ruby/cont.c

565 строки
13 KiB
C

/**********************************************************************
cont.c -
$Author$
$Date$
created at: Thu May 23 09:03:43 2007
Copyright (C) 2007 Koichi Sasada
**********************************************************************/
#include "ruby.h"
#include "yarvcore.h"
#include "gc.h"
#include "eval_intern.h"
typedef struct rb_context_struct {
VALUE self;
VALUE retval;
VALUE prev; /* for fiber */
VALUE *vm_stack;
VALUE *machine_stack;
VALUE *machine_stack_src;
rb_thread_t saved_thread;
rb_jmpbuf_t jmpbuf;
int machine_stack_size;
int alive;
} rb_context_t;
VALUE rb_cCont;
VALUE rb_cFiber;
#define GetContPtr(obj, ptr) \
Data_Get_Struct(obj, rb_context_t, ptr)
NOINLINE(static VALUE cont_capture(volatile int *stat));
void rb_thread_mark(rb_thread_t *th);
static void
cont_mark(void *ptr)
{
MARK_REPORT_ENTER("cont");
if (ptr) {
rb_context_t *cont = ptr;
rb_gc_mark(cont->retval);
rb_gc_mark(cont->prev);
rb_thread_mark(&cont->saved_thread);
if (cont->vm_stack) {
rb_gc_mark_locations(cont->vm_stack,
cont->vm_stack + cont->saved_thread.stack_size);
}
if (cont->machine_stack) {
rb_gc_mark_locations(cont->machine_stack,
cont->machine_stack + cont->machine_stack_size);
}
}
MARK_REPORT_LEAVE("cont");
}
static void
cont_free(void *ptr)
{
FREE_REPORT_ENTER("cont");
if (ptr) {
rb_context_t *cont = ptr;
FREE_UNLESS_NULL(cont->saved_thread.stack);
FREE_UNLESS_NULL(cont->machine_stack);
FREE_UNLESS_NULL(cont->vm_stack);
ruby_xfree(ptr);
}
FREE_REPORT_LEAVE("cont");
}
static void
cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
{
int size;
rb_gc_set_stack_end(&th->machine_stack_end);
if (th->machine_stack_start > th->machine_stack_end) {
size = cont->machine_stack_size = th->machine_stack_start - th->machine_stack_end;
cont->machine_stack_src = th->machine_stack_end;
}
else {
size = cont->machine_stack_size = th->machine_stack_end - th->machine_stack_start;
cont->machine_stack_src = th->machine_stack_start;
}
if (cont->machine_stack) {
REALLOC_N(cont->machine_stack, VALUE, size);
}
else {
cont->machine_stack = ALLOC_N(VALUE, size);
}
MEMCPY(cont->machine_stack, cont->machine_stack_src, VALUE, size);
}
static rb_context_t *
cont_new(VALUE klass)
{
rb_context_t *cont;
volatile VALUE contval;
rb_thread_t *th = GET_THREAD(), *sth;
contval = Data_Make_Struct(klass, rb_context_t,
cont_mark, cont_free, cont);
cont->self = contval;
cont->alive = Qtrue;
/* save context */
cont->saved_thread = *th;
sth = &cont->saved_thread;
return cont;
}
static VALUE
cont_capture(volatile int *stat)
{
rb_context_t *cont = cont_new(rb_cCont);
rb_thread_t *th = &cont->saved_thread;
cont->vm_stack = ALLOC_N(VALUE, th->stack_size);
MEMCPY(cont->vm_stack, th->stack, VALUE, th->stack_size);
th->stack = 0;
cont_save_machine_stack(th, cont);
if (ruby_setjmp(cont->jmpbuf)) {
VALUE retval;
retval = cont->retval;
cont->retval = Qnil;
*stat = 1;
return retval;
}
else {
*stat = 0;
return cont->self;
}
}
NORETURN(static void cont_restore_1(rb_context_t *));
static void
cont_restore_1(rb_context_t *cont)
{
rb_thread_t *th = GET_THREAD(), *sth = &cont->saved_thread;
/* restore thread context */
if (sth->stack) {
/* fiber */
th->stack = sth->stack;
th->stack_size = sth->stack_size;
th->fiber = cont->self;
}
else {
/* continuation */
MEMCPY(th->stack, cont->vm_stack, VALUE, sth->stack_size);
th->fiber = sth->fiber;
}
th->cfp = sth->cfp;
th->safe_level = sth->safe_level;
th->raised_flag = sth->raised_flag;
th->state = sth->state;
th->status = sth->status;
th->tag = sth->tag;
th->trap_tag = sth->trap_tag;
th->errinfo = sth->errinfo;
th->first_proc = sth->first_proc;
/* restore machine stack */
if (cont->machine_stack_src) {
MEMCPY(cont->machine_stack_src, cont->machine_stack,
VALUE, cont->machine_stack_size);
}
ruby_longjmp(cont->jmpbuf, 1);
}
NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
static void
cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
{
if (cont->machine_stack_src) {
#define STACK_PAD_SIZE 1024
VALUE space[STACK_PAD_SIZE];
#if STACK_GROW_DIRECTION < 0 /* downward */
if (addr_in_prev_frame > cont->machine_stack_src) {
cont_restore_0(cont, &space[0]);
}
#elif STACK_GROW_DIRECTION > 0 /* upward */
if (addr_in_prev_frame < cont->machine_stack_src + cont->machine_stack_size) {
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
}
#else
if (addr_in_prev_frame > &space[0]) {
/* Stack grows downward */
if (addr_in_prev_frame > cont->saved_thread.machine_stack_src) {
cont_restore_0(cont, &space[0]);
}
}
else {
/* Stack grows upward */
if (addr_in_prev_frame < cont->machine_stack_src + cont->machine_stack_size) {
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
}
}
#endif
}
cont_restore_1(cont);
}
/*
* Document-class: Continuation
*
* Continuation objects are generated by
* <code>Kernel#callcc</code>. They hold a return address and execution
* context, allowing a nonlocal return to the end of the
* <code>callcc</code> block from anywhere within a program.
* Continuations are somewhat analogous to a structured version of C's
* <code>setjmp/longjmp</code> (although they contain more state, so
* you might consider them closer to threads).
*
* For instance:
*
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
* callcc{|$cc|}
* puts(message = arr.shift)
* $cc.call unless message =~ /Max/
*
* <em>produces:</em>
*
* Freddie
* Herbie
* Ron
* Max
*
* This (somewhat contrived) example allows the inner loop to abandon
* processing early:
*
* callcc {|cont|
* for i in 0..4
* print "\n#{i}: "
* for j in i*5...(i+1)*5
* cont.call() if j == 17
* printf "%3d", j
* end
* end
* }
* print "\n"
*
* <em>produces:</em>
*
* 0: 0 1 2 3 4
* 1: 5 6 7 8 9
* 2: 10 11 12 13 14
* 3: 15 16
*/
/*
* call-seq:
* callcc {|cont| block } => obj
*
* Generates a <code>Continuation</code> object, which it passes to the
* associated block. Performing a <em>cont</em><code>.call</code> will
* cause the <code>callcc</code> to return (as will falling through the
* end of the block). The value returned by the <code>callcc</code> is
* the value of the block, or the value passed to
* <em>cont</em><code>.call</code>. See class <code>Continuation</code>
* for more details. Also see <code>Kernel::throw</code> for
* an alternative mechanism for unwinding a call stack.
*/
static VALUE
rb_callcc(VALUE self)
{
volatile int called;
volatile VALUE val = cont_capture(&called);
if (called) {
return val;
}
else {
return rb_yield(val);
}
}
static VALUE
make_passing_arg(int argc, VALUE *argv)
{
switch(argc) {
case 0:
return Qnil;
case 1:
return argv[0];
default:
return rb_ary_new4(argc, argv);
}
}
/*
* call-seq:
* cont.call(args, ...)
* cont[args, ...]
*
* Invokes the continuation. The program continues from the end of the
* <code>callcc</code> block. If no arguments are given, the original
* <code>callcc</code> returns <code>nil</code>. If one argument is
* given, <code>callcc</code> returns it. Otherwise, an array
* containing <i>args</i> is returned.
*
* callcc {|cont| cont.call } #=> nil
* callcc {|cont| cont.call 1 } #=> 1
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
*/
static VALUE
rb_cont_call(int argc, VALUE *argv, VALUE contval)
{
rb_context_t *cont;
rb_thread_t *th = GET_THREAD();
GetContPtr(contval, cont);
if (cont->saved_thread.self != th->self) {
rb_raise(rb_eRuntimeError, "continuation called across threads");
}
if (cont->saved_thread.trap_tag != th->trap_tag) {
rb_raise(rb_eRuntimeError, "continuation called across trap");
}
cont->retval = make_passing_arg(argc, argv);
cont_restore_0(cont, (VALUE *)&cont);
return Qnil; /* unreachable */
}
/*********/
/* fiber */
/*********/
#define FIBER_STACK_SIZE (4 * 1024)
static VALUE
rb_fiber_s_new(int argc, VALUE *argv, VALUE self)
{
rb_context_t *cont = cont_new(rb_cFiber);
rb_thread_t *th = &cont->saved_thread;
volatile VALUE fval = cont->self;
/* initialize */
cont->prev = Qnil;
cont->vm_stack = 0;
th->stack = 0;
th->stack_size = FIBER_STACK_SIZE;
th->stack = ALLOC_N(VALUE, th->stack_size);
th->cfp = (void *)(th->stack + th->stack_size);
th->cfp--;
th->cfp->pc = 0;
th->cfp->sp = th->stack + 1;
th->cfp->bp = 0;
th->cfp->lfp = th->stack;
*th->cfp->lfp = 0;
th->cfp->dfp = th->stack;
th->cfp->self = Qnil;
th->cfp->magic = 0;
th->cfp->iseq = 0;
th->cfp->proc = 0;
th->cfp->block_iseq = 0;
th->first_proc = rb_block_proc();
th->first_args = rb_ary_new4(argc, argv);
MEMCPY(&cont->jmpbuf, &th->root_jmpbuf, rb_jmpbuf_t, 1);
return cont->self;
}
static VALUE rb_fiber_pass(int argc, VALUE *args, VALUE fval);
static void
rb_fiber_terminate(rb_context_t *cont)
{
rb_context_t *prev_cont;
VALUE retval = cont->retval;
GetContPtr(cont->prev, prev_cont);
cont->alive = Qfalse;
if (prev_cont->alive == Qfalse) {
rb_fiber_pass(1, &retval, GET_THREAD()->root_fiber);
}
else {
rb_fiber_pass(1, &retval, cont->prev);
}
}
void
rb_fiber_start(void)
{
rb_thread_t *th = GET_THREAD();
rb_context_t *cont;
rb_proc_t *proc;
VALUE args;
int state;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
GetContPtr(th->fiber, cont);
GetProcPtr(cont->saved_thread.first_proc, proc);
args = cont->saved_thread.first_args;
th->errinfo = Qnil;
th->local_lfp = proc->block.lfp;
th->local_svar = Qnil;
cont->retval = th_invoke_proc(th, proc, proc->block.self,
RARRAY_LEN(args), RARRAY_PTR(args));
}
TH_POP_TAG();
if (state) {
th->thrown_errinfo = th->errinfo;
th->interrupt_flag = 1;
}
rb_fiber_terminate(cont);
rb_bug("rb_fiber_start: unreachable");
}
static VALUE
rb_fiber_current(rb_thread_t *th)
{
if (th->fiber == 0) {
/* save root */
th->root_fiber = th->fiber = cont_new(rb_cFiber)->self;
}
return th->fiber;
}
static VALUE
cont_store(rb_context_t *next_cont)
{
rb_thread_t *th = GET_THREAD();
rb_context_t *cont;
if (th->fiber) {
GetContPtr(th->fiber, cont);
cont->saved_thread = *th;
}
else {
/* create current fiber */
cont = cont_new(rb_cFiber); /* no need to allocate vm stack */
th->root_fiber = th->fiber = cont->self;
}
if (cont->alive) {
next_cont->prev = cont->self;
}
cont_save_machine_stack(th, cont);
if (ruby_setjmp(cont->jmpbuf)) {
/* restored */
GetContPtr(th->fiber, cont);
return cont->retval;
}
else {
return Qundef;
}
}
static VALUE
rb_fiber_pass(int argc, VALUE *argv, VALUE fval)
{
VALUE retval;
rb_context_t *cont;
rb_thread_t *th = GET_THREAD();
GetContPtr(fval, cont);
if (cont->saved_thread.self != th->self) {
rb_raise(rb_eRuntimeError, "fiber called across threads");
}
if (cont->saved_thread.trap_tag != th->trap_tag) {
rb_raise(rb_eRuntimeError, "fiber called across trap");
}
cont->retval = make_passing_arg(argc, argv);
if ((retval = cont_store(cont)) == Qundef) {
cont_restore_0(cont, (VALUE *)&cont);
rb_bug("rb_fiber_pass: unreachable");
}
return retval;
}
static VALUE
rb_fiber_prev(VALUE fval)
{
rb_context_t *cont;
GetContPtr(fval, cont);
return cont->prev;
}
static VALUE
rb_fiber_alive_p(VALUE fval)
{
rb_context_t *cont;
GetContPtr(fval, cont);
return cont->alive;
}
static VALUE
rb_fiber_s_current(VALUE klass)
{
return rb_fiber_current(GET_THREAD());
}
static VALUE
rb_fiber_s_prev(VALUE klass)
{
return rb_fiber_prev(rb_fiber_s_current(Qnil));
}
static VALUE
rb_fiber_s_pass(int argc, VALUE *argv, VALUE fval)
{
return rb_fiber_pass(argc, argv, rb_fiber_s_prev(Qnil));
}
void
Init_Cont(void)
{
rb_cCont = rb_define_class("Continuation", rb_cObject);
rb_undef_alloc_func(rb_cCont);
rb_undef_method(CLASS_OF(rb_cCont), "new");
rb_define_method(rb_cCont, "call", rb_cont_call, -1);
rb_define_method(rb_cCont, "[]", rb_cont_call, -1);
rb_define_global_function("callcc", rb_callcc, 0);
rb_cFiber = rb_define_class("Fiber", rb_cObject);
rb_undef_alloc_func(rb_cFiber);
rb_define_method(rb_cFiber, "pass", rb_fiber_pass, -1);
rb_define_method(rb_cFiber, "prev", rb_fiber_prev, 0);
rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
rb_define_singleton_method(rb_cFiber, "prev", rb_fiber_s_prev, 0);
rb_define_singleton_method(rb_cFiber, "pass", rb_fiber_s_pass, -1);
rb_define_singleton_method(rb_cFiber, "new", rb_fiber_s_new, -1);
rb_define_singleton_method(rb_cFiber, "start", rb_fiber_s_new, -1);
}