ruby/eval.c

13256 строки
306 KiB
C

/**********************************************************************
eval.c -
$Author$
$Date$
created at: Thu Jun 10 14:22:17 JST 1993
Copyright (C) 1993-2003 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby.h"
#include "node.h"
#include "env.h"
#include "util.h"
#include "rubysig.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
#include <stdio.h>
#if defined(HAVE_GETCONTEXT) && defined(HAVE_SETCONTEXT)
#include <ucontext.h>
#define USE_CONTEXT
#endif
#include <setjmp.h>
#include "st.h"
#include "dln.h"
#ifdef __APPLE__
#include <crt_externs.h>
#endif
/* Make alloca work the best possible way. */
#ifdef __GNUC__
# ifndef atarist
# ifndef alloca
# define alloca __builtin_alloca
# endif
# endif /* atarist */
#else
# ifdef HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
#pragma alloca
# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
void *alloca ();
# endif
# endif /* AIX */
# endif /* HAVE_ALLOCA_H */
#endif /* __GNUC__ */
#include <stdarg.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef __BEOS__
#include <net/socket.h>
#endif
#ifdef __MACOS__
#include "macruby_private.h"
#endif
#ifdef __VMS
#include "vmsruby_private.h"
#endif
#ifdef USE_CONTEXT
typedef struct {
ucontext_t context;
volatile int status;
} rb_jmpbuf_t[1];
NORETURN(static void rb_jump_context(rb_jmpbuf_t, int));
static inline void
rb_jump_context(env, val)
rb_jmpbuf_t env;
int val;
{
env->status = val;
setcontext(&env->context);
abort(); /* ensure noreturn */
}
/*
* PRE_GETCONTEXT and POST_GETCONTEXT is a magic for getcontext, gcc,
* IA64 register stack and SPARC register window combination problem.
*
* Assume following code sequence.
*
* 1. set a register in the register stack/window such as r32/l0.
* 2. call getcontext.
* 3. use the register.
* 4. update the register for other use.
* 5. call setcontext indirectly (or directly).
*
* This code should be run as 1->2->3->4->5->3->4.
* But after second getcontext return (second 3),
* the register is broken (updated).
* It's because getcontext/setcontext doesn't preserve the content of the
* register stack/window.
*
* setjmp also doesn't preserve the content of the register stack/window.
* But it has not the problem because gcc knows setjmp may return twice.
* gcc detects setjmp and generates setjmp safe code.
*
* So setjmp calls before and after getcontext call makes the code
* somewhat safe.
* It fix the problem on IA64.
* It is not required that setjmp is called at run time, since the problem is
* register usage.
*
* Since the magic setjmp is not enough for SPARC,
* inline asm is used to prohibit registers in register windows.
*
* Since the problem is fixed at gcc 4.0.3, the magic is applied only for
* prior versions of gcc.
* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21957
* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=22127
*/
# define GCC_VERSION_BEFORE(major, minor, patchlevel) \
(defined(__GNUC__) && !defined(__INTEL_COMPILER) && \
((__GNUC__ < (major)) || \
(__GNUC__ == (major) && __GNUC_MINOR__ < (minor)) || \
(__GNUC__ == (major) && __GNUC_MINOR__ == (minor) && __GNUC_PATCHLEVEL__ < (patchlevel))))
# if GCC_VERSION_BEFORE(4,0,3) && (defined(sparc) || defined(__sparc__))
# ifdef __pic__
/*
* %l7 is excluded for PIC because it is PIC register.
* http://lists.freebsd.org/pipermail/freebsd-sparc64/2006-January/003739.html
*/
# define PRE_GETCONTEXT \
({ __asm__ volatile ("" : : : \
"%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%o7", \
"%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", \
"%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%i7"); }),
# else
# define PRE_GETCONTEXT \
({ __asm__ volatile ("" : : : \
"%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%o7", \
"%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
"%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%i7"); }),
# endif
# define POST_GETCONTEXT PRE_GETCONTEXT
# elif GCC_VERSION_BEFORE(4,0,3) && defined(__ia64)
static jmp_buf function_call_may_return_twice_jmp_buf;
int function_call_may_return_twice_false_1 = 0;
int function_call_may_return_twice_false_2 = 0;
# define PRE_GETCONTEXT \
(function_call_may_return_twice_false_1 ? \
setjmp(function_call_may_return_twice_jmp_buf) : \
0),
# define POST_GETCONTEXT \
(function_call_may_return_twice_false_2 ? \
setjmp(function_call_may_return_twice_jmp_buf) : \
0),
# elif defined(__FreeBSD__) && __FreeBSD__ < 7
/*
* workaround for FreeBSD/i386 getcontext/setcontext bug.
* clear the carry flag by (0 ? ... : ...).
* FreeBSD PR 92110 http://www.freebsd.org/cgi/query-pr.cgi?pr=92110
* [ruby-dev:28263]
*/
static int volatile freebsd_clear_carry_flag = 0;
# define PRE_GETCONTEXT \
(freebsd_clear_carry_flag ? (freebsd_clear_carry_flag = 0) : 0),
# endif
# ifndef PRE_GETCONTEXT
# define PRE_GETCONTEXT
# endif
# ifndef POST_GETCONTEXT
# define POST_GETCONTEXT
# endif
# define ruby_longjmp(env, val) rb_jump_context(env, val)
# define ruby_setjmp(just_before_setjmp, j) ((j)->status = 0, \
(just_before_setjmp), \
PRE_GETCONTEXT \
getcontext(&(j)->context), \
POST_GETCONTEXT \
(j)->status)
#else
typedef jmp_buf rb_jmpbuf_t;
# if !defined(setjmp) && defined(HAVE__SETJMP)
# define ruby_setjmp(just_before_setjmp, env) \
((just_before_setjmp), _setjmp(env))
# define ruby_longjmp(env,val) _longjmp(env,val)
# else
# define ruby_setjmp(just_before_setjmp, env) \
((just_before_setjmp), setjmp(env))
# define ruby_longjmp(env,val) longjmp(env,val)
# endif
#endif
#include <sys/types.h>
#include <signal.h>
#include <errno.h>
#if defined(__VMS)
#pragma nostandard
#endif
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
/*
Solaris sys/select.h switches select to select_large_fdset to support larger
file descriptors if FD_SETSIZE is larger than 1024 on 32bit environment.
But Ruby doesn't change FD_SETSIZE because fd_set is allocated dynamically.
So following definition is required to use select_large_fdset.
*/
#ifdef HAVE_SELECT_LARGE_FDSET
#define select(n, r, w, e, t) select_large_fdset(n, r, w, e, t)
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#include <sys/stat.h>
VALUE rb_cProc;
static VALUE rb_cBinding;
static VALUE proc_invoke(VALUE,VALUE,VALUE,VALUE,int);
static VALUE proc_lambda(void);
static VALUE rb_f_binding(VALUE);
static void rb_f_END(void);
static struct BLOCK *passing_block(VALUE,struct BLOCK*);
static VALUE rb_cMethod;
static VALUE rb_cUnboundMethod;
static VALUE umethod_bind(VALUE, VALUE);
static VALUE rb_mod_define_method(int, VALUE*, VALUE);
NORETURN(static void rb_raise_jump(VALUE));
static VALUE rb_make_exception(int argc, VALUE *argv);
static int vis_mode;
#define VIS_PUBLIC 0
#define VIS_PRIVATE 1
#define VIS_PROTECTED 2
#define VIS_MODFUNC 5
#define VIS_LOCAL 8
#define VIS_MASK 16
#define VIS_SET(f) (vis_mode=(f))
#define VIS_TEST(f) (vis_mode&(f))
#define VIS_MODE() (vis_mode)
NODE* ruby_current_node;
int ruby_safe_level = 0;
/* safe-level:
0 - strings from streams/environment/ARGV are tainted (default)
1 - no dangerous operation by tainted value
2 - process/file operations prohibited
3 - all generated objects are tainted
4 - no global (non-tainted) variable modification/no direct output
*/
static VALUE safe_getter(void);
static void safe_setter(VALUE val);
void
rb_secure(int level)
{
if (level <= ruby_safe_level) {
if (ruby_frame->callee) {
rb_raise(rb_eSecurityError, "Insecure operation `%s' at level %d",
rb_id2name(ruby_frame->callee), ruby_safe_level);
}
else {
rb_raise(rb_eSecurityError, "Insecure operation at level %d", ruby_safe_level);
}
}
}
void
rb_secure_update(VALUE obj)
{
if (!OBJ_TAINTED(obj)) rb_secure(4);
}
void
rb_check_safe_obj(VALUE x)
{
if (ruby_safe_level > 0 && OBJ_TAINTED(x)){
if (ruby_frame->callee) {
rb_raise(rb_eSecurityError, "Insecure operation - %s",
rb_id2name(ruby_frame->callee));
}
else {
rb_raise(rb_eSecurityError, "Insecure operation: -r");
}
}
rb_secure(4);
}
void
rb_check_safe_str(VALUE x)
{
rb_check_safe_obj(x);
if (TYPE(x)!= T_STRING) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected String)",
rb_obj_classname(x));
}
}
NORETURN(static void raise_undef(VALUE, ID));
static void
raise_undef(VALUE klass, ID id)
{
rb_name_error(id, "undefined method `%s' for %s `%s'",
rb_id2name(id),
(TYPE(klass) == T_MODULE) ? "module" : "class",
rb_class2name(klass));
}
static ID removed, singleton_removed, undefined, singleton_undefined;
#define CACHE_SIZE 0x800
#define CACHE_MASK 0x7ff
#define EXPR1(c,m) ((((c)>>3)^(m))&CACHE_MASK)
struct cache_entry { /* method hash table. */
ID mid; /* method's id */
ID mid0; /* method's original id */
VALUE klass; /* receiver's class */
VALUE origin; /* where method defined */
NODE *method;
int noex;
};
static struct cache_entry cache[2][CACHE_SIZE];
static int ruby_running = 0;
void
rb_clear_cache()
{
int i;
if (!ruby_running) return;
for (i=0; i<CACHE_SIZE; i++) {
cache[0][i].mid = cache[1][i].mid = 0;
}
}
static void
rb_clear_cache_for_remove(VALUE klass, ID id)
{
int i, j;
if (!ruby_running) return;
for (i=0; i<CACHE_SIZE; i++) {
for (j=0; j<2; j++) {
struct cache_entry *ent = cache[j]+i;
if (ent->origin == klass && ent->mid == id) {
ent->mid = 0;
}
}
}
}
static void
rb_clear_cache_by_id(ID id)
{
int i, j;
if (!ruby_running) return;
for (i=0; i<CACHE_SIZE; i++) {
for (j=0; j<2; j++) {
struct cache_entry *ent = cache[j]+i;
if (ent->mid == id) {
ent->mid = 0;
}
}
}
}
void
rb_clear_cache_by_class(VALUE klass)
{
int i, j;
if (!ruby_running) return;
for (i=0; i<CACHE_SIZE; i++) {
for (j=0; j<2; j++) {
struct cache_entry *ent = cache[j]+i;
if (ent->klass == klass || ent->origin == klass) {
ent->mid = 0;
}
}
}
}
static ID init, eqq, each, aref, aset, match, missing;
static ID added, singleton_added;
static ID __id__, __send__, respond_to;
#define NOEX_SAFE(n) ((n) >> 5)
#define NOEX_WITH(n, v) ((n) | (v) << 5)
#define NOEX_WITH_SAFE(n) NOEX_WITH(n, ruby_safe_level)
void
rb_add_method(VALUE klass, ID mid, NODE *node, int noex)
{
NODE *body;
if (NIL_P(klass)) klass = rb_cObject;
if (ruby_safe_level >= 4 && (klass == rb_cObject || !OBJ_TAINTED(klass))) {
rb_raise(rb_eSecurityError, "Insecure: can't define method");
}
if (!FL_TEST(klass, FL_SINGLETON) &&
node && nd_type(node) != NODE_ZSUPER &&
(mid == rb_intern("initialize" )|| mid == rb_intern("initialize_copy"))) {
noex = NOEX_PRIVATE | noex;
}
else if (FL_TEST(klass, FL_SINGLETON) && node && nd_type(node) == NODE_CFUNC &&
mid == rb_intern("allocate")) {
rb_warn("defining %s.allocate is deprecated; use rb_define_alloc_func()",
rb_class2name(rb_iv_get(klass, "__attached__")));
mid = ID_ALLOCATOR;
}
if (OBJ_FROZEN(klass)) rb_error_frozen("class/module");
rb_clear_cache_by_id(mid);
body = NEW_METHOD(node, NOEX_WITH_SAFE(noex));
st_insert(RCLASS(klass)->m_tbl, mid, (st_data_t)body);
if (node && mid != ID_ALLOCATOR && ruby_running) {
if (FL_TEST(klass, FL_SINGLETON)) {
rb_funcall(rb_iv_get(klass, "__attached__"), singleton_added, 1, ID2SYM(mid));
}
else {
rb_funcall(klass, added, 1, ID2SYM(mid));
}
}
}
void
rb_define_alloc_func(VALUE klass, VALUE (*func) (VALUE))
{
Check_Type(klass, T_CLASS);
rb_add_method(CLASS_OF(klass), ID_ALLOCATOR, NEW_CFUNC(func, 0), NOEX_PRIVATE);
}
void
rb_undef_alloc_func(VALUE klass)
{
Check_Type(klass, T_CLASS);
rb_add_method(CLASS_OF(klass), ID_ALLOCATOR, 0, NOEX_UNDEF);
}
#define LOOKUP_NORMAL 0
#define LOOKUP_FCALL 1
#define LOOKUP_NOSKIP 2
static NODE*
search_method(VALUE klass, ID id, VALUE *origin, int flag)
{
NODE *body;
if (flag == LOOKUP_FCALL && ruby_frame->this_class) {
if (st_lookup(RCLASS(ruby_frame->this_class)->m_tbl, id, (st_data_t *)&body) &&
body->nd_noex == NOEX_LOCAL) {
if (origin) *origin = ruby_frame->this_class;
return body;
}
}
for (;klass; klass = RCLASS(klass)->super) {
if (st_lookup(RCLASS(klass)->m_tbl, id, (st_data_t *)&body) &&
(flag == LOOKUP_NOSKIP || body->nd_noex != NOEX_LOCAL)) {
if (origin) *origin = klass;
return body;
}
}
return 0;
}
static NODE*
rb_get_method_body(VALUE *klassp, ID *idp, int *noexp)
{
ID id = *idp;
VALUE klass = *klassp;
VALUE origin;
NODE * volatile body;
struct cache_entry *ent;
int noex = *noexp;
if ((body = search_method(klass, id, &origin, noex)) == 0 || !body->nd_body) {
/* store empty info in cache */
ent = cache[noex] + EXPR1(klass, id);
ent->klass = klass;
ent->origin = klass;
ent->mid = ent->mid0 = id;
ent->noex = 0;
ent->method = 0;
return 0;
}
if (ruby_running) {
/* store in cache */
ent = cache[noex] + EXPR1(klass, id);
ent->klass = klass;
ent->noex = body->nd_noex;
if (noexp) *noexp = body->nd_noex;
body = body->nd_body;
if (nd_type(body) == NODE_FBODY) {
ent->mid = id;
*klassp = body->nd_orig;
ent->origin = body->nd_orig;
*idp = ent->mid0 = body->nd_mid;
body = ent->method = body->nd_head;
}
else {
*klassp = origin;
ent->origin = origin;
ent->mid = ent->mid0 = id;
ent->method = body;
}
}
else {
if (noexp) *noexp = body->nd_noex;
body = body->nd_body;
if (nd_type(body) == NODE_FBODY) {
*klassp = body->nd_orig;
*idp = body->nd_mid;
body = body->nd_head;
}
else {
*klassp = origin;
}
}
return body;
}
NODE*
rb_method_node(VALUE klass, ID id)
{
int noex = 0;
struct cache_entry *ent;
ent = cache[0] + EXPR1(klass, id);
if (ent->mid == id && ent->klass == klass && ent->method){
return ent->method;
}
return rb_get_method_body(&klass, &id, &noex);
}
static void
remove_method(VALUE klass, ID mid)
{
NODE *body;
if (klass == rb_cObject) {
rb_secure(4);
}
if (ruby_safe_level >= 4 && !OBJ_TAINTED(klass)) {
rb_raise(rb_eSecurityError, "Insecure: can't remove method");
}
if (OBJ_FROZEN(klass)) rb_error_frozen("class/module");
if (mid == __id__ || mid == __send__ || mid == init) {
rb_warn("removing `%s' may cause serious problem", rb_id2name(mid));
}
if (!st_delete(RCLASS(klass)->m_tbl, &mid, (st_data_t *)&body) ||
!body->nd_body) {
rb_name_error(mid, "method `%s' not defined in %s",
rb_id2name(mid), rb_class2name(klass));
}
rb_clear_cache_for_remove(klass, mid);
if (FL_TEST(klass, FL_SINGLETON)) {
rb_funcall(rb_iv_get(klass, "__attached__"), singleton_removed, 1, ID2SYM(mid));
}
else {
rb_funcall(klass, removed, 1, ID2SYM(mid));
}
}
void
rb_remove_method(VALUE klass, const char *name)
{
remove_method(klass, rb_intern(name));
}
/*
* call-seq:
* remove_method(symbol) => self
*
* Removes the method identified by _symbol_ from the current
* class. For an example, see <code>Module.undef_method</code>.
*/
static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i=0; i<argc; i++) {
remove_method(mod, rb_to_id(argv[i]));
}
return mod;
}
#undef rb_disable_super
#undef rb_enable_super
void
rb_disable_super(VALUE klass, const char *name)
{
/* obsolete - no use */
}
void
rb_enable_super(VALUE klass, const char *name)
{
rb_warning("rb_enable_super() is obsolete");
}
static void
rb_export_method(VALUE klass, ID name, ID noex)
{
NODE *body;
VALUE origin;
if (klass == rb_cObject) {
rb_secure(4);
}
body = search_method(klass, name, &origin, LOOKUP_NOSKIP);
if (!body && TYPE(klass) == T_MODULE) {
body = search_method(rb_cObject, name, &origin, LOOKUP_NOSKIP);
}
if (!body || !body->nd_body) {
raise_undef(klass, name);
}
if (body->nd_noex != noex) {
if (klass == origin) {
body->nd_noex = noex;
}
else {
rb_add_method(klass, name, NEW_ZSUPER(), noex);
}
}
}
static int
method_exists(VALUE klass, ID id, int noex)
{
struct cache_entry *ent;
int nx = noex;
switch (noex) {
case LOOKUP_NORMAL:
case LOOKUP_FCALL:
/* is it in the method cache? */
ent = cache[noex] + EXPR1(klass, id);
if (ent->mid == id && ent->klass == klass) {
if (nx == LOOKUP_NORMAL) {
if (ent->noex == NOEX_PRIVATE) return Qfalse;
}
else if (ent->noex != NOEX_LOCAL) {
if (!ent->method) return Qfalse;
return Qtrue;
}
}
/* fall through */
default:
if (rb_get_method_body(&klass, &id, &noex)) {
if (nx == LOOKUP_NORMAL && noex == NOEX_PRIVATE)
return Qfalse;
return Qtrue;
}
return Qfalse;
}
}
int
rb_method_boundp(VALUE klass, ID id, int pub)
{
return method_exists(klass, id, pub ? LOOKUP_NORMAL : LOOKUP_FCALL);
}
void
rb_attr(VALUE klass, ID id, int read, int write, int noex)
{
const char *name;
char *buf;
ID attriv;
size_t len;
if (!noex) noex = NOEX_PUBLIC;
else {
if (VIS_TEST(VIS_PRIVATE)) {
noex = NOEX_PRIVATE;
rb_warning((VIS_MODE() == VIS_MODFUNC) ?
"attribute accessor as module_function" :
"private attribute?");
}
else if (VIS_TEST(VIS_PROTECTED)) {
noex = NOEX_PROTECTED;
}
else {
noex = NOEX_PUBLIC;
}
}
if (!rb_is_local_id(id) && !rb_is_const_id(id)) {
rb_name_error(id, "invalid attribute name `%s'", rb_id2name(id));
}
name = rb_id2name(id);
if (!name) {
rb_raise(rb_eArgError, "argument needs to be symbol or string");
}
len = strlen(name)+2;
buf = ALLOCA_N(char,len);
snprintf(buf, len, "@%s", name);
attriv = rb_intern(buf);
if (read) {
rb_add_method(klass, id, NEW_IVAR(attriv), noex);
}
if (write) {
rb_add_method(klass, rb_id_attrset(id), NEW_ATTRSET(attriv), noex);
}
}
VALUE ruby_errinfo = Qnil;
extern int ruby_nerrs;
static VALUE rb_eLocalJumpError;
static VALUE rb_eSysStackError;
extern VALUE ruby_top_self;
struct FRAME *ruby_frame;
struct SCOPE *ruby_scope;
static struct FRAME *top_frame;
static struct SCOPE *top_scope;
static unsigned long frame_unique = 0;
#define PUSH_FRAME(link) do { \
struct FRAME _frame; \
_frame.prev = ruby_frame; \
_frame.tmp = 0; \
_frame.node = ruby_current_node; \
_frame.argc = 0; \
_frame.block = (link)?ruby_frame->block:0;\
_frame.flags = 0; \
_frame.uniq = frame_unique++; \
_frame.callee = 0; \
_frame.this_func = 0; \
_frame.this_class = 0; \
ruby_frame = &_frame
#define POP_FRAME() \
ruby_current_node = _frame.node; \
ruby_frame = _frame.prev; \
} while (0)
static unsigned long block_unique = 1;
#define PUSH_BLOCK(v,iv,b) do { \
struct BLOCK _block; \
_block.var = (iv); \
_block.body = (b); \
_block.self = self; \
_block.frame = *ruby_frame; \
_block.cref = ruby_cref; \
_block.frame.node = ruby_current_node;\
_block.scope = ruby_scope; \
_block.vmode = vis_mode; \
_block.flags = BLOCK_D_SCOPE; \
_block.dyna_vars = ruby_dyna_vars; \
_block.wrapper = ruby_wrapper; \
_block.block_obj = 0; \
_block.uniq = (b)?block_unique++:0; \
if (b) { \
prot_tag->blkid = _block.uniq; \
} \
(v) = &_block
#define POP_BLOCK() } while (0)
struct RVarmap *ruby_dyna_vars;
#define PUSH_VARS() do { \
struct RVarmap * volatile _old; \
_old = ruby_dyna_vars; \
ruby_dyna_vars = 0
#define POP_VARS() \
if (_old && (ruby_scope->flags & SCOPE_DONT_RECYCLE)) {\
if (RBASIC(_old)->flags) /* unless it's already recycled */ \
FL_SET(_old, DVAR_DONT_RECYCLE); \
}\
ruby_dyna_vars = _old; \
} while (0)
#define DVAR_DONT_RECYCLE FL_USER2
#define DMETHOD_P() (ruby_frame->flags & FRAME_DMETH)
static struct RVarmap*
new_dvar(ID id, VALUE value, struct RVarmap *prev)
{
NEWOBJ(vars, struct RVarmap);
OBJSETUP(vars, 0, T_VARMAP);
vars->id = id;
vars->val = value;
vars->next = prev;
return vars;
}
VALUE
rb_dvar_defined(ID id)
{
struct RVarmap *vars = ruby_dyna_vars;
while (vars) {
if (vars->id == id) return Qtrue;
vars = vars->next;
}
return Qfalse;
}
VALUE
rb_dvar_curr(ID id)
{
struct RVarmap *vars = ruby_dyna_vars;
while (vars) {
if (vars->id == 0) break;
if (vars->id == id) return Qtrue;
vars = vars->next;
}
return Qfalse;
}
VALUE
rb_dvar_ref(ID id)
{
struct RVarmap *vars = ruby_dyna_vars;
while (vars) {
if (vars->id == id) {
return vars->val;
}
vars = vars->next;
}
return Qnil;
}
void
rb_dvar_push(ID id, VALUE value)
{
ruby_dyna_vars = new_dvar(id, value, ruby_dyna_vars);
}
static void
dvar_asgn_internal(ID id, VALUE value, int curr)
{
int n = 0;
struct RVarmap *vars = ruby_dyna_vars;
while (vars) {
if (curr && vars->id == 0) {
/* first null is a dvar header */
n++;
if (n == 2) break;
}
if (vars->id == id) {
vars->val = value;
return;
}
vars = vars->next;
}
if (!ruby_dyna_vars) {
ruby_dyna_vars = new_dvar(id, value, 0);
}
else {
vars = new_dvar(id, value, ruby_dyna_vars->next);
ruby_dyna_vars->next = vars;
}
}
static inline void
dvar_asgn(ID id, VALUE value)
{
dvar_asgn_internal(id, value, 0);
}
static inline void
dvar_asgn_curr(ID id, VALUE value)
{
dvar_asgn_internal(id, value, 1);
}
VALUE *
rb_svar(int cnt)
{
struct RVarmap *vars = ruby_dyna_vars;
ID id;
if (!ruby_scope->local_tbl) return NULL;
if (cnt >= ruby_scope->local_tbl[0]) return NULL;
id = ruby_scope->local_tbl[cnt+1];
while (vars) {
if (vars->id == id) return &vars->val;
vars = vars->next;
}
if (ruby_scope->local_vars == 0) return NULL;
return &ruby_scope->local_vars[cnt];
}
struct tag {
rb_jmpbuf_t buf;
struct FRAME *frame;
VALUE tag;
VALUE retval;
struct SCOPE *scope;
VALUE dst;
struct tag *prev;
int blkid;
};
static struct tag *prot_tag;
#define PUSH_TAG(ptag) do { \
struct tag _tag; \
_tag.retval = Qnil; \
_tag.frame = ruby_frame; \
_tag.prev = prot_tag; \
_tag.scope = ruby_scope; \
_tag.tag = ptag; \
_tag.dst = 0; \
_tag.blkid = 0; \
prot_tag = &_tag
#define PROT_NONE Qfalse /* 0 */
#define PROT_THREAD Qtrue /* 2 */
#define PROT_FUNC INT2FIX(0) /* 1 */
#define PROT_LOOP INT2FIX(1) /* 3 */
#define PROT_LAMBDA INT2FIX(2) /* 5 */
#define PROT_YIELD INT2FIX(3) /* 7 */
#define PROT_TOP INT2FIX(4) /* 9 */
#define EXEC_TAG() (FLUSH_REGISTER_WINDOWS, ruby_setjmp(((void)0), prot_tag->buf))
#define JUMP_TAG(st) do { \
ruby_frame = prot_tag->frame; \
ruby_longjmp(prot_tag->buf,(st)); \
} while (0)
#define POP_TAG() \
prot_tag = _tag.prev; \
} while (0)
#define TAG_DST() (_tag.dst == (VALUE)ruby_frame->uniq)
#define TAG_RETURN 0x1
#define TAG_BREAK 0x2
#define TAG_NEXT 0x3
#define TAG_RETRY 0x4
#define TAG_REDO 0x5
#define TAG_RAISE 0x6
#define TAG_THROW 0x7
#define TAG_FATAL 0x8
#define TAG_CONTCALL 0x9
#define TAG_THREAD 0xa
#define TAG_MASK 0xf
VALUE ruby_wrapper; /* security wrapper */
static NODE *ruby_cref = 0;
static NODE *top_cref;
#define PUSH_CREF(c) ruby_cref = NEW_NODE(NODE_CREF,(c),0,ruby_cref)
#define POP_CREF() ruby_cref = ruby_cref->nd_next
#define PUSH_SCOPE() do { \
volatile int _vmode = vis_mode; \
struct SCOPE * volatile _old; \
NEWOBJ(_scope, struct SCOPE); \
OBJSETUP(_scope, 0, T_SCOPE); \
_scope->local_tbl = 0; \
_scope->local_vars = 0; \
_scope->flags = 0; \
_old = ruby_scope; \
ruby_scope = _scope; \
vis_mode = VIS_PUBLIC
typedef struct thread * rb_thread_t;
static rb_thread_t curr_thread = 0;
static rb_thread_t main_thread;
static void scope_dup(struct SCOPE *);
#define POP_SCOPE() \
if (ruby_scope->flags & SCOPE_DONT_RECYCLE) {\
if (_old) scope_dup(_old); \
} \
if (!(ruby_scope->flags & SCOPE_MALLOC)) {\
ruby_scope->local_vars = 0; \
ruby_scope->local_tbl = 0; \
if (!(ruby_scope->flags & SCOPE_DONT_RECYCLE) && \
ruby_scope != top_scope) { \
rb_gc_force_recycle((VALUE)ruby_scope);\
} \
} \
ruby_scope->flags |= SCOPE_NOSTACK; \
ruby_scope = _old; \
vis_mode = _vmode; \
} while (0)
struct ruby_env {
struct ruby_env *prev;
struct FRAME *frame;
struct SCOPE *scope;
struct BLOCK *block;
struct tag *tag;
NODE *cref;
};
static void push_thread_anchor(struct ruby_env *);
static void pop_thread_anchor(struct ruby_env *);
#define PUSH_THREAD_TAG() PUSH_TAG(PROT_THREAD); \
do { \
struct ruby_env _interp; \
push_thread_anchor(&_interp);
#define POP_THREAD_TAG() \
pop_thread_anchor(&_interp); \
} while (0); \
POP_TAG()
static VALUE rb_eval(VALUE,NODE*);
static VALUE eval(VALUE,VALUE,VALUE,const char*,int);
static NODE *compile(VALUE, const char*, int);
static VALUE rb_yield_0(VALUE, VALUE, VALUE, int);
#define YIELD_LAMBDA_CALL 1
#define YIELD_PROC_CALL 2
#define YIELD_PUBLIC_DEF 4
#define YIELD_FUNC_AVALUE 1
#define YIELD_FUNC_SVALUE 2
typedef enum calling_scope {
CALLING_NORMAL,
CALLING_FUNCALL,
CALLING_FCALL,
CALLING_VCALL,
CALLING_SUPER,
} calling_scope_t;
static VALUE rb_call(VALUE,VALUE,ID,int,const VALUE*,struct BLOCK*,calling_scope_t,int);
static VALUE module_setup(VALUE,NODE*);
static VALUE massign(VALUE,NODE*,VALUE,int);
static void assign(VALUE,NODE*,VALUE,int);
static int formal_assign(VALUE, NODE*, int, const VALUE*, VALUE*);
typedef struct event_hook {
rb_event_hook_func_t func;
rb_event_t events;
struct event_hook *next;
} rb_event_hook_t;
static rb_event_hook_t *event_hooks;
#define EXEC_EVENT_HOOK(event, node, self, id, klass) \
do { \
rb_event_hook_t *hook = event_hooks; \
rb_event_hook_func_t hook_func; \
rb_event_t events; \
\
while (hook) { \
hook_func = hook->func; \
events = hook->events; \
hook = hook->next; \
if (events & event) \
(*hook_func)(event, node, self, id, klass); \
} \
} while (0)
static VALUE trace_func = 0;
static int tracing = 0;
static void call_trace_func(rb_event_t,NODE*,VALUE,ID,VALUE);
#if 0
#define SET_CURRENT_SOURCE() (ruby_sourcefile = ruby_current_node->nd_file, \
ruby_sourceline = nd_line(ruby_current_node))
#else
#define SET_CURRENT_SOURCE() ((void)0)
#endif
void
ruby_set_current_source(void)
{
if (ruby_current_node) {
ruby_sourcefile = ruby_current_node->nd_file;
ruby_sourceline = nd_line(ruby_current_node);
}
}
static void
warn_printf(const char *fmt, ...)
{
char buf[BUFSIZ];
va_list args;
va_start(args, fmt);
vsnprintf(buf, BUFSIZ, fmt, args);
va_end(args);
rb_write_error(buf);
}
static VALUE
error_line(struct FRAME *frame, NODE *node)
{
char *file;
int line;
if (node) {
file = node->nd_file;
line = nd_line(node);
}
else {
file = ruby_sourcefile;
line = ruby_sourceline;
}
ruby_set_current_source();
if (ruby_sourcefile) {
if (frame->callee) {
if (frame->flags & FRAME_FUNC) {
return rb_sprintf("%s:%d:in `%s'", file, line,
rb_id2name(frame->this_func));
}
else {
VALUE oklass = frame->this_class;
char *rec = 0;
switch (TYPE(frame->self)) {
case T_NIL:
rec = "nil"; break;
case T_TRUE:
rec = "true"; break;
case T_FALSE:
rec = "false"; break;
}
if (rec) {
return rb_sprintf("%s:%d:in `%s.%s'", file, line, rec,
rb_id2name(frame->this_func));
}
if (TYPE(oklass) == T_ICLASS) {
oklass = RBASIC(oklass)->klass;
}
else if (FL_TEST(oklass, FL_SINGLETON)) {
oklass = rb_iv_get(oklass, "__attached__");
}
return rb_sprintf("%s:%d:in `%s#%s'", file, line,
rb_class2name(oklass),
rb_id2name(frame->this_func));
}
}
else if (!node && ruby_sourceline == 0) {
return rb_str_new2(ruby_sourcefile);
}
}
return rb_sprintf("%s:%d", file, line);
}
#define warn_print(x) rb_write_error(x)
#define warn_print2(x,l) rb_write_error2(x,l)
static void
error_pos(void)
{
VALUE pos = error_line(ruby_frame, 0);
warn_printf("%s", StringValueCStr(pos));
}
static VALUE
get_backtrace(VALUE info)
{
if (NIL_P(info)) return Qnil;
info = rb_funcall(info, rb_intern("backtrace"), 0);
if (NIL_P(info)) return Qnil;
return rb_check_array_type(info);
}
static void
set_backtrace(VALUE info, VALUE bt)
{
rb_funcall(info, rb_intern("set_backtrace"), 1, bt);
}
static void
error_print(void)
{
VALUE errat = Qnil; /* OK */
volatile VALUE eclass, e;
char *einfo;
long elen;
if (NIL_P(ruby_errinfo)) return;
PUSH_TAG(PROT_NONE);
if (EXEC_TAG() == 0) {
errat = get_backtrace(ruby_errinfo);
}
else {
errat = Qnil;
}
if (EXEC_TAG()) goto error;
if (NIL_P(errat)){
ruby_set_current_source();
if (ruby_sourcefile)
warn_printf("%s:%d", ruby_sourcefile, ruby_sourceline);
else
warn_printf("%d", ruby_sourceline);
}
else if (RARRAY(errat)->len == 0) {
error_pos();
}
else {
VALUE mesg = RARRAY(errat)->ptr[0];
if (NIL_P(mesg)) error_pos();
else {
warn_print2(RSTRING(mesg)->ptr, RSTRING(mesg)->len);
}
}
eclass = CLASS_OF(ruby_errinfo);
if (EXEC_TAG() == 0) {
e = rb_funcall(ruby_errinfo, rb_intern("message"), 0, 0);
StringValue(e);
einfo = RSTRING(e)->ptr;
elen = RSTRING(e)->len;
}
else {
einfo = "";
elen = 0;
}
if (EXEC_TAG()) goto error;
if (eclass == rb_eRuntimeError && elen == 0) {
warn_print(": unhandled exception\n");
}
else {
VALUE epath;
epath = rb_class_name(eclass);
if (elen == 0) {
warn_print(": ");
warn_print2(RSTRING(epath)->ptr, RSTRING(epath)->len);
warn_print("\n");
}
else {
char *tail = 0;
long len = elen;
if (RSTRING(epath)->ptr[0] == '#') epath = 0;
if (tail = memchr(einfo, '\n', elen)) {
len = tail - einfo;
tail++; /* skip newline */
}
warn_print(": ");
warn_print2(einfo, len);
if (epath) {
warn_print(" (");
warn_print2(RSTRING(epath)->ptr, RSTRING(epath)->len);
warn_print(")\n");
}
if (tail) {
warn_print2(tail, elen-len-1);
}
}
}
if (!NIL_P(errat)) {
long i;
struct RArray *ep = RARRAY(errat);
#define TRACE_MAX (TRACE_HEAD+TRACE_TAIL+5)
#define TRACE_HEAD 8
#define TRACE_TAIL 5
ep = RARRAY(errat);
for (i=1; i<ep->len; i++) {
if (TYPE(ep->ptr[i]) == T_STRING) {
warn_printf("\tfrom %s\n", RSTRING(ep->ptr[i])->ptr);
}
if (i == TRACE_HEAD && ep->len > TRACE_MAX) {
warn_printf("\t ... %ld levels...\n",
ep->len - TRACE_HEAD - TRACE_TAIL);
i = ep->len - TRACE_TAIL;
}
}
}
error:
POP_TAG();
}
#if defined(__APPLE__)
#define environ (*_NSGetEnviron())
#elif !defined(_WIN32) && !defined(__MACOS__) || defined(_WIN32_WCE)
extern char **environ;
#endif
char **rb_origenviron;
void rb_call_inits(void);
void Init_stack(VALUE*);
void Init_heap(void);
void Init_ext(void);
#ifdef HAVE_NATIVETHREAD
static rb_nativethread_t ruby_thid;
int
is_ruby_native_thread(void)
{
return NATIVETHREAD_EQUAL(ruby_thid, NATIVETHREAD_CURRENT());
}
# ifdef HAVE_NATIVETHREAD_KILL
void
ruby_native_thread_kill(sig)
int sig;
{
NATIVETHREAD_KILL(ruby_thid, sig);
}
# endif
#endif
NORETURN(static void rb_thread_start_1(void));
void
ruby_init(void)
{
static int initialized = 0;
static struct FRAME frame;
int state;
if (initialized)
return;
initialized = 1;
#ifdef HAVE_NATIVETHREAD
ruby_thid = NATIVETHREAD_CURRENT();
#endif
ruby_frame = top_frame = &frame;
#ifdef __MACOS__
rb_origenviron = 0;
#else
rb_origenviron = environ;
#endif
Init_stack((void*)&state);
Init_heap();
PUSH_SCOPE();
top_scope = ruby_scope;
/* default visibility is private at toplevel */
VIS_SET(VIS_PRIVATE);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
rb_call_inits();
ruby_frame->self = ruby_top_self;
top_cref = rb_node_newnode(NODE_CREF,rb_cObject,0,0);
ruby_cref = top_cref;
rb_define_global_const("TOPLEVEL_BINDING", rb_f_binding(ruby_top_self));
#ifdef __MACOS__
_macruby_init();
#elif defined(__VMS)
_vmsruby_init();
#endif
ruby_prog_init();
ALLOW_INTS;
}
POP_TAG();
if (state) {
error_print();
exit(EXIT_FAILURE);
}
POP_SCOPE();
ruby_scope = top_scope;
top_scope->flags &= ~SCOPE_NOSTACK;
ruby_running = 1;
}
static VALUE
eval_node(VALUE self, NODE *node)
{
if (!node) return Qnil;
if (nd_type(node) == NODE_PRELUDE) {
rb_eval(self, node->nd_head);
node = node->nd_body;
}
if (!node) return Qnil;
return rb_eval(self, node);
}
int ruby_in_eval;
static void rb_thread_cleanup(void);
static void rb_thread_wait_other_threads(void);
static int thread_set_raised(void);
static int thread_reset_raised(void);
static VALUE exception_error;
static VALUE sysstack_error;
static int
sysexit_status(VALUE err)
{
VALUE st = rb_iv_get(err, "status");
return NUM2INT(st);
}
static int
error_handle(int ex)
{
int status = EXIT_FAILURE;
if (thread_set_raised()) return EXIT_FAILURE;
switch (ex & TAG_MASK) {
case 0:
status = EXIT_SUCCESS;
break;
case TAG_RETURN:
error_pos();
warn_print(": unexpected return\n");
break;
case TAG_NEXT:
error_pos();
warn_print(": unexpected next\n");
break;
case TAG_BREAK:
error_pos();
warn_print(": unexpected break\n");
break;
case TAG_REDO:
error_pos();
warn_print(": unexpected redo\n");
break;
case TAG_RETRY:
error_pos();
warn_print(": retry outside of rescue clause\n");
break;
case TAG_THROW:
if (prot_tag && prot_tag->frame && prot_tag->frame->node) {
NODE *tag = prot_tag->frame->node;
warn_printf("%s:%d: uncaught throw\n",
tag->nd_file, nd_line(tag));
}
else {
error_pos();
warn_printf(": unexpected throw\n");
}
break;
case TAG_RAISE:
case TAG_FATAL:
if (rb_obj_is_kind_of(ruby_errinfo, rb_eSystemExit)) {
status = sysexit_status(ruby_errinfo);
}
else {
error_print();
}
break;
default:
rb_bug("Unknown longjmp status %d", ex);
break;
}
thread_reset_raised();
return status;
}
void
ruby_options(int argc, char **argv)
{
int state;
Init_stack((void*)&state);
PUSH_THREAD_TAG();
if ((state = EXEC_TAG()) == 0) {
ruby_process_options(argc, argv);
}
else {
if (state == TAG_THREAD) {
rb_thread_start_1();
}
trace_func = 0;
tracing = 0;
exit(error_handle(state));
}
POP_THREAD_TAG();
}
void rb_exec_end_proc(void);
static void
ruby_finalize_0(void)
{
PUSH_TAG(PROT_NONE);
if (EXEC_TAG() == 0) {
rb_trap_exit();
}
POP_TAG();
rb_exec_end_proc();
}
static void
ruby_finalize_1(void)
{
signal(SIGINT, SIG_DFL);
ruby_errinfo = 0;
rb_gc_call_finalizer_at_exit();
trace_func = 0;
tracing = 0;
}
void
ruby_finalize(void)
{
ruby_finalize_0();
ruby_finalize_1();
}
int
ruby_cleanup(int ex)
{
int state;
volatile VALUE err = ruby_errinfo;
ruby_safe_level = 0;
Init_stack((void*)&state);
PUSH_THREAD_TAG();
if ((state = EXEC_TAG()) == 0) {
ruby_finalize_0();
if (ruby_errinfo) err = ruby_errinfo;
rb_thread_cleanup();
rb_thread_wait_other_threads();
}
else if (state == TAG_THREAD) {
rb_thread_start_1();
}
else if (ex == 0) {
ex = state;
}
ruby_errinfo = err;
ex = error_handle(ex);
ruby_finalize_1();
POP_THREAD_TAG();
if (err && rb_obj_is_kind_of(err, rb_eSystemExit)) {
VALUE st = rb_iv_get(err, "status");
return NUM2INT(st);
}
return ex;
}
extern NODE *ruby_eval_tree;
static int
ruby_exec_internal(void)
{
int state;
PUSH_THREAD_TAG();
/* default visibility is private at toplevel */
VIS_SET(VIS_PRIVATE);
if ((state = EXEC_TAG()) == 0) {
eval_node(ruby_top_self, ruby_eval_tree);
}
else if (state == TAG_THREAD) {
rb_thread_start_1();
}
POP_THREAD_TAG();
return state;
}
int
ruby_exec(void)
{
volatile NODE *tmp;
Init_stack((void*)&tmp);
return ruby_exec_internal();
}
void
ruby_stop(int ex)
{
exit(ruby_cleanup(ex));
}
void
ruby_run(void)
{
int state;
static int ex;
if (ruby_nerrs > 0) exit(EXIT_FAILURE);
state = ruby_exec();
if (state && !ex) ex = state;
ruby_stop(ex);
}
static void
compile_error(const char *at)
{
VALUE str;
ruby_nerrs = 0;
str = rb_str_buf_new2("compile error");
if (at) {
rb_str_buf_cat2(str, " in ");
rb_str_buf_cat2(str, at);
}
rb_str_buf_cat(str, "\n", 1);
if (!NIL_P(ruby_errinfo)) {
rb_str_append(str, rb_obj_as_string(ruby_errinfo));
}
rb_exc_raise(rb_exc_new3(rb_eSyntaxError, str));
}
VALUE
rb_eval_string(const char *str)
{
VALUE v;
NODE *oldsrc = ruby_current_node;
ruby_current_node = 0;
ruby_sourcefile = rb_source_filename("(eval)");
v = eval(ruby_top_self, rb_str_new2(str), Qnil, 0, 0);
ruby_current_node = oldsrc;
return v;
}
VALUE
rb_eval_string_protect(const char *str, int *state)
{
return rb_protect((VALUE (*)(VALUE))rb_eval_string, (VALUE)str, state);
}
VALUE
rb_eval_string_wrap(const char *str, int *state)
{
int status;
VALUE self = ruby_top_self;
VALUE wrapper = ruby_wrapper;
VALUE val;
ruby_top_self = rb_obj_clone(ruby_top_self);
rb_extend_object(ruby_top_self, ruby_wrapper);
PUSH_FRAME(Qfalse);
ruby_frame->self = self;
PUSH_CREF(ruby_wrapper = rb_module_new());
PUSH_SCOPE();
val = rb_eval_string_protect(str, &status);
ruby_top_self = self;
POP_SCOPE();
POP_FRAME();
ruby_wrapper = wrapper;
if (state) {
*state = status;
}
else if (status) {
JUMP_TAG(status);
}
return val;
}
NORETURN(static void localjump_error(const char*, VALUE, int, VALUE));
static void
localjump_error(const char *mesg, VALUE value, int reason, VALUE bt)
{
VALUE exc = rb_exc_new2(rb_eLocalJumpError, mesg);
ID id;
rb_iv_set(exc, "@exit_value", value);
switch (reason) {
case TAG_BREAK:
id = rb_intern("break"); break;
case TAG_REDO:
id = rb_intern("redo"); break;
case TAG_RETRY:
id = rb_intern("retry"); break;
case TAG_NEXT:
id = rb_intern("next"); break;
case TAG_RETURN:
id = rb_intern("return"); break;
default:
id = rb_intern("yield"); break;
}
rb_iv_set(exc, "@reason", ID2SYM(id));
if (bt) set_backtrace(exc, bt);
rb_exc_raise(exc);
}
/*
* call_seq:
* local_jump_error.exit_value => obj
*
* Returns the exit value associated with this +LocalJumpError+.
*/
static VALUE
localjump_xvalue(VALUE exc)
{
return rb_iv_get(exc, "@exit_value");
}
/*
* call-seq:
* local_jump_error.reason => symbol
*
* The reason this block was terminated:
* :break, :redo, :retry, :next, :return, or :yield.
*/
static VALUE
localjump_reason(VALUE exc)
{
return rb_iv_get(exc, "@reason");
}
NORETURN(static void jump_tag_but_local_jump(int,VALUE));
static void
jump_tag_but_local_jump(int state, VALUE val)
{
if (val == Qundef) val = prot_tag->retval;
switch (state) {
case 0:
break;
case TAG_RETURN:
localjump_error("unexpected return", val, state, 0);
break;
case TAG_BREAK:
localjump_error("unexpected break", val, state, 0);
break;
case TAG_NEXT:
localjump_error("unexpected next", val, state, 0);
break;
case TAG_REDO:
localjump_error("unexpected redo", Qnil, state, 0);
break;
case TAG_RETRY:
localjump_error("retry outside of rescue clause", Qnil, state, 0);
break;
default:
break;
}
JUMP_TAG(state);
}
VALUE
rb_eval_cmd(VALUE cmd, VALUE arg, int level)
{
int state;
VALUE val = Qnil; /* OK */
struct SCOPE *saved_scope;
volatile int safe = ruby_safe_level;
if (OBJ_TAINTED(cmd)) {
level = 4;
}
if (TYPE(cmd) != T_STRING) {
PUSH_TAG(PROT_NONE);
ruby_safe_level = level;
if ((state = EXEC_TAG()) == 0) {
val = rb_funcall2(cmd, rb_intern("yield"),
RARRAY(arg)->len, RARRAY(arg)->ptr);
}
ruby_safe_level = safe;
POP_TAG();
if (state) JUMP_TAG(state);
return val;
}
saved_scope = ruby_scope;
ruby_scope = top_scope;
PUSH_FRAME(Qfalse);
ruby_frame->self = ruby_top_self;
PUSH_CREF(ruby_wrapper ? ruby_wrapper : rb_cObject);
ruby_safe_level = level;
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
val = eval(ruby_top_self, cmd, Qnil, 0, 0);
}
if (ruby_scope->flags & SCOPE_DONT_RECYCLE)
scope_dup(saved_scope);
ruby_scope = saved_scope;
ruby_safe_level = safe;
POP_TAG();
POP_FRAME();
jump_tag_but_local_jump(state, val);
return val;
}
#define ruby_cbase (ruby_cref->nd_clss)
VALUE
ruby_current_class_object()
{
return ruby_cbase;
}
static VALUE
ev_const_defined(ID id, VALUE self)
{
VALUE cbase = ruby_cbase;
if (NIL_P(cbase)) cbase = rb_obj_class(self);
return rb_const_defined_fallback(cbase, id, ruby_cref->nd_next);
}
static VALUE
ev_const_get(ID id, VALUE self)
{
VALUE cbase = ruby_cbase;
if (NIL_P(cbase)) cbase = rb_obj_class(self);
return rb_const_get_fallback(cbase, id, ruby_cref->nd_next);
}
static VALUE
cvar_cbase(void)
{
NODE *cref = ruby_cref;
while (cref && cref->nd_next && (NIL_P(cref->nd_clss) || FL_TEST(cref->nd_clss, FL_SINGLETON))) {
cref = cref->nd_next;
if (!cref->nd_next) {
rb_warn("class variable access from toplevel singleton method");
}
}
if (NIL_P(cref->nd_clss)) {
rb_raise(rb_eTypeError, "no class variables available");
}
return cref->nd_clss;
}
/*
* call-seq:
* Module.nesting => array
*
* Returns the list of +Modules+ nested at the point of call.
*
* module M1
* module M2
* $a = Module.nesting
* end
* end
* $a #=> [M1::M2, M1]
* $a[0].name #=> "M1::M2"
*/
static VALUE
rb_mod_nesting(void)
{
NODE *cbase = ruby_cref;
VALUE ary = rb_ary_new();
while (cbase && cbase->nd_next) {
if (!NIL_P(cbase->nd_clss)) rb_ary_push(ary, cbase->nd_clss);
cbase = cbase->nd_next;
}
if (ruby_wrapper && RARRAY(ary)->len == 0) {
rb_ary_push(ary, ruby_wrapper);
}
return ary;
}
/*
* call-seq:
* Module.constants => array
*
* Returns an array of the names of all constants defined in the
* system. This list includes the names of all modules and classes.
*
* p Module.constants.sort[1..5]
*
* <em>produces:</em>
*
* ["ARGV", "ArgumentError", "Array", "Bignum", "Binding"]
*/
static VALUE
rb_mod_s_constants(void)
{
NODE *cbase = ruby_cref;
void *data = 0;
while (cbase) {
if (!NIL_P(cbase->nd_clss)) {
data = rb_mod_const_at(cbase->nd_clss, data);
}
cbase = cbase->nd_next;
}
if (NIL_P(ruby_cbase)) {
data = rb_mod_const_of(ruby_cbase, data);
}
return rb_const_list(data);
}
void
rb_frozen_class_p(VALUE klass)
{
const char *desc = "something(?!)";
if (OBJ_FROZEN(klass)) {
if (FL_TEST(klass, FL_SINGLETON))
desc = "object";
else {
switch (TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "module"; break;
case T_CLASS:
desc = "class"; break;
}
}
rb_error_frozen(desc);
}
}
void
rb_undef(VALUE klass, ID id)
{
VALUE origin;
NODE *body;
if (ruby_cbase == rb_cObject && klass == rb_cObject) {
rb_secure(4);
}
if (ruby_safe_level >= 4 && !OBJ_TAINTED(klass)) {
rb_raise(rb_eSecurityError, "Insecure: can't undef `%s'", rb_id2name(id));
}
rb_frozen_class_p(klass);
if (id == __id__ || id == __send__ || id == init) {
rb_warn("undefining `%s' may cause serious problem", rb_id2name(id));
}
body = search_method(klass, id, &origin, LOOKUP_NOSKIP);
if (!body || !body->nd_body) {
const char *s0 = " class";
VALUE c = klass;
if (FL_TEST(c, FL_SINGLETON)) {
VALUE obj = rb_iv_get(klass, "__attached__");
switch (TYPE(obj)) {
case T_MODULE:
case T_CLASS:
c = obj;
s0 = "";
}
}
else if (TYPE(c) == T_MODULE) {
s0 = " module";
}
rb_name_error(id, "undefined method `%s' for%s `%s'",
rb_id2name(id),s0,rb_class2name(c));
}
rb_add_method(klass, id, 0, NOEX_PUBLIC);
if (FL_TEST(klass, FL_SINGLETON)) {
rb_funcall(rb_iv_get(klass, "__attached__"),
singleton_undefined, 1, ID2SYM(id));
}
else {
rb_funcall(klass, undefined, 1, ID2SYM(id));
}
}
/*
* call-seq:
* undef_method(symbol) => self
*
* Prevents the current class from responding to calls to the named
* method. Contrast this with <code>remove_method</code>, which deletes
* the method from the particular class; Ruby will still search
* superclasses and mixed-in modules for a possible receiver.
*
* class Parent
* def hello
* puts "In parent"
* end
* end
* class Child < Parent
* def hello
* puts "In child"
* end
* end
*
*
* c = Child.new
* c.hello
*
*
* class Child
* remove_method :hello # remove from child, still in parent
* end
* c.hello
*
*
* class Child
* undef_method :hello # prevent any calls to 'hello'
* end
* c.hello
*
* <em>produces:</em>
*
* In child
* In parent
* prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
*/
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i=0; i<argc; i++) {
rb_undef(mod, rb_to_id(argv[i]));
}
return mod;
}
void
rb_alias(VALUE klass, ID name, ID def)
{
VALUE origin;
NODE *orig, *body, *node;
VALUE singleton = 0;
rb_frozen_class_p(klass);
if (name == def) return;
if (klass == rb_cObject) {
rb_secure(4);
}
orig = search_method(klass, def, &origin, LOOKUP_NOSKIP);
if (!orig || !orig->nd_body) {
if (TYPE(klass) == T_MODULE) {
orig = search_method(rb_cObject, def, &origin, LOOKUP_NOSKIP);
}
}
if (!orig || !orig->nd_body) {
raise_undef(klass, def);
}
if (FL_TEST(klass, FL_SINGLETON)) {
singleton = rb_iv_get(klass, "__attached__");
}
body = orig->nd_body;
orig->nd_cnt++;
if (nd_type(body) == NODE_FBODY) { /* was alias */
def = body->nd_mid;
origin = body->nd_orig;
body = body->nd_head;
}
rb_clear_cache_by_id(name);
if (RTEST(ruby_verbose) && st_lookup(RCLASS(klass)->m_tbl, name, (st_data_t *)&node)) {
if (node->nd_cnt == 0 && node->nd_body) {
rb_warning("discarding old %s", rb_id2name(name));
}
}
st_insert(RCLASS(klass)->m_tbl, name,
(st_data_t)NEW_METHOD(NEW_FBODY(body, def, origin),
NOEX_WITH_SAFE(orig->nd_noex)));
if (singleton) {
rb_funcall(singleton, singleton_added, 1, ID2SYM(name));
}
else {
rb_funcall(klass, added, 1, ID2SYM(name));
}
}
/*
* call-seq:
* alias_method(new_name, old_name) => self
*
* Makes <i>new_name</i> a new copy of the method <i>old_name</i>. This can
* be used to retain access to methods that are overridden.
*
* module Mod
* alias_method :orig_exit, :exit
* def exit(code=0)
* puts "Exiting with code #{code}"
* orig_exit(code)
* end
* end
* include Mod
* exit(99)
*
* <em>produces:</em>
*
* Exiting with code 99
*/
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
rb_alias(mod, rb_to_id(newname), rb_to_id(oldname));
return mod;
}
static NODE*
copy_node_scope(NODE *node, NODE *rval)
{
NODE *cref = NEW_NODE(NODE_CREF,rval->nd_clss,0,rval->nd_next);
NODE *copy = NEW_NODE(NODE_SCOPE,0,cref,node->nd_next);
if (node->nd_tbl) {
copy->nd_tbl = ALLOC_N(ID, node->nd_tbl[0]+1);
MEMCPY(copy->nd_tbl, node->nd_tbl, ID, node->nd_tbl[0]+1);
}
else {
copy->nd_tbl = 0;
}
return copy;
}
#ifdef C_ALLOCA
# define TMP_PROTECT NODE * volatile tmp__protect_tmp=0
# define TMP_ALLOC(n) \
(tmp__protect_tmp = NEW_NODE(NODE_ALLOCA, \
ALLOC_N(VALUE,n),tmp__protect_tmp,n), \
(void*)tmp__protect_tmp->nd_head)
#else
# define TMP_PROTECT typedef int foobazzz
# define TMP_ALLOC(n) ALLOCA_N(VALUE,n)
#endif
#define CALLARGS int argc; VALUE *argv; struct BLOCK *block = 0, _block
#define SETUP_ARGS0(anode,extra) do {\
NODE *n = anode, *bpass = 0;\
if (n && nd_type(n) == NODE_BLOCK_PASS) {\
bpass = n;\
n = n->nd_head;\
}\
if (!n) {\
argc = 0;\
argv = 0;\
}\
else if (nd_type(n) == NODE_ARRAY) {\
argc=n->nd_alen;\
if (argc > 0) {\
int i;\
argv = TMP_ALLOC(argc+extra);\
for (i=0;i<argc;i++) {\
argv[i] = rb_eval(self,n->nd_head);\
n=n->nd_next;\
}\
}\
else {\
argc = 0;\
argv = 0;\
}\
}\
else {\
VALUE args = rb_eval(self,n);\
if (TYPE(args) != T_ARRAY)\
args = rb_ary_to_ary(args);\
argc = RARRAY(args)->len;\
argv = TMP_ALLOC(argc+extra);\
MEMCPY(argv, RARRAY(args)->ptr, VALUE, argc);\
}\
if (bpass) {\
block = passing_block(rb_eval(self, bpass->nd_body), &_block);\
}\
} while (0)
#define SETUP_ARGS(anode) SETUP_ARGS0(anode,0)
#define ZSUPER_ARGS() do {\
argc = ruby_frame->argc;\
if (argc && DMETHOD_P()) {\
if (TYPE(RBASIC(ruby_scope)->klass) != T_ARRAY ||\
RARRAY(RBASIC(ruby_scope)->klass)->len != argc) {\
rb_raise(rb_eRuntimeError, \
"super: specify arguments explicitly");\
}\
argv = RARRAY(RBASIC(ruby_scope)->klass)->ptr;\
}\
else {\
argv = ruby_scope->local_vars + 2;\
}\
} while (0)
#define MATCH_DATA *rb_svar(node->nd_cnt)
static const char* is_defined(VALUE, NODE*, char*, int);
static char*
arg_defined(VALUE self, NODE *node, char *buf, char *type)
{
int argc;
int i;
if (!node) return type; /* no args */
if (nd_type(node) == NODE_ARRAY) {
argc=node->nd_alen;
if (argc > 0) {
for (i=0;i<argc;i++) {
if (!is_defined(self, node->nd_head, buf, 0))
return 0;
node = node->nd_next;
}
}
}
else if (!is_defined(self, node, buf, 0)) {
return 0;
}
return type;
}
static const char*
is_defined(VALUE self, NODE *node /* OK */, char *buf, int noeval)
{
VALUE val; /* OK */
int state, noex;
static const char *ex = "expression";
if (!node) return ex;
switch (nd_type(node)) {
case NODE_SUPER:
case NODE_ZSUPER:
if (ruby_frame->this_func == 0) return 0;
else if (ruby_frame->this_class == 0) return 0;
val = ruby_frame->this_class;
if (method_exists(RCLASS(val)->super, ruby_frame->this_func, LOOKUP_FCALL)) {
if (nd_type(node) == NODE_SUPER) {
return arg_defined(self, node->nd_args, buf, "super");
}
return "super";
}
break;
case NODE_VCALL:
case NODE_FCALL:
val = self;
noex = LOOKUP_FCALL;
goto check_bound;
case NODE_ATTRASGN:
val = self;
if (node->nd_recv == (NODE *)1) goto check_bound;
case NODE_CALL:
if (!is_defined(self, node->nd_recv, buf, Qtrue)) return 0;
if (noeval) return ex;
noex = LOOKUP_NORMAL;
val = rb_eval(self, node->nd_recv);
check_bound:
{
ID id = node->nd_mid;
val = CLASS_OF(val);
if (!rb_get_method_body(&val, &id, &noex))
return 0;
if (nd_type(node) == NODE_CALL) {
if ((noex & NOEX_PRIVATE)) return 0;
if ((noex & NOEX_PROTECTED) &&
!rb_obj_is_kind_of(self, rb_class_real(val)))
return 0;
}
return arg_defined(self, node->nd_args, buf,
nd_type(node) == NODE_ATTRASGN ?
"assignment" : "method");
}
break;
case NODE_MATCH2:
case NODE_MATCH3:
return "method";
case NODE_YIELD:
if (rb_block_given_p()) {
return "yield";
}
break;
case NODE_SELF:
return "self";
case NODE_NIL:
return "nil";
case NODE_TRUE:
return "true";
case NODE_FALSE:
return "false";
case NODE_ATTRSET:
case NODE_OP_ASGN1:
case NODE_OP_ASGN2:
case NODE_MASGN:
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_GASGN:
case NODE_IASGN:
case NODE_CDECL:
case NODE_CVDECL:
case NODE_CVASGN:
return "assignment";
case NODE_LVAR:
return "local-variable";
case NODE_DVAR:
return "local-variable(in-block)";
case NODE_GVAR:
if (rb_gvar_defined(node->nd_entry)) {
return "global-variable";
}
break;
case NODE_IVAR:
if (rb_ivar_defined(self, node->nd_vid)) {
return "instance-variable";
}
break;
case NODE_CONST:
if (ev_const_defined(node->nd_vid, self)) {
return "constant";
}
break;
case NODE_CVAR:
if (rb_cvar_defined(cvar_cbase(), node->nd_vid)) {
return "class variable";
}
break;
case NODE_COLON2:
if (!is_defined(self, node->nd_recv, buf, Qtrue)) return 0;
if (noeval) return ex;
val = rb_eval(self, node->nd_recv);
switch (TYPE(val)) {
case T_CLASS:
case T_MODULE:
if (rb_const_defined_from(val, node->nd_mid))
return "constant";
break;
default:
if (rb_method_boundp(CLASS_OF(val), node->nd_mid, Qtrue)) {
return "method";
}
}
break;
case NODE_COLON3:
if (rb_const_defined_from(rb_cObject, node->nd_mid)) {
return "constant";
}
break;
case NODE_NTH_REF:
if (RTEST(rb_reg_nth_defined(node->nd_nth, MATCH_DATA))) {
if (!buf) return ex;
sprintf(buf, "$%d", (int)node->nd_nth);
return buf;
}
break;
case NODE_BACK_REF:
if (RTEST(rb_reg_nth_defined(0, MATCH_DATA))) {
if (!buf) return ex;
sprintf(buf, "$%c", (char)node->nd_nth);
return buf;
}
break;
default:
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
rb_eval(self, node);
}
POP_TAG();
if (!state) {
return ex;
}
ruby_errinfo = Qnil;
break;
}
return 0;
}
static int handle_rescue(VALUE,NODE*);
static void blk_free(struct BLOCK *data);
static VALUE
rb_obj_is_proc(VALUE proc)
{
if (TYPE(proc) == T_DATA && RDATA(proc)->dfree == (RUBY_DATA_FUNC)blk_free) {
return Qtrue;
}
return Qfalse;
}
void
rb_add_event_hook(rb_event_hook_func_t func, rb_event_t events)
{
rb_event_hook_t *hook;
hook = ALLOC(rb_event_hook_t);
hook->func = func;
hook->events = events;
hook->next = event_hooks;
event_hooks = hook;
}
int
rb_remove_event_hook(rb_event_hook_func_t func)
{
rb_event_hook_t *prev, *hook;
prev = NULL;
hook = event_hooks;
while (hook) {
if (hook->func == func) {
if (prev) {
prev->next = hook->next;
}
else {
event_hooks = hook->next;
}
xfree(hook);
return 0;
}
prev = hook;
hook = hook->next;
}
return -1;
}
/*
* call-seq:
* set_trace_func(proc) => proc
* set_trace_func(nil) => nil
*
* Establishes _proc_ as the handler for tracing, or disables
* tracing if the parameter is +nil+. _proc_ takes up
* to six parameters: an event name, a filename, a line number, an
* object id, a binding, and the name of a class. _proc_ is
* invoked whenever an event occurs. Events are: <code>c-call</code>
* (call a C-language routine), <code>c-return</code> (return from a
* C-language routine), <code>call</code> (call a Ruby method),
* <code>class</code> (start a class or module definition),
* <code>end</code> (finish a class or module definition),
* <code>line</code> (execute code on a new line), <code>raise</code>
* (raise an exception), and <code>return</code> (return from a Ruby
* method). Tracing is disabled within the context of _proc_.
*
* class Test
* def test
* a = 1
* b = 2
* end
* end
*
* set_trace_func proc { |event, file, line, id, binding, classname|
* printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
* }
* t = Test.new
* t.test
*
* line prog.rb:11 false
* c-call prog.rb:11 new Class
* c-call prog.rb:11 initialize Object
* c-return prog.rb:11 initialize Object
* c-return prog.rb:11 new Class
* line prog.rb:12 false
* call prog.rb:2 test Test
* line prog.rb:3 test Test
* line prog.rb:4 test Test
* return prog.rb:4 test Test
*/
static VALUE
set_trace_func(VALUE obj, VALUE trace)
{
rb_event_hook_t *hook;
rb_secure(4);
if (NIL_P(trace)) {
trace_func = 0;
rb_remove_event_hook(call_trace_func);
return Qnil;
}
if (!rb_obj_is_proc(trace)) {
rb_raise(rb_eTypeError, "trace_func needs to be Proc");
}
trace_func = trace;
for (hook = event_hooks; hook; hook = hook->next) {
if (hook->func == call_trace_func)
return trace;
}
rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL);
return trace;
}
static char *
get_event_name(rb_event_t event)
{
switch (event) {
case RUBY_EVENT_LINE:
return "line";
case RUBY_EVENT_CLASS:
return "class";
case RUBY_EVENT_END:
return "end";
case RUBY_EVENT_CALL:
return "call";
case RUBY_EVENT_RETURN:
return "return";
case RUBY_EVENT_C_CALL:
return "c-call";
case RUBY_EVENT_C_RETURN:
return "c-return";
case RUBY_EVENT_RAISE:
return "raise";
default:
return "unknown";
}
}
static void
call_trace_func(rb_event_t event, NODE *node, VALUE self, ID id, VALUE klass /* OK */)
{
int state, raised;
struct FRAME *prev;
NODE *node_save;
VALUE srcfile;
char *event_name;
if (!trace_func) return;
if (tracing) return;
if (id == ID_ALLOCATOR) return;
if (!node && ruby_sourceline == 0) return;
if (!(node_save = ruby_current_node)) {
node_save = NEW_BEGIN(0);
}
tracing = 1;
prev = ruby_frame;
PUSH_FRAME(Qfalse);
*ruby_frame = *prev;
ruby_frame->prev = prev;
if (node) {
ruby_current_node = node;
ruby_frame->node = node;
ruby_sourcefile = node->nd_file;
ruby_sourceline = nd_line(node);
}
if (klass) {
if (TYPE(klass) == T_ICLASS) {
klass = RBASIC(klass)->klass;
}
else if (FL_TEST(klass, FL_SINGLETON)) {
klass = rb_iv_get(klass, "__attached__");
}
}
PUSH_TAG(PROT_NONE);
raised = thread_reset_raised();
if ((state = EXEC_TAG()) == 0) {
srcfile = rb_str_new2(ruby_sourcefile?ruby_sourcefile:"(ruby)");
event_name = get_event_name(event);
proc_invoke(trace_func, rb_ary_new3(6, rb_str_new2(event_name),
srcfile,
INT2FIX(ruby_sourceline),
id?ID2SYM(id):Qnil,
self ? rb_f_binding(self) : Qnil,
klass?klass:Qnil),
Qundef, 0, 1);
}
if (raised) thread_set_raised();
POP_TAG();
POP_FRAME();
tracing = 0;
ruby_current_node = node_save;
SET_CURRENT_SOURCE();
if (state) JUMP_TAG(state);
}
static VALUE
svalue_to_avalue(VALUE v)
{
VALUE tmp, top;
if (v == Qundef) return rb_ary_new2(0);
tmp = rb_check_array_type(v);
if (NIL_P(tmp)) {
return rb_ary_new3(1, v);
}
return tmp;
}
static VALUE
class_prefix(VALUE self, NODE *cpath)
{
if (!cpath) {
rb_bug("class path missing");
}
if (cpath->nd_head) {
VALUE c = rb_eval(self, cpath->nd_head);
switch (TYPE(c)) {
case T_CLASS:
case T_MODULE:
break;
default:
rb_raise(rb_eTypeError, "%s is not a class/module",
RSTRING(rb_obj_as_string(c))->ptr);
}
return c;
}
else if (nd_type(cpath) == NODE_COLON2) {
return ruby_cbase;
}
else if (ruby_wrapper) {
return ruby_wrapper;
}
else {
return rb_cObject;
}
}
#define return_value(v) do {\
if ((prot_tag->retval = (v)) == Qundef) {\
prot_tag->retval = Qnil;\
}\
} while (0)
NORETURN(static void return_jump(VALUE));
NORETURN(static void break_jump(VALUE));
NORETURN(static void unknown_node(NODE * volatile));
static VALUE call_super(int, const VALUE*, struct BLOCK*);
static VALUE call_super_0(VALUE, VALUE, ID mid, int argc, const VALUE*, struct BLOCK *);
static void
unknown_node(NODE *volatile node)
{
ruby_current_node = 0;
if (node->flags == 0) {
rb_bug("terminated node (%p)", node);
}
else if (BUILTIN_TYPE(node) != T_NODE) {
rb_bug("not a node 0x%02lx (%p)", BUILTIN_TYPE(node), node);
}
else {
rb_bug("unknown node type %d (%p)", nd_type(node), node);
}
}
static VALUE
rb_eval(VALUE self, NODE *n)
{
NODE * volatile contnode = 0;
NODE * volatile node = n;
int state;
volatile VALUE result = Qnil;
VALUE pushed_block = 0;
#define RETURN(v) do { \
result = (v); \
goto finish; \
} while (0)
again:
if (!node) RETURN(Qnil);
ruby_current_node = node;
if (node->flags & NODE_NEWLINE) {
EXEC_EVENT_HOOK(RUBY_EVENT_LINE, node, self,
ruby_frame->this_func,
ruby_frame->this_class);
}
switch (nd_type(node)) {
case NODE_BLOCK:
if (contnode) {
result = rb_eval(self, node);
break;
}
contnode = node->nd_next;
node = node->nd_head;
goto again;
case NODE_POSTEXE:
PUSH_FRAME(Qtrue);
PUSH_BLOCK(ruby_frame->block, 0, node->nd_body);
rb_f_END();
POP_BLOCK();
POP_FRAME();
nd_set_type(node, NODE_NIL); /* exec just once */
result = Qnil;
break;
/* begin .. end without clauses */
case NODE_BEGIN:
node = node->nd_body;
goto again;
/* nodes for speed-up(default match) */
case NODE_MATCH:
result = rb_reg_match2(node->nd_lit);
break;
/* nodes for speed-up(literal match) */
case NODE_MATCH2:
{
VALUE l = rb_eval(self,node->nd_recv);
VALUE r = rb_eval(self,node->nd_value);
result = rb_reg_match(l, r);
}
break;
/* nodes for speed-up(literal match) */
case NODE_MATCH3:
{
VALUE r = rb_eval(self,node->nd_recv);
VALUE l = rb_eval(self,node->nd_value);
if (TYPE(l) == T_STRING) {
result = rb_reg_match(r, l);
}
else {
result = rb_funcall(l, match, 1, r);
}
}
break;
/* node for speed-up(top-level loop for -n/-p) */
case NODE_OPT_N:
PUSH_TAG(PROT_LOOP);
switch (state = EXEC_TAG()) {
case 0:
opt_n_next:
while (!NIL_P(rb_gets())) {
opt_n_redo:
rb_eval(self, node->nd_body);
}
break;
case TAG_REDO:
state = 0;
goto opt_n_redo;
case TAG_NEXT:
state = 0;
goto opt_n_next;
case TAG_BREAK:
state = 0;
default:
break;
}
POP_TAG();
if (state) JUMP_TAG(state);
RETURN(Qnil);
case NODE_SELF:
RETURN(self);
case NODE_NIL:
RETURN(Qnil);
case NODE_TRUE:
RETURN(Qtrue);
case NODE_FALSE:
RETURN(Qfalse);
case NODE_ERRINFO:
RETURN(ruby_errinfo);
case NODE_IF:
EXEC_EVENT_HOOK(RUBY_EVENT_LINE, node, self,
ruby_frame->this_func,
ruby_frame->this_class);
if (RTEST(rb_eval(self, node->nd_cond))) {
node = node->nd_body;
}
else {
node = node->nd_else;
}
goto again;
case NODE_WHEN:
while (node) {
NODE *tag;
if (nd_type(node) != NODE_WHEN) goto again;
tag = node->nd_head;
while (tag) {
EXEC_EVENT_HOOK(RUBY_EVENT_LINE, tag, self,
ruby_frame->this_func,
ruby_frame->this_class);
if (tag->nd_head && nd_type(tag->nd_head) == NODE_WHEN) {
VALUE v = rb_eval(self, tag->nd_head->nd_head);
long i;
if (TYPE(v) != T_ARRAY) v = rb_ary_to_ary(v);
for (i=0; i<RARRAY(v)->len; i++) {
if (RTEST(RARRAY(v)->ptr[i])) {
node = node->nd_body;
goto again;
}
}
tag = tag->nd_next;
continue;
}
if (RTEST(rb_eval(self, tag->nd_head))) {
node = node->nd_body;
goto again;
}
tag = tag->nd_next;
}
node = node->nd_next;
}
RETURN(Qnil);
case NODE_CASE:
{
VALUE val;
val = rb_eval(self, node->nd_head);
node = node->nd_body;
while (node) {
NODE *tag;
if (nd_type(node) != NODE_WHEN) {
goto again;
}
tag = node->nd_head;
while (tag) {
EXEC_EVENT_HOOK(RUBY_EVENT_LINE, tag, self,
ruby_frame->this_func,
ruby_frame->this_class);
if (tag->nd_head && nd_type(tag->nd_head) == NODE_WHEN) {
VALUE v = rb_eval(self, tag->nd_head->nd_head);
long i;
if (TYPE(v) != T_ARRAY) v = rb_ary_to_ary(v);
for (i=0; i<RARRAY(v)->len; i++) {
if (RTEST(rb_funcall2(RARRAY(v)->ptr[i], eqq, 1, &val))){
node = node->nd_body;
goto again;
}
}
tag = tag->nd_next;
continue;
}
if (RTEST(rb_funcall2(rb_eval(self, tag->nd_head), eqq, 1, &val))) {
node = node->nd_body;
goto again;
}
tag = tag->nd_next;
}
node = node->nd_next;
}
}
RETURN(Qnil);
case NODE_WHILE:
PUSH_TAG(PROT_LOOP);
result = Qnil;
switch (state = EXEC_TAG()) {
case 0:
if (node->nd_state && !RTEST(rb_eval(self, node->nd_cond)))
goto while_out;
do {
while_redo:
rb_eval(self, node->nd_body);
while_next:
;
} while (RTEST(rb_eval(self, node->nd_cond)));
break;
case TAG_REDO:
state = 0;
goto while_redo;
case TAG_NEXT:
state = 0;
goto while_next;
case TAG_BREAK:
if (TAG_DST()) {
state = 0;
result = prot_tag->retval;
}
/* fall through */
default:
break;
}
while_out:
POP_TAG();
if (state) JUMP_TAG(state);
RETURN(result);
case NODE_UNTIL:
PUSH_TAG(PROT_LOOP);
result = Qnil;
switch (state = EXEC_TAG()) {
case 0:
if (node->nd_state && RTEST(rb_eval(self, node->nd_cond)))
goto until_out;
do {
until_redo:
rb_eval(self, node->nd_body);
until_next:
;
} while (!RTEST(rb_eval(self, node->nd_cond)));
break;
case TAG_REDO:
state = 0;
goto until_redo;
case TAG_NEXT:
state = 0;
goto until_next;
case TAG_BREAK:
if (TAG_DST()) {
state = 0;
result = prot_tag->retval;
}
/* fall through */
default:
break;
}
until_out:
POP_TAG();
if (state) JUMP_TAG(state);
RETURN(result);
case NODE_LAMBDA:
PUSH_TAG(PROT_LOOP);
PUSH_FRAME(Qtrue);
PUSH_BLOCK(ruby_frame->block, node->nd_var, node->nd_body);
state = EXEC_TAG();
result = proc_lambda();
POP_BLOCK();
POP_FRAME();
POP_TAG();
break;
case NODE_BREAK:
break_jump(rb_eval(self, node->nd_stts));
break;
case NODE_NEXT:
CHECK_INTS;
return_value(rb_eval(self, node->nd_stts));
JUMP_TAG(TAG_NEXT);
break;
case NODE_REDO:
CHECK_INTS;
JUMP_TAG(TAG_REDO);
break;
case NODE_RETRY:
CHECK_INTS;
JUMP_TAG(TAG_RETRY);
break;
case NODE_SPLAT:
result = svalue_to_avalue(rb_eval(self, node->nd_head));
break;
case NODE_TO_ARY:
result = rb_ary_to_ary(rb_eval(self, node->nd_head));
break;
case NODE_YIELD:
if (node->nd_head) {
result = rb_eval(self, node->nd_head);
ruby_current_node = node;
}
else {
result = Qundef; /* no arg */
}
SET_CURRENT_SOURCE();
result = rb_yield_0(result, 0, 0, 0);
break;
case NODE_RESCUE:
{
volatile VALUE e_info = ruby_errinfo;
volatile int rescuing = 0;
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
retry_entry:
result = rb_eval(self, node->nd_head);
}
else if (rescuing) {
if (rescuing < 0) {
/* in rescue argument, just reraise */
}
else if (state == TAG_RETRY) {
rescuing = state = 0;
ruby_errinfo = e_info;
goto retry_entry;
}
else if (state != TAG_RAISE) {
result = prot_tag->retval;
}
}
else if (state == TAG_RAISE) {
NODE *resq = node->nd_resq;
rescuing = -1;
while (resq) {
ruby_current_node = resq;
if (handle_rescue(self, resq)) {
state = 0;
rescuing = 1;
result = rb_eval(self, resq->nd_body);
break;
}
resq = resq->nd_head; /* next rescue */
}
}
else {
result = prot_tag->retval;
}
POP_TAG();
if (state != TAG_RAISE) ruby_errinfo = e_info;
if (state) {
if (state == TAG_NEXT) prot_tag->retval = result;
JUMP_TAG(state);
}
/* no exception raised */
if (!rescuing && (node = node->nd_else)) { /* else clause given */
goto again;
}
}
break;
case NODE_ENSURE:
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
result = rb_eval(self, node->nd_head);
}
POP_TAG();
if (node->nd_ensr) {
VALUE retval = prot_tag->retval; /* save retval */
VALUE errinfo = ruby_errinfo;
rb_eval(self, node->nd_ensr);
return_value(retval);
ruby_errinfo = errinfo;
}
if (state) JUMP_TAG(state);
break;
case NODE_AND:
result = rb_eval(self, node->nd_1st);
if (!RTEST(result)) break;
node = node->nd_2nd;
goto again;
case NODE_OR:
result = rb_eval(self, node->nd_1st);
if (RTEST(result)) break;
node = node->nd_2nd;
goto again;
case NODE_NOT:
if (RTEST(rb_eval(self, node->nd_body))) result = Qfalse;
else result = Qtrue;
break;
case NODE_DOT2:
case NODE_DOT3:
{
VALUE beg = rb_eval(self, node->nd_beg);
VALUE end = rb_eval(self, node->nd_end);
result = rb_range_new(beg, end, nd_type(node) == NODE_DOT3);
}
break;
case NODE_FLIP2: /* like AWK */
{
VALUE *flip = rb_svar(node->nd_cnt);
if (!flip) rb_bug("unexpected local variable");
if (!RTEST(*flip)) {
if (RTEST(rb_eval(self, node->nd_beg))) {
*flip = RTEST(rb_eval(self, node->nd_end))?Qfalse:Qtrue;
result = Qtrue;
}
else {
result = Qfalse;
}
}
else {
if (RTEST(rb_eval(self, node->nd_end))) {
*flip = Qfalse;
}
result = Qtrue;
}
}
break;
case NODE_FLIP3: /* like SED */
{
VALUE *flip = rb_svar(node->nd_cnt);
if (!flip) rb_bug("unexpected local variable");
if (!RTEST(*flip)) {
result = RTEST(rb_eval(self, node->nd_beg)) ? Qtrue : Qfalse;
*flip = result;
}
else {
if (RTEST(rb_eval(self, node->nd_end))) {
*flip = Qfalse;
}
result = Qtrue;
}
}
break;
case NODE_RETURN:
return_jump(rb_eval(self, node->nd_stts));
break;
case NODE_ARGSCAT:
{
VALUE args = rb_eval(self, node->nd_head);
result = rb_ary_concat(args, svalue_to_avalue(rb_eval(self, node->nd_body)));
}
break;
case NODE_ARGSPUSH:
{
VALUE args = rb_ary_dup(rb_eval(self, node->nd_head));
result = rb_ary_push(args, rb_eval(self, node->nd_body));
}
break;
case NODE_ATTRASGN:
{
VALUE recv;
calling_scope_t scope;
CALLARGS;
TMP_PROTECT;
if (node->nd_recv == (NODE *)1) {
recv = self;
scope = CALLING_FCALL;
}
else {
recv = rb_eval(self, node->nd_recv);
scope = CALLING_NORMAL;
}
SETUP_ARGS(node->nd_args);
ruby_current_node = node;
SET_CURRENT_SOURCE();
rb_call(CLASS_OF(recv),recv,node->nd_mid,argc,argv,block,scope,0);
result = argv[argc-1];
}
break;
case NODE_FOR:
{
VALUE recv;
int state;
struct BLOCK *block;
PUSH_TAG(PROT_LOOP);
PUSH_BLOCK(block, node->nd_var, node->nd_body);
state = EXEC_TAG();
if (state == 0) {
for_retry:
block->flags &= ~BLOCK_D_SCOPE;
recv = rb_eval(self, node->nd_iter);
ruby_current_node = node;
SET_CURRENT_SOURCE();
result = rb_call(CLASS_OF(recv),recv,each,0,0,block,CALLING_NORMAL,1);
}
else if (state == TAG_BREAK && TAG_DST()) {
result = prot_tag->retval;
state = 0;
}
else if (state == TAG_RETRY) {
state = 0;
goto for_retry;
}
POP_BLOCK();
POP_TAG();
if (state) JUMP_TAG(state);
}
break;
case NODE_ITER:
{
VALUE recv = self;
calling_scope_t scope;
struct BLOCK *block_given;
PUSH_TAG(PROT_LOOP);
PUSH_BLOCK(block_given, node->nd_var, node->nd_body);
node = node->nd_iter; /* should be NODE_CALL */
switch (nd_type(node)) {
case NODE_CALL:
scope = CALLING_NORMAL; break;
case NODE_FCALL:
scope = CALLING_FCALL; break;
case NODE_VCALL:
scope = CALLING_VCALL; break;
case NODE_SUPER:
case NODE_ZSUPER:
scope = CALLING_SUPER; break;
default:
/* error! */
unknown_node(node);
}
state = EXEC_TAG();
if (state == 0) {
CALLARGS;
TMP_PROTECT;
iter_retry:
if (scope == CALLING_NORMAL) {
recv = rb_eval(self, node->nd_recv);
}
if (nd_type(node) == NODE_ZSUPER) {
ZSUPER_ARGS();
}
else {
SETUP_ARGS(node->nd_args);
ruby_current_node = node;
}
SET_CURRENT_SOURCE();
switch (scope) {
case CALLING_SUPER:
result = call_super(argc, argv, block_given);
break;
default:
result = rb_call(CLASS_OF(recv),recv,node->nd_mid,
argc,argv,block_given,scope,1);
break;
}
}
else if (state == TAG_BREAK && TAG_DST()) {
result = prot_tag->retval;
state = 0;
}
else if (state == TAG_RETRY) {
state = 0;
goto iter_retry;
}
POP_BLOCK();
POP_TAG();
if (state) JUMP_TAG(state);
}
break;
case NODE_CALL:
{
VALUE recv;
CALLARGS;
TMP_PROTECT;
recv = rb_eval(self, node->nd_recv);
SETUP_ARGS(node->nd_args);
ruby_current_node = node;
SET_CURRENT_SOURCE();
result = rb_call(CLASS_OF(recv),recv,node->nd_mid,argc,argv,
block,CALLING_NORMAL,0);
}
break;
case NODE_FCALL:
{
CALLARGS;
TMP_PROTECT;
SETUP_ARGS(node->nd_args);
ruby_current_node = node;
SET_CURRENT_SOURCE();
result = rb_call(CLASS_OF(self),self,node->nd_mid,argc,argv,
block,CALLING_FCALL,0);
}
break;
case NODE_VCALL:
SET_CURRENT_SOURCE();
result = rb_call(CLASS_OF(self),self,node->nd_mid,0,0,0,CALLING_VCALL,0);
break;
case NODE_SUPER:
case NODE_ZSUPER:
{
CALLARGS;
TMP_PROTECT;
if (ruby_frame->this_class == 0) {
if (ruby_frame->this_func) {
rb_name_error(ruby_frame->callee,
"superclass method `%s' disabled",
rb_id2name(ruby_frame->this_func));
}
else {
rb_raise(rb_eNoMethodError, "super called outside of method");
}
}
if (nd_type(node) == NODE_ZSUPER) {
ZSUPER_ARGS();
SET_CURRENT_SOURCE();
result = rb_call_super(argc, argv);
}
else {
SETUP_ARGS(node->nd_args);
ruby_current_node = node;
SET_CURRENT_SOURCE();
result = call_super(argc, argv, block);
}
}
break;
case NODE_SCOPE:
{
struct FRAME frame;
NODE *saved_cref = 0;
frame = *ruby_frame;
frame.tmp = ruby_frame;
ruby_frame = &frame;
PUSH_SCOPE();
PUSH_TAG(PROT_NONE);
if (node->nd_rval) {
saved_cref = ruby_cref;
ruby_cref = (NODE*)node->nd_rval;
}
if (node->nd_tbl) {
VALUE *vars = ALLOCA_N(VALUE, node->nd_tbl[0]+1);
*vars++ = (VALUE)node;
ruby_scope->local_vars = vars;
rb_mem_clear(ruby_scope->local_vars, node->nd_tbl[0]);
ruby_scope->local_tbl = node->nd_tbl;
}
else {
ruby_scope->local_vars = 0;
ruby_scope->local_tbl = 0;
}
if ((state = EXEC_TAG()) == 0) {
result = rb_eval(self, node->nd_next);
}
POP_TAG();
POP_SCOPE();
ruby_frame = frame.tmp;
if (saved_cref)
ruby_cref = saved_cref;
if (state) JUMP_TAG(state);
}
break;
case NODE_OP_ASGN1:
{
CALLARGS;
VALUE recv, val, tmp;
NODE *rval;
TMP_PROTECT;
recv = rb_eval(self, node->nd_recv);
rval = node->nd_args->nd_head;
SETUP_ARGS0(node->nd_args->nd_body,1);
val = rb_funcall3(recv, aref, argc, argv);
switch (node->nd_mid) {
case 0: /* OR */
if (RTEST(val)) RETURN(val);
val = rb_eval(self, rval);
break;
case 1: /* AND */
if (!RTEST(val)) RETURN(val);
val = rb_eval(self, rval);
break;
default:
tmp = rb_eval(self, rval);
val = rb_funcall3(val, node->nd_mid, 1, &tmp);
}
argv[argc] = val;
rb_funcall3(recv, aset, argc+1, argv);
result = val;
}
break;
case NODE_OP_ASGN2:
{
ID id = node->nd_next->nd_vid;
VALUE recv, val, tmp;
recv = rb_eval(self, node->nd_recv);
val = rb_funcall3(recv, id, 0, 0);
switch (node->nd_next->nd_mid) {
case 0: /* OR */
if (RTEST(val)) RETURN(val);
val = rb_eval(self, node->nd_value);
break;
case 1: /* AND */
if (!RTEST(val)) RETURN(val);
val = rb_eval(self, node->nd_value);
break;
default:
tmp = rb_eval(self, node->nd_value);
val = rb_funcall3(val, node->nd_next->nd_mid, 1, &tmp);
}
rb_funcall3(recv, node->nd_next->nd_aid, 1, &val);
result = val;
}
break;
case NODE_OP_ASGN_AND:
result = rb_eval(self, node->nd_head);
if (!RTEST(result)) break;
node = node->nd_value;
goto again;
case NODE_OP_ASGN_OR:
if ((node->nd_aid && !is_defined(self, node->nd_head, 0, 0)) ||
!RTEST(result = rb_eval(self, node->nd_head))) {
node = node->nd_value;
goto again;
}
break;
case NODE_MASGN:
result = massign(self, node, rb_eval(self, node->nd_value), 0);
break;
case NODE_LASGN:
if (ruby_scope->local_vars == 0)
rb_bug("unexpected local variable assignment");
result = rb_eval(self, node->nd_value);
ruby_scope->local_vars[node->nd_cnt] = result;
break;
case NODE_DASGN:
result = rb_eval(self, node->nd_value);
dvar_asgn(node->nd_vid, result);
break;
case NODE_DASGN_CURR:
result = rb_eval(self, node->nd_value);
dvar_asgn_curr(node->nd_vid, result);
break;
case NODE_GASGN:
result = rb_eval(self, node->nd_value);
rb_gvar_set(node->nd_entry, result);
break;
case NODE_IASGN:
result = rb_eval(self, node->nd_value);
rb_ivar_set(self, node->nd_vid, result);
break;
case NODE_CDECL:
result = rb_eval(self, node->nd_value);
if (node->nd_vid == 0) {
rb_const_set(class_prefix(self, node->nd_else), node->nd_else->nd_mid, result);
}
else {
rb_const_set(ruby_cbase, node->nd_vid, result);
}
break;
case NODE_CVDECL:
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no class/module to define class variable");
}
result = rb_eval(self, node->nd_value);
rb_cvar_set(cvar_cbase(), node->nd_vid, result, Qtrue);
break;
case NODE_CVASGN:
result = rb_eval(self, node->nd_value);
rb_cvar_set(cvar_cbase(), node->nd_vid, result, Qfalse);
break;
case NODE_LVAR:
if (ruby_scope->local_vars == 0) {
rb_bug("unexpected local variable");
}
result = ruby_scope->local_vars[node->nd_cnt];
break;
case NODE_DVAR:
result = rb_dvar_ref(node->nd_vid);
break;
case NODE_GVAR:
result = rb_gvar_get(node->nd_entry);
break;
case NODE_IVAR:
result = rb_ivar_get(self, node->nd_vid);
break;
case NODE_CONST:
result = ev_const_get(node->nd_vid, self);
break;
case NODE_CVAR:
result = rb_cvar_get(cvar_cbase(), node->nd_vid);
break;
case NODE_BLOCK_ARG:
if (ruby_scope->local_vars == 0)
rb_bug("unexpected block argument");
if (rb_block_given_p()) {
result = rb_block_proc();
ruby_scope->local_vars[node->nd_cnt] = result;
}
else {
result = Qnil;
}
break;
case NODE_COLON2:
{
VALUE klass;
klass = rb_eval(self, node->nd_head);
if (rb_is_const_id(node->nd_mid)) {
switch (TYPE(klass)) {
case T_CLASS:
case T_MODULE:
result = rb_const_get_from(klass, node->nd_mid);
break;
default:
rb_raise(rb_eTypeError, "%s is not a class/module",
RSTRING(rb_obj_as_string(klass))->ptr);
break;
}
}
else {
result = rb_funcall(klass, node->nd_mid, 0, 0);
}
}
break;
case NODE_COLON3:
result = rb_const_get_from(rb_cObject, node->nd_mid);
break;
case NODE_NTH_REF:
result = rb_reg_nth_match(node->nd_nth, MATCH_DATA);
break;
case NODE_BACK_REF:
switch (node->nd_nth) {
case '&':
result = rb_reg_last_match(MATCH_DATA);
break;
case '`':
result = rb_reg_match_pre(MATCH_DATA);
break;
case '\'':
result = rb_reg_match_post(MATCH_DATA);
break;
case '+':
result = rb_reg_match_last(MATCH_DATA);
break;
default:
rb_bug("unexpected back-ref");
}
break;
case NODE_HASH:
{
NODE *list;
VALUE hash = rb_hash_new();
VALUE key, val;
list = node->nd_head;
while (list) {
key = rb_eval(self, list->nd_head);
list = list->nd_next;
if (list == 0)
rb_bug("odd number list for Hash");
val = rb_eval(self, list->nd_head);
list = list->nd_next;
rb_hash_aset(hash, key, val);
}
result = hash;
}
break;
case NODE_ZARRAY: /* zero length list */
result = rb_ary_new();
break;
case NODE_ARRAY:
{
VALUE ary;
long i;
i = node->nd_alen;
ary = rb_ary_new2(i);
for (i=0;node;node=node->nd_next) {
RARRAY(ary)->ptr[i++] = rb_eval(self, node->nd_head);
RARRAY(ary)->len = i;
}
result = ary;
}
break;
case NODE_VALUES:
{
VALUE val;
long i;
i = node->nd_alen;
val = rb_ary_new4(i, 0);
for (i=0;node;node=node->nd_next) {
RARRAY(val)->ptr[i++] = rb_eval(self, node->nd_head);
RARRAY(val)->len = i;
}
result = val;
}
break;
case NODE_STR:
result = rb_str_new3(node->nd_lit);
break;
case NODE_EVSTR:
result = rb_obj_as_string(rb_eval(self, node->nd_body));
break;
case NODE_DSTR:
case NODE_DXSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_DSYM:
{
VALUE str, str2;
NODE *list = node->nd_next;
str = rb_str_new3(node->nd_lit);
while (list) {
if (list->nd_head) {
switch (nd_type(list->nd_head)) {
case NODE_STR:
str2 = list->nd_head->nd_lit;
break;
default:
str2 = rb_eval(self, list->nd_head);
break;
}
rb_str_append(str, str2);
OBJ_INFECT(str, str2);
}
list = list->nd_next;
}
switch (nd_type(node)) {
case NODE_DREGX:
result = rb_reg_new(RSTRING(str)->ptr, RSTRING(str)->len,
node->nd_cflag);
break;
case NODE_DREGX_ONCE: /* regexp expand once */
result = rb_reg_new(RSTRING(str)->ptr, RSTRING(str)->len,
node->nd_cflag);
nd_set_type(node, NODE_LIT);
node->nd_lit = result;
break;
case NODE_LIT:
/* other thread may replace NODE_DREGX_ONCE to NODE_LIT */
goto again;
case NODE_DXSTR:
result = rb_funcall(self, '`', 1, str);
break;
case NODE_DSYM:
result = rb_str_intern(str);
break;
default:
result = str;
break;
}
}
break;
case NODE_XSTR:
result = rb_funcall(self, '`', 1, rb_str_new3(node->nd_lit));
break;
case NODE_LIT:
result = node->nd_lit;
break;
case NODE_DEFN:
if (node->nd_defn) {
NODE *body, *defn;
VALUE origin;
int noex;
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no class/module to define method");
}
if (ruby_cbase == rb_cObject && node->nd_mid == init) {
rb_warn("redefining Object#initialize may cause infinite loop");
}
if (node->nd_mid == __id__ || node->nd_mid == __send__) {
rb_warn("redefining `%s' may cause serious problem",
rb_id2name(node->nd_mid));
}
rb_frozen_class_p(ruby_cbase);
body = search_method(ruby_cbase, node->nd_mid, &origin, LOOKUP_NOSKIP);
if (body){
if (RTEST(ruby_verbose) && ruby_cbase == origin &&
body->nd_cnt == 0 && body->nd_body) {
rb_warning("method redefined; discarding old %s", rb_id2name(node->nd_mid));
}
}
if (VIS_TEST(VIS_PRIVATE) || node->nd_mid == init) {
noex = NOEX_PRIVATE;
}
else if (VIS_TEST(VIS_LOCAL)) {
noex = NOEX_LOCAL;
}
else if (VIS_TEST(VIS_PROTECTED)) {
noex = NOEX_PROTECTED;
}
else {
noex = NOEX_PUBLIC;
}
if (body && origin == ruby_cbase && body->nd_body == 0) {
noex |= NOEX_NOSUPER;
}
defn = copy_node_scope(node->nd_defn, ruby_cref);
rb_add_method(ruby_cbase, node->nd_mid, defn, noex);
if (VIS_MODE() == VIS_MODFUNC) {
rb_add_method(rb_singleton_class(ruby_cbase),
node->nd_mid, defn, NOEX_PUBLIC);
}
result = Qnil;
}
break;
case NODE_DEFS:
if (node->nd_defn) {
VALUE recv = rb_eval(self, node->nd_recv);
VALUE klass;
NODE *body = 0, *defn;
if (ruby_safe_level >= 4 && !OBJ_TAINTED(recv)) {
rb_raise(rb_eSecurityError, "Insecure: can't define singleton method");
}
if (FIXNUM_P(recv) || SYMBOL_P(recv)) {
rb_raise(rb_eTypeError,
"can't define singleton method \"%s\" for %s",
rb_id2name(node->nd_mid),
rb_obj_classname(recv));
}
if (OBJ_FROZEN(recv)) rb_error_frozen("object");
klass = rb_singleton_class(recv);
if (st_lookup(RCLASS(klass)->m_tbl, node->nd_mid, (st_data_t *)&body)) {
if (ruby_safe_level >= 4) {
rb_raise(rb_eSecurityError, "redefining method prohibited");
}
if (RTEST(ruby_verbose)) {
rb_warning("redefine %s", rb_id2name(node->nd_mid));
}
}
defn = copy_node_scope(node->nd_defn, ruby_cref);
rb_add_method(klass, node->nd_mid, defn,
NOEX_PUBLIC|(body?body->nd_noex&NOEX_UNDEF:0));
result = Qnil;
}
break;
case NODE_UNDEF:
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no class to undef method");
}
rb_undef(ruby_cbase, rb_to_id(rb_eval(self, node->u2.node)));
result = Qnil;
break;
case NODE_ALIAS:
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no class to make alias");
}
rb_alias(ruby_cbase, rb_to_id(rb_eval(self, node->u1.node)),
rb_to_id(rb_eval(self, node->u2.node)));
result = Qnil;
break;
case NODE_VALIAS:
rb_alias_variable(node->u1.id, node->u2.id);
result = Qnil;
break;
case NODE_CLASS:
{
VALUE super, klass, tmp, cbase;
ID cname;
int gen = Qfalse;
cbase = class_prefix(self, node->nd_cpath);
cname = node->nd_cpath->nd_mid;
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no outer class/module");
}
if (node->nd_super) {
super = rb_eval(self, node->nd_super);
rb_check_inheritable(super);
}
else {
super = 0;
}
if (rb_const_defined_at(cbase, cname)) {
klass = rb_const_get_at(cbase, cname);
if (TYPE(klass) != T_CLASS) {
rb_raise(rb_eTypeError, "%s is not a class",
rb_id2name(cname));
}
if (super) {
tmp = rb_class_real(RCLASS(klass)->super);
if (tmp != super) {
rb_raise(rb_eTypeError, "superclass mismatch for class %s",
rb_id2name(cname));
}
super = 0;
}
if (ruby_safe_level >= 4) {
rb_raise(rb_eSecurityError, "extending class prohibited");
}
}
else {
if (!super) super = rb_cObject;
klass = rb_define_class_id(cname, super);
rb_set_class_path(klass, cbase, rb_id2name(cname));
rb_const_set(cbase, cname, klass);
gen = Qtrue;
}
if (ruby_wrapper) {
rb_extend_object(klass, ruby_wrapper);
rb_include_module(klass, ruby_wrapper);
}
if (super && gen) {
rb_class_inherited(super, klass);
}
result = module_setup(klass, node);
}
break;
case NODE_MODULE:
{
VALUE module, cbase;
ID cname;
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no outer class/module");
}
cbase = class_prefix(self, node->nd_cpath);
cname = node->nd_cpath->nd_mid;
if (rb_const_defined_at(cbase, cname)) {
module = rb_const_get_at(cbase, cname);
if (TYPE(module) != T_MODULE) {
rb_raise(rb_eTypeError, "%s is not a module",
rb_id2name(cname));
}
if (ruby_safe_level >= 4) {
rb_raise(rb_eSecurityError, "extending module prohibited");
}
}
else {
module = rb_define_module_id(cname);
rb_set_class_path(module, cbase, rb_id2name(cname));
rb_const_set(cbase, cname, module);
rb_obj_call_init(module, 0, 0);
}
if (ruby_wrapper) {
rb_extend_object(module, ruby_wrapper);
rb_include_module(module, ruby_wrapper);
}
result = module_setup(module, node);
}
break;
case NODE_SCLASS:
{
VALUE klass;
result = rb_eval(self, node->nd_recv);
if (FIXNUM_P(result) || SYMBOL_P(result)) {
rb_raise(rb_eTypeError, "no singleton class for %s",
rb_obj_classname(result));
}
if (ruby_safe_level >= 4 && !OBJ_TAINTED(result))
rb_raise(rb_eSecurityError, "Insecure: can't extend object");
klass = rb_singleton_class(result);
if (ruby_wrapper) {
rb_extend_object(klass, ruby_wrapper);
rb_include_module(klass, ruby_wrapper);
}
result = module_setup(klass, node);
}
break;
case NODE_DEFINED:
{
char buf[20];
const char *desc = is_defined(self, node->nd_head, buf, 0);
if (desc) result = rb_str_new2(desc);
else result = Qnil;
}
break;
default:
unknown_node(node);
}
finish:
CHECK_INTS;
if (contnode) {
node = contnode;
contnode = 0;
goto again;
}
return result;
}
static VALUE
module_setup(VALUE module, NODE *n)
{
NODE * volatile node = n->nd_body;
int state;
struct FRAME frame;
VALUE result = Qnil; /* OK */
TMP_PROTECT;
frame = *ruby_frame;
frame.tmp = ruby_frame;
ruby_frame = &frame;
PUSH_SCOPE();
PUSH_VARS();
if (node->nd_tbl) {
VALUE *vars = TMP_ALLOC(node->nd_tbl[0]+1);
*vars++ = (VALUE)node;
ruby_scope->local_vars = vars;
rb_mem_clear(ruby_scope->local_vars, node->nd_tbl[0]);
ruby_scope->local_tbl = node->nd_tbl;
}
else {
ruby_scope->local_vars = 0;
ruby_scope->local_tbl = 0;
}
PUSH_CREF(module);
VIS_SET(VIS_PUBLIC);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
EXEC_EVENT_HOOK(RUBY_EVENT_CLASS, n, ruby_cbase,
ruby_frame->this_func, ruby_frame->this_class);
result = rb_eval(ruby_cbase, node->nd_next);
}
POP_TAG();
POP_CREF();
POP_VARS();
POP_SCOPE();
ruby_frame = frame.tmp;
EXEC_EVENT_HOOK(RUBY_EVENT_END, n, 0, ruby_frame->this_func,
ruby_frame->this_class);
if (state) JUMP_TAG(state);
return result;
}
static NODE *basic_respond_to = 0;
int
rb_obj_respond_to(VALUE obj, ID id, int priv)
{
VALUE klass = CLASS_OF(obj);
if (rb_method_node(klass, respond_to) == basic_respond_to) {
return rb_method_boundp(klass, id, !priv);
}
else {
VALUE args[2];
int n = 0;
args[n++] = ID2SYM(id);
if (priv) args[n++] = Qtrue;
return rb_funcall2(obj, respond_to, n, args);
}
}
int
rb_respond_to(VALUE obj, ID id)
{
return rb_obj_respond_to(obj, id, Qfalse);
}
/*
* call-seq:
* obj.respond_to?(symbol, include_private=false) => true or false
*
* Returns +true+> if _obj_ responds to the given
* method. Private methods are included in the search only if the
* optional second parameter evaluates to +true+.
*/
static VALUE
obj_respond_to(int argc, VALUE *argv, VALUE obj)
{
VALUE mid, priv;
ID id;
rb_scan_args(argc, argv, "11", &mid, &priv);
id = rb_to_id(mid);
if (rb_method_boundp(CLASS_OF(obj), id, !RTEST(priv))) {
return Qtrue;
}
return Qfalse;
}
/*
* call-seq:
* mod.method_defined?(symbol, inherit=true) => true or false
*
* Returns +true+ if the named method is defined by
* _mod_ (or its included modules and, if _mod_ is a class,
* its ancestors, if _inherit_ is true). Public and protected
* methods are matched.
*
* module A
* def method1() end
* end
* class B
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.method_defined? "method1" #=> true
* C.method_defined? "method2" #=> true
* C.method_defined? "method3" #=> true
* C.method_defined? "method4" #=> false
* C.method_defined?("method2", false) #=> false
*/
static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE mid, recur;
ID id;
if (argc == 1) {
recur = Qtrue;
mid = argv[0];
}
else {
rb_scan_args(argc, argv, "11", &mid, &recur);
}
id = rb_to_id(mid);
if (!RTEST(recur)) {
return st_is_member(RCLASS(mod)->m_tbl, id) ? Qtrue : Qfalse;
}
return rb_method_boundp(mod, id, Qtrue);
}
#define VISI_CHECK(x,f) (((x)&NOEX_MASK) == (f))
/*
* call-seq:
* mod.public_method_defined?(symbol) => true or false
*
* Returns +true+ if the named public method is defined by
* _mod_ (or its included modules and, if _mod_ is a class,
* its ancestors).
*
* module A
* def method1() end
* end
* class B
* protected
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.public_method_defined? "method1" #=> true
* C.public_method_defined? "method2" #=> false
* C.method_defined? "method2" #=> true
*/
static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
ID id = rb_to_id(mid);
int noex = 1;
if (rb_get_method_body(&mod, &id, &noex)) {
if (VISI_CHECK(noex, NOEX_PUBLIC))
return Qtrue;
}
return Qfalse;
}
/*
* call-seq:
* mod.private_method_defined?(symbol) => true or false
*
* Returns +true+ if the named private method is defined by
* _ mod_ (or its included modules and, if _mod_ is a class,
* its ancestors).
*
* module A
* def method1() end
* end
* class B
* private
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.private_method_defined? "method1" #=> false
* C.private_method_defined? "method2" #=> true
* C.method_defined? "method2" #=> false
*/
static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
ID id = rb_to_id(mid);
int noex = 0;
if (rb_get_method_body(&mod, &id, &noex)) {
if (VISI_CHECK(noex, NOEX_PRIVATE))
return Qtrue;
}
return Qfalse;
}
/*
* call-seq:
* mod.protected_method_defined?(symbol) => true or false
*
* Returns +true+ if the named protected method is defined
* by _mod_ (or its included modules and, if _mod_ is a
* class, its ancestors).
*
* module A
* def method1() end
* end
* class B
* protected
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.protected_method_defined? "method1" #=> false
* C.protected_method_defined? "method2" #=> true
* C.method_defined? "method2" #=> true
*/
static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
ID id = rb_to_id(mid);
int noex = 1;
if (rb_get_method_body(&mod, &id, &noex)) {
if (VISI_CHECK(noex, NOEX_PROTECTED))
return Qtrue;
}
return Qfalse;
}
NORETURN(static VALUE terminate_process(int, VALUE));
static VALUE
terminate_process(int status, VALUE mesg)
{
VALUE args[2];
args[0] = INT2NUM(status);
args[1] = mesg;
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
void
rb_exit(int status)
{
if (prot_tag) {
terminate_process(status, rb_str_new("exit", 4));
}
ruby_finalize();
exit(status);
}
/*
* call-seq:
* exit(integer=0)
* Kernel::exit(integer=0)
* Process::exit(integer=0)
*
* Initiates the termination of the Ruby script by raising the
* <code>SystemExit</code> exception. This exception may be caught. The
* optional parameter is used to return a status code to the invoking
* environment.
*
* begin
* exit
* puts "never get here"
* rescue SystemExit
* puts "rescued a SystemExit exception"
* end
* puts "after begin block"
*
* <em>produces:</em>
*
* rescued a SystemExit exception
* after begin block
*
* Just prior to termination, Ruby executes any <code>at_exit</code> functions
* (see Kernel::at_exit) and runs any object finalizers (see
* ObjectSpace::define_finalizer).
*
* at_exit { puts "at_exit function" }
* ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
* exit
*
* <em>produces:</em>
*
* at_exit function
* in finalizer
*/
VALUE
rb_f_exit(int argc, VALUE *argv)
{
VALUE status;
int istatus;
rb_secure(4);
if (rb_scan_args(argc, argv, "01", &status) == 1) {
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
if (istatus == 0) istatus = EXIT_SUCCESS;
#endif
break;
}
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
return Qnil; /* not reached */
}
/*
* call-seq:
* abort
* Kernel::abort
* Process::abort
*
* Terminate execution immediately, effectively by calling
* <code>Kernel.exit(1)</code>. If _msg_ is given, it is written
* to STDERR prior to terminating.
*/
VALUE
rb_f_abort(int argc, VALUE *argv)
{
rb_secure(4);
if (argc == 0) {
if (!NIL_P(ruby_errinfo)) {
error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE mesg;
rb_scan_args(argc, argv, "1", &mesg);
StringValue(mesg);
rb_io_puts(1, &mesg, rb_stderr);
terminate_process(EXIT_FAILURE, mesg);
}
return Qnil; /* not reached */
}
void
rb_iter_break(void)
{
break_jump(Qnil);
}
NORETURN(static void rb_longjmp(int, VALUE));
static VALUE make_backtrace(void);
static void
rb_longjmp(int tag, VALUE mesg)
{
VALUE at;
if (thread_set_raised()) {
ruby_errinfo = exception_error;
JUMP_TAG(TAG_FATAL);
}
if (NIL_P(mesg)) mesg = ruby_errinfo;
if (NIL_P(mesg)) {
mesg = rb_exc_new(rb_eRuntimeError, 0, 0);
}
ruby_set_current_source();
if (ruby_sourcefile && !NIL_P(mesg)) {
at = get_backtrace(mesg);
if (NIL_P(at)) {
at = make_backtrace();
set_backtrace(mesg, at);
}
}
if (!NIL_P(mesg)) {
ruby_errinfo = mesg;
}
if (RTEST(ruby_debug) && !NIL_P(ruby_errinfo)
&& !rb_obj_is_kind_of(ruby_errinfo, rb_eSystemExit)) {
VALUE e = ruby_errinfo;
int status;
PUSH_TAG(PROT_NONE);
if ((status = EXEC_TAG()) == 0) {
e = rb_obj_as_string(e);
warn_printf("Exception `%s' at %s:%d - %s\n",
rb_obj_classname(ruby_errinfo),
ruby_sourcefile, ruby_sourceline,
RSTRING(e)->ptr);
}
POP_TAG();
if (status == TAG_FATAL && ruby_errinfo == exception_error) {
ruby_errinfo = mesg;
}
else if (status) {
thread_reset_raised();
JUMP_TAG(status);
}
}
rb_trap_restore_mask();
if (tag != TAG_FATAL) {
EXEC_EVENT_HOOK(RUBY_EVENT_RAISE, ruby_current_node,
ruby_frame->self,
ruby_frame->this_func,
ruby_frame->this_class);
}
if (!prot_tag) {
error_print();
}
thread_reset_raised();
JUMP_TAG(tag);
}
void
rb_exc_raise(VALUE mesg)
{
rb_longjmp(TAG_RAISE, mesg);
}
void
rb_exc_fatal(VALUE mesg)
{
rb_longjmp(TAG_FATAL, mesg);
}
void
rb_interrupt(void)
{
rb_raise(rb_eInterrupt, "");
}
/*
* call-seq:
* raise
* raise(string)
* raise(exception [, string [, array]])
* fail
* fail(string)
* fail(exception [, string [, array]])
*
* With no arguments, raises the exception in <code>$!</code> or raises
* a <code>RuntimeError</code> if <code>$!</code> is +nil+.
* With a single +String+ argument, raises a
* +RuntimeError+ with the string as a message. Otherwise,
* the first parameter should be the name of an +Exception+
* class (or an object that returns an +Exception+ object when sent
* an +exception+ message). The optional second parameter sets the
* message associated with the exception, and the third parameter is an
* array of callback information. Exceptions are caught by the
* +rescue+ clause of <code>begin...end</code> blocks.
*
* raise "Failed to create socket"
* raise ArgumentError, "No parameters", caller
*/
static VALUE
rb_f_raise(int argc, VALUE *argv)
{
rb_raise_jump(rb_make_exception(argc, argv));
return Qnil; /* not reached */
}
static VALUE
rb_make_exception(int argc, VALUE *argv)
{
VALUE mesg;
ID exception;
int n;
mesg = Qnil;
switch (argc) {
case 0:
mesg = Qnil;
break;
case 1:
if (NIL_P(argv[0])) break;
if (TYPE(argv[0]) == T_STRING) {
mesg = rb_exc_new3(rb_eRuntimeError, argv[0]);
break;
}
n = 0;
goto exception_call;
case 2:
case 3:
n = 1;
exception_call:
exception = rb_intern("exception");
if (!rb_respond_to(argv[0], exception)) {
rb_raise(rb_eTypeError, "exception class/object expected");
}
mesg = rb_funcall(argv[0], exception, n, argv[1]);
break;
default:
rb_raise(rb_eArgError, "wrong number of arguments");
break;
}
if (argc > 0) {
if (!rb_obj_is_kind_of(mesg, rb_eException))
rb_raise(rb_eTypeError, "exception object expected");
if (argc>2)
set_backtrace(mesg, argv[2]);
}
return mesg;
}
static void
rb_raise_jump(VALUE mesg)
{
if (ruby_frame != top_frame) {
PUSH_FRAME(Qfalse); /* fake frame */
*ruby_frame = *_frame.prev->prev;
rb_longjmp(TAG_RAISE, mesg);
POP_FRAME();
}
rb_longjmp(TAG_RAISE, mesg);
}
void
rb_jump_tag(int tag)
{
JUMP_TAG(tag);
}
int
rb_block_given_p(void)
{
if (ruby_frame->block) return Qtrue;
return Qfalse;
}
int
rb_iterator_p(void)
{
return rb_block_given_p();
}
/*
* call-seq:
* block_given? => true or false
* iterator? => true or false
*
* Returns <code>true</code> if <code>yield</code> would execute a
* block in the current context. The <code>iterator?</code> form
* is mildly deprecated.
*
* def try
* if block_given?
* yield
* else
* "no block"
* end
* end
* try #=> "no block"
* try { "hello" } #=> "hello"
* try do "hello" end #=> "hello"
*/
static VALUE
rb_f_block_given_p(void)
{
if (ruby_frame->prev && ruby_frame->prev->block)
return Qtrue;
return Qfalse;
}
static VALUE rb_eThreadError;
NORETURN(static void proc_jump_error(int, VALUE));
static void
proc_jump_error(int state, VALUE result)
{
char mesg[32];
char *statement;
switch (state) {
case TAG_BREAK:
statement = "break"; break;
case TAG_RETURN:
statement = "return"; break;
case TAG_RETRY:
statement = "retry"; break;
default:
statement = "local-jump"; break; /* should not happen */
}
snprintf(mesg, sizeof mesg, "%s from proc-closure", statement);
localjump_error(mesg, result, state, 0);
}
NORETURN(static void return_jump(VALUE));
static void
return_jump(VALUE retval)
{
struct tag *tt = prot_tag;
int yield = Qfalse;
if (retval == Qundef) retval = Qnil;
while (tt) {
if (tt->tag == PROT_YIELD) {
yield = Qtrue;
tt = tt->prev;
}
if ((tt->tag == PROT_FUNC && tt->frame->uniq == ruby_frame->uniq) ||
(tt->tag == PROT_LAMBDA && !yield))
{
tt->dst = (VALUE)tt->frame->uniq;
tt->retval = retval;
JUMP_TAG(TAG_RETURN);
}
if (tt->tag == PROT_THREAD && tt->prev) {
rb_raise(rb_eThreadError, "return can't jump across threads");
}
tt = tt->prev;
}
localjump_error("unexpected return", retval, TAG_RETURN, 0);
}
static void
break_jump(VALUE retval)
{
struct tag *tt = prot_tag;
if (retval == Qundef) retval = Qnil;
while (tt) {
switch (tt->tag) {
case PROT_THREAD:
case PROT_YIELD:
case PROT_LOOP:
case PROT_LAMBDA:
tt->dst = (VALUE)tt->frame->uniq;
tt->retval = retval;
JUMP_TAG(TAG_BREAK);
break;
case PROT_FUNC:
tt = 0;
continue;
default:
break;
}
tt = tt->prev;
}
localjump_error("unexpected break", retval, TAG_BREAK, 0);
}
static VALUE bmcall(VALUE, VALUE);
static int method_arity(VALUE);
void
rb_need_block(void)
{
if (!rb_block_given_p()) {
localjump_error("no block given", Qnil, 0, 0);
}
}
static VALUE
rb_yield_0(VALUE val, VALUE self, VALUE klass /* OK */, int flags)
{
NODE *node, *var;
volatile VALUE result = Qnil;
volatile VALUE old_cref;
volatile VALUE old_wrapper;
struct BLOCK * volatile block;
struct SCOPE * volatile old_scope;
int old_vmode;
struct FRAME frame;
NODE *cnode = ruby_current_node;
int lambda = flags & YIELD_LAMBDA_CALL;
int state;
rb_need_block();
PUSH_VARS();
block = ruby_frame->block;
frame = block->frame;
frame.prev = ruby_frame;
frame.node = cnode;
ruby_frame = &(frame);
old_cref = (VALUE)ruby_cref;
ruby_cref = block->cref;
old_wrapper = ruby_wrapper;
ruby_wrapper = block->wrapper;
old_scope = ruby_scope;
ruby_scope = block->scope;
old_vmode = vis_mode;
vis_mode = (flags & YIELD_PUBLIC_DEF) ? VIS_PUBLIC : block->vmode;
if (block->flags & BLOCK_D_SCOPE) {
/* put place holder for dynamic (in-block) local variables */
ruby_dyna_vars = new_dvar(0, 0, block->dyna_vars);
}
else {
/* FOR does not introduce new scope */
ruby_dyna_vars = block->dyna_vars;
}
if (klass) PUSH_CREF(klass);
else {
self = block->self;
}
node = block->body;
var = block->var;
if (var) {
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
NODE *bvar = NULL;
block_var:
if (var == (NODE*)1) { /* no parameter || */
if (lambda && RARRAY(val)->len != 0) {
rb_raise(rb_eArgError, "wrong number of arguments (%ld for 0)",
RARRAY(val)->len);
}
}
else if (var == (NODE*)2) {
if (TYPE(val) == T_ARRAY && RARRAY(val)->len != 0) {
rb_raise(rb_eArgError, "wrong number of arguments (%ld for 0)",
RARRAY(val)->len);
}
}
else if (!bvar && nd_type(var) == NODE_BLOCK_PASS) {
bvar = var->nd_body;
var = var->nd_args;
goto block_var;
}
else if (nd_type(var) == NODE_ARGS) {
val = svalue_to_avalue(val);
formal_assign(self, var, RARRAY(val)->len, RARRAY(val)->ptr, 0);
}
else if (nd_type(var) == NODE_BLOCK) {
if (var->nd_next) {
bvar = var->nd_next->nd_head;
}
var = var->nd_head;
goto block_var;
}
else if (nd_type(var) == NODE_MASGN) {
massign(self, var, val, lambda);
}
else {
assign(self, var, val, lambda);
}
if (bvar) {
VALUE blk;
if (flags & YIELD_PROC_CALL)
blk = block->block_obj;
else
blk = rb_block_proc();
assign(self, bvar, blk, 0);
}
}
POP_TAG();
if (state) goto pop_state;
}
else if (lambda && RARRAY(val)->len != 0 &&
(!node || nd_type(node) != NODE_IFUNC ||
node->nd_cfnc != bmcall)) {
rb_raise(rb_eArgError, "wrong number of arguments (%ld for 0)",
RARRAY(val)->len);
}
if (!node) {
state = 0;
goto pop_state;
}
ruby_current_node = node;
PUSH_TAG(lambda ? PROT_NONE : PROT_YIELD);
if ((state = EXEC_TAG()) == 0) {
redo:
if (nd_type(node) == NODE_CFUNC || nd_type(node) == NODE_IFUNC) {
if (node->nd_state == YIELD_FUNC_AVALUE) {
val = svalue_to_avalue(val);
}
else {
if (val == Qundef && node->nd_state != YIELD_FUNC_SVALUE)
val = Qnil;
}
if ((block->flags&BLOCK_FROM_METHOD) && RTEST(block->block_obj)) {
struct BLOCK *data, _block;
Data_Get_Struct(block->block_obj, struct BLOCK, data);
_block = *data;
_block.uniq = block_unique++;
ruby_frame->block = &_block;
result = (*node->nd_cfnc)(val, node->nd_tval, self);
}
else {
result = (*node->nd_cfnc)(val, node->nd_tval, self);
}
}
else {
result = rb_eval(self, node);
}
}
else {
switch (state) {
case TAG_REDO:
state = 0;
CHECK_INTS;
goto redo;
case TAG_NEXT:
state = 0;
result = prot_tag->retval;
break;
case TAG_BREAK:
if (TAG_DST()) {
result = prot_tag->retval;
}
else {
lambda = Qtrue; /* just pass TAG_BREAK */
}
break;
default:
break;
}
}
POP_TAG();
pop_state:
if (ruby_dyna_vars && (block->flags & BLOCK_D_SCOPE) &&
!FL_TEST(ruby_dyna_vars, DVAR_DONT_RECYCLE)) {
struct RVarmap *vars = ruby_dyna_vars;
if (ruby_dyna_vars->id == 0) {
vars = ruby_dyna_vars->next;
rb_gc_force_recycle((VALUE)ruby_dyna_vars);
while (vars && vars->id != 0 && vars != block->dyna_vars) {
struct RVarmap *tmp = vars->next;
rb_gc_force_recycle((VALUE)vars);
vars = tmp;
}
}
}
POP_VARS();
ruby_frame = ruby_frame->prev;
ruby_cref = (NODE*)old_cref;
ruby_wrapper = old_wrapper;
if (ruby_scope->flags & SCOPE_DONT_RECYCLE)
scope_dup(old_scope);
ruby_scope = old_scope;
vis_mode = old_vmode;
switch (state) {
case 0:
break;
case TAG_BREAK:
if (!lambda) {
struct tag *tt = prot_tag;
while (tt) {
if (tt->tag == PROT_LOOP && tt->blkid == block->uniq) {
tt->dst = (VALUE)tt->frame->uniq;
tt->retval = result;
JUMP_TAG(TAG_BREAK);
}
tt = tt->prev;
}
proc_jump_error(TAG_BREAK, result);
}
/* fall through */
default:
JUMP_TAG(state);
break;
}
ruby_current_node = cnode;
return result;
}
VALUE
rb_yield(VALUE val)
{
return rb_yield_0(val, 0, 0, 0);
}
VALUE
rb_yield_values(int n, ...)
{
int i;
va_list args;
VALUE val;
if (n == 0) {
return rb_yield_0(Qundef, 0, 0, 0);
}
val = rb_ary_new4(n, 0);
va_start(args, n);
for (i=0; i<n; i++) {
RARRAY(val)->ptr[i] = va_arg(args, VALUE);
}
RARRAY(val)->len = n;
va_end(args);
return rb_yield_0(val, 0, 0, 0);
}
/*
* call-seq:
* loop {|| block }
*
* Repeatedly executes the block.
*
* loop do
* print "Input: "
* line = gets
* break if !line or line =~ /^qQ/
* # ...
* end
*/
static VALUE
rb_f_loop(void)
{
for (;;) {
rb_yield_0(Qundef, 0, 0, 0);
CHECK_INTS;
}
return Qnil; /* dummy */
}
static VALUE
massign(VALUE self, NODE *node, VALUE val, int pcall)
{
NODE *list;
long i = 0, len;
volatile VALUE tmp;
VALUE *argv;
if (val == Qundef) {
argv = 0;
len = 0;
}
else {
tmp = rb_check_array_type(val);
if (NIL_P(tmp)) {
argv = &val;
len = (val == Qundef) ? 0 : 1;
}
else {
argv = RARRAY(tmp)->ptr;
len = RARRAY(tmp)->len;
}
}
list = node->nd_head;
for (; list && i<len; i++) {
assign(self, list->nd_head, argv[i], pcall);
list = list->nd_next;
}
if (pcall && list) goto arg_error;
if (node->nd_args) {
if ((long)(node->nd_args) == -1) {
/* no check for mere `*' */
}
else if (!list && i<len) {
assign(self, node->nd_args, rb_ary_new4(len-i, argv+i), pcall);
}
else {
assign(self, node->nd_args, rb_ary_new2(0), pcall);
}
}
else if (pcall && i < len) {
goto arg_error;
}
while (list) {
i++;
assign(self, list->nd_head, Qnil, pcall);
list = list->nd_next;
}
return val;
arg_error:
while (list) {
i++;
list = list->nd_next;
}
rb_raise(rb_eArgError, "wrong number of arguments (%ld for %ld)", len, i);
}
static void
assign(VALUE self, NODE *lhs, VALUE val, int pcall)
{
ruby_current_node = lhs;
if (val == Qundef) {
rb_warning("assigning void value");
val = Qnil;
}
switch (nd_type(lhs)) {
case NODE_GASGN:
rb_gvar_set(lhs->nd_entry, val);
break;
case NODE_IASGN:
rb_ivar_set(self, lhs->nd_vid, val);
break;
case NODE_LASGN:
if (ruby_scope->local_vars == 0)
rb_bug("unexpected local variable assignment");
ruby_scope->local_vars[lhs->nd_cnt] = val;
break;
case NODE_DASGN:
dvar_asgn(lhs->nd_vid, val);
break;
case NODE_DASGN_CURR:
dvar_asgn_curr(lhs->nd_vid, val);
break;
case NODE_CDECL:
if (lhs->nd_vid == 0) {
rb_const_set(class_prefix(self, lhs->nd_else), lhs->nd_else->nd_mid, val);
}
else {
rb_const_set(ruby_cbase, lhs->nd_vid, val);
}
break;
case NODE_CVDECL:
if (RTEST(ruby_verbose) && FL_TEST(ruby_cbase, FL_SINGLETON)) {
rb_warn("declaring singleton class variable");
}
rb_cvar_set(cvar_cbase(), lhs->nd_vid, val, Qtrue);
break;
case NODE_CVASGN:
rb_cvar_set(cvar_cbase(), lhs->nd_vid, val, Qfalse);
break;
case NODE_MASGN:
massign(self, lhs, val, pcall);
break;
case NODE_CALL:
case NODE_ATTRASGN:
{
VALUE recv;
calling_scope_t scope;
if (lhs->nd_recv == (NODE *)1) {
recv = self;
scope = CALLING_FUNCALL;
}
else {
recv = rb_eval(self, lhs->nd_recv);
scope = CALLING_NORMAL;
}
if (!lhs->nd_args) {
/* attr set */
ruby_current_node = lhs;
SET_CURRENT_SOURCE();
rb_call(CLASS_OF(recv), recv, lhs->nd_mid, 1, &val, 0, scope,0);
}
else {
/* array set */
VALUE args;
args = rb_eval(self, lhs->nd_args);
rb_ary_push(args, val);
ruby_current_node = lhs;
SET_CURRENT_SOURCE();
rb_call(CLASS_OF(recv), recv, lhs->nd_mid,
RARRAY(args)->len, RARRAY(args)->ptr, 0, scope,0);
}
}
break;
case NODE_POSTARG:
{
NODE *v = lhs->nd_head;
int cnt;
VALUE *p;
if ((long)(lhs->nd_args) != -1) {
assign(self, lhs->nd_args, val, 0);
}
cnt = lhs->nd_head->nd_alen;
if (RARRAY(val)->len < cnt) {
if (pcall) {
rb_raise(rb_eArgError, "wrong number of arguments");
}
else {
while (RARRAY(val)->len < cnt) {
v = v->nd_next;
cnt--;
}
}
}
p = RARRAY(val)->ptr + RARRAY(val)->len - cnt;
while (cnt--) {
assign(self, v->nd_head, *p++, 0);
v = v->nd_next;
}
cnt = lhs->nd_head->nd_alen;
while (cnt--) {
rb_ary_pop(val);
}
}
break;
default:
rb_bug("bug in variable assignment");
break;
}
}
VALUE
rb_iterate(VALUE (*it_proc)(VALUE), VALUE data1, VALUE (*bl_proc)(ANYARGS), VALUE data2)
{
int state;
volatile VALUE retval = Qnil;
NODE *node = NEW_IFUNC(bl_proc, data2);
VALUE self = ruby_top_self;
PUSH_TAG(PROT_LOOP);
PUSH_FRAME(Qtrue);
PUSH_BLOCK(ruby_frame->block, 0, node);
state = EXEC_TAG();
if (state == 0) {
iter_retry:
retval = (*it_proc)(data1);
}
else if (state == TAG_BREAK && TAG_DST()) {
retval = prot_tag->retval;
state = 0;
}
else if (state == TAG_RETRY) {
state = 0;
goto iter_retry;
}
POP_BLOCK();
POP_FRAME();
POP_TAG();
switch (state) {
case 0:
break;
default:
JUMP_TAG(state);
}
return retval;
}
struct iter_method_arg {
VALUE obj;
ID mid;
int argc;
VALUE *argv;
};
static VALUE
iterate_method(VALUE obj)
{
struct iter_method_arg *arg;
arg = (struct iter_method_arg*)obj;
return rb_call(CLASS_OF(arg->obj), arg->obj, arg->mid, arg->argc, arg->argv,
ruby_frame->block, CALLING_FUNCALL,1);
}
VALUE
rb_block_call(VALUE obj, ID mid, int argc, VALUE *argv, VALUE (*bl_proc)(ANYARGS), VALUE data2)
{
struct iter_method_arg arg;
arg.obj = obj;
arg.mid = mid;
arg.argc = argc;
arg.argv = argv;
return rb_iterate(iterate_method, (VALUE)&arg, bl_proc, data2);
}
VALUE
rb_each(VALUE obj)
{
return rb_call(CLASS_OF(obj), obj, rb_intern("each"), 0, 0,
ruby_frame->block, CALLING_FUNCALL,1);
}
static int
handle_rescue(VALUE self, NODE *node)
{
CALLARGS;
TMP_PROTECT;
if (!node->nd_args) {
return rb_obj_is_kind_of(ruby_errinfo, rb_eStandardError);
}
SETUP_ARGS(node->nd_args);
while (argc--) {
if (!rb_obj_is_kind_of(argv[0], rb_cModule)) {
rb_raise(rb_eTypeError, "class or module required for rescue clause");
}
if (RTEST(rb_funcall(*argv, eqq, 1, ruby_errinfo))) return 1;
argv++;
}
return 0;
}
VALUE
rb_rescue2(VALUE (*b_proc)(ANYARGS), VALUE data1, VALUE (*r_proc)(ANYARGS), VALUE data2, ...)
{
int state;
volatile VALUE result;
volatile VALUE e_info = ruby_errinfo;
volatile int handle = Qfalse;
VALUE eclass;
va_list args;
PUSH_TAG(PROT_NONE);
switch (state = EXEC_TAG()) {
case TAG_RETRY:
if (!handle) break;
handle = Qfalse;
state = 0;
ruby_errinfo = Qnil;
case 0:
result = (*b_proc)(data1);
break;
case TAG_RAISE:
if (handle) break;
handle = Qfalse;
va_start(args, data2);
while (eclass = va_arg(args, VALUE)) {
if (rb_obj_is_kind_of(ruby_errinfo, eclass)) {
handle = Qtrue;
break;
}
}
va_end(args);
if (handle) {
state = 0;
if (r_proc) {
result = (*r_proc)(data2, ruby_errinfo);
}
else {
result = Qnil;
}
ruby_errinfo = e_info;
}
}
POP_TAG();
if (state) JUMP_TAG(state);
return result;
}
VALUE
rb_rescue(VALUE (*b_proc)(ANYARGS), VALUE data1, VALUE (*r_proc)(ANYARGS), VALUE data2)
{
return rb_rescue2(b_proc, data1, r_proc, data2, rb_eStandardError, (VALUE)0);
}
static VALUE cont_protect;
VALUE
rb_protect(VALUE (*proc) (VALUE), VALUE data, int *state)
{
VALUE result = Qnil; /* OK */
int status;
PUSH_THREAD_TAG();
cont_protect = (VALUE)rb_node_newnode(NODE_MEMO, cont_protect, 0, 0);
if ((status = EXEC_TAG()) == 0) {
result = (*proc)(data);
}
else if (status == TAG_THREAD) {
rb_thread_start_1();
}
cont_protect = ((NODE *)cont_protect)->u1.value;
POP_THREAD_TAG();
if (state) {
*state = status;
}
if (status != 0) {
return Qnil;
}
return result;
}
VALUE
rb_ensure(VALUE (*b_proc)(ANYARGS), VALUE data1, VALUE (*e_proc)(ANYARGS), VALUE data2)
{
int state;
volatile VALUE result = Qnil;
VALUE retval;
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
result = (*b_proc)(data1);
}
POP_TAG();
retval = prot_tag ? prot_tag->retval : Qnil; /* save retval */
(*e_proc)(data2);
if (prot_tag) return_value(retval);
if (state) JUMP_TAG(state);
return result;
}
VALUE
rb_with_disable_interrupt(VALUE (*proc)(ANYARGS), VALUE data)
{
VALUE result = Qnil; /* OK */
int status;
DEFER_INTS;
{
int thr_critical = rb_thread_critical;
rb_thread_critical = Qtrue;
PUSH_TAG(PROT_NONE);
if ((status = EXEC_TAG()) == 0) {
result = (*proc)(data);
}
POP_TAG();
rb_thread_critical = thr_critical;
}
ENABLE_INTS;
if (status) JUMP_TAG(status);
return result;
}
static inline void
stack_check(void)
{
static int overflowing = 0;
if (!overflowing && ruby_stack_check()) {
int state;
overflowing = 1;
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
rb_exc_raise(sysstack_error);
}
POP_TAG();
overflowing = 0;
JUMP_TAG(state);
}
}
static int last_call_status;
#define CSTAT_PRIV 1
#define CSTAT_PROT 2
#define CSTAT_VCALL 4
#define CSTAT_SUPER 8
/*
* call-seq:
* obj.method_missing(symbol [, *args] ) => result
*
* Invoked by Ruby when <i>obj</i> is sent a message it cannot handle.
* <i>symbol</i> is the symbol for the method called, and <i>args</i>
* are any arguments that were passed to it. By default, the interpreter
* raises an error when this method is called. However, it is possible
* to override the method to provide more dynamic behavior.
* The example below creates
* a class <code>Roman</code>, which responds to methods with names
* consisting of roman numerals, returning the corresponding integer
* values.
*
* class Roman
* def romanToInt(str)
* # ...
* end
* def method_missing(methId)
* str = methId.id2name
* romanToInt(str)
* end
* end
*
* r = Roman.new
* r.iv #=> 4
* r.xxiii #=> 23
* r.mm #=> 2000
*/
static VALUE
rb_method_missing(int argc, const VALUE *argv, VALUE obj)
{
ID id;
VALUE exc = rb_eNoMethodError;
char *format = 0;
NODE *cnode = ruby_current_node;
if (argc == 0 || !SYMBOL_P(argv[0])) {
rb_raise(rb_eArgError, "no id given");
}
stack_check();
id = SYM2ID(argv[0]);
if (last_call_status & CSTAT_PRIV) {
format = "private method `%s' called for %s";
}
else if (last_call_status & CSTAT_PROT) {
format = "protected method `%s' called for %s";
}
else if (last_call_status & CSTAT_VCALL) {
format = "undefined local variable or method `%s' for %s";
exc = rb_eNameError;
}
else if (last_call_status & CSTAT_SUPER) {
format = "super: no superclass method `%s'";
}
if (!format) {
format = "undefined method `%s' for %s";
}
ruby_current_node = cnode;
{
int n = 0;
VALUE args[3];
args[n++] = rb_funcall(rb_const_get(exc, rb_intern("message")), '!',
3, rb_str_new2(format), obj, argv[0]);
args[n++] = argv[0];
if (exc == rb_eNoMethodError) {
args[n++] = rb_ary_new4(argc-1, argv+1);
}
exc = rb_class_new_instance(n, args, exc);
ruby_frame = ruby_frame->prev; /* pop frame for "method_missing" */
rb_exc_raise(exc);
}
return Qnil; /* not reached */
}
static VALUE
method_missing(VALUE obj, ID id, int argc, const VALUE *argv,
struct BLOCK *block, int call_status)
{
VALUE *nargv;
last_call_status = call_status;
if (id == missing) {
PUSH_FRAME(Qfalse);
ruby_frame->block = block;
rb_method_missing(argc, argv, obj);
POP_FRAME();
}
else if (id == ID_ALLOCATOR) {
rb_raise(rb_eTypeError, "allocator undefined for %s", rb_class2name(obj));
}
if (argc < 0) {
VALUE tmp;
argc = -argc-1;
tmp = svalue_to_avalue(argv[argc]);
nargv = ALLOCA_N(VALUE, argc + RARRAY(tmp)->len + 1);
MEMCPY(nargv+1, argv, VALUE, argc);
MEMCPY(nargv+1+argc, RARRAY(tmp)->ptr, VALUE, RARRAY(tmp)->len);
argc += RARRAY(tmp)->len;
}
else {
nargv = ALLOCA_N(VALUE, argc+1);
MEMCPY(nargv+1, argv, VALUE, argc);
}
nargv[0] = ID2SYM(id);
return rb_call(CLASS_OF(obj), obj, missing, argc+1, nargv, block, CALLING_FUNCALL, 0);
}
static inline VALUE
call_cfunc(VALUE (*func)(ANYARGS), VALUE recv, int len, int argc, const VALUE *argv)
{
if (len >= 0 && argc != len) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)",
argc, len);
}
switch (len) {
case -2:
return (*func)(recv, rb_ary_new4(argc, argv));
break;
case -1:
return (*func)(argc, argv, recv);
break;
case 0:
return (*func)(recv);
break;
case 1:
return (*func)(recv, argv[0]);
break;
case 2:
return (*func)(recv, argv[0], argv[1]);
break;
case 3:
return (*func)(recv, argv[0], argv[1], argv[2]);
break;
case 4:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3]);
break;
case 5:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4]);
break;
case 6:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5]);
break;
case 7:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6]);
break;
case 8:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7]);
break;
case 9:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8]);
break;
case 10:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9]);
break;
case 11:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9], argv[10]);
break;
case 12:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9],
argv[10], argv[11]);
break;
case 13:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9], argv[10],
argv[11], argv[12]);
break;
case 14:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9], argv[10],
argv[11], argv[12], argv[13]);
break;
case 15:
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9], argv[10],
argv[11], argv[12], argv[13], argv[14]);
break;
default:
rb_raise(rb_eArgError, "too many arguments (%d)", len);
break;
}
return Qnil; /* not reached */
}
static int
formal_assign(VALUE recv, NODE *node, int argc, const VALUE *argv, VALUE *local_vars)
{
int i;
int nopt = 0;
if (nd_type(node) != NODE_ARGS) {
rb_bug("no argument-node");
}
i = node->nd_frml ? RARRAY(node->nd_frml)->len : 0;
if (i > argc) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, i);
}
if (!node->nd_rest) {
NODE *optnode = node->nd_opt;
nopt = i;
while (optnode) {
nopt++;
optnode = optnode->nd_next;
}
if (nopt < argc) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, nopt);
}
}
if (local_vars) {
if (i > 0) {
/* +2 for $_ and $~ */
MEMCPY(local_vars+2, argv, VALUE, i);
}
}
else {
int j;
VALUE a = node->nd_frml;
for (j=0; j<i; j++) {
dvar_asgn_curr(SYM2ID(RARRAY(a)->ptr[j]), argv[j]);
}
}
argv += i; argc -= i;
if (node->nd_opt) {
NODE *opt = node->nd_opt;
while (opt && argc) {
assign(recv, opt->nd_head, *argv, 1);
argv++; argc--;
++i;
opt = opt->nd_next;
}
if (opt) {
rb_eval(recv, opt);
}
}
if (!node->nd_rest) {
i = nopt;
}
else {
VALUE v;
if (argc > 0) {
int n = 1;
v = rb_ary_new4(argc,argv);
if (nd_type(node->nd_rest) == NODE_POSTARG) {
n += node->nd_rest->nd_head->nd_alen;
}
i += n*256;
}
else {
v = rb_ary_new2(0);
}
assign(recv, node->nd_rest, v, 1);
}
return i;
}
#define PUSH_METHOD_FRAME() \
PUSH_FRAME(Qfalse);\
ruby_frame->callee = id;\
ruby_frame->this_func = oid;\
ruby_frame->this_class = (flags & NOEX_NOSUPER)?0:klass;\
ruby_frame->self = recv;\
ruby_frame->argc = argc;\
ruby_frame->block = block;\
ruby_frame->flags = (flags & NOEX_RECV) ? FRAME_FUNC : 0;
static VALUE
rb_call0(VALUE klass, VALUE recv, ID id, ID oid,
int argc /* OK */, const VALUE *argv /* OK */,
struct BLOCK *block,
NODE *volatile body, int flags)
{
NODE *b2; /* OK */
volatile VALUE result = Qnil;
static int tick;
volatile VALUE args;
volatile int safe = -1;
TMP_PROTECT;
if (NOEX_SAFE(flags) > ruby_safe_level &&
ruby_safe_level == 0 && NOEX_SAFE(flags) > 2) {
rb_raise(rb_eSecurityError, "calling insecure method: %s",
rb_id2name(id));
}
if ((++tick & 0xff) == 0) {
CHECK_INTS; /* better than nothing */
stack_check();
rb_gc_finalize_deferred();
}
if (argc >= 256) {
VALUE tmp;
VALUE *nargv;
int n = argc / 256 - 1;
argc %= 256;
tmp = svalue_to_avalue(argv[argc]);
nargv = TMP_ALLOC(argc + RARRAY(tmp)->len + n);
MEMCPY(nargv, argv, VALUE, argc);
MEMCPY(nargv+argc, RARRAY(tmp)->ptr, VALUE, RARRAY(tmp)->len);
MEMCPY(nargv + argc + RARRAY(tmp)->len, argv + argc + 1, VALUE, n);
argc += RARRAY(tmp)->len + n;
argv = nargv;
}
switch (nd_type(body)) {
case NODE_CFUNC:
{
int len = body->nd_argc;
if (len < -2) {
rb_bug("bad argc (%d) specified for `%s(%s)'",
len, rb_class2name(klass), rb_id2name(id));
}
PUSH_METHOD_FRAME();
if (event_hooks) {
int state;
EXEC_EVENT_HOOK(RUBY_EVENT_C_CALL, ruby_current_node,
recv, id, klass);
PUSH_TAG(PROT_FUNC);
if ((state = EXEC_TAG()) == 0) {
result = call_cfunc(body->nd_cfnc, recv, len, argc, argv);
}
POP_TAG();
ruby_current_node = ruby_frame->node;
EXEC_EVENT_HOOK(RUBY_EVENT_C_RETURN, ruby_current_node,
recv, id, klass);
if (state) JUMP_TAG(state);
}
else {
result = call_cfunc(body->nd_cfnc, recv, len, argc, argv);
}
POP_FRAME();
}
break;
/* for attr get/set */
case NODE_IVAR:
if (argc != 0) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc);
}
result = rb_attr_get(recv, body->nd_vid);
break;
case NODE_ATTRSET:
if (argc != 1)
rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc);
result = rb_ivar_set(recv, body->nd_vid, argv[0]);
break;
case NODE_ZSUPER: /* visibility override */
result = call_super_0(klass, recv, oid, argc, argv, block);
break;
case NODE_BMETHOD:
PUSH_METHOD_FRAME();
ruby_frame->flags |= FRAME_DMETH;
result = proc_invoke(body->nd_cval, rb_ary_new4(argc, argv), recv, klass, 1);
POP_FRAME();
break;
case NODE_SCOPE:
{
int state;
VALUE *local_vars; /* OK */
NODE *saved_cref = 0;
PUSH_METHOD_FRAME();
PUSH_SCOPE();
if (body->nd_rval) {
saved_cref = ruby_cref;
ruby_cref = (NODE*)body->nd_rval;
}
if (body->nd_tbl) {
local_vars = TMP_ALLOC(body->nd_tbl[0]+1);
*local_vars++ = (VALUE)body;
rb_mem_clear(local_vars, body->nd_tbl[0]);
ruby_scope->local_tbl = body->nd_tbl;
ruby_scope->local_vars = local_vars;
}
else {
local_vars = ruby_scope->local_vars = 0;
ruby_scope->local_tbl = 0;
}
b2 = body = body->nd_next;
if (NOEX_SAFE(flags) > ruby_safe_level) {
safe = ruby_safe_level;
ruby_safe_level = NOEX_SAFE(flags);
}
PUSH_VARS();
PUSH_TAG(PROT_FUNC);
if ((state = EXEC_TAG()) == 0) {
NODE *node = 0;
if (nd_type(body) == NODE_ARGS) {
node = body;
body = 0;
}
else if (nd_type(body) == NODE_BLOCK) {
node = body->nd_head;
body = body->nd_next;
}
if (node) {
ruby_frame->argc =
formal_assign(recv, node, argc, argv, local_vars);
}
if (event_hooks) {
EXEC_EVENT_HOOK(RUBY_EVENT_CALL, b2, recv, id, klass);
}
result = rb_eval(recv, body);
}
else if (state == TAG_RETURN && TAG_DST()) {
result = prot_tag->retval;
state = 0;
}
POP_TAG();
if (event_hooks) {
EXEC_EVENT_HOOK(RUBY_EVENT_RETURN, body, recv, id, klass);
}
POP_VARS();
POP_SCOPE();
ruby_cref = saved_cref;
if (safe >= 0) ruby_safe_level = safe;
POP_FRAME();
switch (state) {
case 0:
break;
case TAG_BREAK:
case TAG_RETURN:
JUMP_TAG(state);
break;
case TAG_RETRY:
if (block) JUMP_TAG(state);
/* fall through */
default:
jump_tag_but_local_jump(state, result);
break;
}
}
break;
default:
unknown_node(body);
break;
}
return result;
}
static VALUE
rb_call(VALUE klass, VALUE recv, ID mid,
int argc /* OK */, const VALUE *argv /* OK */, struct BLOCK *block,
calling_scope_t scope, int iter)
{
NODE *body; /* OK */
int noex;
ID id = mid;
struct cache_entry *ent;
if (!klass) {
rb_raise(rb_eNotImpError, "method `%s' called on terminated object (%p)",
rb_id2name(mid), (void*)recv);
}
switch (scope) {
case CALLING_FCALL:
case CALLING_VCALL:
if (recv == ruby_frame->self) {
noex = LOOKUP_FCALL;
break;
}
/* fall thtough */
default:
noex = LOOKUP_NORMAL;
break;
}
/* is it in the method cache? */
ent = cache[noex] + EXPR1(klass, mid);
if (ent->mid == mid && ent->klass == klass) {
if (!ent->method)
return method_missing(recv, mid, argc, argv, block,
scope==CALLING_VCALL?CSTAT_VCALL:0);
klass = ent->origin;
id = ent->mid0;
noex = ent->noex;
body = ent->method;
}
else if ((body = rb_get_method_body(&klass, &id, &noex)) == 0) {
if (scope == CALLING_SUPER) {
return method_missing(recv, mid, argc, argv, block, CSTAT_SUPER);
}
return method_missing(recv, mid, argc, argv, block, scope==CALLING_VCALL?CSTAT_VCALL:0);
}
if (mid != missing && scope == CALLING_NORMAL) {
/* receiver specified form for private method */
if (noex & NOEX_PRIVATE)
return method_missing(recv, mid, argc, argv, block, CSTAT_PRIV);
/* self must be kind of a specified form for protected method */
if (noex & NOEX_PROTECTED) {
VALUE defined_class = klass;
if (TYPE(defined_class) == T_ICLASS) {
defined_class = RBASIC(defined_class)->klass;
}
if (!rb_obj_is_kind_of(ruby_frame->self, rb_class_real(defined_class)))
return method_missing(recv, mid, argc, argv, block, CSTAT_PROT);
}
}
if (scope > CALLING_NORMAL) { /* pass receiver info */
noex |= NOEX_RECV;
}
if (block && !iter) {
VALUE result;
int state;
PUSH_TAG(PROT_LOOP);
prot_tag->blkid = block->uniq;
state = EXEC_TAG();
if (state == 0) {
retry:
result = rb_call0(klass, recv, mid, id, argc, argv, block, body, noex);
}
else if (state == TAG_BREAK && TAG_DST()) {
result = prot_tag->retval;
state = 0;
}
POP_TAG();
if (state) JUMP_TAG(state);
return result;
}
else {
return rb_call0(klass, recv, mid, id, argc, argv, block, body, noex);
}
}
VALUE
rb_apply(VALUE recv, ID mid, VALUE args)
{
int argc;
VALUE *argv;
argc = RARRAY(args)->len; /* Assigns LONG, but argc is INT */
argv = ALLOCA_N(VALUE, argc);
MEMCPY(argv, RARRAY(args)->ptr, VALUE, argc);
return rb_call(CLASS_OF(recv), recv, mid, argc, argv, 0, CALLING_FUNCALL, 0);
}
static VALUE
send_funcall(int argc, VALUE *argv, VALUE recv, calling_scope_t scope)
{
VALUE vid;
if (argc == 0) rb_raise(rb_eArgError, "no method name given");
vid = *argv++; argc--;
vid = rb_call(CLASS_OF(recv), recv, rb_to_id(vid), argc, argv,
ruby_frame->block, scope, 1);
return vid;
}
/*
* call-seq:
* obj.send(symbol [, args...]) => obj
* obj.__send__(symbol [, args...]) => obj
*
* Invokes the method identified by _symbol_, passing it any
* arguments specified. You can use <code>\_\_send__</code> if the name
* +send+ clashes with an existing method in _obj_. Raises an
* NoMethodError exception for private methods except when it is
* called in function call style.
*
* class Klass
* def hello(*args)
* "Hello " + args.join(' ')
* end
* end
* k = Klass.new
* k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
*
* 1.send(:puts, "foo") # NoMethodError exception
* send(:puts, "foo") # prints "foo"
*/
static VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
calling_scope_t scope;
if (ruby_frame->flags & FRAME_FUNC) {
scope = CALLING_FCALL;
}
else {
scope = CALLING_NORMAL;
}
return send_funcall(argc, argv, recv, scope);
}
/*
* call-seq:
* obj.funcall(symbol [, args...]) => obj
*
* Invokes the method identified by _symbol_, passing it any
* arguments specified. Unlike send, which calls private methods only
* when it is invoked in function call style, funcall always aware of
* private methods.
*
* 1.funcall(:puts, "hello") # prints "foo"
*/
static VALUE
rb_f_funcall(int argc, VALUE *argv, VALUE recv)
{
return send_funcall(argc, argv, recv, CALLING_FUNCALL);
}
VALUE
rb_funcall(VALUE recv, ID mid, int n, ...)
{
VALUE *argv;
va_list ar;
va_start(ar, n);
if (n > 0) {
long i;
argv = ALLOCA_N(VALUE, n);
for (i=0;i<n;i++) {
argv[i] = va_arg(ar, VALUE);
}
va_end(ar);
}
else {
argv = 0;
}
return rb_call(CLASS_OF(recv), recv, mid, n, argv, 0, CALLING_FUNCALL, 0);
}
VALUE
rb_funcall2(VALUE recv, ID mid, int argc, const VALUE *argv)
{
return rb_call(CLASS_OF(recv), recv, mid, argc, argv, 0, CALLING_FUNCALL, 0);
}
VALUE
rb_funcall3(VALUE recv, ID mid, int argc, const VALUE *argv)
{
return rb_call(CLASS_OF(recv), recv, mid, argc, argv, 0, CALLING_NORMAL, 0);
}
static VALUE
call_super_0(VALUE klass, VALUE self, ID mid,
int argc, const VALUE *argv, struct BLOCK *block)
{
if (RCLASS(klass)->super == 0) {
return method_missing(self, mid, argc, argv, block, CSTAT_SUPER);
}
return rb_call(RCLASS(klass)->super, self, mid, argc, argv, block, CALLING_SUPER, 1);
}
static VALUE
call_super(int argc, const VALUE *argv, struct BLOCK *block)
{
if (ruby_frame->this_class == 0) {
rb_name_error(ruby_frame->callee, "calling `super' from `%s' is prohibited",
rb_id2name(ruby_frame->this_func));
}
return call_super_0(ruby_frame->this_class, ruby_frame->self,
ruby_frame->this_func, argc, argv, block);
}
VALUE
rb_call_super(int argc, const VALUE *argv)
{
return call_super(argc, argv, ruby_frame->block);
}
static VALUE
backtrace(int lev)
{
struct FRAME *frame = ruby_frame;
VALUE str;
volatile VALUE ary;
NODE *n;
ary = rb_ary_new();
if (frame->this_func == ID_ALLOCATOR) {
frame = frame->prev;
}
if (lev < 0) {
str = error_line(frame, 0);
rb_ary_push(ary, str);
if (lev < -1) return ary;
}
else {
while (lev-- > 0) {
frame = frame->prev;
if (!frame) {
ary = Qnil;
break;
}
}
}
for (; frame && (n = frame->node); frame = frame->prev) {
if (frame->prev && frame->prev->this_func) {
if (frame->prev->node == n) continue;
str = error_line(frame->prev, n);
}
else {
str = rb_sprintf("%s:%d", n->nd_file, nd_line(n));
}
rb_ary_push(ary, str);
}
return ary;
}
/*
* call-seq:
* caller(start=1) => array
*
* Returns the current execution stack---an array containing strings in
* the form ``<em>file:line</em>'' or ``<em>file:line: in
* `method'</em>''. The optional <i>start</i>_ parameter
* determines the number of initial stack entries to omit from the
* result.
*
* def a(skip)
* caller(skip)
* end
* def b(skip)
* a(skip)
* end
* def c(skip)
* b(skip)
* end
* c(0) #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10"]
* c(1) #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11"]
* c(2) #=> ["prog:8:in `c'", "prog:12"]
* c(3) #=> ["prog:13"]
*/
static VALUE
rb_f_caller(int argc, VALUE *argv)
{
VALUE level;
int lev;
rb_scan_args(argc, argv, "01", &level);
if (NIL_P(level)) lev = 1;
else lev = NUM2INT(level);
if (lev < 0) rb_raise(rb_eArgError, "negative level (%d)", lev);
return backtrace(lev);
}
void
rb_backtrace(void)
{
long i;
VALUE ary;
ary = backtrace(-1);
for (i=0; i<RARRAY(ary)->len; i++) {
printf("\tfrom %s\n", RSTRING(RARRAY(ary)->ptr[i])->ptr);
}
}
static VALUE
make_backtrace(void)
{
return backtrace(-1);
}
ID
rb_frame_this_func(void)
{
return ruby_frame->this_func;
}
static NODE*
compile(VALUE src, const char *file, int line)
{
NODE *node;
int critical;
ruby_nerrs = 0;
StringValue(src);
critical = rb_thread_critical;
rb_thread_critical = Qtrue;
node = rb_compile_string(file, src, line);
rb_thread_critical = critical;
if (ruby_nerrs == 0) return node;
return 0;
}
static VALUE
eval(VALUE self, VALUE src, VALUE scope, const char *file, int line)
{
struct BLOCK *data = NULL;
volatile VALUE result = Qnil;
struct SCOPE * volatile old_scope;
struct RVarmap * volatile old_dyna_vars;
VALUE volatile old_cref;
int volatile old_vmode;
volatile VALUE old_wrapper;
struct FRAME frame;
NODE *nodesave = ruby_current_node;
volatile int safe = ruby_safe_level;
int state;
if (!NIL_P(scope)) {
if (!rb_obj_is_proc(scope)) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Binding)",
rb_obj_classname(scope));
}
Data_Get_Struct(scope, struct BLOCK, data);
/* PUSH BLOCK from data */
frame = data->frame;
frame.tmp = ruby_frame; /* gc protection */
ruby_frame = &(frame);
old_scope = ruby_scope;
ruby_scope = data->scope;
old_dyna_vars = ruby_dyna_vars;
ruby_dyna_vars = data->dyna_vars;
old_vmode = vis_mode;
vis_mode = data->vmode;
old_cref = (VALUE)ruby_cref;
ruby_cref = data->cref;
old_wrapper = ruby_wrapper;
ruby_wrapper = data->wrapper;
if ((file == 0 || (line == 1 && strcmp(file, "(eval)") == 0)) && data->frame.node) {
file = data->frame.node->nd_file;
if (!file) file = "__builtin__";
line = nd_line(data->frame.node);
}
self = data->self;
}
if (file == 0) {
ruby_set_current_source();
file = ruby_sourcefile;
line = ruby_sourceline;
}
ruby_in_eval++;
if (TYPE(ruby_cbase) == T_ICLASS) {
ruby_cbase = RBASIC(ruby_cbase)->klass;
}
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
NODE *node;
ruby_safe_level = 0;
result = ruby_errinfo;
ruby_errinfo = Qnil;
node = compile(src, file, line);
ruby_safe_level = safe;
if (ruby_nerrs > 0) {
compile_error(0);
}
if (!NIL_P(result)) ruby_errinfo = result;
result = eval_node(self, node);
}
POP_TAG();
ruby_in_eval--;
if (!NIL_P(scope)) {
int dont_recycle = ruby_scope->flags & SCOPE_DONT_RECYCLE;
ruby_wrapper = old_wrapper;
ruby_cref = (NODE*)old_cref;
ruby_frame = frame.tmp;
ruby_scope = old_scope;
ruby_dyna_vars = old_dyna_vars;
vis_mode = old_vmode;
if (dont_recycle) {
struct tag *tag;
struct RVarmap *vars;
scope_dup(ruby_scope);
for (tag=prot_tag; tag; tag=tag->prev) {
scope_dup(tag->scope);
}
for (vars = ruby_dyna_vars; vars; vars = vars->next) {
FL_SET(vars, DVAR_DONT_RECYCLE);
}
}
}
ruby_current_node = nodesave;
ruby_set_current_source();
if (state) {
if (state == TAG_RAISE) {
if (strcmp(file, "(eval)") == 0) {
VALUE mesg, errat;
errat = get_backtrace(ruby_errinfo);
mesg = rb_attr_get(ruby_errinfo, rb_intern("mesg"));
if (!NIL_P(errat) && TYPE(errat) == T_ARRAY) {
if (!NIL_P(mesg) && TYPE(mesg) == T_STRING) {
rb_str_update(mesg, 0, 0, rb_str_new2(": "));
rb_str_update(mesg, 0, 0, RARRAY(errat)->ptr[0]);
}
RARRAY(errat)->ptr[0] = RARRAY(backtrace(-2))->ptr[0];
}
}
rb_exc_raise(ruby_errinfo);
}
JUMP_TAG(state);
}
return result;
}
/*
* call-seq:
* eval(string [, binding [, filename [,lineno]]]) => obj
*
* Evaluates the Ruby expression(s) in <em>string</em>. If
* <em>binding</em> is given, the evaluation is performed in its
* context. The binding may be a <code>Binding</code> object or a
* <code>Proc</code> object. If the optional <em>filename</em> and
* <em>lineno</em> parameters are present, they will be used when
* reporting syntax errors.
*
* def getBinding(str)
* return binding
* end
* str = "hello"
* eval "str + ' Fred'" #=> "hello Fred"
* eval "str + ' Fred'", getBinding("bye") #=> "bye Fred"
*/
static VALUE
rb_f_eval(int argc, VALUE *argv, VALUE self)
{
VALUE src, scope, vfile, vline;
const char *file = "(eval)";
int line = 1;
rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline);
if (ruby_safe_level >= 4) {
StringValue(src);
if (!NIL_P(scope) && !OBJ_TAINTED(scope)) {
rb_raise(rb_eSecurityError, "Insecure: can't modify trusted binding");
}
}
else {
SafeStringValue(src);
}
if (argc >= 3) {
StringValue(vfile);
}
if (argc >= 4) {
line = NUM2INT(vline);
}
if (!NIL_P(vfile)) file = RSTRING(vfile)->ptr;
if (NIL_P(scope) && ruby_frame->prev) {
struct FRAME *prev;
VALUE val;
prev = ruby_frame;
PUSH_FRAME(Qfalse);
*ruby_frame = *prev->prev;
ruby_frame->prev = prev;
val = eval(self, src, scope, file, line);
POP_FRAME();
return val;
}
return eval(self, src, scope, file, line);
}
/* function to call func under the specified class/module context */
static VALUE
exec_under(VALUE (*func) (VALUE), VALUE under, VALUE args)
{
VALUE val = Qnil; /* OK */
int state;
int mode;
struct FRAME *f = ruby_frame;
PUSH_CREF(under);
PUSH_FRAME(Qtrue);
ruby_frame->self = f->self;
ruby_frame->callee = f->callee;
ruby_frame->this_func = f->this_func;
ruby_frame->this_class = f->this_class;
ruby_frame->argc = f->argc;
mode = vis_mode;
VIS_SET(VIS_PUBLIC);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
val = (*func)(args);
}
POP_TAG();
POP_CREF();
VIS_SET(mode);
POP_FRAME();
if (state) JUMP_TAG(state);
return val;
}
static VALUE
eval_under_i(VALUE arg)
{
VALUE *args = (VALUE *)arg;
struct FRAME *f = ruby_frame;
if (f && (f = f->prev) && (f = f->prev)) {
ruby_frame = f;
}
return eval(args[0], args[1], Qnil, (char*)args[2], (int)args[3]);
}
/* string eval under the class/module context */
static VALUE
eval_under(VALUE under, VALUE self, VALUE src, const char *file, int line)
{
VALUE args[4];
if (ruby_safe_level >= 4) {
StringValue(src);
}
else {
SafeStringValue(src);
}
args[0] = self;
args[1] = src;
args[2] = (VALUE)file;
args[3] = (VALUE)line;
return exec_under(eval_under_i, under, (VALUE)args);
}
static VALUE
yield_under_i(VALUE arg)
{
VALUE *args = (VALUE *)arg;
return rb_yield_0(args[0], args[1], ruby_cbase, YIELD_PUBLIC_DEF);
}
/* block eval under the class/module context */
static VALUE
yield_under(VALUE under, VALUE self, VALUE values)
{
VALUE args[2];
args[0] = values;
args[1] = self;
return exec_under(yield_under_i, under, (VALUE)args);
}
static VALUE
specific_eval(int argc, VALUE *argv, VALUE klass, VALUE self)
{
if (rb_block_given_p()) {
if (argc > 0) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc);
}
return yield_under(klass, self, Qundef);
}
else {
const char *file = "(eval)";
int line = 1;
if (argc == 0) {
rb_raise(rb_eArgError, "block not supplied");
}
else {
if (ruby_safe_level >= 4) {
StringValue(argv[0]);
}
else {
SafeStringValue(argv[0]);
}
if (argc > 3) {
rb_raise(rb_eArgError, "wrong number of arguments: %s(src) or %s{..}",
rb_id2name(ruby_frame->callee),
rb_id2name(ruby_frame->callee));
}
if (argc > 2) line = NUM2INT(argv[2]);
if (argc > 1) {
file = StringValuePtr(argv[1]);
}
}
return eval_under(klass, self, argv[0], file, line);
}
}
/*
* call-seq:
* obj.instance_eval(string [, filename [, lineno]] ) => obj
* obj.instance_eval {| | block } => obj
*
* Evaluates a string containing Ruby source code, or the given block,
* within the context of the receiver (_obj_). In order to set the
* context, the variable +self+ is set to _obj_ while
* the code is executing, giving the code access to _obj_'s
* instance variables. In the version of <code>instance_eval</code>
* that takes a +String+, the optional second and third
* parameters supply a filename and starting line number that are used
* when reporting compilation errors. Note that, if a Proc that is
* converted from a Method object is given as the block,
* <code>instance_eval</code> will not change the context of this
* block and it will be evaluated in Method object's original context.
*
* class Klass
* def initialize
* @secret = 99
* end
* end
* k = Klass.new
* k.instance_eval { @secret } #=> 99
*/
VALUE
rb_obj_instance_eval(int argc, VALUE *argv, VALUE self)
{
VALUE klass;
if (SPECIAL_CONST_P(self)) {
klass = Qnil;
}
else {
klass = rb_singleton_class(self);
}
return specific_eval(argc, argv, klass, self);
}
/*
* call-seq:
* obj.instance_exec(arg...) {|var...| block } => obj
*
* Executes the given block within the context of the receiver
* (_obj_). In order to set the context, the variable +self+ is set
* to _obj_ while the code is executing, giving the code access to
* _obj_'s instance variables. Arguments are passed as block parameters.
*
* class Klass
* def initialize
* @secret = 99
* end
* end
* k = Klass.new
* k.instance_exec(5) {|x| @secret+x } #=> 104
*/
VALUE
rb_obj_instance_exec(int argc, VALUE *argv, VALUE self)
{
VALUE klass;
if (SPECIAL_CONST_P(self)) {
klass = Qnil;
}
else {
klass = rb_singleton_class(self);
}
return yield_under(klass, self, rb_ary_new4(argc, argv));
}
/*
* call-seq:
* mod.class_eval(string [, filename [, lineno]]) => obj
* mod.module_eval {|| block } => obj
*
* Evaluates the string or block in the context of _mod_. This can
* be used to add methods to a class. <code>module_eval</code> returns
* the result of evaluating its argument. The optional _filename_
* and _lineno_ parameters set the text for error messages.
*
* class Thing
* end
* a = %q{def hello() "Hello there!" end}
* Thing.module_eval(a)
* puts Thing.new.hello()
* Thing.module_eval("invalid code", "dummy", 123)
*
* <em>produces:</em>
*
* Hello there!
* dummy:123:in `module_eval': undefined local variable
* or method `code' for Thing:Class
*/
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
/*
* call-seq:
* mod.module_exec(arg...) {|var...| block } => obj
* mod.class_exec(arg...) {|var...| block } => obj
*
* Evaluates the given block in the context of the class/module.
* The method defined in the block will belong to the receiver.
*
* class Thing
* end
* Thing.class_exec{
* def hello() "Hello there!" end
* }
* puts Thing.new.hello()
*
* <em>produces:</em>
*
* Hello there!
*/
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
VALUE rb_load_path;
NORETURN(static void load_failed(VALUE));
void
rb_load(VALUE fname, int wrap)
{
VALUE tmp;
int state;
volatile int prohibit_int = rb_prohibit_interrupt;
volatile ID callee, this_func;
volatile VALUE wrapper = ruby_wrapper;
volatile VALUE self = ruby_top_self;
NODE * volatile last_node;
NODE *saved_cref = ruby_cref;
TMP_PROTECT;
if (!wrap) rb_secure(4);
FilePathValue(fname);
fname = rb_str_new4(fname);
tmp = rb_find_file(fname);
if (!tmp) {
load_failed(fname);
}
fname = tmp;
ruby_errinfo = Qnil; /* ensure */
PUSH_VARS();
ruby_cref = top_cref;
if (!wrap) {
rb_secure(4); /* should alter global state */
ruby_wrapper = 0;
}
else {
/* load in anonymous module as toplevel */
ruby_wrapper = rb_module_new();
self = rb_obj_clone(ruby_top_self);
rb_extend_object(self, ruby_wrapper);
PUSH_CREF(ruby_wrapper);
/* default visibility is private at loading toplevel */
VIS_SET(VIS_PRIVATE);
}
PUSH_FRAME(Qfalse);
ruby_frame->self = self;
PUSH_SCOPE();
PUSH_TAG(PROT_NONE);
/* default visibility is private at loading toplevel */
VIS_SET(VIS_PRIVATE);
state = EXEC_TAG();
callee = ruby_frame->callee;
this_func = ruby_frame->this_func;
last_node = ruby_current_node;
if (!ruby_current_node && ruby_sourcefile) {
last_node = NEW_BEGIN(0);
}
ruby_current_node = 0;
if (state == 0) {
NODE * volatile node;
volatile int critical;
DEFER_INTS;
ruby_in_eval++;
critical = rb_thread_critical;
rb_thread_critical = Qtrue;
rb_load_file(RSTRING(fname)->ptr);
ruby_in_eval--;
node = ruby_eval_tree;
rb_thread_critical = critical;
ALLOW_INTS;
if (ruby_nerrs == 0) {
eval_node(self, node);
}
}
ruby_frame->callee = callee;
ruby_frame->this_func = this_func;
ruby_current_node = last_node;
ruby_sourcefile = 0;
ruby_set_current_source();
if (ruby_scope->flags == SCOPE_ALLOCA && ruby_cbase == rb_cObject) {
if (ruby_scope->local_tbl) /* toplevel was empty */
free(ruby_scope->local_tbl);
}
POP_TAG();
rb_prohibit_interrupt = prohibit_int;
ruby_cref = saved_cref;
POP_SCOPE();
POP_FRAME();
POP_VARS();
ruby_wrapper = wrapper;
if (ruby_nerrs > 0) {
ruby_nerrs = 0;
rb_exc_raise(ruby_errinfo);
}
if (state) jump_tag_but_local_jump(state, Qundef);
if (!NIL_P(ruby_errinfo)) /* exception during load */
rb_exc_raise(ruby_errinfo);
}
void
rb_load_protect(VALUE fname, int wrap, int *state)
{
int status;
PUSH_THREAD_TAG();
if ((status = EXEC_TAG()) == 0) {
rb_load(fname, wrap);
}
else if (status == TAG_THREAD) {
rb_thread_start_1();
}
POP_THREAD_TAG();
if (state) *state = status;
}
/*
* call-seq:
* load(filename, wrap=false) => true
*
* Loads and executes the Ruby
* program in the file _filename_. If the filename does not
* resolve to an absolute path, the file is searched for in the library
* directories listed in <code>$:</code>. If the optional _wrap_
* parameter is +true+, the loaded script will be executed
* under an anonymous module, protecting the calling program's global
* namespace. In no circumstance will any local variables in the loaded
* file be propagated to the loading environment.
*/
static VALUE
rb_f_load(int argc, VALUE *argv)
{
VALUE fname, wrap;
rb_scan_args(argc, argv, "11", &fname, &wrap);
rb_load(fname, RTEST(wrap));
return Qtrue;
}
VALUE ruby_dln_librefs;
static VALUE rb_features;
static st_table *loading_tbl;
#define IS_SOEXT(e) (strcmp(e, ".so") == 0 || strcmp(e, ".o") == 0)
#ifdef DLEXT2
#define IS_DLEXT(e) (strcmp(e, DLEXT) == 0 || strcmp(e, DLEXT2) == 0)
#else
#define IS_DLEXT(e) (strcmp(e, DLEXT) == 0)
#endif
static int
rb_feature_p(const char *feature, const char *ext, int rb)
{
VALUE v;
char *f, *e;
long i, len, elen;
if (ext) {
len = ext - feature;
elen = strlen(ext);
}
else {
len = strlen(feature);
elen = 0;
}
for (i = 0; i < RARRAY(rb_features)->len; ++i) {
v = RARRAY(rb_features)->ptr[i];
f = StringValuePtr(v);
if (strncmp(f, feature, len) != 0) continue;
if (!*(e = f + len)) {
if (ext) continue;
return 'u';
}
if (*e != '.') continue;
if ((!rb || !ext) && (IS_SOEXT(e) || IS_DLEXT(e))) {
return 's';
}
if ((rb || !ext) && (strcmp(e, ".rb") == 0)) {
return 'r';
}
}
return 0;
}
static const char *const loadable_ext[] = {
".rb", DLEXT,
#ifdef DLEXT2
DLEXT2,
#endif
0
};
static int search_required(VALUE, VALUE *);
int
rb_provided(const char *feature)
{
int i;
char *buf;
VALUE fname;
if (rb_feature_p(feature, 0, Qfalse))
return Qtrue;
if (loading_tbl) {
if (st_lookup(loading_tbl, (st_data_t)feature, 0)) return Qtrue;
buf = ALLOCA_N(char, strlen(feature)+8);
strcpy(buf, feature);
for (i=0; loadable_ext[i]; i++) {
strcpy(buf+strlen(feature), loadable_ext[i]);
if (st_lookup(loading_tbl, (st_data_t)buf, 0)) return Qtrue;
}
}
if (search_required(rb_str_new2(feature), &fname)) {
feature = RSTRING(fname)->ptr;
if (rb_feature_p(feature, 0, Qfalse))
return Qtrue;
if (loading_tbl && st_lookup(loading_tbl, (st_data_t)feature, 0))
return Qtrue;
}
return Qfalse;
}
static void
rb_provide_feature(VALUE feature)
{
rb_ary_push(rb_features, feature);
}
void
rb_provide(const char *feature)
{
rb_provide_feature(rb_str_new2(feature));
}
static int
load_wait(char *ftptr)
{
st_data_t th;
if (!loading_tbl) return Qfalse;
if (!st_lookup(loading_tbl, (st_data_t)ftptr, &th)) return Qfalse;
do {
if ((rb_thread_t)th == curr_thread) return Qtrue;
CHECK_INTS;
} while (st_lookup(loading_tbl, (st_data_t)ftptr, &th));
return Qtrue;
}
/*
* call-seq:
* require(string) => true or false
*
* Ruby tries to load the library named _string_, returning
* +true+ if successful. If the filename does not resolve to
* an absolute path, it will be searched for in the directories listed
* in <code>$:</code>. If the file has the extension ``.rb'', it is
* loaded as a source file; if the extension is ``.so'', ``.o'', or
* ``.dll'', or whatever the default shared library extension is on
* the current platform, Ruby loads the shared library as a Ruby
* extension. Otherwise, Ruby tries adding ``.rb'', ``.so'', and so on
* to the name. The name of the loaded feature is added to the array in
* <code>$"</code>. A feature will not be loaded if it's name already
* appears in <code>$"</code>. However, the file name is not converted
* to an absolute path, so that ``<code>require 'a';require
* './a'</code>'' will load <code>a.rb</code> twice.
*
* require "my-library.rb"
* require "db-driver"
*/
VALUE
rb_f_require(VALUE obj, VALUE fname)
{
return rb_require_safe(fname, ruby_safe_level);
}
static int
search_required(VALUE fname, VALUE *path)
{
VALUE tmp;
char *ext, *ftptr;
int type, ft = 0;
*path = 0;
ext = strrchr(ftptr = RSTRING(fname)->ptr, '.');
if (ext && !strchr(ext, '/')) {
if (strcmp(".rb", ext) == 0) {
if (rb_feature_p(ftptr, ext, Qtrue)) return 'r';
if (tmp = rb_find_file(fname)) {
tmp = rb_file_expand_path(tmp, Qnil);
ext = strrchr(ftptr = RSTRING(tmp)->ptr, '.');
if (!rb_feature_p(ftptr, ext, Qtrue))
*path = tmp;
return 'r';
}
return 0;
}
else if (IS_SOEXT(ext)) {
if (rb_feature_p(ftptr, ext, Qfalse)) return 's';
tmp = rb_str_new(RSTRING(fname)->ptr, ext-RSTRING(fname)->ptr);
#ifdef DLEXT2
OBJ_FREEZE(tmp);
if (rb_find_file_ext(&tmp, loadable_ext+1)) {
tmp = rb_file_expand_path(tmp, Qnil);
ext = strrchr(ftptr = RSTRING(tmp)->ptr, '.');
if (!rb_feature_p(ftptr, ext, Qfalse))
*path = tmp;
return 's';
}
#else
rb_str_cat2(tmp, DLEXT);
OBJ_FREEZE(tmp);
if (tmp = rb_find_file(tmp)) {
tmp = rb_file_expand_path(tmp, Qnil);
ext = strrchr(ftptr = RSTRING(tmp)->ptr, '.');
if (!rb_feature_p(ftptr, ext, Qfalse))
*path = tmp;
return 's';
}
#endif
}
else if (IS_DLEXT(ext)) {
if (rb_feature_p(ftptr, ext, Qfalse)) return 's';
if (tmp = rb_find_file(fname)) {
tmp = rb_file_expand_path(tmp, Qnil);
ext = strrchr(ftptr = RSTRING(tmp)->ptr, '.');
if (!rb_feature_p(ftptr, ext, Qfalse))
*path = tmp;
return 's';
}
}
}
else if ((ft = rb_feature_p(ftptr, 0, Qfalse)) == 'r') {
return 'r';
}
tmp = fname;
type = rb_find_file_ext(&tmp, loadable_ext);
tmp = rb_file_expand_path(tmp, Qnil);
switch (type) {
case 0:
ftptr = RSTRING(tmp)->ptr;
if (ft) break;
return rb_feature_p(ftptr, 0, Qfalse);
default:
if (ft) break;
case 1:
ext = strrchr(ftptr = RSTRING(tmp)->ptr, '.');
if (rb_feature_p(ftptr, ext, !--type)) break;
*path = tmp;
}
return type ? 's' : 'r';
}
static void
load_failed(VALUE fname)
{
rb_raise(rb_eLoadError, "no such file to load -- %s", RSTRING(fname)->ptr);
}
VALUE
rb_require_safe(VALUE fname, int safe)
{
VALUE result = Qnil;
volatile VALUE errinfo = ruby_errinfo;
int state;
struct {
NODE *node;
ID this_func, callee;
int safe, vmode;
} volatile saved;
char *volatile ftptr = 0;
saved.node = ruby_current_node;
saved.callee = ruby_frame->callee;
saved.this_func = ruby_frame->this_func;
saved.safe = ruby_safe_level;
saved.vmode = vis_mode;
PUSH_SCOPE();
PUSH_CREF(ruby_cbase);
VIS_SET(VIS_PUBLIC);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
VALUE path;
long handle;
int found;
ruby_safe_level = safe;
FilePathValue(fname);
*(volatile VALUE *)&fname = rb_str_new4(fname);
found = search_required(fname, &path);
if (found) {
if (!path || load_wait(RSTRING(path)->ptr)) {
result = Qfalse;
}
else {
ruby_safe_level = 0;
switch (found) {
case 'r':
/* loading ruby library should be serialized. */
if (!loading_tbl) {
loading_tbl = st_init_strtable();
}
/* partial state */
ftptr = ruby_strdup(RSTRING(path)->ptr);
st_insert(loading_tbl, (st_data_t)ftptr, (st_data_t)curr_thread);
rb_load(path, 0);
break;
case 's':
ruby_current_node = 0;
ruby_sourcefile = rb_source_filename(RSTRING(path)->ptr);
ruby_sourceline = 0;
ruby_frame->callee = 0;
ruby_frame->this_func = 0;
VIS_SET(VIS_PUBLIC);
handle = (long)dln_load(RSTRING(path)->ptr);
rb_ary_push(ruby_dln_librefs, LONG2NUM(handle));
break;
}
rb_provide_feature(path);
result = Qtrue;
}
}
}
POP_TAG();
ruby_current_node = saved.node;
ruby_set_current_source();
ruby_frame->this_func = saved.this_func;
ruby_frame->callee = saved.callee;
ruby_safe_level = saved.safe;
VIS_SET(saved.vmode);
POP_CREF();
POP_SCOPE();
if (ftptr) {
if (st_delete(loading_tbl, (st_data_t *)&ftptr, 0)) { /* loading done */
free(ftptr);
}
}
if (state) JUMP_TAG(state);
if (NIL_P(result)) {
load_failed(fname);
}
ruby_errinfo = errinfo;
return result;
}
VALUE
rb_require(const char *fname)
{
VALUE fn = rb_str_new2(fname);
OBJ_FREEZE(fn);
return rb_require_safe(fn, ruby_safe_level);
}
static void
secure_visibility(VALUE self)
{
if (ruby_safe_level >= 4 && !OBJ_TAINTED(self)) {
rb_raise(rb_eSecurityError, "Insecure: can't change method visibility");
}
}
static void
set_method_visibility(VALUE self, int argc, VALUE *argv, ID ex)
{
int i;
secure_visibility(self);
for (i=0; i<argc; i++) {
rb_export_method(self, rb_to_id(argv[i]), ex);
}
}
/*
* call-seq:
* public => self
* public(symbol, ...) => self
*
* With no arguments, sets the default visibility for subsequently
* defined methods to public. With arguments, sets the named methods to
* have public visibility.
*/
static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
VIS_SET(VIS_PUBLIC);
}
else {
set_method_visibility(module, argc, argv, NOEX_PUBLIC);
}
return module;
}
/*
* call-seq:
* protected => self
* protected(symbol, ...) => self
*
* With no arguments, sets the default visibility for subsequently
* defined methods to protected. With arguments, sets the named methods
* to have protected visibility.
*/
static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
VIS_SET(VIS_PROTECTED);
}
else {
set_method_visibility(module, argc, argv, NOEX_PROTECTED);
}
return module;
}
/*
* call-seq:
* private => self
* private(symbol, ...) => self
*
* With no arguments, sets the default visibility for subsequently
* defined methods to private. With arguments, sets the named methods
* to have private visibility.
*
* module Mod
* def a() end
* def b() end
* private
* def c() end
* private :a
* end
* Mod.private_instance_methods #=> ["a", "c"]
*/
static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
VIS_SET(VIS_PRIVATE);
}
else {
set_method_visibility(module, argc, argv, NOEX_PRIVATE);
}
return module;
}
/*
* call-seq:
* local => self
* local(symbol, ...) => self
*
* With no arguments, sets the default visibility for subsequently
* defined methods to local. With arguments, sets the named methods to
* have local visibility.
*/
static VALUE
rb_mod_local(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
VIS_SET(VIS_LOCAL);
}
else {
set_method_visibility(module, argc, argv, NOEX_LOCAL);
rb_clear_cache();
}
return module;
}
/*
* call-seq:
* mod.public_class_method(symbol, ...) => mod
*
* Makes a list of existing class methods public.
*/
static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PUBLIC);
return obj;
}
/*
* call-seq:
* mod.private_class_method(symbol, ...) => mod
*
* Makes existing class methods private. Often used to hide the default
* constructor <code>new</code>.
*
* class SimpleSingleton # Not thread safe
* private_class_method :new
* def SimpleSingleton.create(*args, &block)
* @me = new(*args, &block) if ! @me
* @me
* end
* end
*/
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PRIVATE);
return obj;
}
/*
* call-seq:
* public
* public(symbol, ...)
*
* With no arguments, sets the default visibility for subsequently
* defined methods to public. With arguments, sets the named methods to
* have public visibility.
*/
static VALUE
top_public(int argc, VALUE *argv)
{
return rb_mod_public(argc, argv, rb_cObject);
}
/*
* call-seq:
* private => self
* private(symbol, ...) => self
*
* With no arguments, sets the default visibility for subsequently
* defined methods to private. With arguments, sets the named methods
* to have private visibility.
*/
static VALUE
top_private(int argc, VALUE *argv)
{
return rb_mod_private(argc, argv, rb_cObject);
}
/*
* call-seq:
* module_function(symbol, ...) => self
*
* Creates module functions for the named methods. These functions may
* be called with the module as a receiver, and also become available
* as instance methods to classes that mix in the module. Module
* functions are copies of the original, and so may be changed
* independently. The instance-method versions are made private. If
* used with no arguments, subsequently defined methods become module
* functions.
*
* module Mod
* def one
* "This is one"
* end
* module_function :one
* end
* class Cls
* include Mod
* def callOne
* one
* end
* end
* Mod.one #=> "This is one"
* c = Cls.new
* c.callOne #=> "This is one"
* module Mod
* def one
* "This is the new one"
* end
* end
* Mod.one #=> "This is one"
* c.callOne #=> "This is the new one"
*/
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
int i;
ID id;
NODE *body;
if (TYPE(module) != T_MODULE) {
rb_raise(rb_eTypeError, "module_function must be called for modules");
}
secure_visibility(module);
if (argc == 0) {
VIS_SET(VIS_MODFUNC);
return module;
}
set_method_visibility(module, argc, argv, NOEX_PRIVATE);
for (i=0; i<argc; i++) {
VALUE m = module;
id = rb_to_id(argv[i]);
for (;;) {
body = search_method(m, id, &m, LOOKUP_NOSKIP);
if (body == 0) {
body = search_method(rb_cObject, id, &m, LOOKUP_NOSKIP);
}
if (body == 0 || body->nd_body == 0) {
rb_bug("undefined method `%s'; can't happen", rb_id2name(id));
}
if (nd_type(body->nd_body) != NODE_ZSUPER) {
break; /* normal case: need not to follow 'super' link */
}
m = RCLASS(m)->super;
if (!m) break;
}
rb_add_method(rb_singleton_class(module), id, body->nd_body, NOEX_PUBLIC);
}
return module;
}
/*
* call-seq:
* append_features(mod) => mod
*
* When this module is included in another, Ruby calls
* <code>append_features</code> in this module, passing it the
* receiving module in _mod_. Ruby's default implementation is
* to add the constants, methods, and module variables of this module
* to _mod_ if this module has not already been added to
* _mod_ or one of its ancestors. See also <code>Module#include</code>.
*/
static VALUE
rb_mod_append_features(VALUE module, VALUE dest)
{
switch (TYPE(dest)) {
case T_CLASS:
case T_MODULE:
break;
default:
Check_Type(dest, T_CLASS);
break;
}
rb_include_module(dest, module);
return module;
}
/*
* call-seq:
* include(module, ...) => self
*
* Invokes <code>Module.append_features</code> on each parameter in turn.
*/
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
for (i=0; i<argc; i++) Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], rb_intern("append_features"), 1, module);
rb_funcall(argv[argc], rb_intern("included"), 1, module);
}
return module;
}
void
rb_obj_call_init(VALUE obj, int argc, VALUE *argv)
{
rb_call(CLASS_OF(obj), obj, init, argc, argv, ruby_frame->block, CALLING_FUNCALL, 1);
}
void
rb_extend_object(VALUE obj, VALUE module)
{
rb_include_module(rb_singleton_class(obj), module);
}
/*
* call-seq:
* extend_object(obj) => obj
*
* Extends the specified object by adding this module's constants and
* methods (which are added as singleton methods). This is the callback
* method used by <code>Object#extend</code>.
*
* module Picky
* def Picky.extend_object(o)
* if String === o
* puts "Can't add Picky to a String"
* else
* puts "Picky added to #{o.class}"
* super
* end
* end
* end
* (s = Array.new).extend Picky # Call Object.extend
* (s = "quick brown fox").extend Picky
*
* <em>produces:</em>
*
* Picky added to Array
* Can't add Picky to a String
*/
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
/*
* call-seq:
* obj.extend(module, ...) => obj
*
* Adds to _obj_ the instance methods from each module given as a
* parameter.
*
* module Mod
* def hello
* "Hello from Mod.\n"
* end
* end
*
* class Klass
* def hello
* "Hello from Klass.\n"
* end
* end
*
* k = Klass.new
* k.hello #=> "Hello from Klass.\n"
* k.extend(Mod) #=> #<Klass:0x401b3bc8>
* k.hello #=> "Hello from Mod.\n"
*/
static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
int i;
if (argc == 0) {
rb_raise(rb_eArgError, "wrong number of arguments (0 for 1)");
}
for (i=0; i<argc; i++) Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], rb_intern("extend_object"), 1, obj);
rb_funcall(argv[argc], rb_intern("extended"), 1, obj);
}
return obj;
}
/*
* call-seq:
* include(module, ...) => self
*
* Invokes <code>Module.append_features</code>
* on each parameter in turn. Effectively adds the methods and constants
* in each module to the receiver.
*/
static VALUE
top_include(int argc, VALUE *argv, VALUE self)
{
rb_secure(4);
if (ruby_wrapper) {
rb_warning("main#include in the wrapped load is effective only in wrapper module");
return rb_mod_include(argc, argv, ruby_wrapper);
}
return rb_mod_include(argc, argv, rb_cObject);
}
VALUE rb_f_trace_var(int, VALUE *);
VALUE rb_f_untrace_var(int, VALUE *);
static void
errinfo_setter(VALUE val, ID id, VALUE *var)
{
if (!NIL_P(val) && !rb_obj_is_kind_of(val, rb_eException)) {
rb_raise(rb_eTypeError, "assigning non-exception to $!");
}
*var = val;
}
static VALUE
errat_getter(ID id)
{
return get_backtrace(ruby_errinfo);
}
static void
errat_setter(VALUE val, ID id, VALUE *var)
{
if (NIL_P(ruby_errinfo)) {
rb_raise(rb_eArgError, "$! not set");
}
set_backtrace(ruby_errinfo, val);
}
/*
* call-seq:
* local_variables => array
*
* Returns the names of the current local variables.
*
* fred = 1
* for i in 1..10
* # ...
* end
* local_variables #=> ["fred", "i"]
*/
static VALUE
rb_f_local_variables(void)
{
ID *tbl;
int n, i;
VALUE ary = rb_ary_new();
struct RVarmap *vars;
tbl = ruby_scope->local_tbl;
if (tbl) {
n = *tbl++;
for (i=2; i<n; i++) { /* skip first 2 ($_ and $~) */
if (!rb_is_local_id(tbl[i])) continue; /* skip flip states */
rb_ary_push(ary, rb_str_new2(rb_id2name(tbl[i])));
}
}
vars = ruby_dyna_vars;
while (vars) {
if (vars->id && rb_is_local_id(vars->id)) { /* skip $_, $~ and flip states */
rb_ary_push(ary, rb_str_new2(rb_id2name(vars->id)));
}
vars = vars->next;
}
return ary;
}
static VALUE rb_f_catch(VALUE,VALUE);
NORETURN(static VALUE rb_f_throw(int,VALUE*));
struct end_proc_data {
void (*func)();
VALUE data;
int safe;
struct end_proc_data *next;
};
static struct end_proc_data *end_procs, *ephemeral_end_procs, *tmp_end_procs;
void
rb_set_end_proc(void (*func) (VALUE), VALUE data)
{
struct end_proc_data *link = ALLOC(struct end_proc_data);
struct end_proc_data **list;
if (ruby_wrapper) list = &ephemeral_end_procs;
else list = &end_procs;
link->next = *list;
link->func = func;
link->data = data;
link->safe = ruby_safe_level;
*list = link;
}
void
rb_mark_end_proc(void)
{
struct end_proc_data *link;
link = end_procs;
while (link) {
rb_gc_mark(link->data);
link = link->next;
}
link = ephemeral_end_procs;
while (link) {
rb_gc_mark(link->data);
link = link->next;
}
link = tmp_end_procs;
while (link) {
rb_gc_mark(link->data);
link = link->next;
}
}
static void
call_end_proc(VALUE data)
{
PUSH_FRAME(Qfalse);
ruby_frame->self = ruby_frame->prev->self;
ruby_frame->node = 0;
proc_invoke(data, rb_ary_new2(0), Qundef, 0, 1);
POP_FRAME();
}
static void
rb_f_END(void)
{
PUSH_FRAME(Qfalse);
rb_set_end_proc(call_end_proc, rb_block_proc());
POP_FRAME();
}
/*
* call-seq:
* at_exit { block } -> proc
*
* Converts _block_ to a +Proc+ object (and therefore
* binds it at the point of call) and registers it for execution when
* the program exits. If multiple handlers are registered, they are
* executed in reverse order of registration.
*
* def do_at_exit(str1)
* at_exit { print str1 }
* end
* at_exit { puts "cruel world" }
* do_at_exit("goodbye ")
* exit
*
* <em>produces:</em>
*
* goodbye cruel world
*/
static VALUE
rb_f_at_exit(void)
{
VALUE proc;
if (!rb_block_given_p()) {
rb_raise(rb_eArgError, "called without a block");
}
proc = rb_block_proc();
rb_set_end_proc(call_end_proc, proc);
return proc;
}
void
rb_exec_end_proc(void)
{
struct end_proc_data *link, *tmp;
int status;
volatile int safe = ruby_safe_level;
while (ephemeral_end_procs) {
tmp_end_procs = link = ephemeral_end_procs;
ephemeral_end_procs = 0;
while (link) {
PUSH_TAG(PROT_NONE);
if ((status = EXEC_TAG()) == 0) {
ruby_safe_level = link->safe;
(*link->func)(link->data);
}
POP_TAG();
if (status) {
error_handle(status);
}
tmp = link;
tmp_end_procs = link = link->next;
free(tmp);
}
}
while (end_procs) {
tmp_end_procs = link = end_procs;
end_procs = 0;
while (link) {
PUSH_TAG(PROT_NONE);
if ((status = EXEC_TAG()) == 0) {
ruby_safe_level = link->safe;
(*link->func)(link->data);
}
POP_TAG();
if (status) {
error_handle(status);
}
tmp = link;
tmp_end_procs = link = link->next;
free(tmp);
}
}
ruby_safe_level = safe;
}
/*
* call-seq:
* __method__ => string
*
* Returns the name of the current method as a Symbol.
* If called from inside of an aliased method it will return the original
* nonaliased name.
* If called outside of a method, it returns <code>nil</code>.
*
* def foo
* __method__
* end
* alias bar foo
*
* foo # => :foo
* bar # => :foo
*
* See also <code>\_\_callee__</code>.
*
*/
static VALUE
rb_f_method_name(void)
{
struct FRAME* prev = ruby_frame->prev;
if (prev && prev->this_func) {
return ID2SYM(prev->this_func);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __callee__ => string
*
* Returns the name of the current method as Symbol.
* If called from inside of an aliased method it will return the aliased
* name.
* If called outside of a method, it returns <code>nil</code>.
*
* def foo
* __callee__
* end
* alias bar foo
*
* foo # => :foo
* bar # => :bar
*
* See also <code>\_\_method__</code>.
*
*/
static VALUE
rb_f_callee_name(void)
{
struct FRAME* prev = ruby_frame->prev;
if (prev && prev->callee) {
return ID2SYM(prev->callee);
}
else {
return Qnil;
}
}
void
Init_eval(void)
{
init = rb_intern("initialize");
eqq = rb_intern("===");
each = rb_intern("each");
aref = rb_intern("[]");
aset = rb_intern("[]=");
match = rb_intern("=~");
missing = rb_intern("method_missing");
added = rb_intern("method_added");
singleton_added = rb_intern("singleton_method_added");
removed = rb_intern("method_removed");
singleton_removed = rb_intern("singleton_method_removed");
undefined = rb_intern("method_undefined");
singleton_undefined = rb_intern("singleton_method_undefined");
__id__ = rb_intern("__id__");
__send__ = rb_intern("__send__");
rb_global_variable((VALUE*)&top_scope);
rb_global_variable((VALUE*)&ruby_eval_tree);
rb_global_variable((VALUE*)&ruby_dyna_vars);
rb_define_virtual_variable("$@", errat_getter, errat_setter);
rb_define_hooked_variable("$!", &ruby_errinfo, 0, errinfo_setter);
rb_define_global_function("eval", rb_f_eval, -1);
rb_define_global_function("iterator?", rb_f_block_given_p, 0);
rb_define_global_function("block_given?", rb_f_block_given_p, 0);
rb_define_global_function("loop", rb_f_loop, 0);
rb_define_private_method(rb_cBasicObject, "method_missing", rb_method_missing, -1);
rb_define_method(rb_cBasicObject, "respond_to?", obj_respond_to, -1);
respond_to = rb_intern("respond_to?");
rb_global_variable((VALUE*)&basic_respond_to);
basic_respond_to = rb_method_node(rb_cBasicObject, respond_to);
rb_define_global_function("raise", rb_f_raise, -1);
rb_define_global_function("fail", rb_f_raise, -1);
rb_define_global_function("caller", rb_f_caller, -1);
rb_define_global_function("exit", rb_f_exit, -1);
rb_define_global_function("abort", rb_f_abort, -1);
rb_define_global_function("at_exit", rb_f_at_exit, 0);
rb_define_global_function("catch", rb_f_catch, 1);
rb_define_global_function("throw", rb_f_throw, -1);
rb_define_global_function("global_variables", rb_f_global_variables, 0); /* in variable.c */
rb_define_global_function("local_variables", rb_f_local_variables, 0);
rb_define_global_function("__method__", rb_f_method_name, 0);
rb_define_global_function("__callee__", rb_f_callee_name, 0);
rb_define_method(rb_cBasicObject, "send", rb_f_send, -1);
rb_define_method(rb_cBasicObject, "__send__", rb_f_send, -1);
rb_define_method(rb_cBasicObject, "funcall", rb_f_funcall, -1);
rb_define_method(rb_mKernel, "instance_eval", rb_obj_instance_eval, -1);
rb_define_method(rb_mKernel, "instance_exec", rb_obj_instance_exec, -1);
rb_define_private_method(rb_cModule, "append_features", rb_mod_append_features, 1);
rb_define_private_method(rb_cModule, "extend_object", rb_mod_extend_object, 1);
rb_define_private_method(rb_cModule, "include", rb_mod_include, -1);
rb_define_private_method(rb_cModule, "public", rb_mod_public, -1);
rb_define_private_method(rb_cModule, "protected", rb_mod_protected, -1);
rb_define_private_method(rb_cModule, "private", rb_mod_private, -1);
rb_define_private_method(rb_cModule, "local", rb_mod_local, -1);
rb_define_private_method(rb_cModule, "module_function", rb_mod_modfunc, -1);
rb_define_method(rb_cModule, "method_defined?", rb_mod_method_defined, -1);
rb_define_method(rb_cModule, "public_method_defined?", rb_mod_public_method_defined, 1);
rb_define_method(rb_cModule, "private_method_defined?", rb_mod_private_method_defined, 1);
rb_define_method(rb_cModule, "protected_method_defined?", rb_mod_protected_method_defined, 1);
rb_define_method(rb_cModule, "public_class_method", rb_mod_public_method, -1);
rb_define_method(rb_cModule, "private_class_method", rb_mod_private_method, -1);
rb_define_method(rb_cModule, "module_eval", rb_mod_module_eval, -1);
rb_define_method(rb_cModule, "class_eval", rb_mod_module_eval, -1);
rb_define_method(rb_cModule, "module_exec", rb_mod_module_exec, -1);
rb_define_method(rb_cModule, "class_exec", rb_mod_module_exec, -1);
rb_undef_method(rb_cClass, "module_function");
rb_define_private_method(rb_cModule, "remove_method", rb_mod_remove_method, -1);
rb_define_private_method(rb_cModule, "undef_method", rb_mod_undef_method, -1);
rb_define_private_method(rb_cModule, "alias_method", rb_mod_alias_method, 2);
rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1);
rb_define_singleton_method(rb_cModule, "nesting", rb_mod_nesting, 0);
rb_define_singleton_method(rb_cModule, "constants", rb_mod_s_constants, 0);
rb_define_singleton_method(ruby_top_self, "include", top_include, -1);
rb_define_singleton_method(ruby_top_self, "public", top_public, -1);
rb_define_singleton_method(ruby_top_self, "private", top_private, -1);
rb_define_method(rb_mKernel, "extend", rb_obj_extend, -1);
rb_define_global_function("trace_var", rb_f_trace_var, -1); /* in variable.c */
rb_define_global_function("untrace_var", rb_f_untrace_var, -1); /* in variable.c */
rb_define_global_function("set_trace_func", set_trace_func, 1);
rb_global_variable(&trace_func);
rb_define_virtual_variable("$SAFE", safe_getter, safe_setter);
}
/*
* call-seq:
* mod.autoload(name, filename) => nil
*
* Registers _filename_ to be loaded (using <code>Kernel::require</code>)
* the first time that _name_ (which may be a <code>String</code> or
* a symbol) is accessed in the namespace of _mod_.
*
* module A
* end
* A.autoload(:B, "b")
* A::B.doit # autoloads "b"
*/
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
ID id = rb_to_id(sym);
Check_SafeStr(file);
rb_autoload(mod, id, RSTRING(file)->ptr);
return Qnil;
}
/*
* call-seq:
* mod.autoload?(name) => String or nil
*
* Returns _filename_ to be loaded if _name_ is registered as
* +autoload+ in the namespace of _mod_.
*
* module A
* end
* A.autoload(:B, "b")
* A.autoload?(:B) # => "b"
*/
static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
return rb_autoload_p(mod, rb_to_id(sym));
}
/*
* call-seq:
* autoload(module, filename) => nil
*
* Registers _filename_ to be loaded (using <code>Kernel::require</code>)
* the first time that _module_ (which may be a <code>String</code> or
* a symbol) is accessed.
*
* autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")
*/
static VALUE
rb_f_autoload(VALUE obj, VALUE sym, VALUE file)
{
VALUE klass = ruby_cbase;
if (NIL_P(ruby_cbase)) {
rb_raise(rb_eTypeError, "no class/module for autoload target");
}
return rb_mod_autoload(ruby_cbase, sym, file);
}
/*
* call-seq:
* autoload(module) => filename or nil
*
* Returns _filename_ to be loaded if _module_ is registered as
* +autoload+.
*
* autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")
* autoload?(:MyModule) # => "/usr/local/lib/modules/my_module.rb"
*/
static VALUE
rb_f_autoload_p(VALUE obj, VALUE sym)
{
/* use ruby_cbase as same as rb_f_autoload. */
if (NIL_P(ruby_cbase)) {
return Qfalse;
}
return rb_mod_autoload_p(ruby_cbase, sym);
}
void
Init_load(void)
{
rb_define_readonly_variable("$:", &rb_load_path);
rb_define_readonly_variable("$-I", &rb_load_path);
rb_define_readonly_variable("$LOAD_PATH", &rb_load_path);
rb_load_path = rb_ary_new();
rb_define_readonly_variable("$\"", &rb_features);
rb_define_readonly_variable("$LOADED_FEATURES", &rb_features);
rb_features = rb_ary_new();
rb_define_global_function("load", rb_f_load, -1);
rb_define_global_function("require", rb_f_require, 1);
rb_define_method(rb_cModule, "autoload", rb_mod_autoload, 2);
rb_define_method(rb_cModule, "autoload?", rb_mod_autoload_p, 1);
rb_define_global_function("autoload", rb_f_autoload, 2);
rb_define_global_function("autoload?", rb_f_autoload_p, 1);
rb_global_variable(&ruby_wrapper);
rb_global_variable(&ruby_dln_librefs);
ruby_dln_librefs = rb_ary_new();
}
static void
scope_dup(struct SCOPE *scope)
{
volatile ID *tbl;
VALUE *vars;
scope->flags |= SCOPE_DONT_RECYCLE;
if (scope->flags & SCOPE_MALLOC) return;
if (scope->local_tbl) {
tbl = scope->local_tbl;
vars = ALLOC_N(VALUE, tbl[0]+1);
*vars++ = scope->local_vars[-1];
MEMCPY(vars, scope->local_vars, VALUE, tbl[0]);
scope->local_vars = vars;
scope->flags |= SCOPE_MALLOC;
}
}
static void
blk_mark(struct BLOCK *data)
{
while (data) {
rb_gc_mark_frame(&data->frame);
rb_gc_mark((VALUE)data->scope);
rb_gc_mark((VALUE)data->var);
rb_gc_mark((VALUE)data->body);
rb_gc_mark((VALUE)data->self);
rb_gc_mark((VALUE)data->dyna_vars);
rb_gc_mark((VALUE)data->cref);
rb_gc_mark(data->wrapper);
rb_gc_mark(data->block_obj);
data = data->frame.block;
}
}
static void
frame_free(struct FRAME *frame)
{
struct FRAME *tmp;
frame = frame->prev;
while (frame) {
tmp = frame;
frame = frame->prev;
free(tmp);
}
}
static void
blk_free(struct BLOCK *data)
{
void *tmp;
while (data) {
frame_free(&data->frame);
tmp = data;
data = data->frame.block;
free(tmp);
}
}
static void
frame_dup(struct FRAME *frame)
{
struct FRAME *tmp;
for (;;) {
frame->tmp = 0; /* should not preserve tmp */
if (!frame->prev) break;
tmp = ALLOC(struct FRAME);
*tmp = *frame->prev;
frame->prev = tmp;
frame = tmp;
}
}
static void
dvar_nail_down(struct RVarmap *vars)
{
while (vars) {
if (FL_TEST(vars, DVAR_DONT_RECYCLE)) break;
FL_SET(vars, DVAR_DONT_RECYCLE);
vars = vars->next;
}
}
static void
blk_nail_down(struct BLOCK *block)
{
struct BLOCK *tmp;
dvar_nail_down(block->dyna_vars);
while (block->frame.block) {
tmp = ALLOC_N(struct BLOCK, 1);
MEMCPY(tmp, block->frame.block, struct BLOCK, 1);
scope_dup(tmp->scope);
frame_dup(&tmp->frame);
dvar_nail_down(tmp->dyna_vars);
block->frame.block = tmp;
block = tmp;
}
}
static void
blk_dup(struct BLOCK *dup, struct BLOCK *orig)
{
MEMCPY(dup, orig, struct BLOCK, 1);
frame_dup(&dup->frame);
blk_nail_down(dup);
}
/*
* MISSING: documentation
*/
static VALUE
proc_clone(VALUE self)
{
struct BLOCK *orig, *data;
VALUE bind;
Data_Get_Struct(self, struct BLOCK, orig);
bind = Data_Make_Struct(rb_obj_class(self),struct BLOCK,blk_mark,blk_free,data);
CLONESETUP(bind, self);
blk_dup(data, orig);
if (orig->block_obj) data->block_obj = bind;
return bind;
}
/*
* MISSING: documentation
*/
static VALUE
proc_dup(VALUE self)
{
struct BLOCK *orig, *data;
VALUE bind;
Data_Get_Struct(self, struct BLOCK, orig);
bind = Data_Make_Struct(rb_obj_class(self),struct BLOCK,blk_mark,blk_free,data);
blk_dup(data, orig);
return bind;
}
/*
* call-seq:
* binding -> a_binding
*
* Returns a +Binding+ object, describing the variable and
* method bindings at the point of call. This object can be used when
* calling +eval+ to execute the evaluated command in this
* environment. Also see the description of class +Binding+.
*
* def getBinding(param)
* return binding
* end
* b = getBinding("hello")
* eval("param", b) #=> "hello"
*/
static VALUE
rb_f_binding(VALUE self)
{
struct BLOCK *data;
VALUE bind;
PUSH_FRAME(Qtrue);
PUSH_BLOCK(ruby_frame->block,0,0);
bind = Data_Make_Struct(rb_cBinding,struct BLOCK,blk_mark,blk_free,data);
*data = *ruby_frame->block;
data->orig_thread = rb_thread_current();
data->wrapper = ruby_wrapper;
frame_dup(&data->frame);
if (ruby_frame->prev) {
data->frame.callee = ruby_frame->prev->callee;
data->frame.this_func = ruby_frame->prev->this_func;
data->frame.this_class = ruby_frame->prev->this_class;
}
blk_nail_down(data);
scope_dup(data->scope);
POP_BLOCK();
POP_FRAME();
return bind;
}
/*
* call-seq:
* binding.eval(string [, filename [,lineno]]) => obj
*
* Evaluates the Ruby expression(s) in <em>string</em>, in the
* <em>binding</em>'s context. If the optional <em>filename</em> and
* <em>lineno</em> parameters are present, they will be used when
* reporting syntax errors.
*
* def getBinding(param)
* return binding
* end
* b = getBinding("hello")
* b.eval("param") #=> "hello"
*/
static VALUE
bind_eval(int argc, VALUE *argv, VALUE bind)
{
struct BLOCK *data;
VALUE args[4];
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
args[1] = bind;
Data_Get_Struct(bind, struct BLOCK, data);
return rb_f_eval(argc+1, args, data->self);
}
#define PROC_TSHIFT (FL_USHIFT+1)
#define PROC_TMASK (FL_USER1|FL_USER2|FL_USER3)
#define PROC_TMAX (PROC_TMASK >> PROC_TSHIFT)
#define PROC_SAFE_SAVED FL_USER4
#define SAFE_LEVEL_MAX PROC_TMASK
#define proc_safe_level_p(data) (RBASIC(data)->flags & PROC_SAFE_SAVED)
#define proc_delete_safe_level(data) FL_UNSET(data, PROC_SAFE_SAVED)
static void
proc_save_safe_level(VALUE data)
{
int safe = ruby_safe_level;
if (safe > PROC_TMAX) safe = PROC_TMAX;
FL_UNSET(data, PROC_TMASK);
FL_SET(data, (safe << PROC_TSHIFT) & PROC_TMASK);
FL_SET(data, PROC_SAFE_SAVED);
}
static int
proc_get_safe_level(VALUE data)
{
return (RBASIC(data)->flags & PROC_TMASK) >> PROC_TSHIFT;
}
static void
proc_set_safe_level(VALUE data)
{
if (!proc_safe_level_p(data)) return;
ruby_safe_level = proc_get_safe_level(data);
}
static VALUE
proc_alloc(VALUE klass, int lambda)
{
volatile VALUE block;
struct FRAME *frame = ruby_frame;
struct BLOCK *data;
if (!rb_block_given_p()) {
if (lambda || !ruby_frame->prev || !ruby_frame->prev->block) {
rb_raise(rb_eArgError, "tried to create Proc object without a block");
}
frame = ruby_frame->prev;
}
else if (!lambda && frame->block->block_obj) {
VALUE obj = frame->block->block_obj;
if (CLASS_OF(obj) != klass) {
obj = proc_clone(obj);
RBASIC(obj)->klass = klass;
}
return obj;
}
block = Data_Make_Struct(klass, struct BLOCK, blk_mark, blk_free, data);
*data = *frame->block;
data->orig_thread = rb_thread_current();
data->wrapper = ruby_wrapper;
data->block_obj = block;
frame_dup(&data->frame);
blk_nail_down(data);
scope_dup(data->scope);
proc_save_safe_level(block);
if (lambda) {
data->flags |= BLOCK_LAMBDA;
}
else {
frame->block->block_obj = block;
}
return block;
}
/*
* call-seq:
* Proc.new {|...| block } => a_proc
* Proc.new => a_proc
*
* Creates a new <code>Proc</code> object, bound to the current
* context. <code>Proc::new</code> may be called without a block only
* within a method with an attached block, in which case that block is
* converted to the <code>Proc</code> object.
*
* def proc_from
* Proc.new
* end
* proc = proc_from { "hello" }
* proc.call #=> "hello"
*/
static VALUE
proc_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE block = proc_alloc(klass, Qfalse);
rb_obj_call_init(block, argc, argv);
return block;
}
/*
* call-seq:
* proc { |...| block } => a_proc
*
* Equivalent to <code>Proc.new</code>.
*/
VALUE
rb_block_proc(void)
{
return proc_alloc(rb_cProc, Qfalse);
}
VALUE
rb_f_lambda(void)
{
rb_warn("rb_f_lambda() is deprecated; use rb_block_proc() instead");
return proc_alloc(rb_cProc, Qtrue);
}
/*
* call-seq:
* lambda { |...| block } => a_proc
*
* Equivalent to <code>Proc.new</code>, except the resulting Proc objects
* check the number of parameters passed when called.
*/
static VALUE
proc_lambda(void)
{
return proc_alloc(rb_cProc, Qtrue);
}
static int
block_orphan(struct BLOCK *data)
{
if (data->scope->flags & SCOPE_NOSTACK) {
return 1;
}
if (data->orig_thread != rb_thread_current()) {
return 1;
}
return 0;
}
static VALUE
proc_invoke(VALUE proc, VALUE args /* OK */, VALUE self, VALUE klass, int call)
{
struct BLOCK _block;
struct BLOCK *data, *volatile old_block;
volatile VALUE result = Qundef;
int state;
volatile int safe = ruby_safe_level;
volatile VALUE old_wrapper = ruby_wrapper;
volatile int pcall;
VALUE bvar = Qnil;
Data_Get_Struct(proc, struct BLOCK, data);
pcall = call ? YIELD_LAMBDA_CALL : 0;
if (rb_block_given_p() && ruby_frame->callee) {
if (klass != ruby_frame->this_class)
klass = rb_obj_class(proc);
bvar = rb_block_proc();
}
PUSH_VARS();
ruby_wrapper = data->wrapper;
ruby_dyna_vars = data->dyna_vars;
/* PUSH BLOCK from data */
_block = *data;
_block.block_obj = bvar;
if (self != Qundef) _block.frame.self = self;
if (klass) _block.frame.this_class = klass;
_block.frame.argc = RARRAY(args)->len;
_block.frame.flags = ruby_frame->flags;
if (_block.frame.argc && (ruby_frame->flags & FRAME_DMETH)) {
NEWOBJ(scope, struct SCOPE);
OBJSETUP(scope, args, T_SCOPE);
scope->local_tbl = _block.scope->local_tbl;
scope->local_vars = _block.scope->local_vars;
_block.scope = scope;
}
/* modify current frame */
old_block = ruby_frame->block;
ruby_frame->block = &_block;
PUSH_TAG((data->flags&BLOCK_LAMBDA) ? PROT_LAMBDA : PROT_NONE);
state = EXEC_TAG();
if (state == 0) {
proc_set_safe_level(proc);
result = rb_yield_0(args, self, (self!=Qundef)?CLASS_OF(self):0,
pcall | YIELD_PROC_CALL);
}
else if (TAG_DST()) {
result = prot_tag->retval;
}
POP_TAG();
ruby_frame->block = old_block;
ruby_wrapper = old_wrapper;
POP_VARS();
if (proc_safe_level_p(proc))
ruby_safe_level = safe;
switch (state) {
case 0:
break;
case TAG_RETRY:
proc_jump_error(TAG_RETRY, Qnil); /* xxx */
JUMP_TAG(state);
break;
case TAG_BREAK:
if (!pcall && result != Qundef) {
proc_jump_error(state, result);
}
case TAG_RETURN:
if (result != Qundef) {
if (pcall) break;
return_jump(result);
}
default:
JUMP_TAG(state);
}
return result;
}
/* CHECKME: are the argument checking semantics correct? */
/*
* call-seq:
* prc.call(params,...) => obj
* prc[params,...] => obj
*
* Invokes the block, setting the block's parameters to the values in
* <i>params</i> using something close to method calling semantics.
* Generates a warning if multiple values are passed to a proc that
* expects just one (previously this silently converted the parameters
* to an array).
*
* For procs created using <code>Kernel.proc</code>, generates an
* error if the wrong number of parameters
* are passed to a proc with multiple parameters. For procs created using
* <code>Proc.new</code>, extra parameters are silently discarded.
*
* Returns the value of the last expression evaluated in the block. See
* also <code>Proc#yield</code>.
*
* a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
* a_proc = Proc.new {|a,b| a}
* a_proc.call(1,2,3)
*
* <em>produces:</em>
*
* prog.rb:5: wrong number of arguments (3 for 2) (ArgumentError)
* from prog.rb:4:in `call'
* from prog.rb:5
*/
VALUE
rb_proc_call(VALUE proc, VALUE args /* OK */)
{
return proc_invoke(proc, args, Qundef, 0, 1);
}
/*
* call-seq:
* prc.yield(params,...) => obj
*
* Invokes the block, setting the block's parameters to the values in
* <i>params</i> in the same manner the yield statement does.
*
* a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
* a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc.yield([9, 1, 2, 3]) #=> [9, 18, 27]
* a_proc = Proc.new {|a,b| a}
* a_proc.yield(1,2,3) # => [1]
*/
VALUE
rb_proc_yield(int argc, VALUE *argv, VALUE proc)
{
if (argc == 1)
return proc_invoke(proc, svalue_to_avalue(argv[0]), Qundef, 0, 0);
else
return proc_invoke(proc, rb_ary_new4(argc, argv), Qundef, 0, 0);
}
/* :nodoc: */
static VALUE
nil_yield(int argc, VALUE *argv)
{
localjump_error("no block given", Qnil, 0, backtrace(0));
return Qnil; /* not reached */
}
int
rb_proc_arity(VALUE proc)
{
struct BLOCK *data;
NODE *var, *list;
int n;
Data_Get_Struct(proc, struct BLOCK, data);
var = data->var;
if (var == 0) {
if (!data->body) return 0;
if (nd_type(data->body) == NODE_IFUNC &&
data->body->nd_cfnc == bmcall) {
return method_arity(data->body->nd_tval);
}
return 0;
}
if (var == (NODE*)1) return 0;
if (var == (NODE*)2) return 0;
if (nd_type(var) == NODE_BLOCK_ARG) {
var = var->nd_args;
if (var == (NODE*)1) return 0;
if (var == (NODE*)2) return 0;
}
switch (nd_type(var)) {
default:
return 1;
case NODE_MASGN:
list = var->nd_head;
n = 0;
while (list) {
n++;
list = list->nd_next;
}
if (var->nd_args) {
if (nd_type(var->nd_args) == NODE_POSTARG) {
return -n-1-var->nd_args->nd_head->nd_alen;
}
return -n-1;
}
return n;
}
}
/*
* call-seq:
* prc.arity -> fixnum
*
* Returns the number of arguments that would not be ignored. If the block
* is declared to take no arguments, returns 0. If the block is known
* to take exactly n arguments, returns n. If the block has optional
* arguments, return -n-1, where n is the number of mandatory
* arguments. A <code>proc</code> with no argument declarations
* is the same a block declaring <code>||</code> as its arguments.
*
* Proc.new {}.arity #=> 0
* Proc.new {||}.arity #=> 0
* Proc.new {|a|}.arity #=> 1
* Proc.new {|a,b|}.arity #=> 2
* Proc.new {|a,b,c|}.arity #=> 3
* Proc.new {|*a|}.arity #=> -1
* Proc.new {|a,*b|}.arity #=> -2
*/
static VALUE
proc_arity(VALUE proc)
{
int arity = rb_proc_arity(proc);
return INT2FIX(arity);
}
/*
* call-seq:
* prc == other_proc => true or false
*
* Return <code>true</code> if <i>prc</i> is the same object as
* <i>other_proc</i>, or if they are both procs with the same body.
*/
static VALUE
proc_eq(VALUE self, VALUE other)
{
struct BLOCK *data, *data2;
if (self == other) return Qtrue;
if (TYPE(other) != T_DATA) return Qfalse;
if (RDATA(other)->dmark != (RUBY_DATA_FUNC)blk_mark) return Qfalse;
if (CLASS_OF(self) != CLASS_OF(other)) return Qfalse;
Data_Get_Struct(self, struct BLOCK, data);
Data_Get_Struct(other, struct BLOCK, data2);
if (data->body != data2->body) return Qfalse;
if (data->var != data2->var) return Qfalse;
if (data->scope != data2->scope) return Qfalse;
if (data->dyna_vars != data2->dyna_vars) return Qfalse;
if (data->flags != data2->flags) return Qfalse;
return Qtrue;
}
/*
* call-seq:
* prc.hash => integer
*
* Return hash value corresponding to proc body.
*/
static VALUE
proc_hash(VALUE self)
{
struct BLOCK *data;
long hash;
Data_Get_Struct(self, struct BLOCK, data);
hash = (long)data->body;
hash ^= (long)data->var;
hash ^= data->frame.uniq << 16;
hash ^= data->flags;
return INT2FIX(hash);
}
/*
* call-seq:
* prc.to_s => string
*
* Shows the unique identifier for this proc, along with
* an indication of where the proc was defined.
*/
static VALUE
proc_to_s(VALUE self)
{
struct BLOCK *data;
NODE *node;
char *cname = rb_obj_classname(self);
VALUE str;
Data_Get_Struct(self, struct BLOCK, data);
if ((node = data->frame.node) || (node = data->body)) {
str = rb_sprintf("#<%s:%p@%s:%d>", cname, data->body,
node->nd_file, nd_line(node));
}
else {
str = rb_sprintf("#<%s:%p>", cname, data->body);
}
if (OBJ_TAINTED(self)) OBJ_TAINT(str);
return str;
}
/*
* call-seq:
* prc.to_proc -> prc
*
* Part of the protocol for converting objects to <code>Proc</code>
* objects. Instances of class <code>Proc</code> simply return
* themselves.
*/
static VALUE
proc_to_self(VALUE self)
{
return self;
}
/*
* call-seq:
* prc.binding => binding
*
* Returns the binding associated with <i>prc</i>. Note that
* <code>Kernel#eval</code> accepts either a <code>Proc</code> or a
* <code>Binding</code> object as its second parameter.
*
* def fred(param)
* proc {}
* end
*
* b = fred(99)
* eval("param", b.binding) #=> 99
* eval("param", b) #=> 99
*/
static VALUE
proc_binding(VALUE proc)
{
struct BLOCK *orig, *data;
VALUE bind;
Data_Get_Struct(proc, struct BLOCK, orig);
bind = Data_Make_Struct(rb_cBinding,struct BLOCK,blk_mark,blk_free,data);
MEMCPY(data, orig, struct BLOCK, 1);
frame_dup(&data->frame);
blk_nail_down(data);
return bind;
}
static VALUE
rb_block_pass(VALUE (*func) (VALUE), VALUE arg, VALUE proc)
{
VALUE b;
struct BLOCK _block;
struct BLOCK *data;
volatile VALUE result = Qnil;
int state;
volatile int orphan;
volatile int safe = ruby_safe_level;
if (NIL_P(proc)) {
result = (*func)(arg);
return result;
}
if (!rb_obj_is_proc(proc)) {
b = rb_check_convert_type(proc, T_DATA, "Proc", "to_proc");
if (!rb_obj_is_proc(b)) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc)",
rb_obj_classname(proc));
}
proc = b;
}
if (ruby_safe_level >= 1 && OBJ_TAINTED(proc) &&
ruby_safe_level > proc_get_safe_level(proc)) {
rb_raise(rb_eSecurityError, "Insecure: tainted block value");
}
if (ruby_frame->block && ruby_frame->block->block_obj == proc) {
return (*func)(arg);
}
Data_Get_Struct(proc, struct BLOCK, data);
orphan = block_orphan(data);
PUSH_FRAME(Qtrue);
_block = *data;
if (orphan) _block.uniq = block_unique++;
ruby_frame->block = &_block;
PUSH_TAG(PROT_LOOP);
state = EXEC_TAG();
if (state == 0) {
retry:
proc_set_safe_level(proc);
if (safe > ruby_safe_level)
ruby_safe_level = safe;
result = (*func)(arg);
}
else if (state == TAG_BREAK && TAG_DST()) {
result = prot_tag->retval;
state = 0;
}
else if (state == TAG_RETRY) {
state = 0;
goto retry;
}
POP_TAG();
POP_FRAME();
if (proc_safe_level_p(proc)) ruby_safe_level = safe;
switch (state) {/* escape from orphan block */
case 0:
break;
case TAG_RETURN:
if (orphan) {
proc_jump_error(state, prot_tag->retval);
}
default:
JUMP_TAG(state);
}
return result;
}
struct block_arg {
VALUE self;
NODE *iter;
};
static struct BLOCK *
passing_block(VALUE proc, struct BLOCK *blockp)
{
VALUE b;
struct BLOCK *data;
volatile int orphan;
if (NIL_P(proc)) return 0;
if (!rb_obj_is_proc(proc)) {
b = rb_check_convert_type(proc, T_DATA, "Proc", "to_proc");
if (!rb_obj_is_proc(b)) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc)",
rb_obj_classname(proc));
}
proc = b;
}
if (ruby_safe_level >= 1 && OBJ_TAINTED(proc) &&
ruby_safe_level > proc_get_safe_level(proc)) {
rb_raise(rb_eSecurityError, "Insecure: tainted block value");
}
Data_Get_Struct(proc, struct BLOCK, data);
orphan = block_orphan(data);
if (!orphan) return data;
*blockp = *data;
if (orphan) blockp->uniq = block_unique++;
return blockp;
}
static void
bm_mark(struct METHOD *data)
{
rb_gc_mark(data->rklass);
rb_gc_mark(data->klass);
rb_gc_mark(data->recv);
rb_gc_mark((VALUE)data->body);
}
static VALUE
mnew(VALUE klass, VALUE obj, ID id, VALUE mklass)
{
VALUE method;
NODE *body;
struct METHOD *data;
VALUE rklass = klass;
ID oid = id;
int noex = LOOKUP_NORMAL;
again:
if ((body = rb_get_method_body(&klass, &id, &noex)) == 0) {
raise_undef(rklass, oid);
}
if (nd_type(body) == NODE_ZSUPER) {
klass = RCLASS(klass)->super;
goto again;
}
while (rklass != klass &&
(FL_TEST(rklass, FL_SINGLETON) || TYPE(rklass) == T_ICLASS)) {
rklass = RCLASS(rklass)->super;
}
if (TYPE(klass) == T_ICLASS) klass = RBASIC(klass)->klass;
method = Data_Make_Struct(mklass, struct METHOD, bm_mark, -1, data);
data->klass = klass;
data->recv = obj;
data->id = id;
data->body = body;
data->rklass = rklass;
data->oid = oid;
data->safe_level = NOEX_WITH_SAFE(0);
OBJ_INFECT(method, klass);
return method;
}
/**********************************************************************
*
* Document-class : Method
*
* Method objects are created by <code>Object#method</code>, and are
* associated with a particular object (not just with a class). They
* may be used to invoke the method within the object, and as a block
* associated with an iterator. They may also be unbound from one
* object (creating an <code>UnboundMethod</code>) and bound to
* another.
*
* class Thing
* def square(n)
* n*n
* end
* end
* thing = Thing.new
* meth = thing.method(:square)
*
* meth.call(9) #=> 81
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
*
*/
/*
* call-seq:
* meth == other_meth => true or false
*
* Two method objects are equal if that are bound to the same
* object and contain the same body.
*/
static VALUE
method_eq(VALUE method, VALUE other)
{
struct METHOD *m1, *m2;
if (TYPE(other) != T_DATA || RDATA(other)->dmark != (RUBY_DATA_FUNC)bm_mark)
return Qfalse;
if (CLASS_OF(method) != CLASS_OF(other))
return Qfalse;
Data_Get_Struct(method, struct METHOD, m1);
Data_Get_Struct(other, struct METHOD, m2);
if (m1->klass != m2->klass || m1->rklass != m2->rklass ||
m1->recv != m2->recv || m1->body != m2->body)
return Qfalse;
return Qtrue;
}
/*
* call-seq:
* meth.hash => integer
*
* Return a hash value corresponding to the method object.
*/
static VALUE
method_hash(VALUE method)
{
struct METHOD *m;
long hash;
Data_Get_Struct(method, struct METHOD, m);
hash = (long)m->klass;
hash ^= (long)m->rklass;
hash ^= (long)m->recv;
hash ^= (long)m->body;
return INT2FIX(hash);
}
/*
* call-seq:
* meth.unbind => unbound_method
*
* Dissociates <i>meth</i> from it's current receiver. The resulting
* <code>UnboundMethod</code> can subsequently be bound to a new object
* of the same class (see <code>UnboundMethod</code>).
*/
static VALUE
method_unbind(VALUE obj)
{
VALUE method;
struct METHOD *orig, *data;
Data_Get_Struct(obj, struct METHOD, orig);
method = Data_Make_Struct(rb_cUnboundMethod, struct METHOD, bm_mark, free, data);
data->klass = orig->klass;
data->recv = Qundef;
data->id = orig->id;
data->body = orig->body;
data->rklass = orig->rklass;
data->oid = orig->oid;
OBJ_INFECT(method, obj);
return method;
}
/*
* call-seq:
* obj.method(sym) => method
*
* Looks up the named method as a receiver in <i>obj</i>, returning a
* <code>Method</code> object (or raising <code>NameError</code>). The
* <code>Method</code> object acts as a closure in <i>obj</i>'s object
* instance, so instance variables and the value of <code>self</code>
* remain available. Looks for private methods if optional second
* argument is true.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* m = k.method(:hello)
* m.call #=> "Hello, @iv = 99"
*
* l = Demo.new('Fred')
* m = l.method("hello")
* m.call #=> "Hello, @iv = Fred"
*/
VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod);
}
/*
* call-seq:
* mod.instance_method(symbol) => unbound_method
*
* Returns an +UnboundMethod+ representing the given instance method
* in _mod_.
*
* class Interpreter
* def do_a() print "there, "; end
* def do_d() print "Hello "; end
* def do_e() print "!\n"; end
* def do_v() print "Dave"; end
* Dispatcher = {
* ?a => instance_method(:do_a),
* ?d => instance_method(:do_d),
* ?e => instance_method(:do_e),
* ?v => instance_method(:do_v)
* }
* def interpret(string)
* string.each_byte {|b| Dispatcher[b].bind(self).call }
* end
* end
*
*
* interpreter = Interpreter.new
* interpreter.interpret('dave')
*
* <em>produces:</em>
*
* Hello there, Dave!
*/
static VALUE
rb_mod_method(VALUE mod, VALUE vid)
{
return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod);
}
/*
* MISSING: documentation
*/
static VALUE
method_clone(VALUE self)
{
VALUE clone;
struct METHOD *orig, *data;
Data_Get_Struct(self, struct METHOD, orig);
clone = Data_Make_Struct(CLASS_OF(self),struct METHOD, bm_mark, free, data);
CLONESETUP(clone, self);
*data = *orig;
return clone;
}
/*
* call-seq:
* meth.call(args, ...) => obj
* meth[args, ...] => obj
*
* Invokes the <i>meth</i> with the specified arguments, returning the
* method's return value.
*
* m = 12.method("+")
* m.call(3) #=> 15
* m.call(20) #=> 32
*/
VALUE
rb_method_call(int argc, VALUE *argv, VALUE method)
{
VALUE result = Qnil; /* OK */
struct METHOD *data;
int safe;
Data_Get_Struct(method, struct METHOD, data);
if (data->recv == Qundef) {
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
}
if (OBJ_TAINTED(method)) {
safe = NOEX_WITH(data->safe_level, 4);
}
else {
safe = data->safe_level;
}
result = rb_call0(data->klass,data->recv,data->id,data->oid,
argc,argv,ruby_frame->block,data->body,safe);
return result;
}
/**********************************************************************
*
* Document-class: UnboundMethod
*
* Ruby supports two forms of objectified methods. Class
* <code>Method</code> is used to represent methods that are associated
* with a particular object: these method objects are bound to that
* object. Bound method objects for an object can be created using
* <code>Object#method</code>.
*
* Ruby also supports unbound methods; methods objects that are not
* associated with a particular object. These can be created either by
* calling <code>Module#instance_method</code> or by calling
* <code>unbind</code> on a bound method object. The result of both of
* these is an <code>UnboundMethod</code> object.
*
* Unbound methods can only be called after they are bound to an
* object. That object must be be a kind_of? the method's original
* class.
*
* class Square
* def area
* @side * @side
* end
* def initialize(side)
* @side = side
* end
* end
*
* area_un = Square.instance_method(:area)
*
* s = Square.new(12)
* area = area_un.bind(s)
* area.call #=> 144
*
* Unbound methods are a reference to the method at the time it was
* objectified: subsequent changes to the underlying class will not
* affect the unbound method.
*
* class Test
* def test
* :original
* end
* end
* um = Test.instance_method(:test)
* class Test
* def test
* :modified
* end
* end
* t = Test.new
* t.test #=> :modified
* um.bind(t).call #=> :original
*
*/
/*
* call-seq:
* umeth.bind(obj) -> method
*
* Bind <i>umeth</i> to <i>obj</i>. If <code>Klass</code> was the class
* from which <i>umeth</i> was obtained,
* <code>obj.kind_of?(Klass)</code> must be true.
*
* class A
* def test
* puts "In test, class = #{self.class}"
* end
* end
* class B < A
* end
* class C < B
* end
*
*
* um = B.instance_method(:test)
* bm = um.bind(C.new)
* bm.call
* bm = um.bind(B.new)
* bm.call
* bm = um.bind(A.new)
* bm.call
*
* <em>produces:</em>
*
* In test, class = C
* In test, class = B
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
* from prog.rb:16
*/
static VALUE
umethod_bind(VALUE method, VALUE recv)
{
struct METHOD *data, *bound;
VALUE rklass = CLASS_OF(recv);
Data_Get_Struct(method, struct METHOD, data);
if (data->rklass != rklass) {
if (FL_TEST(data->rklass, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton method bound for a different object");
}
if (TYPE(data->rklass) == T_MODULE) {
st_table *m_tbl = RCLASS(data->rklass)->m_tbl;
while (RCLASS(rklass)->m_tbl != m_tbl) {
rklass = RCLASS(rklass)->super;
if (!rklass) goto not_instace;
}
}
else if (!rb_obj_is_kind_of(recv, data->rklass)) {
not_instace:
rb_raise(rb_eTypeError, "bind argument must be an instance of %s",
rb_class2name(data->rklass));
}
}
method = Data_Make_Struct(rb_cMethod,struct METHOD,bm_mark,free,bound);
*bound = *data;
bound->recv = recv;
bound->rklass = rklass;
return method;
}
int
rb_node_arity(NODE *body)
{
int n;
switch (nd_type(body)) {
case NODE_CFUNC:
if (body->nd_argc < 0) return -1;
return body->nd_argc;
case NODE_ZSUPER:
return -1;
case NODE_ATTRSET:
return 1;
case NODE_IVAR:
return 0;
case NODE_BMETHOD:
return rb_proc_arity(body->nd_cval);
case NODE_SCOPE:
body = body->nd_next; /* skip NODE_SCOPE */
if (nd_type(body) == NODE_BLOCK)
body = body->nd_head;
if (!body) return 0;
n = body->nd_frml ? RARRAY(body->nd_frml)->len : 0;
if (body->nd_opt)
return -n-1;
if (body->nd_rest) {
if (nd_type(body->nd_rest) == NODE_POSTARG) {
return -n-1-body->nd_rest->nd_head->nd_alen;
}
n = -n-1;
}
return n;
default:
rb_raise(rb_eArgError, "invalid node 0x%x", nd_type(body));
}
}
/*
* call-seq:
* meth.arity => fixnum
*
* Returns an indication of the number of arguments accepted by a
* method. Returns a nonnegative integer for methods that take a fixed
* number of arguments. For Ruby methods that take a variable number of
* arguments, returns -n-1, where n is the number of required
* arguments. For methods written in C, returns -1 if the call takes a
* variable number of arguments.
*
* class C
* def one; end
* def two(a); end
* def three(*a); end
* def four(a, b); end
* def five(a, b, *c); end
* def six(a, b, *c, &d); end
* end
* c = C.new
* c.method(:one).arity #=> 0
* c.method(:two).arity #=> 1
* c.method(:three).arity #=> -1
* c.method(:four).arity #=> 2
* c.method(:five).arity #=> -3
* c.method(:six).arity #=> -3
*
* "cat".method(:size).arity #=> 0
* "cat".method(:replace).arity #=> 1
* "cat".method(:squeeze).arity #=> -1
* "cat".method(:count).arity #=> -1
*/
static VALUE
method_arity_m(VALUE method)
{
int n = method_arity(method);
return INT2FIX(n);
}
static int
method_arity(VALUE method)
{
struct METHOD *data;
Data_Get_Struct(method, struct METHOD, data);
return rb_node_arity(data->body);
}
int
rb_mod_method_arity(VALUE mod, ID id)
{
NODE *node = rb_method_node(mod, id);
return rb_node_arity(node);
}
int
rb_obj_method_arity(VALUE obj, ID id)
{
return rb_mod_method_arity(CLASS_OF(obj), id);
}
/*
* call-seq:
* meth.to_s => string
* meth.inspect => string
*
* Show the name of the underlying method.
*
* "cat".method(:count).inspect #=> "#<Method: String#count>"
*/
static VALUE
method_inspect(VALUE method)
{
struct METHOD *data;
VALUE str;
const char *s;
const char *sharp = "#";
Data_Get_Struct(method, struct METHOD, data);
str = rb_str_buf_new2("#<");
s = rb_obj_classname(method);
rb_str_buf_cat2(str, s);
rb_str_buf_cat2(str, ": ");
if (FL_TEST(data->klass, FL_SINGLETON)) {
VALUE v = rb_iv_get(data->klass, "__attached__");
if (data->recv == Qundef) {
rb_str_buf_append(str, rb_inspect(data->klass));
}
else if (data->recv == v) {
rb_str_buf_append(str, rb_inspect(v));
sharp = ".";
}
else {
rb_str_buf_append(str, rb_inspect(data->recv));
rb_str_buf_cat2(str, "(");
rb_str_buf_append(str, rb_inspect(v));
rb_str_buf_cat2(str, ")");
sharp = ".";
}
}
else {
rb_str_buf_cat2(str, rb_class2name(data->rklass));
if (data->rklass != data->klass) {
rb_str_buf_cat2(str, "(");
rb_str_buf_cat2(str, rb_class2name(data->klass));
rb_str_buf_cat2(str, ")");
}
}
rb_str_buf_cat2(str, sharp);
rb_str_buf_cat2(str, rb_id2name(data->oid));
rb_str_buf_cat2(str, ">");
return str;
}
static VALUE
mproc(VALUE method)
{
VALUE proc;
proc = rb_block_proc();
proc_delete_safe_level(proc);
return proc;
}
static VALUE
bmcall(VALUE args, VALUE method)
{
volatile VALUE a;
VALUE ret;
a = svalue_to_avalue(args);
ret = rb_method_call(RARRAY(a)->len, RARRAY(a)->ptr, method);
a = Qnil; /* prevent tail call */
return ret;
}
VALUE
rb_proc_new(
VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
VALUE val)
{
struct BLOCK *data;
VALUE proc = rb_iterate((VALUE(*)(VALUE))mproc, 0, func, val);
Data_Get_Struct(proc, struct BLOCK, data);
data->body->nd_state = YIELD_FUNC_AVALUE;
return proc;
}
/*
* call-seq:
* meth.to_proc => prc
*
* Returns a <code>Proc</code> object corresponding to this method.
*/
static VALUE
method_proc(VALUE method)
{
VALUE proc;
struct METHOD *mdata;
struct BLOCK *bdata;
Data_Get_Struct(method, struct METHOD, mdata);
if (nd_type(mdata->body) == NODE_BMETHOD) {
return mdata->body->nd_cval;
}
proc = rb_iterate((VALUE(*)(VALUE))mproc, 0, bmcall, method);
Data_Get_Struct(proc, struct BLOCK, bdata);
bdata->body->nd_file = mdata->body->nd_file;
nd_set_line(bdata->body, nd_line(mdata->body));
bdata->body->nd_state = YIELD_FUNC_SVALUE;
bdata->flags |= BLOCK_FROM_METHOD;
return proc;
}
static VALUE
rb_obj_is_method(VALUE m)
{
if (TYPE(m) == T_DATA && RDATA(m)->dmark == (RUBY_DATA_FUNC)bm_mark) {
return Qtrue;
}
return Qfalse;
}
/*
* call-seq:
* define_method(symbol, method) => new_method
* define_method(symbol) { block } => proc
*
* Defines an instance method in the receiver. The _method_
* parameter can be a +Proc+ or +Method+ object.
* If a block is specified, it is used as the method body. This block
* is evaluated using <code>instance_eval</code>, a point that is
* tricky to demonstrate because <code>define_method</code> is private.
* (This is why we resort to the +send+ hack in this example.)
*
* class A
* def fred
* puts "In Fred"
* end
* def create_method(name, &block)
* self.class.send(:define_method, name, &block)
* end
* define_method(:wilma) { puts "Charge it!" }
* end
* class B < A
* define_method(:barney, instance_method(:fred))
* end
* a = B.new
* a.barney
* a.wilma
* a.create_method(:betty) { p self }
* a.betty
*
* <em>produces:</em>
*
* In Fred
* Charge it!
* #<B:0x401b39e8>
*/
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
NODE *node;
int noex;
if (argc == 1) {
id = rb_to_id(argv[0]);
body = proc_lambda();
}
else if (argc == 2) {
id = rb_to_id(argv[0]);
body = argv[1];
if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Method)",
rb_obj_classname(body));
}
}
else {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc);
}
if (RDATA(body)->dmark == (RUBY_DATA_FUNC)bm_mark) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
VALUE rklass = method->rklass;
if (rklass != mod) {
if (FL_TEST(rklass, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't bind singleton method to a different class");
}
if (!RTEST(rb_class_inherited_p(mod, rklass))) {
rb_raise(rb_eTypeError, "bind argument must be a subclass of %s",
rb_class2name(rklass));
}
}
node = method->body;
}
else if (RDATA(body)->dmark == (RUBY_DATA_FUNC)blk_mark) {
struct BLOCK *block;
body = proc_clone(body);
proc_delete_safe_level(body);
Data_Get_Struct(body, struct BLOCK, block);
block->frame.callee = id;
block->frame.this_func = id;
block->frame.this_class = mod;
node = NEW_BMETHOD(body);
}
else {
/* type error */
rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
}
if (VIS_TEST(VIS_PRIVATE)) {
noex = NOEX_PRIVATE;
}
else if (VIS_TEST(VIS_PROTECTED)) {
noex = NOEX_PROTECTED;
}
else {
noex = NOEX_PUBLIC;
}
rb_add_method(mod, id, node, noex);
return body;
}
/*
* <code>Proc</code> objects are blocks of code that have been bound to
* a set of local variables. Once bound, the code may be called in
* different contexts and still access those variables.
*
* def gen_times(factor)
* return Proc.new {|n| n*factor }
* end
*
* times3 = gen_times(3)
* times5 = gen_times(5)
*
* times3.call(12) #=> 36
* times5.call(5) #=> 25
* times3.call(times5.call(4)) #=> 60
*
*/
void
Init_Proc(void)
{
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
rb_global_variable(&exception_error);
exception_error = rb_exc_new2(rb_eFatal, "exception reentered");
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
rb_global_variable(&sysstack_error);
sysstack_error = rb_exc_new2(rb_eSysStackError, "stack level too deep");
OBJ_TAINT(sysstack_error);
rb_cProc = rb_define_class("Proc", rb_cObject);
rb_undef_alloc_func(rb_cProc);
rb_define_singleton_method(rb_cProc, "new", proc_s_new, -1);
rb_define_method(rb_cProc, "clone", proc_clone, 0);
rb_define_method(rb_cProc, "dup", proc_dup, 0);
rb_define_method(rb_cProc, "call", rb_proc_call, -2);
rb_define_method(rb_cProc, "yield", rb_proc_yield, -1);
rb_define_method(rb_cProc, "arity", proc_arity, 0);
rb_define_method(rb_cProc, "[]", rb_proc_call, -2);
rb_define_method(rb_cProc, "==", proc_eq, 1);
rb_define_method(rb_cProc, "eql?", proc_eq, 1);
rb_define_method(rb_cProc, "hash", proc_hash, 0);
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
rb_define_method(rb_cProc, "to_proc", proc_to_self, 0);
rb_define_method(rb_cProc, "binding", proc_binding, 0);
rb_define_global_function("proc", rb_block_proc, 0);
rb_define_global_function("lambda", proc_lambda, 0);
rb_define_method(rb_cNilClass, "yield", nil_yield, -1);
rb_cMethod = rb_define_class("Method", rb_cObject);
rb_undef_alloc_func(rb_cMethod);
rb_undef_method(CLASS_OF(rb_cMethod), "new");
rb_define_method(rb_cMethod, "==", method_eq, 1);
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
rb_define_method(rb_cMethod, "hash", method_hash, 0);
rb_define_method(rb_cMethod, "clone", method_clone, 0);
rb_define_method(rb_cMethod, "call", rb_method_call, -1);
rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cMethod, "to_proc", method_proc, 0);
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
rb_undef_alloc_func(rb_cUnboundMethod);
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
rb_define_method(rb_cModule, "instance_method", rb_mod_method, 1);
}
/*
* Objects of class <code>Binding</code> encapsulate the execution
* context at some particular place in the code and retain this context
* for future use. The variables, methods, value of <code>self</code>,
* and possibly an iterator block that can be accessed in this context
* are all retained. Binding objects can be created using
* <code>Kernel#binding</code>, and are made available to the callback
* of <code>Kernel#set_trace_func</code>.
*
* These binding objects can be passed as the second argument of the
* <code>Kernel#eval</code> method, establishing an environment for the
* evaluation.
*
* class Demo
* def initialize(n)
* @secret = n
* end
* def getBinding
* return binding()
* end
* end
*
* k1 = Demo.new(99)
* b1 = k1.getBinding
* k2 = Demo.new(-3)
* b2 = k2.getBinding
*
* eval("@secret", b1) #=> 99
* eval("@secret", b2) #=> -3
* eval("@secret") #=> nil
*
* Binding objects have no class-specific methods.
*
*/
void
Init_Binding(void)
{
rb_cBinding = rb_define_class("Binding", rb_cObject);
rb_undef_alloc_func(rb_cBinding);
rb_undef_method(CLASS_OF(rb_cBinding), "new");
rb_define_method(rb_cBinding, "clone", proc_clone, 0);
rb_define_method(rb_cBinding, "dup", proc_dup, 0);
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
rb_define_global_function("binding", rb_f_binding, 0);
}
/* Windows SEH refers data on the stack. */
#undef SAVE_WIN32_EXCEPTION_LIST
#if defined _WIN32 || defined __CYGWIN__
#if defined __CYGWIN__
typedef unsigned long DWORD;
#endif
static inline DWORD
win32_get_exception_list(void)
{
DWORD p;
# if defined _MSC_VER
# ifdef _M_IX86
# define SAVE_WIN32_EXCEPTION_LIST
# if _MSC_VER >= 1310
/* warning: unsafe assignment to fs:0 ... this is ok */
# pragma warning(disable: 4733)
# endif
__asm mov eax, fs:[0];
__asm mov p, eax;
# endif
# elif defined __GNUC__
# ifdef __i386__
# define SAVE_WIN32_EXCEPTION_LIST
__asm__("movl %%fs:0,%0" : "=r"(p));
# endif
# elif defined __BORLANDC__
# define SAVE_WIN32_EXCEPTION_LIST
__emit__(0x64, 0xA1, 0, 0, 0, 0); /* mov eax, fs:[0] */
p = _EAX;
# endif
return p;
}
static inline void
win32_set_exception_list(DWORD p)
{
# if defined _MSC_VER
# ifdef _M_IX86
__asm mov eax, p;
__asm mov fs:[0], eax;
# endif
# elif defined __GNUC__
# ifdef __i386__
__asm__("movl %0,%%fs:0" :: "r"(p));
# endif
# elif defined __BORLANDC__
_EAX = p;
__emit__(0x64, 0xA3, 0, 0, 0, 0); /* mov fs:[0], eax */
# endif
}
#if !defined SAVE_WIN32_EXCEPTION_LIST && !defined _WIN32_WCE
# error unsupported platform
#endif
#endif
int rb_thread_pending = 0;
VALUE rb_cThread;
extern VALUE rb_last_status;
enum thread_status {
THREAD_TO_KILL,
THREAD_RUNNABLE,
THREAD_STOPPED,
THREAD_KILLED,
};
#define WAIT_FD (1<<0)
#define WAIT_SELECT (1<<1)
#define WAIT_TIME (1<<2)
#define WAIT_JOIN (1<<3)
#define WAIT_PID (1<<4)
/* +infty, for this purpose */
#define DELAY_INFTY 1E30
#if !defined HAVE_PAUSE
# if defined _WIN32 && !defined __CYGWIN__
# define pause() Sleep(INFINITE)
# else
# define pause() sleep(0x7fffffff)
# endif
#endif
#if defined(NFDBITS) && defined(HAVE_RB_FD_INIT)
void
rb_fd_init(fds)
volatile rb_fdset_t *fds;
{
fds->maxfd = 0;
fds->fdset = ALLOC(fd_set);
FD_ZERO(fds->fdset);
}
void
rb_fd_term(fds)
rb_fdset_t *fds;
{
if (fds->fdset) free(fds->fdset);
fds->maxfd = 0;
fds->fdset = 0;
}
void
rb_fd_zero(fds)
rb_fdset_t *fds;
{
if (fds->fdset) {
MEMZERO(fds->fdset, fd_mask, howmany(fds->maxfd, NFDBITS));
FD_ZERO(fds->fdset);
}
}
static void
rb_fd_resize(n, fds)
int n;
rb_fdset_t *fds;
{
int m = howmany(n + 1, NFDBITS) * sizeof(fd_mask);
int o = howmany(fds->maxfd, NFDBITS) * sizeof(fd_mask);
if (m < sizeof(fd_set)) m = sizeof(fd_set);
if (o < sizeof(fd_set)) o = sizeof(fd_set);
if (m > o) {
fds->fdset = realloc(fds->fdset, m);
memset((char *)fds->fdset + o, 0, m - o);
}
if (n >= fds->maxfd) fds->maxfd = n + 1;
}
void
rb_fd_set(n, fds)
int n;
rb_fdset_t *fds;
{
rb_fd_resize(n, fds);
FD_SET(n, fds->fdset);
}
void
rb_fd_clr(n, fds)
int n;
rb_fdset_t *fds;
{
if (n >= fds->maxfd) return;
FD_CLR(n, fds->fdset);
}
int
rb_fd_isset(n, fds)
int n;
const rb_fdset_t *fds;
{
if (n >= fds->maxfd) return 0;
return FD_ISSET(n, fds->fdset) != 0; /* "!= 0" avoids FreeBSD PR 91421 */
}
void
rb_fd_copy(dst, src, max)
rb_fdset_t *dst;
const fd_set *src;
int max;
{
int size = howmany(max, NFDBITS) * sizeof(fd_mask);
if (size < sizeof(fd_set)) size = sizeof(fd_set);
dst->maxfd = max;
dst->fdset = realloc(dst->fdset, size);
memcpy(dst->fdset, src, size);
}
int
rb_fd_select(n, readfds, writefds, exceptfds, timeout)
int n;
rb_fdset_t *readfds, *writefds, *exceptfds;
struct timeval *timeout;
{
rb_fd_resize(n - 1, readfds);
rb_fd_resize(n - 1, writefds);
rb_fd_resize(n - 1, exceptfds);
return select(n, rb_fd_ptr(readfds), rb_fd_ptr(writefds), rb_fd_ptr(exceptfds), timeout);
}
#undef FD_ZERO
#undef FD_SET
#undef FD_CLR
#undef FD_ISSET
#define FD_ZERO(f) rb_fd_zero(f)
#define FD_SET(i, f) rb_fd_set(i, f)
#define FD_CLR(i, f) rb_fd_clr(i, f)
#define FD_ISSET(i, f) rb_fd_isset(i, f)
#endif
/* typedef struct thread * rb_thread_t; */
struct thread {
struct thread *next, *prev;
rb_jmpbuf_t context;
#ifdef SAVE_WIN32_EXCEPTION_LIST
DWORD win32_exception_list;
#endif
VALUE result;
long stk_len;
long stk_max;
VALUE *stk_ptr;
VALUE *stk_pos;
#ifdef __ia64
long bstr_len;
long bstr_max;
VALUE *bstr_ptr;
VALUE *bstr_pos;
#endif
struct FRAME *frame;
struct SCOPE *scope;
struct RVarmap *dyna_vars;
struct BLOCK *block;
struct iter *iter;
struct tag *tag;
VALUE wrapper;
NODE *cref;
struct ruby_env *anchor;
int flags; /* misc. states (rb_trap_immediate/raised) */
NODE *node;
int tracing;
VALUE errinfo;
VALUE last_status;
VALUE last_line;
VALUE last_match;
int safe;
enum thread_status status;
int wait_for;
int fd;
rb_fdset_t readfds;
rb_fdset_t writefds;
rb_fdset_t exceptfds;
int select_value;
double delay;
rb_thread_t join;
int abort;
int priority;
VALUE thgroup;
st_table *locals;
VALUE thread;
};
#define THREAD_RAISED 0x200 /* temporary flag */
#define THREAD_TERMINATING 0x400 /* persistent flag */
#define THREAD_FLAGS_MASK 0x400 /* mask for persistent flags */
#define FOREACH_THREAD_FROM(f,x) x = f; do { x = x->next;
#define END_FOREACH_FROM(f,x) } while (x != f)
#define FOREACH_THREAD(x) FOREACH_THREAD_FROM(curr_thread,x)
#define END_FOREACH(x) END_FOREACH_FROM(curr_thread,x)
struct thread_status_t {
NODE *node;
int tracing;
VALUE errinfo;
VALUE last_status;
VALUE last_line;
VALUE last_match;
int safe;
enum thread_status status;
int wait_for;
int fd;
rb_fdset_t readfds;
rb_fdset_t writefds;
rb_fdset_t exceptfds;
int select_value;
double delay;
rb_thread_t join;
};
#define THREAD_COPY_STATUS(src, dst) (void)( \
(dst)->node = (src)->node, \
\
(dst)->tracing = (src)->tracing, \
(dst)->errinfo = (src)->errinfo, \
(dst)->last_status = (src)->last_status, \
(dst)->last_line = (src)->last_line, \
(dst)->last_match = (src)->last_match, \
\
(dst)->safe = (src)->safe, \
\
(dst)->status = (src)->status, \
(dst)->wait_for = (src)->wait_for, \
(dst)->fd = (src)->fd, \
(dst)->readfds = (src)->readfds, \
(dst)->writefds = (src)->writefds, \
(dst)->exceptfds = (src)->exceptfds, \
rb_fd_init(&(src)->readfds), \
rb_fd_init(&(src)->writefds), \
rb_fd_init(&(src)->exceptfds), \
(dst)->select_value = (src)->select_value, \
(dst)->delay = (src)->delay, \
(dst)->join = (src)->join, \
0)
static int
thread_set_raised(void)
{
if (curr_thread->flags & THREAD_RAISED) return 1;
curr_thread->flags |= THREAD_RAISED;
return 0;
}
static int
thread_reset_raised(void)
{
if (!(curr_thread->flags & THREAD_RAISED)) return 0;
curr_thread->flags &= ~THREAD_RAISED;
return 1;
}
static void rb_thread_ready(rb_thread_t);
static VALUE
run_trap_eval(VALUE arg)
{
VALUE *p = (VALUE *)arg;
return rb_eval_cmd(p[0], p[1], (int)p[2]);
}
static VALUE
rb_trap_eval(VALUE cmd, int sig, int safe)
{
int state;
VALUE val = Qnil; /* OK */
volatile struct thread_status_t save;
VALUE arg[3];
arg[0] = cmd;
arg[1] = rb_ary_new3(1, INT2FIX(sig));
arg[2] = (VALUE)safe;
THREAD_COPY_STATUS(curr_thread, &save);
rb_thread_ready(curr_thread);
val = rb_protect(run_trap_eval, (VALUE)&arg, &state);
THREAD_COPY_STATUS(&save, curr_thread);
if (state) {
rb_trap_immediate = 0;
JUMP_TAG(state);
}
if (curr_thread->status == THREAD_STOPPED) {
rb_thread_schedule();
}
errno = EINTR;
return val;
}
static const char *
thread_status_name(enum thread_status status)
{
switch (status) {
case THREAD_RUNNABLE:
return "run";
case THREAD_STOPPED:
return "sleep";
case THREAD_TO_KILL:
return "aborting";
case THREAD_KILLED:
return "dead";
default:
return "unknown";
}
}
/* $SAFE accessor */
void
rb_set_safe_level(int level)
{
if (level > ruby_safe_level) {
if (level > SAFE_LEVEL_MAX) level = SAFE_LEVEL_MAX;
ruby_safe_level = level;
curr_thread->safe = level;
}
}
static VALUE
safe_getter(void)
{
return INT2NUM(ruby_safe_level);
}
static void
safe_setter(VALUE val)
{
int level = NUM2INT(val);
if (level < ruby_safe_level) {
rb_raise(rb_eSecurityError, "tried to downgrade safe level from %d to %d",
ruby_safe_level, level);
}
if (level > SAFE_LEVEL_MAX) level = SAFE_LEVEL_MAX;
ruby_safe_level = level;
curr_thread->safe = level;
}
/* Return the current time as a floating-point number */
static double
timeofday(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (double)tv.tv_sec + (double)tv.tv_usec * 1e-6;
}
#define STACK(addr) (th->stk_pos<(VALUE*)(addr) && (VALUE*)(addr)<th->stk_pos+th->stk_len)
#define ADJ(addr) (void*)(STACK(addr)?(((VALUE*)(addr)-th->stk_pos)+th->stk_ptr):(VALUE*)(addr))
static void
thread_mark(rb_thread_t th)
{
struct FRAME *frame;
struct BLOCK *block;
rb_gc_mark(th->result);
rb_gc_mark(th->thread);
if (th->join) rb_gc_mark(th->join->thread);
rb_gc_mark(th->wrapper);
rb_gc_mark((VALUE)th->cref);
rb_gc_mark((VALUE)th->scope);
rb_gc_mark((VALUE)th->dyna_vars);
rb_gc_mark(th->errinfo);
rb_gc_mark(th->last_status);
rb_gc_mark(th->last_line);
rb_gc_mark(th->last_match);
rb_mark_tbl(th->locals);
rb_gc_mark(th->thgroup);
/* mark data in copied stack */
if (th == curr_thread) return;
if (th->status == THREAD_KILLED) return;
if (th->stk_len == 0) return; /* stack not active, no need to mark. */
if (th->stk_ptr) {
rb_gc_mark_locations(th->stk_ptr, th->stk_ptr+th->stk_len);
#if defined(THINK_C) || defined(__human68k__)
rb_gc_mark_locations(th->stk_ptr+2, th->stk_ptr+th->stk_len+2);
#endif
#ifdef __ia64
if (th->bstr_ptr) {
rb_gc_mark_locations(th->bstr_ptr, th->bstr_ptr+th->bstr_len);
}
#endif
}
frame = th->frame;
while (frame && frame != top_frame) {
frame = ADJ(frame);
rb_gc_mark_frame(frame);
if (frame->tmp) {
struct FRAME *tmp = frame->tmp;
while (tmp && tmp != top_frame) {
tmp = ADJ(tmp);
rb_gc_mark_frame(tmp);
tmp = tmp->prev;
}
}
frame = frame->prev;
}
block = th->block;
while (block) {
block = ADJ(block);
rb_gc_mark_frame(&block->frame);
block = block->frame.block;
}
}
static struct {
rb_thread_t thread;
VALUE proc, arg;
} new_thread;
static int
mark_loading_thread(ID key, VALUE value, int lev)
{
rb_gc_mark(((rb_thread_t)value)->thread);
return ST_CONTINUE;
}
void
rb_gc_mark_threads(void)
{
rb_thread_t th;
/* static global mark */
rb_gc_mark((VALUE)ruby_cref);
if (!curr_thread) return;
rb_gc_mark(main_thread->thread);
rb_gc_mark(curr_thread->thread);
FOREACH_THREAD_FROM(main_thread, th) {
switch (th->status) {
case THREAD_TO_KILL:
case THREAD_RUNNABLE:
break;
case THREAD_STOPPED:
if (th->wait_for) break;
default:
continue;
}
rb_gc_mark(th->thread);
} END_FOREACH_FROM(main_thread, th);
if (new_thread.thread) {
rb_gc_mark(new_thread.thread->thread);
rb_gc_mark(new_thread.proc);
rb_gc_mark(new_thread.arg);
}
if (loading_tbl) st_foreach(loading_tbl, mark_loading_thread, 0);
}
void
rb_gc_abort_threads(void)
{
rb_thread_t th;
if (!main_thread)
return;
FOREACH_THREAD_FROM(main_thread, th) {
if (FL_TEST(th->thread, FL_MARK)) continue;
if (th->status == THREAD_STOPPED) {
th->status = THREAD_TO_KILL;
rb_gc_mark(th->thread);
}
} END_FOREACH_FROM(main_thread, th);
}
static void
thread_free(rb_thread_t th)
{
if (th->stk_ptr) free(th->stk_ptr);
th->stk_ptr = 0;
#ifdef __ia64
if (th->bstr_ptr) free(th->bstr_ptr);
th->bstr_ptr = 0;
#endif
if (th->locals) st_free_table(th->locals);
if (th->status != THREAD_KILLED) {
if (th->prev) th->prev->next = th->next;
if (th->next) th->next->prev = th->prev;
}
rb_fd_term(&th->readfds);
rb_fd_term(&th->writefds);
rb_fd_term(&th->exceptfds);
if (th != main_thread) free(th);
}
static rb_thread_t
rb_thread_check(VALUE data)
{
if (TYPE(data) != T_DATA || RDATA(data)->dmark != (RUBY_DATA_FUNC)thread_mark) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Thread)",
rb_obj_classname(data));
}
return (rb_thread_t)RDATA(data)->data;
}
static VALUE rb_thread_raise(int, VALUE*, rb_thread_t);
static VALUE th_raise_exception;
static NODE *th_raise_node;
static VALUE th_cmd;
static int th_sig, th_safe;
static const char *th_signm;
#define RESTORE_NORMAL 1
#define RESTORE_FATAL 2
#define RESTORE_INTERRUPT 3
#define RESTORE_TRAP 4
#define RESTORE_RAISE 5
#define RESTORE_SIGNAL 6
#define RESTORE_EXIT 7
extern VALUE *rb_gc_stack_start;
#ifdef __ia64
extern VALUE *rb_gc_register_stack_start;
#endif
static void
rb_thread_save_context(rb_thread_t th)
{
VALUE *pos;
int len;
static VALUE tval;
len = ruby_stack_length(&pos);
th->stk_len = 0;
th->stk_pos = pos;
if (len > th->stk_max) {
VALUE *ptr = realloc(th->stk_ptr, sizeof(VALUE) * len);
if (!ptr) rb_memerror();
th->stk_ptr = ptr;
th->stk_max = len;
}
th->stk_len = len;
FLUSH_REGISTER_WINDOWS;
MEMCPY(th->stk_ptr, th->stk_pos, VALUE, th->stk_len);
#ifdef __ia64
th->bstr_pos = rb_gc_register_stack_start;
len = (VALUE*)rb_ia64_bsp() - th->bstr_pos;
th->bstr_len = 0;
if (len > th->bstr_max) {
VALUE *ptr = realloc(th->bstr_ptr, sizeof(VALUE) * len);
if (!ptr) rb_memerror();
th->bstr_ptr = ptr;
th->bstr_max = len;
}
th->bstr_len = len;
rb_ia64_flushrs();
MEMCPY(th->bstr_ptr, th->bstr_pos, VALUE, th->bstr_len);
#endif
#ifdef SAVE_WIN32_EXCEPTION_LIST
th->win32_exception_list = win32_get_exception_list();
#endif
th->frame = ruby_frame;
th->scope = ruby_scope;
ruby_scope->flags |= SCOPE_DONT_RECYCLE;
th->wrapper = ruby_wrapper;
th->cref = ruby_cref;
th->dyna_vars = ruby_dyna_vars;
th->flags &= THREAD_FLAGS_MASK;
th->flags |= (rb_trap_immediate<<8) | vis_mode;
th->tag = prot_tag;
th->tracing = tracing;
th->errinfo = ruby_errinfo;
th->last_status = rb_last_status;
tval = rb_lastline_get();
rb_lastline_set(th->last_line);
th->last_line = tval;
tval = rb_backref_get();
rb_backref_set(th->last_match);
th->last_match = tval;
th->safe = ruby_safe_level;
th->node = ruby_current_node;
}
static int
rb_thread_switch(int n)
{
rb_trap_immediate = (curr_thread->flags&(1<<8))?1:0;
switch (n) {
case 0:
return 0;
case RESTORE_FATAL:
JUMP_TAG(TAG_FATAL);
break;
case RESTORE_INTERRUPT:
rb_interrupt();
break;
case RESTORE_TRAP:
rb_trap_eval(th_cmd, th_sig, th_safe);
break;
case RESTORE_RAISE:
ruby_frame->callee = 0;
ruby_frame->this_func = 0;
ruby_current_node = th_raise_node;
rb_raise_jump(th_raise_exception);
break;
case RESTORE_SIGNAL:
rb_raise(rb_eSignal, "SIG%s", th_signm);
break;
case RESTORE_EXIT:
ruby_errinfo = th_raise_exception;
ruby_current_node = th_raise_node;
if (!rb_obj_is_kind_of(ruby_errinfo, rb_eSystemExit)) {
terminate_process(EXIT_FAILURE, ruby_errinfo);
}
rb_exc_raise(th_raise_exception);
break;
case RESTORE_NORMAL:
default:
break;
}
return 1;
}
#define THREAD_SAVE_CONTEXT(th) \
(rb_thread_switch((FLUSH_REGISTER_WINDOWS, ruby_setjmp(rb_thread_save_context(th), (th)->context))))
NORETURN(static void rb_thread_restore_context(rb_thread_t,int));
NORETURN(NOINLINE(static void rb_thread_restore_context_0(rb_thread_t,int,void*)));
NORETURN(NOINLINE(static void stack_extend(rb_thread_t, int, VALUE *)));
static void
rb_thread_restore_context_0(rb_thread_t th, int exit, void *vp)
{
/* vp prevents tail call */
static rb_thread_t tmp;
static int ex;
static VALUE tval;
rb_trap_immediate = 0; /* inhibit interrupts from here */
ruby_frame = th->frame;
ruby_scope = th->scope;
ruby_wrapper = th->wrapper;
ruby_cref = th->cref;
vis_mode = th->flags&VIS_MASK;
ruby_dyna_vars = th->dyna_vars;
prot_tag = th->tag;
tracing = th->tracing;
ruby_errinfo = th->errinfo;
rb_last_status = th->last_status;
ruby_safe_level = th->safe;
ruby_current_node = th->node;
#ifdef SAVE_WIN32_EXCEPTION_LIST
win32_set_exception_list(th->win32_exception_list);
#endif
tmp = th;
ex = exit;
FLUSH_REGISTER_WINDOWS;
MEMCPY(tmp->stk_pos, tmp->stk_ptr, VALUE, tmp->stk_len);
#ifdef __ia64
MEMCPY(tmp->bstr_pos, tmp->bstr_ptr, VALUE, tmp->bstr_len);
#endif
tval = rb_lastline_get();
rb_lastline_set(tmp->last_line);
tmp->last_line = tval;
tval = rb_backref_get();
rb_backref_set(tmp->last_match);
tmp->last_match = tval;
ruby_longjmp(tmp->context, ex);
}
#ifdef __ia64
#define C(a) rse_##a##0, rse_##a##1, rse_##a##2, rse_##a##3, rse_##a##4
#define E(a) rse_##a##0= rse_##a##1= rse_##a##2= rse_##a##3= rse_##a##4
static volatile int C(a), C(b), C(c), C(d), C(e);
static volatile int C(f), C(g), C(h), C(i), C(j);
static volatile int C(k), C(l), C(m), C(n), C(o);
static volatile int C(p), C(q), C(r), C(s), C(t);
int rb_dummy_false = 0;
NORETURN(NOINLINE(static void register_stack_extend(rb_thread_t, int, void *, VALUE *)));
static void
register_stack_extend(rb_thread_t th, int exit, void *vp, VALUE *curr_bsp)
{
if (rb_dummy_false) {
/* use registers as much as possible */
E(a) = E(b) = E(c) = E(d) = E(e) =
E(f) = E(g) = E(h) = E(i) = E(j) =
E(k) = E(l) = E(m) = E(n) = E(o) =
E(p) = E(q) = E(r) = E(s) = E(t) = 0;
E(a) = E(b) = E(c) = E(d) = E(e) =
E(f) = E(g) = E(h) = E(i) = E(j) =
E(k) = E(l) = E(m) = E(n) = E(o) =
E(p) = E(q) = E(r) = E(s) = E(t) = 0;
}
if (curr_bsp < th->bstr_pos+th->bstr_len) {
register_stack_extend(th, exit, &exit, (VALUE*)rb_ia64_bsp());
}
rb_thread_restore_context_0(th, exit, &exit);
}
#undef C
#undef E
#endif
static void
stack_extend(rb_thread_t th, int exit, VALUE *addr_in_prev_frame)
{
#define STACK_PAD_SIZE 1024
VALUE space[STACK_PAD_SIZE];
#if STACK_GROW_DIRECTION < 0
if (addr_in_prev_frame > th->stk_pos) stack_extend(th, exit, &space[0]);
#elif STACK_GROW_DIRECTION > 0
if (addr_in_prev_frame < th->stk_pos + th->stk_len) stack_extend(th, exit, &space[STACK_PAD_SIZE-1]);
#else
if (addr_in_prev_frame < rb_gc_stack_start) {
/* Stack grows downward */
if (addr_in_prev_frame > th->stk_pos) stack_extend(th, exit, &space[0]);
}
else {
/* Stack grows upward */
if (addr_in_prev_frame < th->stk_pos + th->stk_len) stack_extend(th, exit, &space[STACK_PAD_SIZE-1]);
}
#endif
#ifdef __ia64
register_stack_extend(th, exit, space, (VALUE*)rb_ia64_bsp());
#else
rb_thread_restore_context_0(th, exit, space);
#endif
}
static void
rb_thread_restore_context(rb_thread_t th, int exit)
{
VALUE v;
if (!th->stk_ptr) rb_bug("unsaved context");
stack_extend(th, exit, &v);
}
static void
rb_thread_ready(rb_thread_t th)
{
th->wait_for = 0;
if (th->status != THREAD_TO_KILL) {
th->status = THREAD_RUNNABLE;
}
}
static void
rb_thread_die(rb_thread_t th)
{
th->thgroup = 0;
th->status = THREAD_KILLED;
if (th->stk_ptr) free(th->stk_ptr);
th->stk_ptr = 0;
}
static void
rb_thread_remove(rb_thread_t th)
{
if (th->status == THREAD_KILLED) return;
rb_thread_ready(th);
rb_thread_die(th);
th->prev->next = th->next;
th->next->prev = th->prev;
}
static int
rb_thread_dead(rb_thread_t th)
{
return th->status == THREAD_KILLED;
}
void
rb_thread_fd_close(int fd)
{
rb_thread_t th;
FOREACH_THREAD(th) {
if (((th->wait_for & WAIT_FD) && fd == th->fd) ||
((th->wait_for & WAIT_SELECT) && (fd < th->fd) &&
(FD_ISSET(fd, &th->readfds) ||
FD_ISSET(fd, &th->writefds) ||
FD_ISSET(fd, &th->exceptfds)))) {
VALUE exc = rb_exc_new2(rb_eIOError, "stream closed");
rb_thread_raise(1, &exc, th);
}
}
END_FOREACH(th);
}
NORETURN(static void rb_thread_main_jump(VALUE, int));
static void
rb_thread_main_jump(VALUE err, int tag)
{
curr_thread = main_thread;
th_raise_exception = err;
th_raise_node = ruby_current_node;
rb_thread_restore_context(main_thread, tag);
}
NORETURN(static void rb_thread_deadlock(void));
static void
rb_thread_deadlock(void)
{
char msg[21+SIZEOF_LONG*2];
VALUE e;
sprintf(msg, "Thread(%p): deadlock", (void*)curr_thread->thread);
e = rb_exc_new2(rb_eFatal, msg);
if (curr_thread == main_thread) {
rb_exc_raise(e);
}
rb_thread_main_jump(e, RESTORE_RAISE);
}
static void
copy_fds(rb_fdset_t *dst, rb_fdset_t *src, int max)
{
int n = 0;
int i;
if (max >= rb_fd_max(src)) max = rb_fd_max(src) - 1;
for (i=0; i<=max; i++) {
if (FD_ISSET(i, src)) {
n = i;
FD_SET(i, dst);
}
}
}
static int
match_fds(rb_fdset_t *dst, rb_fdset_t *src, int max)
{
int i;
if (max >= rb_fd_max(src)) max = rb_fd_max(src) - 1;
if (max >= rb_fd_max(dst)) max = rb_fd_max(dst) - 1;
for (i=0; i<=max; i++) {
if (FD_ISSET(i, src) && FD_ISSET(i, dst)) {
return Qtrue;
}
}
return Qfalse;
}
static int
intersect_fds(rb_fdset_t *src, rb_fdset_t *dst, int max)
{
int i, n = 0;
if (max >= rb_fd_max(dst)) max = rb_fd_max(dst) - 1;
for (i=0; i<=max; i++) {
if (FD_ISSET(i, dst)) {
if (FD_ISSET(i, src)) {
/* Wake up only one thread per fd. */
FD_CLR(i, src);
n++;
}
else {
FD_CLR(i, dst);
}
}
}
return n;
}
static int
find_bad_fds(rb_fdset_t *dst, rb_fdset_t *src, int max)
{
int i, test = Qfalse;
if (max >= rb_fd_max(src)) max = rb_fd_max(src) - 1;
for (i=0; i<=max; i++) {
if (FD_ISSET(i, src) && !FD_ISSET(i, dst)) {
FD_CLR(i, src);
test = Qtrue;
}
}
return test;
}
void
rb_thread_schedule(void)
{
rb_thread_t next; /* OK */
rb_thread_t th;
rb_thread_t curr;
int found = 0;
rb_fdset_t readfds;
rb_fdset_t writefds;
rb_fdset_t exceptfds;
struct timeval delay_tv, *delay_ptr;
double delay, now; /* OK */
int n, max;
int need_select = 0;
int select_timeout = 0;
#ifdef HAVE_NATIVETHREAD
if (!is_ruby_native_thread()) {
rb_bug("cross-thread violation on rb_thread_schedule()");
}
#endif
rb_thread_pending = rb_thread_critical = 0;
if (curr_thread == curr_thread->next
&& curr_thread->status == THREAD_RUNNABLE)
return;
next = 0;
curr = curr_thread; /* starting thread */
while (curr->status == THREAD_KILLED) {
curr = curr->prev;
}
rb_fd_init(&readfds);
rb_fd_init(&writefds);
rb_fd_init(&exceptfds);
again:
max = -1;
FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
delay = DELAY_INFTY;
now = -1.0;
FOREACH_THREAD_FROM(curr, th) {
if (!found && th->status <= THREAD_RUNNABLE) {
found = 1;
}
if (th->status != THREAD_STOPPED) continue;
if (th->wait_for & WAIT_JOIN) {
if (rb_thread_dead(th->join)) {
th->status = THREAD_RUNNABLE;
found = 1;
}
}
if (th->wait_for & WAIT_FD) {
FD_SET(th->fd, &readfds);
if (max < th->fd) max = th->fd;
need_select = 1;
}
if (th->wait_for & WAIT_SELECT) {
copy_fds(&readfds, &th->readfds, th->fd);
copy_fds(&writefds, &th->writefds, th->fd);
copy_fds(&exceptfds, &th->exceptfds, th->fd);
if (max < th->fd) max = th->fd;
need_select = 1;
if (th->wait_for & WAIT_TIME) {
select_timeout = 1;
}
th->select_value = 0;
}
if (th->wait_for & WAIT_TIME) {
double th_delay;
if (now < 0.0) now = timeofday();
th_delay = th->delay - now;
if (th_delay <= 0.0) {
th->status = THREAD_RUNNABLE;
found = 1;
}
else if (th_delay < delay) {
delay = th_delay;
need_select = 1;
}
else if (th->delay == DELAY_INFTY) {
need_select = 1;
}
}
}
END_FOREACH_FROM(curr, th);
/* Do the select if needed */
if (need_select) {
/* Convert delay to a timeval */
/* If a thread is runnable, just poll */
if (found) {
delay_tv.tv_sec = 0;
delay_tv.tv_usec = 0;
delay_ptr = &delay_tv;
}
else if (delay == DELAY_INFTY) {
delay_ptr = 0;
}
else {
delay_tv.tv_sec = delay;
delay_tv.tv_usec = (delay - (double)delay_tv.tv_sec)*1e6;
delay_ptr = &delay_tv;
}
n = rb_fd_select(max+1, &readfds, &writefds, &exceptfds, delay_ptr);
if (n < 0) {
int e = errno;
if (rb_trap_pending) {
int status;
rb_protect((VALUE (*)(VALUE))rb_trap_exec, Qnil, &status);
if (status) {
rb_fd_term(&readfds);
rb_fd_term(&writefds);
rb_fd_term(&exceptfds);
rb_jump_tag(status);
}
}
if (e == EINTR) goto again;
#ifdef ERESTART
if (e == ERESTART) goto again;
#endif
FOREACH_THREAD_FROM(curr, th) {
if (th->wait_for & WAIT_SELECT) {
int v = 0;
v |= find_bad_fds(&readfds, &th->readfds, th->fd);
v |= find_bad_fds(&writefds, &th->writefds, th->fd);
v |= find_bad_fds(&exceptfds, &th->exceptfds, th->fd);
if (v) {
th->select_value = n;
n = max;
}
}
}
END_FOREACH_FROM(curr, th);
}
if (select_timeout && n == 0) {
if (now < 0.0) now = timeofday();
FOREACH_THREAD_FROM(curr, th) {
if (((th->wait_for&(WAIT_SELECT|WAIT_TIME)) == (WAIT_SELECT|WAIT_TIME)) &&
th->delay <= now) {
th->status = THREAD_RUNNABLE;
th->wait_for = 0;
th->select_value = 0;
found = 1;
intersect_fds(&readfds, &th->readfds, max);
intersect_fds(&writefds, &th->writefds, max);
intersect_fds(&exceptfds, &th->exceptfds, max);
}
}
END_FOREACH_FROM(curr, th);
}
if (n > 0) {
now = -1.0;
/* Some descriptors are ready.
Make the corresponding threads runnable. */
FOREACH_THREAD_FROM(curr, th) {
if ((th->wait_for&WAIT_FD) && FD_ISSET(th->fd, &readfds)) {
/* Wake up only one thread per fd. */
FD_CLR(th->fd, &readfds);
th->status = THREAD_RUNNABLE;
th->fd = 0;
th->wait_for = 0;
found = 1;
}
if ((th->wait_for&WAIT_SELECT) &&
(match_fds(&readfds, &th->readfds, max) ||
match_fds(&writefds, &th->writefds, max) ||
match_fds(&exceptfds, &th->exceptfds, max))) {
/* Wake up only one thread per fd. */
th->status = THREAD_RUNNABLE;
th->wait_for = 0;
n = intersect_fds(&readfds, &th->readfds, max) +
intersect_fds(&writefds, &th->writefds, max) +
intersect_fds(&exceptfds, &th->exceptfds, max);
th->select_value = n;
found = 1;
}
}
END_FOREACH_FROM(curr, th);
}
/* The delays for some of the threads should have expired.
Go through the loop once more, to check the delays. */
if (!found && delay != DELAY_INFTY)
goto again;
}
rb_fd_term(&readfds);
rb_fd_term(&writefds);
rb_fd_term(&exceptfds);
FOREACH_THREAD_FROM(curr, th) {
if (th->status == THREAD_TO_KILL) {
next = th;
break;
}
if (th->status == THREAD_RUNNABLE && th->stk_ptr) {
if (!next || next->priority < th->priority)
next = th;
}
}
END_FOREACH_FROM(curr, th);
if (!next) {
/* raise fatal error to main thread */
curr_thread->node = ruby_current_node;
if (curr->next == curr) {
TRAP_BEG;
pause();
TRAP_END;
}
FOREACH_THREAD_FROM(curr, th) {
warn_printf("deadlock %p: %s:",
th->thread, thread_status_name(th->status));
if (th->wait_for & WAIT_FD) warn_printf("F(%d)", th->fd);
if (th->wait_for & WAIT_SELECT) warn_printf("S");
if (th->wait_for & WAIT_TIME) warn_printf("T(%f)", th->delay);
if (th->wait_for & WAIT_JOIN)
warn_printf("J(%p)", th->join ? th->join->thread : 0);
if (th->wait_for & WAIT_PID) warn_printf("P");
if (!th->wait_for) warn_printf("-");
warn_printf(" %s - %s:%d\n",
th==main_thread ? "(main)" : "",
th->node->nd_file, nd_line(th->node));
}
END_FOREACH_FROM(curr, th);
next = main_thread;
rb_thread_ready(next);
next->status = THREAD_TO_KILL;
if (!rb_thread_dead(curr_thread)) {
rb_thread_save_context(curr_thread);
}
rb_thread_deadlock();
}
next->wait_for = 0;
if (next->status == THREAD_RUNNABLE && next == curr_thread) {
return;
}
/* context switch */
if (curr == curr_thread) {
if (THREAD_SAVE_CONTEXT(curr)) {
return;
}
}
curr_thread = next;
if (next->status == THREAD_TO_KILL) {
if (!(next->flags & THREAD_TERMINATING)) {
next->flags |= THREAD_TERMINATING;
/* terminate; execute ensure-clause if any */
rb_thread_restore_context(next, RESTORE_FATAL);
}
}
rb_thread_restore_context(next, RESTORE_NORMAL);
}
void
rb_thread_wait_fd(int fd)
{
if (rb_thread_critical) return;
if (curr_thread == curr_thread->next) return;
if (curr_thread->status == THREAD_TO_KILL) return;
curr_thread->status = THREAD_STOPPED;
curr_thread->fd = fd;
curr_thread->wait_for = WAIT_FD;
rb_thread_schedule();
}
int
rb_thread_fd_writable(int fd)
{
if (rb_thread_critical) return Qtrue;
if (curr_thread == curr_thread->next) return Qtrue;
if (curr_thread->status == THREAD_TO_KILL) return Qtrue;
if (curr_thread->status == THREAD_KILLED) return Qtrue;
curr_thread->status = THREAD_STOPPED;
FD_ZERO(&curr_thread->readfds);
FD_ZERO(&curr_thread->writefds);
FD_SET(fd, &curr_thread->writefds);
FD_ZERO(&curr_thread->exceptfds);
curr_thread->fd = fd+1;
curr_thread->wait_for = WAIT_SELECT;
rb_thread_schedule();
return Qfalse;
}
void
rb_thread_wait_for(struct timeval time)
{
double date;
if (rb_thread_critical ||
curr_thread == curr_thread->next ||
curr_thread->status == THREAD_TO_KILL) {
int n;
int thr_critical = rb_thread_critical;
#ifndef linux
double d, limit;
limit = timeofday()+(double)time.tv_sec+(double)time.tv_usec*1e-6;
#endif
for (;;) {
rb_thread_critical = Qtrue;
TRAP_BEG;
n = select(0, 0, 0, 0, &time);
rb_thread_critical = thr_critical;
TRAP_END;
if (n == 0) return;
if (n < 0) {
switch (errno) {
case EINTR:
#ifdef ERESTART
case ERESTART:
#endif
break;
default:
rb_sys_fail("sleep");
}
}
#ifndef linux
d = limit - timeofday();
time.tv_sec = (int)d;
time.tv_usec = (int)((d - (int)d)*1e6);
if (time.tv_usec < 0) {
time.tv_usec += (long)1e6;
time.tv_sec -= 1;
}
if (time.tv_sec < 0) return;
#endif
}
}
date = timeofday() + (double)time.tv_sec + (double)time.tv_usec*1e-6;
curr_thread->status = THREAD_STOPPED;
curr_thread->delay = date;
curr_thread->wait_for = WAIT_TIME;
rb_thread_schedule();
}
void rb_thread_sleep_forever(void);
int
rb_thread_alone(void)
{
return curr_thread == curr_thread->next;
}
int
rb_thread_select(int max, fd_set *read, fd_set *write, fd_set *except, struct timeval *timeout)
{
#ifndef linux
double limit;
#endif
int n;
if (!read && !write && !except) {
if (!timeout) {
rb_thread_sleep_forever();
return 0;
}
rb_thread_wait_for(*timeout);
return 0;
}
#ifndef linux
if (timeout) {
limit = timeofday()+
(double)timeout->tv_sec+(double)timeout->tv_usec*1e-6;
}
#endif
if (rb_thread_critical ||
curr_thread == curr_thread->next ||
curr_thread->status == THREAD_TO_KILL) {
#ifndef linux
struct timeval tv, *tvp = timeout;
if (timeout) {
tv = *timeout;
tvp = &tv;
}
#else
struct timeval *const tvp = timeout;
#endif
for (;;) {
TRAP_BEG;
n = select(max, read, write, except, tvp);
TRAP_END;
if (n < 0) {
switch (errno) {
case EINTR:
#ifdef ERESTART
case ERESTART:
#endif
#ifndef linux
if (timeout) {
double d = limit - timeofday();
tv.tv_sec = (unsigned int)d;
tv.tv_usec = (long)((d-(double)tv.tv_sec)*1e6);
if (tv.tv_sec < 0) tv.tv_sec = 0;
if (tv.tv_usec < 0) tv.tv_usec = 0;
}
#endif
continue;
default:
break;
}
}
return n;
}
}
curr_thread->status = THREAD_STOPPED;
if (read) rb_fd_copy(&curr_thread->readfds, read, max);
else FD_ZERO(&curr_thread->readfds);
if (write) rb_fd_copy(&curr_thread->writefds, write, max);
else FD_ZERO(&curr_thread->writefds);
if (except) rb_fd_copy(&curr_thread->exceptfds, except, max);
else FD_ZERO(&curr_thread->exceptfds);
curr_thread->fd = max;
curr_thread->wait_for = WAIT_SELECT;
if (timeout) {
curr_thread->delay = timeofday() +
(double)timeout->tv_sec + (double)timeout->tv_usec*1e-6;
curr_thread->wait_for |= WAIT_TIME;
}
rb_thread_schedule();
if (read) *read = *rb_fd_ptr(&curr_thread->readfds);
if (write) *write = *rb_fd_ptr(&curr_thread->writefds);
if (except) *except = *rb_fd_ptr(&curr_thread->exceptfds);
return curr_thread->select_value;
}
static int
rb_thread_join(rb_thread_t th, double limit)
{
enum thread_status last_status = THREAD_RUNNABLE;
if (rb_thread_critical) rb_thread_deadlock();
if (!rb_thread_dead(th)) {
if (th == curr_thread)
rb_raise(rb_eThreadError, "thread %p tried to join itself",
(void*)th->thread);
if ((th->wait_for & WAIT_JOIN) && th->join == curr_thread)
rb_raise(rb_eThreadError, "Thread#join: deadlock %p - mutual join(%p)",
(void*)curr_thread->thread, (void*)th->thread);
if (curr_thread->status == THREAD_TO_KILL)
last_status = THREAD_TO_KILL;
if (limit == 0) return Qfalse;
curr_thread->status = THREAD_STOPPED;
curr_thread->join = th;
curr_thread->wait_for = WAIT_JOIN;
curr_thread->delay = timeofday() + limit;
if (limit < DELAY_INFTY) curr_thread->wait_for |= WAIT_TIME;
rb_thread_schedule();
curr_thread->status = last_status;
if (!rb_thread_dead(th)) return Qfalse;
}
if (!NIL_P(th->errinfo) && (th->flags & THREAD_RAISED)) {
VALUE oldbt = get_backtrace(th->errinfo);
VALUE errat = make_backtrace();
VALUE errinfo = rb_obj_dup(th->errinfo);
if (TYPE(oldbt) == T_ARRAY && RARRAY(oldbt)->len > 0) {
rb_ary_unshift(errat, rb_ary_entry(oldbt, 0));
}
set_backtrace(errinfo, errat);
rb_exc_raise(errinfo);
}
return Qtrue;
}
/*
* call-seq:
* thr.join => thr
* thr.join(limit) => thr
*
* The calling thread will suspend execution and run <i>thr</i>. Does not
* return until <i>thr</i> exits or until <i>limit</i> seconds have passed. If
* the time limit expires, <code>nil</code> will be returned, otherwise
* <i>thr</i> is returned.
*
* Any threads not joined will be killed when the main program exits. If
* <i>thr</i> had previously raised an exception and the
* <code>abort_on_exception</code> and <code>$DEBUG</code> flags are not set
* (so the exception has not yet been processed) it will be processed at this
* time.
*
* a = Thread.new { print "a"; sleep(10); print "b"; print "c" }
* x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }
* x.join # Let x thread finish, a will be killed on exit.
*
* <em>produces:</em>
*
* axyz
*
* The following example illustrates the <i>limit</i> parameter.
*
* y = Thread.new { 4.times { sleep 0.1; puts 'tick... ' }}
* puts "Waiting" until y.join(0.15)
*
* <em>produces:</em>
*
* tick...
* Waiting
* tick...
* Waitingtick...
*
*
* tick...
*/
static VALUE
rb_thread_join_m(int argc, VALUE *argv, VALUE thread)
{
VALUE limit;
double delay = DELAY_INFTY;
rb_thread_t th = rb_thread_check(thread);
rb_scan_args(argc, argv, "01", &limit);
if (!NIL_P(limit)) delay = rb_num2dbl(limit);
if (!rb_thread_join(th, delay))
return Qnil;
return thread;
}
/*
* call-seq:
* Thread.current => thread
*
* Returns the currently executing thread.
*
* Thread.current #=> #<Thread:0x401bdf4c run>
*/
VALUE
rb_thread_current(void)
{
return curr_thread->thread;
}
/*
* call-seq:
* Thread.main => thread
*
* Returns the main thread for the process.
*
* Thread.main #=> #<Thread:0x401bdf4c run>
*/
VALUE
rb_thread_main(void)
{
return main_thread->thread;
}
/*
* call-seq:
* Thread.list => array
*
* Returns an array of <code>Thread</code> objects for all threads that are
* either runnable or stopped.
*
* Thread.new { sleep(200) }
* Thread.new { 1000000.times {|i| i*i } }
* Thread.new { Thread.stop }
* Thread.list.each {|t| p t}
*
* <em>produces:</em>
*
* #<Thread:0x401b3e84 sleep>
* #<Thread:0x401b3f38 run>
* #<Thread:0x401b3fb0 sleep>
* #<Thread:0x401bdf4c run>
*/
VALUE
rb_thread_list(void)
{
rb_thread_t th;
VALUE ary = rb_ary_new();
FOREACH_THREAD(th) {
switch (th->status) {
case THREAD_RUNNABLE:
case THREAD_STOPPED:
case THREAD_TO_KILL:
rb_ary_push(ary, th->thread);
default:
break;
}
}
END_FOREACH(th);
return ary;
}
/*
* call-seq:
* thr.wakeup => thr
*
* Marks <i>thr</i> as eligible for scheduling (it may still remain blocked on
* I/O, however). Does not invoke the scheduler (see <code>Thread#run</code>).
*
* c = Thread.new { Thread.stop; puts "hey!" }
* c.wakeup
*
* <em>produces:</em>
*
* hey!
*/
VALUE
rb_thread_wakeup(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
if (th->status == THREAD_KILLED)
rb_raise(rb_eThreadError, "killed thread");
rb_thread_ready(th);
return thread;
}
/*
* call-seq:
* thr.run => thr
*
* Wakes up <i>thr</i>, making it eligible for scheduling. If not in a critical
* section, then invokes the scheduler.
*
* a = Thread.new { puts "a"; Thread.stop; puts "c" }
* Thread.pass
* puts "Got here"
* a.run
* a.join
*
* <em>produces:</em>
*
* a
* Got here
* c
*/
VALUE
rb_thread_run(VALUE thread)
{
rb_thread_wakeup(thread);
if (!rb_thread_critical) rb_thread_schedule();
return thread;
}
/*
* call-seq:
* thr.exit => thr or nil
* thr.kill => thr or nil
* thr.terminate => thr or nil
*
* Terminates <i>thr</i> and schedules another thread to be run. If this thread
* is already marked to be killed, <code>exit</code> returns the
* <code>Thread</code>. If this is the main thread, or the last thread, exits
* the process.
*/
VALUE
rb_thread_kill(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
if (th != curr_thread && th->safe < 4) {
rb_secure(4);
}
if (th->status == THREAD_TO_KILL || th->status == THREAD_KILLED)
return thread;
if (th == th->next || th == main_thread) rb_exit(EXIT_SUCCESS);
rb_thread_ready(th);
th->status = THREAD_TO_KILL;
if (!rb_thread_critical) rb_thread_schedule();
return thread;
}
/*
* call-seq:
* Thread.kill(thread) => thread
*
* Causes the given <em>thread</em> to exit (see <code>Thread::exit</code>).
*
* count = 0
* a = Thread.new { loop { count += 1 } }
* sleep(0.1) #=> 0
* Thread.kill(a) #=> #<Thread:0x401b3d30 dead>
* count #=> 93947
* a.alive? #=> false
*/
static VALUE
rb_thread_s_kill(VALUE obj, VALUE th)
{
return rb_thread_kill(th);
}
/*
* call-seq:
* Thread.exit => thread
*
* Terminates the currently running thread and schedules another thread to be
* run. If this thread is already marked to be killed, <code>exit</code>
* returns the <code>Thread</code>. If this is the main thread, or the last
* thread, exit the process.
*/
static VALUE
rb_thread_exit(void)
{
return rb_thread_kill(curr_thread->thread);
}
/*
* call-seq:
* Thread.pass => nil
*
* Invokes the thread scheduler to pass execution to another thread.
*
* a = Thread.new { print "a"; Thread.pass;
* print "b"; Thread.pass;
* print "c" }
* b = Thread.new { print "x"; Thread.pass;
* print "y"; Thread.pass;
* print "z" }
* a.join
* b.join
*
* <em>produces:</em>
*
* axbycz
*/
static VALUE
rb_thread_pass(void)
{
rb_thread_schedule();
return Qnil;
}
/*
* call-seq:
* Thread.stop => nil
*
* Stops execution of the current thread, putting it into a ``sleep'' state,
* and schedules execution of another thread. Resets the ``critical'' condition
* to <code>false</code>.
*
* a = Thread.new { print "a"; Thread.stop; print "c" }
* Thread.pass
* print "b"
* a.run
* a.join
*
* <em>produces:</em>
*
* abc
*/
VALUE
rb_thread_stop(void)
{
enum thread_status last_status = THREAD_RUNNABLE;
rb_thread_critical = 0;
if (curr_thread == curr_thread->next) {
rb_raise(rb_eThreadError, "stopping only thread\n\tnote: use sleep to stop forever");
}
if (curr_thread->status == THREAD_TO_KILL)
last_status = THREAD_TO_KILL;
curr_thread->status = THREAD_STOPPED;
rb_thread_schedule();
curr_thread->status = last_status;
return Qnil;
}
struct timeval rb_time_timeval(VALUE time);
void
rb_thread_polling(void)
{
if (curr_thread != curr_thread->next) {
curr_thread->status = THREAD_STOPPED;
curr_thread->delay = timeofday() + (double)0.06;
curr_thread->wait_for = WAIT_TIME;
rb_thread_schedule();
}
}
void
rb_thread_sleep(int sec)
{
if (curr_thread == curr_thread->next) {
TRAP_BEG;
sleep(sec);
TRAP_END;
return;
}
rb_thread_wait_for(rb_time_timeval(INT2FIX(sec)));
}
void
rb_thread_sleep_forever(void)
{
int thr_critical = rb_thread_critical;
if (curr_thread == curr_thread->next ||
curr_thread->status == THREAD_TO_KILL) {
rb_thread_critical = Qtrue;
TRAP_BEG;
pause();
rb_thread_critical = thr_critical;
TRAP_END;
return;
}
curr_thread->delay = DELAY_INFTY;
curr_thread->wait_for = WAIT_TIME;
curr_thread->status = THREAD_STOPPED;
rb_thread_schedule();
}
/*
* call-seq:
* thr.priority => integer
*
* Returns the priority of <i>thr</i>. Default is zero; higher-priority threads
* will run before lower-priority threads.
*
* Thread.current.priority #=> 0
*/
static VALUE
rb_thread_priority(VALUE thread)
{
return INT2NUM(rb_thread_check(thread)->priority);
}
/*
* call-seq:
* thr.priority= integer => thr
*
* Sets the priority of <i>thr</i> to <i>integer</i>. Higher-priority threads
* will run before lower-priority threads.
*
* count1 = count2 = 0
* a = Thread.new do
* loop { count1 += 1 }
* end
* a.priority = -1
*
* b = Thread.new do
* loop { count2 += 1 }
* end
* b.priority = -2
* sleep 1 #=> 1
* Thread.critical = 1
* count1 #=> 622504
* count2 #=> 5832
*/
static VALUE
rb_thread_priority_set(VALUE thread, VALUE prio)
{
rb_thread_t th;
rb_secure(4);
th = rb_thread_check(thread);
th->priority = NUM2INT(prio);
rb_thread_schedule();
return prio;
}
/*
* call-seq:
* thr.safe_level => integer
*
* Returns the safe level in effect for <i>thr</i>. Setting thread-local safe
* levels can help when implementing sandboxes which run insecure code.
*
* thr = Thread.new { $SAFE = 3; sleep }
* Thread.current.safe_level #=> 0
* thr.safe_level #=> 3
*/
static VALUE
rb_thread_safe_level(VALUE thread)
{
rb_thread_t th;
th = rb_thread_check(thread);
if (th == curr_thread) {
return INT2NUM(ruby_safe_level);
}
return INT2NUM(th->safe);
}
static int ruby_thread_abort;
static VALUE thgroup_default;
/*
* call-seq:
* Thread.abort_on_exception => true or false
*
* Returns the status of the global ``abort on exception'' condition. The
* default is <code>false</code>. When set to <code>true</code>, or if the
* global <code>$DEBUG</code> flag is <code>true</code> (perhaps because the
* command line option <code>-d</code> was specified) all threads will abort
* (the process will <code>exit(0)</code>) if an exception is raised in any
* thread. See also <code>Thread::abort_on_exception=</code>.
*/
static VALUE
rb_thread_s_abort_exc(void)
{
return ruby_thread_abort?Qtrue:Qfalse;
}
/*
* call-seq:
* Thread.abort_on_exception= boolean => true or false
*
* When set to <code>true</code>, all threads will abort if an exception is
* raised. Returns the new state.
*
* Thread.abort_on_exception = true
* t1 = Thread.new do
* puts "In new thread"
* raise "Exception from thread"
* end
* sleep(1)
* puts "not reached"
*
* <em>produces:</em>
*
* In new thread
* prog.rb:4: Exception from thread (RuntimeError)
* from prog.rb:2:in `initialize'
* from prog.rb:2:in `new'
* from prog.rb:2
*/
static VALUE
rb_thread_s_abort_exc_set(VALUE self, VALUE val)
{
rb_secure(4);
ruby_thread_abort = RTEST(val);
return val;
}
/*
* call-seq:
* thr.abort_on_exception => true or false
*
* Returns the status of the thread-local ``abort on exception'' condition for
* <i>thr</i>. The default is <code>false</code>. See also
* <code>Thread::abort_on_exception=</code>.
*/
static VALUE
rb_thread_abort_exc(VALUE thread)
{
return rb_thread_check(thread)->abort?Qtrue:Qfalse;
}
/*
* call-seq:
* thr.abort_on_exception= boolean => true or false
*
* When set to <code>true</code>, causes all threads (including the main
* program) to abort if an exception is raised in <i>thr</i>. The process will
* effectively <code>exit(0)</code>.
*/
static VALUE
rb_thread_abort_exc_set(VALUE thread, VALUE val)
{
rb_secure(4);
rb_thread_check(thread)->abort = RTEST(val);
return val;
}
/*
* call-seq:
* thr.group => thgrp or nil
*
* Returns the <code>ThreadGroup</code> which contains <i>thr</i>, or nil if
* the thread is not a member of any group.
*
* Thread.main.group #=> #<ThreadGroup:0x4029d914>
*/
VALUE
rb_thread_group(VALUE thread)
{
VALUE group = rb_thread_check(thread)->thgroup;
if (!group) {
group = Qnil;
}
return group;
}
#ifdef __ia64
# define IA64_INIT(x) x
#else
# define IA64_INIT(x)
#endif
#define THREAD_ALLOC(th) do {\
th = ALLOC(struct thread);\
\
th->next = 0;\
th->prev = 0;\
\
th->status = THREAD_RUNNABLE;\
th->result = 0;\
th->flags = 0;\
\
th->stk_ptr = 0;\
th->stk_len = 0;\
th->stk_max = 0;\
th->wait_for = 0;\
IA64_INIT(th->bstr_ptr = 0);\
IA64_INIT(th->bstr_len = 0);\
IA64_INIT(th->bstr_max = 0);\
rb_fd_init(&th->readfds);\
rb_fd_init(&th->writefds);\
rb_fd_init(&th->exceptfds);\
th->delay = 0.0;\
th->join = 0;\
\
th->frame = 0;\
th->scope = 0;\
th->wrapper = 0;\
th->cref = ruby_cref;\
th->dyna_vars = ruby_dyna_vars;\
th->block = 0;\
th->tag = 0;\
th->tracing = 0;\
th->errinfo = Qnil;\
th->last_status = 0;\
th->last_line = 0;\
th->last_match = Qnil;\
th->abort = 0;\
th->priority = 0;\
th->thgroup = thgroup_default;\
th->locals = 0;\
th->thread = 0;\
th->anchor = 0;\
} while (0)
static rb_thread_t
rb_thread_alloc(VALUE klass)
{
rb_thread_t th;
struct RVarmap *vars;
THREAD_ALLOC(th);
th->thread = Data_Wrap_Struct(klass, thread_mark, thread_free, th);
for (vars = th->dyna_vars; vars; vars = vars->next) {
if (FL_TEST(vars, DVAR_DONT_RECYCLE)) break;
FL_SET(vars, DVAR_DONT_RECYCLE);
}
return th;
}
static int thread_init = 0;
#if defined(_THREAD_SAFE)
static void
catch_timer(sig)
int sig;
{
#if !defined(POSIX_SIGNAL) && !defined(BSD_SIGNAL)
signal(sig, catch_timer);
#endif
/* cause EINTR */
}
static pthread_t time_thread;
static void*
thread_timer(dummy)
void *dummy;
{
for (;;) {
#ifdef HAVE_NANOSLEEP
struct timespec req, rem;
req.tv_sec = 0;
req.tv_nsec = 10000000;
nanosleep(&req, &rem);
#else
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 10000;
select(0, NULL, NULL, NULL, &tv);
#endif
if (!rb_thread_critical) {
rb_thread_pending = 1;
if (rb_trap_immediate) {
pthread_kill(ruby_thid, SIGVTALRM);
}
}
}
}
void
rb_thread_start_timer()
{
}
void
rb_thread_stop_timer()
{
}
#elif defined(HAVE_SETITIMER)
static void
catch_timer(sig)
int sig;
{
#if !defined(POSIX_SIGNAL) && !defined(BSD_SIGNAL)
signal(sig, catch_timer);
#endif
if (!rb_thread_critical) {
rb_thread_pending = 1;
}
/* cause EINTR */
}
void
rb_thread_start_timer()
{
struct itimerval tval;
if (!thread_init) return;
tval.it_interval.tv_sec = 0;
tval.it_interval.tv_usec = 10000;
tval.it_value = tval.it_interval;
setitimer(ITIMER_VIRTUAL, &tval, NULL);
}
void
rb_thread_stop_timer()
{
struct itimerval tval;
if (!thread_init) return;
tval.it_interval.tv_sec = 0;
tval.it_interval.tv_usec = 0;
tval.it_value = tval.it_interval;
setitimer(ITIMER_VIRTUAL, &tval, NULL);
}
#else /* !(_THREAD_SAFE || HAVE_SETITIMER) */
int rb_thread_tick = THREAD_TICK;
#endif
NORETURN(static void rb_thread_terminated(rb_thread_t, int, enum thread_status));
static VALUE rb_thread_yield(VALUE, rb_thread_t);
static void
push_thread_anchor(struct ruby_env *ip)
{
ip->tag = prot_tag;
ip->frame = ruby_frame;
ip->scope = ruby_scope;
ip->cref = ruby_cref;
ip->prev = curr_thread->anchor;
curr_thread->anchor = ip;
}
static void
pop_thread_anchor(struct ruby_env *ip)
{
curr_thread->anchor = ip->prev;
}
static void
thread_insert(rb_thread_t th)
{
if (!th->next) {
/* merge in thread list */
th->prev = curr_thread;
curr_thread->next->prev = th;
th->next = curr_thread->next;
curr_thread->next = th;
th->priority = curr_thread->priority;
th->thgroup = curr_thread->thgroup;
}
}
static VALUE
rb_thread_start_0(VALUE (*fn)(ANYARGS), VALUE arg, rb_thread_t th)
{
volatile rb_thread_t th_save = th;
volatile VALUE thread = th->thread;
struct BLOCK *volatile saved_block = 0;
enum thread_status status;
int state;
if (OBJ_FROZEN(curr_thread->thgroup)) {
rb_raise(rb_eThreadError,
"can't start a new thread (frozen ThreadGroup)");
}
if (!thread_init) {
thread_init = 1;
#if defined(HAVE_SETITIMER) || defined(_THREAD_SAFE)
#if defined(POSIX_SIGNAL)
posix_signal(SIGVTALRM, catch_timer);
#else
signal(SIGVTALRM, catch_timer);
#endif
#ifdef _THREAD_SAFE
pthread_create(&time_thread, 0, thread_timer, 0);
#else
rb_thread_start_timer();
#endif
#endif
}
if (THREAD_SAVE_CONTEXT(curr_thread)) {
return thread;
}
if (fn == rb_thread_yield && curr_thread->anchor) {
struct ruby_env *ip = curr_thread->anchor;
new_thread.thread = th;
new_thread.proc = rb_block_proc();
new_thread.arg = (VALUE)arg;
th->anchor = ip;
thread_insert(th);
curr_thread = th;
ruby_longjmp((prot_tag = ip->tag)->buf, TAG_THREAD);
}
if (ruby_frame->block) { /* should nail down higher blocks */
blk_nail_down(ruby_frame->block);
}
scope_dup(ruby_scope);
thread_insert(th);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
if (THREAD_SAVE_CONTEXT(th) == 0) {
curr_thread = th;
th->result = (*fn)(arg, th);
}
th = th_save;
}
else if (TAG_DST()) {
th = th_save;
th->result = prot_tag->retval;
}
POP_TAG();
status = th->status;
if (th == main_thread) ruby_stop(state);
rb_thread_remove(th);
if (saved_block) {
blk_free(saved_block);
}
rb_thread_terminated(th, state, status);
return 0; /* not reached */
}
static void
rb_thread_terminated(rb_thread_t th, int state, enum thread_status status)
{
if (state && status != THREAD_TO_KILL && !NIL_P(ruby_errinfo)) {
th->flags |= THREAD_RAISED;
if (state == TAG_FATAL) {
/* fatal error within this thread, need to stop whole script */
main_thread->errinfo = ruby_errinfo;
rb_thread_cleanup();
}
else if (rb_obj_is_kind_of(ruby_errinfo, rb_eSystemExit)) {
if (th->safe >= 4) {
char buf[32];
sprintf(buf, "Insecure exit at level %d", th->safe);
th->errinfo = rb_exc_new2(rb_eSecurityError, buf);
}
else {
/* delegate exception to main_thread */
rb_thread_main_jump(ruby_errinfo, RESTORE_RAISE);
}
}
else if (th->safe < 4 && (ruby_thread_abort||th->abort||RTEST(ruby_debug))) {
/* exit on main_thread */
error_print();
rb_thread_main_jump(ruby_errinfo, RESTORE_EXIT);
}
else {
th->errinfo = ruby_errinfo;
}
}
rb_thread_schedule();
ruby_stop(0); /* last thread termination */
}
static VALUE
rb_thread_yield_0(VALUE arg)
{
return rb_thread_yield(arg, curr_thread);
}
static void
rb_thread_start_1(void)
{
rb_thread_t th = new_thread.thread;
volatile rb_thread_t th_save = th;
VALUE proc = new_thread.proc;
VALUE arg = new_thread.arg;
struct ruby_env *ip = th->anchor;
enum thread_status status;
int state;
ruby_frame = ip->frame;
ruby_scope = ip->scope;
ruby_cref = ip->cref;
ruby_dyna_vars = ((struct BLOCK *)DATA_PTR(proc))->dyna_vars;
PUSH_FRAME(Qtrue);
*ruby_frame = *ip->frame;
ruby_frame->prev = ip->frame;
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
if (THREAD_SAVE_CONTEXT(th) == 0) {
new_thread.thread = 0;
th->result = rb_block_pass(rb_thread_yield_0, arg, proc);
}
th = th_save;
}
else if (TAG_DST()) {
th = th_save;
th->result = prot_tag->retval;
}
POP_TAG();
POP_FRAME();
status = th->status;
if (th == main_thread) ruby_stop(state);
rb_thread_remove(th);
rb_thread_terminated(th, state, status);
}
VALUE
rb_thread_create(VALUE (*fn)(ANYARGS), void *arg)
{
Init_stack((VALUE*)&arg);
return rb_thread_start_0(fn, (VALUE)arg, rb_thread_alloc(rb_cThread));
}
static VALUE
rb_thread_yield(VALUE arg, rb_thread_t th)
{
const ID *tbl;
scope_dup(ruby_frame->block->scope);
tbl = ruby_scope->local_tbl;
if (tbl) {
int n = *tbl++;
for (tbl += 2, n -= 2; n > 0; --n) { /* skip first 2 ($_ and $~) */
ID id = *tbl++;
if (id != 0 && !rb_is_local_id(id)) /* push flip states */
rb_dvar_push(id, Qfalse);
}
}
rb_dvar_push('_', Qnil);
rb_dvar_push('~', Qnil);
ruby_frame->block->dyna_vars = ruby_dyna_vars;
return rb_yield_0(arg, 0, 0, YIELD_LAMBDA_CALL);
}
/*
* call-seq:
* Thread.new([arg]*) {|args| block } => thread
*
* Creates and runs a new thread to execute the instructions given in
* <i>block</i>. Any arguments passed to <code>Thread::new</code> are passed
* into the block.
*
* x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }
* a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }
* x.join # Let the threads finish before
* a.join # main thread exits...
*
* <em>produces:</em>
*
* abxyzc
*/
static VALUE
rb_thread_s_new(int argc, VALUE *argv, VALUE klass)
{
rb_thread_t th = rb_thread_alloc(klass);
volatile VALUE *pos;
pos = th->stk_pos;
rb_obj_call_init(th->thread, argc, argv);
if (th->stk_pos == 0) {
rb_raise(rb_eThreadError, "uninitialized thread - check `%s#initialize'",
rb_class2name(klass));
}
return th->thread;
}
/*
* call-seq:
* Thread.new([arg]*) {|args| block } => thread
*
* Creates and runs a new thread to execute the instructions given in
* <i>block</i>. Any arguments passed to <code>Thread::new</code> are passed
* into the block.
*
* x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }
* a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }
* x.join # Let the threads finish before
* a.join # main thread exits...
*
* <em>produces:</em>
*
* abxyzc
*/
static VALUE
rb_thread_initialize(VALUE thread, VALUE args)
{
rb_thread_t th;
if (!rb_block_given_p()) {
rb_raise(rb_eThreadError, "must be called with a block");
}
th = rb_thread_check(thread);
if (th->stk_max) {
NODE *node = th->node;
if (!node) {
rb_raise(rb_eThreadError, "already initialized thread");
}
rb_raise(rb_eThreadError, "already initialized thread - %s:%d",
node->nd_file, nd_line(node));
}
return rb_thread_start_0(rb_thread_yield, args, th);
}
/*
* call-seq:
* Thread.start([args]*) {|args| block } => thread
* Thread.fork([args]*) {|args| block } => thread
*
* Basically the same as <code>Thread::new</code>. However, if class
* <code>Thread</code> is subclassed, then calling <code>start</code> in that
* subclass will not invoke the subclass's <code>initialize</code> method.
*/
static VALUE
rb_thread_start(VALUE klass, VALUE args)
{
if (!rb_block_given_p()) {
rb_raise(rb_eThreadError, "must be called with a block");
}
return rb_thread_start_0(rb_thread_yield, args, rb_thread_alloc(klass));
}
/*
* call-seq:
* thr.value => obj
*
* Waits for <i>thr</i> to complete (via <code>Thread#join</code>) and returns
* its value.
*
* a = Thread.new { 2 + 2 }
* a.value #=> 4
*/
static VALUE
rb_thread_value(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
while (!rb_thread_join(th, DELAY_INFTY));
return th->result;
}
/*
* call-seq:
* thr.status => string, false or nil
*
* Returns the status of <i>thr</i>: ``<code>sleep</code>'' if <i>thr</i> is
* sleeping or waiting on I/O, ``<code>run</code>'' if <i>thr</i> is executing,
* ``<code>aborting</code>'' if <i>thr</i> is aborting, <code>false</code> if
* <i>thr</i> terminated normally, and <code>nil</code> if <i>thr</i>
* terminated with an exception.
*
* a = Thread.new { raise("die now") }
* b = Thread.new { Thread.stop }
* c = Thread.new { Thread.exit }
* d = Thread.new { sleep }
* Thread.critical = true
* d.kill #=> #<Thread:0x401b3678 aborting>
* a.status #=> nil
* b.status #=> "sleep"
* c.status #=> false
* d.status #=> "aborting"
* Thread.current.status #=> "run"
*/
static VALUE
rb_thread_status(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
if (rb_thread_dead(th)) {
if (!NIL_P(th->errinfo) && (th->flags & THREAD_RAISED))
return Qnil;
return Qfalse;
}
return rb_str_new2(thread_status_name(th->status));
}
/*
* call-seq:
* thr.alive? => true or false
*
* Returns <code>true</code> if <i>thr</i> is running or sleeping.
*
* thr = Thread.new { }
* thr.join #=> #<Thread:0x401b3fb0 dead>
* Thread.current.alive? #=> true
* thr.alive? #=> false
*/
static VALUE
rb_thread_alive_p(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
if (rb_thread_dead(th)) return Qfalse;
return Qtrue;
}
/*
* call-seq:
* thr.stop? => true or false
*
* Returns <code>true</code> if <i>thr</i> is dead or sleeping.
*
* a = Thread.new { Thread.stop }
* b = Thread.current
* a.stop? #=> true
* b.stop? #=> false
*/
static VALUE
rb_thread_stop_p(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
if (rb_thread_dead(th)) return Qtrue;
if (th->status == THREAD_STOPPED) return Qtrue;
return Qfalse;
}
static void
rb_thread_wait_other_threads(void)
{
rb_thread_t th;
int found;
/* wait other threads to terminate */
while (curr_thread != curr_thread->next) {
found = 0;
FOREACH_THREAD(th) {
if (th != curr_thread && th->status != THREAD_STOPPED) {
found = 1;
break;
}
}
END_FOREACH(th);
if (!found) return;
rb_thread_schedule();
}
}
static void
rb_thread_cleanup(void)
{
rb_thread_t curr, th;
curr = curr_thread;
while (curr->status == THREAD_KILLED) {
curr = curr->prev;
}
FOREACH_THREAD_FROM(curr, th) {
if (th->status != THREAD_KILLED) {
rb_thread_ready(th);
if (th != main_thread) {
th->thgroup = 0;
th->priority = 0;
th->status = THREAD_TO_KILL;
RDATA(th->thread)->dfree = NULL;
}
}
}
END_FOREACH_FROM(curr, th);
}
int rb_thread_critical;
/*
* call-seq:
* Thread.critical => true or false
*
* Returns the status of the global ``thread critical'' condition.
*/
static VALUE
rb_thread_critical_get(void)
{
return rb_thread_critical?Qtrue:Qfalse;
}
/*
* call-seq:
* Thread.critical= boolean => true or false
*
* Sets the status of the global ``thread critical'' condition and returns
* it. When set to <code>true</code>, prohibits scheduling of any existing
* thread. Does not block new threads from being created and run. Certain
* thread operations (such as stopping or killing a thread, sleeping in the
* current thread, and raising an exception) may cause a thread to be scheduled
* even when in a critical section. <code>Thread::critical</code> is not
* intended for daily use: it is primarily there to support folks writing
* threading libraries.
*/
static VALUE
rb_thread_critical_set(VALUE obj, VALUE val)
{
rb_thread_critical = RTEST(val);
return val;
}
void
rb_thread_interrupt(void)
{
rb_thread_critical = 0;
rb_thread_ready(main_thread);
if (curr_thread == main_thread) {
rb_interrupt();
}
if (!rb_thread_dead(curr_thread)) {
if (THREAD_SAVE_CONTEXT(curr_thread)) {
return;
}
}
curr_thread = main_thread;
rb_thread_restore_context(curr_thread, RESTORE_INTERRUPT);
}
void
rb_thread_signal_raise(const char *sig)
{
if (sig == 0) return; /* should not happen */
rb_thread_critical = 0;
if (curr_thread == main_thread) {
rb_thread_ready(curr_thread);
rb_raise(rb_eSignal, "SIG%s", sig);
}
rb_thread_ready(main_thread);
if (!rb_thread_dead(curr_thread)) {
if (THREAD_SAVE_CONTEXT(curr_thread)) {
return;
}
}
th_signm = sig; /* should be literal */
curr_thread = main_thread;
rb_thread_restore_context(curr_thread, RESTORE_SIGNAL);
}
void
rb_thread_trap_eval(VALUE cmd, int sig, int safe)
{
rb_thread_critical = 0;
if (curr_thread == main_thread) {
rb_trap_eval(cmd, sig, safe);
return;
}
if (!rb_thread_dead(curr_thread)) {
if (THREAD_SAVE_CONTEXT(curr_thread)) {
return;
}
}
th_cmd = cmd;
th_sig = sig;
th_safe = safe;
curr_thread = main_thread;
rb_thread_restore_context(curr_thread, RESTORE_TRAP);
}
void
rb_thread_signal_exit(void)
{
VALUE args[2];
rb_thread_critical = 0;
if (curr_thread == main_thread) {
rb_thread_ready(curr_thread);
rb_exit(EXIT_SUCCESS);
}
args[0] = INT2NUM(EXIT_SUCCESS);
args[1] = rb_str_new2("exit");
rb_thread_ready(main_thread);
if (!rb_thread_dead(curr_thread)) {
if (THREAD_SAVE_CONTEXT(curr_thread)) {
return;
}
}
rb_thread_main_jump(rb_class_new_instance(2, args, rb_eSystemExit),
RESTORE_EXIT);
}
static VALUE
rb_thread_raise(int argc, VALUE *argv, rb_thread_t th)
{
volatile rb_thread_t th_save = th;
VALUE exc;
if (!th->next) {
rb_raise(rb_eArgError, "unstarted thread");
}
if (rb_thread_dead(th)) return Qnil;
exc = rb_make_exception(argc, argv);
if (curr_thread == th) {
rb_raise_jump(exc);
}
if (!rb_thread_dead(curr_thread)) {
if (THREAD_SAVE_CONTEXT(curr_thread)) {
return th_save->thread;
}
}
rb_thread_ready(th);
curr_thread = th;
th_raise_exception = exc;
th_raise_node = ruby_current_node;
rb_thread_restore_context(curr_thread, RESTORE_RAISE);
return Qnil; /* not reached */
}
/*
* call-seq:
* thr.raise(exception)
*
* Raises an exception (see <code>Kernel::raise</code>) from <i>thr</i>. The
* caller does not have to be <i>thr</i>.
*
* Thread.abort_on_exception = true
* a = Thread.new { sleep(200) }
* a.raise("Gotcha")
*
* <em>produces:</em>
*
* prog.rb:3: Gotcha (RuntimeError)
* from prog.rb:2:in `initialize'
* from prog.rb:2:in `new'
* from prog.rb:2
*/
static VALUE
rb_thread_raise_m(int argc, VALUE *argv, VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
if (ruby_safe_level > th->safe) {
rb_secure(4);
}
rb_thread_raise(argc, argv, th);
return Qnil; /* not reached */
}
VALUE
rb_thread_local_aref(VALUE thread, ID id)
{
rb_thread_t th;
VALUE val;
th = rb_thread_check(thread);
if (ruby_safe_level >= 4 && th != curr_thread) {
rb_raise(rb_eSecurityError, "Insecure: thread locals");
}
if (!th->locals) return Qnil;
if (st_lookup(th->locals, id, &val)) {
return val;
}
return Qnil;
}
/*
* call-seq:
* thr[sym] => obj or nil
*
* Attribute Reference---Returns the value of a thread-local variable, using
* either a symbol or a string name. If the specified variable does not exist,
* returns <code>nil</code>.
*
* a = Thread.new { Thread.current["name"] = "A"; Thread.stop }
* b = Thread.new { Thread.current[:name] = "B"; Thread.stop }
* c = Thread.new { Thread.current["name"] = "C"; Thread.stop }
* Thread.list.each {|x| puts "#{x.inspect}: #{x[:name]}" }
*
* <em>produces:</em>
*
* #<Thread:0x401b3b3c sleep>: C
* #<Thread:0x401b3bc8 sleep>: B
* #<Thread:0x401b3c68 sleep>: A
* #<Thread:0x401bdf4c run>:
*/
static VALUE
rb_thread_aref(VALUE thread, VALUE id)
{
return rb_thread_local_aref(thread, rb_to_id(id));
}
VALUE
rb_thread_local_aset(VALUE thread, ID id, VALUE val)
{
rb_thread_t th = rb_thread_check(thread);
if (ruby_safe_level >= 4 && th != curr_thread) {
rb_raise(rb_eSecurityError, "Insecure: can't modify thread locals");
}
if (OBJ_FROZEN(thread)) rb_error_frozen("thread locals");
if (!th->locals) {
th->locals = st_init_numtable();
}
if (NIL_P(val)) {
st_delete(th->locals, (st_data_t*)&id, 0);
return Qnil;
}
st_insert(th->locals, id, val);
return val;
}
/*
* call-seq:
* thr[sym] = obj => obj
*
* Attribute Assignment---Sets or creates the value of a thread-local variable,
* using either a symbol or a string. See also <code>Thread#[]</code>.
*/
static VALUE
rb_thread_aset(VALUE thread, VALUE id, VALUE val)
{
return rb_thread_local_aset(thread, rb_to_id(id), val);
}
/*
* call-seq:
* thr.key?(sym) => true or false
*
* Returns <code>true</code> if the given string (or symbol) exists as a
* thread-local variable.
*
* me = Thread.current
* me[:oliver] = "a"
* me.key?(:oliver) #=> true
* me.key?(:stanley) #=> false
*/
static VALUE
rb_thread_key_p(VALUE thread, VALUE id)
{
rb_thread_t th = rb_thread_check(thread);
if (!th->locals) return Qfalse;
if (st_lookup(th->locals, rb_to_id(id), 0))
return Qtrue;
return Qfalse;
}
static int
thread_keys_i(ID key, VALUE value, VALUE ary)
{
rb_ary_push(ary, ID2SYM(key));
return ST_CONTINUE;
}
/*
* call-seq:
* thr.keys => array
*
* Returns an an array of the names of the thread-local variables (as Symbols).
*
* thr = Thread.new do
* Thread.current[:cat] = 'meow'
* Thread.current["dog"] = 'woof'
* end
* thr.join #=> #<Thread:0x401b3f10 dead>
* thr.keys #=> [:dog, :cat]
*/
static VALUE
rb_thread_keys(VALUE thread)
{
rb_thread_t th = rb_thread_check(thread);
VALUE ary = rb_ary_new();
if (th->locals) {
st_foreach(th->locals, thread_keys_i, ary);
}
return ary;
}
/*
* call-seq:
* thr.inspect => string
*
* Dump the name, id, and status of _thr_ to a string.
*/
static VALUE
rb_thread_inspect(VALUE thread)
{
char *cname = rb_obj_classname(thread);
rb_thread_t th = rb_thread_check(thread);
const char *status = thread_status_name(th->status);
VALUE str;
str = rb_sprintf("#<%s:%p %s>", cname, (void*)thread, status);
OBJ_INFECT(str, thread);
return str;
}
void
rb_thread_atfork(void)
{
rb_thread_t th;
if (rb_thread_alone()) return;
FOREACH_THREAD(th) {
if (th != curr_thread) {
rb_thread_die(th);
}
}
END_FOREACH(th);
main_thread = curr_thread;
curr_thread->next = curr_thread;
curr_thread->prev = curr_thread;
}
/*
* Document-class: Continuation
*
* Continuation objects are generated by
* <code>Kernel#callcc</code>. They hold a return address and execution
* context, allowing a nonlocal return to the end of the
* <code>callcc</code> block from anywhere within a program.
* Continuations are somewhat analogous to a structured version of C's
* <code>setjmp/longjmp</code> (although they contain more state, so
* you might consider them closer to threads).
*
* For instance:
*
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
* callcc{|$cc|}
* puts(message = arr.shift)
* $cc.call unless message =~ /Max/
*
* <em>produces:</em>
*
* Freddie
* Herbie
* Ron
* Max
*
* This (somewhat contrived) example allows the inner loop to abandon
* processing early:
*
* callcc {|cont|
* for i in 0..4
* print "\n#{i}: "
* for j in i*5...(i+1)*5
* cont.call() if j == 17
* printf "%3d", j
* end
* end
* }
* print "\n"
*
* <em>produces:</em>
*
* 0: 0 1 2 3 4
* 1: 5 6 7 8 9
* 2: 10 11 12 13 14
* 3: 15 16
*/
static VALUE rb_cCont;
/*
* call-seq:
* callcc {|cont| block } => obj
*
* Generates a <code>Continuation</code> object, which it passes to the
* associated block. Performing a <em>cont</em><code>.call</code> will
* cause the <code>callcc</code> to return (as will falling through the
* end of the block). The value returned by the <code>callcc</code> is
* the value of the block, or the value passed to
* <em>cont</em><code>.call</code>. See class <code>Continuation</code>
* for more details. Also see <code>Kernel::throw</code> for
* an alternative mechanism for unwinding a call stack.
*/
static VALUE
rb_callcc(VALUE self)
{
volatile VALUE cont;
rb_thread_t th;
volatile rb_thread_t th_save;
struct tag *tag;
struct RVarmap *vars;
THREAD_ALLOC(th);
cont = Data_Wrap_Struct(rb_cCont, thread_mark, thread_free, th);
scope_dup(ruby_scope);
for (tag=prot_tag; tag; tag=tag->prev) {
scope_dup(tag->scope);
}
th->thread = curr_thread->thread;
th->thgroup = cont_protect;
for (vars = ruby_dyna_vars; vars; vars = vars->next) {
if (FL_TEST(vars, DVAR_DONT_RECYCLE)) break;
FL_SET(vars, DVAR_DONT_RECYCLE);
}
th_save = th;
if (THREAD_SAVE_CONTEXT(th)) {
return th_save->result;
}
else {
return rb_yield(cont);
}
}
/*
* call-seq:
* cont.call(args, ...)
* cont[args, ...]
*
* Invokes the continuation. The program continues from the end of the
* <code>callcc</code> block. If no arguments are given, the original
* <code>callcc</code> returns <code>nil</code>. If one argument is
* given, <code>callcc</code> returns it. Otherwise, an array
* containing <i>args</i> is returned.
*
* callcc {|cont| cont.call } #=> nil
* callcc {|cont| cont.call 1 } #=> 1
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
*/
static VALUE
rb_cont_call(int argc, VALUE *argv, VALUE cont)
{
rb_thread_t th = rb_thread_check(cont);
if (th->thread != curr_thread->thread) {
rb_raise(rb_eRuntimeError, "continuation called across threads");
}
if (th->thgroup != cont_protect) {
rb_raise(rb_eRuntimeError, "continuation called across trap");
}
switch (argc) {
case 0:
th->result = Qnil;
break;
case 1:
th->result = argv[0];
break;
default:
th->result = rb_ary_new4(argc, argv);
break;
}
rb_thread_restore_context(th, RESTORE_NORMAL);
return Qnil;
}
struct thgroup {
int enclosed;
VALUE group;
};
/*
* Document-class: ThreadGroup
*
* <code>ThreadGroup</code> provides a means of keeping track of a number of
* threads as a group. A <code>Thread</code> can belong to only one
* <code>ThreadGroup</code> at a time; adding a thread to a new group will
* remove it from any previous group.
*
* Newly created threads belong to the same group as the thread from which they
* were created.
*/
static VALUE
thgroup_s_alloc(VALUE klass)
{
VALUE group;
struct thgroup *data;
group = Data_Make_Struct(klass, struct thgroup, 0, free, data);
data->enclosed = 0;
data->group = group;
return group;
}
/*
* call-seq:
* thgrp.list => array
*
* Returns an array of all existing <code>Thread</code> objects that belong to
* this group.
*
* ThreadGroup::Default.list #=> [#<Thread:0x401bdf4c run>]
*/
static VALUE
thgroup_list(VALUE group)
{
struct thgroup *data;
rb_thread_t th;
VALUE ary;
Data_Get_Struct(group, struct thgroup, data);
ary = rb_ary_new();
FOREACH_THREAD(th) {
if (th->thgroup == data->group) {
rb_ary_push(ary, th->thread);
}
}
END_FOREACH(th);
return ary;
}
/*
* call-seq:
* thgrp.enclose => thgrp
*
* Prevents threads from being added to or removed from the receiving
* <code>ThreadGroup</code>. New threads can still be started in an enclosed
* <code>ThreadGroup</code>.
*
* ThreadGroup::Default.enclose #=> #<ThreadGroup:0x4029d914>
* thr = Thread::new { Thread.stop } #=> #<Thread:0x402a7210 sleep>
* tg = ThreadGroup::new #=> #<ThreadGroup:0x402752d4>
* tg.add thr
*
* <em>produces:</em>
*
* ThreadError: can't move from the enclosed thread group
*/
static VALUE
thgroup_enclose(VALUE group)
{
struct thgroup *data;
Data_Get_Struct(group, struct thgroup, data);
data->enclosed = 1;
return group;
}
/*
* call-seq:
* thgrp.enclosed? => true or false
*
* Returns <code>true</code> if <em>thgrp</em> is enclosed. See also
* ThreadGroup#enclose.
*/
static VALUE
thgroup_enclosed_p(VALUE group)
{
struct thgroup *data;
Data_Get_Struct(group, struct thgroup, data);
if (data->enclosed) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* thgrp.add(thread) => thgrp
*
* Adds the given <em>thread</em> to this group, removing it from any other
* group to which it may have previously belonged.
*
* puts "Initial group is #{ThreadGroup::Default.list}"
* tg = ThreadGroup.new
* t1 = Thread.new { sleep }
* t2 = Thread.new { sleep }
* puts "t1 is #{t1}"
* puts "t2 is #{t2}"
* tg.add(t1)
* puts "Initial group now #{ThreadGroup::Default.list}"
* puts "tg group now #{tg.list}"
*
* <em>produces:</em>
*
* Initial group is #<Thread:0x401bdf4c>
* t1 is #<Thread:0x401b3c90>
* t2 is #<Thread:0x401b3c18>
* Initial group now #<Thread:0x401b3c18>#<Thread:0x401bdf4c>
* tg group now #<Thread:0x401b3c90>
*/
static VALUE
thgroup_add(VALUE group, VALUE thread)
{
rb_thread_t th;
struct thgroup *data;
rb_secure(4);
th = rb_thread_check(thread);
if (!th->next || !th->prev) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Thread)",
rb_obj_classname(thread));
}
if (OBJ_FROZEN(group)) {
rb_raise(rb_eThreadError, "can't move to the frozen thread group");
}
Data_Get_Struct(group, struct thgroup, data);
if (data->enclosed) {
rb_raise(rb_eThreadError, "can't move to the enclosed thread group");
}
if (!th->thgroup) {
return Qnil;
}
if (OBJ_FROZEN(th->thgroup)) {
rb_raise(rb_eThreadError, "can't move from the frozen thread group");
}
Data_Get_Struct(th->thgroup, struct thgroup, data);
if (data->enclosed) {
rb_raise(rb_eThreadError, "can't move from the enclosed thread group");
}
th->thgroup = group;
return group;
}
/* variables for recursive traversals */
static ID recursive_key;
/*
* +Thread+ encapsulates the behavior of a thread of
* execution, including the main thread of the Ruby script.
*
* In the descriptions of the methods in this class, the parameter _sym_
* refers to a symbol, which is either a quoted string or a
* +Symbol+ (such as <code>:name</code>).
*/
void
Init_Thread(void)
{
VALUE cThGroup;
rb_eThreadError = rb_define_class("ThreadError", rb_eStandardError);
rb_cThread = rb_define_class("Thread", rb_cObject);
rb_undef_alloc_func(rb_cThread);
rb_define_singleton_method(rb_cThread, "new", rb_thread_s_new, -1);
rb_define_method(rb_cThread, "initialize", rb_thread_initialize, -2);
rb_define_singleton_method(rb_cThread, "start", rb_thread_start, -2);
rb_define_singleton_method(rb_cThread, "fork", rb_thread_start, -2);
rb_define_singleton_method(rb_cThread, "stop", rb_thread_stop, 0);
rb_define_singleton_method(rb_cThread, "kill", rb_thread_s_kill, 1);
rb_define_singleton_method(rb_cThread, "exit", rb_thread_exit, 0);
rb_define_singleton_method(rb_cThread, "pass", rb_thread_pass, 0);
rb_define_singleton_method(rb_cThread, "current", rb_thread_current, 0);
rb_define_singleton_method(rb_cThread, "main", rb_thread_main, 0);
rb_define_singleton_method(rb_cThread, "list", rb_thread_list, 0);
rb_define_singleton_method(rb_cThread, "critical", rb_thread_critical_get, 0);
rb_define_singleton_method(rb_cThread, "critical=", rb_thread_critical_set, 1);
rb_define_singleton_method(rb_cThread, "abort_on_exception", rb_thread_s_abort_exc, 0);
rb_define_singleton_method(rb_cThread, "abort_on_exception=", rb_thread_s_abort_exc_set, 1);
rb_define_method(rb_cThread, "run", rb_thread_run, 0);
rb_define_method(rb_cThread, "wakeup", rb_thread_wakeup, 0);
rb_define_method(rb_cThread, "kill", rb_thread_kill, 0);
rb_define_method(rb_cThread, "terminate", rb_thread_kill, 0);
rb_define_method(rb_cThread, "exit", rb_thread_kill, 0);
rb_define_method(rb_cThread, "value", rb_thread_value, 0);
rb_define_method(rb_cThread, "status", rb_thread_status, 0);
rb_define_method(rb_cThread, "join", rb_thread_join_m, -1);
rb_define_method(rb_cThread, "alive?", rb_thread_alive_p, 0);
rb_define_method(rb_cThread, "stop?", rb_thread_stop_p, 0);
rb_define_method(rb_cThread, "raise", rb_thread_raise_m, -1);
rb_define_method(rb_cThread, "abort_on_exception", rb_thread_abort_exc, 0);
rb_define_method(rb_cThread, "abort_on_exception=", rb_thread_abort_exc_set, 1);
rb_define_method(rb_cThread, "priority", rb_thread_priority, 0);
rb_define_method(rb_cThread, "priority=", rb_thread_priority_set, 1);
rb_define_method(rb_cThread, "safe_level", rb_thread_safe_level, 0);
rb_define_method(rb_cThread, "group", rb_thread_group, 0);
rb_define_method(rb_cThread, "[]", rb_thread_aref, 1);
rb_define_method(rb_cThread, "[]=", rb_thread_aset, 2);
rb_define_method(rb_cThread, "key?", rb_thread_key_p, 1);
rb_define_method(rb_cThread, "keys", rb_thread_keys, 0);
rb_define_method(rb_cThread, "inspect", rb_thread_inspect, 0);
rb_cCont = rb_define_class("Continuation", rb_cObject);
rb_undef_alloc_func(rb_cCont);
rb_undef_method(CLASS_OF(rb_cCont), "new");
rb_define_method(rb_cCont, "call", rb_cont_call, -1);
rb_define_method(rb_cCont, "[]", rb_cont_call, -1);
rb_define_global_function("callcc", rb_callcc, 0);
rb_global_variable(&cont_protect);
cThGroup = rb_define_class("ThreadGroup", rb_cObject);
rb_define_alloc_func(cThGroup, thgroup_s_alloc);
rb_define_method(cThGroup, "list", thgroup_list, 0);
rb_define_method(cThGroup, "enclose", thgroup_enclose, 0);
rb_define_method(cThGroup, "enclosed?", thgroup_enclosed_p, 0);
rb_define_method(cThGroup, "add", thgroup_add, 1);
rb_global_variable(&thgroup_default);
thgroup_default = rb_obj_alloc(cThGroup);
rb_define_const(cThGroup, "Default", thgroup_default);
/* allocate main thread */
main_thread = rb_thread_alloc(rb_cThread);
curr_thread = main_thread->prev = main_thread->next = main_thread;
recursive_key = rb_intern("__recursive_key__");
}
/*
* call-seq:
* catch(symbol) {| | block } > obj
*
* +catch+ executes its block. If a +throw+ is
* executed, Ruby searches up its stack for a +catch+ block
* with a tag corresponding to the +throw+'s
* _symbol_. If found, that block is terminated, and
* +catch+ returns the value given to +throw+. If
* +throw+ is not called, the block terminates normally, and
* the value of +catch+ is the value of the last expression
* evaluated. +catch+ expressions may be nested, and the
* +throw+ call need not be in lexical scope.
*
* def routine(n)
* puts n
* throw :done if n <= 0
* routine(n-1)
* end
*
*
* catch(:done) { routine(3) }
*
* <em>produces:</em>
*
* 3
* 2
* 1
* 0
*/
static VALUE
rb_f_catch(VALUE dmy, VALUE tag)
{
int state;
VALUE val = Qnil; /* OK */
tag = ID2SYM(rb_to_id(tag));
PUSH_TAG(tag);
if ((state = EXEC_TAG()) == 0) {
val = rb_yield_0(tag, 0, 0, 0);
}
else if (state == TAG_THROW && tag == prot_tag->dst) {
val = prot_tag->retval;
state = 0;
}
POP_TAG();
if (state) JUMP_TAG(state);
return val;
}
VALUE
rb_catch(const char *tag, VALUE (*func)(ANYARGS), VALUE data)
{
VALUE vtag = ID2SYM(rb_intern(tag));
return rb_block_call(Qnil, rb_intern("catch"), 1, &vtag, func, data);
}
/*
* call-seq:
* throw(symbol [, obj])
*
* Transfers control to the end of the active +catch+ block
* waiting for _symbol_. Raises +NameError+ if there
* is no +catch+ block for the symbol. The optional second
* parameter supplies a return value for the +catch+ block,
* which otherwise defaults to +nil+. For examples, see
* <code>Kernel::catch</code>.
*/
static VALUE
rb_f_throw(int argc, VALUE *argv)
{
VALUE tag, value;
struct tag *tt = prot_tag;
rb_scan_args(argc, argv, "11", &tag, &value);
tag = ID2SYM(rb_to_id(tag));
while (tt) {
if (tt->tag == tag) {
tt->dst = tag;
tt->retval = value;
break;
}
if (tt->tag == PROT_THREAD) {
rb_raise(rb_eThreadError, "uncaught throw `%s' in thread %p",
rb_id2name(SYM2ID(tag)),
curr_thread);
}
tt = tt->prev;
}
if (!tt) {
rb_name_error(SYM2ID(tag), "uncaught throw `%s'", rb_id2name(SYM2ID(tag)));
}
rb_trap_restore_mask();
JUMP_TAG(TAG_THROW);
#ifndef __GNUC__
return Qnil; /* not reached */
#endif
}
void
rb_throw(const char *tag, VALUE val)
{
VALUE argv[2];
argv[0] = ID2SYM(rb_intern(tag));
argv[1] = val;
rb_f_throw(2, argv);
}
static VALUE
recursive_check(VALUE obj)
{
VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key);
if (NIL_P(hash) || TYPE(hash) != T_HASH) {
return Qfalse;
}
else {
VALUE list = rb_hash_aref(hash, ID2SYM(ruby_frame->this_func));
if (NIL_P(list) || TYPE(list) != T_ARRAY) return Qfalse;
return rb_ary_includes(list, rb_obj_id(obj));
}
}
static void
recursive_push(VALUE obj)
{
VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key);
VALUE list, sym;
sym = ID2SYM(ruby_frame->this_func);
if (NIL_P(hash) || TYPE(hash) != T_HASH) {
hash = rb_hash_new();
rb_thread_local_aset(rb_thread_current(), recursive_key, hash);
list = Qnil;
}
else {
list = rb_hash_aref(hash, sym);
}
if (NIL_P(list) || TYPE(list) != T_ARRAY) {
list = rb_ary_new();
rb_hash_aset(hash, sym, list);
}
rb_ary_push(list, rb_obj_id(obj));
}
static void
recursive_pop(void)
{
VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key);
VALUE list, sym;
sym = ID2SYM(ruby_frame->this_func);
if (NIL_P(hash) || TYPE(hash) != T_HASH) {
VALUE symname = rb_inspect(sym);
VALUE thrname = rb_inspect(rb_thread_current());
rb_raise(rb_eTypeError, "invalid inspect_tbl hash for %s in %s",
StringValuePtr(symname), StringValuePtr(thrname));
}
list = rb_hash_aref(hash, sym);
if (NIL_P(list) || TYPE(list) != T_ARRAY) {
VALUE symname = rb_inspect(sym);
VALUE thrname = rb_inspect(rb_thread_current());
rb_raise(rb_eTypeError, "invalid inspect_tbl list for %s in %s",
StringValuePtr(symname), StringValuePtr(thrname));
}
rb_ary_pop(list);
}
VALUE
rb_exec_recursive(VALUE (*func)(VALUE, VALUE, int), VALUE obj, VALUE arg)
{
if (recursive_check(obj)) {
return (*func)(obj, arg, Qtrue);
}
else {
VALUE result;
int state;
recursive_push(obj);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
result = (*func)(obj, arg, Qfalse);
}
POP_TAG();
recursive_pop();
if (state) JUMP_TAG(state);
return result;
}
}