ruby/iseq.c

4295 строки
134 KiB
C

/**********************************************************************
iseq.c -
$Author$
created at: 2006-07-11(Tue) 09:00:03 +0900
Copyright (C) 2006 Koichi Sasada
**********************************************************************/
#define RUBY_VM_INSNS_INFO 1
/* #define RUBY_MARK_FREE_DEBUG 1 */
#include "ruby/internal/config.h"
#ifdef HAVE_DLADDR
# include <dlfcn.h>
#endif
#include "eval_intern.h"
#include "id_table.h"
#include "internal.h"
#include "internal/bits.h"
#include "internal/class.h"
#include "internal/compile.h"
#include "internal/error.h"
#include "internal/file.h"
#include "internal/gc.h"
#include "internal/hash.h"
#include "internal/io.h"
#include "internal/ruby_parser.h"
#include "internal/sanitizers.h"
#include "internal/symbol.h"
#include "internal/thread.h"
#include "internal/variable.h"
#include "iseq.h"
#include "rjit.h"
#include "ruby/util.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "yjit.h"
#include "ruby/ractor.h"
#include "builtin.h"
#include "insns.inc"
#include "insns_info.inc"
VALUE rb_cISeq;
static VALUE iseqw_new(const rb_iseq_t *iseq);
static const rb_iseq_t *iseqw_check(VALUE iseqw);
#if VM_INSN_INFO_TABLE_IMPL == 2
static struct succ_index_table *succ_index_table_create(int max_pos, int *data, int size);
static unsigned int *succ_index_table_invert(int max_pos, struct succ_index_table *sd, int size);
static int succ_index_lookup(const struct succ_index_table *sd, int x);
#endif
#define hidden_obj_p(obj) (!SPECIAL_CONST_P(obj) && !RBASIC(obj)->klass)
static inline VALUE
obj_resurrect(VALUE obj)
{
if (hidden_obj_p(obj)) {
switch (BUILTIN_TYPE(obj)) {
case T_STRING:
obj = rb_str_resurrect(obj);
break;
case T_ARRAY:
obj = rb_ary_resurrect(obj);
break;
case T_HASH:
obj = rb_hash_resurrect(obj);
break;
default:
break;
}
}
return obj;
}
static void
free_arena(struct iseq_compile_data_storage *cur)
{
struct iseq_compile_data_storage *next;
while (cur) {
next = cur->next;
ruby_xfree(cur);
cur = next;
}
}
static void
compile_data_free(struct iseq_compile_data *compile_data)
{
if (compile_data) {
free_arena(compile_data->node.storage_head);
free_arena(compile_data->insn.storage_head);
if (compile_data->ivar_cache_table) {
rb_id_table_free(compile_data->ivar_cache_table);
}
ruby_xfree(compile_data);
}
}
static void
remove_from_constant_cache(ID id, IC ic)
{
rb_vm_t *vm = GET_VM();
VALUE lookup_result;
st_data_t ic_data = (st_data_t)ic;
if (rb_id_table_lookup(vm->constant_cache, id, &lookup_result)) {
st_table *ics = (st_table *)lookup_result;
st_delete(ics, &ic_data, NULL);
if (ics->num_entries == 0) {
rb_id_table_delete(vm->constant_cache, id);
st_free_table(ics);
}
}
}
// When an ISEQ is being freed, all of its associated ICs are going to go away
// as well. Because of this, we need to iterate over the ICs, and clear them
// from the VM's constant cache.
static void
iseq_clear_ic_references(const rb_iseq_t *iseq)
{
// In some cases (when there is a compilation error), we end up with
// ic_size greater than 0, but no allocated is_entries buffer.
// If there's no is_entries buffer to loop through, return early.
// [Bug #19173]
if (!ISEQ_BODY(iseq)->is_entries) {
return;
}
for (unsigned int ic_idx = 0; ic_idx < ISEQ_BODY(iseq)->ic_size; ic_idx++) {
IC ic = &ISEQ_IS_IC_ENTRY(ISEQ_BODY(iseq), ic_idx);
// Iterate over the IC's constant path's segments and clean any references to
// the ICs out of the VM's constant cache table.
const ID *segments = ic->segments;
// It's possible that segments is NULL if we overallocated an IC but
// optimizations removed the instruction using it
if (segments == NULL)
continue;
for (int i = 0; segments[i]; i++) {
ID id = segments[i];
if (id == idNULL) continue;
remove_from_constant_cache(id, ic);
}
ruby_xfree((void *)segments);
}
}
void
rb_iseq_free(const rb_iseq_t *iseq)
{
RUBY_FREE_ENTER("iseq");
if (iseq && ISEQ_BODY(iseq)) {
iseq_clear_ic_references(iseq);
struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
rb_rjit_free_iseq(iseq); /* Notify RJIT */
#if USE_YJIT
rb_yjit_iseq_free(iseq);
if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) {
RUBY_ASSERT(rb_yjit_live_iseq_count > 0);
rb_yjit_live_iseq_count--;
}
#endif
ruby_xfree((void *)body->iseq_encoded);
ruby_xfree((void *)body->insns_info.body);
ruby_xfree((void *)body->insns_info.positions);
#if VM_INSN_INFO_TABLE_IMPL == 2
ruby_xfree(body->insns_info.succ_index_table);
#endif
if (LIKELY(body->local_table != rb_iseq_shared_exc_local_tbl))
ruby_xfree((void *)body->local_table);
ruby_xfree((void *)body->is_entries);
ruby_xfree(body->call_data);
ruby_xfree((void *)body->catch_table);
ruby_xfree((void *)body->param.opt_table);
if (ISEQ_MBITS_BUFLEN(body->iseq_size) > 1 && body->mark_bits.list) {
ruby_xfree((void *)body->mark_bits.list);
}
ruby_xfree(body->variable.original_iseq);
if (body->param.keyword != NULL) {
if (body->param.keyword->table != &body->local_table[body->param.keyword->bits_start - body->param.keyword->num])
ruby_xfree((void *)body->param.keyword->table);
ruby_xfree((void *)body->param.keyword->default_values);
ruby_xfree((void *)body->param.keyword);
}
compile_data_free(ISEQ_COMPILE_DATA(iseq));
if (body->outer_variables) rb_id_table_free(body->outer_variables);
ruby_xfree(body);
}
if (iseq && ISEQ_EXECUTABLE_P(iseq) && iseq->aux.exec.local_hooks) {
rb_hook_list_free(iseq->aux.exec.local_hooks);
}
RUBY_FREE_LEAVE("iseq");
}
typedef VALUE iseq_value_itr_t(void *ctx, VALUE obj);
static inline void
iseq_scan_bits(unsigned int page, iseq_bits_t bits, VALUE *code, VALUE *original_iseq)
{
unsigned int offset;
unsigned int page_offset = (page * ISEQ_MBITS_BITLENGTH);
while (bits) {
offset = ntz_intptr(bits);
VALUE op = code[page_offset + offset];
rb_gc_mark_and_move(&code[page_offset + offset]);
VALUE newop = code[page_offset + offset];
if (original_iseq && newop != op) {
original_iseq[page_offset + offset] = newop;
}
bits &= bits - 1; // Reset Lowest Set Bit (BLSR)
}
}
static void
rb_iseq_mark_and_move_each_value(const rb_iseq_t *iseq, VALUE *original_iseq)
{
unsigned int size;
VALUE *code;
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
size = body->iseq_size;
code = body->iseq_encoded;
union iseq_inline_storage_entry *is_entries = body->is_entries;
if (body->is_entries) {
// Skip iterating over ivc caches
is_entries += body->ivc_size;
// ICVARC entries
for (unsigned int i = 0; i < body->icvarc_size; i++, is_entries++) {
ICVARC icvarc = (ICVARC)is_entries;
if (icvarc->entry) {
RUBY_ASSERT(!RB_TYPE_P(icvarc->entry->class_value, T_NONE));
rb_gc_mark_and_move(&icvarc->entry->class_value);
}
}
// ISE entries
for (unsigned int i = 0; i < body->ise_size; i++, is_entries++) {
union iseq_inline_storage_entry *const is = (union iseq_inline_storage_entry *)is_entries;
if (is->once.value) {
rb_gc_mark_and_move(&is->once.value);
}
}
// IC Entries
for (unsigned int i = 0; i < body->ic_size; i++, is_entries++) {
IC ic = (IC)is_entries;
if (ic->entry) {
rb_gc_mark_and_move_ptr(&ic->entry);
}
}
}
// Embedded VALUEs
if (body->mark_bits.list) {
if (ISEQ_MBITS_BUFLEN(size) == 1) {
iseq_scan_bits(0, body->mark_bits.single, code, original_iseq);
}
else {
if (body->mark_bits.list) {
for (unsigned int i = 0; i < ISEQ_MBITS_BUFLEN(size); i++) {
iseq_bits_t bits = body->mark_bits.list[i];
iseq_scan_bits(i, bits, code, original_iseq);
}
}
}
}
}
static bool
cc_is_active(const struct rb_callcache *cc, bool reference_updating)
{
if (cc) {
if (cc == rb_vm_empty_cc() || rb_vm_empty_cc_for_super()) {
return false;
}
if (reference_updating) {
cc = (const struct rb_callcache *)rb_gc_location((VALUE)cc);
}
if (vm_cc_markable(cc)) {
if (cc->klass) { // cc is not invalidated
const struct rb_callable_method_entry_struct *cme = vm_cc_cme(cc);
if (reference_updating) {
cme = (const struct rb_callable_method_entry_struct *)rb_gc_location((VALUE)cme);
}
if (!METHOD_ENTRY_INVALIDATED(cme)) {
return true;
}
}
}
}
return false;
}
void
rb_iseq_mark_and_move(rb_iseq_t *iseq, bool reference_updating)
{
RUBY_MARK_ENTER("iseq");
rb_gc_mark_and_move(&iseq->wrapper);
if (ISEQ_BODY(iseq)) {
struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
rb_iseq_mark_and_move_each_value(iseq, reference_updating ? ISEQ_ORIGINAL_ISEQ(iseq) : NULL);
rb_gc_mark_and_move(&body->variable.coverage);
rb_gc_mark_and_move(&body->variable.pc2branchindex);
rb_gc_mark_and_move(&body->variable.script_lines);
rb_gc_mark_and_move(&body->location.label);
rb_gc_mark_and_move(&body->location.base_label);
rb_gc_mark_and_move(&body->location.pathobj);
if (body->local_iseq) rb_gc_mark_and_move_ptr(&body->local_iseq);
if (body->parent_iseq) rb_gc_mark_and_move_ptr(&body->parent_iseq);
if (body->mandatory_only_iseq) rb_gc_mark_and_move_ptr(&body->mandatory_only_iseq);
if (body->call_data) {
for (unsigned int i = 0; i < body->ci_size; i++) {
struct rb_call_data *cds = body->call_data;
if (cds[i].ci) rb_gc_mark_and_move_ptr(&cds[i].ci);
if (cc_is_active(cds[i].cc, reference_updating)) {
rb_gc_mark_and_move_ptr(&cds[i].cc);
}
else if (cds[i].cc != rb_vm_empty_cc()) {
cds[i].cc = rb_vm_empty_cc();
}
}
}
if (body->param.flags.has_kw && ISEQ_COMPILE_DATA(iseq) == NULL) {
const struct rb_iseq_param_keyword *const keyword = body->param.keyword;
for (int j = 0, i = keyword->required_num; i < keyword->num; i++, j++) {
rb_gc_mark_and_move(&keyword->default_values[j]);
}
}
if (body->catch_table) {
struct iseq_catch_table *table = body->catch_table;
for (unsigned int i = 0; i < table->size; i++) {
struct iseq_catch_table_entry *entry;
entry = UNALIGNED_MEMBER_PTR(table, entries[i]);
if (entry->iseq) {
rb_gc_mark_and_move_ptr(&entry->iseq);
}
}
}
if (reference_updating) {
#if USE_RJIT
rb_rjit_iseq_update_references(body);
#endif
#if USE_YJIT
rb_yjit_iseq_update_references(iseq);
#endif
}
else {
#if USE_RJIT
rb_rjit_iseq_mark(body->rjit_blocks);
#endif
#if USE_YJIT
rb_yjit_iseq_mark(body->yjit_payload);
#endif
}
}
if (FL_TEST_RAW((VALUE)iseq, ISEQ_NOT_LOADED_YET)) {
rb_gc_mark_and_move(&iseq->aux.loader.obj);
}
else if (FL_TEST_RAW((VALUE)iseq, ISEQ_USE_COMPILE_DATA)) {
const struct iseq_compile_data *const compile_data = ISEQ_COMPILE_DATA(iseq);
if (!reference_updating) {
/* The operands in each instruction needs to be pinned because
* if auto-compaction runs in iseq_set_sequence, then the objects
* could exist on the generated_iseq buffer, which would not be
* reference updated which can lead to T_MOVED (and subsequently
* T_NONE) objects on the iseq. */
rb_iseq_mark_and_pin_insn_storage(compile_data->insn.storage_head);
}
rb_gc_mark_and_move((VALUE *)&compile_data->err_info);
rb_gc_mark_and_move((VALUE *)&compile_data->catch_table_ary);
}
else {
/* executable */
VM_ASSERT(ISEQ_EXECUTABLE_P(iseq));
if (iseq->aux.exec.local_hooks) {
rb_hook_list_mark_and_update(iseq->aux.exec.local_hooks);
}
}
RUBY_MARK_LEAVE("iseq");
}
static size_t
param_keyword_size(const struct rb_iseq_param_keyword *pkw)
{
size_t size = 0;
if (!pkw) return size;
size += sizeof(struct rb_iseq_param_keyword);
size += sizeof(VALUE) * (pkw->num - pkw->required_num);
return size;
}
size_t
rb_iseq_memsize(const rb_iseq_t *iseq)
{
size_t size = 0; /* struct already counted as RVALUE size */
const struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
const struct iseq_compile_data *compile_data;
/* TODO: should we count original_iseq? */
if (ISEQ_EXECUTABLE_P(iseq) && body) {
size += sizeof(struct rb_iseq_constant_body);
size += body->iseq_size * sizeof(VALUE);
size += body->insns_info.size * (sizeof(struct iseq_insn_info_entry) + sizeof(unsigned int));
size += body->local_table_size * sizeof(ID);
size += ISEQ_MBITS_BUFLEN(body->iseq_size) * ISEQ_MBITS_SIZE;
if (body->catch_table) {
size += iseq_catch_table_bytes(body->catch_table->size);
}
size += (body->param.opt_num + 1) * sizeof(VALUE);
size += param_keyword_size(body->param.keyword);
/* body->is_entries */
size += ISEQ_IS_SIZE(body) * sizeof(union iseq_inline_storage_entry);
if (ISEQ_BODY(iseq)->is_entries) {
/* IC entries constant segments */
for (unsigned int ic_idx = 0; ic_idx < body->ic_size; ic_idx++) {
IC ic = &ISEQ_IS_IC_ENTRY(body, ic_idx);
const ID *ids = ic->segments;
if (!ids) continue;
while (*ids++) {
size += sizeof(ID);
}
size += sizeof(ID); // null terminator
}
}
/* body->call_data */
size += body->ci_size * sizeof(struct rb_call_data);
// TODO: should we count imemo_callinfo?
}
compile_data = ISEQ_COMPILE_DATA(iseq);
if (compile_data) {
struct iseq_compile_data_storage *cur;
size += sizeof(struct iseq_compile_data);
cur = compile_data->node.storage_head;
while (cur) {
size += cur->size + offsetof(struct iseq_compile_data_storage, buff);
cur = cur->next;
}
}
return size;
}
struct rb_iseq_constant_body *
rb_iseq_constant_body_alloc(void)
{
struct rb_iseq_constant_body *iseq_body;
iseq_body = ZALLOC(struct rb_iseq_constant_body);
return iseq_body;
}
static rb_iseq_t *
iseq_alloc(void)
{
rb_iseq_t *iseq = iseq_imemo_alloc();
ISEQ_BODY(iseq) = rb_iseq_constant_body_alloc();
return iseq;
}
VALUE
rb_iseq_pathobj_new(VALUE path, VALUE realpath)
{
VALUE pathobj;
VM_ASSERT(RB_TYPE_P(path, T_STRING));
VM_ASSERT(NIL_P(realpath) || RB_TYPE_P(realpath, T_STRING));
if (path == realpath ||
(!NIL_P(realpath) && rb_str_cmp(path, realpath) == 0)) {
pathobj = rb_fstring(path);
}
else {
if (!NIL_P(realpath)) realpath = rb_fstring(realpath);
pathobj = rb_ary_new_from_args(2, rb_fstring(path), realpath);
rb_ary_freeze(pathobj);
}
return pathobj;
}
void
rb_iseq_pathobj_set(const rb_iseq_t *iseq, VALUE path, VALUE realpath)
{
RB_OBJ_WRITE(iseq, &ISEQ_BODY(iseq)->location.pathobj,
rb_iseq_pathobj_new(path, realpath));
}
static rb_iseq_location_t *
iseq_location_setup(rb_iseq_t *iseq, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_code_location_t *code_location, const int node_id)
{
rb_iseq_location_t *loc = &ISEQ_BODY(iseq)->location;
rb_iseq_pathobj_set(iseq, path, realpath);
RB_OBJ_WRITE(iseq, &loc->label, name);
RB_OBJ_WRITE(iseq, &loc->base_label, name);
loc->first_lineno = first_lineno;
if (ISEQ_BODY(iseq)->local_iseq == iseq && strcmp(RSTRING_PTR(name), "initialize") == 0) {
ISEQ_BODY(iseq)->param.flags.use_block = 1;
}
if (code_location) {
loc->node_id = node_id;
loc->code_location = *code_location;
}
else {
loc->code_location.beg_pos.lineno = 0;
loc->code_location.beg_pos.column = 0;
loc->code_location.end_pos.lineno = -1;
loc->code_location.end_pos.column = -1;
}
return loc;
}
static void
set_relation(rb_iseq_t *iseq, const rb_iseq_t *piseq)
{
struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
const VALUE type = body->type;
/* set class nest stack */
if (type == ISEQ_TYPE_TOP) {
body->local_iseq = iseq;
}
else if (type == ISEQ_TYPE_METHOD || type == ISEQ_TYPE_CLASS) {
body->local_iseq = iseq;
}
else if (piseq) {
body->local_iseq = ISEQ_BODY(piseq)->local_iseq;
}
if (piseq) {
body->parent_iseq = piseq;
}
if (type == ISEQ_TYPE_MAIN) {
body->local_iseq = iseq;
}
}
static struct iseq_compile_data_storage *
new_arena(void)
{
struct iseq_compile_data_storage * new_arena =
(struct iseq_compile_data_storage *)
ALLOC_N(char, INITIAL_ISEQ_COMPILE_DATA_STORAGE_BUFF_SIZE +
offsetof(struct iseq_compile_data_storage, buff));
new_arena->pos = 0;
new_arena->next = 0;
new_arena->size = INITIAL_ISEQ_COMPILE_DATA_STORAGE_BUFF_SIZE;
return new_arena;
}
static VALUE
prepare_iseq_build(rb_iseq_t *iseq,
VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_code_location_t *code_location, const int node_id,
const rb_iseq_t *parent, int isolated_depth, enum rb_iseq_type type,
VALUE script_lines, const rb_compile_option_t *option)
{
VALUE coverage = Qfalse;
VALUE err_info = Qnil;
struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
if (parent && (type == ISEQ_TYPE_MAIN || type == ISEQ_TYPE_TOP))
err_info = Qfalse;
body->type = type;
set_relation(iseq, parent);
name = rb_fstring(name);
iseq_location_setup(iseq, name, path, realpath, first_lineno, code_location, node_id);
if (iseq != body->local_iseq) {
RB_OBJ_WRITE(iseq, &body->location.base_label, ISEQ_BODY(body->local_iseq)->location.label);
}
ISEQ_COVERAGE_SET(iseq, Qnil);
ISEQ_ORIGINAL_ISEQ_CLEAR(iseq);
body->variable.flip_count = 0;
if (NIL_P(script_lines)) {
RB_OBJ_WRITE(iseq, &body->variable.script_lines, Qnil);
}
else {
RB_OBJ_WRITE(iseq, &body->variable.script_lines, rb_ractor_make_shareable(script_lines));
}
ISEQ_COMPILE_DATA_ALLOC(iseq);
RB_OBJ_WRITE(iseq, &ISEQ_COMPILE_DATA(iseq)->err_info, err_info);
RB_OBJ_WRITE(iseq, &ISEQ_COMPILE_DATA(iseq)->catch_table_ary, Qnil);
ISEQ_COMPILE_DATA(iseq)->node.storage_head = ISEQ_COMPILE_DATA(iseq)->node.storage_current = new_arena();
ISEQ_COMPILE_DATA(iseq)->insn.storage_head = ISEQ_COMPILE_DATA(iseq)->insn.storage_current = new_arena();
ISEQ_COMPILE_DATA(iseq)->isolated_depth = isolated_depth;
ISEQ_COMPILE_DATA(iseq)->option = option;
ISEQ_COMPILE_DATA(iseq)->ivar_cache_table = NULL;
ISEQ_COMPILE_DATA(iseq)->builtin_function_table = GET_VM()->builtin_function_table;
if (option->coverage_enabled) {
VALUE coverages = rb_get_coverages();
if (RTEST(coverages)) {
coverage = rb_hash_lookup(coverages, rb_iseq_path(iseq));
if (NIL_P(coverage)) coverage = Qfalse;
}
}
ISEQ_COVERAGE_SET(iseq, coverage);
if (coverage && ISEQ_BRANCH_COVERAGE(iseq))
ISEQ_PC2BRANCHINDEX_SET(iseq, rb_ary_hidden_new(0));
return Qtrue;
}
#if VM_CHECK_MODE > 0 && VM_INSN_INFO_TABLE_IMPL > 0
static void validate_get_insn_info(const rb_iseq_t *iseq);
#endif
void
rb_iseq_insns_info_encode_positions(const rb_iseq_t *iseq)
{
#if VM_INSN_INFO_TABLE_IMPL == 2
/* create succ_index_table */
struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
int size = body->insns_info.size;
int max_pos = body->iseq_size;
int *data = (int *)body->insns_info.positions;
if (body->insns_info.succ_index_table) ruby_xfree(body->insns_info.succ_index_table);
body->insns_info.succ_index_table = succ_index_table_create(max_pos, data, size);
#if VM_CHECK_MODE == 0
ruby_xfree(body->insns_info.positions);
body->insns_info.positions = NULL;
#endif
#endif
}
#if VM_INSN_INFO_TABLE_IMPL == 2
unsigned int *
rb_iseq_insns_info_decode_positions(const struct rb_iseq_constant_body *body)
{
int size = body->insns_info.size;
int max_pos = body->iseq_size;
struct succ_index_table *sd = body->insns_info.succ_index_table;
return succ_index_table_invert(max_pos, sd, size);
}
#endif
void
rb_iseq_init_trace(rb_iseq_t *iseq)
{
iseq->aux.exec.global_trace_events = 0;
if (ruby_vm_event_enabled_global_flags & ISEQ_TRACE_EVENTS) {
rb_iseq_trace_set(iseq, ruby_vm_event_enabled_global_flags & ISEQ_TRACE_EVENTS);
}
}
static VALUE
finish_iseq_build(rb_iseq_t *iseq)
{
struct iseq_compile_data *data = ISEQ_COMPILE_DATA(iseq);
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE err = data->err_info;
ISEQ_COMPILE_DATA_CLEAR(iseq);
compile_data_free(data);
#if VM_CHECK_MODE > 0 && VM_INSN_INFO_TABLE_IMPL > 0
validate_get_insn_info(iseq);
#endif
if (RTEST(err)) {
VALUE path = pathobj_path(body->location.pathobj);
if (err == Qtrue) err = rb_exc_new_cstr(rb_eSyntaxError, "compile error");
rb_funcallv(err, rb_intern("set_backtrace"), 1, &path);
rb_exc_raise(err);
}
RB_DEBUG_COUNTER_INC(iseq_num);
RB_DEBUG_COUNTER_ADD(iseq_cd_num, ISEQ_BODY(iseq)->ci_size);
rb_iseq_init_trace(iseq);
return Qtrue;
}
static rb_compile_option_t COMPILE_OPTION_DEFAULT = {
.inline_const_cache = OPT_INLINE_CONST_CACHE,
.peephole_optimization = OPT_PEEPHOLE_OPTIMIZATION,
.tailcall_optimization = OPT_TAILCALL_OPTIMIZATION,
.specialized_instruction = OPT_SPECIALISED_INSTRUCTION,
.operands_unification = OPT_OPERANDS_UNIFICATION,
.instructions_unification = OPT_INSTRUCTIONS_UNIFICATION,
.frozen_string_literal = OPT_FROZEN_STRING_LITERAL,
.debug_frozen_string_literal = OPT_DEBUG_FROZEN_STRING_LITERAL,
.coverage_enabled = TRUE,
};
static const rb_compile_option_t COMPILE_OPTION_FALSE = {
.frozen_string_literal = -1, // unspecified
};
int
rb_iseq_opt_frozen_string_literal(void)
{
return COMPILE_OPTION_DEFAULT.frozen_string_literal;
}
static void
set_compile_option_from_hash(rb_compile_option_t *option, VALUE opt)
{
#define SET_COMPILE_OPTION(o, h, mem) \
{ VALUE flag = rb_hash_aref((h), ID2SYM(rb_intern(#mem))); \
if (flag == Qtrue) { (o)->mem = 1; } \
else if (flag == Qfalse) { (o)->mem = 0; } \
}
#define SET_COMPILE_OPTION_NUM(o, h, mem) \
{ VALUE num = rb_hash_aref((h), ID2SYM(rb_intern(#mem))); \
if (!NIL_P(num)) (o)->mem = NUM2INT(num); \
}
SET_COMPILE_OPTION(option, opt, inline_const_cache);
SET_COMPILE_OPTION(option, opt, peephole_optimization);
SET_COMPILE_OPTION(option, opt, tailcall_optimization);
SET_COMPILE_OPTION(option, opt, specialized_instruction);
SET_COMPILE_OPTION(option, opt, operands_unification);
SET_COMPILE_OPTION(option, opt, instructions_unification);
SET_COMPILE_OPTION(option, opt, frozen_string_literal);
SET_COMPILE_OPTION(option, opt, debug_frozen_string_literal);
SET_COMPILE_OPTION(option, opt, coverage_enabled);
SET_COMPILE_OPTION_NUM(option, opt, debug_level);
#undef SET_COMPILE_OPTION
#undef SET_COMPILE_OPTION_NUM
}
static rb_compile_option_t *
set_compile_option_from_ast(rb_compile_option_t *option, const rb_ast_body_t *ast)
{
#define SET_COMPILE_OPTION(o, a, mem) \
((a)->mem < 0 ? 0 : ((o)->mem = (a)->mem > 0))
SET_COMPILE_OPTION(option, ast, coverage_enabled);
#undef SET_COMPILE_OPTION
if (ast->frozen_string_literal >= 0) {
option->frozen_string_literal = ast->frozen_string_literal;
}
return option;
}
static void
make_compile_option(rb_compile_option_t *option, VALUE opt)
{
if (NIL_P(opt)) {
*option = COMPILE_OPTION_DEFAULT;
}
else if (opt == Qfalse) {
*option = COMPILE_OPTION_FALSE;
}
else if (opt == Qtrue) {
int i;
for (i = 0; i < (int)(sizeof(rb_compile_option_t) / sizeof(int)); ++i)
((int *)option)[i] = 1;
}
else if (RB_TYPE_P(opt, T_HASH)) {
*option = COMPILE_OPTION_DEFAULT;
set_compile_option_from_hash(option, opt);
}
else {
rb_raise(rb_eTypeError, "Compile option must be Hash/true/false/nil");
}
}
static VALUE
make_compile_option_value(rb_compile_option_t *option)
{
VALUE opt = rb_hash_new_with_size(11);
#define SET_COMPILE_OPTION(o, h, mem) \
rb_hash_aset((h), ID2SYM(rb_intern(#mem)), RBOOL((o)->mem))
#define SET_COMPILE_OPTION_NUM(o, h, mem) \
rb_hash_aset((h), ID2SYM(rb_intern(#mem)), INT2NUM((o)->mem))
{
SET_COMPILE_OPTION(option, opt, inline_const_cache);
SET_COMPILE_OPTION(option, opt, peephole_optimization);
SET_COMPILE_OPTION(option, opt, tailcall_optimization);
SET_COMPILE_OPTION(option, opt, specialized_instruction);
SET_COMPILE_OPTION(option, opt, operands_unification);
SET_COMPILE_OPTION(option, opt, instructions_unification);
SET_COMPILE_OPTION(option, opt, debug_frozen_string_literal);
SET_COMPILE_OPTION(option, opt, coverage_enabled);
SET_COMPILE_OPTION_NUM(option, opt, debug_level);
}
#undef SET_COMPILE_OPTION
#undef SET_COMPILE_OPTION_NUM
VALUE frozen_string_literal = option->frozen_string_literal == -1 ? Qnil : RBOOL(option->frozen_string_literal);
rb_hash_aset(opt, ID2SYM(rb_intern("frozen_string_literal")), frozen_string_literal);
return opt;
}
rb_iseq_t *
rb_iseq_new(const VALUE ast_value, VALUE name, VALUE path, VALUE realpath,
const rb_iseq_t *parent, enum rb_iseq_type type)
{
return rb_iseq_new_with_opt(ast_value, name, path, realpath, 0, parent,
0, type, &COMPILE_OPTION_DEFAULT,
Qnil);
}
static int
ast_line_count(const VALUE ast_value)
{
rb_ast_t *ast = rb_ruby_ast_data_get(ast_value);
return ast->body.line_count;
}
static VALUE
iseq_setup_coverage(VALUE coverages, VALUE path, int line_count)
{
if (line_count >= 0) {
int len = (rb_get_coverage_mode() & COVERAGE_TARGET_ONESHOT_LINES) ? 0 : line_count;
VALUE coverage = rb_default_coverage(len);
rb_hash_aset(coverages, path, coverage);
return coverage;
}
return Qnil;
}
static inline void
iseq_new_setup_coverage(VALUE path, int line_count)
{
VALUE coverages = rb_get_coverages();
if (RTEST(coverages)) {
iseq_setup_coverage(coverages, path, line_count);
}
}
rb_iseq_t *
rb_iseq_new_top(const VALUE ast_value, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent)
{
iseq_new_setup_coverage(path, ast_line_count(ast_value));
return rb_iseq_new_with_opt(ast_value, name, path, realpath, 0, parent, 0,
ISEQ_TYPE_TOP, &COMPILE_OPTION_DEFAULT,
Qnil);
}
/**
* The main entry-point into the prism compiler when a file is required.
*/
rb_iseq_t *
pm_iseq_new_top(pm_scope_node_t *node, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent)
{
iseq_new_setup_coverage(path, (int) (node->parser->newline_list.size - 1));
return pm_iseq_new_with_opt(node, name, path, realpath, 0, parent, 0,
ISEQ_TYPE_TOP, &COMPILE_OPTION_DEFAULT);
}
rb_iseq_t *
rb_iseq_new_main(const VALUE ast_value, VALUE path, VALUE realpath, const rb_iseq_t *parent, int opt)
{
iseq_new_setup_coverage(path, ast_line_count(ast_value));
return rb_iseq_new_with_opt(ast_value, rb_fstring_lit("<main>"),
path, realpath, 0,
parent, 0, ISEQ_TYPE_MAIN, opt ? &COMPILE_OPTION_DEFAULT : &COMPILE_OPTION_FALSE,
Qnil);
}
/**
* The main entry-point into the prism compiler when a file is executed as the
* main file in the program.
*/
rb_iseq_t *
pm_iseq_new_main(pm_scope_node_t *node, VALUE path, VALUE realpath, const rb_iseq_t *parent, int opt)
{
iseq_new_setup_coverage(path, (int) (node->parser->newline_list.size - 1));
return pm_iseq_new_with_opt(node, rb_fstring_lit("<main>"),
path, realpath, 0,
parent, 0, ISEQ_TYPE_MAIN, opt ? &COMPILE_OPTION_DEFAULT : &COMPILE_OPTION_FALSE);
}
rb_iseq_t *
rb_iseq_new_eval(const VALUE ast_value, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth)
{
if (rb_get_coverage_mode() & COVERAGE_TARGET_EVAL) {
VALUE coverages = rb_get_coverages();
if (RTEST(coverages) && RTEST(path) && !RTEST(rb_hash_has_key(coverages, path))) {
iseq_setup_coverage(coverages, path, ast_line_count(ast_value) + first_lineno - 1);
}
}
return rb_iseq_new_with_opt(ast_value, name, path, realpath, first_lineno,
parent, isolated_depth, ISEQ_TYPE_EVAL, &COMPILE_OPTION_DEFAULT,
Qnil);
}
rb_iseq_t *
pm_iseq_new_eval(pm_scope_node_t *node, VALUE name, VALUE path, VALUE realpath,
int first_lineno, const rb_iseq_t *parent, int isolated_depth)
{
if (rb_get_coverage_mode() & COVERAGE_TARGET_EVAL) {
VALUE coverages = rb_get_coverages();
if (RTEST(coverages) && RTEST(path) && !RTEST(rb_hash_has_key(coverages, path))) {
iseq_setup_coverage(coverages, path, ((int) (node->parser->newline_list.size - 1)) + first_lineno - 1);
}
}
return pm_iseq_new_with_opt(node, name, path, realpath, first_lineno,
parent, isolated_depth, ISEQ_TYPE_EVAL, &COMPILE_OPTION_DEFAULT);
}
static inline rb_iseq_t *
iseq_translate(rb_iseq_t *iseq)
{
if (rb_respond_to(rb_cISeq, rb_intern("translate"))) {
VALUE v1 = iseqw_new(iseq);
VALUE v2 = rb_funcall(rb_cISeq, rb_intern("translate"), 1, v1);
if (v1 != v2 && CLASS_OF(v2) == rb_cISeq) {
iseq = (rb_iseq_t *)iseqw_check(v2);
}
}
return iseq;
}
rb_iseq_t *
rb_iseq_new_with_opt(VALUE ast_value, VALUE name, VALUE path, VALUE realpath,
int first_lineno, const rb_iseq_t *parent, int isolated_depth,
enum rb_iseq_type type, const rb_compile_option_t *option,
VALUE script_lines)
{
rb_ast_t *ast = rb_ruby_ast_data_get(ast_value);
rb_ast_body_t *body = ast ? &ast->body : NULL;
const NODE *node = body ? body->root : 0;
/* TODO: argument check */
rb_iseq_t *iseq = iseq_alloc();
rb_compile_option_t new_opt;
if (!option) option = &COMPILE_OPTION_DEFAULT;
if (body) {
new_opt = *option;
option = set_compile_option_from_ast(&new_opt, body);
}
if (!NIL_P(script_lines)) {
// noop
}
else if (body && body->script_lines) {
script_lines = rb_parser_build_script_lines_from(body->script_lines);
}
else if (parent) {
script_lines = ISEQ_BODY(parent)->variable.script_lines;
}
prepare_iseq_build(iseq, name, path, realpath, first_lineno, node ? &node->nd_loc : NULL, node ? nd_node_id(node) : -1,
parent, isolated_depth, type, script_lines, option);
rb_iseq_compile_node(iseq, node);
finish_iseq_build(iseq);
RB_GC_GUARD(ast_value);
return iseq_translate(iseq);
}
/**
* This is a step in the prism compiler that is called once all of the various
* options have been established. It is called from one of the pm_iseq_new_*
* functions or from the RubyVM::InstructionSequence APIs. It is responsible for
* allocating the instruction sequence, calling into the compiler, and returning
* the built instruction sequence.
*
* Importantly, this is also the function where the compiler is re-entered to
* compile child instruction sequences. A child instruction sequence is always
* compiled using a scope node, which is why we cast it explicitly to that here
* in the parameters (as opposed to accepting a generic pm_node_t *).
*/
rb_iseq_t *
pm_iseq_new_with_opt(pm_scope_node_t *node, VALUE name, VALUE path, VALUE realpath,
int first_lineno, const rb_iseq_t *parent, int isolated_depth,
enum rb_iseq_type type, const rb_compile_option_t *option)
{
rb_iseq_t *iseq = iseq_alloc();
ISEQ_BODY(iseq)->prism = true;
ISEQ_BODY(iseq)->param.flags.use_block = true; // unused block warning is not supported yet
rb_compile_option_t next_option;
if (!option) option = &COMPILE_OPTION_DEFAULT;
next_option = *option;
next_option.coverage_enabled = node->coverage_enabled < 0 ? 0 : node->coverage_enabled > 0;
option = &next_option;
pm_location_t *location = &node->base.location;
int32_t start_line = node->parser->start_line;
pm_line_column_t start = pm_newline_list_line_column(&node->parser->newline_list, location->start, start_line);
pm_line_column_t end = pm_newline_list_line_column(&node->parser->newline_list, location->end, start_line);
rb_code_location_t code_location = (rb_code_location_t) {
.beg_pos = { .lineno = (int) start.line, .column = (int) start.column },
.end_pos = { .lineno = (int) end.line, .column = (int) end.column }
};
prepare_iseq_build(iseq, name, path, realpath, first_lineno, &code_location, -1,
parent, isolated_depth, type, Qnil, option);
pm_iseq_compile_node(iseq, node);
finish_iseq_build(iseq);
return iseq_translate(iseq);
}
rb_iseq_t *
rb_iseq_new_with_callback(
const struct rb_iseq_new_with_callback_callback_func * ifunc,
VALUE name, VALUE path, VALUE realpath,
int first_lineno, const rb_iseq_t *parent,
enum rb_iseq_type type, const rb_compile_option_t *option)
{
/* TODO: argument check */
rb_iseq_t *iseq = iseq_alloc();
if (!option) option = &COMPILE_OPTION_DEFAULT;
prepare_iseq_build(iseq, name, path, realpath, first_lineno, NULL, -1, parent, 0, type, Qnil, option);
rb_iseq_compile_callback(iseq, ifunc);
finish_iseq_build(iseq);
return iseq;
}
const rb_iseq_t *
rb_iseq_load_iseq(VALUE fname)
{
VALUE iseqv = rb_check_funcall(rb_cISeq, rb_intern("load_iseq"), 1, &fname);
if (!SPECIAL_CONST_P(iseqv) && RBASIC_CLASS(iseqv) == rb_cISeq) {
return iseqw_check(iseqv);
}
return NULL;
}
#define CHECK_ARRAY(v) rb_to_array_type(v)
#define CHECK_HASH(v) rb_to_hash_type(v)
#define CHECK_STRING(v) rb_str_to_str(v)
#define CHECK_SYMBOL(v) rb_to_symbol_type(v)
static inline VALUE CHECK_INTEGER(VALUE v) {(void)NUM2LONG(v); return v;}
static enum rb_iseq_type
iseq_type_from_sym(VALUE type)
{
const ID id_top = rb_intern("top");
const ID id_method = rb_intern("method");
const ID id_block = rb_intern("block");
const ID id_class = rb_intern("class");
const ID id_rescue = rb_intern("rescue");
const ID id_ensure = rb_intern("ensure");
const ID id_eval = rb_intern("eval");
const ID id_main = rb_intern("main");
const ID id_plain = rb_intern("plain");
/* ensure all symbols are static or pinned down before
* conversion */
const ID typeid = rb_check_id(&type);
if (typeid == id_top) return ISEQ_TYPE_TOP;
if (typeid == id_method) return ISEQ_TYPE_METHOD;
if (typeid == id_block) return ISEQ_TYPE_BLOCK;
if (typeid == id_class) return ISEQ_TYPE_CLASS;
if (typeid == id_rescue) return ISEQ_TYPE_RESCUE;
if (typeid == id_ensure) return ISEQ_TYPE_ENSURE;
if (typeid == id_eval) return ISEQ_TYPE_EVAL;
if (typeid == id_main) return ISEQ_TYPE_MAIN;
if (typeid == id_plain) return ISEQ_TYPE_PLAIN;
return (enum rb_iseq_type)-1;
}
static VALUE
iseq_load(VALUE data, const rb_iseq_t *parent, VALUE opt)
{
rb_iseq_t *iseq = iseq_alloc();
VALUE magic, version1, version2, format_type, misc;
VALUE name, path, realpath, code_location, node_id;
VALUE type, body, locals, params, exception;
st_data_t iseq_type;
rb_compile_option_t option;
int i = 0;
rb_code_location_t tmp_loc = { {0, 0}, {-1, -1} };
/* [magic, major_version, minor_version, format_type, misc,
* label, path, first_lineno,
* type, locals, args, exception_table, body]
*/
data = CHECK_ARRAY(data);
magic = CHECK_STRING(rb_ary_entry(data, i++));
version1 = CHECK_INTEGER(rb_ary_entry(data, i++));
version2 = CHECK_INTEGER(rb_ary_entry(data, i++));
format_type = CHECK_INTEGER(rb_ary_entry(data, i++));
misc = CHECK_HASH(rb_ary_entry(data, i++));
((void)magic, (void)version1, (void)version2, (void)format_type);
name = CHECK_STRING(rb_ary_entry(data, i++));
path = CHECK_STRING(rb_ary_entry(data, i++));
realpath = rb_ary_entry(data, i++);
realpath = NIL_P(realpath) ? Qnil : CHECK_STRING(realpath);
int first_lineno = RB_NUM2INT(rb_ary_entry(data, i++));
type = CHECK_SYMBOL(rb_ary_entry(data, i++));
locals = CHECK_ARRAY(rb_ary_entry(data, i++));
params = CHECK_HASH(rb_ary_entry(data, i++));
exception = CHECK_ARRAY(rb_ary_entry(data, i++));
body = CHECK_ARRAY(rb_ary_entry(data, i++));
ISEQ_BODY(iseq)->local_iseq = iseq;
iseq_type = iseq_type_from_sym(type);
if (iseq_type == (enum rb_iseq_type)-1) {
rb_raise(rb_eTypeError, "unsupported type: :%"PRIsVALUE, rb_sym2str(type));
}
node_id = rb_hash_aref(misc, ID2SYM(rb_intern("node_id")));
code_location = rb_hash_aref(misc, ID2SYM(rb_intern("code_location")));
if (RB_TYPE_P(code_location, T_ARRAY) && RARRAY_LEN(code_location) == 4) {
tmp_loc.beg_pos.lineno = NUM2INT(rb_ary_entry(code_location, 0));
tmp_loc.beg_pos.column = NUM2INT(rb_ary_entry(code_location, 1));
tmp_loc.end_pos.lineno = NUM2INT(rb_ary_entry(code_location, 2));
tmp_loc.end_pos.column = NUM2INT(rb_ary_entry(code_location, 3));
}
if (SYM2ID(rb_hash_aref(misc, ID2SYM(rb_intern("parser")))) == rb_intern("prism")) {
ISEQ_BODY(iseq)->prism = true;
}
make_compile_option(&option, opt);
option.peephole_optimization = FALSE; /* because peephole optimization can modify original iseq */
prepare_iseq_build(iseq, name, path, realpath, first_lineno, &tmp_loc, NUM2INT(node_id),
parent, 0, (enum rb_iseq_type)iseq_type, Qnil, &option);
rb_iseq_build_from_ary(iseq, misc, locals, params, exception, body);
finish_iseq_build(iseq);
return iseqw_new(iseq);
}
/*
* :nodoc:
*/
static VALUE
iseq_s_load(int argc, VALUE *argv, VALUE self)
{
VALUE data, opt=Qnil;
rb_scan_args(argc, argv, "11", &data, &opt);
return iseq_load(data, NULL, opt);
}
VALUE
rb_iseq_load(VALUE data, VALUE parent, VALUE opt)
{
return iseq_load(data, RTEST(parent) ? (rb_iseq_t *)parent : NULL, opt);
}
static rb_iseq_t *
rb_iseq_compile_with_option(VALUE src, VALUE file, VALUE realpath, VALUE line, VALUE opt)
{
rb_iseq_t *iseq = NULL;
rb_compile_option_t option;
#if !defined(__GNUC__) || (__GNUC__ == 4 && __GNUC_MINOR__ == 8)
# define INITIALIZED volatile /* suppress warnings by gcc 4.8 */
#else
# define INITIALIZED /* volatile */
#endif
VALUE (*parse)(VALUE vparser, VALUE fname, VALUE file, int start);
int ln;
VALUE INITIALIZED ast_value;
rb_ast_t *ast;
VALUE name = rb_fstring_lit("<compiled>");
/* safe results first */
make_compile_option(&option, opt);
ln = NUM2INT(line);
StringValueCStr(file);
if (RB_TYPE_P(src, T_FILE)) {
parse = rb_parser_compile_file_path;
}
else {
parse = rb_parser_compile_string_path;
StringValue(src);
}
{
const VALUE parser = rb_parser_new();
const rb_iseq_t *outer_scope = rb_iseq_new(Qnil, name, name, Qnil, 0, ISEQ_TYPE_TOP);
VALUE outer_scope_v = (VALUE)outer_scope;
rb_parser_set_context(parser, outer_scope, FALSE);
if (ruby_vm_keep_script_lines) rb_parser_set_script_lines(parser);
RB_GC_GUARD(outer_scope_v);
ast_value = (*parse)(parser, file, src, ln);
}
ast = rb_ruby_ast_data_get(ast_value);
if (!ast || !ast->body.root) {
rb_ast_dispose(ast);
rb_exc_raise(GET_EC()->errinfo);
}
else {
iseq = rb_iseq_new_with_opt(ast_value, name, file, realpath, ln,
NULL, 0, ISEQ_TYPE_TOP, &option,
Qnil);
rb_ast_dispose(ast);
}
return iseq;
}
static rb_iseq_t *
pm_iseq_compile_with_option(VALUE src, VALUE file, VALUE realpath, VALUE line, VALUE opt)
{
rb_iseq_t *iseq = NULL;
rb_compile_option_t option;
int ln;
VALUE name = rb_fstring_lit("<compiled>");
/* safe results first */
make_compile_option(&option, opt);
ln = NUM2INT(line);
StringValueCStr(file);
pm_parse_result_t result = { 0 };
pm_options_line_set(&result.options, NUM2INT(line));
result.node.coverage_enabled = 1;
switch (option.frozen_string_literal) {
case ISEQ_FROZEN_STRING_LITERAL_UNSET:
break;
case ISEQ_FROZEN_STRING_LITERAL_DISABLED:
pm_options_frozen_string_literal_set(&result.options, false);
break;
case ISEQ_FROZEN_STRING_LITERAL_ENABLED:
pm_options_frozen_string_literal_set(&result.options, true);
break;
default:
rb_bug("pm_iseq_compile_with_option: invalid frozen_string_literal=%d", option.frozen_string_literal);
break;
}
VALUE error;
if (RB_TYPE_P(src, T_FILE)) {
VALUE filepath = rb_io_path(src);
error = pm_load_parse_file(&result, filepath);
RB_GC_GUARD(filepath);
}
else {
src = StringValue(src);
error = pm_parse_string(&result, src, file);
}
if (error == Qnil) {
iseq = pm_iseq_new_with_opt(&result.node, name, file, realpath, ln, NULL, 0, ISEQ_TYPE_TOP, &option);
pm_parse_result_free(&result);
}
else {
pm_parse_result_free(&result);
rb_exc_raise(error);
}
return iseq;
}
VALUE
rb_iseq_path(const rb_iseq_t *iseq)
{
return pathobj_path(ISEQ_BODY(iseq)->location.pathobj);
}
VALUE
rb_iseq_realpath(const rb_iseq_t *iseq)
{
return pathobj_realpath(ISEQ_BODY(iseq)->location.pathobj);
}
VALUE
rb_iseq_absolute_path(const rb_iseq_t *iseq)
{
return rb_iseq_realpath(iseq);
}
int
rb_iseq_from_eval_p(const rb_iseq_t *iseq)
{
return NIL_P(rb_iseq_realpath(iseq));
}
VALUE
rb_iseq_label(const rb_iseq_t *iseq)
{
return ISEQ_BODY(iseq)->location.label;
}
VALUE
rb_iseq_base_label(const rb_iseq_t *iseq)
{
return ISEQ_BODY(iseq)->location.base_label;
}
VALUE
rb_iseq_first_lineno(const rb_iseq_t *iseq)
{
return RB_INT2NUM(ISEQ_BODY(iseq)->location.first_lineno);
}
VALUE
rb_iseq_method_name(const rb_iseq_t *iseq)
{
struct rb_iseq_constant_body *const body = ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq);
if (body->type == ISEQ_TYPE_METHOD) {
return body->location.base_label;
}
else {
return Qnil;
}
}
void
rb_iseq_code_location(const rb_iseq_t *iseq, int *beg_pos_lineno, int *beg_pos_column, int *end_pos_lineno, int *end_pos_column)
{
const rb_code_location_t *loc = &ISEQ_BODY(iseq)->location.code_location;
if (beg_pos_lineno) *beg_pos_lineno = loc->beg_pos.lineno;
if (beg_pos_column) *beg_pos_column = loc->beg_pos.column;
if (end_pos_lineno) *end_pos_lineno = loc->end_pos.lineno;
if (end_pos_column) *end_pos_column = loc->end_pos.column;
}
static ID iseq_type_id(enum rb_iseq_type type);
VALUE
rb_iseq_type(const rb_iseq_t *iseq)
{
return ID2SYM(iseq_type_id(ISEQ_BODY(iseq)->type));
}
VALUE
rb_iseq_coverage(const rb_iseq_t *iseq)
{
return ISEQ_COVERAGE(iseq);
}
static int
remove_coverage_i(void *vstart, void *vend, size_t stride, void *data)
{
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
void *ptr = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
if (rb_obj_is_iseq(v)) {
rb_iseq_t *iseq = (rb_iseq_t *)v;
ISEQ_COVERAGE_SET(iseq, Qnil);
}
asan_poison_object_if(ptr, v);
}
return 0;
}
void
rb_iseq_remove_coverage_all(void)
{
rb_objspace_each_objects(remove_coverage_i, NULL);
}
/* define wrapper class methods (RubyVM::InstructionSequence) */
static void
iseqw_mark(void *ptr)
{
rb_gc_mark_movable(*(VALUE *)ptr);
}
static size_t
iseqw_memsize(const void *ptr)
{
return rb_iseq_memsize(*(const rb_iseq_t **)ptr);
}
static void
iseqw_ref_update(void *ptr)
{
VALUE *vptr = ptr;
*vptr = rb_gc_location(*vptr);
}
static const rb_data_type_t iseqw_data_type = {
"T_IMEMO/iseq",
{
iseqw_mark,
RUBY_TYPED_DEFAULT_FREE,
iseqw_memsize,
iseqw_ref_update,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED
};
static VALUE
iseqw_new(const rb_iseq_t *iseq)
{
if (iseq->wrapper) {
if (*(const rb_iseq_t **)rb_check_typeddata(iseq->wrapper, &iseqw_data_type) != iseq) {
rb_raise(rb_eTypeError, "wrong iseq wrapper: %" PRIsVALUE " for %p",
iseq->wrapper, (void *)iseq);
}
return iseq->wrapper;
}
else {
rb_iseq_t **ptr;
VALUE obj = TypedData_Make_Struct(rb_cISeq, rb_iseq_t *, &iseqw_data_type, ptr);
RB_OBJ_WRITE(obj, ptr, iseq);
/* cache a wrapper object */
RB_OBJ_WRITE((VALUE)iseq, &iseq->wrapper, obj);
RB_OBJ_FREEZE((VALUE)iseq);
return obj;
}
}
VALUE
rb_iseqw_new(const rb_iseq_t *iseq)
{
return iseqw_new(iseq);
}
/**
* Accept the options given to InstructionSequence.compile and
* InstructionSequence.compile_prism and share the logic for creating the
* instruction sequence.
*/
static VALUE
iseqw_s_compile_parser(int argc, VALUE *argv, VALUE self, bool prism)
{
VALUE src, file = Qnil, path = Qnil, line = Qnil, opt = Qnil;
int i;
i = rb_scan_args(argc, argv, "1*:", &src, NULL, &opt);
if (i > 4+NIL_P(opt)) rb_error_arity(argc, 1, 5);
switch (i) {
case 5: opt = argv[--i];
case 4: line = argv[--i];
case 3: path = argv[--i];
case 2: file = argv[--i];
}
if (NIL_P(file)) file = rb_fstring_lit("<compiled>");
if (NIL_P(path)) path = file;
if (NIL_P(line)) line = INT2FIX(1);
Check_Type(path, T_STRING);
Check_Type(file, T_STRING);
rb_iseq_t *iseq;
if (prism) {
iseq = pm_iseq_compile_with_option(src, file, path, line, opt);
}
else {
iseq = rb_iseq_compile_with_option(src, file, path, line, opt);
}
return iseqw_new(iseq);
}
/*
* call-seq:
* InstructionSequence.compile(source[, file[, path[, line[, options]]]]) -> iseq
* InstructionSequence.new(source[, file[, path[, line[, options]]]]) -> iseq
*
* Takes +source+, which can be a string of Ruby code, or an open +File+ object.
* that contains Ruby source code.
*
* Optionally takes +file+, +path+, and +line+ which describe the file path,
* real path and first line number of the ruby code in +source+ which are
* metadata attached to the returned +iseq+.
*
* +file+ is used for `__FILE__` and exception backtrace. +path+ is used for
* +require_relative+ base. It is recommended these should be the same full
* path.
*
* +options+, which can be +true+, +false+ or a +Hash+, is used to
* modify the default behavior of the Ruby iseq compiler.
*
* For details regarding valid compile options see ::compile_option=.
*
* RubyVM::InstructionSequence.compile("a = 1 + 2")
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
*
* path = "test.rb"
* RubyVM::InstructionSequence.compile(File.read(path), path, File.expand_path(path))
* #=> <RubyVM::InstructionSequence:<compiled>@test.rb:1>
*
* file = File.open("test.rb")
* RubyVM::InstructionSequence.compile(file)
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>:1>
*
* path = File.expand_path("test.rb")
* RubyVM::InstructionSequence.compile(File.read(path), path, path)
* #=> <RubyVM::InstructionSequence:<compiled>@/absolute/path/to/test.rb:1>
*
*/
static VALUE
iseqw_s_compile(int argc, VALUE *argv, VALUE self)
{
return iseqw_s_compile_parser(argc, argv, self, *rb_ruby_prism_ptr());
}
/*
* call-seq:
* InstructionSequence.compile_prism(source[, file[, path[, line[, options]]]]) -> iseq
*
* Takes +source+, which can be a string of Ruby code, or an open +File+ object.
* that contains Ruby source code. It parses and compiles using prism.
*
* Optionally takes +file+, +path+, and +line+ which describe the file path,
* real path and first line number of the ruby code in +source+ which are
* metadata attached to the returned +iseq+.
*
* +file+ is used for `__FILE__` and exception backtrace. +path+ is used for
* +require_relative+ base. It is recommended these should be the same full
* path.
*
* +options+, which can be +true+, +false+ or a +Hash+, is used to
* modify the default behavior of the Ruby iseq compiler.
*
* For details regarding valid compile options see ::compile_option=.
*
* RubyVM::InstructionSequence.compile("a = 1 + 2")
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
*
* path = "test.rb"
* RubyVM::InstructionSequence.compile(File.read(path), path, File.expand_path(path))
* #=> <RubyVM::InstructionSequence:<compiled>@test.rb:1>
*
* file = File.open("test.rb")
* RubyVM::InstructionSequence.compile(file)
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>:1>
*
* path = File.expand_path("test.rb")
* RubyVM::InstructionSequence.compile(File.read(path), path, path)
* #=> <RubyVM::InstructionSequence:<compiled>@/absolute/path/to/test.rb:1>
*
*/
static VALUE
iseqw_s_compile_prism(int argc, VALUE *argv, VALUE self)
{
return iseqw_s_compile_parser(argc, argv, self, true);
}
/*
* call-seq:
* InstructionSequence.compile_file(file[, options]) -> iseq
*
* Takes +file+, a String with the location of a Ruby source file, reads,
* parses and compiles the file, and returns +iseq+, the compiled
* InstructionSequence with source location metadata set.
*
* Optionally takes +options+, which can be +true+, +false+ or a +Hash+, to
* modify the default behavior of the Ruby iseq compiler.
*
* For details regarding valid compile options see ::compile_option=.
*
* # /tmp/hello.rb
* puts "Hello, world!"
*
* # elsewhere
* RubyVM::InstructionSequence.compile_file("/tmp/hello.rb")
* #=> <RubyVM::InstructionSequence:<main>@/tmp/hello.rb>
*/
static VALUE
iseqw_s_compile_file(int argc, VALUE *argv, VALUE self)
{
VALUE file, opt = Qnil;
VALUE parser, f, exc = Qnil, ret;
rb_ast_t *ast;
VALUE ast_value;
rb_compile_option_t option;
int i;
i = rb_scan_args(argc, argv, "1*:", &file, NULL, &opt);
if (i > 1+NIL_P(opt)) rb_error_arity(argc, 1, 2);
switch (i) {
case 2: opt = argv[--i];
}
FilePathValue(file);
file = rb_fstring(file); /* rb_io_t->pathv gets frozen anyways */
f = rb_file_open_str(file, "r");
rb_execution_context_t *ec = GET_EC();
VALUE v = rb_vm_push_frame_fname(ec, file);
parser = rb_parser_new();
rb_parser_set_context(parser, NULL, FALSE);
ast_value = rb_parser_load_file(parser, file);
ast = rb_ruby_ast_data_get(ast_value);
if (!ast->body.root) exc = GET_EC()->errinfo;
rb_io_close(f);
if (!ast->body.root) {
rb_ast_dispose(ast);
rb_exc_raise(exc);
}
make_compile_option(&option, opt);
ret = iseqw_new(rb_iseq_new_with_opt(ast_value, rb_fstring_lit("<main>"),
file,
rb_realpath_internal(Qnil, file, 1),
1, NULL, 0, ISEQ_TYPE_TOP, &option,
Qnil));
rb_ast_dispose(ast);
rb_vm_pop_frame(ec);
RB_GC_GUARD(v);
return ret;
}
/*
* call-seq:
* InstructionSequence.compile_file_prism(file[, options]) -> iseq
*
* Takes +file+, a String with the location of a Ruby source file, reads,
* parses and compiles the file, and returns +iseq+, the compiled
* InstructionSequence with source location metadata set. It parses and
* compiles using prism.
*
* Optionally takes +options+, which can be +true+, +false+ or a +Hash+, to
* modify the default behavior of the Ruby iseq compiler.
*
* For details regarding valid compile options see ::compile_option=.
*
* # /tmp/hello.rb
* puts "Hello, world!"
*
* # elsewhere
* RubyVM::InstructionSequence.compile_file_prism("/tmp/hello.rb")
* #=> <RubyVM::InstructionSequence:<main>@/tmp/hello.rb>
*/
static VALUE
iseqw_s_compile_file_prism(int argc, VALUE *argv, VALUE self)
{
VALUE file, opt = Qnil, ret;
rb_compile_option_t option;
int i;
i = rb_scan_args(argc, argv, "1*:", &file, NULL, &opt);
if (i > 1+NIL_P(opt)) rb_error_arity(argc, 1, 2);
switch (i) {
case 2: opt = argv[--i];
}
FilePathValue(file);
file = rb_fstring(file); /* rb_io_t->pathv gets frozen anyways */
rb_execution_context_t *ec = GET_EC();
VALUE v = rb_vm_push_frame_fname(ec, file);
pm_parse_result_t result = { 0 };
result.options.line = 1;
result.node.coverage_enabled = 1;
VALUE error = pm_load_parse_file(&result, file);
if (error == Qnil) {
make_compile_option(&option, opt);
ret = iseqw_new(pm_iseq_new_with_opt(&result.node, rb_fstring_lit("<main>"),
file,
rb_realpath_internal(Qnil, file, 1),
1, NULL, 0, ISEQ_TYPE_TOP, &option));
pm_parse_result_free(&result);
rb_vm_pop_frame(ec);
RB_GC_GUARD(v);
return ret;
} else {
pm_parse_result_free(&result);
rb_vm_pop_frame(ec);
RB_GC_GUARD(v);
rb_exc_raise(error);
}
}
/*
* call-seq:
* InstructionSequence.compile_option = options
*
* Sets the default values for various optimizations in the Ruby iseq
* compiler.
*
* Possible values for +options+ include +true+, which enables all options,
* +false+ which disables all options, and +nil+ which leaves all options
* unchanged.
*
* You can also pass a +Hash+ of +options+ that you want to change, any
* options not present in the hash will be left unchanged.
*
* Possible option names (which are keys in +options+) which can be set to
* +true+ or +false+ include:
*
* * +:inline_const_cache+
* * +:instructions_unification+
* * +:operands_unification+
* * +:peephole_optimization+
* * +:specialized_instruction+
* * +:tailcall_optimization+
*
* Additionally, +:debug_level+ can be set to an integer.
*
* These default options can be overwritten for a single run of the iseq
* compiler by passing any of the above values as the +options+ parameter to
* ::new, ::compile and ::compile_file.
*/
static VALUE
iseqw_s_compile_option_set(VALUE self, VALUE opt)
{
rb_compile_option_t option;
make_compile_option(&option, opt);
COMPILE_OPTION_DEFAULT = option;
return opt;
}
/*
* call-seq:
* InstructionSequence.compile_option -> options
*
* Returns a hash of default options used by the Ruby iseq compiler.
*
* For details, see InstructionSequence.compile_option=.
*/
static VALUE
iseqw_s_compile_option_get(VALUE self)
{
return make_compile_option_value(&COMPILE_OPTION_DEFAULT);
}
static const rb_iseq_t *
iseqw_check(VALUE iseqw)
{
rb_iseq_t **iseq_ptr;
TypedData_Get_Struct(iseqw, rb_iseq_t *, &iseqw_data_type, iseq_ptr);
rb_iseq_t *iseq = *iseq_ptr;
if (!ISEQ_BODY(iseq)) {
rb_ibf_load_iseq_complete(iseq);
}
if (!ISEQ_BODY(iseq)->location.label) {
rb_raise(rb_eTypeError, "uninitialized InstructionSequence");
}
return iseq;
}
const rb_iseq_t *
rb_iseqw_to_iseq(VALUE iseqw)
{
return iseqw_check(iseqw);
}
/*
* call-seq:
* iseq.eval -> obj
*
* Evaluates the instruction sequence and returns the result.
*
* RubyVM::InstructionSequence.compile("1 + 2").eval #=> 3
*/
static VALUE
iseqw_eval(VALUE self)
{
return rb_iseq_eval(iseqw_check(self));
}
/*
* Returns a human-readable string representation of this instruction
* sequence, including the #label and #path.
*/
static VALUE
iseqw_inspect(VALUE self)
{
const rb_iseq_t *iseq = iseqw_check(self);
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE klass = rb_class_name(rb_obj_class(self));
if (!body->location.label) {
return rb_sprintf("#<%"PRIsVALUE": uninitialized>", klass);
}
else {
return rb_sprintf("<%"PRIsVALUE":%"PRIsVALUE"@%"PRIsVALUE":%d>",
klass,
body->location.label, rb_iseq_path(iseq),
FIX2INT(rb_iseq_first_lineno(iseq)));
}
}
/*
* Returns the path of this instruction sequence.
*
* <code><compiled></code> if the iseq was evaluated from a string.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.path
* #=> "<compiled>"
*
* Using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.path #=> /tmp/method.rb
*/
static VALUE
iseqw_path(VALUE self)
{
return rb_iseq_path(iseqw_check(self));
}
/*
* Returns the absolute path of this instruction sequence.
*
* +nil+ if the iseq was evaluated from a string.
*
* For example, using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.absolute_path #=> /tmp/method.rb
*/
static VALUE
iseqw_absolute_path(VALUE self)
{
return rb_iseq_realpath(iseqw_check(self));
}
/* Returns the label of this instruction sequence.
*
* <code><main></code> if it's at the top level, <code><compiled></code> if it
* was evaluated from a string.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.label
* #=> "<compiled>"
*
* Using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.label #=> <main>
*/
static VALUE
iseqw_label(VALUE self)
{
return rb_iseq_label(iseqw_check(self));
}
/* Returns the base label of this instruction sequence.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.base_label
* #=> "<compiled>"
*
* Using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.base_label #=> <main>
*/
static VALUE
iseqw_base_label(VALUE self)
{
return rb_iseq_base_label(iseqw_check(self));
}
/* Returns the number of the first source line where the instruction sequence
* was loaded from.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.first_lineno
* #=> 1
*/
static VALUE
iseqw_first_lineno(VALUE self)
{
return rb_iseq_first_lineno(iseqw_check(self));
}
static VALUE iseq_data_to_ary(const rb_iseq_t *iseq);
/*
* call-seq:
* iseq.to_a -> ary
*
* Returns an Array with 14 elements representing the instruction sequence
* with the following data:
*
* [magic]
* A string identifying the data format. <b>Always
* +YARVInstructionSequence/SimpleDataFormat+.</b>
*
* [major_version]
* The major version of the instruction sequence.
*
* [minor_version]
* The minor version of the instruction sequence.
*
* [format_type]
* A number identifying the data format. <b>Always 1</b>.
*
* [misc]
* A hash containing:
*
* [+:arg_size+]
* the total number of arguments taken by the method or the block (0 if
* _iseq_ doesn't represent a method or block)
* [+:local_size+]
* the number of local variables + 1
* [+:stack_max+]
* used in calculating the stack depth at which a SystemStackError is
* thrown.
*
* [#label]
* The name of the context (block, method, class, module, etc.) that this
* instruction sequence belongs to.
*
* <code><main></code> if it's at the top level, <code><compiled></code> if
* it was evaluated from a string.
*
* [#path]
* The relative path to the Ruby file where the instruction sequence was
* loaded from.
*
* <code><compiled></code> if the iseq was evaluated from a string.
*
* [#absolute_path]
* The absolute path to the Ruby file where the instruction sequence was
* loaded from.
*
* +nil+ if the iseq was evaluated from a string.
*
* [#first_lineno]
* The number of the first source line where the instruction sequence was
* loaded from.
*
* [type]
* The type of the instruction sequence.
*
* Valid values are +:top+, +:method+, +:block+, +:class+, +:rescue+,
* +:ensure+, +:eval+, +:main+, and +plain+.
*
* [locals]
* An array containing the names of all arguments and local variables as
* symbols.
*
* [params]
* An Hash object containing parameter information.
*
* More info about these values can be found in +vm_core.h+.
*
* [catch_table]
* A list of exceptions and control flow operators (rescue, next, redo,
* break, etc.).
*
* [bytecode]
* An array of arrays containing the instruction names and operands that
* make up the body of the instruction sequence.
*
* Note that this format is MRI specific and version dependent.
*
*/
static VALUE
iseqw_to_a(VALUE self)
{
const rb_iseq_t *iseq = iseqw_check(self);
return iseq_data_to_ary(iseq);
}
#if VM_INSN_INFO_TABLE_IMPL == 1 /* binary search */
static const struct iseq_insn_info_entry *
get_insn_info_binary_search(const rb_iseq_t *iseq, size_t pos)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
size_t size = body->insns_info.size;
const struct iseq_insn_info_entry *insns_info = body->insns_info.body;
const unsigned int *positions = body->insns_info.positions;
const int debug = 0;
if (debug) {
printf("size: %"PRIuSIZE"\n", size);
printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n",
(size_t)0, positions[0], insns_info[0].line_no, pos);
}
if (size == 0) {
return NULL;
}
else if (size == 1) {
return &insns_info[0];
}
else {
size_t l = 1, r = size - 1;
while (l <= r) {
size_t m = l + (r - l) / 2;
if (positions[m] == pos) {
return &insns_info[m];
}
if (positions[m] < pos) {
l = m + 1;
}
else {
r = m - 1;
}
}
if (l >= size) {
return &insns_info[size-1];
}
if (positions[l] > pos) {
return &insns_info[l-1];
}
return &insns_info[l];
}
}
static const struct iseq_insn_info_entry *
get_insn_info(const rb_iseq_t *iseq, size_t pos)
{
return get_insn_info_binary_search(iseq, pos);
}
#endif
#if VM_INSN_INFO_TABLE_IMPL == 2 /* succinct bitvector */
static const struct iseq_insn_info_entry *
get_insn_info_succinct_bitvector(const rb_iseq_t *iseq, size_t pos)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
size_t size = body->insns_info.size;
const struct iseq_insn_info_entry *insns_info = body->insns_info.body;
const int debug = 0;
if (debug) {
#if VM_CHECK_MODE > 0
const unsigned int *positions = body->insns_info.positions;
printf("size: %"PRIuSIZE"\n", size);
printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n",
(size_t)0, positions[0], insns_info[0].line_no, pos);
#else
printf("size: %"PRIuSIZE"\n", size);
printf("insns_info[%"PRIuSIZE"]: line: %d, pos: %"PRIuSIZE"\n",
(size_t)0, insns_info[0].line_no, pos);
#endif
}
if (size == 0) {
return NULL;
}
else if (size == 1) {
return &insns_info[0];
}
else {
int index;
VM_ASSERT(body->insns_info.succ_index_table != NULL);
index = succ_index_lookup(body->insns_info.succ_index_table, (int)pos);
return &insns_info[index-1];
}
}
static const struct iseq_insn_info_entry *
get_insn_info(const rb_iseq_t *iseq, size_t pos)
{
return get_insn_info_succinct_bitvector(iseq, pos);
}
#endif
#if VM_CHECK_MODE > 0 || VM_INSN_INFO_TABLE_IMPL == 0
static const struct iseq_insn_info_entry *
get_insn_info_linear_search(const rb_iseq_t *iseq, size_t pos)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
size_t i = 0, size = body->insns_info.size;
const struct iseq_insn_info_entry *insns_info = body->insns_info.body;
const unsigned int *positions = body->insns_info.positions;
const int debug = 0;
if (debug) {
printf("size: %"PRIuSIZE"\n", size);
printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n",
i, positions[i], insns_info[i].line_no, pos);
}
if (size == 0) {
return NULL;
}
else if (size == 1) {
return &insns_info[0];
}
else {
for (i=1; i<size; i++) {
if (debug) printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n",
i, positions[i], insns_info[i].line_no, pos);
if (positions[i] == pos) {
return &insns_info[i];
}
if (positions[i] > pos) {
return &insns_info[i-1];
}
}
}
return &insns_info[i-1];
}
#endif
#if VM_INSN_INFO_TABLE_IMPL == 0 /* linear search */
static const struct iseq_insn_info_entry *
get_insn_info(const rb_iseq_t *iseq, size_t pos)
{
return get_insn_info_linear_search(iseq, pos);
}
#endif
#if VM_CHECK_MODE > 0 && VM_INSN_INFO_TABLE_IMPL > 0
static void
validate_get_insn_info(const rb_iseq_t *iseq)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
size_t i;
for (i = 0; i < body->iseq_size; i++) {
if (get_insn_info_linear_search(iseq, i) != get_insn_info(iseq, i)) {
rb_bug("validate_get_insn_info: get_insn_info_linear_search(iseq, %"PRIuSIZE") != get_insn_info(iseq, %"PRIuSIZE")", i, i);
}
}
}
#endif
unsigned int
rb_iseq_line_no(const rb_iseq_t *iseq, size_t pos)
{
const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pos);
if (entry) {
return entry->line_no;
}
else {
return 0;
}
}
#ifdef USE_ISEQ_NODE_ID
int
rb_iseq_node_id(const rb_iseq_t *iseq, size_t pos)
{
const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pos);
if (entry) {
return entry->node_id;
}
else {
return 0;
}
}
#endif
rb_event_flag_t
rb_iseq_event_flags(const rb_iseq_t *iseq, size_t pos)
{
const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pos);
if (entry) {
return entry->events;
}
else {
return 0;
}
}
void
rb_iseq_clear_event_flags(const rb_iseq_t *iseq, size_t pos, rb_event_flag_t reset)
{
struct iseq_insn_info_entry *entry = (struct iseq_insn_info_entry *)get_insn_info(iseq, pos);
if (entry) {
entry->events &= ~reset;
if (!(entry->events & iseq->aux.exec.global_trace_events)) {
void rb_iseq_trace_flag_cleared(const rb_iseq_t *iseq, size_t pos);
rb_iseq_trace_flag_cleared(iseq, pos);
}
}
}
static VALUE
local_var_name(const rb_iseq_t *diseq, VALUE level, VALUE op)
{
VALUE i;
VALUE name;
ID lid;
int idx;
for (i = 0; i < level; i++) {
diseq = ISEQ_BODY(diseq)->parent_iseq;
}
idx = ISEQ_BODY(diseq)->local_table_size - (int)op - 1;
lid = ISEQ_BODY(diseq)->local_table[idx];
name = rb_id2str(lid);
if (!name) {
name = rb_str_new_cstr("?");
}
else if (!rb_is_local_id(lid)) {
name = rb_str_inspect(name);
}
else {
name = rb_str_dup(name);
}
rb_str_catf(name, "@%d", idx);
return name;
}
int rb_insn_unified_local_var_level(VALUE);
VALUE rb_dump_literal(VALUE lit);
VALUE
rb_insn_operand_intern(const rb_iseq_t *iseq,
VALUE insn, int op_no, VALUE op,
int len, size_t pos, const VALUE *pnop, VALUE child)
{
const char *types = insn_op_types(insn);
char type = types[op_no];
VALUE ret = Qundef;
switch (type) {
case TS_OFFSET: /* LONG */
ret = rb_sprintf("%"PRIdVALUE, (VALUE)(pos + len + op));
break;
case TS_NUM: /* ULONG */
if (insn == BIN(defined) && op_no == 0) {
enum defined_type deftype = (enum defined_type)op;
switch (deftype) {
case DEFINED_FUNC:
ret = rb_fstring_lit("func");
break;
case DEFINED_REF:
ret = rb_fstring_lit("ref");
break;
case DEFINED_CONST_FROM:
ret = rb_fstring_lit("constant-from");
break;
default:
ret = rb_iseq_defined_string(deftype);
break;
}
if (ret) break;
}
else if (insn == BIN(checktype) && op_no == 0) {
const char *type_str = rb_type_str((enum ruby_value_type)op);
if (type_str) {
ret = rb_str_new_cstr(type_str); break;
}
}
ret = rb_sprintf("%"PRIuVALUE, op);
break;
case TS_LINDEX:{
int level;
if (types[op_no+1] == TS_NUM && pnop) {
ret = local_var_name(iseq, *pnop, op - VM_ENV_DATA_SIZE);
}
else if ((level = rb_insn_unified_local_var_level(insn)) >= 0) {
ret = local_var_name(iseq, (VALUE)level, op - VM_ENV_DATA_SIZE);
}
else {
ret = rb_inspect(INT2FIX(op));
}
break;
}
case TS_ID: /* ID (symbol) */
ret = rb_inspect(ID2SYM(op));
break;
case TS_VALUE: /* VALUE */
op = obj_resurrect(op);
if (insn == BIN(defined) && op_no == 1 && FIXNUM_P(op)) {
/* should be DEFINED_REF */
int type = NUM2INT(op);
if (type) {
if (type & 1) {
ret = rb_sprintf(":$%c", (type >> 1));
}
else {
ret = rb_sprintf(":$%d", (type >> 1));
}
break;
}
}
ret = rb_dump_literal(op);
if (CLASS_OF(op) == rb_cISeq) {
if (child) {
rb_ary_push(child, op);
}
}
break;
case TS_ISEQ: /* iseq */
{
if (op) {
const rb_iseq_t *iseq = rb_iseq_check((rb_iseq_t *)op);
ret = ISEQ_BODY(iseq)->location.label;
if (child) {
rb_ary_push(child, (VALUE)iseq);
}
}
else {
ret = rb_str_new2("nil");
}
break;
}
case TS_IC:
{
ret = rb_sprintf("<ic:%"PRIdPTRDIFF" ", (union iseq_inline_storage_entry *)op - ISEQ_BODY(iseq)->is_entries);
const ID *segments = ((IC)op)->segments;
rb_str_cat2(ret, rb_id2name(*segments++));
while (*segments) {
rb_str_catf(ret, "::%s", rb_id2name(*segments++));
}
rb_str_cat2(ret, ">");
}
break;
case TS_IVC:
case TS_ICVARC:
case TS_ISE:
ret = rb_sprintf("<is:%"PRIdPTRDIFF">", (union iseq_inline_storage_entry *)op - ISEQ_BODY(iseq)->is_entries);
break;
case TS_CALLDATA:
{
struct rb_call_data *cd = (struct rb_call_data *)op;
const struct rb_callinfo *ci = cd->ci;
VALUE ary = rb_ary_new();
ID mid = vm_ci_mid(ci);
if (mid) {
rb_ary_push(ary, rb_sprintf("mid:%"PRIsVALUE, rb_id2str(mid)));
}
rb_ary_push(ary, rb_sprintf("argc:%d", vm_ci_argc(ci)));
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
const struct rb_callinfo_kwarg *kw_args = vm_ci_kwarg(ci);
VALUE kw_ary = rb_ary_new_from_values(kw_args->keyword_len, kw_args->keywords);
rb_ary_push(ary, rb_sprintf("kw:[%"PRIsVALUE"]", rb_ary_join(kw_ary, rb_str_new2(","))));
}
if (vm_ci_flag(ci)) {
VALUE flags = rb_ary_new();
# define CALL_FLAG(n) if (vm_ci_flag(ci) & VM_CALL_##n) rb_ary_push(flags, rb_str_new2(#n))
CALL_FLAG(ARGS_SPLAT);
CALL_FLAG(ARGS_SPLAT_MUT);
CALL_FLAG(ARGS_BLOCKARG);
CALL_FLAG(FCALL);
CALL_FLAG(VCALL);
CALL_FLAG(ARGS_SIMPLE);
CALL_FLAG(TAILCALL);
CALL_FLAG(SUPER);
CALL_FLAG(ZSUPER);
CALL_FLAG(KWARG);
CALL_FLAG(KW_SPLAT);
CALL_FLAG(KW_SPLAT_MUT);
CALL_FLAG(FORWARDING);
CALL_FLAG(OPT_SEND); /* maybe not reachable */
rb_ary_push(ary, rb_ary_join(flags, rb_str_new2("|")));
}
ret = rb_sprintf("<calldata!%"PRIsVALUE">", rb_ary_join(ary, rb_str_new2(", ")));
}
break;
case TS_CDHASH:
ret = rb_str_new2("<cdhash>");
break;
case TS_FUNCPTR:
{
#ifdef HAVE_DLADDR
Dl_info info;
if (dladdr((void *)op, &info) && info.dli_sname) {
ret = rb_str_new_cstr(info.dli_sname);
break;
}
#endif
ret = rb_str_new2("<funcptr>");
}
break;
case TS_BUILTIN:
{
const struct rb_builtin_function *bf = (const struct rb_builtin_function *)op;
ret = rb_sprintf("<builtin!%s/%d>",
bf->name, bf->argc);
}
break;
default:
rb_bug("unknown operand type: %c", type);
}
return ret;
}
static VALUE
right_strip(VALUE str)
{
const char *beg = RSTRING_PTR(str), *end = RSTRING_END(str);
while (end-- > beg && *end == ' ');
rb_str_set_len(str, end - beg + 1);
return str;
}
/**
* Disassemble a instruction
* Iseq -> Iseq inspect object
*/
int
rb_iseq_disasm_insn(VALUE ret, const VALUE *code, size_t pos,
const rb_iseq_t *iseq, VALUE child)
{
VALUE insn = code[pos];
int len = insn_len(insn);
int j;
const char *types = insn_op_types(insn);
VALUE str = rb_str_new(0, 0);
const char *insn_name_buff;
insn_name_buff = insn_name(insn);
if (1) {
extern const int rb_vm_max_insn_name_size;
rb_str_catf(str, "%04"PRIuSIZE" %-*s ", pos, rb_vm_max_insn_name_size, insn_name_buff);
}
else {
rb_str_catf(str, "%04"PRIuSIZE" %-28.*s ", pos,
(int)strcspn(insn_name_buff, "_"), insn_name_buff);
}
for (j = 0; types[j]; j++) {
VALUE opstr = rb_insn_operand_intern(iseq, insn, j, code[pos + j + 1],
len, pos, &code[pos + j + 2],
child);
rb_str_concat(str, opstr);
if (types[j + 1]) {
rb_str_cat2(str, ", ");
}
}
{
unsigned int line_no = rb_iseq_line_no(iseq, pos);
unsigned int prev = pos == 0 ? 0 : rb_iseq_line_no(iseq, pos - 1);
if (line_no && line_no != prev) {
long slen = RSTRING_LEN(str);
slen = (slen > 70) ? 0 : (70 - slen);
str = rb_str_catf(str, "%*s(%4d)", (int)slen, "", line_no);
}
}
{
rb_event_flag_t events = rb_iseq_event_flags(iseq, pos);
if (events) {
str = rb_str_catf(str, "[%s%s%s%s%s%s%s%s%s%s%s%s]",
events & RUBY_EVENT_LINE ? "Li" : "",
events & RUBY_EVENT_CLASS ? "Cl" : "",
events & RUBY_EVENT_END ? "En" : "",
events & RUBY_EVENT_CALL ? "Ca" : "",
events & RUBY_EVENT_RETURN ? "Re" : "",
events & RUBY_EVENT_C_CALL ? "Cc" : "",
events & RUBY_EVENT_C_RETURN ? "Cr" : "",
events & RUBY_EVENT_B_CALL ? "Bc" : "",
events & RUBY_EVENT_B_RETURN ? "Br" : "",
events & RUBY_EVENT_RESCUE ? "Rs" : "",
events & RUBY_EVENT_COVERAGE_LINE ? "Cli" : "",
events & RUBY_EVENT_COVERAGE_BRANCH ? "Cbr" : "");
}
}
right_strip(str);
if (ret) {
rb_str_cat2(str, "\n");
rb_str_concat(ret, str);
}
else {
printf("%.*s\n", (int)RSTRING_LEN(str), RSTRING_PTR(str));
}
return len;
}
static const char *
catch_type(int type)
{
switch (type) {
case CATCH_TYPE_RESCUE:
return "rescue";
case CATCH_TYPE_ENSURE:
return "ensure";
case CATCH_TYPE_RETRY:
return "retry";
case CATCH_TYPE_BREAK:
return "break";
case CATCH_TYPE_REDO:
return "redo";
case CATCH_TYPE_NEXT:
return "next";
default:
rb_bug("unknown catch type: %d", type);
return 0;
}
}
static VALUE
iseq_inspect(const rb_iseq_t *iseq)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
if (!body->location.label) {
return rb_sprintf("#<ISeq: uninitialized>");
}
else {
const rb_code_location_t *loc = &body->location.code_location;
return rb_sprintf("#<ISeq:%"PRIsVALUE"@%"PRIsVALUE":%d (%d,%d)-(%d,%d)>",
body->location.label, rb_iseq_path(iseq),
loc->beg_pos.lineno,
loc->beg_pos.lineno,
loc->beg_pos.column,
loc->end_pos.lineno,
loc->end_pos.column);
}
}
static const rb_data_type_t tmp_set = {
"tmpset",
{(void (*)(void *))rb_mark_set, (void (*)(void *))st_free_table, 0, 0,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
rb_iseq_disasm_recursive(const rb_iseq_t *iseq, VALUE indent)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE *code;
VALUE str = rb_str_new(0, 0);
VALUE child = rb_ary_hidden_new(3);
unsigned int size;
unsigned int i;
long l;
size_t n;
enum {header_minlen = 72};
st_table *done_iseq = 0;
VALUE done_iseq_wrapper = Qnil;
const char *indent_str;
long indent_len;
size = body->iseq_size;
indent_len = RSTRING_LEN(indent);
indent_str = RSTRING_PTR(indent);
rb_str_cat(str, indent_str, indent_len);
rb_str_cat2(str, "== disasm: ");
rb_str_append(str, iseq_inspect(iseq));
if ((l = RSTRING_LEN(str) - indent_len) < header_minlen) {
rb_str_modify_expand(str, header_minlen - l);
memset(RSTRING_END(str), '=', header_minlen - l);
}
if (iseq->body->builtin_attrs) {
#define disasm_builtin_attr(str, iseq, attr) \
if (iseq->body->builtin_attrs & BUILTIN_ATTR_ ## attr) { \
rb_str_cat2(str, " " #attr); \
}
disasm_builtin_attr(str, iseq, LEAF);
disasm_builtin_attr(str, iseq, SINGLE_NOARG_LEAF);
disasm_builtin_attr(str, iseq, INLINE_BLOCK);
}
rb_str_cat2(str, "\n");
/* show catch table information */
if (body->catch_table) {
rb_str_cat(str, indent_str, indent_len);
rb_str_cat2(str, "== catch table\n");
}
if (body->catch_table) {
rb_str_cat_cstr(indent, "| ");
indent_str = RSTRING_PTR(indent);
for (i = 0; i < body->catch_table->size; i++) {
const struct iseq_catch_table_entry *entry =
UNALIGNED_MEMBER_PTR(body->catch_table, entries[i]);
rb_str_cat(str, indent_str, indent_len);
rb_str_catf(str,
"| catch type: %-6s st: %04d ed: %04d sp: %04d cont: %04d\n",
catch_type((int)entry->type), (int)entry->start,
(int)entry->end, (int)entry->sp, (int)entry->cont);
if (entry->iseq && !(done_iseq && st_is_member(done_iseq, (st_data_t)entry->iseq))) {
rb_str_concat(str, rb_iseq_disasm_recursive(rb_iseq_check(entry->iseq), indent));
if (!done_iseq) {
done_iseq = st_init_numtable();
done_iseq_wrapper = TypedData_Wrap_Struct(0, &tmp_set, done_iseq);
}
st_insert(done_iseq, (st_data_t)entry->iseq, (st_data_t)0);
indent_str = RSTRING_PTR(indent);
}
}
rb_str_resize(indent, indent_len);
indent_str = RSTRING_PTR(indent);
}
if (body->catch_table) {
rb_str_cat(str, indent_str, indent_len);
rb_str_cat2(str, "|-------------------------------------"
"-----------------------------------\n");
}
/* show local table information */
if (body->local_table) {
const struct rb_iseq_param_keyword *const keyword = body->param.keyword;
rb_str_cat(str, indent_str, indent_len);
rb_str_catf(str,
"local table (size: %d, argc: %d "
"[opts: %d, rest: %d, post: %d, block: %d, kw: %d@%d, kwrest: %d])\n",
body->local_table_size,
body->param.lead_num,
body->param.opt_num,
body->param.flags.has_rest ? body->param.rest_start : -1,
body->param.post_num,
body->param.flags.has_block ? body->param.block_start : -1,
body->param.flags.has_kw ? keyword->num : -1,
body->param.flags.has_kw ? keyword->required_num : -1,
body->param.flags.has_kwrest ? keyword->rest_start : -1);
for (i = body->local_table_size; i > 0;) {
int li = body->local_table_size - --i - 1;
long width;
VALUE name = local_var_name(iseq, 0, i);
char argi[0x100];
char opti[0x100];
opti[0] = '\0';
if (body->param.flags.has_opt) {
int argc = body->param.lead_num;
int opts = body->param.opt_num;
if (li >= argc && li < argc + opts) {
snprintf(opti, sizeof(opti), "Opt=%"PRIdVALUE,
body->param.opt_table[li - argc]);
}
}
snprintf(argi, sizeof(argi), "%s%s%s%s%s%s", /* arg, opts, rest, post, kwrest, block */
body->param.lead_num > li ? "Arg" : "",
opti,
(body->param.flags.has_rest && body->param.rest_start == li) ? "Rest" : "",
(body->param.flags.has_post && body->param.post_start <= li && li < body->param.post_start + body->param.post_num) ? "Post" : "",
(body->param.flags.has_kwrest && keyword->rest_start == li) ? "Kwrest" : "",
(body->param.flags.has_block && body->param.block_start == li) ? "Block" : "");
rb_str_cat(str, indent_str, indent_len);
rb_str_catf(str, "[%2d] ", i + 1);
width = RSTRING_LEN(str) + 11;
rb_str_append(str, name);
if (*argi) rb_str_catf(str, "<%s>", argi);
if ((width -= RSTRING_LEN(str)) > 0) rb_str_catf(str, "%*s", (int)width, "");
}
rb_str_cat_cstr(right_strip(str), "\n");
}
/* show each line */
code = rb_iseq_original_iseq(iseq);
for (n = 0; n < size;) {
rb_str_cat(str, indent_str, indent_len);
n += rb_iseq_disasm_insn(str, code, n, iseq, child);
}
for (l = 0; l < RARRAY_LEN(child); l++) {
VALUE isv = rb_ary_entry(child, l);
if (done_iseq && st_is_member(done_iseq, (st_data_t)isv)) continue;
rb_str_cat_cstr(str, "\n");
rb_str_concat(str, rb_iseq_disasm_recursive(rb_iseq_check((rb_iseq_t *)isv), indent));
indent_str = RSTRING_PTR(indent);
}
RB_GC_GUARD(done_iseq_wrapper);
return str;
}
VALUE
rb_iseq_disasm(const rb_iseq_t *iseq)
{
VALUE str = rb_iseq_disasm_recursive(iseq, rb_str_new(0, 0));
rb_str_resize(str, RSTRING_LEN(str));
return str;
}
/*
* Estimates the number of instance variables that will be set on
* a given `class` with the initialize method defined in
* `initialize_iseq`
*/
attr_index_t
rb_estimate_iv_count(VALUE klass, const rb_iseq_t * initialize_iseq)
{
struct rb_id_table * iv_names = rb_id_table_create(0);
for (unsigned int i = 0; i < ISEQ_BODY(initialize_iseq)->ivc_size; i++) {
IVC cache = (IVC)&ISEQ_BODY(initialize_iseq)->is_entries[i];
if (cache->iv_set_name) {
rb_id_table_insert(iv_names, cache->iv_set_name, Qtrue);
}
}
attr_index_t count = (attr_index_t)rb_id_table_size(iv_names);
VALUE superclass = rb_class_superclass(klass);
count += RCLASS_EXT(superclass)->max_iv_count;
rb_id_table_free(iv_names);
return count;
}
/*
* call-seq:
* iseq.disasm -> str
* iseq.disassemble -> str
*
* Returns the instruction sequence as a +String+ in human readable form.
*
* puts RubyVM::InstructionSequence.compile('1 + 2').disasm
*
* Produces:
*
* == disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
* 0000 trace 1 ( 1)
* 0002 putobject 1
* 0004 putobject 2
* 0006 opt_plus <ic:1>
* 0008 leave
*/
static VALUE
iseqw_disasm(VALUE self)
{
return rb_iseq_disasm(iseqw_check(self));
}
static int
iseq_iterate_children(const rb_iseq_t *iseq, void (*iter_func)(const rb_iseq_t *child_iseq, void *data), void *data)
{
unsigned int i;
VALUE *code = rb_iseq_original_iseq(iseq);
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
const rb_iseq_t *child;
VALUE all_children = rb_obj_hide(rb_ident_hash_new());
if (body->catch_table) {
for (i = 0; i < body->catch_table->size; i++) {
const struct iseq_catch_table_entry *entry =
UNALIGNED_MEMBER_PTR(body->catch_table, entries[i]);
child = entry->iseq;
if (child) {
if (NIL_P(rb_hash_aref(all_children, (VALUE)child))) {
rb_hash_aset(all_children, (VALUE)child, Qtrue);
(*iter_func)(child, data);
}
}
}
}
for (i=0; i<body->iseq_size;) {
VALUE insn = code[i];
int len = insn_len(insn);
const char *types = insn_op_types(insn);
int j;
for (j=0; types[j]; j++) {
switch (types[j]) {
case TS_ISEQ:
child = (const rb_iseq_t *)code[i+j+1];
if (child) {
if (NIL_P(rb_hash_aref(all_children, (VALUE)child))) {
rb_hash_aset(all_children, (VALUE)child, Qtrue);
(*iter_func)(child, data);
}
}
break;
default:
break;
}
}
i += len;
}
return (int)RHASH_SIZE(all_children);
}
static void
yield_each_children(const rb_iseq_t *child_iseq, void *data)
{
rb_yield(iseqw_new(child_iseq));
}
/*
* call-seq:
* iseq.each_child{|child_iseq| ...} -> iseq
*
* Iterate all direct child instruction sequences.
* Iteration order is implementation/version defined
* so that people should not rely on the order.
*/
static VALUE
iseqw_each_child(VALUE self)
{
const rb_iseq_t *iseq = iseqw_check(self);
iseq_iterate_children(iseq, yield_each_children, NULL);
return self;
}
static void
push_event_info(const rb_iseq_t *iseq, rb_event_flag_t events, int line, VALUE ary)
{
#define C(ev, cstr, l) if (events & ev) rb_ary_push(ary, rb_ary_new_from_args(2, l, ID2SYM(rb_intern(cstr))));
C(RUBY_EVENT_CLASS, "class", rb_iseq_first_lineno(iseq));
C(RUBY_EVENT_CALL, "call", rb_iseq_first_lineno(iseq));
C(RUBY_EVENT_B_CALL, "b_call", rb_iseq_first_lineno(iseq));
C(RUBY_EVENT_LINE, "line", INT2FIX(line));
C(RUBY_EVENT_END, "end", INT2FIX(line));
C(RUBY_EVENT_RETURN, "return", INT2FIX(line));
C(RUBY_EVENT_B_RETURN, "b_return", INT2FIX(line));
C(RUBY_EVENT_RESCUE, "rescue", INT2FIX(line));
#undef C
}
/*
* call-seq:
* iseq.trace_points -> ary
*
* Return trace points in the instruction sequence.
* Return an array of [line, event_symbol] pair.
*/
static VALUE
iseqw_trace_points(VALUE self)
{
const rb_iseq_t *iseq = iseqw_check(self);
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
unsigned int i;
VALUE ary = rb_ary_new();
for (i=0; i<body->insns_info.size; i++) {
const struct iseq_insn_info_entry *entry = &body->insns_info.body[i];
if (entry->events) {
push_event_info(iseq, entry->events, entry->line_no, ary);
}
}
return ary;
}
/*
* Returns the instruction sequence containing the given proc or method.
*
* For example, using irb:
*
* # a proc
* > p = proc { num = 1 + 2 }
* > RubyVM::InstructionSequence.of(p)
* > #=> <RubyVM::InstructionSequence:block in irb_binding@(irb)>
*
* # for a method
* > def foo(bar); puts bar; end
* > RubyVM::InstructionSequence.of(method(:foo))
* > #=> <RubyVM::InstructionSequence:foo@(irb)>
*
* Using ::compile_file:
*
* # /tmp/iseq_of.rb
* def hello
* puts "hello, world"
* end
*
* $a_global_proc = proc { str = 'a' + 'b' }
*
* # in irb
* > require '/tmp/iseq_of.rb'
*
* # first the method hello
* > RubyVM::InstructionSequence.of(method(:hello))
* > #=> #<RubyVM::InstructionSequence:0x007fb73d7cb1d0>
*
* # then the global proc
* > RubyVM::InstructionSequence.of($a_global_proc)
* > #=> #<RubyVM::InstructionSequence:0x007fb73d7caf78>
*/
static VALUE
iseqw_s_of(VALUE klass, VALUE body)
{
const rb_iseq_t *iseq = NULL;
if (rb_obj_is_proc(body)) {
iseq = vm_proc_iseq(body);
if (!rb_obj_is_iseq((VALUE)iseq)) {
iseq = NULL;
}
}
else if (rb_obj_is_method(body)) {
iseq = rb_method_iseq(body);
}
else if (rb_typeddata_is_instance_of(body, &iseqw_data_type)) {
return body;
}
return iseq ? iseqw_new(iseq) : Qnil;
}
/*
* call-seq:
* InstructionSequence.disasm(body) -> str
* InstructionSequence.disassemble(body) -> str
*
* Takes +body+, a Method or Proc object, and returns a String with the
* human readable instructions for +body+.
*
* For a Method object:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* puts RubyVM::InstructionSequence.disasm(method(:hello))
*
* Produces:
*
* == disasm: <RubyVM::InstructionSequence:hello@/tmp/method.rb>============
* 0000 trace 8 ( 1)
* 0002 trace 1 ( 2)
* 0004 putself
* 0005 putstring "hello, world"
* 0007 send :puts, 1, nil, 8, <ic:0>
* 0013 trace 16 ( 3)
* 0015 leave ( 2)
*
* For a Proc:
*
* # /tmp/proc.rb
* p = proc { num = 1 + 2 }
* puts RubyVM::InstructionSequence.disasm(p)
*
* Produces:
*
* == disasm: <RubyVM::InstructionSequence:block in <main>@/tmp/proc.rb>===
* == catch table
* | catch type: redo st: 0000 ed: 0012 sp: 0000 cont: 0000
* | catch type: next st: 0000 ed: 0012 sp: 0000 cont: 0012
* |------------------------------------------------------------------------
* local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
* [ 2] num
* 0000 trace 1 ( 1)
* 0002 putobject 1
* 0004 putobject 2
* 0006 opt_plus <ic:1>
* 0008 dup
* 0009 setlocal num, 0
* 0012 leave
*
*/
static VALUE
iseqw_s_disasm(VALUE klass, VALUE body)
{
VALUE iseqw = iseqw_s_of(klass, body);
return NIL_P(iseqw) ? Qnil : rb_iseq_disasm(iseqw_check(iseqw));
}
static VALUE
register_label(struct st_table *table, unsigned long idx)
{
VALUE sym = rb_str_intern(rb_sprintf("label_%lu", idx));
st_insert(table, idx, sym);
return sym;
}
static VALUE
exception_type2symbol(VALUE type)
{
ID id;
switch (type) {
case CATCH_TYPE_RESCUE: CONST_ID(id, "rescue"); break;
case CATCH_TYPE_ENSURE: CONST_ID(id, "ensure"); break;
case CATCH_TYPE_RETRY: CONST_ID(id, "retry"); break;
case CATCH_TYPE_BREAK: CONST_ID(id, "break"); break;
case CATCH_TYPE_REDO: CONST_ID(id, "redo"); break;
case CATCH_TYPE_NEXT: CONST_ID(id, "next"); break;
default:
rb_bug("unknown exception type: %d", (int)type);
}
return ID2SYM(id);
}
static int
cdhash_each(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, obj_resurrect(key));
rb_ary_push(ary, value);
return ST_CONTINUE;
}
static const rb_data_type_t label_wrapper = {
"label_wrapper",
{(void (*)(void *))rb_mark_tbl, (void (*)(void *))st_free_table, 0, 0,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#define DECL_ID(name) \
static ID id_##name
#define INIT_ID(name) \
id_##name = rb_intern(#name)
static VALUE
iseq_type_id(enum rb_iseq_type type)
{
DECL_ID(top);
DECL_ID(method);
DECL_ID(block);
DECL_ID(class);
DECL_ID(rescue);
DECL_ID(ensure);
DECL_ID(eval);
DECL_ID(main);
DECL_ID(plain);
if (id_top == 0) {
INIT_ID(top);
INIT_ID(method);
INIT_ID(block);
INIT_ID(class);
INIT_ID(rescue);
INIT_ID(ensure);
INIT_ID(eval);
INIT_ID(main);
INIT_ID(plain);
}
switch (type) {
case ISEQ_TYPE_TOP: return id_top;
case ISEQ_TYPE_METHOD: return id_method;
case ISEQ_TYPE_BLOCK: return id_block;
case ISEQ_TYPE_CLASS: return id_class;
case ISEQ_TYPE_RESCUE: return id_rescue;
case ISEQ_TYPE_ENSURE: return id_ensure;
case ISEQ_TYPE_EVAL: return id_eval;
case ISEQ_TYPE_MAIN: return id_main;
case ISEQ_TYPE_PLAIN: return id_plain;
};
rb_bug("unsupported iseq type: %d", (int)type);
}
static VALUE
iseq_data_to_ary(const rb_iseq_t *iseq)
{
unsigned int i;
long l;
const struct rb_iseq_constant_body *const iseq_body = ISEQ_BODY(iseq);
const struct iseq_insn_info_entry *prev_insn_info;
unsigned int pos;
int last_line = 0;
VALUE *seq, *iseq_original;
VALUE val = rb_ary_new();
ID type; /* Symbol */
VALUE locals = rb_ary_new();
VALUE params = rb_hash_new();
VALUE body = rb_ary_new(); /* [[:insn1, ...], ...] */
VALUE nbody;
VALUE exception = rb_ary_new(); /* [[....]] */
VALUE misc = rb_hash_new();
static ID insn_syms[VM_INSTRUCTION_SIZE/2]; /* w/o-trace only */
struct st_table *labels_table = st_init_numtable();
VALUE labels_wrapper = TypedData_Wrap_Struct(0, &label_wrapper, labels_table);
if (insn_syms[0] == 0) {
int i;
for (i=0; i<numberof(insn_syms); i++) {
insn_syms[i] = rb_intern(insn_name(i));
}
}
/* type */
type = iseq_type_id(iseq_body->type);
/* locals */
for (i=0; i<iseq_body->local_table_size; i++) {
ID lid = iseq_body->local_table[i];
if (lid) {
if (rb_id2str(lid)) {
rb_ary_push(locals, ID2SYM(lid));
}
else { /* hidden variable from id_internal() */
rb_ary_push(locals, ULONG2NUM(iseq_body->local_table_size-i+1));
}
}
else {
rb_ary_push(locals, ID2SYM(rb_intern("#arg_rest")));
}
}
/* params */
{
const struct rb_iseq_param_keyword *const keyword = iseq_body->param.keyword;
int j;
if (iseq_body->param.flags.has_opt) {
int len = iseq_body->param.opt_num + 1;
VALUE arg_opt_labels = rb_ary_new2(len);
for (j = 0; j < len; j++) {
VALUE l = register_label(labels_table, iseq_body->param.opt_table[j]);
rb_ary_push(arg_opt_labels, l);
}
rb_hash_aset(params, ID2SYM(rb_intern("opt")), arg_opt_labels);
}
/* commit */
if (iseq_body->param.flags.has_lead) rb_hash_aset(params, ID2SYM(rb_intern("lead_num")), INT2FIX(iseq_body->param.lead_num));
if (iseq_body->param.flags.has_post) rb_hash_aset(params, ID2SYM(rb_intern("post_num")), INT2FIX(iseq_body->param.post_num));
if (iseq_body->param.flags.has_post) rb_hash_aset(params, ID2SYM(rb_intern("post_start")), INT2FIX(iseq_body->param.post_start));
if (iseq_body->param.flags.has_rest) rb_hash_aset(params, ID2SYM(rb_intern("rest_start")), INT2FIX(iseq_body->param.rest_start));
if (iseq_body->param.flags.has_block) rb_hash_aset(params, ID2SYM(rb_intern("block_start")), INT2FIX(iseq_body->param.block_start));
if (iseq_body->param.flags.has_kw) {
VALUE keywords = rb_ary_new();
int i, j;
for (i=0; i<keyword->required_num; i++) {
rb_ary_push(keywords, ID2SYM(keyword->table[i]));
}
for (j=0; i<keyword->num; i++, j++) {
VALUE key = rb_ary_new_from_args(1, ID2SYM(keyword->table[i]));
if (!UNDEF_P(keyword->default_values[j])) {
rb_ary_push(key, keyword->default_values[j]);
}
rb_ary_push(keywords, key);
}
rb_hash_aset(params, ID2SYM(rb_intern("kwbits")),
INT2FIX(keyword->bits_start));
rb_hash_aset(params, ID2SYM(rb_intern("keyword")), keywords);
}
if (iseq_body->param.flags.has_kwrest) rb_hash_aset(params, ID2SYM(rb_intern("kwrest")), INT2FIX(keyword->rest_start));
if (iseq_body->param.flags.ambiguous_param0) rb_hash_aset(params, ID2SYM(rb_intern("ambiguous_param0")), Qtrue);
if (iseq_body->param.flags.use_block) rb_hash_aset(params, ID2SYM(rb_intern("use_block")), Qtrue);
}
/* body */
iseq_original = rb_iseq_original_iseq((rb_iseq_t *)iseq);
for (seq = iseq_original; seq < iseq_original + iseq_body->iseq_size; ) {
VALUE insn = *seq++;
int j, len = insn_len(insn);
VALUE *nseq = seq + len - 1;
VALUE ary = rb_ary_new2(len);
rb_ary_push(ary, ID2SYM(insn_syms[insn%numberof(insn_syms)]));
for (j=0; j<len-1; j++, seq++) {
enum ruby_insn_type_chars op_type = insn_op_type(insn, j);
switch (op_type) {
case TS_OFFSET: {
unsigned long idx = nseq - iseq_original + *seq;
rb_ary_push(ary, register_label(labels_table, idx));
break;
}
case TS_LINDEX:
case TS_NUM:
rb_ary_push(ary, INT2FIX(*seq));
break;
case TS_VALUE:
rb_ary_push(ary, obj_resurrect(*seq));
break;
case TS_ISEQ:
{
const rb_iseq_t *iseq = (rb_iseq_t *)*seq;
if (iseq) {
VALUE val = iseq_data_to_ary(rb_iseq_check(iseq));
rb_ary_push(ary, val);
}
else {
rb_ary_push(ary, Qnil);
}
}
break;
case TS_IC:
{
VALUE list = rb_ary_new();
const ID *ids = ((IC)*seq)->segments;
while (*ids) {
rb_ary_push(list, ID2SYM(*ids++));
}
rb_ary_push(ary, list);
}
break;
case TS_IVC:
case TS_ICVARC:
case TS_ISE:
{
union iseq_inline_storage_entry *is = (union iseq_inline_storage_entry *)*seq;
rb_ary_push(ary, INT2FIX(is - ISEQ_IS_ENTRY_START(ISEQ_BODY(iseq), op_type)));
}
break;
case TS_CALLDATA:
{
struct rb_call_data *cd = (struct rb_call_data *)*seq;
const struct rb_callinfo *ci = cd->ci;
VALUE e = rb_hash_new();
int argc = vm_ci_argc(ci);
ID mid = vm_ci_mid(ci);
rb_hash_aset(e, ID2SYM(rb_intern("mid")), mid ? ID2SYM(mid) : Qnil);
rb_hash_aset(e, ID2SYM(rb_intern("flag")), UINT2NUM(vm_ci_flag(ci)));
if (vm_ci_flag(ci) & VM_CALL_KWARG) {
const struct rb_callinfo_kwarg *kwarg = vm_ci_kwarg(ci);
int i;
VALUE kw = rb_ary_new2((long)kwarg->keyword_len);
argc -= kwarg->keyword_len;
for (i = 0; i < kwarg->keyword_len; i++) {
rb_ary_push(kw, kwarg->keywords[i]);
}
rb_hash_aset(e, ID2SYM(rb_intern("kw_arg")), kw);
}
rb_hash_aset(e, ID2SYM(rb_intern("orig_argc")),
INT2FIX(argc));
rb_ary_push(ary, e);
}
break;
case TS_ID:
rb_ary_push(ary, ID2SYM(*seq));
break;
case TS_CDHASH:
{
VALUE hash = *seq;
VALUE val = rb_ary_new();
int i;
rb_hash_foreach(hash, cdhash_each, val);
for (i=0; i<RARRAY_LEN(val); i+=2) {
VALUE pos = FIX2INT(rb_ary_entry(val, i+1));
unsigned long idx = nseq - iseq_original + pos;
rb_ary_store(val, i+1,
register_label(labels_table, idx));
}
rb_ary_push(ary, val);
}
break;
case TS_FUNCPTR:
{
#if SIZEOF_VALUE <= SIZEOF_LONG
VALUE val = LONG2NUM((SIGNED_VALUE)*seq);
#else
VALUE val = LL2NUM((SIGNED_VALUE)*seq);
#endif
rb_ary_push(ary, val);
}
break;
case TS_BUILTIN:
{
VALUE val = rb_hash_new();
#if SIZEOF_VALUE <= SIZEOF_LONG
VALUE func_ptr = LONG2NUM((SIGNED_VALUE)((RB_BUILTIN)*seq)->func_ptr);
#else
VALUE func_ptr = LL2NUM((SIGNED_VALUE)((RB_BUILTIN)*seq)->func_ptr);
#endif
rb_hash_aset(val, ID2SYM(rb_intern("func_ptr")), func_ptr);
rb_hash_aset(val, ID2SYM(rb_intern("argc")), INT2NUM(((RB_BUILTIN)*seq)->argc));
rb_hash_aset(val, ID2SYM(rb_intern("index")), INT2NUM(((RB_BUILTIN)*seq)->index));
rb_hash_aset(val, ID2SYM(rb_intern("name")), rb_str_new_cstr(((RB_BUILTIN)*seq)->name));
rb_ary_push(ary, val);
}
break;
default:
rb_bug("unknown operand: %c", insn_op_type(insn, j));
}
}
rb_ary_push(body, ary);
}
nbody = body;
/* exception */
if (iseq_body->catch_table) for (i=0; i<iseq_body->catch_table->size; i++) {
VALUE ary = rb_ary_new();
const struct iseq_catch_table_entry *entry =
UNALIGNED_MEMBER_PTR(iseq_body->catch_table, entries[i]);
rb_ary_push(ary, exception_type2symbol(entry->type));
if (entry->iseq) {
rb_ary_push(ary, iseq_data_to_ary(rb_iseq_check(entry->iseq)));
}
else {
rb_ary_push(ary, Qnil);
}
rb_ary_push(ary, register_label(labels_table, entry->start));
rb_ary_push(ary, register_label(labels_table, entry->end));
rb_ary_push(ary, register_label(labels_table, entry->cont));
rb_ary_push(ary, UINT2NUM(entry->sp));
rb_ary_push(exception, ary);
}
/* make body with labels and insert line number */
body = rb_ary_new();
prev_insn_info = NULL;
#ifdef USE_ISEQ_NODE_ID
VALUE node_ids = rb_ary_new();
#endif
for (l=0, pos=0; l<RARRAY_LEN(nbody); l++) {
const struct iseq_insn_info_entry *info;
VALUE ary = RARRAY_AREF(nbody, l);
st_data_t label;
if (st_lookup(labels_table, pos, &label)) {
rb_ary_push(body, (VALUE)label);
}
info = get_insn_info(iseq, pos);
#ifdef USE_ISEQ_NODE_ID
rb_ary_push(node_ids, INT2FIX(info->node_id));
#endif
if (prev_insn_info != info) {
int line = info->line_no;
rb_event_flag_t events = info->events;
if (line > 0 && last_line != line) {
rb_ary_push(body, INT2FIX(line));
last_line = line;
}
#define CHECK_EVENT(ev) if (events & ev) rb_ary_push(body, ID2SYM(rb_intern(#ev)));
CHECK_EVENT(RUBY_EVENT_LINE);
CHECK_EVENT(RUBY_EVENT_CLASS);
CHECK_EVENT(RUBY_EVENT_END);
CHECK_EVENT(RUBY_EVENT_CALL);
CHECK_EVENT(RUBY_EVENT_RETURN);
CHECK_EVENT(RUBY_EVENT_B_CALL);
CHECK_EVENT(RUBY_EVENT_B_RETURN);
CHECK_EVENT(RUBY_EVENT_RESCUE);
#undef CHECK_EVENT
prev_insn_info = info;
}
rb_ary_push(body, ary);
pos += RARRAY_LENINT(ary); /* reject too huge data */
}
RB_GC_GUARD(nbody);
RB_GC_GUARD(labels_wrapper);
rb_hash_aset(misc, ID2SYM(rb_intern("arg_size")), INT2FIX(iseq_body->param.size));
rb_hash_aset(misc, ID2SYM(rb_intern("local_size")), INT2FIX(iseq_body->local_table_size));
rb_hash_aset(misc, ID2SYM(rb_intern("stack_max")), INT2FIX(iseq_body->stack_max));
rb_hash_aset(misc, ID2SYM(rb_intern("node_id")), INT2FIX(iseq_body->location.node_id));
rb_hash_aset(misc, ID2SYM(rb_intern("code_location")),
rb_ary_new_from_args(4,
INT2FIX(iseq_body->location.code_location.beg_pos.lineno),
INT2FIX(iseq_body->location.code_location.beg_pos.column),
INT2FIX(iseq_body->location.code_location.end_pos.lineno),
INT2FIX(iseq_body->location.code_location.end_pos.column)));
#ifdef USE_ISEQ_NODE_ID
rb_hash_aset(misc, ID2SYM(rb_intern("node_ids")), node_ids);
#endif
rb_hash_aset(misc, ID2SYM(rb_intern("parser")), iseq_body->prism ? ID2SYM(rb_intern("prism")) : ID2SYM(rb_intern("parse.y")));
/*
* [:magic, :major_version, :minor_version, :format_type, :misc,
* :name, :path, :absolute_path, :start_lineno, :type, :locals, :args,
* :catch_table, :bytecode]
*/
rb_ary_push(val, rb_str_new2("YARVInstructionSequence/SimpleDataFormat"));
rb_ary_push(val, INT2FIX(ISEQ_MAJOR_VERSION)); /* major */
rb_ary_push(val, INT2FIX(ISEQ_MINOR_VERSION)); /* minor */
rb_ary_push(val, INT2FIX(1));
rb_ary_push(val, misc);
rb_ary_push(val, iseq_body->location.label);
rb_ary_push(val, rb_iseq_path(iseq));
rb_ary_push(val, rb_iseq_realpath(iseq));
rb_ary_push(val, RB_INT2NUM(iseq_body->location.first_lineno));
rb_ary_push(val, ID2SYM(type));
rb_ary_push(val, locals);
rb_ary_push(val, params);
rb_ary_push(val, exception);
rb_ary_push(val, body);
return val;
}
VALUE
rb_iseq_parameters(const rb_iseq_t *iseq, int is_proc)
{
int i, r;
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
const struct rb_iseq_param_keyword *const keyword = body->param.keyword;
VALUE a, args = rb_ary_new2(body->param.size);
ID req, opt, rest, block, key, keyrest;
#define PARAM_TYPE(type) rb_ary_push(a = rb_ary_new2(2), ID2SYM(type))
#define PARAM_ID(i) body->local_table[(i)]
#define PARAM(i, type) ( \
PARAM_TYPE(type), \
rb_id2str(PARAM_ID(i)) ? \
rb_ary_push(a, ID2SYM(PARAM_ID(i))) : \
a)
CONST_ID(req, "req");
CONST_ID(opt, "opt");
if (body->param.flags.forwardable) {
// [[:rest, :*], [:keyrest, :**], [:block, :&]]
CONST_ID(rest, "rest");
CONST_ID(keyrest, "keyrest");
CONST_ID(block, "block");
rb_ary_push(args, rb_ary_new_from_args(2, ID2SYM(rest), ID2SYM(idMULT)));
rb_ary_push(args, rb_ary_new_from_args(2, ID2SYM(keyrest), ID2SYM(idPow)));
rb_ary_push(args, rb_ary_new_from_args(2, ID2SYM(block), ID2SYM(idAnd)));
}
if (is_proc) {
for (i = 0; i < body->param.lead_num; i++) {
PARAM_TYPE(opt);
rb_ary_push(a, rb_id2str(PARAM_ID(i)) ? ID2SYM(PARAM_ID(i)) : Qnil);
rb_ary_push(args, a);
}
}
else {
for (i = 0; i < body->param.lead_num; i++) {
rb_ary_push(args, PARAM(i, req));
}
}
r = body->param.lead_num + body->param.opt_num;
for (; i < r; i++) {
PARAM_TYPE(opt);
if (rb_id2str(PARAM_ID(i))) {
rb_ary_push(a, ID2SYM(PARAM_ID(i)));
}
rb_ary_push(args, a);
}
if (body->param.flags.has_rest) {
CONST_ID(rest, "rest");
rb_ary_push(args, PARAM(body->param.rest_start, rest));
}
r = body->param.post_start + body->param.post_num;
if (is_proc) {
for (i = body->param.post_start; i < r; i++) {
PARAM_TYPE(opt);
rb_ary_push(a, rb_id2str(PARAM_ID(i)) ? ID2SYM(PARAM_ID(i)) : Qnil);
rb_ary_push(args, a);
}
}
else {
for (i = body->param.post_start; i < r; i++) {
rb_ary_push(args, PARAM(i, req));
}
}
if (body->param.flags.accepts_no_kwarg) {
ID nokey;
CONST_ID(nokey, "nokey");
PARAM_TYPE(nokey);
rb_ary_push(args, a);
}
if (body->param.flags.has_kw) {
i = 0;
if (keyword->required_num > 0) {
ID keyreq;
CONST_ID(keyreq, "keyreq");
for (; i < keyword->required_num; i++) {
PARAM_TYPE(keyreq);
if (rb_id2str(keyword->table[i])) {
rb_ary_push(a, ID2SYM(keyword->table[i]));
}
rb_ary_push(args, a);
}
}
CONST_ID(key, "key");
for (; i < keyword->num; i++) {
PARAM_TYPE(key);
if (rb_id2str(keyword->table[i])) {
rb_ary_push(a, ID2SYM(keyword->table[i]));
}
rb_ary_push(args, a);
}
}
if (body->param.flags.has_kwrest || body->param.flags.ruby2_keywords) {
ID param;
CONST_ID(keyrest, "keyrest");
PARAM_TYPE(keyrest);
if (body->param.flags.has_kwrest &&
rb_id2str(param = PARAM_ID(keyword->rest_start))) {
rb_ary_push(a, ID2SYM(param));
}
else if (body->param.flags.ruby2_keywords) {
rb_ary_push(a, ID2SYM(idPow));
}
rb_ary_push(args, a);
}
if (body->param.flags.has_block) {
CONST_ID(block, "block");
rb_ary_push(args, PARAM(body->param.block_start, block));
}
return args;
}
VALUE
rb_iseq_defined_string(enum defined_type type)
{
static const char expr_names[][18] = {
"nil",
"instance-variable",
"local-variable",
"global-variable",
"class variable",
"constant",
"method",
"yield",
"super",
"self",
"true",
"false",
"assignment",
"expression",
};
const char *estr;
if ((unsigned)(type - 1) >= (unsigned)numberof(expr_names)) rb_bug("unknown defined type %d", type);
estr = expr_names[type - 1];
return rb_fstring_cstr(estr);
}
/* A map from encoded_insn to insn_data: decoded insn number, its len,
* non-trace version of encoded insn, and trace version. */
static st_table *encoded_insn_data;
typedef struct insn_data_struct {
int insn;
int insn_len;
void *notrace_encoded_insn;
void *trace_encoded_insn;
} insn_data_t;
static insn_data_t insn_data[VM_INSTRUCTION_SIZE/2];
void
rb_free_encoded_insn_data(void)
{
st_free_table(encoded_insn_data);
}
void
rb_vm_encoded_insn_data_table_init(void)
{
#if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE
const void * const *table = rb_vm_get_insns_address_table();
#define INSN_CODE(insn) ((VALUE)table[insn])
#else
#define INSN_CODE(insn) (insn)
#endif
st_data_t insn;
encoded_insn_data = st_init_numtable_with_size(VM_INSTRUCTION_SIZE / 2);
for (insn = 0; insn < VM_INSTRUCTION_SIZE/2; insn++) {
st_data_t key1 = (st_data_t)INSN_CODE(insn);
st_data_t key2 = (st_data_t)INSN_CODE(insn + VM_INSTRUCTION_SIZE/2);
insn_data[insn].insn = (int)insn;
insn_data[insn].insn_len = insn_len(insn);
if (insn != BIN(opt_invokebuiltin_delegate_leave)) {
insn_data[insn].notrace_encoded_insn = (void *) key1;
insn_data[insn].trace_encoded_insn = (void *) key2;
}
else {
insn_data[insn].notrace_encoded_insn = (void *) INSN_CODE(BIN(opt_invokebuiltin_delegate));
insn_data[insn].trace_encoded_insn = (void *) INSN_CODE(BIN(opt_invokebuiltin_delegate) + VM_INSTRUCTION_SIZE/2);
}
st_add_direct(encoded_insn_data, key1, (st_data_t)&insn_data[insn]);
st_add_direct(encoded_insn_data, key2, (st_data_t)&insn_data[insn]);
}
}
int
rb_vm_insn_addr2insn(const void *addr)
{
st_data_t key = (st_data_t)addr;
st_data_t val;
if (st_lookup(encoded_insn_data, key, &val)) {
insn_data_t *e = (insn_data_t *)val;
return (int)e->insn;
}
rb_bug("rb_vm_insn_addr2insn: invalid insn address: %p", addr);
}
// Unlike rb_vm_insn_addr2insn, this function can return trace opcode variants.
int
rb_vm_insn_addr2opcode(const void *addr)
{
st_data_t key = (st_data_t)addr;
st_data_t val;
if (st_lookup(encoded_insn_data, key, &val)) {
insn_data_t *e = (insn_data_t *)val;
int opcode = e->insn;
if (addr == e->trace_encoded_insn) {
opcode += VM_INSTRUCTION_SIZE/2;
}
return opcode;
}
rb_bug("rb_vm_insn_addr2opcode: invalid insn address: %p", addr);
}
// Decode `ISEQ_BODY(iseq)->iseq_encoded[i]` to an insn.
int
rb_vm_insn_decode(const VALUE encoded)
{
#if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE
int insn = rb_vm_insn_addr2insn((void *)encoded);
#else
int insn = (int)encoded;
#endif
return insn;
}
static inline int
encoded_iseq_trace_instrument(VALUE *iseq_encoded_insn, rb_event_flag_t turnon, bool remain_current_trace)
{
st_data_t key = (st_data_t)*iseq_encoded_insn;
st_data_t val;
if (st_lookup(encoded_insn_data, key, &val)) {
insn_data_t *e = (insn_data_t *)val;
if (remain_current_trace && key == (st_data_t)e->trace_encoded_insn) {
turnon = 1;
}
*iseq_encoded_insn = (VALUE) (turnon ? e->trace_encoded_insn : e->notrace_encoded_insn);
return e->insn_len;
}
rb_bug("trace_instrument: invalid insn address: %p", (void *)*iseq_encoded_insn);
}
void
rb_iseq_trace_flag_cleared(const rb_iseq_t *iseq, size_t pos)
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE *iseq_encoded = (VALUE *)body->iseq_encoded;
encoded_iseq_trace_instrument(&iseq_encoded[pos], 0, false);
}
// We need to fire call events on instructions with b_call events if the block
// is running as a method. So, if we are listening for call events, then
// instructions that have b_call events need to become trace variants.
// Use this function when making decisions about recompiling to trace variants.
static inline rb_event_flag_t
add_bmethod_events(rb_event_flag_t events)
{
if (events & RUBY_EVENT_CALL) {
events |= RUBY_EVENT_B_CALL;
}
if (events & RUBY_EVENT_RETURN) {
events |= RUBY_EVENT_B_RETURN;
}
return events;
}
// Note, to support call/return events for bmethods, turnon_event can have more events than tpval.
static int
iseq_add_local_tracepoint(const rb_iseq_t *iseq, rb_event_flag_t turnon_events, VALUE tpval, unsigned int target_line)
{
unsigned int pc;
int n = 0;
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE *iseq_encoded = (VALUE *)body->iseq_encoded;
VM_ASSERT(ISEQ_EXECUTABLE_P(iseq));
for (pc=0; pc<body->iseq_size;) {
const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pc);
rb_event_flag_t pc_events = entry->events;
rb_event_flag_t target_events = turnon_events;
unsigned int line = (int)entry->line_no;
if (target_line == 0 || target_line == line) {
/* ok */
}
else {
target_events &= ~RUBY_EVENT_LINE;
}
if (pc_events & target_events) {
n++;
}
pc += encoded_iseq_trace_instrument(&iseq_encoded[pc], pc_events & (target_events | iseq->aux.exec.global_trace_events), true);
}
if (n > 0) {
if (iseq->aux.exec.local_hooks == NULL) {
((rb_iseq_t *)iseq)->aux.exec.local_hooks = RB_ZALLOC(rb_hook_list_t);
iseq->aux.exec.local_hooks->is_local = true;
}
rb_hook_list_connect_tracepoint((VALUE)iseq, iseq->aux.exec.local_hooks, tpval, target_line);
}
return n;
}
struct trace_set_local_events_struct {
rb_event_flag_t turnon_events;
VALUE tpval;
unsigned int target_line;
int n;
};
static void
iseq_add_local_tracepoint_i(const rb_iseq_t *iseq, void *p)
{
struct trace_set_local_events_struct *data = (struct trace_set_local_events_struct *)p;
data->n += iseq_add_local_tracepoint(iseq, data->turnon_events, data->tpval, data->target_line);
iseq_iterate_children(iseq, iseq_add_local_tracepoint_i, p);
}
int
rb_iseq_add_local_tracepoint_recursively(const rb_iseq_t *iseq, rb_event_flag_t turnon_events, VALUE tpval, unsigned int target_line, bool target_bmethod)
{
struct trace_set_local_events_struct data;
if (target_bmethod) {
turnon_events = add_bmethod_events(turnon_events);
}
data.turnon_events = turnon_events;
data.tpval = tpval;
data.target_line = target_line;
data.n = 0;
iseq_add_local_tracepoint_i(iseq, (void *)&data);
if (0) rb_funcall(Qnil, rb_intern("puts"), 1, rb_iseq_disasm(iseq)); /* for debug */
return data.n;
}
static int
iseq_remove_local_tracepoint(const rb_iseq_t *iseq, VALUE tpval)
{
int n = 0;
if (iseq->aux.exec.local_hooks) {
unsigned int pc;
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE *iseq_encoded = (VALUE *)body->iseq_encoded;
rb_event_flag_t local_events = 0;
rb_hook_list_remove_tracepoint(iseq->aux.exec.local_hooks, tpval);
local_events = iseq->aux.exec.local_hooks->events;
if (local_events == 0) {
rb_hook_list_free(iseq->aux.exec.local_hooks);
((rb_iseq_t *)iseq)->aux.exec.local_hooks = NULL;
}
local_events = add_bmethod_events(local_events);
for (pc = 0; pc<body->iseq_size;) {
rb_event_flag_t pc_events = rb_iseq_event_flags(iseq, pc);
pc += encoded_iseq_trace_instrument(&iseq_encoded[pc], pc_events & (local_events | iseq->aux.exec.global_trace_events), false);
}
}
return n;
}
struct trace_clear_local_events_struct {
VALUE tpval;
int n;
};
static void
iseq_remove_local_tracepoint_i(const rb_iseq_t *iseq, void *p)
{
struct trace_clear_local_events_struct *data = (struct trace_clear_local_events_struct *)p;
data->n += iseq_remove_local_tracepoint(iseq, data->tpval);
iseq_iterate_children(iseq, iseq_remove_local_tracepoint_i, p);
}
int
rb_iseq_remove_local_tracepoint_recursively(const rb_iseq_t *iseq, VALUE tpval)
{
struct trace_clear_local_events_struct data;
data.tpval = tpval;
data.n = 0;
iseq_remove_local_tracepoint_i(iseq, (void *)&data);
return data.n;
}
void
rb_iseq_trace_set(const rb_iseq_t *iseq, rb_event_flag_t turnon_events)
{
if (iseq->aux.exec.global_trace_events == turnon_events) {
return;
}
if (!ISEQ_EXECUTABLE_P(iseq)) {
/* this is building ISeq */
return;
}
else {
unsigned int pc;
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE *iseq_encoded = (VALUE *)body->iseq_encoded;
rb_event_flag_t enabled_events;
rb_event_flag_t local_events = iseq->aux.exec.local_hooks ? iseq->aux.exec.local_hooks->events : 0;
((rb_iseq_t *)iseq)->aux.exec.global_trace_events = turnon_events;
enabled_events = add_bmethod_events(turnon_events | local_events);
for (pc=0; pc<body->iseq_size;) {
rb_event_flag_t pc_events = rb_iseq_event_flags(iseq, pc);
pc += encoded_iseq_trace_instrument(&iseq_encoded[pc], pc_events & enabled_events, true);
}
}
}
void rb_vm_cc_general(const struct rb_callcache *cc);
static bool
clear_attr_cc(VALUE v)
{
if (imemo_type_p(v, imemo_callcache) && vm_cc_ivar_p((const struct rb_callcache *)v)) {
rb_vm_cc_general((struct rb_callcache *)v);
return true;
}
else {
return false;
}
}
static bool
clear_bf_cc(VALUE v)
{
if (imemo_type_p(v, imemo_callcache) && vm_cc_bf_p((const struct rb_callcache *)v)) {
rb_vm_cc_general((struct rb_callcache *)v);
return true;
}
else {
return false;
}
}
static int
clear_attr_ccs_i(void *vstart, void *vend, size_t stride, void *data)
{
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
void *ptr = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
clear_attr_cc(v);
asan_poison_object_if(ptr, v);
}
return 0;
}
void
rb_clear_attr_ccs(void)
{
rb_objspace_each_objects(clear_attr_ccs_i, NULL);
}
static int
clear_bf_ccs_i(void *vstart, void *vend, size_t stride, void *data)
{
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
void *ptr = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
clear_bf_cc(v);
asan_poison_object_if(ptr, v);
}
return 0;
}
void
rb_clear_bf_ccs(void)
{
rb_objspace_each_objects(clear_bf_ccs_i, NULL);
}
static int
trace_set_i(void *vstart, void *vend, size_t stride, void *data)
{
rb_event_flag_t turnon_events = *(rb_event_flag_t *)data;
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
void *ptr = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
if (rb_obj_is_iseq(v)) {
rb_iseq_trace_set(rb_iseq_check((rb_iseq_t *)v), turnon_events);
}
else if (clear_attr_cc(v)) {
}
else if (clear_bf_cc(v)) {
}
asan_poison_object_if(ptr, v);
}
return 0;
}
void
rb_iseq_trace_set_all(rb_event_flag_t turnon_events)
{
rb_objspace_each_objects(trace_set_i, &turnon_events);
}
VALUE
rb_iseqw_local_variables(VALUE iseqval)
{
return rb_iseq_local_variables(iseqw_check(iseqval));
}
/*
* call-seq:
* iseq.to_binary(extra_data = nil) -> binary str
*
* Returns serialized iseq binary format data as a String object.
* A corresponding iseq object is created by
* RubyVM::InstructionSequence.load_from_binary() method.
*
* String extra_data will be saved with binary data.
* You can access this data with
* RubyVM::InstructionSequence.load_from_binary_extra_data(binary).
*
* Note that the translated binary data is not portable.
* You can not move this binary data to another machine.
* You can not use the binary data which is created by another
* version/another architecture of Ruby.
*/
static VALUE
iseqw_to_binary(int argc, VALUE *argv, VALUE self)
{
VALUE opt = !rb_check_arity(argc, 0, 1) ? Qnil : argv[0];
return rb_iseq_ibf_dump(iseqw_check(self), opt);
}
/*
* call-seq:
* RubyVM::InstructionSequence.load_from_binary(binary) -> iseq
*
* Load an iseq object from binary format String object
* created by RubyVM::InstructionSequence.to_binary.
*
* This loader does not have a verifier, so that loading broken/modified
* binary causes critical problem.
*
* You should not load binary data provided by others.
* You should use binary data translated by yourself.
*/
static VALUE
iseqw_s_load_from_binary(VALUE self, VALUE str)
{
return iseqw_new(rb_iseq_ibf_load(str));
}
/*
* call-seq:
* RubyVM::InstructionSequence.load_from_binary_extra_data(binary) -> str
*
* Load extra data embed into binary format String object.
*/
static VALUE
iseqw_s_load_from_binary_extra_data(VALUE self, VALUE str)
{
return rb_iseq_ibf_load_extra_data(str);
}
#if VM_INSN_INFO_TABLE_IMPL == 2
/* An implementation of succinct bit-vector for insn_info table.
*
* A succinct bit-vector is a small and efficient data structure that provides
* a bit-vector augmented with an index for O(1) rank operation:
*
* rank(bv, n): the number of 1's within a range from index 0 to index n
*
* This can be used to lookup insn_info table from PC.
* For example, consider the following iseq and insn_info_table:
*
* iseq insn_info_table
* PC insn+operand position lineno event
* 0: insn1 0: 1 [Li]
* 2: insn2 2: 2 [Li] <= (A)
* 5: insn3 8: 3 [Li] <= (B)
* 8: insn4
*
* In this case, a succinct bit-vector whose indexes 0, 2, 8 is "1" and
* other indexes is "0", i.e., "101000001", is created.
* To lookup the lineno of insn2, calculate rank("10100001", 2) = 2, so
* the line (A) is the entry in question.
* To lookup the lineno of insn4, calculate rank("10100001", 8) = 3, so
* the line (B) is the entry in question.
*
* A naive implementation of succinct bit-vector works really well
* not only for large size but also for small size. However, it has
* tiny overhead for very small size. So, this implementation consist
* of two parts: one part is the "immediate" table that keeps rank result
* as a raw table, and the other part is a normal succinct bit-vector.
*/
#define IMMEDIATE_TABLE_SIZE 54 /* a multiple of 9, and < 128 */
struct succ_index_table {
uint64_t imm_part[IMMEDIATE_TABLE_SIZE / 9];
struct succ_dict_block {
unsigned int rank;
uint64_t small_block_ranks; /* 9 bits * 7 = 63 bits */
uint64_t bits[512/64];
} succ_part[FLEX_ARY_LEN];
};
#define imm_block_rank_set(v, i, r) (v) |= (uint64_t)(r) << (7 * (i))
#define imm_block_rank_get(v, i) (((int)((v) >> ((i) * 7))) & 0x7f)
#define small_block_rank_set(v, i, r) (v) |= (uint64_t)(r) << (9 * ((i) - 1))
#define small_block_rank_get(v, i) ((i) == 0 ? 0 : (((int)((v) >> (((i) - 1) * 9))) & 0x1ff))
static struct succ_index_table *
succ_index_table_create(int max_pos, int *data, int size)
{
const int imm_size = (max_pos < IMMEDIATE_TABLE_SIZE ? max_pos + 8 : IMMEDIATE_TABLE_SIZE) / 9;
const int succ_size = (max_pos < IMMEDIATE_TABLE_SIZE ? 0 : (max_pos - IMMEDIATE_TABLE_SIZE + 511)) / 512;
struct succ_index_table *sd =
rb_xcalloc_mul_add_mul(
imm_size, sizeof(uint64_t),
succ_size, sizeof(struct succ_dict_block));
int i, j, k, r;
r = 0;
for (j = 0; j < imm_size; j++) {
for (i = 0; i < 9; i++) {
if (r < size && data[r] == j * 9 + i) r++;
imm_block_rank_set(sd->imm_part[j], i, r);
}
}
for (k = 0; k < succ_size; k++) {
struct succ_dict_block *sd_block = &sd->succ_part[k];
int small_rank = 0;
sd_block->rank = r;
for (j = 0; j < 8; j++) {
uint64_t bits = 0;
if (j) small_block_rank_set(sd_block->small_block_ranks, j, small_rank);
for (i = 0; i < 64; i++) {
if (r < size && data[r] == k * 512 + j * 64 + i + IMMEDIATE_TABLE_SIZE) {
bits |= ((uint64_t)1) << i;
r++;
}
}
sd_block->bits[j] = bits;
small_rank += rb_popcount64(bits);
}
}
return sd;
}
static unsigned int *
succ_index_table_invert(int max_pos, struct succ_index_table *sd, int size)
{
const int imm_size = (max_pos < IMMEDIATE_TABLE_SIZE ? max_pos + 8 : IMMEDIATE_TABLE_SIZE) / 9;
const int succ_size = (max_pos < IMMEDIATE_TABLE_SIZE ? 0 : (max_pos - IMMEDIATE_TABLE_SIZE + 511)) / 512;
unsigned int *positions = ALLOC_N(unsigned int, size), *p;
int i, j, k, r = -1;
p = positions;
for (j = 0; j < imm_size; j++) {
for (i = 0; i < 9; i++) {
int nr = imm_block_rank_get(sd->imm_part[j], i);
if (r != nr) *p++ = j * 9 + i;
r = nr;
}
}
for (k = 0; k < succ_size; k++) {
for (j = 0; j < 8; j++) {
for (i = 0; i < 64; i++) {
if (sd->succ_part[k].bits[j] & (((uint64_t)1) << i)) {
*p++ = k * 512 + j * 64 + i + IMMEDIATE_TABLE_SIZE;
}
}
}
}
return positions;
}
static int
succ_index_lookup(const struct succ_index_table *sd, int x)
{
if (x < IMMEDIATE_TABLE_SIZE) {
const int i = x / 9;
const int j = x % 9;
return imm_block_rank_get(sd->imm_part[i], j);
}
else {
const int block_index = (x - IMMEDIATE_TABLE_SIZE) / 512;
const struct succ_dict_block *block = &sd->succ_part[block_index];
const int block_bit_index = (x - IMMEDIATE_TABLE_SIZE) % 512;
const int small_block_index = block_bit_index / 64;
const int small_block_popcount = small_block_rank_get(block->small_block_ranks, small_block_index);
const int popcnt = rb_popcount64(block->bits[small_block_index] << (63 - block_bit_index % 64));
return block->rank + small_block_popcount + popcnt;
}
}
#endif
/*
* call-seq:
* iseq.script_lines -> array or nil
*
* It returns recorded script lines if it is available.
* The script lines are not limited to the iseq range, but
* are entire lines of the source file.
*
* Note that this is an API for ruby internal use, debugging,
* and research. Do not use this for any other purpose.
* The compatibility is not guaranteed.
*/
static VALUE
iseqw_script_lines(VALUE self)
{
const rb_iseq_t *iseq = iseqw_check(self);
return ISEQ_BODY(iseq)->variable.script_lines;
}
/*
* Document-class: RubyVM::InstructionSequence
*
* The InstructionSequence class represents a compiled sequence of
* instructions for the Virtual Machine used in MRI. Not all implementations of Ruby
* may implement this class, and for the implementations that implement it,
* the methods defined and behavior of the methods can change in any version.
*
* With it, you can get a handle to the instructions that make up a method or
* a proc, compile strings of Ruby code down to VM instructions, and
* disassemble instruction sequences to strings for easy inspection. It is
* mostly useful if you want to learn how YARV works, but it also lets
* you control various settings for the Ruby iseq compiler.
*
* You can find the source for the VM instructions in +insns.def+ in the Ruby
* source.
*
* The instruction sequence results will almost certainly change as Ruby
* changes, so example output in this documentation may be different from what
* you see.
*
* Of course, this class is MRI specific.
*/
void
Init_ISeq(void)
{
/* declare ::RubyVM::InstructionSequence */
rb_cISeq = rb_define_class_under(rb_cRubyVM, "InstructionSequence", rb_cObject);
rb_undef_alloc_func(rb_cISeq);
rb_define_method(rb_cISeq, "inspect", iseqw_inspect, 0);
rb_define_method(rb_cISeq, "disasm", iseqw_disasm, 0);
rb_define_method(rb_cISeq, "disassemble", iseqw_disasm, 0);
rb_define_method(rb_cISeq, "to_a", iseqw_to_a, 0);
rb_define_method(rb_cISeq, "eval", iseqw_eval, 0);
rb_define_method(rb_cISeq, "to_binary", iseqw_to_binary, -1);
rb_define_singleton_method(rb_cISeq, "load_from_binary", iseqw_s_load_from_binary, 1);
rb_define_singleton_method(rb_cISeq, "load_from_binary_extra_data", iseqw_s_load_from_binary_extra_data, 1);
/* location APIs */
rb_define_method(rb_cISeq, "path", iseqw_path, 0);
rb_define_method(rb_cISeq, "absolute_path", iseqw_absolute_path, 0);
rb_define_method(rb_cISeq, "label", iseqw_label, 0);
rb_define_method(rb_cISeq, "base_label", iseqw_base_label, 0);
rb_define_method(rb_cISeq, "first_lineno", iseqw_first_lineno, 0);
rb_define_method(rb_cISeq, "trace_points", iseqw_trace_points, 0);
rb_define_method(rb_cISeq, "each_child", iseqw_each_child, 0);
#if 0 /* TBD */
rb_define_private_method(rb_cISeq, "marshal_dump", iseqw_marshal_dump, 0);
rb_define_private_method(rb_cISeq, "marshal_load", iseqw_marshal_load, 1);
/* disable this feature because there is no verifier. */
rb_define_singleton_method(rb_cISeq, "load", iseq_s_load, -1);
#endif
(void)iseq_s_load;
rb_define_singleton_method(rb_cISeq, "compile", iseqw_s_compile, -1);
rb_define_singleton_method(rb_cISeq, "compile_prism", iseqw_s_compile_prism, -1);
rb_define_singleton_method(rb_cISeq, "compile_file_prism", iseqw_s_compile_file_prism, -1);
rb_define_singleton_method(rb_cISeq, "new", iseqw_s_compile, -1);
rb_define_singleton_method(rb_cISeq, "compile_file", iseqw_s_compile_file, -1);
rb_define_singleton_method(rb_cISeq, "compile_option", iseqw_s_compile_option_get, 0);
rb_define_singleton_method(rb_cISeq, "compile_option=", iseqw_s_compile_option_set, 1);
rb_define_singleton_method(rb_cISeq, "disasm", iseqw_s_disasm, 1);
rb_define_singleton_method(rb_cISeq, "disassemble", iseqw_s_disasm, 1);
rb_define_singleton_method(rb_cISeq, "of", iseqw_s_of, 1);
// script lines
rb_define_method(rb_cISeq, "script_lines", iseqw_script_lines, 0);
rb_undef_method(CLASS_OF(rb_cISeq), "translate");
rb_undef_method(CLASS_OF(rb_cISeq), "load_iseq");
}