ruby/thread_pthread.c

1341 строка
32 KiB
C

/* -*-c-*- */
/**********************************************************************
thread_pthread.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
#include "gc.h"
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#ifdef HAVE_THR_STKSEGMENT
#include <thread.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#elif HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#if HAVE_SYS_PRCTL_H
#include <sys/prctl.h>
#endif
static void native_mutex_lock(pthread_mutex_t *lock);
static void native_mutex_unlock(pthread_mutex_t *lock);
static int native_mutex_trylock(pthread_mutex_t *lock);
static void native_mutex_initialize(pthread_mutex_t *lock);
static void native_mutex_destroy(pthread_mutex_t *lock);
static void native_cond_signal(rb_thread_cond_t *cond);
static void native_cond_broadcast(rb_thread_cond_t *cond);
static void native_cond_wait(rb_thread_cond_t *cond, pthread_mutex_t *mutex);
static void native_cond_initialize(rb_thread_cond_t *cond, int flags);
static void native_cond_destroy(rb_thread_cond_t *cond);
static pthread_t timer_thread_id;
#define RB_CONDATTR_CLOCK_MONOTONIC 1
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCKID_T) && \
defined(CLOCK_REALTIME) && defined(CLOCK_MONOTONIC) && defined(HAVE_CLOCK_GETTIME)
#define USE_MONOTONIC_COND 1
#else
#define USE_MONOTONIC_COND 0
#endif
static void
gvl_acquire_common(rb_vm_t *vm)
{
if (vm->gvl.acquired) {
vm->gvl.waiting++;
if (vm->gvl.waiting == 1) {
/* transit to polling mode */
rb_thread_wakeup_timer_thread();
}
while (vm->gvl.acquired) {
native_cond_wait(&vm->gvl.cond, &vm->gvl.lock);
}
vm->gvl.waiting--;
if (vm->gvl.need_yield) {
vm->gvl.need_yield = 0;
native_cond_signal(&vm->gvl.switch_cond);
}
}
vm->gvl.acquired = 1;
}
static void
gvl_acquire(rb_vm_t *vm, rb_thread_t *th)
{
native_mutex_lock(&vm->gvl.lock);
gvl_acquire_common(vm);
native_mutex_unlock(&vm->gvl.lock);
}
static void
gvl_release_common(rb_vm_t *vm)
{
vm->gvl.acquired = 0;
if (vm->gvl.waiting > 0)
native_cond_signal(&vm->gvl.cond);
}
static void
gvl_release(rb_vm_t *vm)
{
native_mutex_lock(&vm->gvl.lock);
gvl_release_common(vm);
native_mutex_unlock(&vm->gvl.lock);
}
static void
gvl_yield(rb_vm_t *vm, rb_thread_t *th)
{
native_mutex_lock(&vm->gvl.lock);
gvl_release_common(vm);
/* An another thread is processing GVL yield. */
if (UNLIKELY(vm->gvl.wait_yield)) {
while (vm->gvl.wait_yield)
native_cond_wait(&vm->gvl.switch_wait_cond, &vm->gvl.lock);
goto acquire;
}
if (vm->gvl.waiting > 0) {
/* Wait until another thread task take GVL. */
vm->gvl.need_yield = 1;
vm->gvl.wait_yield = 1;
while (vm->gvl.need_yield)
native_cond_wait(&vm->gvl.switch_cond, &vm->gvl.lock);
vm->gvl.wait_yield = 0;
}
else {
native_mutex_unlock(&vm->gvl.lock);
sched_yield();
native_mutex_lock(&vm->gvl.lock);
}
native_cond_broadcast(&vm->gvl.switch_wait_cond);
acquire:
gvl_acquire_common(vm);
native_mutex_unlock(&vm->gvl.lock);
}
static void
gvl_init(rb_vm_t *vm)
{
native_mutex_initialize(&vm->gvl.lock);
native_cond_initialize(&vm->gvl.cond, RB_CONDATTR_CLOCK_MONOTONIC);
native_cond_initialize(&vm->gvl.switch_cond, RB_CONDATTR_CLOCK_MONOTONIC);
native_cond_initialize(&vm->gvl.switch_wait_cond, RB_CONDATTR_CLOCK_MONOTONIC);
vm->gvl.acquired = 0;
vm->gvl.waiting = 0;
vm->gvl.need_yield = 0;
}
static void
gvl_destroy(rb_vm_t *vm)
{
native_cond_destroy(&vm->gvl.switch_wait_cond);
native_cond_destroy(&vm->gvl.switch_cond);
native_cond_destroy(&vm->gvl.cond);
native_mutex_destroy(&vm->gvl.lock);
}
static void
gvl_atfork(rb_vm_t *vm)
{
gvl_init(vm);
gvl_acquire(vm, GET_THREAD());
}
#define NATIVE_MUTEX_LOCK_DEBUG 0
static void
mutex_debug(const char *msg, pthread_mutex_t *lock)
{
if (NATIVE_MUTEX_LOCK_DEBUG) {
int r;
static pthread_mutex_t dbglock = PTHREAD_MUTEX_INITIALIZER;
if ((r = pthread_mutex_lock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
fprintf(stdout, "%s: %p\n", msg, (void *)lock);
if ((r = pthread_mutex_unlock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
}
}
static void
native_mutex_lock(pthread_mutex_t *lock)
{
int r;
mutex_debug("lock", lock);
if ((r = pthread_mutex_lock(lock)) != 0) {
rb_bug_errno("pthread_mutex_lock", r);
}
}
static void
native_mutex_unlock(pthread_mutex_t *lock)
{
int r;
mutex_debug("unlock", lock);
if ((r = pthread_mutex_unlock(lock)) != 0) {
rb_bug_errno("pthread_mutex_unlock", r);
}
}
static inline int
native_mutex_trylock(pthread_mutex_t *lock)
{
int r;
mutex_debug("trylock", lock);
if ((r = pthread_mutex_trylock(lock)) != 0) {
if (r == EBUSY) {
return EBUSY;
}
else {
rb_bug_errno("pthread_mutex_trylock", r);
}
}
return 0;
}
static void
native_mutex_initialize(pthread_mutex_t *lock)
{
int r = pthread_mutex_init(lock, 0);
mutex_debug("init", lock);
if (r != 0) {
rb_bug_errno("pthread_mutex_init", r);
}
}
static void
native_mutex_destroy(pthread_mutex_t *lock)
{
int r = pthread_mutex_destroy(lock);
mutex_debug("destroy", lock);
if (r != 0) {
rb_bug_errno("pthread_mutex_destroy", r);
}
}
static void
native_cond_initialize(rb_thread_cond_t *cond, int flags)
{
int r;
pthread_condattr_t attr;
pthread_condattr_init(&attr);
#if USE_MONOTONIC_COND
cond->clockid = CLOCK_REALTIME;
if (flags & RB_CONDATTR_CLOCK_MONOTONIC) {
r = pthread_condattr_setclock(&attr, CLOCK_MONOTONIC);
if (r == 0) {
cond->clockid = CLOCK_MONOTONIC;
}
}
#endif
r = pthread_cond_init(&cond->cond, &attr);
if (r != 0) {
rb_bug_errno("pthread_cond_init", r);
}
return;
}
static void
native_cond_destroy(rb_thread_cond_t *cond)
{
int r = pthread_cond_destroy(&cond->cond);
if (r != 0) {
rb_bug_errno("pthread_cond_destroy", r);
}
}
/*
* In OS X 10.7 (Lion), pthread_cond_signal and pthread_cond_broadcast return
* EAGAIN after retrying 8192 times. You can see them in the following page:
*
* http://www.opensource.apple.com/source/Libc/Libc-763.11/pthreads/pthread_cond.c
*
* The following native_cond_signal and native_cond_broadcast functions
* need to retrying until pthread functions don't return EAGAIN.
*/
static void
native_cond_signal(rb_thread_cond_t *cond)
{
int r;
do {
r = pthread_cond_signal(&cond->cond);
} while (r == EAGAIN);
if (r != 0) {
rb_bug_errno("pthread_cond_signal", r);
}
}
static void
native_cond_broadcast(rb_thread_cond_t *cond)
{
int r;
do {
r = pthread_cond_broadcast(&cond->cond);
} while (r == EAGAIN);
if (r != 0) {
rb_bug_errno("native_cond_broadcast", r);
}
}
static void
native_cond_wait(rb_thread_cond_t *cond, pthread_mutex_t *mutex)
{
int r = pthread_cond_wait(&cond->cond, mutex);
if (r != 0) {
rb_bug_errno("pthread_cond_wait", r);
}
}
static int
native_cond_timedwait(rb_thread_cond_t *cond, pthread_mutex_t *mutex, struct timespec *ts)
{
int r;
/*
* An old Linux may return EINTR. Even though POSIX says
* "These functions shall not return an error code of [EINTR]".
* http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html
* Let's hide it from arch generic code.
*/
do {
r = pthread_cond_timedwait(&cond->cond, mutex, ts);
} while (r == EINTR);
if (r != 0 && r != ETIMEDOUT) {
rb_bug_errno("pthread_cond_timedwait", r);
}
return r;
}
#if SIZEOF_TIME_T == SIZEOF_LONG
typedef unsigned long unsigned_time_t;
#elif SIZEOF_TIME_T == SIZEOF_INT
typedef unsigned int unsigned_time_t;
#elif SIZEOF_TIME_T == SIZEOF_LONG_LONG
typedef unsigned LONG_LONG unsigned_time_t;
#else
# error cannot find integer type which size is same as time_t.
#endif
#define TIMET_MAX (~(time_t)0 <= 0 ? (time_t)((~(unsigned_time_t)0) >> 1) : (time_t)(~(unsigned_time_t)0))
static struct timespec
native_cond_timeout(rb_thread_cond_t *cond, struct timespec timeout_rel)
{
int ret;
struct timeval tv;
struct timespec timeout;
struct timespec now;
#if USE_MONOTONIC_COND
if (cond->clockid == CLOCK_MONOTONIC) {
ret = clock_gettime(cond->clockid, &now);
if (ret != 0)
rb_sys_fail("clock_gettime()");
goto out;
}
if (cond->clockid != CLOCK_REALTIME)
rb_bug("unsupported clockid %d", cond->clockid);
#endif
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail(0);
now.tv_sec = tv.tv_sec;
now.tv_nsec = tv.tv_usec * 1000;
#if USE_MONOTONIC_COND
out:
#endif
timeout.tv_sec = now.tv_sec;
timeout.tv_nsec = now.tv_nsec;
timeout.tv_sec += timeout_rel.tv_sec;
timeout.tv_nsec += timeout_rel.tv_nsec;
if (timeout.tv_nsec >= 1000*1000*1000) {
timeout.tv_sec++;
timeout.tv_nsec -= 1000*1000*1000;
}
if (timeout.tv_sec < now.tv_sec)
timeout.tv_sec = TIMET_MAX;
return timeout;
}
#define native_cleanup_push pthread_cleanup_push
#define native_cleanup_pop pthread_cleanup_pop
#ifdef HAVE_SCHED_YIELD
#define native_thread_yield() (void)sched_yield()
#else
#define native_thread_yield() ((void)0)
#endif
#if defined(SIGVTALRM) && !defined(__CYGWIN__) && !defined(__SYMBIAN32__)
#define USE_SIGNAL_THREAD_LIST 1
#endif
#ifdef USE_SIGNAL_THREAD_LIST
static void add_signal_thread_list(rb_thread_t *th);
static void remove_signal_thread_list(rb_thread_t *th);
static rb_thread_lock_t signal_thread_list_lock;
#endif
static pthread_key_t ruby_native_thread_key;
static void
null_func(int i)
{
/* null */
}
static rb_thread_t *
ruby_thread_from_native(void)
{
return pthread_getspecific(ruby_native_thread_key);
}
static int
ruby_thread_set_native(rb_thread_t *th)
{
return pthread_setspecific(ruby_native_thread_key, th) == 0;
}
static void native_thread_init(rb_thread_t *th);
void
Init_native_thread(void)
{
rb_thread_t *th = GET_THREAD();
pthread_key_create(&ruby_native_thread_key, NULL);
th->thread_id = pthread_self();
native_thread_init(th);
#ifdef USE_SIGNAL_THREAD_LIST
native_mutex_initialize(&signal_thread_list_lock);
#endif
posix_signal(SIGVTALRM, null_func);
}
static void
native_thread_init(rb_thread_t *th)
{
native_cond_initialize(&th->native_thread_data.sleep_cond, RB_CONDATTR_CLOCK_MONOTONIC);
ruby_thread_set_native(th);
}
static void
native_thread_destroy(rb_thread_t *th)
{
native_cond_destroy(&th->native_thread_data.sleep_cond);
}
#define USE_THREAD_CACHE 0
#if USE_THREAD_CACHE
static rb_thread_t *register_cached_thread_and_wait(void);
#endif
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GETTHRDS_NP
#define STACKADDR_AVAILABLE 1
#endif
#ifdef STACKADDR_AVAILABLE
/*
* Get the initial address and size of current thread's stack
*/
static int
get_stack(void **addr, size_t *size)
{
#define CHECK_ERR(expr) \
{int err = (expr); if (err) return err;}
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP || \
(defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP)
pthread_attr_t attr;
size_t guard = 0;
# ifdef HAVE_PTHREAD_GETATTR_NP /* Linux */
STACK_GROW_DIR_DETECTION;
CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
# elif defined HAVE_PTHREAD_ATTR_GET_NP /* FreeBSD, DragonFly BSD, NetBSD */
CHECK_ERR(pthread_attr_init(&attr));
CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
# endif
# else /* MacOS X */
pthread_t th = pthread_self();
*addr = pthread_get_stackaddr_np(th);
*size = pthread_get_stacksize_np(th);
CHECK_ERR(pthread_attr_init(&attr));
# endif
CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
*size -= guard;
pthread_attr_destroy(&attr);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
stack_t stk;
# if defined HAVE_THR_STKSEGMENT /* Solaris */
CHECK_ERR(thr_stksegment(&stk));
# else /* OpenBSD */
CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
# endif
*addr = stk.ss_sp;
*size = stk.ss_size;
#elif defined HAVE_PTHREAD_GETTHRDS_NP /* AIX */
pthread_t th = pthread_self();
struct __pthrdsinfo thinfo;
char reg[256];
int regsiz=sizeof(reg);
CHECK_ERR(pthread_getthrds_np(&th, PTHRDSINFO_QUERY_ALL,
&thinfo, sizeof(thinfo),
&reg, &regsiz));
*addr = thinfo.__pi_stackaddr;
*size = thinfo.__pi_stacksize;
STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
#else
#error STACKADDR_AVAILABLE is defined but not implemented.
#endif
return 0;
#undef CHECK_ERR
}
#endif
static struct {
rb_thread_id_t id;
size_t stack_maxsize;
VALUE *stack_start;
#ifdef __ia64
VALUE *register_stack_start;
#endif
} native_main_thread;
#ifdef STACK_END_ADDRESS
extern void *STACK_END_ADDRESS;
#endif
#undef ruby_init_stack
void
ruby_init_stack(volatile VALUE *addr
#ifdef __ia64
, void *bsp
#endif
)
{
native_main_thread.id = pthread_self();
#ifdef STACK_END_ADDRESS
native_main_thread.stack_start = STACK_END_ADDRESS;
#else
if (!native_main_thread.stack_start ||
STACK_UPPER((VALUE *)(void *)&addr,
native_main_thread.stack_start > addr,
native_main_thread.stack_start < addr)) {
native_main_thread.stack_start = (VALUE *)addr;
}
#endif
#ifdef __ia64
if (!native_main_thread.register_stack_start ||
(VALUE*)bsp < native_main_thread.register_stack_start) {
native_main_thread.register_stack_start = (VALUE*)bsp;
}
#endif
{
size_t size = 0;
size_t space = 0;
#if defined(HAVE_PTHREAD_ATTR_GET_NP)
void* addr;
get_stack(&addr, &size);
#elif defined(HAVE_GETRLIMIT)
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
size = (size_t)rlim.rlim_cur;
}
#endif
space = size > 5 * 1024 * 1024 ? 1024 * 1024 : size / 5;
native_main_thread.stack_maxsize = size - space;
}
}
#define CHECK_ERR(expr) \
{int err = (expr); if (err) {rb_bug_errno(#expr, err);}}
static int
native_thread_init_stack(rb_thread_t *th)
{
rb_thread_id_t curr = pthread_self();
if (pthread_equal(curr, native_main_thread.id)) {
th->machine_stack_start = native_main_thread.stack_start;
th->machine_stack_maxsize = native_main_thread.stack_maxsize;
}
else {
#ifdef STACKADDR_AVAILABLE
void *start;
size_t size;
if (get_stack(&start, &size) == 0) {
th->machine_stack_start = start;
th->machine_stack_maxsize = size;
}
#else
rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
#endif
}
#ifdef __ia64
th->machine_register_stack_start = native_main_thread.register_stack_start;
th->machine_stack_maxsize /= 2;
th->machine_register_stack_maxsize = th->machine_stack_maxsize;
#endif
return 0;
}
#ifndef __CYGWIN__
#define USE_NATIVE_THREAD_INIT 1
#endif
static void *
thread_start_func_1(void *th_ptr)
{
#if USE_THREAD_CACHE
thread_start:
#endif
{
rb_thread_t *th = th_ptr;
#if !defined USE_NATIVE_THREAD_INIT
VALUE stack_start;
#endif
#if defined USE_NATIVE_THREAD_INIT
native_thread_init_stack(th);
#endif
native_thread_init(th);
/* run */
#if defined USE_NATIVE_THREAD_INIT
thread_start_func_2(th, th->machine_stack_start, rb_ia64_bsp());
#else
thread_start_func_2(th, &stack_start, rb_ia64_bsp());
#endif
}
#if USE_THREAD_CACHE
if (1) {
/* cache thread */
rb_thread_t *th;
if ((th = register_cached_thread_and_wait()) != 0) {
th_ptr = (void *)th;
th->thread_id = pthread_self();
goto thread_start;
}
}
#endif
return 0;
}
struct cached_thread_entry {
volatile rb_thread_t **th_area;
rb_thread_cond_t *cond;
struct cached_thread_entry *next;
};
#if USE_THREAD_CACHE
static pthread_mutex_t thread_cache_lock = PTHREAD_MUTEX_INITIALIZER;
struct cached_thread_entry *cached_thread_root;
static rb_thread_t *
register_cached_thread_and_wait(void)
{
rb_thread_cond_t cond = { PTHREAD_COND_INITIALIZER, };
volatile rb_thread_t *th_area = 0;
struct cached_thread_entry *entry =
(struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry));
struct timeval tv;
struct timespec ts;
gettimeofday(&tv, 0);
ts.tv_sec = tv.tv_sec + 60;
ts.tv_nsec = tv.tv_usec * 1000;
pthread_mutex_lock(&thread_cache_lock);
{
entry->th_area = &th_area;
entry->cond = &cond;
entry->next = cached_thread_root;
cached_thread_root = entry;
native_cond_timedwait(&cond, &thread_cache_lock, &ts);
{
struct cached_thread_entry *e = cached_thread_root;
struct cached_thread_entry *prev = cached_thread_root;
while (e) {
if (e == entry) {
if (prev == cached_thread_root) {
cached_thread_root = e->next;
}
else {
prev->next = e->next;
}
break;
}
prev = e;
e = e->next;
}
}
free(entry); /* ok */
native_cond_destroy(&cond);
}
pthread_mutex_unlock(&thread_cache_lock);
return (rb_thread_t *)th_area;
}
#endif
static int
use_cached_thread(rb_thread_t *th)
{
int result = 0;
#if USE_THREAD_CACHE
struct cached_thread_entry *entry;
if (cached_thread_root) {
pthread_mutex_lock(&thread_cache_lock);
entry = cached_thread_root;
{
if (cached_thread_root) {
cached_thread_root = entry->next;
*entry->th_area = th;
result = 1;
}
}
if (result) {
native_cond_signal(entry->cond);
}
pthread_mutex_unlock(&thread_cache_lock);
}
#endif
return result;
}
enum {
#ifdef __SYMBIAN32__
RUBY_STACK_MIN_LIMIT = 64 * 1024, /* 64KB: Let's be slightly more frugal on mobile platform */
#else
RUBY_STACK_MIN_LIMIT = 512 * 1024, /* 512KB */
#endif
RUBY_STACK_SPACE_LIMIT = 1024 * 1024
};
#ifdef PTHREAD_STACK_MIN
#define RUBY_STACK_MIN ((RUBY_STACK_MIN_LIMIT < PTHREAD_STACK_MIN) ? \
PTHREAD_STACK_MIN * 2 : RUBY_STACK_MIN_LIMIT)
#else
#define RUBY_STACK_MIN (RUBY_STACK_MIN_LIMIT)
#endif
#define RUBY_STACK_SPACE (RUBY_STACK_MIN/5 > RUBY_STACK_SPACE_LIMIT ? \
RUBY_STACK_SPACE_LIMIT : RUBY_STACK_MIN/5)
static int
native_thread_create(rb_thread_t *th)
{
int err = 0;
if (use_cached_thread(th)) {
thread_debug("create (use cached thread): %p\n", (void *)th);
}
else {
pthread_attr_t attr;
const size_t stack_size = RUBY_STACK_MIN;
const size_t space = RUBY_STACK_SPACE;
th->machine_stack_maxsize = stack_size - space;
#ifdef __ia64
th->machine_stack_maxsize /= 2;
th->machine_register_stack_maxsize = th->machine_stack_maxsize;
#endif
CHECK_ERR(pthread_attr_init(&attr));
#ifdef PTHREAD_STACK_MIN
thread_debug("create - stack size: %lu\n", (unsigned long)stack_size);
CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
#endif
#ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
#endif
CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th);
thread_debug("create: %p (%d)\n", (void *)th, err);
CHECK_ERR(pthread_attr_destroy(&attr));
}
return err;
}
static void
native_thread_join(pthread_t th)
{
int err = pthread_join(th, 0);
if (err) {
rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
}
}
#if USE_NATIVE_THREAD_PRIORITY
static void
native_thread_apply_priority(rb_thread_t *th)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
struct sched_param sp;
int policy;
int priority = 0 - th->priority;
int max, min;
pthread_getschedparam(th->thread_id, &policy, &sp);
max = sched_get_priority_max(policy);
min = sched_get_priority_min(policy);
if (min > priority) {
priority = min;
}
else if (max < priority) {
priority = max;
}
sp.sched_priority = priority;
pthread_setschedparam(th->thread_id, policy, &sp);
#else
/* not touched */
#endif
}
#endif /* USE_NATIVE_THREAD_PRIORITY */
static int
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
{
return rb_fd_select(n, readfds, writefds, exceptfds, timeout);
}
static void
ubf_pthread_cond_signal(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
native_cond_signal(&th->native_thread_data.sleep_cond);
}
static void
native_sleep(rb_thread_t *th, struct timeval *timeout_tv)
{
struct timespec timeout;
pthread_mutex_t *lock = &th->interrupt_lock;
rb_thread_cond_t *cond = &th->native_thread_data.sleep_cond;
if (timeout_tv) {
struct timespec timeout_rel;
timeout_rel.tv_sec = timeout_tv->tv_sec;
timeout_rel.tv_nsec = timeout_tv->tv_usec * 1000;
/* Solaris cond_timedwait() return EINVAL if an argument is greater than
* current_time + 100,000,000. So cut up to 100,000,000. This is
* considered as a kind of spurious wakeup. The caller to native_sleep
* should care about spurious wakeup.
*
* See also [Bug #1341] [ruby-core:29702]
* http://download.oracle.com/docs/cd/E19683-01/816-0216/6m6ngupgv/index.html
*/
if (timeout_rel.tv_sec > 100000000) {
timeout_rel.tv_sec = 100000000;
timeout_rel.tv_nsec = 0;
}
timeout = native_cond_timeout(cond, timeout_rel);
}
GVL_UNLOCK_BEGIN();
{
pthread_mutex_lock(lock);
th->unblock.func = ubf_pthread_cond_signal;
th->unblock.arg = th;
if (RUBY_VM_INTERRUPTED(th)) {
/* interrupted. return immediate */
thread_debug("native_sleep: interrupted before sleep\n");
}
else {
if (!timeout_tv)
native_cond_wait(cond, lock);
else
native_cond_timedwait(cond, lock, &timeout);
}
th->unblock.func = 0;
th->unblock.arg = 0;
pthread_mutex_unlock(lock);
}
GVL_UNLOCK_END();
thread_debug("native_sleep done\n");
}
#ifdef USE_SIGNAL_THREAD_LIST
struct signal_thread_list {
rb_thread_t *th;
struct signal_thread_list *prev;
struct signal_thread_list *next;
};
static struct signal_thread_list signal_thread_list_anchor = {
0, 0, 0,
};
#define FGLOCK(lock, body) do { \
native_mutex_lock(lock); \
{ \
body; \
} \
native_mutex_unlock(lock); \
} while (0)
#if 0 /* for debug */
static void
print_signal_list(char *str)
{
struct signal_thread_list *list =
signal_thread_list_anchor.next;
thread_debug("list (%s)> ", str);
while(list){
thread_debug("%p (%p), ", list->th, list->th->thread_id);
list = list->next;
}
thread_debug("\n");
}
#endif
static void
add_signal_thread_list(rb_thread_t *th)
{
if (!th->native_thread_data.signal_thread_list) {
FGLOCK(&signal_thread_list_lock, {
struct signal_thread_list *list =
malloc(sizeof(struct signal_thread_list));
if (list == 0) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
list->th = th;
list->prev = &signal_thread_list_anchor;
list->next = signal_thread_list_anchor.next;
if (list->next) {
list->next->prev = list;
}
signal_thread_list_anchor.next = list;
th->native_thread_data.signal_thread_list = list;
});
}
}
static void
remove_signal_thread_list(rb_thread_t *th)
{
if (th->native_thread_data.signal_thread_list) {
FGLOCK(&signal_thread_list_lock, {
struct signal_thread_list *list =
(struct signal_thread_list *)
th->native_thread_data.signal_thread_list;
list->prev->next = list->next;
if (list->next) {
list->next->prev = list->prev;
}
th->native_thread_data.signal_thread_list = 0;
list->th = 0;
free(list); /* ok */
});
}
}
static void
ubf_select_each(rb_thread_t *th)
{
thread_debug("ubf_select_each (%p)\n", (void *)th->thread_id);
if (th) {
pthread_kill(th->thread_id, SIGVTALRM);
}
}
static void
ubf_select(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
add_signal_thread_list(th);
if (pthread_self() != timer_thread_id)
rb_thread_wakeup_timer_thread(); /* activate timer thread */
ubf_select_each(th);
}
static void
ping_signal_thread_list(void) {
if (signal_thread_list_anchor.next) {
FGLOCK(&signal_thread_list_lock, {
struct signal_thread_list *list;
list = signal_thread_list_anchor.next;
while (list) {
ubf_select_each(list->th);
list = list->next;
}
});
}
}
static int
check_signal_thread_list(void)
{
if (signal_thread_list_anchor.next)
return 1;
else
return 0;
}
#else /* USE_SIGNAL_THREAD_LIST */
#define add_signal_thread_list(th) (void)(th)
#define remove_signal_thread_list(th) (void)(th)
#define ubf_select 0
static void ping_signal_thread_list(void) { return; }
static int check_signal_thread_list(void) { return 0; }
#endif /* USE_SIGNAL_THREAD_LIST */
static int timer_thread_pipe[2] = {-1, -1};
static int timer_thread_pipe_owner_process;
#define TT_DEBUG 0
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
/* only use signal-safe system calls here */
void
rb_thread_wakeup_timer_thread(void)
{
ssize_t result;
/* already opened */
if (timer_thread_pipe_owner_process == getpid()) {
const char *buff = "!";
retry:
if ((result = write(timer_thread_pipe[1], buff, 1)) <= 0) {
switch (errno) {
case EINTR: goto retry;
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
break;
default:
rb_async_bug_errno("rb_thread_wakeup_timer_thread - write", errno);
}
}
if (TT_DEBUG) WRITE_CONST(2, "rb_thread_wakeup_timer_thread: write\n");
}
else {
/* ignore wakeup */
}
}
/* VM-dependent API is not available for this function */
static void
consume_communication_pipe(void)
{
#define CCP_READ_BUFF_SIZE 1024
/* buffer can be shared because no one refers to them. */
static char buff[CCP_READ_BUFF_SIZE];
ssize_t result;
retry:
result = read(timer_thread_pipe[0], buff, CCP_READ_BUFF_SIZE);
if (result < 0) {
switch (errno) {
case EINTR: goto retry;
default:
rb_async_bug_errno("consume_communication_pipe: read\n", errno);
}
}
}
static void
close_communication_pipe(void)
{
if (close(timer_thread_pipe[0]) < 0) {
rb_bug_errno("native_stop_timer_thread - close(ttp[0])", errno);
}
if (close(timer_thread_pipe[1]) < 0) {
rb_bug_errno("native_stop_timer_thread - close(ttp[1])", errno);
}
timer_thread_pipe[0] = timer_thread_pipe[1] = -1;
}
/* 100ms. 10ms is too small for user level thread scheduling
* on recent Linux (tested on 2.6.35)
*/
#define TIME_QUANTUM_USEC (100 * 1000)
static void *
thread_timer(void *p)
{
rb_global_vm_lock_t *gvl = (rb_global_vm_lock_t *)p;
int result;
struct timeval timeout;
if (TT_DEBUG) WRITE_CONST(2, "start timer thread\n");
#if defined(__linux__) && defined(PR_SET_NAME)
prctl(PR_SET_NAME, "ruby-timer-thr");
#endif
while (system_working > 0) {
fd_set rfds;
int need_polling;
/* timer function */
ping_signal_thread_list();
timer_thread_function(0);
need_polling = check_signal_thread_list();
if (TT_DEBUG) WRITE_CONST(2, "tick\n");
/* wait */
FD_ZERO(&rfds);
FD_SET(timer_thread_pipe[0], &rfds);
if (gvl->waiting > 0 || need_polling) {
timeout.tv_sec = 0;
timeout.tv_usec = TIME_QUANTUM_USEC;
/* polling (TIME_QUANTUM_USEC usec) */
result = select(timer_thread_pipe[0] + 1, &rfds, 0, 0, &timeout);
}
else {
/* wait (infinite) */
result = select(timer_thread_pipe[0] + 1, &rfds, 0, 0, 0);
}
if (result == 0) {
/* maybe timeout */
}
else if (result > 0) {
consume_communication_pipe();
}
else { /* result < 0 */
switch (errno) {
case EBADF:
case EINVAL:
case ENOMEM: /* from Linux man */
case EFAULT: /* from FreeBSD man */
rb_async_bug_errno("thread_timer: select", errno);
default:
/* ignore */;
}
}
}
if (TT_DEBUG) WRITE_CONST(2, "finish timer thread\n");
return NULL;
}
static void
rb_thread_create_timer_thread(void)
{
if (!timer_thread_id) {
pthread_attr_t attr;
int err;
pthread_attr_init(&attr);
#ifdef PTHREAD_STACK_MIN
if (PTHREAD_STACK_MIN < 4096 * 3) {
/* Allocate the machine stack for the timer thread
* at least 12KB (3 pages). FreeBSD 8.2 AMD64 causes
* machine stack overflow only with PTHREAD_STACK_MIN.
*/
pthread_attr_setstacksize(&attr,
4096 * 3 + (THREAD_DEBUG ? BUFSIZ : 0));
}
else {
pthread_attr_setstacksize(&attr,
PTHREAD_STACK_MIN + (THREAD_DEBUG ? BUFSIZ : 0));
}
#endif
/* communication pipe with timer thread and signal handler */
if (timer_thread_pipe_owner_process != getpid()) {
if (timer_thread_pipe[0] != -1) {
/* close pipe of parent process */
close_communication_pipe();
}
err = rb_cloexec_pipe(timer_thread_pipe);
if (err != 0) {
rb_bug_errno("thread_timer: Failed to create communication pipe for timer thread", errno);
}
rb_update_max_fd(timer_thread_pipe[0]);
rb_update_max_fd(timer_thread_pipe[1]);
#if defined(HAVE_FCNTL) && defined(F_GETFL) && defined(F_SETFL)
{
int oflags;
#if defined(O_NONBLOCK)
oflags = fcntl(timer_thread_pipe[1], F_GETFL);
oflags |= O_NONBLOCK;
fcntl(timer_thread_pipe[1], F_SETFL, oflags);
#endif /* defined(O_NONBLOCK) */
}
#endif /* defined(HAVE_FCNTL) && defined(F_GETFL) && defined(F_SETFL) */
/* validate pipe on this process */
timer_thread_pipe_owner_process = getpid();
}
/* create timer thread */
if (timer_thread_id) {
rb_bug("rb_thread_create_timer_thread: Timer thread was already created\n");
}
err = pthread_create(&timer_thread_id, &attr, thread_timer, &GET_VM()->gvl);
if (err != 0) {
fprintf(stderr, "[FATAL] Failed to create timer thread (errno: %d)\n", err);
exit(EXIT_FAILURE);
}
pthread_attr_destroy(&attr);
}
}
static int
native_stop_timer_thread(int close_anyway)
{
int stopped;
stopped = --system_working <= 0;
if (TT_DEBUG) fprintf(stderr, "stop timer thread\n");
if (stopped) {
/* join */
rb_thread_wakeup_timer_thread();
native_thread_join(timer_thread_id);
if (TT_DEBUG) fprintf(stderr, "joined timer thread\n");
timer_thread_id = 0;
/* close communication pipe */
if (close_anyway) {
/* TODO: Uninstall all signal handlers or mask all signals.
* This pass is cleaning phase (terminate ruby process).
* To avoid such race, we skip to close communication
* pipe. OS will close it at process termination.
* It may not good practice, but pragmatic.
* We remain it is TODO.
*/
/* close_communication_pipe(); */
}
}
return stopped;
}
static void
native_reset_timer_thread(void)
{
if (TT_DEBUG) fprintf(stderr, "reset timer thread\n");
}
#ifdef HAVE_SIGALTSTACK
int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
void *base;
size_t size;
const size_t water_mark = 1024 * 1024;
STACK_GROW_DIR_DETECTION;
if (th) {
size = th->machine_stack_maxsize;
base = (char *)th->machine_stack_start - STACK_DIR_UPPER(0, size);
}
#ifdef STACKADDR_AVAILABLE
else if (get_stack(&base, &size) == 0) {
STACK_DIR_UPPER((void)(base = (char *)base + size), (void)0);
}
#endif
else {
return 0;
}
size /= 5;
if (size > water_mark) size = water_mark;
if (STACK_DIR_UPPER(1, 0)) {
if (size > ~(size_t)base+1) size = ~(size_t)base+1;
if (addr > base && addr <= (void *)((char *)base + size)) return 1;
}
else {
if (size > (size_t)base) size = (size_t)base;
if (addr > (void *)((char *)base - size) && addr <= base) return 1;
}
return 0;
}
#endif
int
rb_reserved_fd_p(int fd)
{
if (fd == timer_thread_pipe[0] ||
fd == timer_thread_pipe[1]) {
return 1;
}
else {
return 0;
}
}
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */