зеркало из https://github.com/github/ruby.git
528 строки
12 KiB
Ruby
528 строки
12 KiB
Ruby
#
|
|
# rational.rb -
|
|
# $Release Version: 0.5 $
|
|
# $Revision: 1.7 $
|
|
# $Date: 1999/08/24 12:49:28 $
|
|
# by Keiju ISHITSUKA(SHL Japan Inc.)
|
|
#
|
|
# Documentation by Kevin Jackson and Gavin Sinclair.
|
|
#
|
|
# When you <tt>require 'rational'</tt>, all interactions between numbers
|
|
# potentially return a rational result. For example:
|
|
#
|
|
# 1.quo(2) # -> 0.5
|
|
# require 'rational'
|
|
# 1.quo(2) # -> Rational(1,2)
|
|
#
|
|
# See Rational for full documentation.
|
|
#
|
|
|
|
#
|
|
# Creates a Rational number (i.e. a fraction). +a+ and +b+ should be Integers:
|
|
#
|
|
# Rational(1,3) # -> 1/3
|
|
#
|
|
# Note: trying to construct a Rational with floating point or real values
|
|
# produces errors:
|
|
#
|
|
# Rational(1.1, 2.3) # -> NoMethodError
|
|
#
|
|
def Rational(a, b = 1)
|
|
if a.kind_of?(Rational) && b == 1
|
|
a
|
|
else
|
|
Rational.reduce(a, b)
|
|
end
|
|
end
|
|
|
|
#
|
|
# Rational implements a rational class for numbers.
|
|
#
|
|
# <em>A rational number is a number that can be expressed as a fraction p/q
|
|
# where p and q are integers and q != 0. A rational number p/q is said to have
|
|
# numerator p and denominator q. Numbers that are not rational are called
|
|
# irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
|
|
#
|
|
# To create a Rational Number:
|
|
# Rational(a,b) # -> a/b
|
|
# Rational.new!(a,b) # -> a/b
|
|
#
|
|
# Examples:
|
|
# Rational(5,6) # -> 5/6
|
|
# Rational(5) # -> 5/1
|
|
#
|
|
# Rational numbers are reduced to their lowest terms:
|
|
# Rational(6,10) # -> 3/5
|
|
#
|
|
# But not if you use the unusual method "new!":
|
|
# Rational.new!(6,10) # -> 6/10
|
|
#
|
|
# Division by zero is obviously not allowed:
|
|
# Rational(3,0) # -> ZeroDivisionError
|
|
#
|
|
class Rational < Numeric
|
|
@RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'
|
|
|
|
#
|
|
# Reduces the given numerator and denominator to their lowest terms. Use
|
|
# Rational() instead.
|
|
#
|
|
def Rational.reduce(num, den = 1)
|
|
raise ZeroDivisionError, "denominator is zero" if den == 0
|
|
|
|
if den < 0
|
|
num = -num
|
|
den = -den
|
|
end
|
|
gcd = num.gcd(den)
|
|
num = num.div(gcd)
|
|
den = den.div(gcd)
|
|
if den == 1 && defined?(Unify)
|
|
num
|
|
else
|
|
new!(num, den)
|
|
end
|
|
end
|
|
|
|
#
|
|
# Implements the constructor. This method does not reduce to lowest terms or
|
|
# check for division by zero. Therefore #Rational() should be preferred in
|
|
# normal use.
|
|
#
|
|
def Rational.new!(num, den = 1)
|
|
new(num, den)
|
|
end
|
|
|
|
private_class_method :new
|
|
|
|
#
|
|
# This method is actually private.
|
|
#
|
|
def initialize(num, den)
|
|
if den < 0
|
|
num = -num
|
|
den = -den
|
|
end
|
|
if num.kind_of?(Integer) and den.kind_of?(Integer)
|
|
@numerator = num
|
|
@denominator = den
|
|
else
|
|
@numerator = num.to_i
|
|
@denominator = den.to_i
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns the addition of this value and +a+.
|
|
#
|
|
# Examples:
|
|
# r = Rational(3,4) # -> Rational(3,4)
|
|
# r + 1 # -> Rational(7,4)
|
|
# r + 0.5 # -> 1.25
|
|
#
|
|
def + (a)
|
|
if a.kind_of?(Rational)
|
|
num = @numerator * a.denominator
|
|
num_a = a.numerator * @denominator
|
|
Rational(num + num_a, @denominator * a.denominator)
|
|
elsif a.kind_of?(Integer)
|
|
self + Rational.new!(a, 1)
|
|
elsif a.kind_of?(Float)
|
|
Float(self) + a
|
|
else
|
|
x, y = a.coerce(self)
|
|
x + y
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns the difference of this value and +a+.
|
|
# subtracted.
|
|
#
|
|
# Examples:
|
|
# r = Rational(3,4) # -> Rational(3,4)
|
|
# r - 1 # -> Rational(-1,4)
|
|
# r - 0.5 # -> 0.25
|
|
#
|
|
def - (a)
|
|
if a.kind_of?(Rational)
|
|
num = @numerator * a.denominator
|
|
num_a = a.numerator * @denominator
|
|
Rational(num - num_a, @denominator*a.denominator)
|
|
elsif a.kind_of?(Integer)
|
|
self - Rational.new!(a, 1)
|
|
elsif a.kind_of?(Float)
|
|
Float(self) - a
|
|
else
|
|
x, y = a.coerce(self)
|
|
x - y
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns the product of this value and +a+.
|
|
#
|
|
# Examples:
|
|
# r = Rational(3,4) # -> Rational(3,4)
|
|
# r * 2 # -> Rational(3,2)
|
|
# r * 4 # -> Rational(3,1)
|
|
# r * 0.5 # -> 0.375
|
|
# r * Rational(1,2) # -> Rational(3,8)
|
|
#
|
|
def * (a)
|
|
if a.kind_of?(Rational)
|
|
num = @numerator * a.numerator
|
|
den = @denominator * a.denominator
|
|
Rational(num, den)
|
|
elsif a.kind_of?(Integer)
|
|
self * Rational.new!(a, 1)
|
|
elsif a.kind_of?(Float)
|
|
Float(self) * a
|
|
else
|
|
x, y = a.coerce(self)
|
|
x * y
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns the quotient of this value and +a+.
|
|
# r = Rational(3,4) # -> Rational(3,4)
|
|
# r / 2 # -> Rational(3,8)
|
|
# r / 2.0 # -> 0.375
|
|
# r / Rational(1,2) # -> Rational(3,2)
|
|
#
|
|
def / (a)
|
|
if a.kind_of?(Rational)
|
|
num = @numerator * a.denominator
|
|
den = @denominator * a.numerator
|
|
Rational(num, den)
|
|
elsif a.kind_of?(Integer)
|
|
raise ZeroDivisionError, "division by zero" if a == 0
|
|
self / Rational.new!(a, 1)
|
|
elsif a.kind_of?(Float)
|
|
Float(self) / a
|
|
else
|
|
x, y = a.coerce(self)
|
|
x / y
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns this value raised to the given power.
|
|
#
|
|
# Examples:
|
|
# r = Rational(3,4) # -> Rational(3,4)
|
|
# r ** 2 # -> Rational(9,16)
|
|
# r ** 2.0 # -> 0.5625
|
|
# r ** Rational(1,2) # -> 0.866025403784439
|
|
#
|
|
def ** (other)
|
|
if other.kind_of?(Rational)
|
|
Float(self) ** other
|
|
elsif other.kind_of?(Integer)
|
|
if other > 0
|
|
num = @numerator ** other
|
|
den = @denominator ** other
|
|
elsif other < 0
|
|
num = @denominator ** -other
|
|
den = @numerator ** -other
|
|
elsif other == 0
|
|
num = 1
|
|
den = 1
|
|
end
|
|
Rational.new!(num, den)
|
|
elsif other.kind_of?(Float)
|
|
Float(self) ** other
|
|
else
|
|
x, y = other.coerce(self)
|
|
x ** y
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns the remainder when this value is divided by +other+.
|
|
#
|
|
# Examples:
|
|
# r = Rational(7,4) # -> Rational(7,4)
|
|
# r % Rational(1,2) # -> Rational(1,4)
|
|
# r % 1 # -> Rational(3,4)
|
|
# r % Rational(1,7) # -> Rational(1,28)
|
|
# r % 0.26 # -> 0.19
|
|
#
|
|
def % (other)
|
|
value = (self / other).to_i
|
|
return self - other * value
|
|
end
|
|
|
|
#
|
|
# Returns the quotient _and_ remainder.
|
|
#
|
|
# Examples:
|
|
# r = Rational(7,4) # -> Rational(7,4)
|
|
# r.divmod Rational(1,2) # -> [3, Rational(1,4)]
|
|
#
|
|
def divmod(other)
|
|
value = (self / other).to_i
|
|
return value, self - other * value
|
|
end
|
|
|
|
#
|
|
# Returns the absolute value.
|
|
#
|
|
def abs
|
|
if @numerator > 0
|
|
Rational.new!(@numerator, @denominator)
|
|
else
|
|
Rational.new!(-@numerator, @denominator)
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns +true+ iff this value is numerically equal to +other+.
|
|
#
|
|
# But beware:
|
|
# Rational(1,2) == Rational(4,8) # -> true
|
|
# Rational(1,2) == Rational.new!(4,8) # -> false
|
|
#
|
|
# Don't use Rational.new!
|
|
#
|
|
def == (other)
|
|
if other.kind_of?(Rational)
|
|
@numerator == other.numerator and @denominator == other.denominator
|
|
elsif other.kind_of?(Integer)
|
|
self == Rational.new!(other, 1)
|
|
elsif other.kind_of?(Float)
|
|
Float(self) == other
|
|
else
|
|
other == self
|
|
end
|
|
end
|
|
|
|
#
|
|
# Standard comparison operator.
|
|
#
|
|
def <=> (other)
|
|
if other.kind_of?(Rational)
|
|
num = @numerator * other.denominator
|
|
num_a = other.numerator * @denominator
|
|
v = num - num_a
|
|
if v > 0
|
|
return 1
|
|
elsif v < 0
|
|
return -1
|
|
else
|
|
return 0
|
|
end
|
|
elsif other.kind_of?(Integer)
|
|
return self <=> Rational.new!(other, 1)
|
|
elsif other.kind_of?(Float)
|
|
return Float(self) <=> other
|
|
elsif defined? other.coerce
|
|
x, y = other.coerce(self)
|
|
return x <=> y
|
|
else
|
|
return nil
|
|
end
|
|
end
|
|
|
|
def coerce(other)
|
|
if other.kind_of?(Float)
|
|
return other, self.to_f
|
|
elsif other.kind_of?(Integer)
|
|
return Rational.new!(other, 1), self
|
|
else
|
|
super
|
|
end
|
|
end
|
|
|
|
#
|
|
# Converts the rational to an Integer. Not the _nearest_ integer, the
|
|
# truncated integer. Study the following example carefully:
|
|
# Rational(+7,4).to_i # -> 1
|
|
# Rational(-7,4).to_i # -> -2
|
|
# (-1.75).to_i # -> -1
|
|
#
|
|
# In other words:
|
|
# Rational(-7,4) == -1.75 # -> true
|
|
# Rational(-7,4).to_i == (-1.75).to_i # false
|
|
#
|
|
def to_i
|
|
Integer(@numerator.div(@denominator))
|
|
end
|
|
|
|
#
|
|
# Converts the rational to a Float.
|
|
#
|
|
def to_f
|
|
@numerator.quof(@denominator)
|
|
end
|
|
|
|
#
|
|
# Returns a string representation of the rational number.
|
|
#
|
|
# Example:
|
|
# Rational(3,4).to_s # "3/4"
|
|
# Rational(8).to_s # "8"
|
|
#
|
|
def to_s
|
|
if @denominator == 1
|
|
@numerator.to_s
|
|
else
|
|
@numerator.to_s+"/"+@denominator.to_s
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns +self+.
|
|
#
|
|
def to_r
|
|
self
|
|
end
|
|
|
|
#
|
|
# Returns a reconstructable string representation:
|
|
#
|
|
# Rational(5,8).inspect # -> "Rational(5, 8)"
|
|
#
|
|
def inspect
|
|
sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
|
|
end
|
|
|
|
#
|
|
# Returns a hash code for the object.
|
|
#
|
|
def hash
|
|
@numerator.hash ^ @denominator.hash
|
|
end
|
|
|
|
attr :numerator
|
|
attr :denominator
|
|
|
|
private :initialize
|
|
end
|
|
|
|
class Integer
|
|
#
|
|
# In an integer, the value _is_ the numerator of its rational equivalent.
|
|
# Therefore, this method returns +self+.
|
|
#
|
|
def numerator
|
|
self
|
|
end
|
|
|
|
#
|
|
# In an integer, the denominator is 1. Therefore, this method returns 1.
|
|
#
|
|
def denominator
|
|
1
|
|
end
|
|
|
|
#
|
|
# Returns a Rational representation of this integer.
|
|
#
|
|
def to_r
|
|
Rational(self, 1)
|
|
end
|
|
|
|
#
|
|
# Returns the <em>greatest common denominator</em> of the two numbers (+self+
|
|
# and +n+).
|
|
#
|
|
# Examples:
|
|
# 72.gcd 168 # -> 24
|
|
# 19.gcd 36 # -> 1
|
|
#
|
|
# The result is positive, no matter the sign of the arguments.
|
|
#
|
|
def gcd(other)
|
|
min = self.abs
|
|
max = other.abs
|
|
while min > 0
|
|
tmp = min
|
|
min = max % min
|
|
max = tmp
|
|
end
|
|
max
|
|
end
|
|
|
|
# Examples:
|
|
# 6.lcm 7 # -> 42
|
|
# 6.lcm 9 # -> 18
|
|
#
|
|
def lcm(other)
|
|
if self.zero? or other.zero?
|
|
0
|
|
else
|
|
(self.div(self.gcd(other)) * other).abs
|
|
end
|
|
end
|
|
|
|
#
|
|
# Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
|
|
# (+self+ and +other+). This is more efficient than calculating them
|
|
# separately.
|
|
#
|
|
# Example:
|
|
# 6.gcdlcm 9 # -> [3, 18]
|
|
#
|
|
def gcdlcm(other)
|
|
gcd = self.gcd(other)
|
|
if self.zero? or other.zero?
|
|
[gcd, 0]
|
|
else
|
|
[gcd, (self.div(gcd) * other).abs]
|
|
end
|
|
end
|
|
end
|
|
|
|
class Fixnum
|
|
alias quof quo
|
|
undef quo
|
|
# If Rational is defined, returns a Rational number instead of a Fixnum.
|
|
def quo(other)
|
|
Rational.new!(self,1) / other
|
|
end
|
|
alias rdiv quo
|
|
|
|
# Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
|
|
def rpower (other)
|
|
if other >= 0
|
|
self.power!(other)
|
|
else
|
|
Rational.new!(self,1)**other
|
|
end
|
|
end
|
|
|
|
unless defined? 1.power!
|
|
alias power! **
|
|
alias ** rpower
|
|
end
|
|
end
|
|
|
|
class Bignum
|
|
unless defined? Complex
|
|
alias power! **
|
|
end
|
|
|
|
alias quof quo
|
|
undef quo
|
|
# If Rational is defined, returns a Rational number instead of a Bignum.
|
|
def quo(other)
|
|
Rational.new!(self,1) / other
|
|
end
|
|
alias rdiv quo
|
|
|
|
# Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
|
|
def rpower (other)
|
|
if other >= 0
|
|
self.power!(other)
|
|
else
|
|
Rational.new!(self, 1)**other
|
|
end
|
|
end
|
|
|
|
unless defined? Complex
|
|
alias ** rpower
|
|
end
|
|
end
|