ruby/range.c

2754 строки
75 KiB
C

/**********************************************************************
range.c -
$Author$
created at: Thu Aug 19 17:46:47 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/internal/config.h"
#include <assert.h>
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/compar.h"
#include "internal/enum.h"
#include "internal/enumerator.h"
#include "internal/error.h"
#include "internal/numeric.h"
#include "internal/range.h"
VALUE rb_cRange;
static ID id_beg, id_end, id_excl;
#define id_cmp idCmp
#define id_succ idSucc
#define id_min idMin
#define id_max idMax
#define id_plus '+'
static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE);
#define RANGE_SET_BEG(r, v) (RSTRUCT_SET(r, 0, v))
#define RANGE_SET_END(r, v) (RSTRUCT_SET(r, 1, v))
#define RANGE_SET_EXCL(r, v) (RSTRUCT_SET(r, 2, v))
#define EXCL(r) RTEST(RANGE_EXCL(r))
static void
range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end)
{
if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) {
VALUE v;
v = rb_funcall(beg, id_cmp, 1, end);
if (NIL_P(v))
rb_raise(rb_eArgError, "bad value for range");
}
RANGE_SET_EXCL(range, exclude_end);
RANGE_SET_BEG(range, beg);
RANGE_SET_END(range, end);
if (CLASS_OF(range) == rb_cRange) {
rb_obj_freeze(range);
}
}
VALUE
rb_range_new(VALUE beg, VALUE end, int exclude_end)
{
VALUE range = rb_obj_alloc(rb_cRange);
range_init(range, beg, end, RBOOL(exclude_end));
return range;
}
static void
range_modify(VALUE range)
{
rb_check_frozen(range);
/* Ranges are immutable, so that they should be initialized only once. */
if (RANGE_EXCL(range) != Qnil) {
rb_name_err_raise("'initialize' called twice", range, ID2SYM(idInitialize));
}
}
/*
* call-seq:
* Range.new(begin, end, exclude_end = false) -> new_range
*
* Returns a new range based on the given objects +begin+ and +end+.
* Optional argument +exclude_end+ determines whether object +end+
* is included as the last object in the range:
*
* Range.new(2, 5).to_a # => [2, 3, 4, 5]
* Range.new(2, 5, true).to_a # => [2, 3, 4]
* Range.new('a', 'd').to_a # => ["a", "b", "c", "d"]
* Range.new('a', 'd', true).to_a # => ["a", "b", "c"]
*
*/
static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
VALUE beg, end, flags;
rb_scan_args(argc, argv, "21", &beg, &end, &flags);
range_modify(range);
range_init(range, beg, end, RBOOL(RTEST(flags)));
return Qnil;
}
/* :nodoc: */
static VALUE
range_initialize_copy(VALUE range, VALUE orig)
{
range_modify(range);
rb_struct_init_copy(range, orig);
return range;
}
/*
* call-seq:
* exclude_end? -> true or false
*
* Returns +true+ if +self+ excludes its end value; +false+ otherwise:
*
* Range.new(2, 5).exclude_end? # => false
* Range.new(2, 5, true).exclude_end? # => true
* (2..5).exclude_end? # => false
* (2...5).exclude_end? # => true
*/
static VALUE
range_exclude_end_p(VALUE range)
{
return RBOOL(EXCL(range));
}
static VALUE
recursive_equal(VALUE range, VALUE obj, int recur)
{
if (recur) return Qtrue; /* Subtle! */
if (!rb_equal(RANGE_BEG(range), RANGE_BEG(obj)))
return Qfalse;
if (!rb_equal(RANGE_END(range), RANGE_END(obj)))
return Qfalse;
return RBOOL(EXCL(range) == EXCL(obj));
}
/*
* call-seq:
* self == other -> true or false
*
* Returns +true+ if and only if:
*
* - +other+ is a range.
* - <tt>other.begin == self.begin</tt>.
* - <tt>other.end == self.end</tt>.
* - <tt>other.exclude_end? == self.exclude_end?</tt>.
*
* Otherwise returns +false+.
*
* r = (1..5)
* r == (1..5) # => true
* r = Range.new(1, 5)
* r == 'foo' # => false
* r == (2..5) # => false
* r == (1..4) # => false
* r == (1...5) # => false
* r == Range.new(1, 5, true) # => false
*
* Note that even with the same argument, the return values of #== and #eql? can differ:
*
* (1..2) == (1..2.0) # => true
* (1..2).eql? (1..2.0) # => false
*
* Related: Range#eql?.
*
*/
static VALUE
range_eq(VALUE range, VALUE obj)
{
if (range == obj)
return Qtrue;
if (!rb_obj_is_kind_of(obj, rb_cRange))
return Qfalse;
return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}
/* compares _a_ and _b_ and returns:
* < 0: a < b
* = 0: a = b
* > 0: a > b or non-comparable
*/
static int
r_less(VALUE a, VALUE b)
{
VALUE r = rb_funcall(a, id_cmp, 1, b);
if (NIL_P(r))
return INT_MAX;
return rb_cmpint(r, a, b);
}
static VALUE
recursive_eql(VALUE range, VALUE obj, int recur)
{
if (recur) return Qtrue; /* Subtle! */
if (!rb_eql(RANGE_BEG(range), RANGE_BEG(obj)))
return Qfalse;
if (!rb_eql(RANGE_END(range), RANGE_END(obj)))
return Qfalse;
return RBOOL(EXCL(range) == EXCL(obj));
}
/*
* call-seq:
* eql?(other) -> true or false
*
* Returns +true+ if and only if:
*
* - +other+ is a range.
* - <tt>other.begin.eql?(self.begin)</tt>.
* - <tt>other.end.eql?(self.end)</tt>.
* - <tt>other.exclude_end? == self.exclude_end?</tt>.
*
* Otherwise returns +false+.
*
* r = (1..5)
* r.eql?(1..5) # => true
* r = Range.new(1, 5)
* r.eql?('foo') # => false
* r.eql?(2..5) # => false
* r.eql?(1..4) # => false
* r.eql?(1...5) # => false
* r.eql?(Range.new(1, 5, true)) # => false
*
* Note that even with the same argument, the return values of #== and #eql? can differ:
*
* (1..2) == (1..2.0) # => true
* (1..2).eql? (1..2.0) # => false
*
* Related: Range#==.
*/
static VALUE
range_eql(VALUE range, VALUE obj)
{
if (range == obj)
return Qtrue;
if (!rb_obj_is_kind_of(obj, rb_cRange))
return Qfalse;
return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}
/*
* call-seq:
* hash -> integer
*
* Returns the integer hash value for +self+.
* Two range objects +r0+ and +r1+ have the same hash value
* if and only if <tt>r0.eql?(r1)</tt>.
*
* Related: Range#eql?, Object#hash.
*/
static VALUE
range_hash(VALUE range)
{
st_index_t hash = EXCL(range);
VALUE v;
hash = rb_hash_start(hash);
v = rb_hash(RANGE_BEG(range));
hash = rb_hash_uint(hash, NUM2LONG(v));
v = rb_hash(RANGE_END(range));
hash = rb_hash_uint(hash, NUM2LONG(v));
hash = rb_hash_uint(hash, EXCL(range) << 24);
hash = rb_hash_end(hash);
return ST2FIX(hash);
}
static void
range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg)
{
int c;
VALUE b = RANGE_BEG(range);
VALUE e = RANGE_END(range);
VALUE v = b;
if (EXCL(range)) {
while (r_less(v, e) < 0) {
if ((*func)(v, arg)) break;
v = rb_funcallv(v, id_succ, 0, 0);
}
}
else {
while ((c = r_less(v, e)) <= 0) {
if ((*func)(v, arg)) break;
if (!c) break;
v = rb_funcallv(v, id_succ, 0, 0);
}
}
}
// NB: Two functions below (step_i_iter and step_i) are used only to maintain the
// backward-compatible behavior for string ranges with integer steps. If that branch
// will be removed from range_step, these two can go, too.
static bool
step_i_iter(VALUE arg)
{
VALUE *iter = (VALUE *)arg;
if (FIXNUM_P(iter[0])) {
iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG;
}
else {
iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1));
}
if (iter[0] != INT2FIX(0)) return false;
iter[0] = iter[1];
return true;
}
static int
step_i(VALUE i, VALUE arg)
{
if (step_i_iter(arg)) {
rb_yield(i);
}
return 0;
}
static int
discrete_object_p(VALUE obj)
{
return rb_respond_to(obj, id_succ);
}
static int
linear_object_p(VALUE obj)
{
if (FIXNUM_P(obj) || FLONUM_P(obj)) return TRUE;
if (SPECIAL_CONST_P(obj)) return FALSE;
switch (BUILTIN_TYPE(obj)) {
case T_FLOAT:
case T_BIGNUM:
return TRUE;
default:
break;
}
if (rb_obj_is_kind_of(obj, rb_cNumeric)) return TRUE;
if (rb_obj_is_kind_of(obj, rb_cTime)) return TRUE;
return FALSE;
}
static VALUE
check_step_domain(VALUE step)
{
VALUE zero = INT2FIX(0);
int cmp;
if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
step = rb_to_int(step);
}
cmp = rb_cmpint(rb_funcallv(step, idCmp, 1, &zero), step, zero);
if (cmp < 0) {
rb_raise(rb_eArgError, "step can't be negative");
}
else if (cmp == 0) {
rb_raise(rb_eArgError, "step can't be 0");
}
return step;
}
static VALUE
range_step_size(VALUE range, VALUE args, VALUE eobj)
{
VALUE b = RANGE_BEG(range), e = RANGE_END(range);
VALUE step = INT2FIX(1);
if (args) {
step = check_step_domain(RARRAY_AREF(args, 0));
}
if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) {
return ruby_num_interval_step_size(b, e, step, EXCL(range));
}
return Qnil;
}
/*
* call-seq:
* step(s = 1) {|element| ... } -> self
* step(s = 1) -> enumerator/arithmetic_sequence
*
* Iterates over the elements of range in steps of +s+. The iteration is performed
* by <tt>+</tt> operator:
*
* (0..6).step(2) { puts _1 } #=> 1..5
* # Prints: 0, 2, 4, 6
*
* # Iterate between two dates in step of 1 day (24 hours)
* (Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 }
* # Prints:
* # 2022-02-24 00:00:00 UTC
* # 2022-02-25 00:00:00 UTC
* # 2022-02-26 00:00:00 UTC
* # 2022-02-27 00:00:00 UTC
* # 2022-02-28 00:00:00 UTC
* # 2022-03-01 00:00:00 UTC
*
* If <tt> + step</tt> decreases the value, iteration is still performed when
* step +begin+ is higher than the +end+:
*
* (0..6).step(-2) { puts _1 }
* # Prints nothing
*
* (6..0).step(-2) { puts _1 }
* # Prints: 6, 4, 2, 0
*
* (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 }
* # Prints:
* # 2022-03-01 00:00:00 UTC
* # 2022-02-28 00:00:00 UTC
* # 2022-02-27 00:00:00 UTC
* # 2022-02-26 00:00:00 UTC
* # 2022-02-25 00:00:00 UTC
* # 2022-02-24 00:00:00 UTC
*
* When the block is not provided, and range boundaries and step are Numeric,
* the method returns Enumerator::ArithmeticSequence.
*
* (1..5).step(2) # => ((1..5).step(2))
* (1.0..).step(1.5) #=> ((1.0..).step(1.5))
* (..3r).step(1/3r) #=> ((..3/1).step((1/3)))
*
* Enumerator::ArithmeticSequence can be further used as a value object for iteration
* or slicing of collections (see Array#[]). There is a convenience method #% with
* behavior similar to +step+ to produce arithmetic sequences more expressively:
*
* # Same as (1..5).step(2)
* (1..5) % 2 # => ((1..5).%(2))
*
* In a generic case, when the block is not provided, Enumerator is returned:
*
* ('a'..).step('b') #=> #<Enumerator: "a"..:step("b")>
* ('a'..).step('b').take(3) #=> ["a", "ab", "abb"]
*
* If +s+ is not provided, it is considered +1+ for ranges with numeric +begin+:
*
* (1..5).step { p _1 }
* # Prints: 1, 2, 3, 4, 5
*
* For non-Numeric ranges, step absence is an error:
*
* (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 }
* # raises: step is required for non-numeric ranges (ArgumentError)
*
* For backward compatibility reasons, String ranges support the iteration both with
* string step and with integer step. In the latter case, the iteration is performed
* by calculating the next values with String#succ:
*
* ('a'..'e').step(2) { p _1 }
* # Prints: a, c, e
* ('a'..'e').step { p _1 }
* # Default step 1; prints: a, b, c, d, e
*
*/
static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
VALUE b, e, v, step;
int c, dir;
b = RANGE_BEG(range);
e = RANGE_END(range);
const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
// For backward compatibility reasons (conforming to behavior before 3.4), String supports
// both old behavior ('a'..).step(1) and new behavior ('a'..).step('a')
// Hence the additional conversion/addional checks.
const VALUE sb = rb_check_string_type(b);
if (rb_check_arity(argc, 0, 1))
step = argv[0];
else {
if (b_num_p || !NIL_P(sb) || (NIL_P(b) && e_num_p))
step = INT2FIX(1);
else
rb_raise(rb_eArgError, "step is required for non-numeric ranges");
}
const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric);
if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if (!rb_block_given_p()) {
// This code is allowed to create even beginless ArithmeticSequence, which can be useful,
// e.g., for array slicing:
// ary[(..-1) % 3]
if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) {
return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
range_step_size, b, e, step, EXCL(range));
}
// ...but generic Enumerator from beginless range is useless and probably an error.
if (NIL_P(b)) {
rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless");
}
RETURN_SIZED_ENUMERATOR(range, argc, argv, 0);
}
if (NIL_P(b)) {
rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless");
}
if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
/* perform summation of numbers in C until their reach Fixnum limit */
long i = FIX2LONG(b), unit = FIX2LONG(step);
do {
rb_yield(LONG2FIX(i));
i += unit; /* FIXABLE+FIXABLE never overflow */
} while (FIXABLE(i));
b = LONG2NUM(i);
/* then switch to Bignum API */
for (;; b = rb_big_plus(b, step))
rb_yield(b);
}
else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) {
/* fixnums are special: summation is performed in C for performance */
long end = FIX2LONG(e);
long i, unit = FIX2LONG(step);
if (unit < 0) {
if (!EXCL(range))
end -= 1;
i = FIX2LONG(b);
while (i > end) {
rb_yield(LONG2NUM(i));
i += unit;
}
} else {
if (!EXCL(range))
end += 1;
i = FIX2LONG(b);
while (i < end) {
rb_yield(LONG2NUM(i));
i += unit;
}
}
}
else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) {
/* done */
} else if (!NIL_P(sb) && FIXNUM_P(step)) {
// backwards compatibility behavior for String only, when no step/Integer step is passed
// See discussion in https://bugs.ruby-lang.org/issues/18368
VALUE iter[2] = {INT2FIX(1), step};
if (NIL_P(e)) {
rb_str_upto_endless_each(sb, step_i, (VALUE)iter);
}
else {
rb_str_upto_each(sb, e, EXCL(range), step_i, (VALUE)iter);
}
} else {
v = b;
if (!NIL_P(e)) {
if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) {
// iterate backwards, for consistency with ArithmeticSequence
if (EXCL(range)) {
for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step))
rb_yield(v);
}
else {
for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) {
rb_yield(v);
if (!c) break;
}
}
} else {
// Direction of the comparison. We use it as a comparison operator in cycle:
// if begin < end, the cycle performs while value < end (iterating forward)
// if begin > end, the cycle performs while value > end (iterating backward with
// a negative step)
dir = r_less(b, e);
// One preliminary addition to check the step moves iteration in the same direction as
// from begin to end; otherwise, the iteration should be empty.
if (r_less(b, rb_funcall(b, id_plus, 1, step)) == dir) {
if (EXCL(range)) {
for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step))
rb_yield(v);
}
else {
for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) {
rb_yield(v);
if (!c) break;
}
}
}
}
}
else
for (;; v = rb_funcall(v, id_plus, 1, step))
rb_yield(v);
}
return range;
}
/*
* call-seq:
* %(n) {|element| ... } -> self
* %(n) -> enumerator or arithmetic_sequence
*
* Same as #step (but doesn't provide default value for +n+).
* The method is convenient for experssive producing of Enumerator::ArithmeticSequence.
*
* array = [0, 1, 2, 3, 4, 5, 6]
*
* # slice each second element:
* seq = (0..) % 2 #=> ((0..).%(2))
* array[seq] #=> [0, 2, 4, 6]
* # or just
* array[(0..) % 2] #=> [0, 2, 4, 6]
*
* Note that due to operator precedence in Ruby, parentheses are mandatory around range
* in this case:
*
* (0..7) % 2 #=> ((0..7).%(2)) -- as expected
* 0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2)
*/
static VALUE
range_percent_step(VALUE range, VALUE step)
{
return range_step(1, &step, range);
}
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
union int64_double {
int64_t i;
double d;
};
static VALUE
int64_as_double_to_num(int64_t i)
{
union int64_double convert;
if (i < 0) {
convert.i = -i;
return DBL2NUM(-convert.d);
}
else {
convert.i = i;
return DBL2NUM(convert.d);
}
}
static int64_t
double_as_int64(double d)
{
union int64_double convert;
convert.d = fabs(d);
return d < 0 ? -convert.i : convert.i;
}
#endif
static int
is_integer_p(VALUE v)
{
if (rb_integer_type_p(v)) {
return true;
}
ID id_integer_p;
VALUE is_int;
CONST_ID(id_integer_p, "integer?");
is_int = rb_check_funcall(v, id_integer_p, 0, 0);
return RTEST(is_int) && !UNDEF_P(is_int);
}
static VALUE
bsearch_integer_range(VALUE beg, VALUE end, int excl)
{
VALUE satisfied = Qnil;
int smaller;
#define BSEARCH_CHECK(expr) \
do { \
VALUE val = (expr); \
VALUE v = rb_yield(val); \
if (FIXNUM_P(v)) { \
if (v == INT2FIX(0)) return val; \
smaller = (SIGNED_VALUE)v < 0; \
} \
else if (v == Qtrue) { \
satisfied = val; \
smaller = 1; \
} \
else if (!RTEST(v)) { \
smaller = 0; \
} \
else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \
int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \
if (!cmp) return val; \
smaller = cmp < 0; \
} \
else { \
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \
" (must be numeric, true, false or nil)", \
rb_obj_class(v)); \
} \
} while (0)
VALUE low = rb_to_int(beg);
VALUE high = rb_to_int(end);
VALUE mid;
ID id_div;
CONST_ID(id_div, "div");
if (!excl) high = rb_funcall(high, '+', 1, INT2FIX(1));
low = rb_funcall(low, '-', 1, INT2FIX(1));
/*
* This loop must continue while low + 1 < high.
* Instead of checking low + 1 < high, check low < mid, where mid = (low + high) / 2.
* This is to avoid the cost of calculating low + 1 on each iteration.
* Note that this condition replacement is valid because Integer#div always rounds
* towards negative infinity.
*/
while (mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)),
rb_cmpint(rb_funcall(low, id_cmp, 1, mid), low, mid) < 0) {
BSEARCH_CHECK(mid);
if (smaller) {
high = mid;
}
else {
low = mid;
}
}
return satisfied;
}
/*
* call-seq:
* bsearch {|obj| block } -> value
*
* Returns an element from +self+ selected by a binary search.
*
* See {Binary Searching}[rdoc-ref:bsearch.rdoc].
*
*/
static VALUE
range_bsearch(VALUE range)
{
VALUE beg, end, satisfied = Qnil;
int smaller;
/* Implementation notes:
* Floats are handled by mapping them to 64 bits integers.
* Apart from sign issues, floats and their 64 bits integer have the
* same order, assuming they are represented as exponent followed
* by the mantissa. This is true with or without implicit bit.
*
* Finding the average of two ints needs to be careful about
* potential overflow (since float to long can use 64 bits).
*
* The half-open interval (low, high] indicates where the target is located.
* The loop continues until low and high are adjacent.
*
* -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent,
* the rounding direction of mid = (low + high) / 2 does not affect the result of
* the binary search.
*
* Note that -0.0 is mapped to the same int as 0.0 as we don't want
* (-1...0.0).bsearch to yield -0.0.
*/
#define BSEARCH(conv, excl) \
do { \
RETURN_ENUMERATOR(range, 0, 0); \
if (!(excl)) high++; \
low--; \
while (low + 1 < high) { \
mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
: (low + high) / 2; \
BSEARCH_CHECK(conv(mid)); \
if (smaller) { \
high = mid; \
} \
else { \
low = mid; \
} \
} \
return satisfied; \
} while (0)
#define BSEARCH_FIXNUM(beg, end, excl) \
do { \
long low = FIX2LONG(beg); \
long high = FIX2LONG(end); \
long mid; \
BSEARCH(INT2FIX, (excl)); \
} while (0)
beg = RANGE_BEG(range);
end = RANGE_END(range);
if (FIXNUM_P(beg) && FIXNUM_P(end)) {
BSEARCH_FIXNUM(beg, end, EXCL(range));
}
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) {
int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
int64_t mid;
BSEARCH(int64_as_double_to_num, EXCL(range));
}
#endif
else if (is_integer_p(beg) && is_integer_p(end)) {
RETURN_ENUMERATOR(range, 0, 0);
return bsearch_integer_range(beg, end, EXCL(range));
}
else if (is_integer_p(beg) && NIL_P(end)) {
VALUE diff = LONG2FIX(1);
RETURN_ENUMERATOR(range, 0, 0);
while (1) {
VALUE mid = rb_funcall(beg, '+', 1, diff);
BSEARCH_CHECK(mid);
if (smaller) {
if (FIXNUM_P(beg) && FIXNUM_P(mid)) {
BSEARCH_FIXNUM(beg, mid, false);
}
else {
return bsearch_integer_range(beg, mid, false);
}
}
diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
beg = mid;
}
}
else if (NIL_P(beg) && is_integer_p(end)) {
VALUE diff = LONG2FIX(-1);
RETURN_ENUMERATOR(range, 0, 0);
while (1) {
VALUE mid = rb_funcall(end, '+', 1, diff);
BSEARCH_CHECK(mid);
if (!smaller) {
if (FIXNUM_P(mid) && FIXNUM_P(end)) {
BSEARCH_FIXNUM(mid, end, false);
}
else {
return bsearch_integer_range(mid, end, false);
}
}
diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
end = mid;
}
}
else {
rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
}
return range;
}
static int
each_i(VALUE v, VALUE arg)
{
rb_yield(v);
return 0;
}
static int
sym_each_i(VALUE v, VALUE arg)
{
return each_i(rb_str_intern(v), arg);
}
/*
* call-seq:
* size -> non_negative_integer or Infinity or nil
*
* Returns the count of elements in +self+
* if both begin and end values are numeric;
* otherwise, returns +nil+:
*
* (1..4).size # => 4
* (1...4).size # => 3
* (1..).size # => Infinity
* ('a'..'z').size # => nil
*
* If +self+ is not iterable, raises an exception:
*
* (0.5..2.5).size # TypeError
* (..1).size # TypeError
*
* Related: Range#count.
*/
static VALUE
range_size(VALUE range)
{
VALUE b = RANGE_BEG(range), e = RANGE_END(range);
if (RB_INTEGER_TYPE_P(b)) {
if (rb_obj_is_kind_of(e, rb_cNumeric)) {
return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
}
if (NIL_P(e)) {
return DBL2NUM(HUGE_VAL);
}
}
if (!discrete_object_p(b)) {
rb_raise(rb_eTypeError, "can't iterate from %s",
rb_obj_classname(b));
}
return Qnil;
}
/*
* call-seq:
* to_a -> array
*
* Returns an array containing the elements in +self+, if a finite collection;
* raises an exception otherwise.
*
* (1..4).to_a # => [1, 2, 3, 4]
* (1...4).to_a # => [1, 2, 3]
* ('a'..'d').to_a # => ["a", "b", "c", "d"]
*
*/
static VALUE
range_to_a(VALUE range)
{
if (NIL_P(RANGE_END(range))) {
rb_raise(rb_eRangeError, "cannot convert endless range to an array");
}
return rb_call_super(0, 0);
}
static VALUE
range_enum_size(VALUE range, VALUE args, VALUE eobj)
{
return range_size(range);
}
RBIMPL_ATTR_NORETURN()
static void
range_each_bignum_endless(VALUE beg)
{
for (;; beg = rb_big_plus(beg, INT2FIX(1))) {
rb_yield(beg);
}
UNREACHABLE;
}
RBIMPL_ATTR_NORETURN()
static void
range_each_fixnum_endless(VALUE beg)
{
for (long i = FIX2LONG(beg); FIXABLE(i); i++) {
rb_yield(LONG2FIX(i));
}
range_each_bignum_endless(LONG2NUM(RUBY_FIXNUM_MAX + 1));
UNREACHABLE;
}
static VALUE
range_each_fixnum_loop(VALUE beg, VALUE end, VALUE range)
{
long lim = FIX2LONG(end) + !EXCL(range);
for (long i = FIX2LONG(beg); i < lim; i++) {
rb_yield(LONG2FIX(i));
}
return range;
}
/*
* call-seq:
* each {|element| ... } -> self
* each -> an_enumerator
*
* With a block given, passes each element of +self+ to the block:
*
* a = []
* (1..4).each {|element| a.push(element) } # => 1..4
* a # => [1, 2, 3, 4]
*
* Raises an exception unless <tt>self.first.respond_to?(:succ)</tt>.
*
* With no block given, returns an enumerator.
*
*/
static VALUE
range_each(VALUE range)
{
VALUE beg, end;
long i;
RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);
beg = RANGE_BEG(range);
end = RANGE_END(range);
if (FIXNUM_P(beg) && NIL_P(end)) {
range_each_fixnum_endless(beg);
}
else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
return range_each_fixnum_loop(beg, end, range);
}
else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
if (!FIXNUM_P(beg)) {
if (RBIGNUM_NEGATIVE_P(beg)) {
do {
rb_yield(beg);
} while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
if (NIL_P(end)) range_each_fixnum_endless(beg);
if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
}
else {
if (NIL_P(end)) range_each_bignum_endless(beg);
if (FIXNUM_P(end)) return range;
}
}
if (FIXNUM_P(beg)) {
i = FIX2LONG(beg);
do {
rb_yield(LONG2FIX(i));
} while (POSFIXABLE(++i));
beg = LONG2NUM(i);
}
ASSUME(!FIXNUM_P(beg));
ASSUME(!SPECIAL_CONST_P(end));
}
if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
if (EXCL(range)) {
while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
rb_yield(beg);
beg = rb_big_plus(beg, INT2FIX(1));
}
}
else {
VALUE c;
while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
rb_yield(beg);
if (c == INT2FIX(0)) break;
beg = rb_big_plus(beg, INT2FIX(1));
}
}
}
}
else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
beg = rb_sym2str(beg);
if (NIL_P(end)) {
rb_str_upto_endless_each(beg, sym_each_i, 0);
}
else {
rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
}
}
else {
VALUE tmp = rb_check_string_type(beg);
if (!NIL_P(tmp)) {
if (!NIL_P(end)) {
rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
}
else {
rb_str_upto_endless_each(tmp, each_i, 0);
}
}
else {
if (!discrete_object_p(beg)) {
rb_raise(rb_eTypeError, "can't iterate from %s",
rb_obj_classname(beg));
}
if (!NIL_P(end))
range_each_func(range, each_i, 0);
else
for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
rb_yield(beg);
}
}
return range;
}
RBIMPL_ATTR_NORETURN()
static void
range_reverse_each_bignum_beginless(VALUE end)
{
RUBY_ASSERT(RBIGNUM_NEGATIVE_P(end));
for (;; end = rb_big_minus(end, INT2FIX(1))) {
rb_yield(end);
}
UNREACHABLE;
}
static void
range_reverse_each_bignum(VALUE beg, VALUE end)
{
RUBY_ASSERT(RBIGNUM_POSITIVE_P(beg) == RBIGNUM_POSITIVE_P(end));
VALUE c;
while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
rb_yield(end);
if (c == INT2FIX(0)) break;
end = rb_big_minus(end, INT2FIX(1));
}
}
static void
range_reverse_each_positive_bignum_section(VALUE beg, VALUE end)
{
RUBY_ASSERT(!NIL_P(end));
if (FIXNUM_P(end) || RBIGNUM_NEGATIVE_P(end)) return;
if (NIL_P(beg) || FIXNUM_P(beg) || RBIGNUM_NEGATIVE_P(beg)) {
beg = LONG2NUM(FIXNUM_MAX + 1);
}
range_reverse_each_bignum(beg, end);
}
static void
range_reverse_each_fixnum_section(VALUE beg, VALUE end)
{
RUBY_ASSERT(!NIL_P(end));
if (!FIXNUM_P(beg)) {
if (!NIL_P(beg) && RBIGNUM_POSITIVE_P(beg)) return;
beg = LONG2FIX(FIXNUM_MIN);
}
if (!FIXNUM_P(end)) {
if (RBIGNUM_NEGATIVE_P(end)) return;
end = LONG2FIX(FIXNUM_MAX);
}
long b = FIX2LONG(beg);
long e = FIX2LONG(end);
for (long i = e; i >= b; --i) {
rb_yield(LONG2FIX(i));
}
}
static void
range_reverse_each_negative_bignum_section(VALUE beg, VALUE end)
{
RUBY_ASSERT(!NIL_P(end));
if (FIXNUM_P(end) || RBIGNUM_POSITIVE_P(end)) {
end = LONG2NUM(FIXNUM_MIN - 1);
}
if (NIL_P(beg)) {
range_reverse_each_bignum_beginless(end);
}
if (FIXNUM_P(beg) || RBIGNUM_POSITIVE_P(beg)) return;
range_reverse_each_bignum(beg, end);
}
/*
* call-seq:
* reverse_each {|element| ... } -> self
* reverse_each -> an_enumerator
*
* With a block given, passes each element of +self+ to the block in reverse order:
*
* a = []
* (1..4).reverse_each {|element| a.push(element) } # => 1..4
* a # => [4, 3, 2, 1]
*
* a = []
* (1...4).reverse_each {|element| a.push(element) } # => 1...4
* a # => [3, 2, 1]
*
* With no block given, returns an enumerator.
*
*/
static VALUE
range_reverse_each(VALUE range)
{
RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);
VALUE beg = RANGE_BEG(range);
VALUE end = RANGE_END(range);
int excl = EXCL(range);
if (NIL_P(end)) {
rb_raise(rb_eTypeError, "can't iterate from %s",
rb_obj_classname(end));
}
if (FIXNUM_P(beg) && FIXNUM_P(end)) {
if (excl) {
if (end == LONG2FIX(FIXNUM_MIN)) return range;
end = rb_int_minus(end, INT2FIX(1));
}
range_reverse_each_fixnum_section(beg, end);
}
else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) {
if (excl) {
end = rb_int_minus(end, INT2FIX(1));
}
range_reverse_each_positive_bignum_section(beg, end);
range_reverse_each_fixnum_section(beg, end);
range_reverse_each_negative_bignum_section(beg, end);
}
else {
return rb_call_super(0, NULL);
}
return range;
}
/*
* call-seq:
* self.begin -> object
*
* Returns the object that defines the beginning of +self+.
*
* (1..4).begin # => 1
* (..2).begin # => nil
*
* Related: Range#first, Range#end.
*/
static VALUE
range_begin(VALUE range)
{
return RANGE_BEG(range);
}
/*
* call-seq:
* self.end -> object
*
* Returns the object that defines the end of +self+.
*
* (1..4).end # => 4
* (1...4).end # => 4
* (1..).end # => nil
*
* Related: Range#begin, Range#last.
*/
static VALUE
range_end(VALUE range)
{
return RANGE_END(range);
}
static VALUE
first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, cbarg))
{
VALUE *ary = (VALUE *)cbarg;
long n = NUM2LONG(ary[0]);
if (n <= 0) {
rb_iter_break();
}
rb_ary_push(ary[1], i);
n--;
ary[0] = LONG2NUM(n);
return Qnil;
}
/*
* call-seq:
* first -> object
* first(n) -> array
*
* With no argument, returns the first element of +self+, if it exists:
*
* (1..4).first # => 1
* ('a'..'d').first # => "a"
*
* With non-negative integer argument +n+ given,
* returns the first +n+ elements in an array:
*
* (1..10).first(3) # => [1, 2, 3]
* (1..10).first(0) # => []
* (1..4).first(50) # => [1, 2, 3, 4]
*
* Raises an exception if there is no first element:
*
* (..4).first # Raises RangeError
*/
static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
VALUE n, ary[2];
if (NIL_P(RANGE_BEG(range))) {
rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
}
if (argc == 0) return RANGE_BEG(range);
rb_scan_args(argc, argv, "1", &n);
ary[0] = n;
ary[1] = rb_ary_new2(NUM2LONG(n));
rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);
return ary[1];
}
static VALUE
rb_int_range_last(int argc, VALUE *argv, VALUE range)
{
static const VALUE ONE = INT2FIX(1);
VALUE b, e, len_1, len, nv, ary;
int x;
long n;
RUBY_ASSERT(argc > 0);
b = RANGE_BEG(range);
e = RANGE_END(range);
RUBY_ASSERT(RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e));
x = EXCL(range);
len_1 = rb_int_minus(e, b);
if (x) {
e = rb_int_minus(e, ONE);
len = len_1;
}
else {
len = rb_int_plus(len_1, ONE);
}
if (FIXNUM_ZERO_P(len) || rb_num_negative_p(len)) {
return rb_ary_new_capa(0);
}
rb_scan_args(argc, argv, "1", &nv);
n = NUM2LONG(nv);
if (n < 0) {
rb_raise(rb_eArgError, "negative array size");
}
nv = LONG2NUM(n);
if (RTEST(rb_int_gt(nv, len))) {
nv = len;
n = NUM2LONG(nv);
}
ary = rb_ary_new_capa(n);
b = rb_int_minus(e, nv);
while (n) {
b = rb_int_plus(b, ONE);
rb_ary_push(ary, b);
--n;
}
return ary;
}
/*
* call-seq:
* last -> object
* last(n) -> array
*
* With no argument, returns the last element of +self+, if it exists:
*
* (1..4).last # => 4
* ('a'..'d').last # => "d"
*
* Note that +last+ with no argument returns the end element of +self+
* even if #exclude_end? is +true+:
*
* (1...4).last # => 4
* ('a'...'d').last # => "d"
*
* With non-negative integer argument +n+ given,
* returns the last +n+ elements in an array:
*
* (1..10).last(3) # => [8, 9, 10]
* (1..10).last(0) # => []
* (1..4).last(50) # => [1, 2, 3, 4]
*
* Note that +last+ with argument does not return the end element of +self+
* if #exclude_end? it +true+:
*
* (1...4).last(3) # => [1, 2, 3]
* ('a'...'d').last(3) # => ["a", "b", "c"]
*
* Raises an exception if there is no last element:
*
* (1..).last # Raises RangeError
*
*/
static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
VALUE b, e;
if (NIL_P(RANGE_END(range))) {
rb_raise(rb_eRangeError, "cannot get the last element of endless range");
}
if (argc == 0) return RANGE_END(range);
b = RANGE_BEG(range);
e = RANGE_END(range);
if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
return rb_int_range_last(argc, argv, range);
}
return rb_ary_last(argc, argv, rb_Array(range));
}
/*
* call-seq:
* min -> object
* min(n) -> array
* min {|a, b| ... } -> object
* min(n) {|a, b| ... } -> array
*
* Returns the minimum value in +self+,
* using method <tt><=></tt> or a given block for comparison.
*
* With no argument and no block given,
* returns the minimum-valued element of +self+.
*
* (1..4).min # => 1
* ('a'..'d').min # => "a"
* (-4..-1).min # => -4
*
* With non-negative integer argument +n+ given, and no block given,
* returns the +n+ minimum-valued elements of +self+ in an array:
*
* (1..4).min(2) # => [1, 2]
* ('a'..'d').min(2) # => ["a", "b"]
* (-4..-1).min(2) # => [-4, -3]
* (1..4).min(50) # => [1, 2, 3, 4]
*
* If a block is given, it is called:
*
* - First, with the first two element of +self+.
* - Then, sequentially, with the so-far minimum value and the next element of +self+.
*
* To illustrate:
*
* (1..4).min {|a, b| p [a, b]; a <=> b } # => 1
*
* Output:
*
* [2, 1]
* [3, 1]
* [4, 1]
*
* With no argument and a block given,
* returns the return value of the last call to the block:
*
* (1..4).min {|a, b| -(a <=> b) } # => 4
*
* With non-negative integer argument +n+ given, and a block given,
* returns the return values of the last +n+ calls to the block in an array:
*
* (1..4).min(2) {|a, b| -(a <=> b) } # => [4, 3]
* (1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]
*
* Returns an empty array if +n+ is zero:
*
* (1..4).min(0) # => []
* (1..4).min(0) {|a, b| -(a <=> b) } # => []
*
* Returns +nil+ or an empty array if:
*
* - The begin value of the range is larger than the end value:
*
* (4..1).min # => nil
* (4..1).min(2) # => []
* (4..1).min {|a, b| -(a <=> b) } # => nil
* (4..1).min(2) {|a, b| -(a <=> b) } # => []
*
* - The begin value of an exclusive range is equal to the end value:
*
* (1...1).min # => nil
* (1...1).min(2) # => []
* (1...1).min {|a, b| -(a <=> b) } # => nil
* (1...1).min(2) {|a, b| -(a <=> b) } # => []
*
* Raises an exception if either:
*
* - +self+ is a beginless range: <tt>(..4)</tt>.
* - A block is given and +self+ is an endless range.
*
* Related: Range#max, Range#minmax.
*/
static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
if (NIL_P(RANGE_BEG(range))) {
rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
}
if (rb_block_given_p()) {
if (NIL_P(RANGE_END(range))) {
rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
}
return rb_call_super(argc, argv);
}
else if (argc != 0) {
return range_first(argc, argv, range);
}
else {
VALUE b = RANGE_BEG(range);
VALUE e = RANGE_END(range);
int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e);
if (c > 0 || (c == 0 && EXCL(range)))
return Qnil;
return b;
}
}
/*
* call-seq:
* max -> object
* max(n) -> array
* max {|a, b| ... } -> object
* max(n) {|a, b| ... } -> array
*
* Returns the maximum value in +self+,
* using method <tt><=></tt> or a given block for comparison.
*
* With no argument and no block given,
* returns the maximum-valued element of +self+.
*
* (1..4).max # => 4
* ('a'..'d').max # => "d"
* (-4..-1).max # => -1
*
* With non-negative integer argument +n+ given, and no block given,
* returns the +n+ maximum-valued elements of +self+ in an array:
*
* (1..4).max(2) # => [4, 3]
* ('a'..'d').max(2) # => ["d", "c"]
* (-4..-1).max(2) # => [-1, -2]
* (1..4).max(50) # => [4, 3, 2, 1]
*
* If a block is given, it is called:
*
* - First, with the first two element of +self+.
* - Then, sequentially, with the so-far maximum value and the next element of +self+.
*
* To illustrate:
*
* (1..4).max {|a, b| p [a, b]; a <=> b } # => 4
*
* Output:
*
* [2, 1]
* [3, 2]
* [4, 3]
*
* With no argument and a block given,
* returns the return value of the last call to the block:
*
* (1..4).max {|a, b| -(a <=> b) } # => 1
*
* With non-negative integer argument +n+ given, and a block given,
* returns the return values of the last +n+ calls to the block in an array:
*
* (1..4).max(2) {|a, b| -(a <=> b) } # => [1, 2]
* (1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]
*
* Returns an empty array if +n+ is zero:
*
* (1..4).max(0) # => []
* (1..4).max(0) {|a, b| -(a <=> b) } # => []
*
* Returns +nil+ or an empty array if:
*
* - The begin value of the range is larger than the end value:
*
* (4..1).max # => nil
* (4..1).max(2) # => []
* (4..1).max {|a, b| -(a <=> b) } # => nil
* (4..1).max(2) {|a, b| -(a <=> b) } # => []
*
* - The begin value of an exclusive range is equal to the end value:
*
* (1...1).max # => nil
* (1...1).max(2) # => []
* (1...1).max {|a, b| -(a <=> b) } # => nil
* (1...1).max(2) {|a, b| -(a <=> b) } # => []
*
* Raises an exception if either:
*
* - +self+ is a endless range: <tt>(1..)</tt>.
* - A block is given and +self+ is a beginless range.
*
* Related: Range#min, Range#minmax.
*
*/
static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
VALUE e = RANGE_END(range);
int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);
if (NIL_P(RANGE_END(range))) {
rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
}
VALUE b = RANGE_BEG(range);
if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
if (NIL_P(b)) {
rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
}
return rb_call_super(argc, argv);
}
else {
int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e);
if (c > 0)
return Qnil;
if (EXCL(range)) {
if (!RB_INTEGER_TYPE_P(e)) {
rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
}
if (c == 0) return Qnil;
if (!RB_INTEGER_TYPE_P(b)) {
rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
}
if (FIXNUM_P(e)) {
return LONG2NUM(FIX2LONG(e) - 1);
}
return rb_funcall(e, '-', 1, INT2FIX(1));
}
return e;
}
}
/*
* call-seq:
* minmax -> [object, object]
* minmax {|a, b| ... } -> [object, object]
*
* Returns a 2-element array containing the minimum and maximum value in +self+,
* either according to comparison method <tt><=></tt> or a given block.
*
* With no block given, returns the minimum and maximum values,
* using <tt><=></tt> for comparison:
*
* (1..4).minmax # => [1, 4]
* (1...4).minmax # => [1, 3]
* ('a'..'d').minmax # => ["a", "d"]
* (-4..-1).minmax # => [-4, -1]
*
* With a block given, the block must return an integer:
*
* - Negative if +a+ is smaller than +b+.
* - Zero if +a+ and +b+ are equal.
* - Positive if +a+ is larger than +b+.
*
* The block is called <tt>self.size</tt> times to compare elements;
* returns a 2-element Array containing the minimum and maximum values from +self+,
* per the block:
*
* (1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]
*
* Returns <tt>[nil, nil]</tt> if:
*
* - The begin value of the range is larger than the end value:
*
* (4..1).minmax # => [nil, nil]
* (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
*
* - The begin value of an exclusive range is equal to the end value:
*
* (1...1).minmax # => [nil, nil]
* (1...1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
*
* Raises an exception if +self+ is a beginless or an endless range.
*
* Related: Range#min, Range#max.
*
*/
static VALUE
range_minmax(VALUE range)
{
if (rb_block_given_p()) {
return rb_call_super(0, NULL);
}
return rb_assoc_new(
rb_funcall(range, id_min, 0),
rb_funcall(range, id_max, 0)
);
}
int
rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
{
VALUE b, e;
int excl;
if (rb_obj_is_kind_of(range, rb_cRange)) {
b = RANGE_BEG(range);
e = RANGE_END(range);
excl = EXCL(range);
}
else if (RTEST(rb_obj_is_kind_of(range, rb_cArithSeq))) {
return (int)Qfalse;
}
else {
VALUE x;
b = rb_check_funcall(range, id_beg, 0, 0);
if (UNDEF_P(b)) return (int)Qfalse;
e = rb_check_funcall(range, id_end, 0, 0);
if (UNDEF_P(e)) return (int)Qfalse;
x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0);
if (UNDEF_P(x)) return (int)Qfalse;
excl = RTEST(x);
}
*begp = b;
*endp = e;
*exclp = excl;
return (int)Qtrue;
}
/* Extract the components of a Range.
*
* You can use +err+ to control the behavior of out-of-range and exception.
*
* When +err+ is 0 or 2, if the begin offset is greater than +len+,
* it is out-of-range. The +RangeError+ is raised only if +err+ is 2,
* in this case. If +err+ is 0, +Qnil+ will be returned.
*
* When +err+ is 1, the begin and end offsets won't be adjusted even if they
* are greater than +len+. It allows +rb_ary_aset+ extends arrays.
*
* If the begin component of the given range is negative and is too-large
* abstract value, the +RangeError+ is raised only +err+ is 1 or 2.
*
* The case of <code>err = 0</code> is used in item accessing methods such as
* +rb_ary_aref+, +rb_ary_slice_bang+, and +rb_str_aref+.
*
* The case of <code>err = 1</code> is used in Array's methods such as
* +rb_ary_aset+ and +rb_ary_fill+.
*
* The case of <code>err = 2</code> is used in +rb_str_aset+.
*/
VALUE
rb_range_component_beg_len(VALUE b, VALUE e, int excl,
long *begp, long *lenp, long len, int err)
{
long beg, end;
beg = NIL_P(b) ? 0 : NUM2LONG(b);
end = NIL_P(e) ? -1 : NUM2LONG(e);
if (NIL_P(e)) excl = 0;
if (beg < 0) {
beg += len;
if (beg < 0)
goto out_of_range;
}
if (end < 0)
end += len;
if (!excl)
end++; /* include end point */
if (err == 0 || err == 2) {
if (beg > len)
goto out_of_range;
if (end > len)
end = len;
}
len = end - beg;
if (len < 0)
len = 0;
*begp = beg;
*lenp = len;
return Qtrue;
out_of_range:
return Qnil;
}
VALUE
rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err)
{
VALUE b, e;
int excl;
if (!rb_range_values(range, &b, &e, &excl))
return Qfalse;
VALUE res = rb_range_component_beg_len(b, e, excl, begp, lenp, len, err);
if (NIL_P(res) && err) {
rb_raise(rb_eRangeError, "%+"PRIsVALUE" out of range", range);
}
return res;
}
/*
* call-seq:
* to_s -> string
*
* Returns a string representation of +self+,
* including <tt>begin.to_s</tt> and <tt>end.to_s</tt>:
*
* (1..4).to_s # => "1..4"
* (1...4).to_s # => "1...4"
* (1..).to_s # => "1.."
* (..4).to_s # => "..4"
*
* Note that returns from #to_s and #inspect may differ:
*
* ('a'..'d').to_s # => "a..d"
* ('a'..'d').inspect # => "\"a\"..\"d\""
*
* Related: Range#inspect.
*
*/
static VALUE
range_to_s(VALUE range)
{
VALUE str, str2;
str = rb_obj_as_string(RANGE_BEG(range));
str2 = rb_obj_as_string(RANGE_END(range));
str = rb_str_dup(str);
rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
rb_str_append(str, str2);
return str;
}
static VALUE
inspect_range(VALUE range, VALUE dummy, int recur)
{
VALUE str, str2 = Qundef;
if (recur) {
return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)");
}
if (!NIL_P(RANGE_BEG(range)) || NIL_P(RANGE_END(range))) {
str = rb_str_dup(rb_inspect(RANGE_BEG(range)));
}
else {
str = rb_str_new(0, 0);
}
rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
if (NIL_P(RANGE_BEG(range)) || !NIL_P(RANGE_END(range))) {
str2 = rb_inspect(RANGE_END(range));
}
if (!UNDEF_P(str2)) rb_str_append(str, str2);
return str;
}
/*
* call-seq:
* inspect -> string
*
* Returns a string representation of +self+,
* including <tt>begin.inspect</tt> and <tt>end.inspect</tt>:
*
* (1..4).inspect # => "1..4"
* (1...4).inspect # => "1...4"
* (1..).inspect # => "1.."
* (..4).inspect # => "..4"
*
* Note that returns from #to_s and #inspect may differ:
*
* ('a'..'d').to_s # => "a..d"
* ('a'..'d').inspect # => "\"a\"..\"d\""
*
* Related: Range#to_s.
*
*/
static VALUE
range_inspect(VALUE range)
{
return rb_exec_recursive(inspect_range, range, 0);
}
static VALUE range_include_internal(VALUE range, VALUE val);
VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive);
/*
* call-seq:
* self === object -> true or false
*
* Returns +true+ if +object+ is between <tt>self.begin</tt> and <tt>self.end</tt>.
* +false+ otherwise:
*
* (1..4) === 2 # => true
* (1..4) === 5 # => false
* (1..4) === 'a' # => false
* (1..4) === 4 # => true
* (1...4) === 4 # => false
* ('a'..'d') === 'c' # => true
* ('a'..'d') === 'e' # => false
*
* A case statement uses method <tt>===</tt>, and so:
*
* case 79
* when (1..50)
* "low"
* when (51..75)
* "medium"
* when (76..100)
* "high"
* end # => "high"
*
* case "2.6.5"
* when ..."2.4"
* "EOL"
* when "2.4"..."2.5"
* "maintenance"
* when "2.5"..."3.0"
* "stable"
* when "3.1"..
* "upcoming"
* end # => "stable"
*
*/
static VALUE
range_eqq(VALUE range, VALUE val)
{
return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}
/*
* call-seq:
* include?(object) -> true or false
*
* Returns +true+ if +object+ is an element of +self+, +false+ otherwise:
*
* (1..4).include?(2) # => true
* (1..4).include?(5) # => false
* (1..4).include?(4) # => true
* (1...4).include?(4) # => false
* ('a'..'d').include?('b') # => true
* ('a'..'d').include?('e') # => false
* ('a'..'d').include?('B') # => false
* ('a'..'d').include?('d') # => true
* ('a'...'d').include?('d') # => false
*
* If begin and end are numeric, #include? behaves like #cover?
*
* (1..3).include?(1.5) # => true
* (1..3).cover?(1.5) # => true
*
* But when not numeric, the two methods may differ:
*
* ('a'..'d').include?('cc') # => false
* ('a'..'d').cover?('cc') # => true
*
* Related: Range#cover?.
*/
static VALUE
range_include(VALUE range, VALUE val)
{
VALUE ret = range_include_internal(range, val);
if (!UNDEF_P(ret)) return ret;
return rb_call_super(1, &val);
}
static inline bool
range_integer_edge_p(VALUE beg, VALUE end)
{
return (!NIL_P(rb_check_to_integer(beg, "to_int")) ||
!NIL_P(rb_check_to_integer(end, "to_int")));
}
static inline bool
range_string_range_p(VALUE beg, VALUE end)
{
return RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING);
}
static inline VALUE
range_include_fallback(VALUE beg, VALUE end, VALUE val)
{
if (NIL_P(beg) && NIL_P(end)) {
if (linear_object_p(val)) return Qtrue;
}
if (NIL_P(beg) || NIL_P(end)) {
rb_raise(rb_eTypeError, "cannot determine inclusion in beginless/endless ranges");
}
return Qundef;
}
static VALUE
range_include_internal(VALUE range, VALUE val)
{
VALUE beg = RANGE_BEG(range);
VALUE end = RANGE_END(range);
int nv = FIXNUM_P(beg) || FIXNUM_P(end) ||
linear_object_p(beg) || linear_object_p(end);
if (nv || range_integer_edge_p(beg, end)) {
return r_cover_p(range, beg, end, val);
}
else if (range_string_range_p(beg, end)) {
return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range));
}
return range_include_fallback(beg, end, val);
}
static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val);
/*
* call-seq:
* cover?(object) -> true or false
* cover?(range) -> true or false
*
* Returns +true+ if the given argument is within +self+, +false+ otherwise.
*
* With non-range argument +object+, evaluates with <tt><=</tt> and <tt><</tt>.
*
* For range +self+ with included end value (<tt>#exclude_end? == false</tt>),
* evaluates thus:
*
* self.begin <= object <= self.end
*
* Examples:
*
* r = (1..4)
* r.cover?(1) # => true
* r.cover?(4) # => true
* r.cover?(0) # => false
* r.cover?(5) # => false
* r.cover?('foo') # => false
*
* r = ('a'..'d')
* r.cover?('a') # => true
* r.cover?('d') # => true
* r.cover?(' ') # => false
* r.cover?('e') # => false
* r.cover?(0) # => false
*
* For range +r+ with excluded end value (<tt>#exclude_end? == true</tt>),
* evaluates thus:
*
* r.begin <= object < r.end
*
* Examples:
*
* r = (1...4)
* r.cover?(1) # => true
* r.cover?(3) # => true
* r.cover?(0) # => false
* r.cover?(4) # => false
* r.cover?('foo') # => false
*
* r = ('a'...'d')
* r.cover?('a') # => true
* r.cover?('c') # => true
* r.cover?(' ') # => false
* r.cover?('d') # => false
* r.cover?(0) # => false
*
* With range argument +range+, compares the first and last
* elements of +self+ and +range+:
*
* r = (1..4)
* r.cover?(1..4) # => true
* r.cover?(0..4) # => false
* r.cover?(1..5) # => false
* r.cover?('a'..'d') # => false
*
* r = (1...4)
* r.cover?(1..3) # => true
* r.cover?(1..4) # => false
*
* If begin and end are numeric, #cover? behaves like #include?
*
* (1..3).cover?(1.5) # => true
* (1..3).include?(1.5) # => true
*
* But when not numeric, the two methods may differ:
*
* ('a'..'d').cover?('cc') # => true
* ('a'..'d').include?('cc') # => false
*
* Returns +false+ if either:
*
* - The begin value of +self+ is larger than its end value.
* - An internal call to <tt><=></tt> returns +nil+;
* that is, the operands are not comparable.
*
* Beginless ranges cover all values of the same type before the end,
* excluding the end for exclusive ranges. Beginless ranges cover
* ranges that end before the end of the beginless range, or at the
* end of the beginless range for inclusive ranges.
*
* (..2).cover?(1) # => true
* (..2).cover?(2) # => true
* (..2).cover?(3) # => false
* (...2).cover?(2) # => false
* (..2).cover?("2") # => false
* (..2).cover?(..2) # => true
* (..2).cover?(...2) # => true
* (..2).cover?(.."2") # => false
* (...2).cover?(..2) # => false
*
* Endless ranges cover all values of the same type after the
* beginning. Endless exclusive ranges do not cover endless
* inclusive ranges.
*
* (2..).cover?(1) # => false
* (2..).cover?(3) # => true
* (2...).cover?(3) # => true
* (2..).cover?(2) # => true
* (2..).cover?("2") # => false
* (2..).cover?(2..) # => true
* (2..).cover?(2...) # => true
* (2..).cover?("2"..) # => false
* (2...).cover?(2..) # => false
* (2...).cover?(3...) # => true
* (2...).cover?(3..) # => false
* (3..).cover?(2..) # => false
*
* Ranges that are both beginless and endless cover all values and
* ranges, and return true for all arguments, with the exception that
* beginless and endless exclusive ranges do not cover endless
* inclusive ranges.
*
* (nil...).cover?(Object.new) # => true
* (nil...).cover?(nil...) # => true
* (nil..).cover?(nil...) # => true
* (nil...).cover?(nil..) # => false
* (nil...).cover?(1..) # => false
*
* Related: Range#include?.
*
*/
static VALUE
range_cover(VALUE range, VALUE val)
{
VALUE beg, end;
beg = RANGE_BEG(range);
end = RANGE_END(range);
if (rb_obj_is_kind_of(val, rb_cRange)) {
return RBOOL(r_cover_range_p(range, beg, end, val));
}
return r_cover_p(range, beg, end, val);
}
static VALUE
r_call_max(VALUE r)
{
return rb_funcallv(r, rb_intern("max"), 0, 0);
}
static int
r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val)
{
VALUE val_beg, val_end, val_max;
int cmp_end;
val_beg = RANGE_BEG(val);
val_end = RANGE_END(val);
if (!NIL_P(end) && NIL_P(val_end)) return FALSE;
if (!NIL_P(beg) && NIL_P(val_beg)) return FALSE;
if (!NIL_P(val_beg) && !NIL_P(val_end) && r_less(val_beg, val_end) > (EXCL(val) ? -1 : 0)) return FALSE;
if (!NIL_P(val_beg) && !r_cover_p(range, beg, end, val_beg)) return FALSE;
if (!NIL_P(val_end) && !NIL_P(end)) {
VALUE r_cmp_end = rb_funcall(end, id_cmp, 1, val_end);
if (NIL_P(r_cmp_end)) return FALSE;
cmp_end = rb_cmpint(r_cmp_end, end, val_end);
}
else {
cmp_end = r_less(end, val_end);
}
if (EXCL(range) == EXCL(val)) {
return cmp_end >= 0;
}
else if (EXCL(range)) {
return cmp_end > 0;
}
else if (cmp_end >= 0) {
return TRUE;
}
val_max = rb_rescue2(r_call_max, val, 0, Qnil, rb_eTypeError, (VALUE)0);
if (NIL_P(val_max)) return FALSE;
return r_less(end, val_max) >= 0;
}
static VALUE
r_cover_p(VALUE range, VALUE beg, VALUE end, VALUE val)
{
if (NIL_P(beg) || r_less(beg, val) <= 0) {
int excl = EXCL(range);
if (NIL_P(end) || r_less(val, end) <= -excl)
return Qtrue;
}
return Qfalse;
}
static VALUE
range_dumper(VALUE range)
{
VALUE v = rb_obj_alloc(rb_cObject);
rb_ivar_set(v, id_excl, RANGE_EXCL(range));
rb_ivar_set(v, id_beg, RANGE_BEG(range));
rb_ivar_set(v, id_end, RANGE_END(range));
return v;
}
static VALUE
range_loader(VALUE range, VALUE obj)
{
VALUE beg, end, excl;
if (!RB_TYPE_P(obj, T_OBJECT) || RBASIC(obj)->klass != rb_cObject) {
rb_raise(rb_eTypeError, "not a dumped range object");
}
range_modify(range);
beg = rb_ivar_get(obj, id_beg);
end = rb_ivar_get(obj, id_end);
excl = rb_ivar_get(obj, id_excl);
if (!NIL_P(excl)) {
range_init(range, beg, end, RBOOL(RTEST(excl)));
}
return range;
}
static VALUE
range_alloc(VALUE klass)
{
/* rb_struct_alloc_noinit itself should not be used because
* rb_marshal_define_compat uses equality of allocation function */
return rb_struct_alloc_noinit(klass);
}
/*
* call-seq:
* count -> integer
* count(object) -> integer
* count {|element| ... } -> integer
*
* Returns the count of elements, based on an argument or block criterion, if given.
*
* With no argument and no block given, returns the number of elements:
*
* (1..4).count # => 4
* (1...4).count # => 3
* ('a'..'d').count # => 4
* ('a'...'d').count # => 3
* (1..).count # => Infinity
* (..4).count # => Infinity
*
* With argument +object+, returns the number of +object+ found in +self+,
* which will usually be zero or one:
*
* (1..4).count(2) # => 1
* (1..4).count(5) # => 0
* (1..4).count('a') # => 0
*
* With a block given, calls the block with each element;
* returns the number of elements for which the block returns a truthy value:
*
* (1..4).count {|element| element < 3 } # => 2
*
* Related: Range#size.
*/
static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
if (argc != 0) {
/* It is odd for instance (1...).count(0) to return Infinity. Just let
* it loop. */
return rb_call_super(argc, argv);
}
else if (rb_block_given_p()) {
/* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
* Infinity. Just let it loop. */
return rb_call_super(argc, argv);
}
VALUE beg = RANGE_BEG(range), end = RANGE_END(range);
if (NIL_P(beg) || NIL_P(end)) {
/* We are confident that the answer is Infinity. */
return DBL2NUM(HUGE_VAL);
}
if (is_integer_p(beg)) {
VALUE size = range_size(range);
if (!NIL_P(size)) {
return size;
}
}
return rb_call_super(argc, argv);
}
static bool
empty_region_p(VALUE beg, VALUE end, int excl)
{
if (NIL_P(beg)) return false;
if (NIL_P(end)) return false;
int less = r_less(beg, end);
/* empty range */
if (less > 0) return true;
if (excl && less == 0) return true;
return false;
}
/*
* call-seq:
* overlap?(range) -> true or false
*
* Returns +true+ if +range+ overlaps with +self+, +false+ otherwise:
*
* (0..2).overlap?(1..3) #=> true
* (0..2).overlap?(3..4) #=> false
* (0..).overlap?(..0) #=> true
*
* With non-range argument, raises TypeError.
*
* (1..3).overlap?(1) # TypeError
*
* Returns +false+ if an internal call to <tt><=></tt> returns +nil+;
* that is, the operands are not comparable.
*
* (1..3).overlap?('a'..'d') # => false
*
* Returns +false+ if +self+ or +range+ is empty. "Empty range" means
* that its begin value is larger than, or equal for an exclusive
* range, its end value.
*
* (4..1).overlap?(2..3) # => false
* (4..1).overlap?(..3) # => false
* (4..1).overlap?(2..) # => false
* (2...2).overlap?(1..2) # => false
*
* (1..4).overlap?(3..2) # => false
* (..4).overlap?(3..2) # => false
* (1..).overlap?(3..2) # => false
* (1..2).overlap?(2...2) # => false
*
* Returns +false+ if the begin value one of +self+ and +range+ is
* larger than, or equal if the other is an exclusive range, the end
* value of the other:
*
* (4..5).overlap?(2..3) # => false
* (4..5).overlap?(2...4) # => false
*
* (1..2).overlap?(3..4) # => false
* (1...3).overlap?(3..4) # => false
*
* Returns +false+ if the end value one of +self+ and +range+ is
* larger than, or equal for an exclusive range, the end value of the
* other:
*
* (4..5).overlap?(2..3) # => false
* (4..5).overlap?(2...4) # => false
*
* (1..2).overlap?(3..4) # => false
* (1...3).overlap?(3..4) # => false
*
* Note that the method wouldn't make any assumptions about the beginless
* range being actually empty, even if its upper bound is the minimum
* possible value of its type, so all this would return +true+:
*
* (...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true
* (..."").overlap?(..."") # => true
* (...[]).overlap?(...[]) # => true
*
* Even if those ranges are effectively empty (no number can be smaller than
* <tt>-Float::INFINITY</tt>), they are still considered overlapping
* with themselves.
*
* Related: Range#cover?.
*/
static VALUE
range_overlap(VALUE range, VALUE other)
{
if (!rb_obj_is_kind_of(other, rb_cRange)) {
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)",
rb_class_name(rb_obj_class(other)));
}
VALUE self_beg = RANGE_BEG(range);
VALUE self_end = RANGE_END(range);
int self_excl = EXCL(range);
VALUE other_beg = RANGE_BEG(other);
VALUE other_end = RANGE_END(other);
int other_excl = EXCL(other);
if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse;
if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse;
if (!NIL_P(self_beg) && !NIL_P(other_beg)) {
VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg);
if (NIL_P(cmp)) return Qfalse;
/* if both begin values are equal, no more comparisons needed */
if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue;
}
else if (NIL_P(self_beg) && NIL_P(other_beg)) {
VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end);
return RBOOL(!NIL_P(cmp));
}
if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse;
if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse;
return Qtrue;
}
/* A \Range object represents a collection of values
* that are between given begin and end values.
*
* You can create an \Range object explicitly with:
*
* - A {range literal}[rdoc-ref:syntax/literals.rdoc@Range+Literals]:
*
* # Ranges that use '..' to include the given end value.
* (1..4).to_a # => [1, 2, 3, 4]
* ('a'..'d').to_a # => ["a", "b", "c", "d"]
* # Ranges that use '...' to exclude the given end value.
* (1...4).to_a # => [1, 2, 3]
* ('a'...'d').to_a # => ["a", "b", "c"]
*
* A range may be created using method Range.new:
*
* # Ranges that by default include the given end value.
* Range.new(1, 4).to_a # => [1, 2, 3, 4]
* Range.new('a', 'd').to_a # => ["a", "b", "c", "d"]
* # Ranges that use third argument +exclude_end+ to exclude the given end value.
* Range.new(1, 4, true).to_a # => [1, 2, 3]
* Range.new('a', 'd', true).to_a # => ["a", "b", "c"]
*
* == Beginless Ranges
*
* A _beginless_ _range_ has a definite end value, but a +nil+ begin value.
* Such a range includes all values up to the end value.
*
* r = (..4) # => nil..4
* r.begin # => nil
* r.include?(-50) # => true
* r.include?(4) # => true
*
* r = (...4) # => nil...4
* r.include?(4) # => false
*
* Range.new(nil, 4) # => nil..4
* Range.new(nil, 4, true) # => nil...4
*
* A beginless range may be used to slice an array:
*
* a = [1, 2, 3, 4]
* # Include the third array element in the slice
* r = (..2) # => nil..2
* a[r] # => [1, 2, 3]
* # Exclude the third array element from the slice
* r = (...2) # => nil...2
* a[r] # => [1, 2]
*
* \Method +each+ for a beginless range raises an exception.
*
* == Endless Ranges
*
* An _endless_ _range_ has a definite begin value, but a +nil+ end value.
* Such a range includes all values from the begin value.
*
* r = (1..) # => 1..
* r.end # => nil
* r.include?(50) # => true
*
* Range.new(1, nil) # => 1..
*
* The literal for an endless range may be written with either two dots
* or three.
* The range has the same elements, either way.
* But note that the two are not equal:
*
* r0 = (1..) # => 1..
* r1 = (1...) # => 1...
* r0.begin == r1.begin # => true
* r0.end == r1.end # => true
* r0 == r1 # => false
*
* An endless range may be used to slice an array:
*
* a = [1, 2, 3, 4]
* r = (2..) # => 2..
* a[r] # => [3, 4]
*
* \Method +each+ for an endless range calls the given block indefinitely:
*
* a = []
* r = (1..)
* r.each do |i|
* a.push(i) if i.even?
* break if i > 10
* end
* a # => [2, 4, 6, 8, 10]
*
* A range can be both beginless and endless. For literal beginless, endless
* ranges, at least the beginning or end of the range must be given as an
* explicit nil value. It is recommended to use an explicit nil beginning and
* implicit nil end, since that is what Ruby uses for Range#inspect:
*
* (nil..) # => (nil..)
* (..nil) # => (nil..)
* (nil..nil) # => (nil..)
*
* == Ranges and Other Classes
*
* An object may be put into a range if its class implements
* instance method <tt><=></tt>.
* Ruby core classes that do so include Array, Complex, File::Stat,
* Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time.
*
* Example:
*
* t0 = Time.now # => 2021-09-19 09:22:48.4854986 -0500
* t1 = Time.now # => 2021-09-19 09:22:56.0365079 -0500
* t2 = Time.now # => 2021-09-19 09:23:08.5263283 -0500
* (t0..t2).include?(t1) # => true
* (t0..t1).include?(t2) # => false
*
* A range can be iterated over only if its elements
* implement instance method +succ+.
* Ruby core classes that do so include Integer, String, and Symbol
* (but not the other classes mentioned above).
*
* Iterator methods include:
*
* - In \Range itself: #each, #step, and #%
* - Included from module Enumerable: #each_entry, #each_with_index,
* #each_with_object, #each_slice, #each_cons, and #reverse_each.
*
* Example:
*
* a = []
* (1..4).each {|i| a.push(i) }
* a # => [1, 2, 3, 4]
*
* == Ranges and User-Defined Classes
*
* A user-defined class that is to be used in a range
* must implement instance <tt><=></tt>;
* see Integer#<=>.
* To make iteration available, it must also implement
* instance method +succ+; see Integer#succ.
*
* The class below implements both <tt><=></tt> and +succ+,
* and so can be used both to construct ranges and to iterate over them.
* Note that the Comparable module is included
* so the <tt>==</tt> method is defined in terms of <tt><=></tt>.
*
* # Represent a string of 'X' characters.
* class Xs
* include Comparable
* attr_accessor :length
* def initialize(n)
* @length = n
* end
* def succ
* Xs.new(@length + 1)
* end
* def <=>(other)
* @length <=> other.length
* end
* def to_s
* sprintf "%2d #{inspect}", @length
* end
* def inspect
* 'X' * @length
* end
* end
*
* r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX
* r.to_a #=> [XXX, XXXX, XXXXX, XXXXXX]
* r.include?(Xs.new(5)) #=> true
* r.include?(Xs.new(7)) #=> false
*
* == What's Here
*
* First, what's elsewhere. \Class \Range:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
* which provides dozens of additional methods.
*
* Here, class \Range provides methods that are useful for:
*
* - {Creating a Range}[rdoc-ref:Range@Methods+for+Creating+a+Range]
* - {Querying}[rdoc-ref:Range@Methods+for+Querying]
* - {Comparing}[rdoc-ref:Range@Methods+for+Comparing]
* - {Iterating}[rdoc-ref:Range@Methods+for+Iterating]
* - {Converting}[rdoc-ref:Range@Methods+for+Converting]
* - {Methods for Working with JSON}[rdoc-ref:Range@Methods+for+Working+with+JSON]
*
* === Methods for Creating a \Range
*
* - ::new: Returns a new range.
*
* === Methods for Querying
*
* - #begin: Returns the begin value given for +self+.
* - #bsearch: Returns an element from +self+ selected by a binary search.
* - #count: Returns a count of elements in +self+.
* - #end: Returns the end value given for +self+.
* - #exclude_end?: Returns whether the end object is excluded.
* - #first: Returns the first elements of +self+.
* - #hash: Returns the integer hash code.
* - #last: Returns the last elements of +self+.
* - #max: Returns the maximum values in +self+.
* - #min: Returns the minimum values in +self+.
* - #minmax: Returns the minimum and maximum values in +self+.
* - #size: Returns the count of elements in +self+.
*
* === Methods for Comparing
*
* - #==: Returns whether a given object is equal to +self+ (uses #==).
* - #===: Returns whether the given object is between the begin and end values.
* - #cover?: Returns whether a given object is within +self+.
* - #eql?: Returns whether a given object is equal to +self+ (uses #eql?).
* - #include? (aliased as #member?): Returns whether a given object
* is an element of +self+.
*
* === Methods for Iterating
*
* - #%: Requires argument +n+; calls the block with each +n+-th element of +self+.
* - #each: Calls the block with each element of +self+.
* - #step: Takes optional argument +n+ (defaults to 1);
* calls the block with each +n+-th element of +self+.
*
* === Methods for Converting
*
* - #inspect: Returns a string representation of +self+ (uses #inspect).
* - #to_a (aliased as #entries): Returns elements of +self+ in an array.
* - #to_s: Returns a string representation of +self+ (uses #to_s).
*
* === Methods for Working with \JSON
*
* - ::json_create: Returns a new \Range object constructed from the given object.
* - #as_json: Returns a 2-element hash representing +self+.
* - #to_json: Returns a \JSON string representing +self+.
*
* To make these methods available:
*
* require 'json/add/range'
*
*/
void
Init_Range(void)
{
id_beg = rb_intern_const("begin");
id_end = rb_intern_const("end");
id_excl = rb_intern_const("excl");
rb_cRange = rb_struct_define_without_accessor(
"Range", rb_cObject, range_alloc,
"begin", "end", "excl", NULL);
rb_include_module(rb_cRange, rb_mEnumerable);
rb_marshal_define_compat(rb_cRange, rb_cObject, range_dumper, range_loader);
rb_define_method(rb_cRange, "initialize", range_initialize, -1);
rb_define_method(rb_cRange, "initialize_copy", range_initialize_copy, 1);
rb_define_method(rb_cRange, "==", range_eq, 1);
rb_define_method(rb_cRange, "===", range_eqq, 1);
rb_define_method(rb_cRange, "eql?", range_eql, 1);
rb_define_method(rb_cRange, "hash", range_hash, 0);
rb_define_method(rb_cRange, "each", range_each, 0);
rb_define_method(rb_cRange, "step", range_step, -1);
rb_define_method(rb_cRange, "%", range_percent_step, 1);
rb_define_method(rb_cRange, "reverse_each", range_reverse_each, 0);
rb_define_method(rb_cRange, "bsearch", range_bsearch, 0);
rb_define_method(rb_cRange, "begin", range_begin, 0);
rb_define_method(rb_cRange, "end", range_end, 0);
rb_define_method(rb_cRange, "first", range_first, -1);
rb_define_method(rb_cRange, "last", range_last, -1);
rb_define_method(rb_cRange, "min", range_min, -1);
rb_define_method(rb_cRange, "max", range_max, -1);
rb_define_method(rb_cRange, "minmax", range_minmax, 0);
rb_define_method(rb_cRange, "size", range_size, 0);
rb_define_method(rb_cRange, "to_a", range_to_a, 0);
rb_define_method(rb_cRange, "entries", range_to_a, 0);
rb_define_method(rb_cRange, "to_s", range_to_s, 0);
rb_define_method(rb_cRange, "inspect", range_inspect, 0);
rb_define_method(rb_cRange, "exclude_end?", range_exclude_end_p, 0);
rb_define_method(rb_cRange, "member?", range_include, 1);
rb_define_method(rb_cRange, "include?", range_include, 1);
rb_define_method(rb_cRange, "cover?", range_cover, 1);
rb_define_method(rb_cRange, "count", range_count, -1);
rb_define_method(rb_cRange, "overlap?", range_overlap, 1);
}