match_succeeded_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, dup);
if (PM_NODE_TYPE_P(node, PM_IF_NODE)) {
PUSH_INSNL(ret, location, branchif, match_succeeded_label);
}
else {
PUSH_INSNL(ret, location, branchunless, match_succeeded_label);
}
{
VALUE operand = rb_fstring_lit("guard clause does not return true");
PUSH_INSN1(ret, location, putobject, operand);
}
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, match_succeeded_label);
}
if (PM_NODE_TYPE_P(node, PM_IF_NODE)) {
PUSH_INSNL(ret, location, branchunless, unmatched_label);
}
else {
PUSH_INSNL(ret, location, branchif, unmatched_label);
}
PUSH_INSNL(ret, location, jump, matched_label);
break;
}
default:
// If we get here, then we have a node type that should not be in this
// position. This would be a bug in the parser, because a different node
// type should never have been created in this position in the tree.
rb_bug("Unexpected node type in pattern matching expression: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
break;
}
return COMPILE_OK;
}
#undef PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE
#undef PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING
#undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P
#undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE
#undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY
// Generate a scope node from the given node.
void
pm_scope_node_init(const pm_node_t *node, pm_scope_node_t *scope, pm_scope_node_t *previous)
{
// This is very important, otherwise the scope node could be seen as having
// certain flags set that _should not_ be set.
memset(scope, 0, sizeof(pm_scope_node_t));
scope->base.type = PM_SCOPE_NODE;
scope->base.location.start = node->location.start;
scope->base.location.end = node->location.end;
scope->previous = previous;
scope->ast_node = (pm_node_t *) node;
if (previous) {
scope->parser = previous->parser;
scope->encoding = previous->encoding;
scope->filepath_encoding = previous->filepath_encoding;
scope->constants = previous->constants;
scope->coverage_enabled = previous->coverage_enabled;
scope->script_lines = previous->script_lines;
}
switch (PM_NODE_TYPE(node)) {
case PM_BLOCK_NODE: {
const pm_block_node_t *cast = (const pm_block_node_t *) node;
scope->body = cast->body;
scope->locals = cast->locals;
scope->parameters = cast->parameters;
break;
}
case PM_CLASS_NODE: {
const pm_class_node_t *cast = (const pm_class_node_t *) node;
scope->body = cast->body;
scope->locals = cast->locals;
break;
}
case PM_DEF_NODE: {
const pm_def_node_t *cast = (const pm_def_node_t *) node;
scope->parameters = (pm_node_t *) cast->parameters;
scope->body = cast->body;
scope->locals = cast->locals;
break;
}
case PM_ENSURE_NODE: {
const pm_ensure_node_t *cast = (const pm_ensure_node_t *) node;
scope->body = (pm_node_t *) node;
if (cast->statements != NULL) {
scope->base.location.start = cast->statements->base.location.start;
scope->base.location.end = cast->statements->base.location.end;
}
break;
}
case PM_FOR_NODE: {
const pm_for_node_t *cast = (const pm_for_node_t *) node;
scope->body = (pm_node_t *) cast->statements;
break;
}
case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: {
RUBY_ASSERT(node->flags & PM_REGULAR_EXPRESSION_FLAGS_ONCE);
scope->body = (pm_node_t *) node;
break;
}
case PM_LAMBDA_NODE: {
const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node;
scope->parameters = cast->parameters;
scope->body = cast->body;
scope->locals = cast->locals;
if (cast->parameters != NULL) {
scope->base.location.start = cast->parameters->location.start;
}
else {
scope->base.location.start = cast->operator_loc.end;
}
break;
}
case PM_MODULE_NODE: {
const pm_module_node_t *cast = (const pm_module_node_t *) node;
scope->body = cast->body;
scope->locals = cast->locals;
break;
}
case PM_POST_EXECUTION_NODE: {
const pm_post_execution_node_t *cast = (const pm_post_execution_node_t *) node;
scope->body = (pm_node_t *) cast->statements;
break;
}
case PM_PROGRAM_NODE: {
const pm_program_node_t *cast = (const pm_program_node_t *) node;
scope->body = (pm_node_t *) cast->statements;
scope->locals = cast->locals;
break;
}
case PM_RESCUE_NODE: {
const pm_rescue_node_t *cast = (const pm_rescue_node_t *) node;
scope->body = (pm_node_t *) cast->statements;
break;
}
case PM_RESCUE_MODIFIER_NODE: {
const pm_rescue_modifier_node_t *cast = (const pm_rescue_modifier_node_t *) node;
scope->body = (pm_node_t *) cast->rescue_expression;
break;
}
case PM_SINGLETON_CLASS_NODE: {
const pm_singleton_class_node_t *cast = (const pm_singleton_class_node_t *) node;
scope->body = cast->body;
scope->locals = cast->locals;
break;
}
case PM_STATEMENTS_NODE: {
const pm_statements_node_t *cast = (const pm_statements_node_t *) node;
scope->body = (pm_node_t *) cast;
break;
}
default:
rb_bug("unreachable");
break;
}
}
void
pm_scope_node_destroy(pm_scope_node_t *scope_node)
{
if (scope_node->index_lookup_table) {
st_free_table(scope_node->index_lookup_table);
}
}
/**
* We need to put the label "retry_end_l" immediately after the last "send"
* instruction. This because vm_throw checks if the break cont is equal to the
* index of next insn of the "send". (Otherwise, it is considered
* "break from proc-closure". See "TAG_BREAK" handling in "vm_throw_start".)
*
* Normally, "send" instruction is at the last. However, qcall under branch
* coverage measurement adds some instructions after the "send".
*
* Note that "invokesuper", "invokesuperforward" appears instead of "send".
*/
static void
pm_compile_retry_end_label(rb_iseq_t *iseq, LINK_ANCHOR *const ret, LABEL *retry_end_l)
{
INSN *iobj;
LINK_ELEMENT *last_elem = LAST_ELEMENT(ret);
iobj = IS_INSN(last_elem) ? (INSN*) last_elem : (INSN*) get_prev_insn((INSN*) last_elem);
while (!IS_INSN_ID(iobj, send) && !IS_INSN_ID(iobj, invokesuper) && !IS_INSN_ID(iobj, sendforward) && !IS_INSN_ID(iobj, invokesuperforward)) {
iobj = (INSN*) get_prev_insn(iobj);
}
ELEM_INSERT_NEXT(&iobj->link, (LINK_ELEMENT*) retry_end_l);
// LINK_ANCHOR has a pointer to the last element, but
// ELEM_INSERT_NEXT does not update it even if we add an insn to the
// last of LINK_ANCHOR. So this updates it manually.
if (&iobj->link == LAST_ELEMENT(ret)) {
ret->last = (LINK_ELEMENT*) retry_end_l;
}
}
static const char *
pm_iseq_builtin_function_name(const pm_scope_node_t *scope_node, const pm_node_t *receiver, ID method_id)
{
const char *name = rb_id2name(method_id);
static const char prefix[] = "__builtin_";
const size_t prefix_len = sizeof(prefix) - 1;
if (receiver == NULL) {
if (UNLIKELY(strncmp(prefix, name, prefix_len) == 0)) {
// __builtin_foo
return &name[prefix_len];
}
}
else if (PM_NODE_TYPE_P(receiver, PM_CALL_NODE)) {
if (PM_NODE_FLAG_P(receiver, PM_CALL_NODE_FLAGS_VARIABLE_CALL)) {
const pm_call_node_t *cast = (const pm_call_node_t *) receiver;
if (pm_constant_id_lookup(scope_node, cast->name) == rb_intern_const("__builtin")) {
// __builtin.foo
return name;
}
}
}
else if (PM_NODE_TYPE_P(receiver, PM_CONSTANT_READ_NODE)) {
const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) receiver;
if (pm_constant_id_lookup(scope_node, cast->name) == rb_intern_const("Primitive")) {
// Primitive.foo
return name;
}
}
return NULL;
}
// Compile Primitive.attr! :leaf, ...
static int
pm_compile_builtin_attr(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_arguments_node_t *arguments, const pm_node_location_t *node_location)
{
if (arguments == NULL) {
COMPILE_ERROR(iseq, node_location->line, "attr!: no argument");
return COMPILE_NG;
}
const pm_node_t *argument;
PM_NODE_LIST_FOREACH(&arguments->arguments, index, argument) {
if (!PM_NODE_TYPE_P(argument, PM_SYMBOL_NODE)) {
COMPILE_ERROR(iseq, node_location->line, "non symbol argument to attr!: %s", pm_node_type_to_str(PM_NODE_TYPE(argument)));
return COMPILE_NG;
}
VALUE symbol = pm_static_literal_value(iseq, argument, scope_node);
VALUE string = rb_sym_to_s(symbol);
if (strcmp(RSTRING_PTR(string), "leaf") == 0) {
ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_LEAF;
}
else if (strcmp(RSTRING_PTR(string), "inline_block") == 0) {
ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_INLINE_BLOCK;
}
else if (strcmp(RSTRING_PTR(string), "use_block") == 0) {
iseq_set_use_block(iseq);
}
else {
COMPILE_ERROR(iseq, node_location->line, "unknown argument to attr!: %s", RSTRING_PTR(string));
return COMPILE_NG;
}
}
return COMPILE_OK;
}
static int
pm_compile_builtin_arg(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node, const pm_arguments_node_t *arguments, const pm_node_location_t *node_location, int popped)
{
if (arguments == NULL) {
COMPILE_ERROR(iseq, node_location->line, "arg!: no argument");
return COMPILE_NG;
}
if (arguments->arguments.size != 1) {
COMPILE_ERROR(iseq, node_location->line, "arg!: too many argument");
return COMPILE_NG;
}
const pm_node_t *argument = arguments->arguments.nodes[0];
if (!PM_NODE_TYPE_P(argument, PM_SYMBOL_NODE)) {
COMPILE_ERROR(iseq, node_location->line, "non symbol argument to arg!: %s", pm_node_type_to_str(PM_NODE_TYPE(argument)));
return COMPILE_NG;
}
if (!popped) {
ID name = parse_string_symbol(scope_node, ((const pm_symbol_node_t *) argument));
int index = ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->local_table_size - get_local_var_idx(iseq, name);
debugs("id: %s idx: %d\n", rb_id2name(name), index);
PUSH_GETLOCAL(ret, *node_location, index, get_lvar_level(iseq));
}
return COMPILE_OK;
}
static int
pm_compile_builtin_mandatory_only_method(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_call_node_t *call_node, const pm_node_location_t *node_location)
{
const pm_node_t *ast_node = scope_node->ast_node;
if (!PM_NODE_TYPE_P(ast_node, PM_DEF_NODE)) {
rb_bug("mandatory_only?: not in method definition");
return COMPILE_NG;
}
const pm_def_node_t *def_node = (const pm_def_node_t *) ast_node;
const pm_parameters_node_t *parameters_node = def_node->parameters;
if (parameters_node == NULL) {
rb_bug("mandatory_only?: in method definition with no parameters");
return COMPILE_NG;
}
const pm_node_t *body_node = def_node->body;
if (body_node == NULL || !PM_NODE_TYPE_P(body_node, PM_STATEMENTS_NODE) || (((const pm_statements_node_t *) body_node)->body.size != 1) || !PM_NODE_TYPE_P(((const pm_statements_node_t *) body_node)->body.nodes[0], PM_IF_NODE)) {
rb_bug("mandatory_only?: not in method definition with plain statements");
return COMPILE_NG;
}
const pm_if_node_t *if_node = (const pm_if_node_t *) ((const pm_statements_node_t *) body_node)->body.nodes[0];
if (if_node->predicate != ((const pm_node_t *) call_node)) {
rb_bug("mandatory_only?: can't find mandatory node");
return COMPILE_NG;
}
pm_parameters_node_t parameters = {
.base = parameters_node->base,
.requireds = parameters_node->requireds
};
const pm_def_node_t def = {
.base = def_node->base,
.name = def_node->name,
.receiver = def_node->receiver,
.parameters = &parameters,
.body = (pm_node_t *) if_node->statements,
.locals = {
.ids = def_node->locals.ids,
.size = parameters_node->requireds.size,
.capacity = def_node->locals.capacity
}
};
pm_scope_node_t next_scope_node;
pm_scope_node_init(&def.base, &next_scope_node, scope_node);
ISEQ_BODY(iseq)->mandatory_only_iseq = pm_iseq_new_with_opt(
&next_scope_node,
rb_iseq_base_label(iseq),
rb_iseq_path(iseq),
rb_iseq_realpath(iseq),
node_location->line,
NULL,
0,
ISEQ_TYPE_METHOD,
ISEQ_COMPILE_DATA(iseq)->option
);
pm_scope_node_destroy(&next_scope_node);
return COMPILE_OK;
}
static int
pm_compile_builtin_function_call(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_call_node_t *call_node, const pm_node_location_t *node_location, int popped, const rb_iseq_t *parent_block, const char *builtin_func)
{
const pm_arguments_node_t *arguments = call_node->arguments;
if (parent_block != NULL) {
COMPILE_ERROR(iseq, node_location->line, "should not call builtins here.");
return COMPILE_NG;
}
#define BUILTIN_INLINE_PREFIX "_bi"
char inline_func[sizeof(BUILTIN_INLINE_PREFIX) + DECIMAL_SIZE_OF(int)];
bool cconst = false;
retry:;
const struct rb_builtin_function *bf = iseq_builtin_function_lookup(iseq, builtin_func);
if (bf == NULL) {
if (strcmp("cstmt!", builtin_func) == 0 || strcmp("cexpr!", builtin_func) == 0) {
// ok
}
else if (strcmp("cconst!", builtin_func) == 0) {
cconst = true;
}
else if (strcmp("cinit!", builtin_func) == 0) {
// ignore
return COMPILE_OK;
}
else if (strcmp("attr!", builtin_func) == 0) {
return pm_compile_builtin_attr(iseq, scope_node, arguments, node_location);
}
else if (strcmp("arg!", builtin_func) == 0) {
return pm_compile_builtin_arg(iseq, ret, scope_node, arguments, node_location, popped);
}
else if (strcmp("mandatory_only?", builtin_func) == 0) {
if (popped) {
rb_bug("mandatory_only? should be in if condition");
}
else if (!LIST_INSN_SIZE_ZERO(ret)) {
rb_bug("mandatory_only? should be put on top");
}
PUSH_INSN1(ret, *node_location, putobject, Qfalse);
return pm_compile_builtin_mandatory_only_method(iseq, scope_node, call_node, node_location);
}
else if (1) {
rb_bug("can't find builtin function:%s", builtin_func);
}
else {
COMPILE_ERROR(iseq, node_location->line, "can't find builtin function:%s", builtin_func);
return COMPILE_NG;
}
int inline_index = node_location->line;
snprintf(inline_func, sizeof(inline_func), BUILTIN_INLINE_PREFIX "%d", inline_index);
builtin_func = inline_func;
arguments = NULL;
goto retry;
}
if (cconst) {
typedef VALUE(*builtin_func0)(void *, VALUE);
VALUE const_val = (*(builtin_func0)(uintptr_t)bf->func_ptr)(NULL, Qnil);
PUSH_INSN1(ret, *node_location, putobject, const_val);
return COMPILE_OK;
}
// fprintf(stderr, "func_name:%s -> %p\n", builtin_func, bf->func_ptr);
DECL_ANCHOR(args_seq);
INIT_ANCHOR(args_seq);
int flags = 0;
struct rb_callinfo_kwarg *keywords = NULL;
int argc = pm_setup_args(arguments, call_node->block, &flags, &keywords, iseq, args_seq, scope_node, node_location);
if (argc != bf->argc) {
COMPILE_ERROR(iseq, node_location->line, "argc is not match for builtin function:%s (expect %d but %d)", builtin_func, bf->argc, argc);
return COMPILE_NG;
}
unsigned int start_index;
if (delegate_call_p(iseq, argc, args_seq, &start_index)) {
PUSH_INSN2(ret, *node_location, opt_invokebuiltin_delegate, bf, INT2FIX(start_index));
}
else {
PUSH_SEQ(ret, args_seq);
PUSH_INSN1(ret, *node_location, invokebuiltin, bf);
}
if (popped) PUSH_INSN(ret, *node_location, pop);
return COMPILE_OK;
}
/**
* Compile a call node into the given iseq.
*/
static void
pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start)
{
const pm_location_t *message_loc = &call_node->message_loc;
if (message_loc->start == NULL) message_loc = &call_node->base.location;
const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, message_loc, call_node->base.node_id);
LABEL *else_label = NEW_LABEL(location.line);
LABEL *end_label = NEW_LABEL(location.line);
LABEL *retry_end_l = NEW_LABEL(location.line);
VALUE branches = Qfalse;
rb_code_location_t code_location = { 0 };
int node_id = location.node_id;
if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) {
if (PM_BRANCH_COVERAGE_P(iseq)) {
const uint8_t *cursors[3] = {
call_node->closing_loc.end,
call_node->arguments == NULL ? NULL : call_node->arguments->base.location.end,
call_node->message_loc.end
};
const uint8_t *end_cursor = cursors[0];
end_cursor = (end_cursor == NULL || cursors[1] == NULL) ? cursors[1] : (end_cursor > cursors[1] ? end_cursor : cursors[1]);
end_cursor = (end_cursor == NULL || cursors[2] == NULL) ? cursors[2] : (end_cursor > cursors[2] ? end_cursor : cursors[2]);
const pm_line_column_t start_location = PM_NODE_START_LINE_COLUMN(scope_node->parser, call_node);
const pm_line_column_t end_location = pm_newline_list_line_column(&scope_node->parser->newline_list, end_cursor, scope_node->parser->start_line);
code_location = (rb_code_location_t) {
.beg_pos = { .lineno = start_location.line, .column = start_location.column },
.end_pos = { .lineno = end_location.line, .column = end_location.column }
};
branches = decl_branch_base(iseq, PTR2NUM(call_node), &code_location, "&.");
}
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchnil, else_label);
add_trace_branch_coverage(iseq, ret, &code_location, node_id, 0, "then", branches);
}
int flags = 0;
struct rb_callinfo_kwarg *kw_arg = NULL;
int orig_argc = pm_setup_args(call_node->arguments, call_node->block, &flags, &kw_arg, iseq, ret, scope_node, &location);
const rb_iseq_t *previous_block = ISEQ_COMPILE_DATA(iseq)->current_block;
const rb_iseq_t *block_iseq = NULL;
if (call_node->block != NULL && PM_NODE_TYPE_P(call_node->block, PM_BLOCK_NODE)) {
// Scope associated with the block
pm_scope_node_t next_scope_node;
pm_scope_node_init(call_node->block, &next_scope_node, scope_node);
block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, pm_node_line_number(scope_node->parser, call_node->block));
pm_scope_node_destroy(&next_scope_node);
ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq;
}
else {
if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_VARIABLE_CALL)) {
flags |= VM_CALL_VCALL;
}
if (!flags) {
flags |= VM_CALL_ARGS_SIMPLE;
}
}
if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) {
flags |= VM_CALL_FCALL;
}
if (!popped && PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE)) {
if (flags & VM_CALL_ARGS_BLOCKARG) {
PUSH_INSN1(ret, location, topn, INT2FIX(1));
if (flags & VM_CALL_ARGS_SPLAT) {
PUSH_INSN1(ret, location, putobject, INT2FIX(-1));
PUSH_SEND_WITH_FLAG(ret, location, idAREF, INT2FIX(1), INT2FIX(0));
}
PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 3));
PUSH_INSN(ret, location, pop);
}
else if (flags & VM_CALL_ARGS_SPLAT) {
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, INT2FIX(-1));
PUSH_SEND_WITH_FLAG(ret, location, idAREF, INT2FIX(1), INT2FIX(0));
PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 2));
PUSH_INSN(ret, location, pop);
}
else {
PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 1));
}
}
if ((flags & VM_CALL_KW_SPLAT) && (flags & VM_CALL_ARGS_BLOCKARG) && !(flags & VM_CALL_KW_SPLAT_MUT)) {
PUSH_INSN(ret, location, splatkw);
}
PUSH_SEND_R(ret, location, method_id, INT2FIX(orig_argc), block_iseq, INT2FIX(flags), kw_arg);
if (block_iseq && ISEQ_BODY(block_iseq)->catch_table) {
pm_compile_retry_end_label(iseq, ret, retry_end_l);
PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, start, retry_end_l, block_iseq, retry_end_l);
}
if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) {
PUSH_INSNL(ret, location, jump, end_label);
PUSH_LABEL(ret, else_label);
add_trace_branch_coverage(iseq, ret, &code_location, node_id, 1, "else", branches);
PUSH_LABEL(ret, end_label);
}
if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) {
PUSH_INSN(ret, location, pop);
}
if (popped) PUSH_INSN(ret, location, pop);
ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
}
static void
pm_compile_defined_expr0(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition, LABEL **lfinish, bool explicit_receiver)
{
// in_condition is the same as compile.c's needstr
enum defined_type dtype = DEFINED_NOT_DEFINED;
const pm_node_location_t location = *node_location;
switch (PM_NODE_TYPE(node)) {
case PM_ARGUMENTS_NODE: {
const pm_arguments_node_t *cast = (const pm_arguments_node_t *) node;
const pm_node_list_t *arguments = &cast->arguments;
for (size_t idx = 0; idx < arguments->size; idx++) {
const pm_node_t *argument = arguments->nodes[idx];
pm_compile_defined_expr0(iseq, argument, node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver);
if (!lfinish[1]) {
lfinish[1] = NEW_LABEL(location.line);
}
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
}
dtype = DEFINED_TRUE;
break;
}
case PM_NIL_NODE:
dtype = DEFINED_NIL;
break;
case PM_PARENTHESES_NODE: {
const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node;
if (cast->body == NULL) {
// If we have empty parentheses, then we want to return "nil".
dtype = DEFINED_NIL;
}
else if (PM_NODE_TYPE_P(cast->body, PM_STATEMENTS_NODE) && ((const pm_statements_node_t *) cast->body)->body.size == 1) {
// If we have a parentheses node that is wrapping a single statement
// then we want to recurse down to that statement and compile it.
pm_compile_defined_expr0(iseq, ((const pm_statements_node_t *) cast->body)->body.nodes[0], node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver);
return;
}
else {
// Otherwise, we have parentheses wrapping multiple statements, in
// which case this is defined as "expression".
dtype = DEFINED_EXPR;
}
break;
}
case PM_SELF_NODE:
dtype = DEFINED_SELF;
break;
case PM_TRUE_NODE:
dtype = DEFINED_TRUE;
break;
case PM_FALSE_NODE:
dtype = DEFINED_FALSE;
break;
case PM_ARRAY_NODE: {
const pm_array_node_t *cast = (const pm_array_node_t *) node;
if (cast->elements.size > 0 && !lfinish[1]) {
lfinish[1] = NEW_LABEL(location.line);
}
for (size_t index = 0; index < cast->elements.size; index++) {
pm_compile_defined_expr0(iseq, cast->elements.nodes[index], node_location, ret, popped, scope_node, true, lfinish, false);
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
}
dtype = DEFINED_EXPR;
break;
}
case PM_HASH_NODE:
case PM_KEYWORD_HASH_NODE: {
const pm_node_list_t *elements;
if (PM_NODE_TYPE_P(node, PM_HASH_NODE)) {
elements = &((const pm_hash_node_t *) node)->elements;
}
else {
elements = &((const pm_keyword_hash_node_t *) node)->elements;
}
if (elements->size > 0 && !lfinish[1]) {
lfinish[1] = NEW_LABEL(location.line);
}
for (size_t index = 0; index < elements->size; index++) {
const pm_node_t *element = elements->nodes[index];
switch (PM_NODE_TYPE(element)) {
case PM_ASSOC_NODE: {
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
pm_compile_defined_expr0(iseq, assoc->key, node_location, ret, popped, scope_node, true, lfinish, false);
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
pm_compile_defined_expr0(iseq, assoc->value, node_location, ret, popped, scope_node, true, lfinish, false);
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
break;
}
case PM_ASSOC_SPLAT_NODE: {
const pm_assoc_splat_node_t *assoc_splat = (const pm_assoc_splat_node_t *) element;
pm_compile_defined_expr0(iseq, assoc_splat->value, node_location, ret, popped, scope_node, true, lfinish, false);
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
break;
}
default:
rb_bug("unexpected node type in hash node: %s", pm_node_type_to_str(PM_NODE_TYPE(element)));
break;
}
}
dtype = DEFINED_EXPR;
break;
}
case PM_SPLAT_NODE: {
const pm_splat_node_t *cast = (const pm_splat_node_t *) node;
pm_compile_defined_expr0(iseq, cast->expression, node_location, ret, popped, scope_node, in_condition, lfinish, false);
if (!lfinish[1]) {
lfinish[1] = NEW_LABEL(location.line);
}
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
dtype = DEFINED_EXPR;
break;
}
case PM_IMPLICIT_NODE: {
const pm_implicit_node_t *cast = (const pm_implicit_node_t *) node;
pm_compile_defined_expr0(iseq, cast->value, node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver);
return;
}
case PM_AND_NODE:
case PM_BEGIN_NODE:
case PM_BREAK_NODE:
case PM_CASE_NODE:
case PM_CASE_MATCH_NODE:
case PM_CLASS_NODE:
case PM_DEF_NODE:
case PM_DEFINED_NODE:
case PM_FLOAT_NODE:
case PM_FOR_NODE:
case PM_IF_NODE:
case PM_IMAGINARY_NODE:
case PM_INTEGER_NODE:
case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE:
case PM_INTERPOLATED_STRING_NODE:
case PM_INTERPOLATED_SYMBOL_NODE:
case PM_INTERPOLATED_X_STRING_NODE:
case PM_LAMBDA_NODE:
case PM_MATCH_PREDICATE_NODE:
case PM_MATCH_REQUIRED_NODE:
case PM_MATCH_WRITE_NODE:
case PM_MODULE_NODE:
case PM_NEXT_NODE:
case PM_OR_NODE:
case PM_RANGE_NODE:
case PM_RATIONAL_NODE:
case PM_REDO_NODE:
case PM_REGULAR_EXPRESSION_NODE:
case PM_RETRY_NODE:
case PM_RETURN_NODE:
case PM_SINGLETON_CLASS_NODE:
case PM_SOURCE_ENCODING_NODE:
case PM_SOURCE_FILE_NODE:
case PM_SOURCE_LINE_NODE:
case PM_STRING_NODE:
case PM_SYMBOL_NODE:
case PM_UNLESS_NODE:
case PM_UNTIL_NODE:
case PM_WHILE_NODE:
case PM_X_STRING_NODE:
dtype = DEFINED_EXPR;
break;
case PM_LOCAL_VARIABLE_READ_NODE:
dtype = DEFINED_LVAR;
break;
#define PUSH_VAL(type) (in_condition ? Qtrue : rb_iseq_defined_string(type))
case PM_INSTANCE_VARIABLE_READ_NODE: {
const pm_instance_variable_read_node_t *cast = (const pm_instance_variable_read_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
PUSH_INSN3(ret, location, definedivar, ID2SYM(name), get_ivar_ic_value(iseq, name), PUSH_VAL(DEFINED_IVAR));
return;
}
case PM_BACK_REFERENCE_READ_NODE: {
const char *char_ptr = (const char *) (node->location.start + 1);
ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1;
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_REF), backref_val, PUSH_VAL(DEFINED_GVAR));
return;
}
case PM_NUMBERED_REFERENCE_READ_NODE: {
uint32_t reference_number = ((const pm_numbered_reference_read_node_t *) node)->number;
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_REF), INT2FIX(reference_number << 1), PUSH_VAL(DEFINED_GVAR));
return;
}
case PM_GLOBAL_VARIABLE_READ_NODE: {
const pm_global_variable_read_node_t *cast = (const pm_global_variable_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_GVAR), name, PUSH_VAL(DEFINED_GVAR));
return;
}
case PM_CLASS_VARIABLE_READ_NODE: {
const pm_class_variable_read_node_t *cast = (const pm_class_variable_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CVAR), name, PUSH_VAL(DEFINED_CVAR));
return;
}
case PM_CONSTANT_READ_NODE: {
const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST), name, PUSH_VAL(DEFINED_CONST));
return;
}
case PM_CONSTANT_PATH_NODE: {
const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
if (cast->parent != NULL) {
if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line);
pm_compile_defined_expr0(iseq, cast->parent, node_location, ret, popped, scope_node, true, lfinish, false);
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
PM_COMPILE(cast->parent);
}
else {
PUSH_INSN1(ret, location, putobject, rb_cObject);
}
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST_FROM), name, PUSH_VAL(DEFINED_CONST));
return;
}
case PM_CALL_NODE: {
const pm_call_node_t *cast = ((const pm_call_node_t *) node);
if (cast->block != NULL && PM_NODE_TYPE_P(cast->block, PM_BLOCK_NODE)) {
dtype = DEFINED_EXPR;
break;
}
ID method_id = pm_constant_id_lookup(scope_node, cast->name);
if (cast->receiver || cast->arguments) {
if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line);
if (!lfinish[2]) lfinish[2] = NEW_LABEL(location.line);
}
if (cast->arguments) {
pm_compile_defined_expr0(iseq, (const pm_node_t *) cast->arguments, node_location, ret, popped, scope_node, true, lfinish, false);
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
}
if (cast->receiver) {
pm_compile_defined_expr0(iseq, cast->receiver, node_location, ret, popped, scope_node, true, lfinish, true);
if (PM_NODE_TYPE_P(cast->receiver, PM_CALL_NODE)) {
PUSH_INSNL(ret, location, branchunless, lfinish[2]);
const pm_call_node_t *receiver = (const pm_call_node_t *) cast->receiver;
ID method_id = pm_constant_id_lookup(scope_node, receiver->name);
pm_compile_call(iseq, receiver, ret, popped, scope_node, method_id, NULL);
}
else {
PUSH_INSNL(ret, location, branchunless, lfinish[1]);
PM_COMPILE(cast->receiver);
}
if (explicit_receiver) PUSH_INSN(ret, location, dup);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_METHOD), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD));
}
else {
PUSH_INSN(ret, location, putself);
if (explicit_receiver) PUSH_INSN(ret, location, dup);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_FUNC), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD));
}
return;
}
case PM_YIELD_NODE:
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_YIELD), 0, PUSH_VAL(DEFINED_YIELD));
iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
return;
case PM_SUPER_NODE:
case PM_FORWARDING_SUPER_NODE:
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_ZSUPER), 0, PUSH_VAL(DEFINED_ZSUPER));
return;
case PM_CALL_AND_WRITE_NODE:
case PM_CALL_OPERATOR_WRITE_NODE:
case PM_CALL_OR_WRITE_NODE:
case PM_CONSTANT_WRITE_NODE:
case PM_CONSTANT_OPERATOR_WRITE_NODE:
case PM_CONSTANT_AND_WRITE_NODE:
case PM_CONSTANT_OR_WRITE_NODE:
case PM_CONSTANT_PATH_AND_WRITE_NODE:
case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE:
case PM_CONSTANT_PATH_OR_WRITE_NODE:
case PM_CONSTANT_PATH_WRITE_NODE:
case PM_GLOBAL_VARIABLE_WRITE_NODE:
case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE:
case PM_GLOBAL_VARIABLE_AND_WRITE_NODE:
case PM_GLOBAL_VARIABLE_OR_WRITE_NODE:
case PM_CLASS_VARIABLE_WRITE_NODE:
case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE:
case PM_CLASS_VARIABLE_AND_WRITE_NODE:
case PM_CLASS_VARIABLE_OR_WRITE_NODE:
case PM_INDEX_AND_WRITE_NODE:
case PM_INDEX_OPERATOR_WRITE_NODE:
case PM_INDEX_OR_WRITE_NODE:
case PM_INSTANCE_VARIABLE_WRITE_NODE:
case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE:
case PM_INSTANCE_VARIABLE_AND_WRITE_NODE:
case PM_INSTANCE_VARIABLE_OR_WRITE_NODE:
case PM_LOCAL_VARIABLE_WRITE_NODE:
case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE:
case PM_LOCAL_VARIABLE_AND_WRITE_NODE:
case PM_LOCAL_VARIABLE_OR_WRITE_NODE:
case PM_MULTI_WRITE_NODE:
dtype = DEFINED_ASGN;
break;
default:
rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
}
RUBY_ASSERT(dtype != DEFINED_NOT_DEFINED);
PUSH_INSN1(ret, location, putobject, PUSH_VAL(dtype));
#undef PUSH_VAL
}
static void
pm_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition, LABEL **lfinish, bool explicit_receiver)
{
LINK_ELEMENT *lcur = ret->last;
pm_compile_defined_expr0(iseq, node, node_location, ret, popped, scope_node, in_condition, lfinish, false);
if (lfinish[1]) {
LABEL *lstart = NEW_LABEL(node_location->line);
LABEL *lend = NEW_LABEL(node_location->line);
struct rb_iseq_new_with_callback_callback_func *ifunc =
rb_iseq_new_with_callback_new_callback(build_defined_rescue_iseq, NULL);
const rb_iseq_t *rescue = new_child_iseq_with_callback(
iseq,
ifunc,
rb_str_concat(rb_str_new2("defined guard in "), ISEQ_BODY(iseq)->location.label),
iseq,
ISEQ_TYPE_RESCUE,
0
);
lstart->rescued = LABEL_RESCUE_BEG;
lend->rescued = LABEL_RESCUE_END;
APPEND_LABEL(ret, lcur, lstart);
PUSH_LABEL(ret, lend);
PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue, lfinish[1]);
}
}
static void
pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition)
{
LABEL *lfinish[3];
LINK_ELEMENT *last = ret->last;
lfinish[0] = NEW_LABEL(node_location->line);
lfinish[1] = 0;
lfinish[2] = 0;
if (!popped) {
pm_defined_expr(iseq, node, node_location, ret, popped, scope_node, in_condition, lfinish, false);
}
if (lfinish[1]) {
ELEM_INSERT_NEXT(last, &new_insn_body(iseq, node_location->line, node_location->node_id, BIN(putnil), 0)->link);
PUSH_INSN(ret, *node_location, swap);
if (lfinish[2]) PUSH_LABEL(ret, lfinish[2]);
PUSH_INSN(ret, *node_location, pop);
PUSH_LABEL(ret, lfinish[1]);
}
PUSH_LABEL(ret, lfinish[0]);
}
// This is exactly the same as add_ensure_iseq, except it compiled
// the node as a Prism node, and not a CRuby node
static void
pm_add_ensure_iseq(LINK_ANCHOR *const ret, rb_iseq_t *iseq, int is_return, pm_scope_node_t *scope_node)
{
RUBY_ASSERT(can_add_ensure_iseq(iseq));
struct iseq_compile_data_ensure_node_stack *enlp =
ISEQ_COMPILE_DATA(iseq)->ensure_node_stack;
struct iseq_compile_data_ensure_node_stack *prev_enlp = enlp;
DECL_ANCHOR(ensure);
INIT_ANCHOR(ensure);
while (enlp) {
if (enlp->erange != NULL) {
DECL_ANCHOR(ensure_part);
LABEL *lstart = NEW_LABEL(0);
LABEL *lend = NEW_LABEL(0);
INIT_ANCHOR(ensure_part);
add_ensure_range(iseq, enlp->erange, lstart, lend);
ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enlp->prev;
PUSH_LABEL(ensure_part, lstart);
bool popped = true;
PM_COMPILE_INTO_ANCHOR(ensure_part, (const pm_node_t *) enlp->ensure_node);
PUSH_LABEL(ensure_part, lend);
PUSH_SEQ(ensure, ensure_part);
}
else {
if (!is_return) {
break;
}
}
enlp = enlp->prev;
}
ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = prev_enlp;
PUSH_SEQ(ret, ensure);
}
struct pm_local_table_insert_ctx {
pm_scope_node_t *scope_node;
rb_ast_id_table_t *local_table_for_iseq;
int local_index;
};
static int
pm_local_table_insert_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
if (!existing) {
pm_constant_id_t constant_id = (pm_constant_id_t) *key;
struct pm_local_table_insert_ctx * ctx = (struct pm_local_table_insert_ctx *) arg;
pm_scope_node_t *scope_node = ctx->scope_node;
rb_ast_id_table_t *local_table_for_iseq = ctx->local_table_for_iseq;
int local_index = ctx->local_index;
ID local = pm_constant_id_lookup(scope_node, constant_id);
local_table_for_iseq->ids[local_index] = local;
*value = (st_data_t)local_index;
ctx->local_index++;
}
return ST_CONTINUE;
}
/**
* Insert a local into the local table for the iseq. This is used to create the
* local table in the correct order while compiling the scope. The locals being
* inserted are regular named locals, as opposed to special forwarding locals.
*/
static void
pm_insert_local_index(pm_constant_id_t constant_id, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node)
{
RUBY_ASSERT((constant_id & PM_SPECIAL_CONSTANT_FLAG) == 0);
ID local = pm_constant_id_lookup(scope_node, constant_id);
local_table_for_iseq->ids[local_index] = local;
st_insert(index_lookup_table, (st_data_t) constant_id, (st_data_t) local_index);
}
/**
* Insert a local into the local table for the iseq that is a special forwarding
* local variable.
*/
static void
pm_insert_local_special(ID local_name, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq)
{
local_table_for_iseq->ids[local_index] = local_name;
st_insert(index_lookup_table, (st_data_t) (local_name | PM_SPECIAL_CONSTANT_FLAG), (st_data_t) local_index);
}
/**
* Compile the locals of a multi target node that is used as a positional
* parameter in a method, block, or lambda definition. Note that this doesn't
* actually add any instructions to the iseq. Instead, it adds locals to the
* local and index lookup tables and increments the local index as necessary.
*/
static int
pm_compile_destructured_param_locals(const pm_multi_target_node_t *node, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node, int local_index)
{
for (size_t index = 0; index < node->lefts.size; index++) {
const pm_node_t *left = node->lefts.nodes[index];
if (PM_NODE_TYPE_P(left, PM_REQUIRED_PARAMETER_NODE)) {
if (!PM_NODE_FLAG_P(left, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
pm_insert_local_index(((const pm_required_parameter_node_t *) left)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
local_index++;
}
}
else {
RUBY_ASSERT(PM_NODE_TYPE_P(left, PM_MULTI_TARGET_NODE));
local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) left, index_lookup_table, local_table_for_iseq, scope_node, local_index);
}
}
if (node->rest != NULL && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE)) {
const pm_splat_node_t *rest = (const pm_splat_node_t *) node->rest;
if (rest->expression != NULL) {
RUBY_ASSERT(PM_NODE_TYPE_P(rest->expression, PM_REQUIRED_PARAMETER_NODE));
if (!PM_NODE_FLAG_P(rest->expression, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
pm_insert_local_index(((const pm_required_parameter_node_t *) rest->expression)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
local_index++;
}
}
}
for (size_t index = 0; index < node->rights.size; index++) {
const pm_node_t *right = node->rights.nodes[index];
if (PM_NODE_TYPE_P(right, PM_REQUIRED_PARAMETER_NODE)) {
if (!PM_NODE_FLAG_P(right, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
pm_insert_local_index(((const pm_required_parameter_node_t *) right)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
local_index++;
}
}
else {
RUBY_ASSERT(PM_NODE_TYPE_P(right, PM_MULTI_TARGET_NODE));
local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) right, index_lookup_table, local_table_for_iseq, scope_node, local_index);
}
}
return local_index;
}
/**
* Compile a required parameter node that is part of a destructure that is used
* as a positional parameter in a method, block, or lambda definition.
*/
static inline void
pm_compile_destructured_param_write(rb_iseq_t *iseq, const pm_required_parameter_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, node->name, 0);
PUSH_SETLOCAL(ret, location, index.index, index.level);
}
/**
* Compile a multi target node that is used as a positional parameter in a
* method, block, or lambda definition. Note that this is effectively the same
* as a multi write, but with the added context that all of the targets
* contained in the write are required parameter nodes. With this context, we
* know they won't have any parent expressions so we build a separate code path
* for this simplified case.
*/
static void
pm_compile_destructured_param_writes(rb_iseq_t *iseq, const pm_multi_target_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
bool has_rest = (node->rest && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE) && (((const pm_splat_node_t *) node->rest)->expression) != NULL);
bool has_rights = node->rights.size > 0;
int flag = (has_rest || has_rights) ? 1 : 0;
PUSH_INSN2(ret, location, expandarray, INT2FIX(node->lefts.size), INT2FIX(flag));
for (size_t index = 0; index < node->lefts.size; index++) {
const pm_node_t *left = node->lefts.nodes[index];
if (PM_NODE_TYPE_P(left, PM_REQUIRED_PARAMETER_NODE)) {
pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) left, ret, scope_node);
}
else {
RUBY_ASSERT(PM_NODE_TYPE_P(left, PM_MULTI_TARGET_NODE));
pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) left, ret, scope_node);
}
}
if (has_rest) {
if (has_rights) {
PUSH_INSN2(ret, location, expandarray, INT2FIX(node->rights.size), INT2FIX(3));
}
const pm_node_t *rest = ((const pm_splat_node_t *) node->rest)->expression;
RUBY_ASSERT(PM_NODE_TYPE_P(rest, PM_REQUIRED_PARAMETER_NODE));
pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) rest, ret, scope_node);
}
if (has_rights) {
if (!has_rest) {
PUSH_INSN2(ret, location, expandarray, INT2FIX(node->rights.size), INT2FIX(2));
}
for (size_t index = 0; index < node->rights.size; index++) {
const pm_node_t *right = node->rights.nodes[index];
if (PM_NODE_TYPE_P(right, PM_REQUIRED_PARAMETER_NODE)) {
pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) right, ret, scope_node);
}
else {
RUBY_ASSERT(PM_NODE_TYPE_P(right, PM_MULTI_TARGET_NODE));
pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) right, ret, scope_node);
}
}
}
}
/**
* This is a node in the multi target state linked list. It tracks the
* information for a particular target that necessarily has a parent expression.
*/
typedef struct pm_multi_target_state_node {
// The pointer to the topn instruction that will need to be modified after
// we know the total stack size of all of the targets.
INSN *topn;
// The index of the stack from the base of the entire multi target at which
// the parent expression is located.
size_t stack_index;
// The number of slots in the stack that this node occupies.
size_t stack_size;
// The position of the node in the list of targets.
size_t position;
// A pointer to the next node in this linked list.
struct pm_multi_target_state_node *next;
} pm_multi_target_state_node_t;
/**
* As we're compiling a multi target, we need to track additional information
* whenever there is a parent expression on the left hand side of the target.
* This is because we need to go back and tell the expression where to fetch its
* parent expression from the stack. We use a linked list of nodes to track this
* information.
*/
typedef struct {
// The total number of slots in the stack that this multi target occupies.
size_t stack_size;
// The position of the current node being compiled. This is forwarded to
// nodes when they are allocated.
size_t position;
// A pointer to the head of this linked list.
pm_multi_target_state_node_t *head;
// A pointer to the tail of this linked list.
pm_multi_target_state_node_t *tail;
} pm_multi_target_state_t;
/**
* Push a new state node onto the multi target state.
*/
static void
pm_multi_target_state_push(pm_multi_target_state_t *state, INSN *topn, size_t stack_size)
{
pm_multi_target_state_node_t *node = ALLOC(pm_multi_target_state_node_t);
node->topn = topn;
node->stack_index = state->stack_size + 1;
node->stack_size = stack_size;
node->position = state->position;
node->next = NULL;
if (state->head == NULL) {
state->head = node;
state->tail = node;
}
else {
state->tail->next = node;
state->tail = node;
}
state->stack_size += stack_size;
}
/**
* Walk through a multi target state's linked list and update the topn
* instructions that were inserted into the write sequence to make sure they can
* correctly retrieve their parent expressions.
*/
static void
pm_multi_target_state_update(pm_multi_target_state_t *state)
{
// If nothing was ever pushed onto the stack, then we don't need to do any
// kind of updates.
if (state->stack_size == 0) return;
pm_multi_target_state_node_t *current = state->head;
pm_multi_target_state_node_t *previous;
while (current != NULL) {
VALUE offset = INT2FIX(state->stack_size - current->stack_index + current->position);
current->topn->operands[0] = offset;
// stack_size will be > 1 in the case that we compiled an index target
// and it had arguments. In this case, we use multiple topn instructions
// to grab up all of the arguments as well, so those offsets need to be
// updated as well.
if (current->stack_size > 1) {
INSN *insn = current->topn;
for (size_t index = 1; index < current->stack_size; index += 1) {
LINK_ELEMENT *element = get_next_insn(insn);
RUBY_ASSERT(IS_INSN(element));
insn = (INSN *) element;
RUBY_ASSERT(insn->insn_id == BIN(topn));
insn->operands[0] = offset;
}
}
previous = current;
current = current->next;
xfree(previous);
}
}
static void
pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state);
/**
* A target node represents an indirect write to a variable or a method call to
* a method ending in =. Compiling one of these nodes requires three sequences:
*
* * The first is to compile retrieving the parent expression if there is one.
* This could be the object that owns a constant or the receiver of a method
* call.
* * The second is to compile the writes to the targets. This could be writing
* to variables, or it could be performing method calls.
* * The third is to compile any cleanup that needs to happen, i.e., popping the
* appropriate number of values off the stack.
*
* When there is a parent expression and this target is part of a multi write, a
* topn instruction will be inserted into the write sequence. This is to move
* the parent expression to the top of the stack so that it can be used as the
* receiver of the method call or the owner of the constant. To facilitate this,
* we return a pointer to the topn instruction that was used to be later
* modified with the correct offset.
*
* These nodes can appear in a couple of places, but most commonly:
*
* * For loops - the index variable is a target node
* * Rescue clauses - the exception reference variable is a target node
* * Multi writes - the left hand side contains a list of target nodes
*
* For the comments with examples within this function, we'll use for loops as
* the containing node.
*/
static void
pm_compile_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
switch (PM_NODE_TYPE(node)) {
case PM_LOCAL_VARIABLE_TARGET_NODE: {
// Local variable targets have no parent expression, so they only need
// to compile the write.
//
// for i in []; end
//
const pm_local_variable_target_node_t *cast = (const pm_local_variable_target_node_t *) node;
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
PUSH_SETLOCAL(writes, location, index.index, index.level);
break;
}
case PM_CLASS_VARIABLE_TARGET_NODE: {
// Class variable targets have no parent expression, so they only need
// to compile the write.
//
// for @@i in []; end
//
const pm_class_variable_target_node_t *cast = (const pm_class_variable_target_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
VALUE operand = ID2SYM(name);
PUSH_INSN2(writes, location, setclassvariable, operand, get_cvar_ic_value(iseq, name));
break;
}
case PM_CONSTANT_TARGET_NODE: {
// Constant targets have no parent expression, so they only need to
// compile the write.
//
// for I in []; end
//
const pm_constant_target_node_t *cast = (const pm_constant_target_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
VALUE operand = ID2SYM(name);
PUSH_INSN1(writes, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
PUSH_INSN1(writes, location, setconstant, operand);
break;
}
case PM_GLOBAL_VARIABLE_TARGET_NODE: {
// Global variable targets have no parent expression, so they only need
// to compile the write.
//
// for $i in []; end
//
const pm_global_variable_target_node_t *cast = (const pm_global_variable_target_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
VALUE operand = ID2SYM(name);
PUSH_INSN1(writes, location, setglobal, operand);
break;
}
case PM_INSTANCE_VARIABLE_TARGET_NODE: {
// Instance variable targets have no parent expression, so they only
// need to compile the write.
//
// for @i in []; end
//
const pm_instance_variable_target_node_t *cast = (const pm_instance_variable_target_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
VALUE operand = ID2SYM(name);
PUSH_INSN2(writes, location, setinstancevariable, operand, get_ivar_ic_value(iseq, name));
break;
}
case PM_CONSTANT_PATH_TARGET_NODE: {
// Constant path targets have a parent expression that is the object
// that owns the constant. This needs to be compiled first into the
// parents sequence. If no parent is found, then it represents using the
// unary :: operator to indicate a top-level constant. In that case we
// need to push Object onto the stack.
//
// for I::J in []; end
//
const pm_constant_path_target_node_t *cast = (const pm_constant_path_target_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
if (cast->parent != NULL) {
pm_compile_node(iseq, cast->parent, parents, false, scope_node);
}
else {
PUSH_INSN1(parents, location, putobject, rb_cObject);
}
if (state == NULL) {
PUSH_INSN(writes, location, swap);
}
else {
PUSH_INSN1(writes, location, topn, INT2FIX(1));
pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1);
}
VALUE operand = ID2SYM(name);
PUSH_INSN1(writes, location, setconstant, operand);
if (state != NULL) {
PUSH_INSN(cleanup, location, pop);
}
break;
}
case PM_CALL_TARGET_NODE: {
// Call targets have a parent expression that is the receiver of the
// method being called. This needs to be compiled first into the parents
// sequence. These nodes cannot have arguments, so the method call is
// compiled with a single argument which represents the value being
// written.
//
// for i.j in []; end
//
const pm_call_target_node_t *cast = (const pm_call_target_node_t *) node;
ID method_id = pm_constant_id_lookup(scope_node, cast->name);
pm_compile_node(iseq, cast->receiver, parents, false, scope_node);
LABEL *safe_label = NULL;
if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) {
safe_label = NEW_LABEL(location.line);
PUSH_INSN(parents, location, dup);
PUSH_INSNL(parents, location, branchnil, safe_label);
}
if (state != NULL) {
PUSH_INSN1(writes, location, topn, INT2FIX(1));
pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1);
PUSH_INSN(writes, location, swap);
}
int flags = VM_CALL_ARGS_SIMPLE;
if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) flags |= VM_CALL_FCALL;
PUSH_SEND_WITH_FLAG(writes, location, method_id, INT2FIX(1), INT2FIX(flags));
if (safe_label != NULL && state == NULL) PUSH_LABEL(writes, safe_label);
PUSH_INSN(writes, location, pop);
if (safe_label != NULL && state != NULL) PUSH_LABEL(writes, safe_label);
if (state != NULL) {
PUSH_INSN(cleanup, location, pop);
}
break;
}
case PM_INDEX_TARGET_NODE: {
// Index targets have a parent expression that is the receiver of the
// method being called and any additional arguments that are being
// passed along with the value being written. The receiver and arguments
// both need to be on the stack. Note that this is even more complicated
// by the fact that these nodes can hold a block using the unary &
// operator.
//
// for i[:j] in []; end
//
const pm_index_target_node_t *cast = (const pm_index_target_node_t *) node;
pm_compile_node(iseq, cast->receiver, parents, false, scope_node);
int flags = 0;
struct rb_callinfo_kwarg *kwargs = NULL;
int argc = pm_setup_args(cast->arguments, (const pm_node_t *) cast->block, &flags, &kwargs, iseq, parents, scope_node, &location);
if (state != NULL) {
PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1));
pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), argc + 1);
if (argc == 0) {
PUSH_INSN(writes, location, swap);
}
else {
for (int index = 0; index < argc; index++) {
PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1));
}
PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1));
}
}
// The argc that we're going to pass to the send instruction is the
// number of arguments + 1 for the value being written. If there's a
// splat, then we need to insert newarray and concatarray instructions
// after the arguments have been written.
int ci_argc = argc + 1;
if (flags & VM_CALL_ARGS_SPLAT) {
ci_argc--;
PUSH_INSN1(writes, location, newarray, INT2FIX(1));
PUSH_INSN(writes, location, concatarray);
}
PUSH_SEND_R(writes, location, idASET, INT2NUM(ci_argc), NULL, INT2FIX(flags), kwargs);
PUSH_INSN(writes, location, pop);
if (state != NULL) {
if (argc != 0) {
PUSH_INSN(writes, location, pop);
}
for (int index = 0; index < argc + 1; index++) {
PUSH_INSN(cleanup, location, pop);
}
}
break;
}
case PM_MULTI_TARGET_NODE: {
// Multi target nodes represent a set of writes to multiple variables.
// The parent expressions are the combined set of the parent expressions
// of its inner target nodes.
//
// for i, j in []; end
//
size_t before_position;
if (state != NULL) {
before_position = state->position;
state->position--;
}
pm_compile_multi_target_node(iseq, node, parents, writes, cleanup, scope_node, state);
if (state != NULL) state->position = before_position;
break;
}
default:
rb_bug("Unexpected node type: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
break;
}
}
/**
* Compile a multi target or multi write node. It returns the number of values
* on the stack that correspond to the parent expressions of the various
* targets.
*/
static void
pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
const pm_node_list_t *lefts;
const pm_node_t *rest;
const pm_node_list_t *rights;
switch (PM_NODE_TYPE(node)) {
case PM_MULTI_TARGET_NODE: {
const pm_multi_target_node_t *cast = (const pm_multi_target_node_t *) node;
lefts = &cast->lefts;
rest = cast->rest;
rights = &cast->rights;
break;
}
case PM_MULTI_WRITE_NODE: {
const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node;
lefts = &cast->lefts;
rest = cast->rest;
rights = &cast->rights;
break;
}
default:
rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
break;
}
bool has_rest = (rest != NULL) && PM_NODE_TYPE_P(rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) rest)->expression != NULL;
bool has_posts = rights->size > 0;
// The first instruction in the writes sequence is going to spread the
// top value of the stack onto the number of values that we're going to
// write.
PUSH_INSN2(writes, location, expandarray, INT2FIX(lefts->size), INT2FIX((has_rest || has_posts) ? 1 : 0));
// We need to keep track of some additional state information as we're
// going through the targets because we will need to revisit them once
// we know how many values are being pushed onto the stack.
pm_multi_target_state_t target_state = { 0 };
if (state == NULL) state = &target_state;
size_t base_position = state->position;
size_t splat_position = (has_rest || has_posts) ? 1 : 0;
// Next, we'll iterate through all of the leading targets.
for (size_t index = 0; index < lefts->size; index++) {
const pm_node_t *target = lefts->nodes[index];
state->position = lefts->size - index + splat_position + base_position;
pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state);
}
// Next, we'll compile the rest target if there is one.
if (has_rest) {
const pm_node_t *target = ((const pm_splat_node_t *) rest)->expression;
state->position = 1 + rights->size + base_position;
if (has_posts) {
PUSH_INSN2(writes, location, expandarray, INT2FIX(rights->size), INT2FIX(3));
}
pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state);
}
// Finally, we'll compile the trailing targets.
if (has_posts) {
if (!has_rest && rest != NULL) {
PUSH_INSN2(writes, location, expandarray, INT2FIX(rights->size), INT2FIX(2));
}
for (size_t index = 0; index < rights->size; index++) {
const pm_node_t *target = rights->nodes[index];
state->position = rights->size - index + base_position;
pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state);
}
}
}
/**
* When compiling a for loop, we need to write the iteration variable to
* whatever expression exists in the index slot. This function performs that
* compilation.
*/
static void
pm_compile_for_node_index(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
switch (PM_NODE_TYPE(node)) {
case PM_LOCAL_VARIABLE_TARGET_NODE: {
// For local variables, all we have to do is retrieve the value and then
// compile the index node.
PUSH_GETLOCAL(ret, location, 1, 0);
pm_compile_target_node(iseq, node, ret, ret, ret, scope_node, NULL);
break;
}
case PM_CLASS_VARIABLE_TARGET_NODE:
case PM_CONSTANT_TARGET_NODE:
case PM_GLOBAL_VARIABLE_TARGET_NODE:
case PM_INSTANCE_VARIABLE_TARGET_NODE:
case PM_CONSTANT_PATH_TARGET_NODE:
case PM_CALL_TARGET_NODE:
case PM_INDEX_TARGET_NODE: {
// For other targets, we need to potentially compile the parent or
// owning expression of this target, then retrieve the value, expand it,
// and then compile the necessary writes.
DECL_ANCHOR(writes);
INIT_ANCHOR(writes);
DECL_ANCHOR(cleanup);
INIT_ANCHOR(cleanup);
pm_multi_target_state_t state = { 0 };
state.position = 1;
pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, &state);
PUSH_GETLOCAL(ret, location, 1, 0);
PUSH_INSN2(ret, location, expandarray, INT2FIX(1), INT2FIX(0));
PUSH_SEQ(ret, writes);
PUSH_SEQ(ret, cleanup);
pm_multi_target_state_update(&state);
break;
}
case PM_MULTI_TARGET_NODE: {
DECL_ANCHOR(writes);
INIT_ANCHOR(writes);
DECL_ANCHOR(cleanup);
INIT_ANCHOR(cleanup);
pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, NULL);
LABEL *not_single = NEW_LABEL(location.line);
LABEL *not_ary = NEW_LABEL(location.line);
// When there are multiple targets, we'll do a bunch of work to convert
// the value into an array before we expand it. Effectively we're trying
// to accomplish:
//
// (args.length == 1 && Array.try_convert(args[0])) || args
//
PUSH_GETLOCAL(ret, location, 1, 0);
PUSH_INSN(ret, location, dup);
PUSH_CALL(ret, location, idLength, INT2FIX(0));
PUSH_INSN1(ret, location, putobject, INT2FIX(1));
PUSH_CALL(ret, location, idEq, INT2FIX(1));
PUSH_INSNL(ret, location, branchunless, not_single);
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, INT2FIX(0));
PUSH_CALL(ret, location, idAREF, INT2FIX(1));
PUSH_INSN1(ret, location, putobject, rb_cArray);
PUSH_INSN(ret, location, swap);
PUSH_CALL(ret, location, rb_intern("try_convert"), INT2FIX(1));
PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, not_ary);
PUSH_INSN(ret, location, swap);
PUSH_LABEL(ret, not_ary);
PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, not_single);
PUSH_SEQ(ret, writes);
PUSH_SEQ(ret, cleanup);
break;
}
default:
rb_bug("Unexpected node type for index in for node: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
break;
}
}
static void
pm_compile_rescue(rb_iseq_t *iseq, const pm_begin_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_parser_t *parser = scope_node->parser;
LABEL *lstart = NEW_LABEL(node_location->line);
LABEL *lend = NEW_LABEL(node_location->line);
LABEL *lcont = NEW_LABEL(node_location->line);
pm_scope_node_t rescue_scope_node;
pm_scope_node_init((const pm_node_t *) cast->rescue_clause, &rescue_scope_node, scope_node);
rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ(
&rescue_scope_node,
rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label),
ISEQ_TYPE_RESCUE,
pm_node_line_number(parser, (const pm_node_t *) cast->rescue_clause)
);
pm_scope_node_destroy(&rescue_scope_node);
lstart->rescued = LABEL_RESCUE_BEG;
lend->rescued = LABEL_RESCUE_END;
PUSH_LABEL(ret, lstart);
bool prev_in_rescue = ISEQ_COMPILE_DATA(iseq)->in_rescue;
ISEQ_COMPILE_DATA(iseq)->in_rescue = true;
if (cast->statements != NULL) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->statements);
}
else {
const pm_node_location_t location = PM_NODE_START_LOCATION(parser, cast->rescue_clause);
PUSH_INSN(ret, location, putnil);
}
ISEQ_COMPILE_DATA(iseq)->in_rescue = prev_in_rescue;
PUSH_LABEL(ret, lend);
if (cast->else_clause != NULL) {
if (!popped) PUSH_INSN(ret, *node_location, pop);
PM_COMPILE((const pm_node_t *) cast->else_clause);
}
PUSH_INSN(ret, *node_location, nop);
PUSH_LABEL(ret, lcont);
if (popped) PUSH_INSN(ret, *node_location, pop);
PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont);
PUSH_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart);
}
static void
pm_compile_ensure(rb_iseq_t *iseq, const pm_begin_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_parser_t *parser = scope_node->parser;
const pm_statements_node_t *statements = cast->ensure_clause->statements;
pm_node_location_t location;
if (statements != NULL) {
location = PM_NODE_START_LOCATION(parser, statements);
}
else {
location = *node_location;
}
LABEL *lstart = NEW_LABEL(location.line);
LABEL *lend = NEW_LABEL(location.line);
LABEL *lcont = NEW_LABEL(location.line);
struct ensure_range er;
struct iseq_compile_data_ensure_node_stack enl;
struct ensure_range *erange;
DECL_ANCHOR(ensr);
INIT_ANCHOR(ensr);
if (statements != NULL) {
pm_compile_node(iseq, (const pm_node_t *) statements, ensr, true, scope_node);
}
LINK_ELEMENT *last = ensr->last;
bool last_leave = last && IS_INSN(last) && IS_INSN_ID(last, leave);
er.begin = lstart;
er.end = lend;
er.next = 0;
push_ensure_entry(iseq, &enl, &er, (void *) cast->ensure_clause);
PUSH_LABEL(ret, lstart);
if (cast->rescue_clause != NULL) {
pm_compile_rescue(iseq, cast, node_location, ret, popped | last_leave, scope_node);
}
else if (cast->statements != NULL) {
pm_compile_node(iseq, (const pm_node_t *) cast->statements, ret, popped | last_leave, scope_node);
}
else if (!(popped | last_leave)) {
PUSH_SYNTHETIC_PUTNIL(ret, iseq);
}
PUSH_LABEL(ret, lend);
PUSH_SEQ(ret, ensr);
if (!popped && last_leave) PUSH_INSN(ret, *node_location, putnil);
PUSH_LABEL(ret, lcont);
if (last_leave) PUSH_INSN(ret, *node_location, pop);
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast->ensure_clause, &next_scope_node, scope_node);
rb_iseq_t *child_iseq = NEW_CHILD_ISEQ(
&next_scope_node,
rb_str_concat(rb_str_new2("ensure in "), ISEQ_BODY(iseq)->location.label),
ISEQ_TYPE_ENSURE,
location.line
);
pm_scope_node_destroy(&next_scope_node);
erange = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->erange;
if (lstart->link.next != &lend->link) {
while (erange) {
PUSH_CATCH_ENTRY(CATCH_TYPE_ENSURE, erange->begin, erange->end, child_iseq, lcont);
erange = erange->next;
}
}
ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enl.prev;
}
/**
* Returns true if the given call node can use the opt_str_uminus or
* opt_str_freeze instructions as an optimization with the current iseq options.
*/
static inline bool
pm_opt_str_freeze_p(const rb_iseq_t *iseq, const pm_call_node_t *node)
{
return (
!PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) &&
node->receiver != NULL &&
PM_NODE_TYPE_P(node->receiver, PM_STRING_NODE) &&
node->arguments == NULL &&
node->block == NULL &&
ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction
);
}
/**
* Returns true if the given call node can use the opt_aref_with optimization
* with the current iseq options.
*/
static inline bool
pm_opt_aref_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node)
{
return (
!PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) &&
node->arguments != NULL &&
PM_NODE_TYPE_P((const pm_node_t *) node->arguments, PM_ARGUMENTS_NODE) &&
((const pm_arguments_node_t *) node->arguments)->arguments.size == 1 &&
PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) &&
node->block == NULL &&
!PM_NODE_FLAG_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_FLAGS_FROZEN) &&
ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction
);
}
/**
* Returns true if the given call node can use the opt_aset_with optimization
* with the current iseq options.
*/
static inline bool
pm_opt_aset_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node)
{
return (
!PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) &&
node->arguments != NULL &&
PM_NODE_TYPE_P((const pm_node_t *) node->arguments, PM_ARGUMENTS_NODE) &&
((const pm_arguments_node_t *) node->arguments)->arguments.size == 2 &&
PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) &&
node->block == NULL &&
!PM_NODE_FLAG_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_FLAGS_FROZEN) &&
ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction
);
}
/**
* Compile the instructions necessary to read a constant, based on the options
* of the current iseq.
*/
static void
pm_compile_constant_read(rb_iseq_t *iseq, VALUE name, const pm_location_t *name_loc, uint32_t node_id, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, name_loc, node_id);
if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache) {
ISEQ_BODY(iseq)->ic_size++;
VALUE segments = rb_ary_new_from_args(1, name);
PUSH_INSN1(ret, location, opt_getconstant_path, segments);
}
else {
PUSH_INSN(ret, location, putnil);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSN1(ret, location, getconstant, name);
}
}
/**
* Returns a Ruby array of the parts of the constant path node if it is constant
* reads all of the way down. If it isn't, then Qnil is returned.
*/
static VALUE
pm_constant_path_parts(const pm_node_t *node, const pm_scope_node_t *scope_node)
{
VALUE parts = rb_ary_new();
while (true) {
switch (PM_NODE_TYPE(node)) {
case PM_CONSTANT_READ_NODE: {
const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
rb_ary_unshift(parts, name);
return parts;
}
case PM_CONSTANT_PATH_NODE: {
const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
rb_ary_unshift(parts, name);
if (cast->parent == NULL) {
rb_ary_unshift(parts, ID2SYM(idNULL));
return parts;
}
node = cast->parent;
break;
}
default:
return Qnil;
}
}
}
/**
* Compile a constant path into two sequences of instructions, one for the
* owning expression if there is one (prefix) and one for the constant reads
* (body).
*/
static void
pm_compile_constant_path(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const prefix, LINK_ANCHOR *const body, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
switch (PM_NODE_TYPE(node)) {
case PM_CONSTANT_READ_NODE: {
const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN1(body, location, putobject, Qtrue);
PUSH_INSN1(body, location, getconstant, name);
break;
}
case PM_CONSTANT_PATH_NODE: {
const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
if (cast->parent == NULL) {
PUSH_INSN(body, location, pop);
PUSH_INSN1(body, location, putobject, rb_cObject);
PUSH_INSN1(body, location, putobject, Qtrue);
PUSH_INSN1(body, location, getconstant, name);
}
else {
pm_compile_constant_path(iseq, cast->parent, prefix, body, false, scope_node);
PUSH_INSN1(body, location, putobject, Qfalse);
PUSH_INSN1(body, location, getconstant, name);
}
break;
}
default:
PM_COMPILE_INTO_ANCHOR(prefix, node);
break;
}
}
/**
* Return the object that will be pushed onto the stack for the given node.
*/
static VALUE
pm_compile_shareable_constant_literal(rb_iseq_t *iseq, const pm_node_t *node, const pm_scope_node_t *scope_node)
{
switch (PM_NODE_TYPE(node)) {
case PM_TRUE_NODE:
case PM_FALSE_NODE:
case PM_NIL_NODE:
case PM_SYMBOL_NODE:
case PM_REGULAR_EXPRESSION_NODE:
case PM_SOURCE_LINE_NODE:
case PM_INTEGER_NODE:
case PM_FLOAT_NODE:
case PM_RATIONAL_NODE:
case PM_IMAGINARY_NODE:
case PM_SOURCE_ENCODING_NODE:
return pm_static_literal_value(iseq, node, scope_node);
case PM_STRING_NODE:
return parse_static_literal_string(iseq, scope_node, node, &((const pm_string_node_t *) node)->unescaped);
case PM_SOURCE_FILE_NODE:
return pm_source_file_value((const pm_source_file_node_t *) node, scope_node);
case PM_ARRAY_NODE: {
const pm_array_node_t *cast = (const pm_array_node_t *) node;
VALUE result = rb_ary_new_capa(cast->elements.size);
for (size_t index = 0; index < cast->elements.size; index++) {
VALUE element = pm_compile_shareable_constant_literal(iseq, cast->elements.nodes[index], scope_node);
if (element == Qundef) return Qundef;
rb_ary_push(result, element);
}
return rb_ractor_make_shareable(result);
}
case PM_HASH_NODE: {
const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
VALUE result = rb_hash_new_capa(cast->elements.size);
for (size_t index = 0; index < cast->elements.size; index++) {
const pm_node_t *element = cast->elements.nodes[index];
if (!PM_NODE_TYPE_P(element, PM_ASSOC_NODE)) return Qundef;
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
VALUE key = pm_compile_shareable_constant_literal(iseq, assoc->key, scope_node);
if (key == Qundef) return Qundef;
VALUE value = pm_compile_shareable_constant_literal(iseq, assoc->value, scope_node);
if (value == Qundef) return Qundef;
rb_hash_aset(result, key, value);
}
return rb_ractor_make_shareable(result);
}
default:
return Qundef;
}
}
/**
* Compile the instructions for pushing the value that will be written to a
* shared constant.
*/
static void
pm_compile_shareable_constant_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_flags_t shareability, VALUE path, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, bool top)
{
VALUE literal = pm_compile_shareable_constant_literal(iseq, node, scope_node);
if (literal != Qundef) {
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
PUSH_INSN1(ret, location, putobject, literal);
return;
}
const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
switch (PM_NODE_TYPE(node)) {
case PM_ARRAY_NODE: {
const pm_array_node_t *cast = (const pm_array_node_t *) node;
if (top) {
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
}
for (size_t index = 0; index < cast->elements.size; index++) {
pm_compile_shareable_constant_value(iseq, cast->elements.nodes[index], shareability, path, ret, scope_node, false);
}
PUSH_INSN1(ret, location, newarray, INT2FIX(cast->elements.size));
if (top) {
ID method_id = (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) ? rb_intern("make_shareable_copy") : rb_intern("make_shareable");
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
}
return;
}
case PM_HASH_NODE: {
const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
if (top) {
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
}
for (size_t index = 0; index < cast->elements.size; index++) {
const pm_node_t *element = cast->elements.nodes[index];
if (!PM_NODE_TYPE_P(element, PM_ASSOC_NODE)) {
COMPILE_ERROR(iseq, location.line, "Ractor constant writes do not support **");
}
const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
pm_compile_shareable_constant_value(iseq, assoc->key, shareability, path, ret, scope_node, false);
pm_compile_shareable_constant_value(iseq, assoc->value, shareability, path, ret, scope_node, false);
}
PUSH_INSN1(ret, location, newhash, INT2FIX(cast->elements.size * 2));
if (top) {
ID method_id = (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) ? rb_intern("make_shareable_copy") : rb_intern("make_shareable");
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
}
return;
}
default: {
DECL_ANCHOR(value_seq);
INIT_ANCHOR(value_seq);
pm_compile_node(iseq, node, value_seq, false, scope_node);
if (PM_NODE_TYPE_P(node, PM_INTERPOLATED_STRING_NODE)) {
PUSH_SEND_WITH_FLAG(value_seq, location, idUMinus, INT2FIX(0), INT2FIX(VM_CALL_ARGS_SIMPLE));
}
if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_LITERAL) {
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_SEQ(ret, value_seq);
PUSH_INSN1(ret, location, putobject, path);
PUSH_SEND_WITH_FLAG(ret, location, rb_intern("ensure_shareable"), INT2FIX(2), INT2FIX(VM_CALL_ARGS_SIMPLE));
}
else if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) {
if (top) PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_SEQ(ret, value_seq);
if (top) PUSH_SEND_WITH_FLAG(ret, location, rb_intern("make_shareable_copy"), INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
}
else if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_EVERYTHING) {
if (top) PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_SEQ(ret, value_seq);
if (top) PUSH_SEND_WITH_FLAG(ret, location, rb_intern("make_shareable"), INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
}
break;
}
}
}
/**
* Compile a constant write node, either in the context of a ractor pragma or
* not.
*/
static void
pm_compile_constant_write_node(rb_iseq_t *iseq, const pm_constant_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
ID name_id = pm_constant_id_lookup(scope_node, node->name);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, rb_id2str(name_id), ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
VALUE operand = ID2SYM(name_id);
PUSH_INSN1(ret, location, setconstant, operand);
}
/**
* Compile a constant and write node, either in the context of a ractor pragma
* or not.
*/
static void
pm_compile_constant_and_write_node(rb_iseq_t *iseq, const pm_constant_and_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name));
LABEL *end_label = NEW_LABEL(location.line);
pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
PUSH_INSN1(ret, location, setconstant, name);
PUSH_LABEL(ret, end_label);
}
/**
* Compile a constant or write node, either in the context of a ractor pragma or
* not.
*/
static void
pm_compile_constant_or_write_node(rb_iseq_t *iseq, const pm_constant_or_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name));
LABEL *set_label = NEW_LABEL(location.line);
LABEL *end_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST), name, Qtrue);
PUSH_INSNL(ret, location, branchunless, set_label);
pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, set_label);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
PUSH_INSN1(ret, location, setconstant, name);
PUSH_LABEL(ret, end_label);
}
/**
* Compile a constant operator write node, either in the context of a ractor
* pragma or not.
*/
static void
pm_compile_constant_operator_write_node(rb_iseq_t *iseq, const pm_constant_operator_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name));
ID method_id = pm_constant_id_lookup(scope_node, node->binary_operator);
pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
PUSH_INSN1(ret, location, setconstant, name);
}
/**
* Creates a string that is used in ractor error messages to describe the
* constant path being written.
*/
static VALUE
pm_constant_path_path(const pm_constant_path_node_t *node, const pm_scope_node_t *scope_node)
{
VALUE parts = rb_ary_new();
rb_ary_push(parts, rb_id2str(pm_constant_id_lookup(scope_node, node->name)));
const pm_node_t *current = node->parent;
while (current != NULL && PM_NODE_TYPE_P(current, PM_CONSTANT_PATH_NODE)) {
const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) current;
rb_ary_unshift(parts, rb_id2str(pm_constant_id_lookup(scope_node, cast->name)));
current = cast->parent;
}
if (current == NULL) {
rb_ary_unshift(parts, rb_id2str(idNULL));
}
else if (PM_NODE_TYPE_P(current, PM_CONSTANT_READ_NODE)) {
rb_ary_unshift(parts, rb_id2str(pm_constant_id_lookup(scope_node, ((const pm_constant_read_node_t *) current)->name)));
}
else {
rb_ary_unshift(parts, rb_str_new_cstr("..."));
}
return rb_ary_join(parts, rb_str_new_cstr("::"));
}
/**
* Compile a constant path write node, either in the context of a ractor pragma
* or not.
*/
static void
pm_compile_constant_path_write_node(rb_iseq_t *iseq, const pm_constant_path_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
const pm_constant_path_node_t *target = node->target;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
if (target->parent) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) target->parent);
}
else {
PUSH_INSN1(ret, location, putobject, rb_cObject);
}
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
if (!popped) {
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, topn, INT2FIX(1));
}
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, setconstant, name);
}
/**
* Compile a constant path and write node, either in the context of a ractor
* pragma or not.
*/
static void
pm_compile_constant_path_and_write_node(rb_iseq_t *iseq, const pm_constant_path_and_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
const pm_constant_path_node_t *target = node->target;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
LABEL *lfin = NEW_LABEL(location.line);
if (target->parent) {
PM_COMPILE_NOT_POPPED(target->parent);
}
else {
PUSH_INSN1(ret, location, putobject, rb_cObject);
}
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSN1(ret, location, getconstant, name);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, lfin);
if (!popped) PUSH_INSN(ret, location, pop);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
if (popped) {
PUSH_INSN1(ret, location, topn, INT2FIX(1));
}
else {
PUSH_INSN1(ret, location, dupn, INT2FIX(2));
PUSH_INSN(ret, location, swap);
}
PUSH_INSN1(ret, location, setconstant, name);
PUSH_LABEL(ret, lfin);
if (!popped) PUSH_INSN(ret, location, swap);
PUSH_INSN(ret, location, pop);
}
/**
* Compile a constant path or write node, either in the context of a ractor
* pragma or not.
*/
static void
pm_compile_constant_path_or_write_node(rb_iseq_t *iseq, const pm_constant_path_or_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
const pm_constant_path_node_t *target = node->target;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
LABEL *lassign = NEW_LABEL(location.line);
LABEL *lfin = NEW_LABEL(location.line);
if (target->parent) {
PM_COMPILE_NOT_POPPED(target->parent);
}
else {
PUSH_INSN1(ret, location, putobject, rb_cObject);
}
PUSH_INSN(ret, location, dup);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST_FROM), name, Qtrue);
PUSH_INSNL(ret, location, branchunless, lassign);
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSN1(ret, location, getconstant, name);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, lfin);
if (!popped) PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, lassign);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
if (popped) {
PUSH_INSN1(ret, location, topn, INT2FIX(1));
}
else {
PUSH_INSN1(ret, location, dupn, INT2FIX(2));
PUSH_INSN(ret, location, swap);
}
PUSH_INSN1(ret, location, setconstant, name);
PUSH_LABEL(ret, lfin);
if (!popped) PUSH_INSN(ret, location, swap);
PUSH_INSN(ret, location, pop);
}
/**
* Compile a constant path operator write node, either in the context of a
* ractor pragma or not.
*/
static void
pm_compile_constant_path_operator_write_node(rb_iseq_t *iseq, const pm_constant_path_operator_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_node_location_t location = *node_location;
const pm_constant_path_node_t *target = node->target;
ID method_id = pm_constant_id_lookup(scope_node, node->binary_operator);
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
if (target->parent) {
PM_COMPILE_NOT_POPPED(target->parent);
}
else {
PUSH_INSN1(ret, location, putobject, rb_cObject);
}
PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSN1(ret, location, getconstant, name);
if (shareability != 0) {
pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
}
else {
PM_COMPILE_NOT_POPPED(node->value);
}
PUSH_CALL(ret, location, method_id, INT2FIX(1));
PUSH_INSN(ret, location, swap);
if (!popped) {
PUSH_INSN1(ret, location, topn, INT2FIX(1));
PUSH_INSN(ret, location, swap);
}
PUSH_INSN1(ret, location, setconstant, name);
}
/**
* Many nodes in Prism can be marked as a static literal, which means slightly
* different things depending on which node it is. Occasionally we need to omit
* container nodes from static literal checks, which is where this macro comes
* in.
*/
#define PM_CONTAINER_P(node) (PM_NODE_TYPE_P(node, PM_ARRAY_NODE) || PM_NODE_TYPE_P(node, PM_HASH_NODE) || PM_NODE_TYPE_P(node, PM_RANGE_NODE))
/**
* Compile a scope node, which is a special kind of node that represents a new
* lexical scope, attached to a node in the AST.
*/
static inline void
pm_compile_scope_node(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped)
{
const pm_node_location_t location = *node_location;
struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
pm_constant_id_list_t *locals = &scope_node->locals;
pm_parameters_node_t *parameters_node = NULL;
pm_node_list_t *keywords_list = NULL;
pm_node_list_t *optionals_list = NULL;
pm_node_list_t *posts_list = NULL;
pm_node_list_t *requireds_list = NULL;
pm_node_list_t *block_locals = NULL;
bool trailing_comma = false;
if (PM_NODE_TYPE_P(scope_node->ast_node, PM_CLASS_NODE) || PM_NODE_TYPE_P(scope_node->ast_node, PM_MODULE_NODE)) {
PUSH_TRACE(ret, RUBY_EVENT_CLASS);
}
if (scope_node->parameters != NULL) {
switch (PM_NODE_TYPE(scope_node->parameters)) {
case PM_BLOCK_PARAMETERS_NODE: {
pm_block_parameters_node_t *cast = (pm_block_parameters_node_t *) scope_node->parameters;
parameters_node = cast->parameters;
block_locals = &cast->locals;
if (parameters_node) {
if (parameters_node->rest && PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE)) {
trailing_comma = true;
}
}
break;
}
case PM_PARAMETERS_NODE: {
parameters_node = (pm_parameters_node_t *) scope_node->parameters;
break;
}
case PM_NUMBERED_PARAMETERS_NODE: {
uint32_t maximum = ((const pm_numbered_parameters_node_t *) scope_node->parameters)->maximum;
body->param.lead_num = maximum;
body->param.flags.ambiguous_param0 = maximum == 1;
break;
}
case PM_IT_PARAMETERS_NODE:
body->param.lead_num = 1;
body->param.flags.ambiguous_param0 = true;
break;
default:
rb_bug("Unexpected node type for parameters: %s", pm_node_type_to_str(PM_NODE_TYPE(scope_node->parameters)));
}
}
struct rb_iseq_param_keyword *keyword = NULL;
if (parameters_node) {
optionals_list = &parameters_node->optionals;
requireds_list = &parameters_node->requireds;
keywords_list = &parameters_node->keywords;
posts_list = &parameters_node->posts;
}
else if (scope_node->parameters && (PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE) || PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE))) {
body->param.opt_num = 0;
}
else {
body->param.lead_num = 0;
body->param.opt_num = 0;
}
//********STEP 1**********
// Goal: calculate the table size for the locals, accounting for
// hidden variables and multi target nodes
size_t locals_size = locals->size;
// Index lookup table buffer size is only the number of the locals
st_table *index_lookup_table = st_init_numtable();
int table_size = (int) locals_size;
// For nodes have a hidden iteration variable. We add that to the local
// table size here.
if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) table_size++;
if (keywords_list && keywords_list->size) {
table_size++;
}
if (requireds_list) {
for (size_t i = 0; i < requireds_list->size; i++) {
// For each MultiTargetNode, we're going to have one
// additional anonymous local not represented in the locals table
// We want to account for this in our table size
pm_node_t *required = requireds_list->nodes[i];
if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) {
table_size++;
}
else if (PM_NODE_TYPE_P(required, PM_REQUIRED_PARAMETER_NODE)) {
if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
table_size++;
}
}
}
}
// If we have the `it` implicit local variable, we need to account for
// it in the local table size.
if (scope_node->parameters != NULL && PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE)) {
table_size++;
}
// Ensure there is enough room in the local table for any
// parameters that have been repeated
// ex: def underscore_parameters(_, _ = 1, _ = 2); _; end
// ^^^^^^^^^^^^
if (optionals_list && optionals_list->size) {
for (size_t i = 0; i < optionals_list->size; i++) {
pm_node_t * node = optionals_list->nodes[i];
if (PM_NODE_FLAG_P(node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
table_size++;
}
}
}
// If we have an anonymous "rest" node, we'll need to increase the local
// table size to take it in to account.
// def m(foo, *, bar)
// ^
if (parameters_node) {
if (parameters_node->rest) {
if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) {
if (!((const pm_rest_parameter_node_t *) parameters_node->rest)->name || PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
table_size++;
}
}
}
// def foo(_, **_); _; end
// ^^^
if (parameters_node->keyword_rest) {
// def foo(...); end
// ^^^
// When we have a `...` as the keyword_rest, it's a forwarding_parameter_node and
// we need to leave space for 4 locals: *, **, &, ...
if (PM_NODE_TYPE_P(parameters_node->keyword_rest, PM_FORWARDING_PARAMETER_NODE)) {
// Only optimize specifically methods like this: `foo(...)`
if (requireds_list->size == 0 && optionals_list->size == 0 && keywords_list->size == 0) {
ISEQ_BODY(iseq)->param.flags.use_block = TRUE;
ISEQ_BODY(iseq)->param.flags.forwardable = TRUE;
table_size += 1;
}
else {
table_size += 4;
}
}
else {
const pm_keyword_rest_parameter_node_t *kw_rest = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest;
// If it's anonymous or repeated, then we need to allocate stack space
if (!kw_rest->name || PM_NODE_FLAG_P(kw_rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
table_size++;
}
}
}
}
if (posts_list) {
for (size_t i = 0; i < posts_list->size; i++) {
// For each MultiTargetNode, we're going to have one
// additional anonymous local not represented in the locals table
// We want to account for this in our table size
pm_node_t *required = posts_list->nodes[i];
if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE) || PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
table_size++;
}
}
}
if (keywords_list && keywords_list->size) {
for (size_t i = 0; i < keywords_list->size; i++) {
pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
table_size++;
}
}
}
if (parameters_node && parameters_node->block) {
const pm_block_parameter_node_t *block_node = (const pm_block_parameter_node_t *) parameters_node->block;
if (PM_NODE_FLAG_P(block_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER) || !block_node->name) {
table_size++;
}
}
// We can create local_table_for_iseq with the correct size
VALUE idtmp = 0;
rb_ast_id_table_t *local_table_for_iseq = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + table_size * sizeof(ID));
local_table_for_iseq->size = table_size;
//********END OF STEP 1**********
//********STEP 2**********
// Goal: populate iv index table as well as local table, keeping the
// layout of the local table consistent with the layout of the
// stack when calling the method
//
// Do a first pass on all of the parameters, setting their values in
// the local_table_for_iseq, _except_ for Multis who get a hidden
// variable in this step, and will get their names inserted in step 3
// local_index is a cursor that keeps track of the current
// index into local_table_for_iseq. The local table is actually a list,
// and the order of that list must match the order of the items pushed
// on the stack. We need to take in to account things pushed on the
// stack that _might not have a name_ (for example array destructuring).
// This index helps us know which item we're dealing with and also give
// those anonymous items temporary names (as below)
int local_index = 0;
// Here we figure out local table indices and insert them in to the
// index lookup table and local tables.
//
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^^^^^^^^^^
if (requireds_list && requireds_list->size) {
for (size_t i = 0; i < requireds_list->size; i++, local_index++) {
ID local;
// For each MultiTargetNode, we're going to have one additional
// anonymous local not represented in the locals table. We want
// to account for this in our table size.
pm_node_t *required = requireds_list->nodes[i];
switch (PM_NODE_TYPE(required)) {
case PM_MULTI_TARGET_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^^^^^^^
local = rb_make_temporary_id(local_index);
local_table_for_iseq->ids[local_index] = local;
break;
}
case PM_REQUIRED_PARAMETER_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^
const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) required;
if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
ID local = pm_constant_id_lookup(scope_node, param->name);
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
break;
}
default:
rb_bug("Unsupported node in requireds in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(required)));
}
}
body->param.lead_num = (int) requireds_list->size;
body->param.flags.has_lead = true;
}
if (scope_node->parameters != NULL && PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE)) {
ID local = rb_make_temporary_id(local_index);
local_table_for_iseq->ids[local_index++] = local;
}
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^^
if (optionals_list && optionals_list->size) {
body->param.opt_num = (int) optionals_list->size;
body->param.flags.has_opt = true;
for (size_t i = 0; i < optionals_list->size; i++, local_index++) {
pm_node_t * node = optionals_list->nodes[i];
pm_constant_id_t name = ((const pm_optional_parameter_node_t *) node)->name;
if (PM_NODE_FLAG_P(node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
ID local = pm_constant_id_lookup(scope_node, name);
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
}
}
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^
if (parameters_node && parameters_node->rest) {
body->param.rest_start = local_index;
// If there's a trailing comma, we'll have an implicit rest node,
// and we don't want it to impact the rest variables on param
if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) {
body->param.flags.has_rest = true;
RUBY_ASSERT(body->param.rest_start != -1);
pm_constant_id_t name = ((const pm_rest_parameter_node_t *) parameters_node->rest)->name;
if (name) {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^
if (PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
ID local = pm_constant_id_lookup(scope_node, name);
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
}
else {
// def foo(a, (b, *c, d), e = 1, *, g, (h, *i, j), k:, l: 1, **m, &n)
// ^
body->param.flags.anon_rest = true;
pm_insert_local_special(idMULT, local_index, index_lookup_table, local_table_for_iseq);
}
local_index++;
}
}
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^^^^^^^^^^
if (posts_list && posts_list->size) {
body->param.post_num = (int) posts_list->size;
body->param.post_start = local_index;
body->param.flags.has_post = true;
for (size_t i = 0; i < posts_list->size; i++, local_index++) {
ID local;
// For each MultiTargetNode, we're going to have one additional
// anonymous local not represented in the locals table. We want
// to account for this in our table size.
const pm_node_t *post_node = posts_list->nodes[i];
switch (PM_NODE_TYPE(post_node)) {
case PM_MULTI_TARGET_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^^^^^^^
local = rb_make_temporary_id(local_index);
local_table_for_iseq->ids[local_index] = local;
break;
}
case PM_REQUIRED_PARAMETER_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^
const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) post_node;
if (PM_NODE_FLAG_P(param, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
ID local = pm_constant_id_lookup(scope_node, param->name);
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
break;
}
default:
rb_bug("Unsupported node in posts in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(post_node)));
}
}
}
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^^^^^
// Keywords create an internal variable on the parse tree
if (keywords_list && keywords_list->size) {
keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1);
keyword->num = (int) keywords_list->size;
const VALUE default_values = rb_ary_hidden_new(1);
const VALUE complex_mark = rb_str_tmp_new(0);
for (size_t i = 0; i < keywords_list->size; i++) {
pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
pm_constant_id_t name;
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^
if (PM_NODE_TYPE_P(keyword_parameter_node, PM_REQUIRED_KEYWORD_PARAMETER_NODE)) {
name = ((const pm_required_keyword_parameter_node_t *) keyword_parameter_node)->name;
keyword->required_num++;
ID local = pm_constant_id_lookup(scope_node, name);
if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
local_index++;
}
}
for (size_t i = 0; i < keywords_list->size; i++) {
pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
pm_constant_id_t name;
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^
if (PM_NODE_TYPE_P(keyword_parameter_node, PM_OPTIONAL_KEYWORD_PARAMETER_NODE)) {
const pm_optional_keyword_parameter_node_t *cast = ((const pm_optional_keyword_parameter_node_t *) keyword_parameter_node);
pm_node_t *value = cast->value;
name = cast->name;
if (PM_NODE_FLAG_P(value, PM_NODE_FLAG_STATIC_LITERAL) && !PM_CONTAINER_P(value)) {
rb_ary_push(default_values, pm_static_literal_value(iseq, value, scope_node));
}
else {
rb_ary_push(default_values, complex_mark);
}
ID local = pm_constant_id_lookup(scope_node, name);
if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
local_index++;
}
}
if (RARRAY_LEN(default_values)) {
VALUE *dvs = ALLOC_N(VALUE, RARRAY_LEN(default_values));
for (int i = 0; i < RARRAY_LEN(default_values); i++) {
VALUE dv = RARRAY_AREF(default_values, i);
if (dv == complex_mark) dv = Qundef;
RB_OBJ_WRITE(iseq, &dvs[i], dv);
}
keyword->default_values = dvs;
}
// Hidden local for keyword arguments
keyword->bits_start = local_index;
ID local = rb_make_temporary_id(local_index);
local_table_for_iseq->ids[local_index] = local;
local_index++;
body->param.keyword = keyword;
body->param.flags.has_kw = true;
}
if (body->type == ISEQ_TYPE_BLOCK && local_index == 1 && requireds_list && requireds_list->size == 1 && !trailing_comma) {
body->param.flags.ambiguous_param0 = true;
}
if (parameters_node) {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^
if (parameters_node->keyword_rest) {
switch (PM_NODE_TYPE(parameters_node->keyword_rest)) {
case PM_NO_KEYWORDS_PARAMETER_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **nil, &n)
// ^^^^^
body->param.flags.accepts_no_kwarg = true;
break;
}
case PM_KEYWORD_REST_PARAMETER_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^
const pm_keyword_rest_parameter_node_t *kw_rest_node = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest;
if (!body->param.flags.has_kw) {
body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1);
}
keyword->rest_start = local_index;
body->param.flags.has_kwrest = true;
pm_constant_id_t constant_id = kw_rest_node->name;
if (constant_id) {
if (PM_NODE_FLAG_P(kw_rest_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
ID local = pm_constant_id_lookup(scope_node, constant_id);
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
}
else {
body->param.flags.anon_kwrest = true;
pm_insert_local_special(idPow, local_index, index_lookup_table, local_table_for_iseq);
}
local_index++;
break;
}
case PM_FORWARDING_PARAMETER_NODE: {
// def foo(...)
// ^^^
if (!ISEQ_BODY(iseq)->param.flags.forwardable) {
// Add the anonymous *
body->param.rest_start = local_index;
body->param.flags.has_rest = true;
body->param.flags.anon_rest = true;
pm_insert_local_special(idMULT, local_index++, index_lookup_table, local_table_for_iseq);
// Add the anonymous **
RUBY_ASSERT(!body->param.flags.has_kw);
body->param.flags.has_kw = false;
body->param.flags.has_kwrest = true;
body->param.flags.anon_kwrest = true;
body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1);
keyword->rest_start = local_index;
pm_insert_local_special(idPow, local_index++, index_lookup_table, local_table_for_iseq);
// Add the anonymous &
body->param.block_start = local_index;
body->param.flags.has_block = true;
pm_insert_local_special(idAnd, local_index++, index_lookup_table, local_table_for_iseq);
}
// Add the ...
pm_insert_local_special(idDot3, local_index++, index_lookup_table, local_table_for_iseq);
break;
}
default:
rb_bug("node type %s not expected as keyword_rest", pm_node_type_to_str(PM_NODE_TYPE(parameters_node->keyword_rest)));
}
}
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^
if (parameters_node->block) {
body->param.block_start = local_index;
body->param.flags.has_block = true;
iseq_set_use_block(iseq);
pm_constant_id_t name = ((const pm_block_parameter_node_t *) parameters_node->block)->name;
if (name) {
if (PM_NODE_FLAG_P(parameters_node->block, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
ID local = pm_constant_id_lookup(scope_node, name);
local_table_for_iseq->ids[local_index] = local;
}
else {
pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
}
else {
pm_insert_local_special(idAnd, local_index, index_lookup_table, local_table_for_iseq);
}
local_index++;
}
}
//********END OF STEP 2**********
// The local table is now consistent with expected
// stack layout
// If there's only one required element in the parameters
// CRuby needs to recognize it as an ambiguous parameter
//********STEP 3**********
// Goal: fill in the names of the parameters in MultiTargetNodes
//
// Go through requireds again to set the multis
if (requireds_list && requireds_list->size) {
for (size_t i = 0; i < requireds_list->size; i++) {
// For each MultiTargetNode, we're going to have one
// additional anonymous local not represented in the locals table
// We want to account for this in our table size
const pm_node_t *required = requireds_list->nodes[i];
if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) {
local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) required, index_lookup_table, local_table_for_iseq, scope_node, local_index);
}
}
}
// Go through posts again to set the multis
if (posts_list && posts_list->size) {
for (size_t i = 0; i < posts_list->size; i++) {
// For each MultiTargetNode, we're going to have one
// additional anonymous local not represented in the locals table
// We want to account for this in our table size
const pm_node_t *post = posts_list->nodes[i];
if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) {
local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) post, index_lookup_table, local_table_for_iseq, scope_node, local_index);
}
}
}
// Set any anonymous locals for the for node
if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) {
if (PM_NODE_TYPE_P(((const pm_for_node_t *) scope_node->ast_node)->index, PM_LOCAL_VARIABLE_TARGET_NODE)) {
body->param.lead_num++;
}
else {
body->param.rest_start = local_index;
body->param.flags.has_rest = true;
}
ID local = rb_make_temporary_id(local_index);
local_table_for_iseq->ids[local_index] = local;
local_index++;
}
// Fill in any NumberedParameters, if they exist
if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) {
int maximum = ((const pm_numbered_parameters_node_t *) scope_node->parameters)->maximum;
RUBY_ASSERT(0 < maximum && maximum <= 9);
for (int i = 0; i < maximum; i++, local_index++) {
const uint8_t param_name[] = { '_', '1' + i };
pm_constant_id_t constant_id = pm_constant_pool_find(&scope_node->parser->constant_pool, param_name, 2);
RUBY_ASSERT(constant_id && "parser should fill in any gaps in numbered parameters");
pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
body->param.lead_num = maximum;
body->param.flags.has_lead = true;
}
//********END OF STEP 3**********
//********STEP 4**********
// Goal: fill in the method body locals
// To be explicit, these are the non-parameter locals
// We fill in the block_locals, if they exist
// lambda { |x; y| y }
// ^
if (block_locals && block_locals->size) {
for (size_t i = 0; i < block_locals->size; i++, local_index++) {
pm_constant_id_t constant_id = ((const pm_block_local_variable_node_t *) block_locals->nodes[i])->name;
pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node);
}
}
// Fill in any locals we missed
if (scope_node->locals.size) {
for (size_t i = 0; i < scope_node->locals.size; i++) {
pm_constant_id_t constant_id = locals->ids[i];
if (constant_id) {
struct pm_local_table_insert_ctx ctx;
ctx.scope_node = scope_node;
ctx.local_table_for_iseq = local_table_for_iseq;
ctx.local_index = local_index;
st_update(index_lookup_table, (st_data_t)constant_id, pm_local_table_insert_func, (st_data_t)&ctx);
local_index = ctx.local_index;
}
}
}
//********END OF STEP 4**********
// We set the index_lookup_table on the scope node so we can
// refer to the parameters correctly
if (scope_node->index_lookup_table) {
st_free_table(scope_node->index_lookup_table);
}
scope_node->index_lookup_table = index_lookup_table;
iseq_calc_param_size(iseq);
if (ISEQ_BODY(iseq)->param.flags.forwardable) {
// We're treating `...` as a parameter so that frame
// pushing won't clobber it.
ISEQ_BODY(iseq)->param.size += 1;
}
// FIXME: args?
iseq_set_local_table(iseq, local_table_for_iseq, 0);
scope_node->local_table_for_iseq_size = local_table_for_iseq->size;
if (keyword != NULL) {
size_t keyword_start_index = keyword->bits_start - keyword->num;
keyword->table = (ID *)&ISEQ_BODY(iseq)->local_table[keyword_start_index];
}
//********STEP 5************
// Goal: compile anything that needed to be compiled
if (optionals_list && optionals_list->size) {
LABEL **opt_table = (LABEL **) ALLOC_N(VALUE, optionals_list->size + 1);
LABEL *label;
// TODO: Should we make an api for NEW_LABEL where you can pass
// a pointer to the label it should fill out? We already
// have a list of labels allocated above so it seems wasteful
// to do the copies.
for (size_t i = 0; i < optionals_list->size; i++) {
label = NEW_LABEL(location.line);
opt_table[i] = label;
PUSH_LABEL(ret, label);
pm_node_t *optional_node = optionals_list->nodes[i];
PM_COMPILE_NOT_POPPED(optional_node);
}
// Set the last label
label = NEW_LABEL(location.line);
opt_table[optionals_list->size] = label;
PUSH_LABEL(ret, label);
body->param.opt_table = (const VALUE *) opt_table;
}
if (keywords_list && keywords_list->size) {
size_t optional_index = 0;
for (size_t i = 0; i < keywords_list->size; i++) {
pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
pm_constant_id_t name;
switch (PM_NODE_TYPE(keyword_parameter_node)) {
case PM_OPTIONAL_KEYWORD_PARAMETER_NODE: {
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^^^
const pm_optional_keyword_parameter_node_t *cast = ((const pm_optional_keyword_parameter_node_t *) keyword_parameter_node);
pm_node_t *value = cast->value;
name = cast->name;
if (!PM_NODE_FLAG_P(value, PM_NODE_FLAG_STATIC_LITERAL) || PM_CONTAINER_P(value)) {
LABEL *end_label = NEW_LABEL(location.line);
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, name, 0);
int kw_bits_idx = table_size - body->param.keyword->bits_start;
PUSH_INSN2(ret, location, checkkeyword, INT2FIX(kw_bits_idx + VM_ENV_DATA_SIZE - 1), INT2FIX(optional_index));
PUSH_INSNL(ret, location, branchif, end_label);
PM_COMPILE(value);
PUSH_SETLOCAL(ret, location, index.index, index.level);
PUSH_LABEL(ret, end_label);
}
optional_index++;
break;
}
case PM_REQUIRED_KEYWORD_PARAMETER_NODE:
// def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
// ^^
break;
default:
rb_bug("Unexpected keyword parameter node type %s", pm_node_type_to_str(PM_NODE_TYPE(keyword_parameter_node)));
}
}
}
if (requireds_list && requireds_list->size) {
for (size_t i = 0; i < requireds_list->size; i++) {
// For each MultiTargetNode, we're going to have one additional
// anonymous local not represented in the locals table. We want
// to account for this in our table size.
const pm_node_t *required = requireds_list->nodes[i];
if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) {
PUSH_GETLOCAL(ret, location, table_size - (int)i, 0);
pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) required, ret, scope_node);
}
}
}
if (posts_list && posts_list->size) {
for (size_t i = 0; i < posts_list->size; i++) {
// For each MultiTargetNode, we're going to have one additional
// anonymous local not represented in the locals table. We want
// to account for this in our table size.
const pm_node_t *post = posts_list->nodes[i];
if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) {
PUSH_GETLOCAL(ret, location, table_size - body->param.post_start - (int) i, 0);
pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) post, ret, scope_node);
}
}
}
switch (body->type) {
case ISEQ_TYPE_PLAIN: {
RUBY_ASSERT(PM_NODE_TYPE_P(scope_node->ast_node, PM_INTERPOLATED_REGULAR_EXPRESSION_NODE));
const pm_interpolated_regular_expression_node_t *cast = (const pm_interpolated_regular_expression_node_t *) scope_node->ast_node;
pm_compile_regexp_dynamic(iseq, (const pm_node_t *) cast, &cast->parts, &location, ret, popped, scope_node);
break;
}
case ISEQ_TYPE_BLOCK: {
LABEL *start = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(0);
LABEL *end = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(0);
const pm_node_location_t block_location = { .line = body->location.first_lineno, .node_id = -1 };
start->rescued = LABEL_RESCUE_BEG;
end->rescued = LABEL_RESCUE_END;
// For nodes automatically assign the iteration variable to whatever
// index variable. We need to handle that write here because it has
// to happen in the context of the block. Note that this happens
// before the B_CALL tracepoint event.
if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) {
pm_compile_for_node_index(iseq, ((const pm_for_node_t *) scope_node->ast_node)->index, ret, scope_node);
}
PUSH_TRACE(ret, RUBY_EVENT_B_CALL);
PUSH_INSN(ret, block_location, nop);
PUSH_LABEL(ret, start);
if (scope_node->body != NULL) {
switch (PM_NODE_TYPE(scope_node->ast_node)) {
case PM_POST_EXECUTION_NODE: {
const pm_post_execution_node_t *cast = (const pm_post_execution_node_t *) scope_node->ast_node;
PUSH_INSN1(ret, block_location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
// We create another ScopeNode from the statements within the PostExecutionNode
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast->statements, &next_scope_node, scope_node);
const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(body->parent_iseq), ISEQ_TYPE_BLOCK, location.line);
pm_scope_node_destroy(&next_scope_node);
PUSH_CALL_WITH_BLOCK(ret, block_location, id_core_set_postexe, INT2FIX(0), block);
break;
}
case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: {
const pm_interpolated_regular_expression_node_t *cast = (const pm_interpolated_regular_expression_node_t *) scope_node->ast_node;
pm_compile_regexp_dynamic(iseq, (const pm_node_t *) cast, &cast->parts, &location, ret, popped, scope_node);
break;
}
default:
pm_compile_node(iseq, scope_node->body, ret, popped, scope_node);
break;
}
}
else {
PUSH_INSN(ret, block_location, putnil);
}
PUSH_LABEL(ret, end);
PUSH_TRACE(ret, RUBY_EVENT_B_RETURN);
ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno;
/* wide range catch handler must put at last */
PUSH_CATCH_ENTRY(CATCH_TYPE_REDO, start, end, NULL, start);
PUSH_CATCH_ENTRY(CATCH_TYPE_NEXT, start, end, NULL, end);
break;
}
case ISEQ_TYPE_ENSURE: {
const pm_node_location_t statements_location = (scope_node->body != NULL ? PM_NODE_START_LOCATION(scope_node->parser, scope_node->body) : location);
iseq_set_exception_local_table(iseq);
if (scope_node->body != NULL) {
PM_COMPILE_POPPED((const pm_node_t *) scope_node->body);
}
PUSH_GETLOCAL(ret, statements_location, 1, 0);
PUSH_INSN1(ret, statements_location, throw, INT2FIX(0));
return;
}
case ISEQ_TYPE_METHOD: {
ISEQ_COMPILE_DATA(iseq)->root_node = (const void *) scope_node->body;
PUSH_TRACE(ret, RUBY_EVENT_CALL);
if (scope_node->body) {
PM_COMPILE((const pm_node_t *) scope_node->body);
}
else {
PUSH_INSN(ret, location, putnil);
}
ISEQ_COMPILE_DATA(iseq)->root_node = (const void *) scope_node->body;
PUSH_TRACE(ret, RUBY_EVENT_RETURN);
ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno;
break;
}
case ISEQ_TYPE_RESCUE: {
iseq_set_exception_local_table(iseq);
if (PM_NODE_TYPE_P(scope_node->ast_node, PM_RESCUE_MODIFIER_NODE)) {
LABEL *lab = NEW_LABEL(location.line);
LABEL *rescue_end = NEW_LABEL(location.line);
PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0);
PUSH_INSN1(ret, location, putobject, rb_eStandardError);
PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE));
PUSH_INSNL(ret, location, branchif, lab);
PUSH_INSNL(ret, location, jump, rescue_end);
PUSH_LABEL(ret, lab);
PUSH_TRACE(ret, RUBY_EVENT_RESCUE);
PM_COMPILE((const pm_node_t *) scope_node->body);
PUSH_INSN(ret, location, leave);
PUSH_LABEL(ret, rescue_end);
PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0);
}
else {
PM_COMPILE((const pm_node_t *) scope_node->ast_node);
}
PUSH_INSN1(ret, location, throw, INT2FIX(0));
return;
}
default:
if (scope_node->body) {
PM_COMPILE((const pm_node_t *) scope_node->body);
}
else {
PUSH_INSN(ret, location, putnil);
}
break;
}
if (PM_NODE_TYPE_P(scope_node->ast_node, PM_CLASS_NODE) || PM_NODE_TYPE_P(scope_node->ast_node, PM_MODULE_NODE)) {
const pm_node_location_t end_location = PM_NODE_END_LOCATION(scope_node->parser, scope_node->ast_node);
PUSH_TRACE(ret, RUBY_EVENT_END);
ISEQ_COMPILE_DATA(iseq)->last_line = end_location.line;
}
if (!PM_NODE_TYPE_P(scope_node->ast_node, PM_ENSURE_NODE)) {
const pm_node_location_t location = { .line = ISEQ_COMPILE_DATA(iseq)->last_line, .node_id = -1 };
PUSH_INSN(ret, location, leave);
}
}
static inline void
pm_compile_alias_global_variable_node(rb_iseq_t *iseq, const pm_alias_global_variable_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
// alias $foo $bar
// ^^^^^^^^^^^^^^^
PUSH_INSN1(ret, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
{
const pm_location_t *name_loc = &node->new_name->location;
VALUE operand = ID2SYM(rb_intern3((const char *) name_loc->start, name_loc->end - name_loc->start, scope_node->encoding));
PUSH_INSN1(ret, *location, putobject, operand);
}
{
const pm_location_t *name_loc = &node->old_name->location;
VALUE operand = ID2SYM(rb_intern3((const char *) name_loc->start, name_loc->end - name_loc->start, scope_node->encoding));
PUSH_INSN1(ret, *location, putobject, operand);
}
PUSH_SEND(ret, *location, id_core_set_variable_alias, INT2FIX(2));
if (popped) PUSH_INSN(ret, *location, pop);
}
static inline void
pm_compile_alias_method_node(rb_iseq_t *iseq, const pm_alias_method_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
PUSH_INSN1(ret, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE));
PM_COMPILE_NOT_POPPED(node->new_name);
PM_COMPILE_NOT_POPPED(node->old_name);
PUSH_SEND(ret, *location, id_core_set_method_alias, INT2FIX(3));
if (popped) PUSH_INSN(ret, *location, pop);
}
static inline void
pm_compile_and_node(rb_iseq_t *iseq, const pm_and_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
LABEL *end_label = NEW_LABEL(location->line);
PM_COMPILE_NOT_POPPED(node->left);
if (!popped) PUSH_INSN(ret, *location, dup);
PUSH_INSNL(ret, *location, branchunless, end_label);
if (!popped) PUSH_INSN(ret, *location, pop);
PM_COMPILE(node->right);
PUSH_LABEL(ret, end_label);
}
static inline void
pm_compile_array_node(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *elements, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
// If every node in the array is static, then we can compile the entire
// array now instead of later.
if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
// We're only going to compile this node if it's not popped. If it
// is popped, then we know we don't need to do anything since it's
// statically known.
if (!popped) {
if (elements->size) {
VALUE value = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, *location, duparray, value);
}
else {
PUSH_INSN1(ret, *location, newarray, INT2FIX(0));
}
}
return;
}
// Here since we know there are possible side-effects inside the
// array contents, we're going to build it entirely at runtime.
// We'll do this by pushing all of the elements onto the stack and
// then combining them with newarray.
//
// If this array is popped, then this serves only to ensure we enact
// all side-effects (like method calls) that are contained within
// the array contents.
//
// We treat all sequences of non-splat elements as their
// own arrays, followed by a newarray, and then continually
// concat the arrays with the SplatNode nodes.
const int max_new_array_size = 0x100;
const unsigned int min_tmp_array_size = 0x40;
int new_array_size = 0;
bool first_chunk = true;
// This is an optimization wherein we keep track of whether or not
// the previous element was a static literal. If it was, then we do
// not attempt to check if we have a subarray that can be optimized.
// If it was not, then we do check.
bool static_literal = false;
// Either create a new array, or push to the existing array.
#define FLUSH_CHUNK \
if (new_array_size) { \
if (first_chunk) PUSH_INSN1(ret, *location, newarray, INT2FIX(new_array_size)); \
else PUSH_INSN1(ret, *location, pushtoarray, INT2FIX(new_array_size)); \
first_chunk = false; \
new_array_size = 0; \
}
for (size_t index = 0; index < elements->size; index++) {
const pm_node_t *element = elements->nodes[index];
if (PM_NODE_TYPE_P(element, PM_SPLAT_NODE)) {
FLUSH_CHUNK;
const pm_splat_node_t *splat_element = (const pm_splat_node_t *) element;
if (splat_element->expression) {
PM_COMPILE_NOT_POPPED(splat_element->expression);
}
else {
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0);
PUSH_GETLOCAL(ret, *location, index.index, index.level);
}
if (first_chunk) {
// If this is the first element of the array then we
// need to splatarray the elements into the list.
PUSH_INSN1(ret, *location, splatarray, Qtrue);
first_chunk = false;
}
else {
PUSH_INSN(ret, *location, concattoarray);
}
static_literal = false;
}
else if (PM_NODE_TYPE_P(element, PM_KEYWORD_HASH_NODE)) {
if (new_array_size == 0 && first_chunk) {
PUSH_INSN1(ret, *location, newarray, INT2FIX(0));
first_chunk = false;
}
else {
FLUSH_CHUNK;
}
// If we get here, then this is the last element of the
// array/arguments, because it cannot be followed by
// anything else without a syntax error. This looks like:
//
// [foo, bar, baz: qux]
// ^^^^^^^^
//
// [foo, bar, **baz]
// ^^^^^
//
const pm_keyword_hash_node_t *keyword_hash = (const pm_keyword_hash_node_t *) element;
pm_compile_hash_elements(iseq, element, &keyword_hash->elements, false, ret, scope_node);
// This boolean controls the manner in which we push the
// hash onto the array. If it's all keyword splats, then we
// can use the very specialized pushtoarraykwsplat
// instruction to check if it's empty before we push it.
size_t splats = 0;
while (splats < keyword_hash->elements.size && PM_NODE_TYPE_P(keyword_hash->elements.nodes[splats], PM_ASSOC_SPLAT_NODE)) splats++;
if (keyword_hash->elements.size == splats) {
PUSH_INSN(ret, *location, pushtoarraykwsplat);
}
else {
new_array_size++;
}
}
else if (
PM_NODE_FLAG_P(element, PM_NODE_FLAG_STATIC_LITERAL) &&
!PM_CONTAINER_P(element) &&
!static_literal &&
((index + min_tmp_array_size) < elements->size)
) {
// If we have a static literal, then there's the potential
// to group a bunch of them together with a literal array
// and then concat them together.
size_t right_index = index + 1;
while (
right_index < elements->size &&
PM_NODE_FLAG_P(elements->nodes[right_index], PM_NODE_FLAG_STATIC_LITERAL) &&
!PM_CONTAINER_P(elements->nodes[right_index])
) right_index++;
size_t tmp_array_size = right_index - index;
if (tmp_array_size >= min_tmp_array_size) {
VALUE tmp_array = rb_ary_hidden_new(tmp_array_size);
// Create the temporary array.
for (; tmp_array_size; tmp_array_size--)
rb_ary_push(tmp_array, pm_static_literal_value(iseq, elements->nodes[index++], scope_node));
index--; // about to be incremented by for loop
OBJ_FREEZE(tmp_array);
// Emit the optimized code.
FLUSH_CHUNK;
if (first_chunk) {
PUSH_INSN1(ret, *location, duparray, tmp_array);
first_chunk = false;
}
else {
PUSH_INSN1(ret, *location, putobject, tmp_array);
PUSH_INSN(ret, *location, concattoarray);
}
}
else {
PM_COMPILE_NOT_POPPED(element);
if (++new_array_size >= max_new_array_size) FLUSH_CHUNK;
static_literal = true;
}
} else {
PM_COMPILE_NOT_POPPED(element);
if (++new_array_size >= max_new_array_size) FLUSH_CHUNK;
static_literal = false;
}
}
FLUSH_CHUNK;
if (popped) PUSH_INSN(ret, *location, pop);
#undef FLUSH_CHUNK
}
static inline void
pm_compile_break_node(rb_iseq_t *iseq, const pm_break_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
unsigned long throw_flag = 0;
if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) {
/* while/until */
LABEL *splabel = NEW_LABEL(0);
PUSH_LABEL(ret, splabel);
PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->redo_label);
if (node->arguments != NULL) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
}
else {
PUSH_INSN(ret, *location, putnil);
}
pm_add_ensure_iseq(ret, iseq, 0, scope_node);
PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->end_label);
PUSH_ADJUST_RESTORE(ret, splabel);
if (!popped) PUSH_INSN(ret, *location, putnil);
}
else {
const rb_iseq_t *ip = iseq;
while (ip) {
if (!ISEQ_COMPILE_DATA(ip)) {
ip = 0;
break;
}
if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) {
throw_flag = VM_THROW_NO_ESCAPE_FLAG;
}
else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) {
throw_flag = 0;
}
else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) {
COMPILE_ERROR(iseq, location->line, "Invalid break");
return;
}
else {
ip = ISEQ_BODY(ip)->parent_iseq;
continue;
}
/* escape from block */
if (node->arguments != NULL) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
}
else {
PUSH_INSN(ret, *location, putnil);
}
PUSH_INSN1(ret, *location, throw, INT2FIX(throw_flag | TAG_BREAK));
if (popped) PUSH_INSN(ret, *location, pop);
return;
}
COMPILE_ERROR(iseq, location->line, "Invalid break");
}
}
static inline void
pm_compile_call_node(rb_iseq_t *iseq, const pm_call_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
ID method_id = pm_constant_id_lookup(scope_node, node->name);
const pm_location_t *message_loc = &node->message_loc;
if (message_loc->start == NULL) message_loc = &node->base.location;
const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, message_loc, node->base.node_id);
const char *builtin_func;
if (UNLIKELY(iseq_has_builtin_function_table(iseq)) && (builtin_func = pm_iseq_builtin_function_name(scope_node, node->receiver, method_id)) != NULL) {
pm_compile_builtin_function_call(iseq, ret, scope_node, node, &location, popped, ISEQ_COMPILE_DATA(iseq)->current_block, builtin_func);
return;
}
LABEL *start = NEW_LABEL(location.line);
if (node->block) PUSH_LABEL(ret, start);
switch (method_id) {
case idUMinus: {
if (pm_opt_str_freeze_p(iseq, node)) {
VALUE value = parse_static_literal_string(iseq, scope_node, node->receiver, &((const pm_string_node_t * ) node->receiver)->unescaped);
const struct rb_callinfo *callinfo = new_callinfo(iseq, idUMinus, 0, 0, NULL, FALSE);
PUSH_INSN2(ret, location, opt_str_uminus, value, callinfo);
return;
}
break;
}
case idFreeze: {
if (pm_opt_str_freeze_p(iseq, node)) {
VALUE value = parse_static_literal_string(iseq, scope_node, node->receiver, &((const pm_string_node_t * ) node->receiver)->unescaped);
const struct rb_callinfo *callinfo = new_callinfo(iseq, idFreeze, 0, 0, NULL, FALSE);
PUSH_INSN2(ret, location, opt_str_freeze, value, callinfo);
return;
}
break;
}
case idAREF: {
if (pm_opt_aref_with_p(iseq, node)) {
const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0];
VALUE value = parse_static_literal_string(iseq, scope_node, (const pm_node_t *) string, &string->unescaped);
PM_COMPILE_NOT_POPPED(node->receiver);
const struct rb_callinfo *callinfo = new_callinfo(iseq, idAREF, 1, 0, NULL, FALSE);
PUSH_INSN2(ret, location, opt_aref_with, value, callinfo);
if (popped) {
PUSH_INSN(ret, location, pop);
}
return;
}
break;
}
case idASET: {
if (pm_opt_aset_with_p(iseq, node)) {
const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0];
VALUE value = parse_static_literal_string(iseq, scope_node, (const pm_node_t *) string, &string->unescaped);
PM_COMPILE_NOT_POPPED(node->receiver);
PM_COMPILE_NOT_POPPED(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[1]);
if (!popped) {
PUSH_INSN(ret, location, swap);
PUSH_INSN1(ret, location, topn, INT2FIX(1));
}
const struct rb_callinfo *callinfo = new_callinfo(iseq, idASET, 2, 0, NULL, FALSE);
PUSH_INSN2(ret, location, opt_aset_with, value, callinfo);
PUSH_INSN(ret, location, pop);
return;
}
break;
}
}
if (PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) {
PUSH_INSN(ret, location, putnil);
}
if (node->receiver == NULL) {
PUSH_INSN(ret, location, putself);
}
else {
if (method_id == idCall && PM_NODE_TYPE_P(node->receiver, PM_LOCAL_VARIABLE_READ_NODE)) {
const pm_local_variable_read_node_t *read_node_cast = (const pm_local_variable_read_node_t *) node->receiver;
uint32_t node_id = node->receiver->node_id;
int idx, level;
if (iseq_block_param_id_p(iseq, pm_constant_id_lookup(scope_node, read_node_cast->name), &idx, &level)) {
ADD_ELEM(ret, (LINK_ELEMENT *) new_insn_body(iseq, location.line, node_id, BIN(getblockparamproxy), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
}
else {
PM_COMPILE_NOT_POPPED(node->receiver);
}
}
else {
PM_COMPILE_NOT_POPPED(node->receiver);
}
}
pm_compile_call(iseq, node, ret, popped, scope_node, method_id, start);
return;
}
static inline void
pm_compile_call_operator_write_node(rb_iseq_t *iseq, const pm_call_operator_write_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
int flag = 0;
if (PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) {
flag = VM_CALL_FCALL;
}
PM_COMPILE_NOT_POPPED(node->receiver);
LABEL *safe_label = NULL;
if (PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) {
safe_label = NEW_LABEL(location->line);
PUSH_INSN(ret, *location, dup);
PUSH_INSNL(ret, *location, branchnil, safe_label);
}
PUSH_INSN(ret, *location, dup);
ID id_read_name = pm_constant_id_lookup(scope_node, node->read_name);
PUSH_SEND_WITH_FLAG(ret, *location, id_read_name, INT2FIX(0), INT2FIX(flag));
PM_COMPILE_NOT_POPPED(node->value);
ID id_operator = pm_constant_id_lookup(scope_node, node->binary_operator);
PUSH_SEND(ret, *location, id_operator, INT2FIX(1));
if (!popped) {
PUSH_INSN(ret, *location, swap);
PUSH_INSN1(ret, *location, topn, INT2FIX(1));
}
ID id_write_name = pm_constant_id_lookup(scope_node, node->write_name);
PUSH_SEND_WITH_FLAG(ret, *location, id_write_name, INT2FIX(1), INT2FIX(flag));
if (safe_label != NULL && popped) PUSH_LABEL(ret, safe_label);
PUSH_INSN(ret, *location, pop);
if (safe_label != NULL && !popped) PUSH_LABEL(ret, safe_label);
}
/**
* When we're compiling a case node, it's possible that we can speed it up using
* a dispatch hash, which will allow us to jump directly to the correct when
* clause body based on a hash lookup of the value. This can only happen when
* the conditions are literals that can be compiled into a hash key.
*
* This function accepts a dispatch hash and the condition of a when clause. It
* is responsible for compiling the condition into a hash key and then adding it
* to the dispatch hash.
*
* If the value can be successfully compiled into the hash, then this function
* returns the dispatch hash with the new key added. If the value cannot be
* compiled into the hash, then this function returns Qundef. In the case of
* Qundef, this function is signaling that the caller should abandon the
* optimization entirely.
*/
static VALUE
pm_compile_case_node_dispatch(rb_iseq_t *iseq, VALUE dispatch, const pm_node_t *node, LABEL *label, const pm_scope_node_t *scope_node)
{
VALUE key = Qundef;
switch (PM_NODE_TYPE(node)) {
case PM_FLOAT_NODE: {
key = pm_static_literal_value(iseq, node, scope_node);
double intptr;
if (modf(RFLOAT_VALUE(key), &intptr) == 0.0) {
key = (FIXABLE(intptr) ? LONG2FIX((long) intptr) : rb_dbl2big(intptr));
}
break;
}
case PM_FALSE_NODE:
case PM_INTEGER_NODE:
case PM_NIL_NODE:
case PM_SOURCE_FILE_NODE:
case PM_SOURCE_LINE_NODE:
case PM_SYMBOL_NODE:
case PM_TRUE_NODE:
key = pm_static_literal_value(iseq, node, scope_node);
break;
case PM_STRING_NODE: {
const pm_string_node_t *cast = (const pm_string_node_t *) node;
key = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
break;
}
default:
return Qundef;
}
if (NIL_P(rb_hash_lookup(dispatch, key))) {
rb_hash_aset(dispatch, key, ((VALUE) label) | 1);
}
return dispatch;
}
/**
* Compile a case node, representing a case statement with when clauses.
*/
static inline void
pm_compile_case_node(rb_iseq_t *iseq, const pm_case_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_parser_t *parser = scope_node->parser;
const pm_node_location_t location = *node_location;
const pm_node_list_t *conditions = &cast->conditions;
// This is the anchor that we will compile the conditions of the various
// `when` nodes into. If a match is found, they will need to jump into
// the body_seq anchor to the correct spot.
DECL_ANCHOR(cond_seq);
INIT_ANCHOR(cond_seq);
// This is the anchor that we will compile the bodies of the various
// `when` nodes into. We'll make sure that the clauses that are compiled
// jump into the correct spots within this anchor.
DECL_ANCHOR(body_seq);
INIT_ANCHOR(body_seq);
// This is the label where all of the when clauses will jump to if they
// have matched and are done executing their bodies.
LABEL *end_label = NEW_LABEL(location.line);
// If we have a predicate on this case statement, then it's going to
// compare all of the various when clauses to the predicate. If we
// don't, then it's basically an if-elsif-else chain.
if (cast->predicate == NULL) {
// Establish branch coverage for the case node.
VALUE branches = Qfalse;
rb_code_location_t case_location = { 0 };
int branch_id = 0;
if (PM_BRANCH_COVERAGE_P(iseq)) {
case_location = pm_code_location(scope_node, (const pm_node_t *) cast);
branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case");
}
// Loop through each clauses in the case node and compile each of
// the conditions within them into cond_seq. If they match, they
// should jump into their respective bodies in body_seq.
for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) {
const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index];
const pm_node_list_t *conditions = &clause->conditions;
int clause_lineno = pm_node_line_number(parser, (const pm_node_t *) clause);
LABEL *label = NEW_LABEL(clause_lineno);
PUSH_LABEL(body_seq, label);
// Establish branch coverage for the when clause.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location = pm_code_location(scope_node, clause->statements != NULL ? ((const pm_node_t *) clause->statements) : ((const pm_node_t *) clause));
add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "when", branches);
}
if (clause->statements != NULL) {
pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(body_seq, iseq);
}
PUSH_INSNL(body_seq, location, jump, end_label);
// Compile each of the conditions for the when clause into the
// cond_seq. Each one should have a unique condition and should
// jump to the subsequent one if it doesn't match.
for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) {
const pm_node_t *condition = conditions->nodes[condition_index];
if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) {
pm_node_location_t cond_location = PM_NODE_START_LOCATION(parser, condition);
PUSH_INSN(cond_seq, cond_location, putnil);
pm_compile_node(iseq, condition, cond_seq, false, scope_node);
PUSH_INSN1(cond_seq, cond_location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_WHEN | VM_CHECKMATCH_ARRAY));
PUSH_INSNL(cond_seq, cond_location, branchif, label);
}
else {
LABEL *next_label = NEW_LABEL(pm_node_line_number(parser, condition));
pm_compile_branch_condition(iseq, cond_seq, condition, label, next_label, false, scope_node);
PUSH_LABEL(cond_seq, next_label);
}
}
}
// Establish branch coverage for the else clause (implicit or
// explicit).
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location;
if (cast->else_clause == NULL) {
branch_location = case_location;
} else if (cast->else_clause->statements == NULL) {
branch_location = pm_code_location(scope_node, (const pm_node_t *) cast->else_clause);
} else {
branch_location = pm_code_location(scope_node, (const pm_node_t *) cast->else_clause->statements);
}
add_trace_branch_coverage(iseq, cond_seq, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches);
}
// Compile the else clause if there is one.
if (cast->else_clause != NULL) {
pm_compile_node(iseq, (const pm_node_t *) cast->else_clause, cond_seq, popped, scope_node);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(cond_seq, iseq);
}
// Finally, jump to the end label if none of the other conditions
// have matched.
PUSH_INSNL(cond_seq, location, jump, end_label);
PUSH_SEQ(ret, cond_seq);
}
else {
// Establish branch coverage for the case node.
VALUE branches = Qfalse;
rb_code_location_t case_location = { 0 };
int branch_id = 0;
if (PM_BRANCH_COVERAGE_P(iseq)) {
case_location = pm_code_location(scope_node, (const pm_node_t *) cast);
branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case");
}
// This is the label where everything will fall into if none of the
// conditions matched.
LABEL *else_label = NEW_LABEL(location.line);
// It's possible for us to speed up the case node by using a
// dispatch hash. This is a hash that maps the conditions of the
// various when clauses to the labels of their bodies. If we can
// compile the conditions into a hash key, then we can use a hash
// lookup to jump directly to the correct when clause body.
VALUE dispatch = Qundef;
if (ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction) {
dispatch = rb_hash_new();
RHASH_TBL_RAW(dispatch)->type = &cdhash_type;
}
// We're going to loop through each of the conditions in the case
// node and compile each of their contents into both the cond_seq
// and the body_seq. Each condition will use its own label to jump
// from its conditions into its body.
//
// Note that none of the code in the loop below should be adding
// anything to ret, as we're going to be laying out the entire case
// node instructions later.
for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) {
const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index];
pm_node_location_t clause_location = PM_NODE_START_LOCATION(parser, (const pm_node_t *) clause);
const pm_node_list_t *conditions = &clause->conditions;
LABEL *label = NEW_LABEL(clause_location.line);
// Compile each of the conditions for the when clause into the
// cond_seq. Each one should have a unique comparison that then
// jumps into the body if it matches.
for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) {
const pm_node_t *condition = conditions->nodes[condition_index];
const pm_node_location_t condition_location = PM_NODE_START_LOCATION(parser, condition);
// If we haven't already abandoned the optimization, then
// we're going to try to compile the condition into the
// dispatch hash.
if (dispatch != Qundef) {
dispatch = pm_compile_case_node_dispatch(iseq, dispatch, condition, label, scope_node);
}
if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) {
PUSH_INSN(cond_seq, condition_location, dup);
pm_compile_node(iseq, condition, cond_seq, false, scope_node);
PUSH_INSN1(cond_seq, condition_location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE | VM_CHECKMATCH_ARRAY));
}
else {
if (PM_NODE_TYPE_P(condition, PM_STRING_NODE)) {
const pm_string_node_t *string = (const pm_string_node_t *) condition;
VALUE value = parse_static_literal_string(iseq, scope_node, condition, &string->unescaped);
PUSH_INSN1(cond_seq, condition_location, putobject, value);
}
else {
pm_compile_node(iseq, condition, cond_seq, false, scope_node);
}
PUSH_INSN1(cond_seq, condition_location, topn, INT2FIX(1));
PUSH_SEND_WITH_FLAG(cond_seq, condition_location, idEqq, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE));
}
PUSH_INSNL(cond_seq, condition_location, branchif, label);
}
// Now, add the label to the body and compile the body of the
// when clause. This involves popping the predicate, compiling
// the statements to be executed, and then compiling a jump to
// the end of the case node.
PUSH_LABEL(body_seq, label);
PUSH_INSN(body_seq, clause_location, pop);
// Establish branch coverage for the when clause.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location = pm_code_location(scope_node, clause->statements != NULL ? ((const pm_node_t *) clause->statements) : ((const pm_node_t *) clause));
add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "when", branches);
}
if (clause->statements != NULL) {
pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(body_seq, iseq);
}
PUSH_INSNL(body_seq, clause_location, jump, end_label);
}
// Now that we have compiled the conditions and the bodies of the
// various when clauses, we can compile the predicate, lay out the
// conditions, compile the fallback subsequent if there is one, and
// finally put in the bodies of the when clauses.
PM_COMPILE_NOT_POPPED(cast->predicate);
// If we have a dispatch hash, then we'll use it here to create the
// optimization.
if (dispatch != Qundef) {
PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, opt_case_dispatch, dispatch, else_label);
LABEL_REF(else_label);
}
PUSH_SEQ(ret, cond_seq);
// Compile either the explicit else clause or an implicit else
// clause.
PUSH_LABEL(ret, else_label);
if (cast->else_clause != NULL) {
pm_node_location_t else_location = PM_NODE_START_LOCATION(parser, cast->else_clause->statements != NULL ? ((const pm_node_t *) cast->else_clause->statements) : ((const pm_node_t *) cast->else_clause));
PUSH_INSN(ret, else_location, pop);
// Establish branch coverage for the else clause.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location = pm_code_location(scope_node, cast->else_clause->statements != NULL ? ((const pm_node_t *) cast->else_clause->statements) : ((const pm_node_t *) cast->else_clause));
add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches);
}
PM_COMPILE((const pm_node_t *) cast->else_clause);
PUSH_INSNL(ret, else_location, jump, end_label);
}
else {
PUSH_INSN(ret, location, pop);
// Establish branch coverage for the implicit else clause.
if (PM_BRANCH_COVERAGE_P(iseq)) {
add_trace_branch_coverage(iseq, ret, &case_location, case_location.beg_pos.column, branch_id, "else", branches);
}
if (!popped) PUSH_INSN(ret, location, putnil);
PUSH_INSNL(ret, location, jump, end_label);
}
}
PUSH_SEQ(ret, body_seq);
PUSH_LABEL(ret, end_label);
}
static inline void
pm_compile_case_match_node(rb_iseq_t *iseq, const pm_case_match_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
// This is the anchor that we will compile the bodies of the various
// `in` nodes into. We'll make sure that the patterns that are compiled
// jump into the correct spots within this anchor.
DECL_ANCHOR(body_seq);
INIT_ANCHOR(body_seq);
// This is the anchor that we will compile the patterns of the various
// `in` nodes into. If a match is found, they will need to jump into the
// body_seq anchor to the correct spot.
DECL_ANCHOR(cond_seq);
INIT_ANCHOR(cond_seq);
// This label is used to indicate the end of the entire node. It is
// jumped to after the entire stack is cleaned up.
LABEL *end_label = NEW_LABEL(location->line);
// This label is used as the fallback for the case match. If no match is
// found, then we jump to this label. This is either an `else` clause or
// an error handler.
LABEL *else_label = NEW_LABEL(location->line);
// We're going to use this to uniquely identify each branch so that we
// can track coverage information.
rb_code_location_t case_location = { 0 };
VALUE branches = Qfalse;
int branch_id = 0;
if (PM_BRANCH_COVERAGE_P(iseq)) {
case_location = pm_code_location(scope_node, (const pm_node_t *) node);
branches = decl_branch_base(iseq, PTR2NUM(node), &case_location, "case");
}
// If there is only one pattern, then the behavior changes a bit. It
// effectively gets treated as a match required node (this is how it is
// represented in the other parser).
bool in_single_pattern = node->else_clause == NULL && node->conditions.size == 1;
// First, we're going to push a bunch of stuff onto the stack that is
// going to serve as our scratch space.
if (in_single_pattern) {
PUSH_INSN(ret, *location, putnil); // key error key
PUSH_INSN(ret, *location, putnil); // key error matchee
PUSH_INSN1(ret, *location, putobject, Qfalse); // key error?
PUSH_INSN(ret, *location, putnil); // error string
}
// Now we're going to compile the value to match against.
PUSH_INSN(ret, *location, putnil); // deconstruct cache
PM_COMPILE_NOT_POPPED(node->predicate);
// Next, we'll loop through every in clause and compile its body into
// the body_seq anchor and its pattern into the cond_seq anchor. We'll
// make sure the pattern knows how to jump correctly into the body if it
// finds a match.
for (size_t index = 0; index < node->conditions.size; index++) {
const pm_node_t *condition = node->conditions.nodes[index];
RUBY_ASSERT(PM_NODE_TYPE_P(condition, PM_IN_NODE));
const pm_in_node_t *in_node = (const pm_in_node_t *) condition;
const pm_node_location_t in_location = PM_NODE_START_LOCATION(scope_node->parser, in_node);
const pm_node_location_t pattern_location = PM_NODE_START_LOCATION(scope_node->parser, in_node->pattern);
if (branch_id) {
PUSH_INSN(body_seq, in_location, putnil);
}
LABEL *body_label = NEW_LABEL(in_location.line);
PUSH_LABEL(body_seq, body_label);
PUSH_INSN1(body_seq, in_location, adjuststack, INT2FIX(in_single_pattern ? 6 : 2));
// Establish branch coverage for the in clause.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location = pm_code_location(scope_node, in_node->statements != NULL ? ((const pm_node_t *) in_node->statements) : ((const pm_node_t *) in_node));
add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "in", branches);
}
if (in_node->statements != NULL) {
PM_COMPILE_INTO_ANCHOR(body_seq, (const pm_node_t *) in_node->statements);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(body_seq, iseq);
}
PUSH_INSNL(body_seq, in_location, jump, end_label);
LABEL *next_pattern_label = NEW_LABEL(pattern_location.line);
PUSH_INSN(cond_seq, pattern_location, dup);
pm_compile_pattern(iseq, scope_node, in_node->pattern, cond_seq, body_label, next_pattern_label, in_single_pattern, false, true, 2);
PUSH_LABEL(cond_seq, next_pattern_label);
LABEL_UNREMOVABLE(next_pattern_label);
}
if (node->else_clause != NULL) {
// If we have an `else` clause, then this becomes our fallback (and
// there is no need to compile in code to potentially raise an
// error).
const pm_else_node_t *else_node = node->else_clause;
PUSH_LABEL(cond_seq, else_label);
PUSH_INSN(cond_seq, *location, pop);
PUSH_INSN(cond_seq, *location, pop);
// Establish branch coverage for the else clause.
if (PM_BRANCH_COVERAGE_P(iseq)) {
rb_code_location_t branch_location = pm_code_location(scope_node, else_node->statements != NULL ? ((const pm_node_t *) else_node->statements) : ((const pm_node_t *) else_node));
add_trace_branch_coverage(iseq, cond_seq, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches);
}
PM_COMPILE_INTO_ANCHOR(cond_seq, (const pm_node_t *) else_node);
PUSH_INSNL(cond_seq, *location, jump, end_label);
PUSH_INSN(cond_seq, *location, putnil);
if (popped) PUSH_INSN(cond_seq, *location, putnil);
}
else {
// Otherwise, if we do not have an `else` clause, we will compile in
// the code to handle raising an appropriate error.
PUSH_LABEL(cond_seq, else_label);
// Establish branch coverage for the implicit else clause.
add_trace_branch_coverage(iseq, cond_seq, &case_location, case_location.beg_pos.column, branch_id, "else", branches);
if (in_single_pattern) {
pm_compile_pattern_error_handler(iseq, scope_node, (const pm_node_t *) node, cond_seq, end_label, popped);
}
else {
PUSH_INSN1(cond_seq, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(cond_seq, *location, putobject, rb_eNoMatchingPatternError);
PUSH_INSN1(cond_seq, *location, topn, INT2FIX(2));
PUSH_SEND(cond_seq, *location, id_core_raise, INT2FIX(2));
PUSH_INSN1(cond_seq, *location, adjuststack, INT2FIX(3));
if (!popped) PUSH_INSN(cond_seq, *location, putnil);
PUSH_INSNL(cond_seq, *location, jump, end_label);
PUSH_INSN1(cond_seq, *location, dupn, INT2FIX(1));
if (popped) PUSH_INSN(cond_seq, *location, putnil);
}
}
// At the end of all of this compilation, we will add the code for the
// conditions first, then the various bodies, then mark the end of the
// entire sequence with the end label.
PUSH_SEQ(ret, cond_seq);
PUSH_SEQ(ret, body_seq);
PUSH_LABEL(ret, end_label);
}
static inline void
pm_compile_forwarding_super_node(rb_iseq_t *iseq, const pm_forwarding_super_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const rb_iseq_t *block = NULL;
const rb_iseq_t *previous_block = NULL;
LABEL *retry_label = NULL;
LABEL *retry_end_l = NULL;
if (node->block != NULL) {
previous_block = ISEQ_COMPILE_DATA(iseq)->current_block;
ISEQ_COMPILE_DATA(iseq)->current_block = NULL;
retry_label = NEW_LABEL(location->line);
retry_end_l = NEW_LABEL(location->line);
PUSH_LABEL(ret, retry_label);
}
else {
iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
}
PUSH_INSN(ret, *location, putself);
int flag = VM_CALL_ZSUPER | VM_CALL_SUPER | VM_CALL_FCALL;
if (node->block != NULL) {
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) node->block, &next_scope_node, scope_node);
ISEQ_COMPILE_DATA(iseq)->current_block = block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location->line);
pm_scope_node_destroy(&next_scope_node);
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) block);
}
DECL_ANCHOR(args);
INIT_ANCHOR(args);
struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
const rb_iseq_t *local_iseq = body->local_iseq;
const struct rb_iseq_constant_body *const local_body = ISEQ_BODY(local_iseq);
int argc = 0;
int depth = get_lvar_level(iseq);
if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) {
flag |= VM_CALL_FORWARDING;
pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_DOT3, 0);
PUSH_GETLOCAL(ret, *location, mult_local.index, mult_local.level);
const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, 0, flag, NULL, block != NULL);
PUSH_INSN2(ret, *location, invokesuperforward, callinfo, block);
if (popped) PUSH_INSN(ret, *location, pop);
if (node->block) {
ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
}
return;
}
if (local_body->param.flags.has_lead) {
/* required arguments */
for (int i = 0; i < local_body->param.lead_num; i++) {
int idx = local_body->local_table_size - i;
PUSH_GETLOCAL(args, *location, idx, depth);
}
argc += local_body->param.lead_num;
}
if (local_body->param.flags.has_opt) {
/* optional arguments */
for (int j = 0; j < local_body->param.opt_num; j++) {
int idx = local_body->local_table_size - (argc + j);
PUSH_GETLOCAL(args, *location, idx, depth);
}
argc += local_body->param.opt_num;
}
if (local_body->param.flags.has_rest) {
/* rest argument */
int idx = local_body->local_table_size - local_body->param.rest_start;
PUSH_GETLOCAL(args, *location, idx, depth);
PUSH_INSN1(args, *location, splatarray, Qfalse);
argc = local_body->param.rest_start + 1;
flag |= VM_CALL_ARGS_SPLAT;
}
if (local_body->param.flags.has_post) {
/* post arguments */
int post_len = local_body->param.post_num;
int post_start = local_body->param.post_start;
int j = 0;
for (; j < post_len; j++) {
int idx = local_body->local_table_size - (post_start + j);
PUSH_GETLOCAL(args, *location, idx, depth);
}
if (local_body->param.flags.has_rest) {
// argc remains unchanged from rest branch
PUSH_INSN1(args, *location, newarray, INT2FIX(j));
PUSH_INSN(args, *location, concatarray);
}
else {
argc = post_len + post_start;
}
}
const struct rb_iseq_param_keyword *const local_keyword = local_body->param.keyword;
if (local_body->param.flags.has_kw) {
int local_size = local_body->local_table_size;
argc++;
PUSH_INSN1(args, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
if (local_body->param.flags.has_kwrest) {
int idx = local_body->local_table_size - local_keyword->rest_start;
PUSH_GETLOCAL(args, *location, idx, depth);
RUBY_ASSERT(local_keyword->num > 0);
PUSH_SEND(args, *location, rb_intern("dup"), INT2FIX(0));
}
else {
PUSH_INSN1(args, *location, newhash, INT2FIX(0));
}
int i = 0;
for (; i < local_keyword->num; ++i) {
ID id = local_keyword->table[i];
int idx = local_size - get_local_var_idx(local_iseq, id);
{
VALUE operand = ID2SYM(id);
PUSH_INSN1(args, *location, putobject, operand);
}
PUSH_GETLOCAL(args, *location, idx, depth);
}
PUSH_SEND(args, *location, id_core_hash_merge_ptr, INT2FIX(i * 2 + 1));
flag |= VM_CALL_KW_SPLAT| VM_CALL_KW_SPLAT_MUT;
}
else if (local_body->param.flags.has_kwrest) {
int idx = local_body->local_table_size - local_keyword->rest_start;
PUSH_GETLOCAL(args, *location, idx, depth);
argc++;
flag |= VM_CALL_KW_SPLAT;
}
PUSH_SEQ(ret, args);
{
const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flag, NULL, block != NULL);
PUSH_INSN2(ret, *location, invokesuper, callinfo, block);
}
if (node->block != NULL) {
pm_compile_retry_end_label(iseq, ret, retry_end_l);
PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, block, retry_end_l);
ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
}
if (popped) PUSH_INSN(ret, *location, pop);
}
static inline void
pm_compile_match_required_node(rb_iseq_t *iseq, const pm_match_required_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
LABEL *matched_label = NEW_LABEL(location->line);
LABEL *unmatched_label = NEW_LABEL(location->line);
LABEL *done_label = NEW_LABEL(location->line);
// First, we're going to push a bunch of stuff onto the stack that is
// going to serve as our scratch space.
PUSH_INSN(ret, *location, putnil); // key error key
PUSH_INSN(ret, *location, putnil); // key error matchee
PUSH_INSN1(ret, *location, putobject, Qfalse); // key error?
PUSH_INSN(ret, *location, putnil); // error string
PUSH_INSN(ret, *location, putnil); // deconstruct cache
// Next we're going to compile the value expression such that it's on
// the stack.
PM_COMPILE_NOT_POPPED(node->value);
// Here we'll dup it so that it can be used for comparison, but also be
// used for error handling.
PUSH_INSN(ret, *location, dup);
// Next we'll compile the pattern. We indicate to the pm_compile_pattern
// function that this is the only pattern that will be matched against
// through the in_single_pattern parameter. We also indicate that the
// value to compare against is 2 slots from the top of the stack (the
// base_index parameter).
pm_compile_pattern(iseq, scope_node, node->pattern, ret, matched_label, unmatched_label, true, false, true, 2);
// If the pattern did not match the value, then we're going to compile
// in our error handler code. This will determine which error to raise
// and raise it.
PUSH_LABEL(ret, unmatched_label);
pm_compile_pattern_error_handler(iseq, scope_node, (const pm_node_t *) node, ret, done_label, popped);
// If the pattern did match, we'll clean up the values we've pushed onto
// the stack and then push nil onto the stack if it's not popped.
PUSH_LABEL(ret, matched_label);
PUSH_INSN1(ret, *location, adjuststack, INT2FIX(6));
if (!popped) PUSH_INSN(ret, *location, putnil);
PUSH_INSNL(ret, *location, jump, done_label);
PUSH_LABEL(ret, done_label);
}
static inline void
pm_compile_match_write_node(rb_iseq_t *iseq, const pm_match_write_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
LABEL *fail_label = NEW_LABEL(location->line);
LABEL *end_label = NEW_LABEL(location->line);
// First, we'll compile the call so that all of its instructions are
// present. Then we'll compile all of the local variable targets.
PM_COMPILE_NOT_POPPED((const pm_node_t *) node->call);
// Now, check if the match was successful. If it was, then we'll
// continue on and assign local variables. Otherwise we'll skip over the
// assignment code.
{
VALUE operand = rb_id2sym(idBACKREF);
PUSH_INSN1(ret, *location, getglobal, operand);
}
PUSH_INSN(ret, *location, dup);
PUSH_INSNL(ret, *location, branchunless, fail_label);
// If there's only a single local variable target, we can skip some of
// the bookkeeping, so we'll put a special branch here.
size_t targets_count = node->targets.size;
if (targets_count == 1) {
const pm_node_t *target = node->targets.nodes[0];
RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE));
const pm_local_variable_target_node_t *local_target = (const pm_local_variable_target_node_t *) target;
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth);
{
VALUE operand = rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name));
PUSH_INSN1(ret, *location, putobject, operand);
}
PUSH_SEND(ret, *location, idAREF, INT2FIX(1));
PUSH_LABEL(ret, fail_label);
PUSH_SETLOCAL(ret, *location, index.index, index.level);
if (popped) PUSH_INSN(ret, *location, pop);
return;
}
DECL_ANCHOR(fail_anchor);
INIT_ANCHOR(fail_anchor);
// Otherwise there is more than one local variable target, so we'll need
// to do some bookkeeping.
for (size_t targets_index = 0; targets_index < targets_count; targets_index++) {
const pm_node_t *target = node->targets.nodes[targets_index];
RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE));
const pm_local_variable_target_node_t *local_target = (const pm_local_variable_target_node_t *) target;
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth);
if (((size_t) targets_index) < (targets_count - 1)) {
PUSH_INSN(ret, *location, dup);
}
{
VALUE operand = rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name));
PUSH_INSN1(ret, *location, putobject, operand);
}
PUSH_SEND(ret, *location, idAREF, INT2FIX(1));
PUSH_SETLOCAL(ret, *location, index.index, index.level);
PUSH_INSN(fail_anchor, *location, putnil);
PUSH_SETLOCAL(fail_anchor, *location, index.index, index.level);
}
// Since we matched successfully, now we'll jump to the end.
PUSH_INSNL(ret, *location, jump, end_label);
// In the case that the match failed, we'll loop through each local
// variable target and set all of them to `nil`.
PUSH_LABEL(ret, fail_label);
PUSH_INSN(ret, *location, pop);
PUSH_SEQ(ret, fail_anchor);
// Finally, we can push the end label for either case.
PUSH_LABEL(ret, end_label);
if (popped) PUSH_INSN(ret, *location, pop);
}
static inline void
pm_compile_next_node(rb_iseq_t *iseq, const pm_next_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) {
LABEL *splabel = NEW_LABEL(0);
PUSH_LABEL(ret, splabel);
if (node->arguments) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
}
else {
PUSH_INSN(ret, *location, putnil);
}
pm_add_ensure_iseq(ret, iseq, 0, scope_node);
PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->redo_label);
PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->start_label);
PUSH_ADJUST_RESTORE(ret, splabel);
if (!popped) PUSH_INSN(ret, *location, putnil);
}
else if (ISEQ_COMPILE_DATA(iseq)->end_label && can_add_ensure_iseq(iseq)) {
LABEL *splabel = NEW_LABEL(0);
PUSH_LABEL(ret, splabel);
PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->start_label);
if (node->arguments != NULL) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
}
else {
PUSH_INSN(ret, *location, putnil);
}
pm_add_ensure_iseq(ret, iseq, 0, scope_node);
PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->end_label);
PUSH_ADJUST_RESTORE(ret, splabel);
splabel->unremovable = FALSE;
if (!popped) PUSH_INSN(ret, *location, putnil);
}
else {
const rb_iseq_t *ip = iseq;
unsigned long throw_flag = 0;
while (ip) {
if (!ISEQ_COMPILE_DATA(ip)) {
ip = 0;
break;
}
throw_flag = VM_THROW_NO_ESCAPE_FLAG;
if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) {
/* while loop */
break;
}
else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) {
break;
}
else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) {
COMPILE_ERROR(iseq, location->line, "Invalid next");
return;
}
ip = ISEQ_BODY(ip)->parent_iseq;
}
if (ip != 0) {
if (node->arguments) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
}
else {
PUSH_INSN(ret, *location, putnil);
}
PUSH_INSN1(ret, *location, throw, INT2FIX(throw_flag | TAG_NEXT));
if (popped) PUSH_INSN(ret, *location, pop);
}
else {
COMPILE_ERROR(iseq, location->line, "Invalid next");
}
}
}
static inline void
pm_compile_redo_node(rb_iseq_t *iseq, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
if (ISEQ_COMPILE_DATA(iseq)->redo_label && can_add_ensure_iseq(iseq)) {
LABEL *splabel = NEW_LABEL(0);
PUSH_LABEL(ret, splabel);
PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->redo_label);
pm_add_ensure_iseq(ret, iseq, 0, scope_node);
PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->redo_label);
PUSH_ADJUST_RESTORE(ret, splabel);
if (!popped) PUSH_INSN(ret, *location, putnil);
}
else if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_EVAL && ISEQ_COMPILE_DATA(iseq)->start_label && can_add_ensure_iseq(iseq)) {
LABEL *splabel = NEW_LABEL(0);
PUSH_LABEL(ret, splabel);
pm_add_ensure_iseq(ret, iseq, 0, scope_node);
PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->start_label);
PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->start_label);
PUSH_ADJUST_RESTORE(ret, splabel);
if (!popped) PUSH_INSN(ret, *location, putnil);
}
else {
const rb_iseq_t *ip = iseq;
while (ip) {
if (!ISEQ_COMPILE_DATA(ip)) {
ip = 0;
break;
}
if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) {
break;
}
else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) {
break;
}
else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) {
COMPILE_ERROR(iseq, location->line, "Invalid redo");
return;
}
ip = ISEQ_BODY(ip)->parent_iseq;
}
if (ip != 0) {
PUSH_INSN(ret, *location, putnil);
PUSH_INSN1(ret, *location, throw, INT2FIX(VM_THROW_NO_ESCAPE_FLAG | TAG_REDO));
if (popped) PUSH_INSN(ret, *location, pop);
}
else {
COMPILE_ERROR(iseq, location->line, "Invalid redo");
}
}
}
static inline void
pm_compile_rescue_node(rb_iseq_t *iseq, const pm_rescue_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
iseq_set_exception_local_table(iseq);
// First, establish the labels that we need to be able to jump to within
// this compilation block.
LABEL *exception_match_label = NEW_LABEL(location->line);
LABEL *rescue_end_label = NEW_LABEL(location->line);
// Next, compile each of the exceptions that we're going to be
// handling. For each one, we'll add instructions to check if the
// exception matches the raised one, and if it does then jump to the
// exception_match_label label. Otherwise it will fall through to the
// subsequent check. If there are no exceptions, we'll only check
// StandardError.
const pm_node_list_t *exceptions = &node->exceptions;
if (exceptions->size > 0) {
for (size_t index = 0; index < exceptions->size; index++) {
PUSH_GETLOCAL(ret, *location, LVAR_ERRINFO, 0);
PM_COMPILE(exceptions->nodes[index]);
int checkmatch_flags = VM_CHECKMATCH_TYPE_RESCUE;
if (PM_NODE_TYPE_P(exceptions->nodes[index], PM_SPLAT_NODE)) {
checkmatch_flags |= VM_CHECKMATCH_ARRAY;
}
PUSH_INSN1(ret, *location, checkmatch, INT2FIX(checkmatch_flags));
PUSH_INSNL(ret, *location, branchif, exception_match_label);
}
}
else {
PUSH_GETLOCAL(ret, *location, LVAR_ERRINFO, 0);
PUSH_INSN1(ret, *location, putobject, rb_eStandardError);
PUSH_INSN1(ret, *location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE));
PUSH_INSNL(ret, *location, branchif, exception_match_label);
}
// If none of the exceptions that we are matching against matched, then
// we'll jump straight to the rescue_end_label label.
PUSH_INSNL(ret, *location, jump, rescue_end_label);
// Here we have the exception_match_label, which is where the
// control-flow goes in the case that one of the exceptions matched.
// Here we will compile the instructions to handle the exception.
PUSH_LABEL(ret, exception_match_label);
PUSH_TRACE(ret, RUBY_EVENT_RESCUE);
// If we have a reference to the exception, then we'll compile the write
// into the instruction sequence. This can look quite different
// depending on the kind of write being performed.
if (node->reference) {
DECL_ANCHOR(writes);
INIT_ANCHOR(writes);
DECL_ANCHOR(cleanup);
INIT_ANCHOR(cleanup);
pm_compile_target_node(iseq, node->reference, ret, writes, cleanup, scope_node, NULL);
PUSH_GETLOCAL(ret, *location, LVAR_ERRINFO, 0);
PUSH_SEQ(ret, writes);
PUSH_SEQ(ret, cleanup);
}
// If we have statements to execute, we'll compile them here. Otherwise
// we'll push nil onto the stack.
if (node->statements != NULL) {
// We'll temporarily remove the end_label location from the iseq
// when compiling the statements so that next/redo statements
// inside the body will throw to the correct place instead of
// jumping straight to the end of this iseq
LABEL *prev_end = ISEQ_COMPILE_DATA(iseq)->end_label;
ISEQ_COMPILE_DATA(iseq)->end_label = NULL;
PM_COMPILE((const pm_node_t *) node->statements);
// Now restore the end_label
ISEQ_COMPILE_DATA(iseq)->end_label = prev_end;
}
else {
PUSH_INSN(ret, *location, putnil);
}
PUSH_INSN(ret, *location, leave);
// Here we'll insert the rescue_end_label label, which is jumped to if
// none of the exceptions matched. It will cause the control-flow to
// either jump to the next rescue clause or it will fall through to the
// subsequent instruction returning the raised error.
PUSH_LABEL(ret, rescue_end_label);
if (node->subsequent != NULL) {
PM_COMPILE((const pm_node_t *) node->subsequent);
}
else {
PUSH_GETLOCAL(ret, *location, 1, 0);
}
}
static inline void
pm_compile_return_node(rb_iseq_t *iseq, const pm_return_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_arguments_node_t *arguments = node->arguments;
enum rb_iseq_type type = ISEQ_BODY(iseq)->type;
LABEL *splabel = 0;
const rb_iseq_t *parent_iseq = iseq;
enum rb_iseq_type parent_type = ISEQ_BODY(parent_iseq)->type;
while (parent_type == ISEQ_TYPE_RESCUE || parent_type == ISEQ_TYPE_ENSURE) {
if (!(parent_iseq = ISEQ_BODY(parent_iseq)->parent_iseq)) break;
parent_type = ISEQ_BODY(parent_iseq)->type;
}
switch (parent_type) {
case ISEQ_TYPE_TOP:
case ISEQ_TYPE_MAIN:
if (arguments) {
rb_warn("argument of top-level return is ignored");
}
if (parent_iseq == iseq) {
type = ISEQ_TYPE_METHOD;
}
break;
default:
break;
}
if (type == ISEQ_TYPE_METHOD) {
splabel = NEW_LABEL(0);
PUSH_LABEL(ret, splabel);
PUSH_ADJUST(ret, *location, 0);
}
if (arguments != NULL) {
PM_COMPILE_NOT_POPPED((const pm_node_t *) arguments);
}
else {
PUSH_INSN(ret, *location, putnil);
}
if (type == ISEQ_TYPE_METHOD && can_add_ensure_iseq(iseq)) {
pm_add_ensure_iseq(ret, iseq, 1, scope_node);
PUSH_TRACE(ret, RUBY_EVENT_RETURN);
PUSH_INSN(ret, *location, leave);
PUSH_ADJUST_RESTORE(ret, splabel);
if (!popped) PUSH_INSN(ret, *location, putnil);
}
else {
PUSH_INSN1(ret, *location, throw, INT2FIX(TAG_RETURN));
if (popped) PUSH_INSN(ret, *location, pop);
}
}
static inline void
pm_compile_super_node(rb_iseq_t *iseq, const pm_super_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
DECL_ANCHOR(args);
INIT_ANCHOR(args);
LABEL *retry_label = NEW_LABEL(location->line);
LABEL *retry_end_l = NEW_LABEL(location->line);
const rb_iseq_t *previous_block = ISEQ_COMPILE_DATA(iseq)->current_block;
const rb_iseq_t *current_block;
ISEQ_COMPILE_DATA(iseq)->current_block = current_block = NULL;
PUSH_LABEL(ret, retry_label);
PUSH_INSN(ret, *location, putself);
int flags = 0;
struct rb_callinfo_kwarg *keywords = NULL;
int argc = pm_setup_args(node->arguments, node->block, &flags, &keywords, iseq, ret, scope_node, location);
bool is_forwardable = (node->arguments != NULL) && PM_NODE_FLAG_P(node->arguments, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_FORWARDING);
flags |= VM_CALL_SUPER | VM_CALL_FCALL;
if (node->block && PM_NODE_TYPE_P(node->block, PM_BLOCK_NODE)) {
pm_scope_node_t next_scope_node;
pm_scope_node_init(node->block, &next_scope_node, scope_node);
ISEQ_COMPILE_DATA(iseq)->current_block = current_block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location->line);
pm_scope_node_destroy(&next_scope_node);
}
if (!node->block) {
iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
}
if ((flags & VM_CALL_ARGS_BLOCKARG) && (flags & VM_CALL_KW_SPLAT) && !(flags & VM_CALL_KW_SPLAT_MUT)) {
PUSH_INSN(args, *location, splatkw);
}
PUSH_SEQ(ret, args);
if (is_forwardable && ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) {
flags |= VM_CALL_FORWARDING;
{
const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flags, keywords, current_block != NULL);
PUSH_INSN2(ret, *location, invokesuperforward, callinfo, current_block);
}
}
else {
{
const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flags, keywords, current_block != NULL);
PUSH_INSN2(ret, *location, invokesuper, callinfo, current_block);
}
}
pm_compile_retry_end_label(iseq, ret, retry_end_l);
if (popped) PUSH_INSN(ret, *location, pop);
ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, current_block, retry_end_l);
}
static inline void
pm_compile_yield_node(rb_iseq_t *iseq, const pm_yield_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
switch (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->type) {
case ISEQ_TYPE_TOP:
case ISEQ_TYPE_MAIN:
case ISEQ_TYPE_CLASS:
COMPILE_ERROR(iseq, location->line, "Invalid yield");
return;
default: /* valid */;
}
int argc = 0;
int flags = 0;
struct rb_callinfo_kwarg *keywords = NULL;
if (node->arguments) {
argc = pm_setup_args(node->arguments, NULL, &flags, &keywords, iseq, ret, scope_node, location);
}
const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flags, keywords, FALSE);
PUSH_INSN1(ret, *location, invokeblock, callinfo);
iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
if (popped) PUSH_INSN(ret, *location, pop);
int level = 0;
for (const rb_iseq_t *tmp_iseq = iseq; tmp_iseq != ISEQ_BODY(iseq)->local_iseq; level++) {
tmp_iseq = ISEQ_BODY(tmp_iseq)->parent_iseq;
}
if (level > 0) access_outer_variables(iseq, level, rb_intern("yield"), true);
}
/**
* Compiles a prism node into instruction sequences.
*
* iseq - The current instruction sequence object (used for locals)
* node - The prism node to compile
* ret - The linked list of instructions to append instructions onto
* popped - True if compiling something with no side effects, so instructions don't
* need to be added
* scope_node - Stores parser and local information
*/
static void
pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
{
const pm_parser_t *parser = scope_node->parser;
const pm_node_location_t location = PM_NODE_START_LOCATION(parser, node);
int lineno = (int) location.line;
if (PM_NODE_TYPE_P(node, PM_BEGIN_NODE) && (((const pm_begin_node_t *) node)->statements == NULL) && (((const pm_begin_node_t *) node)->rescue_clause != NULL)) {
// If this node is a begin node and it has empty statements and also
// has a rescue clause, then the other parser considers it as
// starting on the same line as the rescue, as opposed to the
// location of the begin keyword. We replicate that behavior here.
lineno = (int) PM_NODE_START_LINE_COLUMN(parser, ((const pm_begin_node_t *) node)->rescue_clause).line;
}
if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_NEWLINE) && ISEQ_COMPILE_DATA(iseq)->last_line != lineno) {
// If this node has the newline flag set and it is on a new line
// from the previous nodes that have been compiled for this ISEQ,
// then we need to emit a newline event.
int event = RUBY_EVENT_LINE;
ISEQ_COMPILE_DATA(iseq)->last_line = lineno;
if (ISEQ_COVERAGE(iseq) && ISEQ_LINE_COVERAGE(iseq)) {
event |= RUBY_EVENT_COVERAGE_LINE;
}
PUSH_TRACE(ret, event);
}
switch (PM_NODE_TYPE(node)) {
case PM_ALIAS_GLOBAL_VARIABLE_NODE:
// alias $foo $bar
// ^^^^^^^^^^^^^^^
pm_compile_alias_global_variable_node(iseq, (const pm_alias_global_variable_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_ALIAS_METHOD_NODE:
// alias foo bar
// ^^^^^^^^^^^^^
pm_compile_alias_method_node(iseq, (const pm_alias_method_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_AND_NODE:
// a and b
// ^^^^^^^
pm_compile_and_node(iseq, (const pm_and_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_ARGUMENTS_NODE: {
// break foo
// ^^^
//
// These are ArgumentsNodes that are not compiled directly by their
// parent call nodes, used in the cases of NextNodes, ReturnNodes, and
// BreakNodes. They can create an array like ArrayNode.
const pm_arguments_node_t *cast = (const pm_arguments_node_t *) node;
const pm_node_list_t *elements = &cast->arguments;
if (elements->size == 1) {
// If we are only returning a single element through one of the jump
// nodes, then we will only compile that node directly.
PM_COMPILE(elements->nodes[0]);
}
else {
pm_compile_array_node(iseq, (const pm_node_t *) cast, elements, &location, ret, popped, scope_node);
}
return;
}
case PM_ARRAY_NODE: {
// [foo, bar, baz]
// ^^^^^^^^^^^^^^^
const pm_array_node_t *cast = (const pm_array_node_t *) node;
pm_compile_array_node(iseq, (const pm_node_t *) cast, &cast->elements, &location, ret, popped, scope_node);
return;
}
case PM_ASSOC_NODE: {
// { foo: 1 }
// ^^^^^^
//
// foo(bar: 1)
// ^^^^^^
const pm_assoc_node_t *cast = (const pm_assoc_node_t *) node;
PM_COMPILE(cast->key);
PM_COMPILE(cast->value);
return;
}
case PM_ASSOC_SPLAT_NODE: {
// { **foo }
// ^^^^^
//
// def foo(**); bar(**); end
// ^^
const pm_assoc_splat_node_t *cast = (const pm_assoc_splat_node_t *) node;
if (cast->value != NULL) {
PM_COMPILE(cast->value);
}
else if (!popped) {
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0);
PUSH_GETLOCAL(ret, location, index.index, index.level);
}
return;
}
case PM_BACK_REFERENCE_READ_NODE: {
// $+
// ^^
if (!popped) {
// Since a back reference is `$<char>`, ruby represents the ID as the
// an rb_intern on the value after the `$`.
char *char_ptr = (char *)(node->location.start) + 1;
ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1;
PUSH_INSN2(ret, location, getspecial, INT2FIX(1), backref_val);
}
return;
}
case PM_BEGIN_NODE: {
// begin end
// ^^^^^^^^^
const pm_begin_node_t *cast = (const pm_begin_node_t *) node;
if (cast->ensure_clause) {
// Compiling the ensure clause will compile the rescue clause (if
// there is one), which will compile the begin statements.
pm_compile_ensure(iseq, cast, &location, ret, popped, scope_node);
}
else if (cast->rescue_clause) {
// Compiling rescue will compile begin statements (if applicable).
pm_compile_rescue(iseq, cast, &location, ret, popped, scope_node);
}
else {
// If there is neither ensure or rescue, the just compile the
// statements.
if (cast->statements != NULL) {
PM_COMPILE((const pm_node_t *) cast->statements);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(ret, iseq);
}
}
return;
}
case PM_BLOCK_ARGUMENT_NODE: {
// foo(&bar)
// ^^^^
const pm_block_argument_node_t *cast = (const pm_block_argument_node_t *) node;
if (cast->expression != NULL) {
PM_COMPILE(cast->expression);
}
else {
// If there's no expression, this must be block forwarding.
pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0);
PUSH_INSN2(ret, location, getblockparamproxy, INT2FIX(local_index.index + VM_ENV_DATA_SIZE - 1), INT2FIX(local_index.level));
}
return;
}
case PM_BREAK_NODE:
// break
// ^^^^^
//
// break foo
// ^^^^^^^^^
pm_compile_break_node(iseq, (const pm_break_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_CALL_NODE:
// foo
// ^^^
//
// foo.bar
// ^^^^^^^
//
// foo.bar() {}
// ^^^^^^^^^^^^
pm_compile_call_node(iseq, (const pm_call_node_t *) node, ret, popped, scope_node);
return;
case PM_CALL_AND_WRITE_NODE: {
// foo.bar &&= baz
// ^^^^^^^^^^^^^^^
const pm_call_and_write_node_t *cast = (const pm_call_and_write_node_t *) node;
pm_compile_call_and_or_write_node(iseq, true, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), &location, ret, popped, scope_node);
return;
}
case PM_CALL_OR_WRITE_NODE: {
// foo.bar ||= baz
// ^^^^^^^^^^^^^^^
const pm_call_or_write_node_t *cast = (const pm_call_or_write_node_t *) node;
pm_compile_call_and_or_write_node(iseq, false, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), &location, ret, popped, scope_node);
return;
}
case PM_CALL_OPERATOR_WRITE_NODE:
// foo.bar += baz
// ^^^^^^^^^^^^^^^
//
// Call operator writes occur when you have a call node on the left-hand
// side of a write operator that is not `=`. As an example,
// `foo.bar *= 1`. This breaks down to caching the receiver on the
// stack and then performing three method calls, one to read the value,
// one to compute the result, and one to write the result back to the
// receiver.
pm_compile_call_operator_write_node(iseq, (const pm_call_operator_write_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_CASE_NODE:
// case foo; when bar; end
// ^^^^^^^^^^^^^^^^^^^^^^^
pm_compile_case_node(iseq, (const pm_case_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_CASE_MATCH_NODE:
// case foo; in bar; end
// ^^^^^^^^^^^^^^^^^^^^^
//
// If you use the `case` keyword to create a case match node, it will
// match against all of the `in` clauses until it finds one that
// matches. If it doesn't find one, it can optionally fall back to an
// `else` clause. If none is present and a match wasn't found, it will
// raise an appropriate error.
pm_compile_case_match_node(iseq, (const pm_case_match_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_CLASS_NODE: {
// class Foo; end
// ^^^^^^^^^^^^^^
const pm_class_node_t *cast = (const pm_class_node_t *) node;
ID class_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE class_name = rb_str_freeze(rb_sprintf("<class:%"PRIsVALUE">", rb_id2str(class_id)));
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
const rb_iseq_t *class_iseq = NEW_CHILD_ISEQ(&next_scope_node, class_name, ISEQ_TYPE_CLASS, location.line);
pm_scope_node_destroy(&next_scope_node);
// TODO: Once we merge constant path nodes correctly, fix this flag
const int flags = VM_DEFINECLASS_TYPE_CLASS |
(cast->superclass ? VM_DEFINECLASS_FLAG_HAS_SUPERCLASS : 0) |
pm_compile_class_path(iseq, cast->constant_path, &location, ret, false, scope_node);
if (cast->superclass) {
PM_COMPILE_NOT_POPPED(cast->superclass);
}
else {
PUSH_INSN(ret, location, putnil);
}
{
VALUE operand = ID2SYM(class_id);
PUSH_INSN3(ret, location, defineclass, operand, class_iseq, INT2FIX(flags));
}
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)class_iseq);
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_CLASS_VARIABLE_AND_WRITE_NODE: {
// @@foo &&= bar
// ^^^^^^^^^^^^^
const pm_class_variable_and_write_node_t *cast = (const pm_class_variable_and_write_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
ID name_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE name = ID2SYM(name_id);
PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id));
PUSH_LABEL(ret, end_label);
return;
}
case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: {
// @@foo += bar
// ^^^^^^^^^^^^
const pm_class_variable_operator_write_node_t *cast = (const pm_class_variable_operator_write_node_t *) node;
ID name_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE name = ID2SYM(name_id);
PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id));
PM_COMPILE_NOT_POPPED(cast->value);
ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
int flags = VM_CALL_ARGS_SIMPLE;
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id));
return;
}
case PM_CLASS_VARIABLE_OR_WRITE_NODE: {
// @@foo ||= bar
// ^^^^^^^^^^^^^
const pm_class_variable_or_write_node_t *cast = (const pm_class_variable_or_write_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
LABEL *start_label = NEW_LABEL(location.line);
ID name_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE name = ID2SYM(name_id);
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CVAR), name, Qtrue);
PUSH_INSNL(ret, location, branchunless, start_label);
PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, start_label);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id));
PUSH_LABEL(ret, end_label);
return;
}
case PM_CLASS_VARIABLE_READ_NODE: {
// @@foo
// ^^^^^
if (!popped) {
const pm_class_variable_read_node_t *cast = (const pm_class_variable_read_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
PUSH_INSN2(ret, location, getclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name));
}
return;
}
case PM_CLASS_VARIABLE_WRITE_NODE: {
// @@foo = 1
// ^^^^^^^^^
const pm_class_variable_write_node_t *cast = (const pm_class_variable_write_node_t *) node;
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
ID name = pm_constant_id_lookup(scope_node, cast->name);
PUSH_INSN2(ret, location, setclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name));
return;
}
case PM_CONSTANT_PATH_NODE: {
// Foo::Bar
// ^^^^^^^^
VALUE parts;
if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache && ((parts = pm_constant_path_parts(node, scope_node)) != Qnil)) {
ISEQ_BODY(iseq)->ic_size++;
PUSH_INSN1(ret, location, opt_getconstant_path, parts);
}
else {
DECL_ANCHOR(prefix);
INIT_ANCHOR(prefix);
DECL_ANCHOR(body);
INIT_ANCHOR(body);
pm_compile_constant_path(iseq, node, prefix, body, popped, scope_node);
if (LIST_INSN_SIZE_ZERO(prefix)) {
PUSH_INSN(ret, location, putnil);
}
else {
PUSH_SEQ(ret, prefix);
}
PUSH_SEQ(ret, body);
}
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_CONSTANT_PATH_AND_WRITE_NODE: {
// Foo::Bar &&= baz
// ^^^^^^^^^^^^^^^^
const pm_constant_path_and_write_node_t *cast = (const pm_constant_path_and_write_node_t *) node;
pm_compile_constant_path_and_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_PATH_OR_WRITE_NODE: {
// Foo::Bar ||= baz
// ^^^^^^^^^^^^^^^^
const pm_constant_path_or_write_node_t *cast = (const pm_constant_path_or_write_node_t *) node;
pm_compile_constant_path_or_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: {
// Foo::Bar += baz
// ^^^^^^^^^^^^^^^
const pm_constant_path_operator_write_node_t *cast = (const pm_constant_path_operator_write_node_t *) node;
pm_compile_constant_path_operator_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_PATH_WRITE_NODE: {
// Foo::Bar = 1
// ^^^^^^^^^^^^
const pm_constant_path_write_node_t *cast = (const pm_constant_path_write_node_t *) node;
pm_compile_constant_path_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_READ_NODE: {
// Foo
// ^^^
const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
pm_compile_constant_read(iseq, name, &cast->base.location, location.node_id, ret, scope_node);
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_CONSTANT_AND_WRITE_NODE: {
// Foo &&= bar
// ^^^^^^^^^^^
const pm_constant_and_write_node_t *cast = (const pm_constant_and_write_node_t *) node;
pm_compile_constant_and_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_OR_WRITE_NODE: {
// Foo ||= bar
// ^^^^^^^^^^^
const pm_constant_or_write_node_t *cast = (const pm_constant_or_write_node_t *) node;
pm_compile_constant_or_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_OPERATOR_WRITE_NODE: {
// Foo += bar
// ^^^^^^^^^^
const pm_constant_operator_write_node_t *cast = (const pm_constant_operator_write_node_t *) node;
pm_compile_constant_operator_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_CONSTANT_WRITE_NODE: {
// Foo = 1
// ^^^^^^^
const pm_constant_write_node_t *cast = (const pm_constant_write_node_t *) node;
pm_compile_constant_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
return;
}
case PM_DEF_NODE: {
// def foo; end
// ^^^^^^^^^^^^
//
// def self.foo; end
// ^^^^^^^^^^^^^^^^^
const pm_def_node_t *cast = (const pm_def_node_t *) node;
ID method_name = pm_constant_id_lookup(scope_node, cast->name);
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
rb_iseq_t *method_iseq = NEW_ISEQ(&next_scope_node, rb_id2str(method_name), ISEQ_TYPE_METHOD, location.line);
pm_scope_node_destroy(&next_scope_node);
if (cast->receiver) {
PM_COMPILE_NOT_POPPED(cast->receiver);
PUSH_INSN2(ret, location, definesmethod, ID2SYM(method_name), method_iseq);
}
else {
PUSH_INSN2(ret, location, definemethod, ID2SYM(method_name), method_iseq);
}
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) method_iseq);
if (!popped) {
PUSH_INSN1(ret, location, putobject, ID2SYM(method_name));
}
return;
}
case PM_DEFINED_NODE: {
// defined?(a)
// ^^^^^^^^^^^
const pm_defined_node_t *cast = (const pm_defined_node_t *) node;
pm_compile_defined_expr(iseq, cast->value, &location, ret, popped, scope_node, false);
return;
}
case PM_EMBEDDED_STATEMENTS_NODE: {
// "foo #{bar}"
// ^^^^^^
const pm_embedded_statements_node_t *cast = (const pm_embedded_statements_node_t *) node;
if (cast->statements != NULL) {
PM_COMPILE((const pm_node_t *) (cast->statements));
}
else {
PUSH_SYNTHETIC_PUTNIL(ret, iseq);
}
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_EMBEDDED_VARIABLE_NODE: {
// "foo #@bar"
// ^^^^^
const pm_embedded_variable_node_t *cast = (const pm_embedded_variable_node_t *) node;
PM_COMPILE(cast->variable);
return;
}
case PM_FALSE_NODE: {
// false
// ^^^^^
if (!popped) {
PUSH_INSN1(ret, location, putobject, Qfalse);
}
return;
}
case PM_ENSURE_NODE: {
const pm_ensure_node_t *cast = (const pm_ensure_node_t *) node;
if (cast->statements != NULL) {
LABEL *start = NEW_LABEL(location.line);
LABEL *end = NEW_LABEL(location.line);
PUSH_LABEL(ret, start);
LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label;
ISEQ_COMPILE_DATA(iseq)->end_label = end;
PM_COMPILE((const pm_node_t *) cast->statements);
ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label;
PUSH_LABEL(ret, end);
}
return;
}
case PM_ELSE_NODE: {
// if foo then bar else baz end
// ^^^^^^^^^^^^
const pm_else_node_t *cast = (const pm_else_node_t *) node;
if (cast->statements != NULL) {
PM_COMPILE((const pm_node_t *) cast->statements);
}
else if (!popped) {
PUSH_SYNTHETIC_PUTNIL(ret, iseq);
}
return;
}
case PM_FLIP_FLOP_NODE: {
// if foo .. bar; end
// ^^^^^^^^^^
const pm_flip_flop_node_t *cast = (const pm_flip_flop_node_t *) node;
LABEL *final_label = NEW_LABEL(location.line);
LABEL *then_label = NEW_LABEL(location.line);
LABEL *else_label = NEW_LABEL(location.line);
pm_compile_flip_flop(cast, else_label, then_label, iseq, location.line, ret, popped, scope_node);
PUSH_LABEL(ret, then_label);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSNL(ret, location, jump, final_label);
PUSH_LABEL(ret, else_label);
PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_LABEL(ret, final_label);
return;
}
case PM_FLOAT_NODE: {
// 1.0
// ^^^
if (!popped) {
VALUE operand = parse_float((const pm_float_node_t *) node);
PUSH_INSN1(ret, location, putobject, operand);
}
return;
}
case PM_FOR_NODE: {
// for foo in bar do end
// ^^^^^^^^^^^^^^^^^^^^^
const pm_for_node_t *cast = (const pm_for_node_t *) node;
LABEL *retry_label = NEW_LABEL(location.line);
LABEL *retry_end_l = NEW_LABEL(location.line);
// First, compile the collection that we're going to be iterating over.
PUSH_LABEL(ret, retry_label);
PM_COMPILE_NOT_POPPED(cast->collection);
// Next, create the new scope that is going to contain the block that
// will be passed to the each method.
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
const rb_iseq_t *child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location.line);
pm_scope_node_destroy(&next_scope_node);
const rb_iseq_t *prev_block = ISEQ_COMPILE_DATA(iseq)->current_block;
ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq;
// Now, create the method call to each that will be used to iterate over
// the collection, and pass the newly created iseq as the block.
PUSH_SEND_WITH_BLOCK(ret, location, idEach, INT2FIX(0), child_iseq);
pm_compile_retry_end_label(iseq, ret, retry_end_l);
if (popped) PUSH_INSN(ret, location, pop);
ISEQ_COMPILE_DATA(iseq)->current_block = prev_block;
PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, child_iseq, retry_end_l);
return;
}
case PM_FORWARDING_ARGUMENTS_NODE:
rb_bug("Cannot compile a ForwardingArgumentsNode directly\n");
return;
case PM_FORWARDING_SUPER_NODE:
// super
// ^^^^^
//
// super {}
// ^^^^^^^^
pm_compile_forwarding_super_node(iseq, (const pm_forwarding_super_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: {
// $foo &&= bar
// ^^^^^^^^^^^^
const pm_global_variable_and_write_node_t *cast = (const pm_global_variable_and_write_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN1(ret, location, getglobal, name);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, setglobal, name);
PUSH_LABEL(ret, end_label);
return;
}
case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: {
// $foo += bar
// ^^^^^^^^^^^
const pm_global_variable_operator_write_node_t *cast = (const pm_global_variable_operator_write_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN1(ret, location, getglobal, name);
PM_COMPILE_NOT_POPPED(cast->value);
ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
int flags = VM_CALL_ARGS_SIMPLE;
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, setglobal, name);
return;
}
case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: {
// $foo ||= bar
// ^^^^^^^^^^^^
const pm_global_variable_or_write_node_t *cast = (const pm_global_variable_or_write_node_t *) node;
LABEL *set_label = NEW_LABEL(location.line);
LABEL *end_label = NEW_LABEL(location.line);
PUSH_INSN(ret, location, putnil);
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_GVAR), name, Qtrue);
PUSH_INSNL(ret, location, branchunless, set_label);
PUSH_INSN1(ret, location, getglobal, name);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, set_label);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN1(ret, location, setglobal, name);
PUSH_LABEL(ret, end_label);
return;
}
case PM_GLOBAL_VARIABLE_READ_NODE: {
// $foo
// ^^^^
const pm_global_variable_read_node_t *cast = (const pm_global_variable_read_node_t *) node;
VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
PUSH_INSN1(ret, location, getglobal, name);
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_GLOBAL_VARIABLE_WRITE_NODE: {
// $foo = 1
// ^^^^^^^^
const pm_global_variable_write_node_t *cast = (const pm_global_variable_write_node_t *) node;
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
ID name = pm_constant_id_lookup(scope_node, cast->name);
PUSH_INSN1(ret, location, setglobal, ID2SYM(name));
return;
}
case PM_HASH_NODE: {
// {}
// ^^
//
// If every node in the hash is static, then we can compile the entire
// hash now instead of later.
if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
// We're only going to compile this node if it's not popped. If it
// is popped, then we know we don't need to do anything since it's
// statically known.
if (!popped) {
const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
if (cast->elements.size == 0) {
PUSH_INSN1(ret, location, newhash, INT2FIX(0));
}
else {
VALUE value = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, duphash, value);
RB_OBJ_WRITTEN(iseq, Qundef, value);
}
}
}
else {
// Here since we know there are possible side-effects inside the
// hash contents, we're going to build it entirely at runtime. We'll
// do this by pushing all of the key-value pairs onto the stack and
// then combining them with newhash.
//
// If this hash is popped, then this serves only to ensure we enact
// all side-effects (like method calls) that are contained within
// the hash contents.
const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
const pm_node_list_t *elements = &cast->elements;
if (popped) {
// If this hash is popped, then we can iterate through each
// element and compile it. The result of each compilation will
// only include the side effects of the element itself.
for (size_t index = 0; index < elements->size; index++) {
PM_COMPILE_POPPED(elements->nodes[index]);
}
}
else {
pm_compile_hash_elements(iseq, node, elements, false, ret, scope_node);
}
}
return;
}
case PM_IF_NODE: {
// if foo then bar end
// ^^^^^^^^^^^^^^^^^^^
//
// bar if foo
// ^^^^^^^^^^
//
// foo ? bar : baz
// ^^^^^^^^^^^^^^^
const pm_if_node_t *cast = (const pm_if_node_t *) node;
pm_compile_conditional(iseq, &location, PM_IF_NODE, (const pm_node_t *) cast, cast->statements, cast->subsequent, cast->predicate, ret, popped, scope_node);
return;
}
case PM_IMAGINARY_NODE: {
// 1i
// ^^
if (!popped) {
VALUE operand = parse_imaginary((const pm_imaginary_node_t *) node);
PUSH_INSN1(ret, location, putobject, operand);
}
return;
}
case PM_IMPLICIT_NODE: {
// Implicit nodes mark places in the syntax tree where explicit syntax
// was omitted, but implied. For example,
//
// { foo: }
//
// In this case a method call/local variable read is implied by virtue
// of the missing value. To compile these nodes, we simply compile the
// value that is implied, which is helpfully supplied by the parser.
const pm_implicit_node_t *cast = (const pm_implicit_node_t *) node;
PM_COMPILE(cast->value);
return;
}
case PM_IN_NODE: {
// In nodes are handled by the case match node directly, so we should
// never end up hitting them through this path.
rb_bug("Should not ever enter an in node directly");
return;
}
case PM_INDEX_OPERATOR_WRITE_NODE: {
// foo[bar] += baz
// ^^^^^^^^^^^^^^^
const pm_index_operator_write_node_t *cast = (const pm_index_operator_write_node_t *) node;
pm_compile_index_operator_write_node(iseq, cast, &location, ret, popped, scope_node);
return;
}
case PM_INDEX_AND_WRITE_NODE: {
// foo[bar] &&= baz
// ^^^^^^^^^^^^^^^^
const pm_index_and_write_node_t *cast = (const pm_index_and_write_node_t *) node;
pm_compile_index_control_flow_write_node(iseq, node, cast->receiver, cast->arguments, cast->block, cast->value, &location, ret, popped, scope_node);
return;
}
case PM_INDEX_OR_WRITE_NODE: {
// foo[bar] ||= baz
// ^^^^^^^^^^^^^^^^
const pm_index_or_write_node_t *cast = (const pm_index_or_write_node_t *) node;
pm_compile_index_control_flow_write_node(iseq, node, cast->receiver, cast->arguments, cast->block, cast->value, &location, ret, popped, scope_node);
return;
}
case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: {
// @foo &&= bar
// ^^^^^^^^^^^^
const pm_instance_variable_and_write_node_t *cast = (const pm_instance_variable_and_write_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
ID name_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE name = ID2SYM(name_id);
PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id));
PUSH_LABEL(ret, end_label);
return;
}
case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: {
// @foo += bar
// ^^^^^^^^^^^
const pm_instance_variable_operator_write_node_t *cast = (const pm_instance_variable_operator_write_node_t *) node;
ID name_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE name = ID2SYM(name_id);
PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id));
PM_COMPILE_NOT_POPPED(cast->value);
ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
int flags = VM_CALL_ARGS_SIMPLE;
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id));
return;
}
case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: {
// @foo ||= bar
// ^^^^^^^^^^^^
const pm_instance_variable_or_write_node_t *cast = (const pm_instance_variable_or_write_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
ID name_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE name = ID2SYM(name_id);
PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id));
PUSH_LABEL(ret, end_label);
return;
}
case PM_INSTANCE_VARIABLE_READ_NODE: {
// @foo
// ^^^^
if (!popped) {
const pm_instance_variable_read_node_t *cast = (const pm_instance_variable_read_node_t *) node;
ID name = pm_constant_id_lookup(scope_node, cast->name);
PUSH_INSN2(ret, location, getinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name));
}
return;
}
case PM_INSTANCE_VARIABLE_WRITE_NODE: {
// @foo = 1
// ^^^^^^^^
const pm_instance_variable_write_node_t *cast = (const pm_instance_variable_write_node_t *) node;
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
ID name = pm_constant_id_lookup(scope_node, cast->name);
PUSH_INSN2(ret, location, setinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name));
return;
}
case PM_INTEGER_NODE: {
// 1
// ^
if (!popped) {
VALUE operand = parse_integer((const pm_integer_node_t *) node);
PUSH_INSN1(ret, location, putobject, operand);
}
return;
}
case PM_INTERPOLATED_MATCH_LAST_LINE_NODE: {
// if /foo #{bar}/ then end
// ^^^^^^^^^^^^
if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
if (!popped) {
VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, regexp);
}
}
else {
pm_compile_regexp_dynamic(iseq, node, &((const pm_interpolated_match_last_line_node_t *) node)->parts, &location, ret, popped, scope_node);
}
PUSH_INSN1(ret, location, getglobal, rb_id2sym(idLASTLINE));
PUSH_SEND(ret, location, idEqTilde, INT2NUM(1));
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: {
// /foo #{bar}/
// ^^^^^^^^^^^^
if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ONCE)) {
const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block;
const rb_iseq_t *block_iseq = NULL;
int ise_index = ISEQ_BODY(iseq)->ise_size++;
pm_scope_node_t next_scope_node;
pm_scope_node_init(node, &next_scope_node, scope_node);
block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_PLAIN, location.line);
pm_scope_node_destroy(&next_scope_node);
ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq;
PUSH_INSN2(ret, location, once, block_iseq, INT2FIX(ise_index));
ISEQ_COMPILE_DATA(iseq)->current_block = prevblock;
if (popped) PUSH_INSN(ret, location, pop);
return;
}
if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
if (!popped) {
VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, regexp);
}
}
else {
pm_compile_regexp_dynamic(iseq, node, &((const pm_interpolated_regular_expression_node_t *) node)->parts, &location, ret, popped, scope_node);
if (popped) PUSH_INSN(ret, location, pop);
}
return;
}
case PM_INTERPOLATED_STRING_NODE: {
// "foo #{bar}"
// ^^^^^^^^^^^^
if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
if (!popped) {
VALUE string = pm_static_literal_value(iseq, node, scope_node);
if (PM_NODE_FLAG_P(node, PM_INTERPOLATED_STRING_NODE_FLAGS_FROZEN)) {
PUSH_INSN1(ret, location, putobject, string);
}
else if (PM_NODE_FLAG_P(node, PM_INTERPOLATED_STRING_NODE_FLAGS_MUTABLE)) {
PUSH_INSN1(ret, location, putstring, string);
}
else {
PUSH_INSN1(ret, location, putchilledstring, string);
}
}
}
else {
const pm_interpolated_string_node_t *cast = (const pm_interpolated_string_node_t *) node;
int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, popped, scope_node, NULL, NULL);
if (length > 1) PUSH_INSN1(ret, location, concatstrings, INT2FIX(length));
if (popped) PUSH_INSN(ret, location, pop);
}
return;
}
case PM_INTERPOLATED_SYMBOL_NODE: {
// :"foo #{bar}"
// ^^^^^^^^^^^^^
const pm_interpolated_symbol_node_t *cast = (const pm_interpolated_symbol_node_t *) node;
int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, popped, scope_node, NULL, NULL);
if (length > 1) {
PUSH_INSN1(ret, location, concatstrings, INT2FIX(length));
}
if (!popped) {
PUSH_INSN(ret, location, intern);
}
else {
PUSH_INSN(ret, location, pop);
}
return;
}
case PM_INTERPOLATED_X_STRING_NODE: {
// `foo #{bar}`
// ^^^^^^^^^^^^
const pm_interpolated_x_string_node_t *cast = (const pm_interpolated_x_string_node_t *) node;
PUSH_INSN(ret, location, putself);
int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, false, scope_node, NULL, NULL);
if (length > 1) PUSH_INSN1(ret, location, concatstrings, INT2FIX(length));
PUSH_SEND_WITH_FLAG(ret, location, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE));
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_IT_LOCAL_VARIABLE_READ_NODE: {
// -> { it }
// ^^
if (!popped) {
PUSH_GETLOCAL(ret, location, scope_node->local_table_for_iseq_size, 0);
}
return;
}
case PM_KEYWORD_HASH_NODE: {
// foo(bar: baz)
// ^^^^^^^^
const pm_keyword_hash_node_t *cast = (const pm_keyword_hash_node_t *) node;
const pm_node_list_t *elements = &cast->elements;
const pm_node_t *element;
PM_NODE_LIST_FOREACH(elements, index, element) {
PM_COMPILE(element);
}
if (!popped) PUSH_INSN1(ret, location, newhash, INT2FIX(elements->size * 2));
return;
}
case PM_LAMBDA_NODE: {
// -> {}
// ^^^^^
const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node;
pm_scope_node_t next_scope_node;
pm_scope_node_init(node, &next_scope_node, scope_node);
int opening_lineno = pm_location_line_number(parser, &cast->opening_loc);
const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, opening_lineno);
pm_scope_node_destroy(&next_scope_node);
VALUE argc = INT2FIX(0);
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_CALL_WITH_BLOCK(ret, location, idLambda, argc, block);
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) block);
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_LOCAL_VARIABLE_AND_WRITE_NODE: {
// foo &&= bar
// ^^^^^^^^^^^
const pm_local_variable_and_write_node_t *cast = (const pm_local_variable_and_write_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
PUSH_GETLOCAL(ret, location, local_index.index, local_index.level);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchunless, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_SETLOCAL(ret, location, local_index.index, local_index.level);
PUSH_LABEL(ret, end_label);
return;
}
case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: {
// foo += bar
// ^^^^^^^^^^
const pm_local_variable_operator_write_node_t *cast = (const pm_local_variable_operator_write_node_t *) node;
pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
PUSH_GETLOCAL(ret, location, local_index.index, local_index.level);
PM_COMPILE_NOT_POPPED(cast->value);
ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_SETLOCAL(ret, location, local_index.index, local_index.level);
return;
}
case PM_LOCAL_VARIABLE_OR_WRITE_NODE: {
// foo ||= bar
// ^^^^^^^^^^^
const pm_local_variable_or_write_node_t *cast = (const pm_local_variable_or_write_node_t *) node;
LABEL *set_label = NEW_LABEL(location.line);
LABEL *end_label = NEW_LABEL(location.line);
PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSNL(ret, location, branchunless, set_label);
pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
PUSH_GETLOCAL(ret, location, local_index.index, local_index.level);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PUSH_LABEL(ret, set_label);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_SETLOCAL(ret, location, local_index.index, local_index.level);
PUSH_LABEL(ret, end_label);
return;
}
case PM_LOCAL_VARIABLE_READ_NODE: {
// foo
// ^^^
if (!popped) {
const pm_local_variable_read_node_t *cast = (const pm_local_variable_read_node_t *) node;
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
PUSH_GETLOCAL(ret, location, index.index, index.level);
}
return;
}
case PM_LOCAL_VARIABLE_WRITE_NODE: {
// foo = 1
// ^^^^^^^
const pm_local_variable_write_node_t *cast = (const pm_local_variable_write_node_t *) node;
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
PUSH_SETLOCAL(ret, location, index.index, index.level);
return;
}
case PM_MATCH_LAST_LINE_NODE: {
// if /foo/ then end
// ^^^^^
VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, regexp);
PUSH_INSN2(ret, location, getspecial, INT2FIX(0), INT2FIX(0));
PUSH_SEND(ret, location, idEqTilde, INT2NUM(1));
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_MATCH_PREDICATE_NODE: {
// foo in bar
// ^^^^^^^^^^
const pm_match_predicate_node_t *cast = (const pm_match_predicate_node_t *) node;
// First, allocate some stack space for the cached return value of any
// calls to #deconstruct.
PUSH_INSN(ret, location, putnil);
// Next, compile the expression that we're going to match against.
PM_COMPILE_NOT_POPPED(cast->value);
PUSH_INSN(ret, location, dup);
// Now compile the pattern that is going to be used to match against the
// expression.
LABEL *matched_label = NEW_LABEL(location.line);
LABEL *unmatched_label = NEW_LABEL(location.line);
LABEL *done_label = NEW_LABEL(location.line);
pm_compile_pattern(iseq, scope_node, cast->pattern, ret, matched_label, unmatched_label, false, false, true, 2);
// If the pattern did not match, then compile the necessary instructions
// to handle pushing false onto the stack, then jump to the end.
PUSH_LABEL(ret, unmatched_label);
PUSH_INSN(ret, location, pop);
PUSH_INSN(ret, location, pop);
if (!popped) PUSH_INSN1(ret, location, putobject, Qfalse);
PUSH_INSNL(ret, location, jump, done_label);
PUSH_INSN(ret, location, putnil);
// If the pattern did match, then compile the necessary instructions to
// handle pushing true onto the stack, then jump to the end.
PUSH_LABEL(ret, matched_label);
PUSH_INSN1(ret, location, adjuststack, INT2FIX(2));
if (!popped) PUSH_INSN1(ret, location, putobject, Qtrue);
PUSH_INSNL(ret, location, jump, done_label);
PUSH_LABEL(ret, done_label);
return;
}
case PM_MATCH_REQUIRED_NODE:
// foo => bar
// ^^^^^^^^^^
//
// A match required node represents pattern matching against a single
// pattern using the => operator. For example,
//
// foo => bar
//
// This is somewhat analogous to compiling a case match statement with a
// single pattern. In both cases, if the pattern fails it should
// immediately raise an error.
pm_compile_match_required_node(iseq, (const pm_match_required_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_MATCH_WRITE_NODE:
// /(?<foo>foo)/ =~ bar
// ^^^^^^^^^^^^^^^^^^^^
//
// Match write nodes are specialized call nodes that have a regular
// expression with valid named capture groups on the left, the =~
// operator, and some value on the right. The nodes themselves simply
// wrap the call with the local variable targets that will be written
// when the call is executed.
pm_compile_match_write_node(iseq, (const pm_match_write_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_MISSING_NODE:
rb_bug("A pm_missing_node_t should not exist in prism's AST.");
return;
case PM_MODULE_NODE: {
// module Foo; end
// ^^^^^^^^^^^^^^^
const pm_module_node_t *cast = (const pm_module_node_t *) node;
ID module_id = pm_constant_id_lookup(scope_node, cast->name);
VALUE module_name = rb_str_freeze(rb_sprintf("<module:%"PRIsVALUE">", rb_id2str(module_id)));
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
const rb_iseq_t *module_iseq = NEW_CHILD_ISEQ(&next_scope_node, module_name, ISEQ_TYPE_CLASS, location.line);
pm_scope_node_destroy(&next_scope_node);
const int flags = VM_DEFINECLASS_TYPE_MODULE | pm_compile_class_path(iseq, cast->constant_path, &location, ret, false, scope_node);
PUSH_INSN(ret, location, putnil);
PUSH_INSN3(ret, location, defineclass, ID2SYM(module_id), module_iseq, INT2FIX(flags));
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) module_iseq);
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_REQUIRED_PARAMETER_NODE: {
// def foo(bar); end
// ^^^
const pm_required_parameter_node_t *cast = (const pm_required_parameter_node_t *) node;
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, 0);
PUSH_SETLOCAL(ret, location, index.index, index.level);
return;
}
case PM_MULTI_WRITE_NODE: {
// foo, bar = baz
// ^^^^^^^^^^^^^^
//
// A multi write node represents writing to multiple values using an =
// operator. Importantly these nodes are only parsed when the left-hand
// side of the operator has multiple targets. The right-hand side of the
// operator having multiple targets represents an implicit array
// instead.
const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node;
DECL_ANCHOR(writes);
INIT_ANCHOR(writes);
DECL_ANCHOR(cleanup);
INIT_ANCHOR(cleanup);
pm_multi_target_state_t state = { 0 };
state.position = popped ? 0 : 1;
pm_compile_multi_target_node(iseq, node, ret, writes, cleanup, scope_node, &state);
PM_COMPILE_NOT_POPPED(cast->value);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_SEQ(ret, writes);
if (!popped && state.stack_size >= 1) {
// Make sure the value on the right-hand side of the = operator is
// being returned before we pop the parent expressions.
PUSH_INSN1(ret, location, setn, INT2FIX(state.stack_size));
}
// Now, we need to go back and modify the topn instructions in order to
// ensure they can correctly retrieve the parent expressions.
pm_multi_target_state_update(&state);
PUSH_SEQ(ret, cleanup);
return;
}
case PM_NEXT_NODE:
// next
// ^^^^
//
// next foo
// ^^^^^^^^
pm_compile_next_node(iseq, (const pm_next_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_NIL_NODE: {
// nil
// ^^^
if (!popped) {
PUSH_INSN(ret, location, putnil);
}
return;
}
case PM_NO_KEYWORDS_PARAMETER_NODE: {
// def foo(**nil); end
// ^^^^^
ISEQ_BODY(iseq)->param.flags.accepts_no_kwarg = TRUE;
return;
}
case PM_NUMBERED_REFERENCE_READ_NODE: {
// $1
// ^^
if (!popped) {
uint32_t reference_number = ((const pm_numbered_reference_read_node_t *) node)->number;
if (reference_number > 0) {
PUSH_INSN2(ret, location, getspecial, INT2FIX(1), INT2FIX(reference_number << 1));
}
else {
PUSH_INSN(ret, location, putnil);
}
}
return;
}
case PM_OR_NODE: {
// a or b
// ^^^^^^
const pm_or_node_t *cast = (const pm_or_node_t *) node;
LABEL *end_label = NEW_LABEL(location.line);
PM_COMPILE_NOT_POPPED(cast->left);
if (!popped) PUSH_INSN(ret, location, dup);
PUSH_INSNL(ret, location, branchif, end_label);
if (!popped) PUSH_INSN(ret, location, pop);
PM_COMPILE(cast->right);
PUSH_LABEL(ret, end_label);
return;
}
case PM_OPTIONAL_PARAMETER_NODE: {
// def foo(bar = 1); end
// ^^^^^^^
const pm_optional_parameter_node_t *cast = (const pm_optional_parameter_node_t *) node;
PM_COMPILE_NOT_POPPED(cast->value);
pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, 0);
PUSH_SETLOCAL(ret, location, index.index, index.level);
return;
}
case PM_PARENTHESES_NODE: {
// ()
// ^^
//
// (1)
// ^^^
const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node;
if (cast->body != NULL) {
PM_COMPILE(cast->body);
}
else if (!popped) {
PUSH_INSN(ret, location, putnil);
}
return;
}
case PM_PRE_EXECUTION_NODE: {
// BEGIN {}
// ^^^^^^^^
const pm_pre_execution_node_t *cast = (const pm_pre_execution_node_t *) node;
LINK_ANCHOR *outer_pre = scope_node->pre_execution_anchor;
RUBY_ASSERT(outer_pre != NULL);
// BEGIN{} nodes can be nested, so here we're going to do the same thing
// that we did for the top-level compilation where we create two
// anchors and then join them in the correct order into the resulting
// anchor.
DECL_ANCHOR(inner_pre);
INIT_ANCHOR(inner_pre);
scope_node->pre_execution_anchor = inner_pre;
DECL_ANCHOR(inner_body);
INIT_ANCHOR(inner_body);
if (cast->statements != NULL) {
const pm_node_list_t *body = &cast->statements->body;
for (size_t index = 0; index < body->size; index++) {
pm_compile_node(iseq, body->nodes[index], inner_body, true, scope_node);
}
}
if (!popped) {
PUSH_INSN(inner_body, location, putnil);
}
// Now that everything has been compiled, join both anchors together
// into the correct outer pre execution anchor, and reset the value so
// that subsequent BEGIN{} nodes can be compiled correctly.
PUSH_SEQ(outer_pre, inner_pre);
PUSH_SEQ(outer_pre, inner_body);
scope_node->pre_execution_anchor = outer_pre;
return;
}
case PM_POST_EXECUTION_NODE: {
// END {}
// ^^^^^^
const rb_iseq_t *child_iseq;
const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block;
pm_scope_node_t next_scope_node;
pm_scope_node_init(node, &next_scope_node, scope_node);
child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno);
pm_scope_node_destroy(&next_scope_node);
ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq;
int is_index = ISEQ_BODY(iseq)->ise_size++;
PUSH_INSN2(ret, location, once, child_iseq, INT2FIX(is_index));
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) child_iseq);
if (popped) PUSH_INSN(ret, location, pop);
ISEQ_COMPILE_DATA(iseq)->current_block = prevblock;
return;
}
case PM_RANGE_NODE: {
// 0..5
// ^^^^
const pm_range_node_t *cast = (const pm_range_node_t *) node;
bool exclude_end = PM_NODE_FLAG_P(cast, PM_RANGE_FLAGS_EXCLUDE_END);
if (pm_optimizable_range_item_p(cast->left) && pm_optimizable_range_item_p(cast->right)) {
if (!popped) {
const pm_node_t *left = cast->left;
const pm_node_t *right = cast->right;
VALUE val = rb_range_new(
(left && PM_NODE_TYPE_P(left, PM_INTEGER_NODE)) ? parse_integer((const pm_integer_node_t *) left) : Qnil,
(right && PM_NODE_TYPE_P(right, PM_INTEGER_NODE)) ? parse_integer((const pm_integer_node_t *) right) : Qnil,
exclude_end
);
PUSH_INSN1(ret, location, putobject, val);
}
}
else {
if (cast->left != NULL) {
PM_COMPILE(cast->left);
}
else if (!popped) {
PUSH_INSN(ret, location, putnil);
}
if (cast->right != NULL) {
PM_COMPILE(cast->right);
}
else if (!popped) {
PUSH_INSN(ret, location, putnil);
}
if (!popped) {
PUSH_INSN1(ret, location, newrange, INT2FIX(exclude_end ? 1 : 0));
}
}
return;
}
case PM_RATIONAL_NODE: {
// 1r
// ^^
if (!popped) {
PUSH_INSN1(ret, location, putobject, parse_rational((const pm_rational_node_t *) node));
}
return;
}
case PM_REDO_NODE:
// redo
// ^^^^
pm_compile_redo_node(iseq, &location, ret, popped, scope_node);
return;
case PM_REGULAR_EXPRESSION_NODE: {
// /foo/
// ^^^^^
if (!popped) {
VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, regexp);
}
return;
}
case PM_RESCUE_NODE:
// begin; rescue; end
// ^^^^^^^
pm_compile_rescue_node(iseq, (const pm_rescue_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_RESCUE_MODIFIER_NODE: {
// foo rescue bar
// ^^^^^^^^^^^^^^
const pm_rescue_modifier_node_t *cast = (const pm_rescue_modifier_node_t *) node;
pm_scope_node_t rescue_scope_node;
pm_scope_node_init((const pm_node_t *) cast, &rescue_scope_node, scope_node);
rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ(
&rescue_scope_node,
rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label),
ISEQ_TYPE_RESCUE,
pm_node_line_number(parser, cast->rescue_expression)
);
pm_scope_node_destroy(&rescue_scope_node);
LABEL *lstart = NEW_LABEL(location.line);
LABEL *lend = NEW_LABEL(location.line);
LABEL *lcont = NEW_LABEL(location.line);
lstart->rescued = LABEL_RESCUE_BEG;
lend->rescued = LABEL_RESCUE_END;
PUSH_LABEL(ret, lstart);
PM_COMPILE_NOT_POPPED(cast->expression);
PUSH_LABEL(ret, lend);
PUSH_INSN(ret, location, nop);
PUSH_LABEL(ret, lcont);
if (popped) PUSH_INSN(ret, location, pop);
PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont);
PUSH_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart);
return;
}
case PM_RETURN_NODE:
// return
// ^^^^^^
//
// return 1
// ^^^^^^^^
pm_compile_return_node(iseq, (const pm_return_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_RETRY_NODE: {
// retry
// ^^^^^
if (ISEQ_BODY(iseq)->type == ISEQ_TYPE_RESCUE) {
PUSH_INSN(ret, location, putnil);
PUSH_INSN1(ret, location, throw, INT2FIX(TAG_RETRY));
if (popped) PUSH_INSN(ret, location, pop);
}
else {
COMPILE_ERROR(iseq, location.line, "Invalid retry");
return;
}
return;
}
case PM_SCOPE_NODE:
pm_compile_scope_node(iseq, (pm_scope_node_t *) node, &location, ret, popped);
return;
case PM_SELF_NODE: {
// self
// ^^^^
if (!popped) {
PUSH_INSN(ret, location, putself);
}
return;
}
case PM_SHAREABLE_CONSTANT_NODE: {
// A value that is being written to a constant that is being marked as
// shared depending on the current lexical context.
const pm_shareable_constant_node_t *cast = (const pm_shareable_constant_node_t *) node;
pm_node_flags_t shareability = (cast->base.flags & (PM_SHAREABLE_CONSTANT_NODE_FLAGS_LITERAL | PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_EVERYTHING | PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY));
switch (PM_NODE_TYPE(cast->write)) {
case PM_CONSTANT_WRITE_NODE:
pm_compile_constant_write_node(iseq, (const pm_constant_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_AND_WRITE_NODE:
pm_compile_constant_and_write_node(iseq, (const pm_constant_and_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_OR_WRITE_NODE:
pm_compile_constant_or_write_node(iseq, (const pm_constant_or_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_OPERATOR_WRITE_NODE:
pm_compile_constant_operator_write_node(iseq, (const pm_constant_operator_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_PATH_WRITE_NODE:
pm_compile_constant_path_write_node(iseq, (const pm_constant_path_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_PATH_AND_WRITE_NODE:
pm_compile_constant_path_and_write_node(iseq, (const pm_constant_path_and_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_PATH_OR_WRITE_NODE:
pm_compile_constant_path_or_write_node(iseq, (const pm_constant_path_or_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE:
pm_compile_constant_path_operator_write_node(iseq, (const pm_constant_path_operator_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
break;
default:
rb_bug("Unexpected node type for shareable constant write: %s", pm_node_type_to_str(PM_NODE_TYPE(cast->write)));
break;
}
return;
}
case PM_SINGLETON_CLASS_NODE: {
// class << self; end
// ^^^^^^^^^^^^^^^^^^
const pm_singleton_class_node_t *cast = (const pm_singleton_class_node_t *) node;
pm_scope_node_t next_scope_node;
pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
const rb_iseq_t *child_iseq = NEW_ISEQ(&next_scope_node, rb_fstring_lit("singleton class"), ISEQ_TYPE_CLASS, location.line);
pm_scope_node_destroy(&next_scope_node);
PM_COMPILE_NOT_POPPED(cast->expression);
PUSH_INSN(ret, location, putnil);
ID singletonclass;
CONST_ID(singletonclass, "singletonclass");
PUSH_INSN3(ret, location, defineclass, ID2SYM(singletonclass), child_iseq, INT2FIX(VM_DEFINECLASS_TYPE_SINGLETON_CLASS));
if (popped) PUSH_INSN(ret, location, pop);
RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) child_iseq);
return;
}
case PM_SOURCE_ENCODING_NODE: {
// __ENCODING__
// ^^^^^^^^^^^^
if (!popped) {
VALUE value = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, value);
}
return;
}
case PM_SOURCE_FILE_NODE: {
// __FILE__
// ^^^^^^^^
if (!popped) {
const pm_source_file_node_t *cast = (const pm_source_file_node_t *) node;
VALUE string = pm_source_file_value(cast, scope_node);
if (PM_NODE_FLAG_P(cast, PM_STRING_FLAGS_FROZEN)) {
PUSH_INSN1(ret, location, putobject, string);
}
else if (PM_NODE_FLAG_P(cast, PM_STRING_FLAGS_MUTABLE)) {
PUSH_INSN1(ret, location, putstring, string);
}
else {
PUSH_INSN1(ret, location, putchilledstring, string);
}
}
return;
}
case PM_SOURCE_LINE_NODE: {
// __LINE__
// ^^^^^^^^
if (!popped) {
VALUE value = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, value);
}
return;
}
case PM_SPLAT_NODE: {
// foo(*bar)
// ^^^^
const pm_splat_node_t *cast = (const pm_splat_node_t *) node;
if (cast->expression) {
PM_COMPILE(cast->expression);
}
if (!popped) {
PUSH_INSN1(ret, location, splatarray, Qtrue);
}
return;
}
case PM_STATEMENTS_NODE: {
// A list of statements.
const pm_statements_node_t *cast = (const pm_statements_node_t *) node;
const pm_node_list_t *body = &cast->body;
if (body->size > 0) {
for (size_t index = 0; index < body->size - 1; index++) {
PM_COMPILE_POPPED(body->nodes[index]);
}
PM_COMPILE(body->nodes[body->size - 1]);
}
else {
PUSH_INSN(ret, location, putnil);
}
return;
}
case PM_STRING_NODE: {
// "foo"
// ^^^^^
if (!popped) {
const pm_string_node_t *cast = (const pm_string_node_t *) node;
VALUE value = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
if (PM_NODE_FLAG_P(node, PM_STRING_FLAGS_FROZEN)) {
PUSH_INSN1(ret, location, putobject, value);
}
else if (PM_NODE_FLAG_P(node, PM_STRING_FLAGS_MUTABLE)) {
PUSH_INSN1(ret, location, putstring, value);
}
else {
PUSH_INSN1(ret, location, putchilledstring, value);
}
}
return;
}
case PM_SUPER_NODE:
// super()
// super(foo)
// super(...)
pm_compile_super_node(iseq, (const pm_super_node_t *) node, &location, ret, popped, scope_node);
return;
case PM_SYMBOL_NODE: {
// :foo
// ^^^^
if (!popped) {
VALUE value = pm_static_literal_value(iseq, node, scope_node);
PUSH_INSN1(ret, location, putobject, value);
}
return;
}
case PM_TRUE_NODE: {
// true
// ^^^^
if (!popped) {
PUSH_INSN1(ret, location, putobject, Qtrue);
}
return;
}
case PM_UNDEF_NODE: {
// undef foo
// ^^^^^^^^^
const pm_undef_node_t *cast = (const pm_undef_node_t *) node;
const pm_node_list_t *names = &cast->names;
for (size_t index = 0; index < names->size; index++) {
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE));
PM_COMPILE_NOT_POPPED(names->nodes[index]);
PUSH_SEND(ret, location, id_core_undef_method, INT2NUM(2));
if (index < names->size - 1) {
PUSH_INSN(ret, location, pop);
}
}
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_UNLESS_NODE: {
// unless foo; bar end
// ^^^^^^^^^^^^^^^^^^^
//
// bar unless foo
// ^^^^^^^^^^^^^^
const pm_unless_node_t *cast = (const pm_unless_node_t *) node;
const pm_statements_node_t *statements = NULL;
if (cast->else_clause != NULL) {
statements = ((const pm_else_node_t *) cast->else_clause)->statements;
}
pm_compile_conditional(iseq, &location, PM_UNLESS_NODE, (const pm_node_t *) cast, statements, (const pm_node_t *) cast->statements, cast->predicate, ret, popped, scope_node);
return;
}
case PM_UNTIL_NODE: {
// until foo; bar end
// ^^^^^^^^^^^^^^^^^
//
// bar until foo
// ^^^^^^^^^^^^^
const pm_until_node_t *cast = (const pm_until_node_t *) node;
pm_compile_loop(iseq, &location, cast->base.flags, PM_UNTIL_NODE, (const pm_node_t *) cast, cast->statements, cast->predicate, ret, popped, scope_node);
return;
}
case PM_WHILE_NODE: {
// while foo; bar end
// ^^^^^^^^^^^^^^^^^^
//
// bar while foo
// ^^^^^^^^^^^^^
const pm_while_node_t *cast = (const pm_while_node_t *) node;
pm_compile_loop(iseq, &location, cast->base.flags, PM_WHILE_NODE, (const pm_node_t *) cast, cast->statements, cast->predicate, ret, popped, scope_node);
return;
}
case PM_X_STRING_NODE: {
// `foo`
// ^^^^^
const pm_x_string_node_t *cast = (const pm_x_string_node_t *) node;
VALUE value = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
PUSH_INSN(ret, location, putself);
PUSH_INSN1(ret, location, putobject, value);
PUSH_SEND_WITH_FLAG(ret, location, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE));
if (popped) PUSH_INSN(ret, location, pop);
return;
}
case PM_YIELD_NODE:
// yield
// ^^^^^
//
// yield 1
// ^^^^^^^
pm_compile_yield_node(iseq, (const pm_yield_node_t *) node, &location, ret, popped, scope_node);
return;
default:
rb_raise(rb_eNotImpError, "node type %s not implemented", pm_node_type_to_str(PM_NODE_TYPE(node)));
return;
}
}
#undef PM_CONTAINER_P
/** True if the given iseq can have pre execution blocks. */
static inline bool
pm_iseq_pre_execution_p(rb_iseq_t *iseq)
{
switch (ISEQ_BODY(iseq)->type) {
case ISEQ_TYPE_TOP:
case ISEQ_TYPE_EVAL:
case ISEQ_TYPE_MAIN:
return true;
default:
return false;
}
}
/**
* This is the main entry-point into the prism compiler. It accepts the iseq
* that it should be compiling instruction into and a pointer to the scope node
* that it should be compiling. It returns the established instruction sequence.
* Note that this function could raise Ruby errors if it encounters compilation
* errors or if there is a bug in the compiler.
*/
VALUE
pm_iseq_compile_node(rb_iseq_t *iseq, pm_scope_node_t *node)
{
DECL_ANCHOR(ret);
INIT_ANCHOR(ret);
if (pm_iseq_pre_execution_p(iseq)) {
// Because these ISEQs can have BEGIN{}, we're going to create two
// anchors to compile them, a "pre" and a "body". We'll mark the "pre"
// on the scope node so that when BEGIN{} is found, its contents will be
// added to the "pre" anchor.
DECL_ANCHOR(pre);
INIT_ANCHOR(pre);
node->pre_execution_anchor = pre;
// Now we'll compile the body as normal. We won't compile directly into
// the "ret" anchor yet because we want to add the "pre" anchor to the
// beginning of the "ret" anchor first.
DECL_ANCHOR(body);
INIT_ANCHOR(body);
pm_compile_node(iseq, (const pm_node_t *) node, body, false, node);
// Now we'll join both anchors together so that the content is in the
// correct order.
PUSH_SEQ(ret, pre);
PUSH_SEQ(ret, body);
}
else {
// In other circumstances, we can just compile the node directly into
// the "ret" anchor.
pm_compile_node(iseq, (const pm_node_t *) node, ret, false, node);
}
CHECK(iseq_setup_insn(iseq, ret));
return iseq_setup(iseq, ret);
}
/**
* Free the internal memory associated with a pm_parse_result_t struct.
* Importantly this does not free the struct itself.
*/
void
pm_parse_result_free(pm_parse_result_t *result)
{
if (result->node.ast_node != NULL) {
pm_node_destroy(&result->parser, result->node.ast_node);
}
if (result->parsed) {
xfree(result->node.constants);
pm_scope_node_destroy(&result->node);
}
pm_parser_free(&result->parser);
pm_string_free(&result->input);
pm_options_free(&result->options);
}
/** An error that is going to be formatted into the output. */
typedef struct {
/** A pointer to the diagnostic that was generated during parsing. */
pm_diagnostic_t *error;
/** The start line of the diagnostic message. */
int32_t line;
/** The column start of the diagnostic message. */
uint32_t column_start;
/** The column end of the diagnostic message. */
uint32_t column_end;
} pm_parse_error_t;
/** The format that will be used to format the errors into the output. */
typedef struct {
/** The prefix that will be used for line numbers. */
const char *number_prefix;
/** The prefix that will be used for blank lines. */
const char *blank_prefix;
/** The divider that will be used between sections of source code. */
const char *divider;
/** The length of the blank prefix. */
size_t blank_prefix_length;
/** The length of the divider. */
size_t divider_length;
} pm_parse_error_format_t;
#define PM_COLOR_GRAY "\033[38;5;102m"
#define PM_COLOR_RED "\033[1;31m"
#define PM_COLOR_RESET "\033[m"
#define PM_ERROR_TRUNCATE 30
static inline pm_parse_error_t *
pm_parse_errors_format_sort(const pm_parser_t *parser, const pm_list_t *error_list, const pm_newline_list_t *newline_list) {
pm_parse_error_t *errors = xcalloc(error_list->size, sizeof(pm_parse_error_t));
if (errors == NULL) return NULL;
int32_t start_line = parser->start_line;
for (pm_diagnostic_t *error = (pm_diagnostic_t *) error_list->head; error != NULL; error = (pm_diagnostic_t *) error->node.next) {
pm_line_column_t start = pm_newline_list_line_column(newline_list, error->location.start, start_line);
pm_line_column_t end = pm_newline_list_line_column(newline_list, error->location.end, start_line);
// We're going to insert this error into the array in sorted order. We
// do this by finding the first error that has a line number greater
// than the current error and then inserting the current error before
// that one.
size_t index = 0;
while (
(index < error_list->size) &&
(errors[index].error != NULL) &&
(
(errors[index].line < start.line) ||
((errors[index].line == start.line) && (errors[index].column_start < start.column))
)
) index++;
// Now we're going to shift all of the errors after this one down one
// index to make room for the new error.
if (index + 1 < error_list->size) {
memmove(&errors[index + 1], &errors[index], sizeof(pm_parse_error_t) * (error_list->size - index - 1));
}
// Finally, we'll insert the error into the array.
uint32_t column_end;
if (start.line == end.line) {
column_end = end.column;
} else {
column_end = (uint32_t) (newline_list->offsets[start.line - start_line + 1] - newline_list->offsets[start.line - start_line] - 1);
}
// Ensure we have at least one column of error.
if (start.column == column_end) column_end++;
errors[index] = (pm_parse_error_t) {
.error = error,
.line = start.line,
.column_start = start.column,
.column_end = column_end
};
}
return errors;
}
static inline void
pm_parse_errors_format_line(const pm_parser_t *parser, const pm_newline_list_t *newline_list, const char *number_prefix, int32_t line, uint32_t column_start, uint32_t column_end, pm_buffer_t *buffer) {
int32_t line_delta = line - parser->start_line;
assert(line_delta >= 0);
size_t index = (size_t) line_delta;
assert(index < newline_list->size);
const uint8_t *start = &parser->start[newline_list->offsets[index]];
const uint8_t *end;
if (index >= newline_list->size - 1) {
end = parser->end;
} else {
end = &parser->start[newline_list->offsets[index + 1]];
}
pm_buffer_append_format(buffer, number_prefix, line);
// Here we determine if we should truncate the end of the line.
bool truncate_end = false;
if ((column_end != 0) && ((end - (start + column_end)) >= PM_ERROR_TRUNCATE)) {
end = start + column_end + PM_ERROR_TRUNCATE;
truncate_end = true;
}
// Here we determine if we should truncate the start of the line.
if (column_start >= PM_ERROR_TRUNCATE) {
pm_buffer_append_string(buffer, "... ", 4);
start += column_start;
}
pm_buffer_append_string(buffer, (const char *) start, (size_t) (end - start));
if (truncate_end) {
pm_buffer_append_string(buffer, " ...\n", 5);
} else if (end == parser->end && end[-1] != '\n') {
pm_buffer_append_string(buffer, "\n", 1);
}
}
/**
* Format the errors on the parser into the given buffer.
*/
static void
pm_parse_errors_format(const pm_parser_t *parser, const pm_list_t *error_list, pm_buffer_t *buffer, bool colorize, bool inline_messages) {
assert(error_list->size != 0);
// First, we're going to sort all of the errors by line number using an
// insertion sort into a newly allocated array.
const int32_t start_line = parser->start_line;
const pm_newline_list_t *newline_list = &parser->newline_list;
pm_parse_error_t *errors = pm_parse_errors_format_sort(parser, error_list, newline_list);
if (errors == NULL) return;
// Now we're going to determine how we're going to format line numbers and
// blank lines based on the maximum number of digits in the line numbers
// that are going to be displaid.
pm_parse_error_format_t error_format;
int32_t first_line_number = errors[0].line;
int32_t last_line_number = errors[error_list->size - 1].line;
// If we have a maximum line number that is negative, then we're going to
// use the absolute value for comparison but multiple by 10 to additionally
// have a column for the negative sign.
if (first_line_number < 0) first_line_number = (-first_line_number) * 10;
if (last_line_number < 0) last_line_number = (-last_line_number) * 10;
int32_t max_line_number = first_line_number > last_line_number ? first_line_number : last_line_number;
if (max_line_number < 10) {
if (colorize) {
error_format = (pm_parse_error_format_t) {
.number_prefix = PM_COLOR_GRAY "%1" PRIi32 " | " PM_COLOR_RESET,
.blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
.divider = PM_COLOR_GRAY " ~~~~~" PM_COLOR_RESET "\n"
};
} else {
error_format = (pm_parse_error_format_t) {
.number_prefix = "%1" PRIi32 " | ",
.blank_prefix = " | ",
.divider = " ~~~~~\n"
};
}
} else if (max_line_number < 100) {
if (colorize) {
error_format = (pm_parse_error_format_t) {
.number_prefix = PM_COLOR_GRAY "%2" PRIi32 " | " PM_COLOR_RESET,
.blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
.divider = PM_COLOR_GRAY " ~~~~~~" PM_COLOR_RESET "\n"
};
} else {
error_format = (pm_parse_error_format_t) {
.number_prefix = "%2" PRIi32 " | ",
.blank_prefix = " | ",
.divider = " ~~~~~~\n"
};
}
} else if (max_line_number < 1000) {
if (colorize) {
error_format = (pm_parse_error_format_t) {
.number_prefix = PM_COLOR_GRAY "%3" PRIi32 " | " PM_COLOR_RESET,
.blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
.divider = PM_COLOR_GRAY " ~~~~~~~" PM_COLOR_RESET "\n"
};
} else {
error_format = (pm_parse_error_format_t) {
.number_prefix = "%3" PRIi32 " | ",
.blank_prefix = " | ",
.divider = " ~~~~~~~\n"
};
}
} else if (max_line_number < 10000) {
if (colorize) {
error_format = (pm_parse_error_format_t) {
.number_prefix = PM_COLOR_GRAY "%4" PRIi32 " | " PM_COLOR_RESET,
.blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
.divider = PM_COLOR_GRAY " ~~~~~~~~" PM_COLOR_RESET "\n"
};
} else {
error_format = (pm_parse_error_format_t) {
.number_prefix = "%4" PRIi32 " | ",
.blank_prefix = " | ",
.divider = " ~~~~~~~~\n"
};
}
} else {
if (colorize) {
error_format = (pm_parse_error_format_t) {
.number_prefix = PM_COLOR_GRAY "%5" PRIi32 " | " PM_COLOR_RESET,
.blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
.divider = PM_COLOR_GRAY " ~~~~~~~~" PM_COLOR_RESET "\n"
};
} else {
error_format = (pm_parse_error_format_t) {
.number_prefix = "%5" PRIi32 " | ",
.blank_prefix = " | ",
.divider = " ~~~~~~~~\n"
};
}
}
error_format.blank_prefix_length = strlen(error_format.blank_prefix);
error_format.divider_length = strlen(error_format.divider);
// Now we're going to iterate through every error in our error list and
// display it. While we're iterating, we will display some padding lines of
// the source before the error to give some context. We'll be careful not to
// display the same line twice in case the errors are close enough in the
// source.
int32_t last_line = parser->start_line - 1;
uint32_t last_column_start = 0;
const pm_encoding_t *encoding = parser->encoding;
for (size_t index = 0; index < error_list->size; index++) {
pm_parse_error_t *error = &errors[index];
// Here we determine how many lines of padding of the source to display,
// based on the difference from the last line that was displaid.
if (error->line - last_line > 1) {
if (error->line - last_line > 2) {
if ((index != 0) && (error->line - last_line > 3)) {
pm_buffer_append_string(buffer, error_format.divider, error_format.divider_length);
}
pm_buffer_append_string(buffer, " ", 2);
pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line - 2, 0, 0, buffer);
}
pm_buffer_append_string(buffer, " ", 2);
pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line - 1, 0, 0, buffer);
}
// If this is the first error or we're on a new line, then we'll display
// the line that has the error in it.
if ((index == 0) || (error->line != last_line)) {
if (colorize) {
pm_buffer_append_string(buffer, PM_COLOR_RED "> " PM_COLOR_RESET, 12);
} else {
pm_buffer_append_string(buffer, "> ", 2);
}
last_column_start = error->column_start;
// Find the maximum column end of all the errors on this line.
uint32_t column_end = error->column_end;
for (size_t next_index = index + 1; next_index < error_list->size; next_index++) {
if (errors[next_index].line != error->line) break;
if (errors[next_index].column_end > column_end) column_end = errors[next_index].column_end;
}
pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line, error->column_start, column_end, buffer);
}
const uint8_t *start = &parser->start[newline_list->offsets[error->line - start_line]];
if (start == parser->end) pm_buffer_append_byte(buffer, '\n');
// Now we'll display the actual error message. We'll do this by first
// putting the prefix to the line, then a bunch of blank spaces
// depending on the column, then as many carets as we need to display
// the width of the error, then the error message itself.
//
// Note that this doesn't take into account the width of the actual
// character when displaid in the terminal. For some east-asian
// languages or emoji, this means it can be thrown off pretty badly. We
// will need to solve this eventually.
pm_buffer_append_string(buffer, " ", 2);
pm_buffer_append_string(buffer, error_format.blank_prefix, error_format.blank_prefix_length);
size_t column = 0;
if (last_column_start >= PM_ERROR_TRUNCATE) {
pm_buffer_append_string(buffer, " ", 4);
column = last_column_start;
}
while (column < error->column_start) {
pm_buffer_append_byte(buffer, ' ');
size_t char_width = encoding->char_width(start + column, parser->end - (start + column));
column += (char_width == 0 ? 1 : char_width);
}
if (colorize) pm_buffer_append_string(buffer, PM_COLOR_RED, 7);
pm_buffer_append_byte(buffer, '^');
size_t char_width = encoding->char_width(start + column, parser->end - (start + column));
column += (char_width == 0 ? 1 : char_width);
while (column < error->column_end) {
pm_buffer_append_byte(buffer, '~');
size_t char_width = encoding->char_width(start + column, parser->end - (start + column));
column += (char_width == 0 ? 1 : char_width);
}
if (colorize) pm_buffer_append_string(buffer, PM_COLOR_RESET, 3);
if (inline_messages) {
pm_buffer_append_byte(buffer, ' ');
assert(error->error != NULL);
const char *message = error->error->message;
pm_buffer_append_string(buffer, message, strlen(message));
}
pm_buffer_append_byte(buffer, '\n');
// Here we determine how many lines of padding to display after the
// error, depending on where the next error is in source.
last_line = error->line;
int32_t next_line = (index == error_list->size - 1) ? (((int32_t) newline_list->size) + parser->start_line) : errors[index + 1].line;
if (next_line - last_line > 1) {
pm_buffer_append_string(buffer, " ", 2);
pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, ++last_line, 0, 0, buffer);
}
if (next_line - last_line > 1) {
pm_buffer_append_string(buffer, " ", 2);
pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, ++last_line, 0, 0, buffer);
}
}
// Finally, we'll free the array of errors that we allocated.
xfree(errors);
}
#undef PM_ERROR_TRUNCATE
#undef PM_COLOR_GRAY
#undef PM_COLOR_RED
#undef PM_COLOR_RESET
/**
* Check if the given source slice is valid UTF-8. The location represents the
* location of the error, but the slice of the source will include the content
* of all of the lines that the error touches, so we need to check those parts
* as well.
*/
static bool
pm_parse_process_error_utf8_p(const pm_parser_t *parser, const pm_location_t *location)
{
const size_t start_line = pm_newline_list_line_column(&parser->newline_list, location->start, 1).line;
const size_t end_line = pm_newline_list_line_column(&parser->newline_list, location->end, 1).line;
const uint8_t *start = parser->start + parser->newline_list.offsets[start_line - 1];
const uint8_t *end = ((end_line == parser->newline_list.size) ? parser->end : (parser->start + parser->newline_list.offsets[end_line]));
size_t width;
while (start < end) {
if ((width = pm_encoding_utf_8_char_width(start, end - start)) == 0) return false;
start += width;
}
return true;
}
/**
* Generate an error object from the given parser that contains as much
* information as possible about the errors that were encountered.
*/
static VALUE
pm_parse_process_error(const pm_parse_result_t *result)
{
const pm_parser_t *parser = &result->parser;
const pm_diagnostic_t *head = (const pm_diagnostic_t *) parser->error_list.head;
bool valid_utf8 = true;
pm_buffer_t buffer = { 0 };
const pm_string_t *filepath = &parser->filepath;
for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) {
switch (error->level) {
case PM_ERROR_LEVEL_SYNTAX:
// It is implicitly assumed that the error messages will be
// encodeable as UTF-8. Because of this, we can't include source
// examples that contain invalid byte sequences. So if any source
// examples include invalid UTF-8 byte sequences, we will skip
// showing source examples entirely.
if (valid_utf8 && !pm_parse_process_error_utf8_p(parser, &error->location)) {
valid_utf8 = false;
}
break;
case PM_ERROR_LEVEL_ARGUMENT: {
// Any errors with the level PM_ERROR_LEVEL_ARGUMENT take over as
// the only argument that gets raised. This is to allow priority
// messages that should be handled before anything else.
int32_t line_number = (int32_t) pm_location_line_number(parser, &error->location);
pm_buffer_append_format(
&buffer,
"%.*s:%" PRIi32 ": %s",
(int) pm_string_length(filepath),
pm_string_source(filepath),
line_number,
error->message
);
if (pm_parse_process_error_utf8_p(parser, &error->location)) {
pm_buffer_append_byte(&buffer, '\n');
pm_list_node_t *list_node = (pm_list_node_t *) error;
pm_list_t error_list = { .size = 1, .head = list_node, .tail = list_node };
pm_parse_errors_format(parser, &error_list, &buffer, rb_stderr_tty_p(), false);
}
VALUE value = rb_exc_new(rb_eArgError, pm_buffer_value(&buffer), pm_buffer_length(&buffer));
pm_buffer_free(&buffer);
return value;
}
case PM_ERROR_LEVEL_LOAD: {
// Load errors are much simpler, because they don't include any of
// the source in them. We create the error directly from the
// message.
VALUE message = rb_enc_str_new_cstr(error->message, rb_locale_encoding());
VALUE value = rb_exc_new3(rb_eLoadError, message);
rb_ivar_set(value, rb_intern_const("@path"), Qnil);
return value;
}
}
}
pm_buffer_append_format(
&buffer,
"%.*s:%" PRIi32 ": syntax error%s found\n",
(int) pm_string_length(filepath),
pm_string_source(filepath),
(int32_t) pm_location_line_number(parser, &head->location),
(parser->error_list.size > 1) ? "s" : ""
);
if (valid_utf8) {
pm_parse_errors_format(parser, &parser->error_list, &buffer, rb_stderr_tty_p(), true);
}
else {
for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) {
if (error != head) pm_buffer_append_byte(&buffer, '\n');
pm_buffer_append_format(&buffer, "%.*s:%" PRIi32 ": %s", (int) pm_string_length(filepath), pm_string_source(filepath), (int32_t) pm_location_line_number(parser, &error->location), error->message);
}
}
VALUE message = rb_enc_str_new(pm_buffer_value(&buffer), pm_buffer_length(&buffer), result->node.encoding);
VALUE error = rb_exc_new_str(rb_eSyntaxError, message);
rb_encoding *filepath_encoding = result->node.filepath_encoding != NULL ? result->node.filepath_encoding : rb_utf8_encoding();
VALUE path = rb_enc_str_new((const char *) pm_string_source(filepath), pm_string_length(filepath), filepath_encoding);
rb_ivar_set(error, rb_intern_const("@path"), path);
pm_buffer_free(&buffer);
return error;
}
/**
* Parse the parse result and raise a Ruby error if there are any syntax errors.
* It returns an error if one should be raised. It is assumed that the parse
* result object is zeroed out.
*/
static VALUE
pm_parse_process(pm_parse_result_t *result, pm_node_t *node, VALUE *script_lines)
{
pm_parser_t *parser = &result->parser;
// First, set up the scope node so that the AST node is attached and can be
// freed regardless of whether or we return an error.
pm_scope_node_t *scope_node = &result->node;
rb_encoding *filepath_encoding = scope_node->filepath_encoding;
int coverage_enabled = scope_node->coverage_enabled;
pm_scope_node_init(node, scope_node, NULL);
scope_node->filepath_encoding = filepath_encoding;
scope_node->encoding = rb_enc_find(parser->encoding->name);
if (!scope_node->encoding) rb_bug("Encoding not found %s!", parser->encoding->name);
scope_node->coverage_enabled = coverage_enabled;
// If RubyVM.keep_script_lines is set to true, then we need to create that
// array of script lines here.
if (script_lines != NULL) {
*script_lines = rb_ary_new_capa(parser->newline_list.size);
for (size_t index = 0; index < parser->newline_list.size; index++) {
size_t offset = parser->newline_list.offsets[index];
size_t length = index == parser->newline_list.size - 1 ? ((size_t) (parser->end - (parser->start + offset))) : (parser->newline_list.offsets[index + 1] - offset);
rb_ary_push(*script_lines, rb_enc_str_new((const char *) parser->start + offset, length, scope_node->encoding));
}
scope_node->script_lines = script_lines;
}
// Emit all of the various warnings from the parse.
const pm_diagnostic_t *warning;
const char *warning_filepath = (const char *) pm_string_source(&parser->filepath);
for (warning = (const pm_diagnostic_t *) parser->warning_list.head; warning != NULL; warning = (const pm_diagnostic_t *) warning->node.next) {
int line = pm_location_line_number(parser, &warning->location);
if (warning->level == PM_WARNING_LEVEL_VERBOSE) {
rb_enc_compile_warning(scope_node->encoding, warning_filepath, line, "%s", warning->message);
}
else {
rb_enc_compile_warn(scope_node->encoding, warning_filepath, line, "%s", warning->message);
}
}
// If there are errors, raise an appropriate error and free the result.
if (parser->error_list.size > 0) {
VALUE error = pm_parse_process_error(result);
// TODO: We need to set the backtrace.
// rb_funcallv(error, rb_intern("set_backtrace"), 1, &path);
return error;
}
// Now set up the constant pool and intern all of the various constants into
// their corresponding IDs.
scope_node->parser = parser;
scope_node->constants = xcalloc(parser->constant_pool.size, sizeof(ID));
for (uint32_t index = 0; index < parser->constant_pool.size; index++) {
pm_constant_t *constant = &parser->constant_pool.constants[index];
scope_node->constants[index] = rb_intern3((const char *) constant->start, constant->length, scope_node->encoding);
}
scope_node->index_lookup_table = st_init_numtable();
pm_constant_id_list_t *locals = &scope_node->locals;
for (size_t index = 0; index < locals->size; index++) {
st_insert(scope_node->index_lookup_table, locals->ids[index], index);
}
// If we got here, this is a success and we can return Qnil to indicate that
// no error should be raised.
result->parsed = true;
return Qnil;
}
/**
* Set the frozen_string_literal option based on the default value used by the
* CRuby compiler.
*/
static void
pm_options_frozen_string_literal_init(pm_options_t *options)
{
int frozen_string_literal = rb_iseq_opt_frozen_string_literal();
switch (frozen_string_literal) {
case ISEQ_FROZEN_STRING_LITERAL_UNSET:
break;
case ISEQ_FROZEN_STRING_LITERAL_DISABLED:
pm_options_frozen_string_literal_set(options, false);
break;
case ISEQ_FROZEN_STRING_LITERAL_ENABLED:
pm_options_frozen_string_literal_set(options, true);
break;
default:
rb_bug("pm_options_frozen_string_literal_init: invalid frozen_string_literal=%d", frozen_string_literal);
break;
}
}
/**
* Returns an array of ruby String objects that represent the lines of the
* source file that the given parser parsed.
*/
static inline VALUE
pm_parse_file_script_lines(const pm_scope_node_t *scope_node, const pm_parser_t *parser)
{
const pm_newline_list_t *newline_list = &parser->newline_list;
const char *start = (const char *) parser->start;
const char *end = (const char *) parser->end;
// If we end exactly on a newline, then there's no need to push on a final
// segment. If we don't, then we need to push on the last offset up to the
// end of the string.
size_t last_offset = newline_list->offsets[newline_list->size - 1];
bool last_push = start + last_offset != end;
// Create the ruby strings that represent the lines of the source.
VALUE lines = rb_ary_new_capa(newline_list->size - (last_push ? 0 : 1));
for (size_t index = 0; index < newline_list->size - 1; index++) {
size_t offset = newline_list->offsets[index];
size_t length = newline_list->offsets[index + 1] - offset;
rb_ary_push(lines, rb_enc_str_new(start + offset, length, scope_node->encoding));
}
// Push on the last line if we need to.
if (last_push) {
rb_ary_push(lines, rb_enc_str_new(start + last_offset, end - (start + last_offset), scope_node->encoding));
}
return lines;
}
// This is essentially pm_string_mapped_init(), preferring to memory map the
// file, with additional handling for files that require blocking to properly
// read (e.g. pipes).
static pm_string_init_result_t
pm_read_file(pm_string_t *string, const char *filepath)
{
#ifdef _WIN32
// Open the file for reading.
int length = MultiByteToWideChar(CP_UTF8, 0, filepath, -1, NULL, 0);
if (length == 0) return PM_STRING_INIT_ERROR_GENERIC;
WCHAR *wfilepath = xmalloc(sizeof(WCHAR) * ((size_t) length));
if ((wfilepath == NULL) || (MultiByteToWideChar(CP_UTF8, 0, filepath, -1, wfilepath, length) == 0)) {
xfree(wfilepath);
return PM_STRING_INIT_ERROR_GENERIC;
}
HANDLE file = CreateFileW(wfilepath, GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, NULL);
if (file == INVALID_HANDLE_VALUE) {
pm_string_init_result_t result = PM_STRING_INIT_ERROR_GENERIC;
if (GetLastError() == ERROR_ACCESS_DENIED) {
DWORD attributes = GetFileAttributesW(wfilepath);
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
result = PM_STRING_INIT_ERROR_DIRECTORY;
}
}
xfree(wfilepath);
return result;
}
// Get the file size.
DWORD file_size = GetFileSize(file, NULL);
if (file_size == INVALID_FILE_SIZE) {
CloseHandle(file);
xfree(wfilepath);
return PM_STRING_INIT_ERROR_GENERIC;
}
// If the file is empty, then we don't need to do anything else, we'll set
// the source to a constant empty string and return.
if (file_size == 0) {
CloseHandle(file);
xfree(wfilepath);
const uint8_t source[] = "";
*string = (pm_string_t) { .type = PM_STRING_CONSTANT, .source = source, .length = 0 };
return PM_STRING_INIT_SUCCESS;
}
// Create a mapping of the file.
HANDLE mapping = CreateFileMapping(file, NULL, PAGE_READONLY, 0, 0, NULL);
if (mapping == NULL) {
CloseHandle(file);
xfree(wfilepath);
return PM_STRING_INIT_ERROR_GENERIC;
}
// Map the file into memory.
uint8_t *source = (uint8_t *) MapViewOfFile(mapping, FILE_MAP_READ, 0, 0, 0);
CloseHandle(mapping);
CloseHandle(file);
xfree(wfilepath);
if (source == NULL) {
return PM_STRING_INIT_ERROR_GENERIC;
}
*string = (pm_string_t) { .type = PM_STRING_MAPPED, .source = source, .length = (size_t) file_size };
return PM_STRING_INIT_SUCCESS;
#elif defined(_POSIX_MAPPED_FILES)
// Open the file for reading
const int open_mode = O_RDONLY | O_NONBLOCK;
int fd = open(filepath, open_mode);
if (fd == -1) {
return PM_STRING_INIT_ERROR_GENERIC;
}
// Stat the file to get the file size
struct stat sb;
if (fstat(fd, &sb) == -1) {
close(fd);
return PM_STRING_INIT_ERROR_GENERIC;
}
// Ensure it is a file and not a directory
if (S_ISDIR(sb.st_mode)) {
close(fd);
return PM_STRING_INIT_ERROR_DIRECTORY;
}
// We need to wait for data first before reading from pipes and character
// devices. To not block the entire VM, we need to release the GVL while
// reading. Use IO#read to do this and let the GC handle closing the FD.
if (S_ISFIFO(sb.st_mode) || S_ISCHR(sb.st_mode)) {
VALUE io = rb_io_fdopen((int) fd, open_mode, filepath);
rb_io_wait(io, RB_INT2NUM(RUBY_IO_READABLE), Qnil);
VALUE contents = rb_funcall(io, rb_intern("read"), 0);
if (!RB_TYPE_P(contents, T_STRING)) {
return PM_STRING_INIT_ERROR_GENERIC;
}
long len = RSTRING_LEN(contents);
if (len < 0) {
return PM_STRING_INIT_ERROR_GENERIC;
}
size_t length = (size_t) len;
uint8_t *source = xmalloc(length);
memcpy(source, RSTRING_PTR(contents), length);
*string = (pm_string_t) { .type = PM_STRING_OWNED, .source = source, .length = length };
return PM_STRING_INIT_SUCCESS;
}
// mmap the file descriptor to virtually get the contents
size_t size = (size_t) sb.st_size;
uint8_t *source = NULL;
if (size == 0) {
close(fd);
const uint8_t source[] = "";
*string = (pm_string_t) { .type = PM_STRING_CONSTANT, .source = source, .length = 0 };
return PM_STRING_INIT_SUCCESS;
}
source = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
if (source == MAP_FAILED) {
return PM_STRING_INIT_ERROR_GENERIC;
}
close(fd);
*string = (pm_string_t) { .type = PM_STRING_MAPPED, .source = source, .length = size };
return PM_STRING_INIT_SUCCESS;
#else
return pm_string_file_init(string, filepath);
#endif
}
/**
* Attempt to load the file into memory. Return a Ruby error if the file cannot
* be read.
*/
VALUE
pm_load_file(pm_parse_result_t *result, VALUE filepath, bool load_error)
{
pm_string_init_result_t init_result = pm_read_file(&result->input, RSTRING_PTR(filepath));
if (init_result == PM_STRING_INIT_SUCCESS) {
pm_options_frozen_string_literal_init(&result->options);
return Qnil;
}
int err;
if (init_result == PM_STRING_INIT_ERROR_DIRECTORY) {
err = EISDIR;
} else {
#ifdef _WIN32
err = rb_w32_map_errno(GetLastError());
#else
err = errno;
#endif
}
VALUE error;
if (load_error) {
VALUE message = rb_str_buf_new_cstr(strerror(err));
rb_str_cat2(message, " -- ");
rb_str_append(message, filepath);
error = rb_exc_new3(rb_eLoadError, message);
rb_ivar_set(error, rb_intern_const("@path"), filepath);
} else {
error = rb_syserr_new(err, RSTRING_PTR(filepath));
RB_GC_GUARD(filepath);
}
return error;
}
/**
* Parse the given filepath and store the resulting scope node in the given
* parse result struct. It returns a Ruby error if the file cannot be read or
* if it cannot be parsed properly. It is assumed that the parse result object
* is zeroed out.
*/
VALUE
pm_parse_file(pm_parse_result_t *result, VALUE filepath, VALUE *script_lines)
{
result->node.filepath_encoding = rb_enc_get(filepath);
pm_options_filepath_set(&result->options, RSTRING_PTR(filepath));
RB_GC_GUARD(filepath);
pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options);
pm_node_t *node = pm_parse(&result->parser);
VALUE error = pm_parse_process(result, node, script_lines);
// If we're parsing a filepath, then we need to potentially support the
// SCRIPT_LINES__ constant, which can be a hash that has an array of lines
// of every read file.
ID id_script_lines = rb_intern("SCRIPT_LINES__");
if (rb_const_defined_at(rb_cObject, id_script_lines)) {
VALUE constant_script_lines = rb_const_get_at(rb_cObject, id_script_lines);
if (RB_TYPE_P(constant_script_lines, T_HASH)) {
rb_hash_aset(constant_script_lines, filepath, pm_parse_file_script_lines(&result->node, &result->parser));
}
}
return error;
}
/**
* Load and then parse the given filepath. It returns a Ruby error if the file
* cannot be read or if it cannot be parsed properly.
*/
VALUE
pm_load_parse_file(pm_parse_result_t *result, VALUE filepath, VALUE *script_lines)
{
VALUE error = pm_load_file(result, filepath, false);
if (NIL_P(error)) {
error = pm_parse_file(result, filepath, script_lines);
}
return error;
}
/**
* Parse the given source that corresponds to the given filepath and store the
* resulting scope node in the given parse result struct. It is assumed that the
* parse result object is zeroed out. If the string fails to parse, then a Ruby
* error is returned.
*/
VALUE
pm_parse_string(pm_parse_result_t *result, VALUE source, VALUE filepath, VALUE *script_lines)
{
rb_encoding *encoding = rb_enc_get(source);
if (!rb_enc_asciicompat(encoding)) {
return rb_exc_new_cstr(rb_eArgError, "invalid source encoding");
}
pm_options_frozen_string_literal_init(&result->options);
pm_string_constant_init(&result->input, RSTRING_PTR(source), RSTRING_LEN(source));
pm_options_encoding_set(&result->options, rb_enc_name(encoding));
result->node.filepath_encoding = rb_enc_get(filepath);
pm_options_filepath_set(&result->options, RSTRING_PTR(filepath));
RB_GC_GUARD(filepath);
pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options);
pm_node_t *node = pm_parse(&result->parser);
return pm_parse_process(result, node, script_lines);
}
/**
* An implementation of fgets that is suitable for use with Ruby IO objects.
*/
static char *
pm_parse_stdin_fgets(char *string, int size, void *stream)
{
RUBY_ASSERT(size > 0);
VALUE line = rb_funcall((VALUE) stream, rb_intern("gets"), 1, INT2FIX(size - 1));
if (NIL_P(line)) {
return NULL;
}
const char *cstr = RSTRING_PTR(line);
long length = RSTRING_LEN(line);
memcpy(string, cstr, length);
string[length] = '\0';
return string;
}
// We need access to this function when we're done parsing stdin.
void rb_reset_argf_lineno(long n);
/**
* Parse the source off STDIN and store the resulting scope node in the given
* parse result struct. It is assumed that the parse result object is zeroed
* out. If the stream fails to parse, then a Ruby error is returned.
*/
VALUE
pm_parse_stdin(pm_parse_result_t *result)
{
pm_options_frozen_string_literal_init(&result->options);
pm_buffer_t buffer;
pm_node_t *node = pm_parse_stream(&result->parser, &buffer, (void *) rb_stdin, pm_parse_stdin_fgets, &result->options);
// Copy the allocated buffer contents into the input string so that it gets
// freed. At this point we've handed over ownership, so we don't need to
// free the buffer itself.
pm_string_owned_init(&result->input, (uint8_t *) pm_buffer_value(&buffer), pm_buffer_length(&buffer));
// When we're done parsing, we reset $. because we don't want the fact that
// we went through an IO object to be visible to the user.
rb_reset_argf_lineno(0);
return pm_parse_process(result, node, NULL);
}
#undef NEW_ISEQ
#define NEW_ISEQ OLD_ISEQ
#undef NEW_CHILD_ISEQ
#define NEW_CHILD_ISEQ OLD_CHILD_ISEQ