ruby/vm_callinfo.h

480 строки
14 KiB
C

#ifndef RUBY_VM_CALLINFO_H /*-*-C-*-vi:se ft=c:*/
#define RUBY_VM_CALLINFO_H
/**
* @author Ruby developers <ruby-core@ruby-lang.org>
* @copyright This file is a part of the programming language Ruby.
* Permission is hereby granted, to either redistribute and/or
* modify this file, provided that the conditions mentioned in the
* file COPYING are met. Consult the file for details.
*/
#include "debug_counter.h"
enum vm_call_flag_bits {
VM_CALL_ARGS_SPLAT_bit, /* m(*args) */
VM_CALL_ARGS_BLOCKARG_bit, /* m(&block) */
VM_CALL_FCALL_bit, /* m(...) */
VM_CALL_VCALL_bit, /* m */
VM_CALL_ARGS_SIMPLE_bit, /* (ci->flag & (SPLAT|BLOCKARG)) && blockiseq == NULL && ci->kw_arg == NULL */
VM_CALL_BLOCKISEQ_bit, /* has blockiseq */
VM_CALL_KWARG_bit, /* has kwarg */
VM_CALL_KW_SPLAT_bit, /* m(**opts) */
VM_CALL_TAILCALL_bit, /* located at tail position */
VM_CALL_SUPER_bit, /* super */
VM_CALL_ZSUPER_bit, /* zsuper */
VM_CALL_OPT_SEND_bit, /* internal flag */
VM_CALL_KW_SPLAT_MUT_bit, /* kw splat hash can be modified (to avoid allocating a new one) */
VM_CALL__END
};
#define VM_CALL_ARGS_SPLAT (0x01 << VM_CALL_ARGS_SPLAT_bit)
#define VM_CALL_ARGS_BLOCKARG (0x01 << VM_CALL_ARGS_BLOCKARG_bit)
#define VM_CALL_FCALL (0x01 << VM_CALL_FCALL_bit)
#define VM_CALL_VCALL (0x01 << VM_CALL_VCALL_bit)
#define VM_CALL_ARGS_SIMPLE (0x01 << VM_CALL_ARGS_SIMPLE_bit)
#define VM_CALL_BLOCKISEQ (0x01 << VM_CALL_BLOCKISEQ_bit)
#define VM_CALL_KWARG (0x01 << VM_CALL_KWARG_bit)
#define VM_CALL_KW_SPLAT (0x01 << VM_CALL_KW_SPLAT_bit)
#define VM_CALL_TAILCALL (0x01 << VM_CALL_TAILCALL_bit)
#define VM_CALL_SUPER (0x01 << VM_CALL_SUPER_bit)
#define VM_CALL_ZSUPER (0x01 << VM_CALL_ZSUPER_bit)
#define VM_CALL_OPT_SEND (0x01 << VM_CALL_OPT_SEND_bit)
#define VM_CALL_KW_SPLAT_MUT (0x01 << VM_CALL_KW_SPLAT_MUT_bit)
struct rb_callinfo_kwarg {
int keyword_len;
VALUE keywords[];
};
static inline size_t
rb_callinfo_kwarg_bytes(int keyword_len)
{
return rb_size_mul_add_or_raise(
keyword_len,
sizeof(VALUE),
sizeof(struct rb_callinfo_kwarg),
rb_eRuntimeError);
}
// imemo_callinfo
struct rb_callinfo {
VALUE flags;
const struct rb_callinfo_kwarg *kwarg;
VALUE mid;
VALUE flag;
VALUE argc;
};
#ifndef USE_EMBED_CI
#define USE_EMBED_CI 1
#endif
#if SIZEOF_VALUE == 8
#define CI_EMBED_TAG_bits 1
#define CI_EMBED_ARGC_bits 15
#define CI_EMBED_FLAG_bits 16
#define CI_EMBED_ID_bits 32
#elif SIZEOF_VALUE == 4
#define CI_EMBED_TAG_bits 1
#define CI_EMBED_ARGC_bits 3
#define CI_EMBED_FLAG_bits 13
#define CI_EMBED_ID_bits 15
#endif
#if (CI_EMBED_TAG_bits + CI_EMBED_ARGC_bits + CI_EMBED_FLAG_bits + CI_EMBED_ID_bits) != (SIZEOF_VALUE * 8)
#error
#endif
#define CI_EMBED_FLAG 0x01
#define CI_EMBED_ARGC_SHFT (CI_EMBED_TAG_bits)
#define CI_EMBED_ARGC_MASK ((((VALUE)1)<<CI_EMBED_ARGC_bits) - 1)
#define CI_EMBED_FLAG_SHFT (CI_EMBED_TAG_bits + CI_EMBED_ARGC_bits)
#define CI_EMBED_FLAG_MASK ((((VALUE)1)<<CI_EMBED_FLAG_bits) - 1)
#define CI_EMBED_ID_SHFT (CI_EMBED_TAG_bits + CI_EMBED_ARGC_bits + CI_EMBED_FLAG_bits)
#define CI_EMBED_ID_MASK ((((VALUE)1)<<CI_EMBED_ID_bits) - 1)
static inline bool
vm_ci_packed_p(const struct rb_callinfo *ci)
{
#if USE_EMBED_CI
if (LIKELY(((VALUE)ci) & 0x01)) {
return 1;
}
else {
VM_ASSERT(IMEMO_TYPE_P(ci, imemo_callinfo));
return 0;
}
#else
return 0;
#endif
}
static inline bool
vm_ci_p(const struct rb_callinfo *ci)
{
if (vm_ci_packed_p(ci) || IMEMO_TYPE_P(ci, imemo_callinfo)) {
return 1;
}
else {
return 0;
}
}
static inline ID
vm_ci_mid(const struct rb_callinfo *ci)
{
if (vm_ci_packed_p(ci)) {
return (((VALUE)ci) >> CI_EMBED_ID_SHFT) & CI_EMBED_ID_MASK;
}
else {
return (ID)ci->mid;
}
}
static inline unsigned int
vm_ci_flag(const struct rb_callinfo *ci)
{
if (vm_ci_packed_p(ci)) {
return (unsigned int)((((VALUE)ci) >> CI_EMBED_FLAG_SHFT) & CI_EMBED_FLAG_MASK);
}
else {
return (unsigned int)ci->flag;
}
}
static inline unsigned int
vm_ci_argc(const struct rb_callinfo *ci)
{
if (vm_ci_packed_p(ci)) {
return (unsigned int)((((VALUE)ci) >> CI_EMBED_ARGC_SHFT) & CI_EMBED_ARGC_MASK);
}
else {
return (unsigned int)ci->argc;
}
}
static inline const struct rb_callinfo_kwarg *
vm_ci_kwarg(const struct rb_callinfo *ci)
{
if (vm_ci_packed_p(ci)) {
return NULL;
}
else {
return ci->kwarg;
}
}
static inline void
vm_ci_dump(const struct rb_callinfo *ci)
{
if (vm_ci_packed_p(ci)) {
ruby_debug_printf("packed_ci ID:%s flag:%x argc:%u\n",
rb_id2name(vm_ci_mid(ci)), vm_ci_flag(ci), vm_ci_argc(ci));
}
else {
rp(ci);
}
}
#define vm_ci_new(mid, flag, argc, kwarg) vm_ci_new_(mid, flag, argc, kwarg, __FILE__, __LINE__)
#define vm_ci_new_runtime(mid, flag, argc, kwarg) vm_ci_new_runtime_(mid, flag, argc, kwarg, __FILE__, __LINE__)
#/* This is passed to STATIC_ASSERT. Cannot be an inline function. */
#define VM_CI_EMBEDDABLE_P(mid, flag, argc, kwarg) \
(((mid ) & ~CI_EMBED_ID_MASK) ? false : \
((flag) & ~CI_EMBED_FLAG_MASK) ? false : \
((argc) & ~CI_EMBED_ARGC_MASK) ? false : \
(kwarg) ? false : true)
#define vm_ci_new_id(mid, flag, argc, must_zero) \
((const struct rb_callinfo *) \
((((VALUE)(mid )) << CI_EMBED_ID_SHFT) | \
(((VALUE)(flag)) << CI_EMBED_FLAG_SHFT) | \
(((VALUE)(argc)) << CI_EMBED_ARGC_SHFT) | \
RUBY_FIXNUM_FLAG))
static inline const struct rb_callinfo *
vm_ci_new_(ID mid, unsigned int flag, unsigned int argc, const struct rb_callinfo_kwarg *kwarg, const char *file, int line)
{
#if USE_EMBED_CI
if (VM_CI_EMBEDDABLE_P(mid, flag, argc, kwarg)) {
RB_DEBUG_COUNTER_INC(ci_packed);
return vm_ci_new_id(mid, flag, argc, kwarg);
}
#endif
const bool debug = 0;
if (debug) ruby_debug_printf("%s:%d ", file, line);
// TODO: dedup
const struct rb_callinfo *ci = (const struct rb_callinfo *)
rb_imemo_new(imemo_callinfo,
(VALUE)mid,
(VALUE)flag,
(VALUE)argc,
(VALUE)kwarg);
if (debug) rp(ci);
if (kwarg) {
RB_DEBUG_COUNTER_INC(ci_kw);
}
else {
RB_DEBUG_COUNTER_INC(ci_nokw);
}
VM_ASSERT(vm_ci_flag(ci) == flag);
VM_ASSERT(vm_ci_argc(ci) == argc);
return ci;
}
static inline const struct rb_callinfo *
vm_ci_new_runtime_(ID mid, unsigned int flag, unsigned int argc, const struct rb_callinfo_kwarg *kwarg, const char *file, int line)
{
RB_DEBUG_COUNTER_INC(ci_runtime);
return vm_ci_new_(mid, flag, argc, kwarg, file, line);
}
#define VM_CALLINFO_NOT_UNDER_GC IMEMO_FL_USER0
static inline bool
vm_ci_markable(const struct rb_callinfo *ci)
{
if (! ci) {
return false; /* or true? This is Qfalse... */
}
else if (vm_ci_packed_p(ci)) {
return true;
}
else {
VM_ASSERT(IMEMO_TYPE_P(ci, imemo_callinfo));
return ! FL_ANY_RAW((VALUE)ci, VM_CALLINFO_NOT_UNDER_GC);
}
}
#define VM_CI_ON_STACK(mid_, flags_, argc_, kwarg_) \
(struct rb_callinfo) { \
.flags = T_IMEMO | \
(imemo_callinfo << FL_USHIFT) | \
VM_CALLINFO_NOT_UNDER_GC, \
.mid = mid_, \
.flag = flags_, \
.argc = argc_, \
.kwarg = kwarg_, \
}
typedef VALUE (*vm_call_handler)(
struct rb_execution_context_struct *ec,
struct rb_control_frame_struct *cfp,
struct rb_calling_info *calling);
// imemo_callcache
struct rb_callcache {
const VALUE flags;
/* inline cache: key */
const VALUE klass; // should not mark it because klass can not be free'd
// because of this marking. When klass is collected,
// cc will be cleared (cc->klass = 0) at vm_ccs_free().
/* inline cache: values */
const struct rb_callable_method_entry_struct * const cme_;
const vm_call_handler call_;
union {
const unsigned int attr_index;
const enum method_missing_reason method_missing_reason; /* used by method_missing */
VALUE v;
} aux_;
};
#define VM_CALLCACHE_UNMARKABLE IMEMO_FL_USER0
#define VM_CALLCACHE_ON_STACK IMEMO_FL_USER1
static inline const struct rb_callcache *
vm_cc_new(VALUE klass,
const struct rb_callable_method_entry_struct *cme,
vm_call_handler call)
{
const struct rb_callcache *cc = (const struct rb_callcache *)rb_imemo_new(imemo_callcache, (VALUE)cme, (VALUE)call, 0, klass);
RB_DEBUG_COUNTER_INC(cc_new);
return cc;
}
#define VM_CC_ON_STACK(clazz, call, aux, cme) \
(struct rb_callcache) { \
.flags = T_IMEMO | \
(imemo_callcache << FL_USHIFT) | \
VM_CALLCACHE_UNMARKABLE | \
VM_CALLCACHE_ON_STACK, \
.klass = clazz, \
.cme_ = cme, \
.call_ = call, \
.aux_ = aux, \
}
static inline bool
vm_cc_class_check(const struct rb_callcache *cc, VALUE klass)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(cc->klass == 0 ||
RB_TYPE_P(cc->klass, T_CLASS) || RB_TYPE_P(cc->klass, T_ICLASS));
return cc->klass == klass;
}
static inline int
vm_cc_markable(const struct rb_callcache *cc)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
return FL_TEST_RAW((VALUE)cc, VM_CALLCACHE_UNMARKABLE) == 0;
}
static inline const struct rb_callable_method_entry_struct *
vm_cc_cme(const struct rb_callcache *cc)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(!vm_cc_markable(cc) || cc->cme_ != NULL);
return cc->cme_;
}
static inline vm_call_handler
vm_cc_call(const struct rb_callcache *cc)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(cc->call_ != NULL);
return cc->call_;
}
static inline unsigned int
vm_cc_attr_index(const struct rb_callcache *cc)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
return cc->aux_.attr_index;
}
static inline unsigned int
vm_cc_cmethod_missing_reason(const struct rb_callcache *cc)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
return cc->aux_.method_missing_reason;
}
static inline bool
vm_cc_invalidated_p(const struct rb_callcache *cc)
{
if (cc->klass && !METHOD_ENTRY_INVALIDATED(vm_cc_cme(cc))) {
return false;
}
else {
return true;
}
}
// For MJIT. cc_cme is supposed to have inlined `vm_cc_cme(cc)`.
static inline bool
vm_cc_valid_p(const struct rb_callcache *cc, const rb_callable_method_entry_t *cc_cme, VALUE klass)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
if (cc->klass == klass && !METHOD_ENTRY_INVALIDATED(cc_cme)) {
return 1;
}
else {
return 0;
}
}
extern const struct rb_callcache *rb_vm_empty_cc(void);
extern const struct rb_callcache *rb_vm_empty_cc_for_super(void);
#define vm_cc_empty() rb_vm_empty_cc()
/* callcache: mutate */
static inline void
vm_cc_call_set(const struct rb_callcache *cc, vm_call_handler call)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(cc != vm_cc_empty());
*(vm_call_handler *)&cc->call_ = call;
}
static inline void
vm_cc_attr_index_set(const struct rb_callcache *cc, int index)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(cc != vm_cc_empty());
*(int *)&cc->aux_.attr_index = index;
}
static inline void
vm_cc_method_missing_reason_set(const struct rb_callcache *cc, enum method_missing_reason reason)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(cc != vm_cc_empty());
*(enum method_missing_reason *)&cc->aux_.method_missing_reason = reason;
}
static inline void
vm_cc_invalidate(const struct rb_callcache *cc)
{
VM_ASSERT(IMEMO_TYPE_P(cc, imemo_callcache));
VM_ASSERT(cc != vm_cc_empty());
VM_ASSERT(cc->klass != 0); // should be enable
*(VALUE *)&cc->klass = 0;
RB_DEBUG_COUNTER_INC(cc_ent_invalidate);
}
/* calldata */
struct rb_call_data {
const struct rb_callinfo *ci;
const struct rb_callcache *cc;
};
struct rb_class_cc_entries {
#if VM_CHECK_MODE > 0
VALUE debug_sig;
#endif
int capa;
int len;
const struct rb_callable_method_entry_struct *cme;
struct rb_class_cc_entries_entry {
const struct rb_callinfo *ci;
const struct rb_callcache *cc;
} *entries;
};
#if VM_CHECK_MODE > 0
static inline bool
vm_ccs_p(const struct rb_class_cc_entries *ccs)
{
return ccs->debug_sig == ~(VALUE)ccs;
}
static inline bool
vm_cc_check_cme(const struct rb_callcache *cc, const rb_callable_method_entry_t *cme)
{
if (vm_cc_cme(cc) == cme ||
(cme->def->iseq_overload && vm_cc_cme(cc) == cme->def->body.iseq.mandatory_only_cme)) {
return true;
}
else {
#if 1
fprintf(stderr, "iseq_overload:%d mandatory_only_cme:%p eq:%d\n",
(int)cme->def->iseq_overload,
(void *)cme->def->body.iseq.mandatory_only_cme,
vm_cc_cme(cc) == cme->def->body.iseq.mandatory_only_cme);
#endif
return false;
}
}
#endif
// gc.c
void rb_vm_ccs_free(struct rb_class_cc_entries *ccs);
#endif /* RUBY_VM_CALLINFO_H */