ruby/ext/openssl/ossl_pkey_rsa.c

580 строки
16 KiB
C

/*
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licensed under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
#if !defined(OPENSSL_NO_RSA)
#define GetPKeyRSA(obj, pkey) do { \
GetPKey((obj), (pkey)); \
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_RSA) { /* PARANOIA? */ \
ossl_raise(rb_eRuntimeError, "THIS IS NOT A RSA!") ; \
} \
} while (0)
#define GetRSA(obj, rsa) do { \
EVP_PKEY *_pkey; \
GetPKeyRSA((obj), _pkey); \
(rsa) = EVP_PKEY_get0_RSA(_pkey); \
} while (0)
static inline int
RSA_HAS_PRIVATE(OSSL_3_const RSA *rsa)
{
const BIGNUM *e, *d;
RSA_get0_key(rsa, NULL, &e, &d);
return e && d;
}
static inline int
RSA_PRIVATE(VALUE obj, OSSL_3_const RSA *rsa)
{
return RSA_HAS_PRIVATE(rsa) || OSSL_PKEY_IS_PRIVATE(obj);
}
/*
* Classes
*/
VALUE cRSA;
VALUE eRSAError;
/*
* Private
*/
/*
* call-seq:
* RSA.new -> rsa
* RSA.new(encoded_key [, passphrase]) -> rsa
* RSA.new(encoded_key) { passphrase } -> rsa
* RSA.new(size [, exponent]) -> rsa
*
* Generates or loads an \RSA keypair.
*
* If called without arguments, creates a new instance with no key components
* set. They can be set individually by #set_key, #set_factors, and
* #set_crt_params.
*
* If called with a String, tries to parse as DER or PEM encoding of an \RSA key.
* Note that, if _passphrase_ is not specified but the key is encrypted with a
* passphrase, \OpenSSL will prompt for it.
* See also OpenSSL::PKey.read which can parse keys of any kinds.
*
* If called with a number, generates a new key pair. This form works as an
* alias of RSA.generate.
*
* Examples:
* OpenSSL::PKey::RSA.new 2048
* OpenSSL::PKey::RSA.new File.read 'rsa.pem'
* OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
*/
static VALUE
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
RSA *rsa;
BIO *in = NULL;
VALUE arg, pass;
int type;
TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
if (pkey)
rb_raise(rb_eTypeError, "pkey already initialized");
/* The RSA.new(size, generator) form is handled by lib/openssl/pkey.rb */
rb_scan_args(argc, argv, "02", &arg, &pass);
if (argc == 0) {
rsa = RSA_new();
if (!rsa)
ossl_raise(eRSAError, "RSA_new");
goto legacy;
}
pass = ossl_pem_passwd_value(pass);
arg = ossl_to_der_if_possible(arg);
in = ossl_obj2bio(&arg);
/* First try RSAPublicKey format */
rsa = d2i_RSAPublicKey_bio(in, NULL);
if (rsa)
goto legacy;
OSSL_BIO_reset(in);
rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
if (rsa)
goto legacy;
OSSL_BIO_reset(in);
/* Use the generic routine */
pkey = ossl_pkey_read_generic(in, pass);
BIO_free(in);
if (!pkey)
ossl_raise(eRSAError, "Neither PUB key nor PRIV key");
type = EVP_PKEY_base_id(pkey);
if (type != EVP_PKEY_RSA) {
EVP_PKEY_free(pkey);
rb_raise(eRSAError, "incorrect pkey type: %s", OBJ_nid2sn(type));
}
RTYPEDDATA_DATA(self) = pkey;
return self;
legacy:
BIO_free(in);
pkey = EVP_PKEY_new();
if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa) != 1) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
}
RTYPEDDATA_DATA(self) = pkey;
return self;
}
#ifndef HAVE_EVP_PKEY_DUP
static VALUE
ossl_rsa_initialize_copy(VALUE self, VALUE other)
{
EVP_PKEY *pkey;
RSA *rsa, *rsa_new;
TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
if (pkey)
rb_raise(rb_eTypeError, "pkey already initialized");
GetRSA(other, rsa);
rsa_new = (RSA *)ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey,
(d2i_of_void *)d2i_RSAPrivateKey,
(char *)rsa);
if (!rsa_new)
ossl_raise(eRSAError, "ASN1_dup");
pkey = EVP_PKEY_new();
if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa_new) != 1) {
RSA_free(rsa_new);
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
}
RTYPEDDATA_DATA(self) = pkey;
return self;
}
#endif
/*
* call-seq:
* rsa.public? => true
*
* The return value is always +true+ since every private key is also a public
* key.
*/
static VALUE
ossl_rsa_is_public(VALUE self)
{
OSSL_3_const RSA *rsa;
GetRSA(self, rsa);
/*
* This method should check for n and e. BUG.
*/
(void)rsa;
return Qtrue;
}
/*
* call-seq:
* rsa.private? => true | false
*
* Does this keypair contain a private key?
*/
static VALUE
ossl_rsa_is_private(VALUE self)
{
OSSL_3_const RSA *rsa;
GetRSA(self, rsa);
return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
}
static int
can_export_rsaprivatekey(VALUE self)
{
OSSL_3_const RSA *rsa;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
GetRSA(self, rsa);
RSA_get0_key(rsa, &n, &e, &d);
RSA_get0_factors(rsa, &p, &q);
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
return n && e && d && p && q && dmp1 && dmq1 && iqmp;
}
/*
* call-seq:
* rsa.export([cipher, pass_phrase]) => PEM-format String
* rsa.to_pem([cipher, pass_phrase]) => PEM-format String
* rsa.to_s([cipher, pass_phrase]) => PEM-format String
*
* Outputs this keypair in PEM encoding. If _cipher_ and _pass_phrase_ are
* given they will be used to encrypt the key. _cipher_ must be an
* OpenSSL::Cipher instance.
*/
static VALUE
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
{
if (can_export_rsaprivatekey(self))
return ossl_pkey_export_traditional(argc, argv, self, 0);
else
return ossl_pkey_export_spki(self, 0);
}
/*
* call-seq:
* rsa.to_der => DER-format String
*
* Outputs this keypair in DER encoding.
*/
static VALUE
ossl_rsa_to_der(VALUE self)
{
if (can_export_rsaprivatekey(self))
return ossl_pkey_export_traditional(0, NULL, self, 1);
else
return ossl_pkey_export_spki(self, 1);
}
/*
* call-seq:
* rsa.sign_pss(digest, data, salt_length:, mgf1_hash:) -> String
*
* Signs _data_ using the Probabilistic Signature Scheme (RSA-PSS) and returns
* the calculated signature.
*
* RSAError will be raised if an error occurs.
*
* See #verify_pss for the verification operation.
*
* === Parameters
* _digest_::
* A String containing the message digest algorithm name.
* _data_::
* A String. The data to be signed.
* _salt_length_::
* The length in octets of the salt. Two special values are reserved:
* +:digest+ means the digest length, and +:max+ means the maximum possible
* length for the combination of the private key and the selected message
* digest algorithm.
* _mgf1_hash_::
* The hash algorithm used in MGF1 (the currently supported mask generation
* function (MGF)).
*
* === Example
* data = "Sign me!"
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256")
* pub_key = OpenSSL::PKey.read(pkey.public_to_der)
* puts pub_key.verify_pss("SHA256", signature, data,
* salt_length: :auto, mgf1_hash: "SHA256") # => true
*/
static VALUE
ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self)
{
VALUE digest, data, options, kwargs[2], signature;
static ID kwargs_ids[2];
EVP_PKEY *pkey;
EVP_PKEY_CTX *pkey_ctx;
const EVP_MD *md, *mgf1md;
EVP_MD_CTX *md_ctx;
size_t buf_len;
int salt_len;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt_length");
kwargs_ids[1] = rb_intern_const("mgf1_hash");
}
rb_scan_args(argc, argv, "2:", &digest, &data, &options);
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
if (kwargs[0] == ID2SYM(rb_intern("max")))
salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
else
salt_len = NUM2INT(kwargs[0]);
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
pkey = GetPrivPKeyPtr(self);
buf_len = EVP_PKEY_size(pkey);
md = ossl_evp_get_digestbyname(digest);
StringValue(data);
signature = rb_str_new(NULL, (long)buf_len);
md_ctx = EVP_MD_CTX_new();
if (!md_ctx)
goto err;
if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
goto err;
if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
goto err;
if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1)
goto err;
rb_str_set_len(signature, (long)buf_len);
EVP_MD_CTX_free(md_ctx);
return signature;
err:
EVP_MD_CTX_free(md_ctx);
ossl_raise(eRSAError, NULL);
}
/*
* call-seq:
* rsa.verify_pss(digest, signature, data, salt_length:, mgf1_hash:) -> true | false
*
* Verifies _data_ using the Probabilistic Signature Scheme (RSA-PSS).
*
* The return value is +true+ if the signature is valid, +false+ otherwise.
* RSAError will be raised if an error occurs.
*
* See #sign_pss for the signing operation and an example code.
*
* === Parameters
* _digest_::
* A String containing the message digest algorithm name.
* _data_::
* A String. The data to be signed.
* _salt_length_::
* The length in octets of the salt. Two special values are reserved:
* +:digest+ means the digest length, and +:auto+ means automatically
* determining the length based on the signature.
* _mgf1_hash_::
* The hash algorithm used in MGF1.
*/
static VALUE
ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self)
{
VALUE digest, signature, data, options, kwargs[2];
static ID kwargs_ids[2];
EVP_PKEY *pkey;
EVP_PKEY_CTX *pkey_ctx;
const EVP_MD *md, *mgf1md;
EVP_MD_CTX *md_ctx;
int result, salt_len;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt_length");
kwargs_ids[1] = rb_intern_const("mgf1_hash");
}
rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options);
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
if (kwargs[0] == ID2SYM(rb_intern("auto")))
salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
else
salt_len = NUM2INT(kwargs[0]);
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
GetPKey(self, pkey);
md = ossl_evp_get_digestbyname(digest);
StringValue(signature);
StringValue(data);
md_ctx = EVP_MD_CTX_new();
if (!md_ctx)
goto err;
if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
goto err;
if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
goto err;
result = EVP_DigestVerifyFinal(md_ctx,
(unsigned char *)RSTRING_PTR(signature),
RSTRING_LEN(signature));
switch (result) {
case 0:
ossl_clear_error();
EVP_MD_CTX_free(md_ctx);
return Qfalse;
case 1:
EVP_MD_CTX_free(md_ctx);
return Qtrue;
default:
goto err;
}
err:
EVP_MD_CTX_free(md_ctx);
ossl_raise(eRSAError, NULL);
}
/*
* call-seq:
* rsa.params => hash
*
* THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
*
* Stores all parameters of key to the hash. The hash has keys 'n', 'e', 'd',
* 'p', 'q', 'dmp1', 'dmq1', 'iqmp'.
*
* Don't use :-)) (It's up to you)
*/
static VALUE
ossl_rsa_get_params(VALUE self)
{
OSSL_3_const RSA *rsa;
VALUE hash;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
GetRSA(self, rsa);
RSA_get0_key(rsa, &n, &e, &d);
RSA_get0_factors(rsa, &p, &q);
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));
return hash;
}
/*
* Document-method: OpenSSL::PKey::RSA#set_key
* call-seq:
* rsa.set_key(n, e, d) -> self
*
* Sets _n_, _e_, _d_ for the RSA instance.
*/
OSSL_PKEY_BN_DEF3(rsa, RSA, key, n, e, d)
/*
* Document-method: OpenSSL::PKey::RSA#set_factors
* call-seq:
* rsa.set_factors(p, q) -> self
*
* Sets _p_, _q_ for the RSA instance.
*/
OSSL_PKEY_BN_DEF2(rsa, RSA, factors, p, q)
/*
* Document-method: OpenSSL::PKey::RSA#set_crt_params
* call-seq:
* rsa.set_crt_params(dmp1, dmq1, iqmp) -> self
*
* Sets _dmp1_, _dmq1_, _iqmp_ for the RSA instance. They are calculated by
* <tt>d mod (p - 1)</tt>, <tt>d mod (q - 1)</tt> and <tt>q^(-1) mod p</tt>
* respectively.
*/
OSSL_PKEY_BN_DEF3(rsa, RSA, crt_params, dmp1, dmq1, iqmp)
/*
* INIT
*/
#define DefRSAConst(x) rb_define_const(cRSA, #x, INT2NUM(RSA_##x))
void
Init_ossl_rsa(void)
{
#if 0
mPKey = rb_define_module_under(mOSSL, "PKey");
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
#endif
/* Document-class: OpenSSL::PKey::RSAError
*
* Generic exception that is raised if an operation on an RSA PKey
* fails unexpectedly or in case an instantiation of an instance of RSA
* fails due to non-conformant input data.
*/
eRSAError = rb_define_class_under(mPKey, "RSAError", ePKeyError);
/* Document-class: OpenSSL::PKey::RSA
*
* RSA is an asymmetric public key algorithm that has been formalized in
* RFC 3447. It is in widespread use in public key infrastructures (PKI)
* where certificates (cf. OpenSSL::X509::Certificate) often are issued
* on the basis of a public/private RSA key pair. RSA is used in a wide
* field of applications such as secure (symmetric) key exchange, e.g.
* when establishing a secure TLS/SSL connection. It is also used in
* various digital signature schemes.
*/
cRSA = rb_define_class_under(mPKey, "RSA", cPKey);
rb_define_method(cRSA, "initialize", ossl_rsa_initialize, -1);
#ifndef HAVE_EVP_PKEY_DUP
rb_define_method(cRSA, "initialize_copy", ossl_rsa_initialize_copy, 1);
#endif
rb_define_method(cRSA, "public?", ossl_rsa_is_public, 0);
rb_define_method(cRSA, "private?", ossl_rsa_is_private, 0);
rb_define_method(cRSA, "export", ossl_rsa_export, -1);
rb_define_alias(cRSA, "to_pem", "export");
rb_define_alias(cRSA, "to_s", "export");
rb_define_method(cRSA, "to_der", ossl_rsa_to_der, 0);
rb_define_method(cRSA, "sign_pss", ossl_rsa_sign_pss, -1);
rb_define_method(cRSA, "verify_pss", ossl_rsa_verify_pss, -1);
DEF_OSSL_PKEY_BN(cRSA, rsa, n);
DEF_OSSL_PKEY_BN(cRSA, rsa, e);
DEF_OSSL_PKEY_BN(cRSA, rsa, d);
DEF_OSSL_PKEY_BN(cRSA, rsa, p);
DEF_OSSL_PKEY_BN(cRSA, rsa, q);
DEF_OSSL_PKEY_BN(cRSA, rsa, dmp1);
DEF_OSSL_PKEY_BN(cRSA, rsa, dmq1);
DEF_OSSL_PKEY_BN(cRSA, rsa, iqmp);
rb_define_method(cRSA, "set_key", ossl_rsa_set_key, 3);
rb_define_method(cRSA, "set_factors", ossl_rsa_set_factors, 2);
rb_define_method(cRSA, "set_crt_params", ossl_rsa_set_crt_params, 3);
rb_define_method(cRSA, "params", ossl_rsa_get_params, 0);
/*
* TODO: Test it
rb_define_method(cRSA, "blinding_on!", ossl_rsa_blinding_on, 0);
rb_define_method(cRSA, "blinding_off!", ossl_rsa_blinding_off, 0);
*/
}
#else /* defined NO_RSA */
void
Init_ossl_rsa(void)
{
}
#endif /* NO_RSA */