ruby/gc.c

7685 строки
196 KiB
C

/**********************************************************************
gc.c -
$Author$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby/re.h"
#include "ruby/io.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "ruby/debug.h"
#include "eval_intern.h"
#include "vm_core.h"
#include "internal.h"
#include "gc.h"
#include "constant.h"
#include "ruby_atomic.h"
#include "probes.h"
#include <stdio.h>
#include <stdarg.h>
#include <setjmp.h>
#include <sys/types.h>
#include <assert.h>
#ifndef __has_feature
# define __has_feature(x) 0
#endif
#ifndef HAVE_MALLOC_USABLE_SIZE
# ifdef _WIN32
# define HAVE_MALLOC_USABLE_SIZE
# define malloc_usable_size(a) _msize(a)
# elif defined HAVE_MALLOC_SIZE
# define HAVE_MALLOC_USABLE_SIZE
# define malloc_usable_size(a) malloc_size(a)
# endif
#endif
#ifdef HAVE_MALLOC_USABLE_SIZE
# ifdef HAVE_MALLOC_H
# include <malloc.h>
# elif defined(HAVE_MALLOC_NP_H)
# include <malloc_np.h>
# elif defined(HAVE_MALLOC_MALLOC_H)
# include <malloc/malloc.h>
# endif
#endif
#if /* is ASAN enabled? */ \
__has_feature(address_sanitizer) /* Clang */ || \
defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x */
#define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
__attribute__((no_address_safety_analysis)) \
__attribute__((noinline))
#else
#define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if defined(__native_client__) && defined(NACL_NEWLIB)
# include "nacl/resource.h"
# undef HAVE_POSIX_MEMALIGN
# undef HAVE_MEMALIGN
#endif
#if defined _WIN32 || defined __CYGWIN__
#include <windows.h>
#elif defined(HAVE_POSIX_MEMALIGN)
#elif defined(HAVE_MEMALIGN)
#include <malloc.h>
#endif
#define rb_setjmp(env) RUBY_SETJMP(env)
#define rb_jmp_buf rb_jmpbuf_t
#if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL
/* trick the compiler into thinking a external signal handler uses this */
volatile VALUE rb_gc_guarded_val;
volatile VALUE *
rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val)
{
rb_gc_guarded_val = val;
return ptr;
}
#endif
#ifndef GC_HEAP_FREE_SLOTS
#define GC_HEAP_FREE_SLOTS 4096
#endif
#ifndef GC_HEAP_INIT_SLOTS
#define GC_HEAP_INIT_SLOTS 10000
#endif
#ifndef GC_HEAP_GROWTH_FACTOR
#define GC_HEAP_GROWTH_FACTOR 1.8
#endif
#ifndef GC_HEAP_GROWTH_MAX_SLOTS
#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */
#endif
#ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR
#define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0
#endif
#ifndef GC_MALLOC_LIMIT_MIN
#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
#endif
#ifndef GC_MALLOC_LIMIT_MAX
#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */)
#endif
#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR
#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4
#endif
#ifndef GC_OLDMALLOC_LIMIT_MIN
#define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
#endif
#ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR
#define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2
#endif
#ifndef GC_OLDMALLOC_LIMIT_MAX
#define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */)
#endif
typedef struct {
size_t heap_init_slots;
size_t heap_free_slots;
double growth_factor;
size_t growth_max_slots;
double oldobject_limit_factor;
size_t malloc_limit_min;
size_t malloc_limit_max;
double malloc_limit_growth_factor;
size_t oldmalloc_limit_min;
size_t oldmalloc_limit_max;
double oldmalloc_limit_growth_factor;
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
VALUE gc_stress;
#endif
} ruby_gc_params_t;
static ruby_gc_params_t gc_params = {
GC_HEAP_INIT_SLOTS,
GC_HEAP_FREE_SLOTS,
GC_HEAP_GROWTH_FACTOR,
GC_HEAP_GROWTH_MAX_SLOTS,
GC_HEAP_OLDOBJECT_LIMIT_FACTOR,
GC_MALLOC_LIMIT_MIN,
GC_MALLOC_LIMIT_MAX,
GC_MALLOC_LIMIT_GROWTH_FACTOR,
GC_OLDMALLOC_LIMIT_MIN,
GC_OLDMALLOC_LIMIT_MAX,
GC_OLDMALLOC_LIMIT_GROWTH_FACTOR,
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
FALSE,
#endif
};
/* GC_DEBUG:
* enable to embed GC debugging information.
*/
#ifndef GC_DEBUG
#define GC_DEBUG 0
#endif
#if USE_RGENGC
/* RGENGC_DEBUG:
* 1: basic information
* 2: remember set operation
* 3: mark
* 4:
* 5: sweep
*/
#ifndef RGENGC_DEBUG
#define RGENGC_DEBUG 0
#endif
/* RGENGC_CHECK_MODE
* 0: disable all assertions
* 1: enable assertions (to debug RGenGC)
* 2: enable generational bits check (for debugging)
* 3: enable livness check
* 4: show all references
*/
#ifndef RGENGC_CHECK_MODE
#define RGENGC_CHECK_MODE 0
#endif
/* RGENGC_PROFILE
* 0: disable RGenGC profiling
* 1: enable profiling for basic information
* 2: enable profiling for each types
*/
#ifndef RGENGC_PROFILE
#define RGENGC_PROFILE 0
#endif
/* RGENGC_AGE2_PROMOTION
* Enable/disable age2 promotion strategy
* 0: Infant gen -> Old gen
* 1: Infant gen -> Young -> Old gen
*/
#ifndef RGENGC_AGE2_PROMOTION
#define RGENGC_AGE2_PROMOTION 0
#endif
/* RGENGC_ESTIMATE_OLDMALLOC
* Enable/disable to estimate increase size of malloc'ed size by old objects.
* If estimation exceeds threshold, then will invoke full GC.
* 0: disable estimation.
* 1: enable estimation.
*/
#ifndef RGENGC_ESTIMATE_OLDMALLOC
#define RGENGC_ESTIMATE_OLDMALLOC 1
#endif
#else /* USE_RGENGC */
#define RGENGC_DEBUG 0
#define RGENGC_CHECK_MODE 0
#define RGENGC_PROFILE 0
#define RGENGC_AGE2_PROMOTION 0
#define RGENGC_ESTIMATE_OLDMALLOC 0
#endif /* USE_RGENGC */
#ifndef GC_PROFILE_MORE_DETAIL
#define GC_PROFILE_MORE_DETAIL 0
#endif
#ifndef GC_PROFILE_DETAIL_MEMORY
#define GC_PROFILE_DETAIL_MEMORY 0
#endif
#ifndef GC_ENABLE_LAZY_SWEEP
#define GC_ENABLE_LAZY_SWEEP 1
#endif
#ifndef CALC_EXACT_MALLOC_SIZE
#define CALC_EXACT_MALLOC_SIZE 0
#endif
#if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0
#ifndef MALLOC_ALLOCATED_SIZE
#define MALLOC_ALLOCATED_SIZE 0
#endif
#else
#define MALLOC_ALLOCATED_SIZE 0
#endif
#ifndef MALLOC_ALLOCATED_SIZE_CHECK
#define MALLOC_ALLOCATED_SIZE_CHECK 0
#endif
typedef enum {
GPR_FLAG_NONE = 0x000,
/* major reason */
GPR_FLAG_MAJOR_BY_NOFREE = 0x001,
GPR_FLAG_MAJOR_BY_OLDGEN = 0x002,
GPR_FLAG_MAJOR_BY_SHADY = 0x004,
GPR_FLAG_MAJOR_BY_RESCAN = 0x008,
GPR_FLAG_MAJOR_BY_STRESS = 0x010,
#if RGENGC_ESTIMATE_OLDMALLOC
GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020,
#endif
GPR_FLAG_MAJOR_MASK = 0x0ff,
/* gc reason */
GPR_FLAG_NEWOBJ = 0x100,
GPR_FLAG_MALLOC = 0x200,
GPR_FLAG_METHOD = 0x400,
GPR_FLAG_CAPI = 0x800,
GPR_FLAG_STRESS = 0x1000,
/* others */
GPR_FLAG_IMMEDIATE_SWEEP = 0x2000,
GPR_FLAG_HAVE_FINALIZE = 0x4000
} gc_profile_record_flag;
typedef struct gc_profile_record {
int flags;
double gc_time;
double gc_invoke_time;
size_t heap_total_objects;
size_t heap_use_size;
size_t heap_total_size;
#if GC_PROFILE_MORE_DETAIL
double gc_mark_time;
double gc_sweep_time;
size_t heap_use_pages;
size_t heap_live_objects;
size_t heap_free_objects;
size_t allocate_increase;
size_t allocate_limit;
double prepare_time;
size_t removing_objects;
size_t empty_objects;
#if GC_PROFILE_DETAIL_MEMORY
long maxrss;
long minflt;
long majflt;
#endif
#endif
#if MALLOC_ALLOCATED_SIZE
size_t allocated_size;
#endif
#if RGENGC_PROFILE > 0
size_t old_objects;
size_t remembered_normal_objects;
size_t remembered_shady_objects;
#endif
} gc_profile_record;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
#endif
typedef struct RVALUE {
union {
struct {
VALUE flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RTypedData typeddata;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
struct RRational rational;
struct RComplex complex;
struct RSymbol symbol;
struct {
struct RBasic basic;
VALUE v1;
VALUE v2;
VALUE v3;
} values;
} as;
#if GC_DEBUG
const char *file;
VALUE line;
#endif
} RVALUE;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(pop)
#endif
typedef uintptr_t bits_t;
enum {
BITS_SIZE = sizeof(bits_t),
BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT )
};
struct heap_page_header {
struct heap_page *page;
};
struct heap_page_body {
struct heap_page_header header;
/* char gap[]; */
/* RVALUE values[]; */
};
struct gc_list {
VALUE *varptr;
struct gc_list *next;
};
#define STACK_CHUNK_SIZE 500
typedef struct stack_chunk {
VALUE data[STACK_CHUNK_SIZE];
struct stack_chunk *next;
} stack_chunk_t;
typedef struct mark_stack {
stack_chunk_t *chunk;
stack_chunk_t *cache;
size_t index;
size_t limit;
size_t cache_size;
size_t unused_cache_size;
} mark_stack_t;
typedef struct rb_heap_struct {
struct heap_page *pages;
struct heap_page *free_pages;
struct heap_page *using_page;
struct heap_page *sweep_pages;
RVALUE *freelist;
size_t page_length; /* total page count in a heap */
size_t total_slots; /* total slot count (page_length * HEAP_OBJ_LIMIT) */
} rb_heap_t;
typedef struct rb_objspace {
struct {
size_t limit;
size_t increase;
#if MALLOC_ALLOCATED_SIZE
size_t allocated_size;
size_t allocations;
#endif
} malloc_params;
rb_heap_t eden_heap;
rb_heap_t tomb_heap; /* heap for zombies and ghosts */
struct {
struct heap_page **sorted;
size_t used;
size_t length;
RVALUE *range[2];
size_t limit;
size_t increment;
size_t swept_slots;
size_t min_free_slots;
size_t max_free_slots;
/* final */
size_t final_slots;
RVALUE *deferred_final;
} heap_pages;
struct {
int dont_gc;
int dont_lazy_sweep;
int during_gc;
rb_atomic_t finalizing;
} flags;
st_table *finalizer_table;
mark_stack_t mark_stack;
struct {
int run;
gc_profile_record *records;
gc_profile_record *current_record;
size_t next_index;
size_t size;
#if GC_PROFILE_MORE_DETAIL
double prepare_time;
#endif
double invoke_time;
#if USE_RGENGC
size_t minor_gc_count;
size_t major_gc_count;
#if RGENGC_PROFILE > 0
size_t generated_normal_object_count;
size_t generated_shady_object_count;
size_t shade_operation_count;
size_t promote_infant_count;
#if RGENGC_AGE2_PROMOTION
size_t promote_young_count;
#endif
size_t remembered_normal_object_count;
size_t remembered_shady_object_count;
#if RGENGC_PROFILE >= 2
size_t generated_normal_object_count_types[RUBY_T_MASK];
size_t generated_shady_object_count_types[RUBY_T_MASK];
size_t shade_operation_count_types[RUBY_T_MASK];
size_t promote_infant_types[RUBY_T_MASK];
#if RGENGC_AGE2_PROMOTION
size_t promote_young_types[RUBY_T_MASK];
#endif
size_t remembered_normal_object_count_types[RUBY_T_MASK];
size_t remembered_shady_object_count_types[RUBY_T_MASK];
#endif
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
/* temporary profiling space */
double gc_sweep_start_time;
size_t total_allocated_object_num_at_gc_start;
size_t heap_used_at_gc_start;
/* basic statistics */
size_t count;
size_t total_allocated_object_num;
size_t total_freed_object_num;
int latest_gc_info;
} profile;
struct gc_list *global_list;
rb_event_flag_t hook_events; /* this place may be affinity with memory cache */
VALUE gc_stress;
struct mark_func_data_struct {
void *data;
void (*mark_func)(VALUE v, void *data);
} *mark_func_data;
#if USE_RGENGC
struct {
int during_minor_gc;
int parent_object_is_old;
int need_major_gc;
size_t remembered_shady_object_count;
size_t remembered_shady_object_limit;
size_t old_object_count;
size_t old_object_limit;
#if RGENGC_AGE2_PROMOTION
size_t young_object_count;
#endif
#if RGENGC_ESTIMATE_OLDMALLOC
size_t oldmalloc_increase;
size_t oldmalloc_increase_limit;
#endif
#if RGENGC_CHECK_MODE >= 2
struct st_table *allrefs_table;
size_t error_count;
#endif
} rgengc;
#endif /* USE_RGENGC */
} rb_objspace_t;
#ifndef HEAP_ALIGN_LOG
/* default tiny heap size: 16KB */
#define HEAP_ALIGN_LOG 14
#endif
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
enum {
HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG),
HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)),
REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5),
HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC),
HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heap_page_header))/sizeof(struct RVALUE)),
HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), BITS_BITLENGTH),
HEAP_BITMAP_SIZE = ( BITS_SIZE * HEAP_BITMAP_LIMIT),
HEAP_BITMAP_PLANES = USE_RGENGC ? 3 : 1 /* RGENGC: mark bits, rememberset bits and oldgen bits */
};
struct heap_page {
struct heap_page_body *body;
RVALUE *freelist;
RVALUE *start;
size_t final_slots;
size_t limit;
struct heap_page *next;
struct heap_page *prev;
struct heap_page *free_next;
rb_heap_t *heap;
int before_sweep;
bits_t mark_bits[HEAP_BITMAP_LIMIT];
#if USE_RGENGC
bits_t rememberset_bits[HEAP_BITMAP_LIMIT];
bits_t oldgen_bits[HEAP_BITMAP_LIMIT];
#endif
};
#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_ALIGN_MASK)))
#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header)
#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page)
#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0])
#define GET_HEAP_REMEMBERSET_BITS(x) (&GET_HEAP_PAGE(x)->rememberset_bits[0])
#define GET_HEAP_OLDGEN_BITS(x) (&GET_HEAP_PAGE(x)->oldgen_bits[0])
#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH )
#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1))
#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p))
/* Bitmap Operations */
#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p))
#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p))
#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
/* Aliases */
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
#define rb_objspace (*GET_VM()->objspace)
#define ruby_initial_gc_stress gc_params.gc_stress
VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
#else
static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT_MIN}};
VALUE *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
#endif
#define malloc_limit objspace->malloc_params.limit
#define malloc_increase objspace->malloc_params.increase
#define malloc_allocated_size objspace->malloc_params.allocated_size
#define heap_pages_sorted objspace->heap_pages.sorted
#define heap_pages_used objspace->heap_pages.used
#define heap_pages_length objspace->heap_pages.length
#define heap_pages_lomem objspace->heap_pages.range[0]
#define heap_pages_himem objspace->heap_pages.range[1]
#define heap_pages_swept_slots objspace->heap_pages.swept_slots
#define heap_pages_increment objspace->heap_pages.increment
#define heap_pages_min_free_slots objspace->heap_pages.min_free_slots
#define heap_pages_max_free_slots objspace->heap_pages.max_free_slots
#define heap_pages_final_slots objspace->heap_pages.final_slots
#define heap_pages_deferred_final objspace->heap_pages.deferred_final
#define heap_eden (&objspace->eden_heap)
#define heap_tomb (&objspace->tomb_heap)
#define dont_gc objspace->flags.dont_gc
#define during_gc objspace->flags.during_gc
#define finalizing objspace->flags.finalizing
#define finalizer_table objspace->finalizer_table
#define global_List objspace->global_list
#define ruby_gc_stress objspace->gc_stress
#define monitor_level objspace->rgengc.monitor_level
#define monitored_object_table objspace->rgengc.monitored_object_table
#define is_lazy_sweeping(heap) ((heap)->sweep_pages != 0)
#if SIZEOF_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
#else
# error not supported
#endif
#define RANY(o) ((RVALUE*)(o))
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
int ruby_gc_debug_indent = 0;
VALUE rb_mGC;
int ruby_disable_gc_stress = 0;
void rb_gcdebug_print_obj_condition(VALUE obj);
static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
static VALUE define_final0(VALUE obj, VALUE block);
static void negative_size_allocation_error(const char *);
static void *aligned_malloc(size_t, size_t);
static void aligned_free(void *);
static void init_mark_stack(mark_stack_t *stack);
static VALUE lazy_sweep_enable(void);
static int ready_to_gc(rb_objspace_t *objspace);
static int heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap);
static int garbage_collect(rb_objspace_t *, int full_mark, int immediate_sweep, int reason);
static int garbage_collect_body(rb_objspace_t *, int full_mark, int immediate_sweep, int reason);
static int gc_heap_lazy_sweep(rb_objspace_t *objspace, rb_heap_t *heap);
static void gc_rest_sweep(rb_objspace_t *objspace);
static void gc_heap_rest_sweep(rb_objspace_t *objspace, rb_heap_t *heap);
static void gc_mark_stacked_objects(rb_objspace_t *);
static void gc_mark(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
static size_t obj_memsize_of(VALUE obj, int use_tdata);
static double getrusage_time(void);
static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason);
static inline void gc_prof_timer_start(rb_objspace_t *);
static inline void gc_prof_timer_stop(rb_objspace_t *);
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
static inline void gc_prof_set_heap_info(rb_objspace_t *);
#define gc_prof_record(objspace) (objspace)->profile.current_record
#define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record)
#ifdef HAVE_VA_ARGS_MACRO
# define rgengc_report(level, objspace, fmt, ...) \
if ((level) > RGENGC_DEBUG) {} else rgengc_report_body(level, objspace, fmt, ##__VA_ARGS__)
#else
# define rgengc_report if (!(RGENGC_DEBUG)) {} else rgengc_report_body
#endif
PRINTF_ARGS(static void rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4);
static const char * type_name(int type, VALUE obj);
static const char *obj_type_name(VALUE obj);
#if USE_RGENGC
static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj);
static int rgengc_remember(rb_objspace_t *objspace, VALUE obj);
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap);
static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap);
#define FL_TEST2(x,f) ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? (rb_bug("FL_TEST2: SPECIAL_CONST"), 0) : FL_TEST_RAW((x),(f)) != 0)
#define FL_SET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_SET2: SPECIAL_CONST"); RBASIC(x)->flags |= (f);} while (0)
#define FL_UNSET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_UNSET2: SPECIAL_CONST"); RBASIC(x)->flags &= ~(f);} while (0)
#define RVALUE_WB_PROTECTED_RAW(obj) FL_TEST2((obj), FL_WB_PROTECTED)
#define RVALUE_WB_PROTECTED(obj) RVALUE_WB_PROTECTED_RAW(check_gen_consistency((VALUE)obj))
#define RVALUE_OLDGEN_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), (obj))
static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr);
static inline int gc_marked(rb_objspace_t *objspace, VALUE ptr);
static inline VALUE
check_gen_consistency(VALUE obj)
{
if (RGENGC_CHECK_MODE > 0) {
int old_flag = RVALUE_OLDGEN_BITMAP(obj) != 0;
int promoted_flag = FL_TEST2(obj, FL_PROMOTED);
rb_objspace_t *objspace = &rb_objspace;
obj_memsize_of((VALUE)obj, FALSE);
if (!is_pointer_to_heap(objspace, (void *)obj)) {
rb_bug("check_gen_consistency: %p (%s) is not Ruby object.", (void *)obj, obj_type_name(obj));
}
if (promoted_flag) {
if (!RVALUE_WB_PROTECTED_RAW(obj)) {
const char *type = old_flag ? "old" : "young";
rb_bug("check_gen_consistency: %p (%s) is not WB protected, but %s object.", (void *)obj, obj_type_name(obj), type);
}
#if !RGENGC_AGE2_PROMOTION
if (!old_flag) {
rb_bug("check_gen_consistency: %p (%s) is not infant, but is not old (on 2gen).", (void *)obj, obj_type_name(obj));
}
#endif
if (old_flag && objspace->rgengc.during_minor_gc && !gc_marked(objspace, obj)) {
rb_bug("check_gen_consistency: %p (%s) is old, but is not marked while minor marking.", (void *)obj, obj_type_name(obj));
}
}
else {
if (old_flag) {
rb_bug("check_gen_consistency: %p (%s) is not infant, but is old.", (void *)obj, obj_type_name(obj));
}
}
}
return obj;
}
static inline VALUE
RVALUE_INFANT_P(VALUE obj)
{
check_gen_consistency(obj);
return !FL_TEST2(obj, FL_PROMOTED);
}
static inline VALUE
RVALUE_OLD_BITMAP_P(VALUE obj)
{
check_gen_consistency(obj);
return (RVALUE_OLDGEN_BITMAP(obj) != 0);
}
static inline VALUE
RVALUE_OLD_P(VALUE obj)
{
check_gen_consistency(obj);
#if RGENGC_AGE2_PROMOTION
return FL_TEST2(obj, FL_PROMOTED) && RVALUE_OLD_BITMAP_P(obj);
#else
return FL_TEST2(obj, FL_PROMOTED);
#endif
}
static inline VALUE
RVALUE_PROMOTED_P(VALUE obj)
{
check_gen_consistency(obj);
return FL_TEST2(obj, FL_PROMOTED);
}
static inline void
RVALUE_PROMOTE_INFANT(rb_objspace_t *objspace, VALUE obj)
{
check_gen_consistency(obj);
if (RGENGC_CHECK_MODE && !RVALUE_INFANT_P(obj)) rb_bug("RVALUE_PROMOTE_INFANT: %p (%s) is not infant object.", (void *)obj, obj_type_name(obj));
FL_SET2(obj, FL_PROMOTED);
#if RGENGC_AGE2_PROMOTION
/* infant -> young */
objspace->rgengc.young_object_count++;
#else
/* infant -> old */
objspace->rgengc.old_object_count++;
#endif
#if !RGENGC_AGE2_PROMOTION
MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
#endif
check_gen_consistency(obj);
#if RGENGC_PROFILE >= 1
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.promote_infant_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.promote_infant_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
}
#if RGENGC_AGE2_PROMOTION
/*
* Age1 promotion: Infant (0) -> Old (1 and later).
* Age2 promotion: Infant (0) -> Young (1) -> Old (2 and later).
*/
static inline VALUE
RVALUE_YOUNG_P(VALUE obj)
{
check_gen_consistency(obj);
return FL_TEST2(obj, FL_PROMOTED) && (RVALUE_OLDGEN_BITMAP(obj) == 0);
}
static inline void
RVALUE_PROMOTE_YOUNG(rb_objspace_t *objspace, VALUE obj)
{
check_gen_consistency(obj);
if (RGENGC_CHECK_MODE && !RVALUE_YOUNG_P(obj)) rb_bug("RVALUE_PROMOTE_YOUNG: %p (%s) is not young object.", (void *)obj, obj_type_name(obj));
MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
objspace->rgengc.old_object_count++;
check_gen_consistency(obj);
#if RGENGC_PROFILE >= 1
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.promote_young_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.promote_young_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
}
static inline void
RVALUE_DEMOTE_FROM_YOUNG(VALUE obj)
{
if (RGENGC_CHECK_MODE && !RVALUE_YOUNG_P(obj))
rb_bug("RVALUE_DEMOTE_FROM_YOUNG: %p (%s) is not young object.", (void *)obj, obj_type_name(obj));
check_gen_consistency(obj);
FL_UNSET2(obj, FL_PROMOTED);
check_gen_consistency(obj);
}
#endif
static inline void
RVALUE_DEMOTE_FROM_OLD(VALUE obj)
{
if (RGENGC_CHECK_MODE && !RVALUE_OLD_P(obj))
rb_bug("RVALUE_DEMOTE_FROM_OLD: %p (%s) is not old object.", (void *)obj, obj_type_name(obj));
check_gen_consistency(obj);
FL_UNSET2(obj, FL_PROMOTED);
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
check_gen_consistency(obj);
}
#endif /* USE_RGENGC */
/*
--------------------------- ObjectSpace -----------------------------
*/
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
rb_objspace_t *
rb_objspace_alloc(void)
{
rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
memset(objspace, 0, sizeof(*objspace));
ruby_gc_stress = ruby_initial_gc_stress;
malloc_limit = gc_params.malloc_limit_min;
return objspace;
}
#endif
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
static void free_stack_chunks(mark_stack_t *);
static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page);
void
rb_objspace_free(rb_objspace_t *objspace)
{
gc_rest_sweep(objspace);
if (objspace->profile.records) {
free(objspace->profile.records);
objspace->profile.records = 0;
}
if (global_List) {
struct gc_list *list, *next;
for (list = global_List; list; list = next) {
next = list->next;
xfree(list);
}
}
if (heap_pages_sorted) {
size_t i;
for (i = 0; i < heap_pages_used; ++i) {
heap_page_free(objspace, heap_pages_sorted[i]);
}
free(heap_pages_sorted);
heap_pages_used = 0;
heap_pages_length = 0;
heap_pages_lomem = 0;
heap_pages_himem = 0;
objspace->eden_heap.page_length = 0;
objspace->eden_heap.total_slots = 0;
objspace->eden_heap.pages = NULL;
}
free_stack_chunks(&objspace->mark_stack);
free(objspace);
}
#endif
static void
heap_pages_expand_sorted(rb_objspace_t *objspace)
{
size_t next_length = heap_pages_increment;
next_length += heap_eden->page_length;
next_length += heap_tomb->page_length;
if (next_length > heap_pages_length) {
struct heap_page **sorted;
size_t size = next_length * sizeof(struct heap_page *);
rgengc_report(3, objspace, "heap_pages_expand_sorted: next_length: %d, size: %d\n", (int)next_length, (int)size);
if (heap_pages_length > 0) {
sorted = (struct heap_page **)realloc(heap_pages_sorted, size);
if (sorted) heap_pages_sorted = sorted;
}
else {
sorted = heap_pages_sorted = (struct heap_page **)malloc(size);
}
if (sorted == 0) {
during_gc = 0;
rb_memerror();
}
heap_pages_length = next_length;
}
}
static inline void
heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
RVALUE *p = (RVALUE *)obj;
p->as.free.flags = 0;
p->as.free.next = page->freelist;
page->freelist = p;
rgengc_report(3, objspace, "heap_page_add_freeobj: %p (%s) is added to freelist\n", p, obj_type_name(obj));
}
static inline void
heap_add_freepage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
if (page->freelist) {
page->free_next = heap->free_pages;
heap->free_pages = page;
}
}
static void
heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
if (page->prev) page->prev->next = page->next;
if (page->next) page->next->prev = page->prev;
if (heap->pages == page) heap->pages = page->next;
page->prev = NULL;
page->next = NULL;
page->heap = NULL;
heap->page_length--;
heap->total_slots -= page->limit;
}
static void
heap_page_free(rb_objspace_t *objspace, struct heap_page *page)
{
heap_pages_used--;
aligned_free(page->body);
free(page);
}
static void
heap_pages_free_unused_pages(rb_objspace_t *objspace)
{
size_t i, j;
if (heap_tomb->pages) {
for (i = j = 1; j < heap_pages_used; i++) {
struct heap_page *page = heap_pages_sorted[i];
if (page->heap == heap_tomb && page->final_slots == 0) {
if (heap_pages_swept_slots - page->limit > heap_pages_max_free_slots) {
if (0) fprintf(stderr, "heap_pages_free_unused_pages: %d free page %p, heap_pages_swept_slots: %d, heap_pages_max_free_slots: %d\n",
(int)i, page, (int)heap_pages_swept_slots, (int)heap_pages_max_free_slots);
heap_pages_swept_slots -= page->limit;
heap_unlink_page(objspace, heap_tomb, page);
heap_page_free(objspace, page);
continue;
}
else if (i == j) {
return; /* no need to check rest pages */
}
}
if (i != j) {
heap_pages_sorted[j] = page;
}
j++;
}
assert(j == heap_pages_used);
}
}
static struct heap_page *
heap_page_allocate(rb_objspace_t *objspace)
{
RVALUE *start, *end, *p;
struct heap_page *page;
struct heap_page_body *page_body = 0;
size_t hi, lo, mid;
size_t limit = HEAP_OBJ_LIMIT;
/* assign heap_page body (contains heap_page_header and RVALUEs) */
page_body = (struct heap_page_body *)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
if (page_body == 0) {
during_gc = 0;
rb_memerror();
}
/* assign heap_page entry */
page = (struct heap_page *)malloc(sizeof(struct heap_page));
if (page == 0) {
aligned_free(page_body);
during_gc = 0;
rb_memerror();
}
MEMZERO((void*)page, struct heap_page, 1);
page->body = page_body;
/* setup heap_pages_sorted */
lo = 0;
hi = heap_pages_used;
while (lo < hi) {
struct heap_page *mid_page;
mid = (lo + hi) / 2;
mid_page = heap_pages_sorted[mid];
if (mid_page->body < page_body) {
lo = mid + 1;
}
else if (mid_page->body > page_body) {
hi = mid;
}
else {
rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid);
}
}
if (hi < heap_pages_used) {
MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_pages_used - hi);
}
heap_pages_sorted[hi] = page;
heap_pages_used++;
assert(heap_pages_used <= heap_pages_length);
/* adjust obj_limit (object number available in this page) */
start = (RVALUE*)((VALUE)page_body + sizeof(struct heap_page_header));
if ((VALUE)start % sizeof(RVALUE) != 0) {
int delta = (int)(sizeof(RVALUE) - ((VALUE)start % sizeof(RVALUE)));
start = (RVALUE*)((VALUE)start + delta);
limit = (HEAP_SIZE - (size_t)((VALUE)start - (VALUE)page_body))/sizeof(RVALUE);
}
end = start + limit;
if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start;
if (heap_pages_himem < end) heap_pages_himem = end;
page->start = start;
page->limit = limit;
page_body->header.page = page;
for (p = start; p != end; p++) {
rgengc_report(3, objspace, "assign_heap_page: %p is added to freelist\n", p);
heap_page_add_freeobj(objspace, page, (VALUE)p);
}
return page;
}
static struct heap_page *
heap_page_resurrect(rb_objspace_t *objspace)
{
struct heap_page *page;
if ((page = heap_tomb->pages) != NULL) {
heap_unlink_page(objspace, heap_tomb, page);
return page;
}
return NULL;
}
static struct heap_page *
heap_page_create(rb_objspace_t *objspace)
{
struct heap_page *page = heap_page_resurrect(objspace);
const char *method = "recycle";
if (page == NULL) {
page = heap_page_allocate(objspace);
method = "allocate";
}
if (0) fprintf(stderr, "heap_page_create: %s - %p, heap_pages_used: %d, heap_pages_used: %d, tomb->page_length: %d\n",
method, page, (int)heap_pages_length, (int)heap_pages_used, (int)heap_tomb->page_length);
return page;
}
static void
heap_add_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
page->heap = heap;
page->next = heap->pages;
if (heap->pages) heap->pages->prev = page;
heap->pages = page;
heap->page_length++;
heap->total_slots += page->limit;
}
static void
heap_assign_page(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = heap_page_create(objspace);
heap_add_page(objspace, heap, page);
heap_add_freepage(objspace, heap, page);
}
static void
heap_add_pages(rb_objspace_t *objspace, rb_heap_t *heap, size_t add)
{
size_t i;
heap_pages_increment = add;
heap_pages_expand_sorted(objspace);
for (i = 0; i < add; i++) {
heap_assign_page(objspace, heap);
}
heap_pages_increment = 0;
}
static void
heap_set_increment(rb_objspace_t *objspace, size_t minimum_limit)
{
size_t used = heap_pages_used - heap_tomb->page_length;
size_t next_used_limit = (size_t)(used * gc_params.growth_factor);
if (gc_params.growth_max_slots > 0) {
size_t max_used_limit = (size_t)(used + gc_params.growth_max_slots/HEAP_OBJ_LIMIT);
if (next_used_limit > max_used_limit) next_used_limit = max_used_limit;
}
if (next_used_limit == heap_pages_used) next_used_limit++;
if (next_used_limit < minimum_limit) {
next_used_limit = minimum_limit;
}
heap_pages_increment = next_used_limit - used;
heap_pages_expand_sorted(objspace);
if (0) fprintf(stderr, "heap_set_increment: heap_pages_length: %d, heap_pages_used: %d, heap_pages_increment: %d, next_used_limit: %d\n",
(int)heap_pages_length, (int)heap_pages_used, (int)heap_pages_increment, (int)next_used_limit);
}
static int
heap_increment(rb_objspace_t *objspace, rb_heap_t *heap)
{
rgengc_report(5, objspace, "heap_increment: heap_pages_length: %d, heap_pages_inc: %d, heap->page_length: %d\n",
(int)heap_pages_length, (int)heap_pages_increment, (int)heap->page_length);
if (heap_pages_increment > 0) {
heap_pages_increment--;
heap_assign_page(objspace, heap);
return TRUE;
}
return FALSE;
}
static struct heap_page *
heap_prepare_freepage(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (!GC_ENABLE_LAZY_SWEEP && objspace->flags.dont_lazy_sweep) {
if (heap_increment(objspace, heap) == 0 &&
garbage_collect(objspace, FALSE, TRUE, GPR_FLAG_NEWOBJ) == 0) {
goto err;
}
goto ok;
}
if (!heap_ready_to_gc(objspace, heap)) return heap->free_pages;
during_gc++;
if ((is_lazy_sweeping(heap) && gc_heap_lazy_sweep(objspace, heap)) || heap_increment(objspace, heap)) {
goto ok;
}
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = 0;
#endif
if (garbage_collect_body(objspace, 0, 0, GPR_FLAG_NEWOBJ) == 0) {
err:
during_gc = 0;
rb_memerror();
}
ok:
during_gc = 0;
return heap->free_pages;
}
static RVALUE *
heap_get_freeobj_from_next_freepage(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page;
RVALUE *p;
page = heap->free_pages;
while (page == NULL) {
page = heap_prepare_freepage(objspace, heap);
}
heap->free_pages = page->free_next;
heap->using_page = page;
p = page->freelist;
page->freelist = NULL;
return p;
}
static inline VALUE
heap_get_freeobj(rb_objspace_t *objspace, rb_heap_t *heap)
{
RVALUE *p = heap->freelist;
while (1) {
if (p) {
heap->freelist = p->as.free.next;
return (VALUE)p;
}
else {
p = heap_get_freeobj_from_next_freepage(objspace, heap);
}
}
}
void
rb_objspace_set_event_hook(const rb_event_flag_t event)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
}
static void
gc_event_hook_body(rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data)
{
rb_thread_t *th = GET_THREAD();
EXEC_EVENT_HOOK(th, event, th->cfp->self, 0, 0, data);
}
#define gc_event_hook(objspace, event, data) do { \
if (UNLIKELY((objspace)->hook_events & (event))) { \
gc_event_hook_body((objspace), (event), (data)); \
} \
} while (0)
static VALUE
newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE obj;
if (UNLIKELY(during_gc)) {
dont_gc = 1;
during_gc = 0;
rb_bug("object allocation during garbage collection phase");
}
if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
if (!garbage_collect(objspace, FALSE, FALSE, GPR_FLAG_NEWOBJ)) {
during_gc = 0;
rb_memerror();
}
}
obj = heap_get_freeobj(objspace, heap_eden);
/* OBJSETUP */
RBASIC(obj)->flags = flags;
RBASIC_SET_CLASS_RAW(obj, klass);
if (rb_safe_level() >= 3) FL_SET((obj), FL_TAINT);
RANY(obj)->as.values.v1 = v1;
RANY(obj)->as.values.v2 = v2;
RANY(obj)->as.values.v3 = v3;
#if GC_DEBUG
RANY(obj)->file = rb_sourcefile();
RANY(obj)->line = rb_sourceline();
assert(!SPECIAL_CONST_P(obj)); /* check alignment */
#endif
#if RGENGC_PROFILE
if (flags & FL_WB_PROTECTED) {
objspace->profile.generated_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
else {
objspace->profile.generated_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
rgengc_report(5, objspace, "newobj: %p (%s)\n", (void *)obj, obj_type_name(obj));
#if USE_RGENGC && RGENGC_CHECK_MODE
if (RVALUE_PROMOTED_P(obj)) rb_bug("newobj: %p (%s) is promoted.", (void *)obj, obj_type_name(obj));
if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %p (%s) is remembered.", (void *)obj, obj_type_name(obj));
#endif
objspace->profile.total_allocated_object_num++;
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj);
return obj;
}
VALUE
rb_newobj(void)
{
return newobj_of(0, T_NONE, 0, 0, 0);
}
VALUE
rb_newobj_of(VALUE klass, VALUE flags)
{
return newobj_of(klass, flags, 0, 0, 0);
}
NODE*
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
{
VALUE flags = (RGENGC_WB_PROTECTED_NODE_CREF && type == NODE_CREF ? FL_WB_PROTECTED : 0);
NODE *n = (NODE *)newobj_of(0, T_NODE | flags, a0, a1, a2);
nd_set_type(n, type);
return n;
}
VALUE
rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
if (klass) Check_Type(klass, T_CLASS);
return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap);
}
VALUE
rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
{
if (klass) Check_Type(klass, T_CLASS);
return newobj_of(klass, T_DATA | (type->flags & ~T_MASK), (VALUE)type, (VALUE)1, (VALUE)datap);
}
size_t
rb_objspace_data_type_memsize(VALUE obj)
{
if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
}
else {
return 0;
}
}
const char *
rb_objspace_data_type_name(VALUE obj)
{
if (RTYPEDDATA_P(obj)) {
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
}
else {
return 0;
}
}
static inline int
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
{
register RVALUE *p = RANY(ptr);
register struct heap_page *page;
register size_t hi, lo, mid;
if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE;
if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
/* check if p looks like a pointer using bsearch*/
lo = 0;
hi = heap_pages_used;
while (lo < hi) {
mid = (lo + hi) / 2;
page = heap_pages_sorted[mid];
if (page->start <= p) {
if (p < page->start + page->limit) {
return TRUE;
}
lo = mid + 1;
}
else {
hi = mid;
}
}
return FALSE;
}
static int
free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
{
if (!me->mark) {
rb_free_method_entry(me);
}
return ST_CONTINUE;
}
void
rb_free_m_tbl(st_table *tbl)
{
st_foreach(tbl, free_method_entry_i, 0);
st_free_table(tbl);
}
void
rb_free_m_tbl_wrapper(struct method_table_wrapper *wrapper)
{
if (wrapper->tbl) {
rb_free_m_tbl(wrapper->tbl);
}
xfree(wrapper);
}
static int
free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
{
xfree(ce);
return ST_CONTINUE;
}
void
rb_free_const_table(st_table *tbl)
{
st_foreach(tbl, free_const_entry_i, 0);
st_free_table(tbl);
}
static inline void
make_deferred(rb_objspace_t *objspace,RVALUE *p)
{
p->as.basic.flags = T_ZOMBIE;
p->as.free.next = heap_pages_deferred_final;
heap_pages_deferred_final = p;
}
static inline void
make_io_deferred(rb_objspace_t *objspace,RVALUE *p)
{
rb_io_t *fptr = p->as.file.fptr;
make_deferred(objspace, p);
p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
p->as.data.data = fptr;
}
static int
obj_free(rb_objspace_t *objspace, VALUE obj)
{
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj);
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
FL_UNSET(obj, FL_EXIVAR);
}
#if USE_RGENGC
if (MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj))
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj);
#endif
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
RANY(obj)->as.object.as.heap.ivptr) {
xfree(RANY(obj)->as.object.as.heap.ivptr);
}
break;
case T_MODULE:
case T_CLASS:
if (RCLASS_M_TBL_WRAPPER(obj)) {
rb_free_m_tbl_wrapper(RCLASS_M_TBL_WRAPPER(obj));
}
if (RCLASS_IV_TBL(obj)) {
st_free_table(RCLASS_IV_TBL(obj));
}
if (RCLASS_CONST_TBL(obj)) {
rb_free_const_table(RCLASS_CONST_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
st_free_table(RCLASS_IV_INDEX_TBL(obj));
}
if (RCLASS_EXT(obj)->subclasses) {
if (BUILTIN_TYPE(obj) == T_MODULE) {
rb_class_detach_module_subclasses(obj);
}
else {
rb_class_detach_subclasses(obj);
}
RCLASS_EXT(obj)->subclasses = NULL;
}
rb_class_remove_from_module_subclasses(obj);
rb_class_remove_from_super_subclasses(obj);
if (RANY(obj)->as.klass.ptr)
xfree(RANY(obj)->as.klass.ptr);
RANY(obj)->as.klass.ptr = NULL;
break;
case T_STRING:
rb_str_free(obj);
break;
case T_ARRAY:
rb_ary_free(obj);
break;
case T_HASH:
if (RANY(obj)->as.hash.ntbl) {
st_free_table(RANY(obj)->as.hash.ntbl);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
onig_free(RANY(obj)->as.regexp.ptr);
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
int free_immediately = FALSE;
if (RTYPEDDATA_P(obj)) {
free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0;
RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
if (0 && free_immediately == 0) /* to expose non-free-immediate T_DATA */
fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name);
}
if (RANY(obj)->as.data.dfree == RUBY_DEFAULT_FREE) {
xfree(DATA_PTR(obj));
}
else if (RANY(obj)->as.data.dfree) {
if (free_immediately) {
(RDATA(obj)->dfree)(DATA_PTR(obj));
}
else {
make_deferred(objspace, RANY(obj));
return 1;
}
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.rmatch) {
struct rmatch *rm = RANY(obj)->as.match.rmatch;
onig_region_free(&rm->regs, 0);
if (rm->char_offset)
xfree(rm->char_offset);
xfree(rm);
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
make_io_deferred(objspace, RANY(obj));
return 1;
}
break;
case T_RATIONAL:
case T_COMPLEX:
break;
case T_ICLASS:
/* iClass shares table with the module */
if (RCLASS_EXT(obj)->subclasses) {
rb_class_detach_subclasses(obj);
RCLASS_EXT(obj)->subclasses = NULL;
}
rb_class_remove_from_module_subclasses(obj);
rb_class_remove_from_super_subclasses(obj);
xfree(RANY(obj)->as.klass.ptr);
RANY(obj)->as.klass.ptr = NULL;
break;
case T_FLOAT:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
xfree(BIGNUM_DIGITS(obj));
}
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RANY(obj)->as.node.u1.tbl) {
xfree(RANY(obj)->as.node.u1.tbl);
}
break;
case NODE_ARGS:
if (RANY(obj)->as.node.u3.args) {
xfree(RANY(obj)->as.node.u3.args);
}
break;
case NODE_ALLOCA:
xfree(RANY(obj)->as.node.u1.node);
break;
}
break; /* no need to free iv_tbl */
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RANY(obj)->as.rstruct.as.heap.ptr) {
xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr);
}
break;
case T_SYMBOL:
{
rb_gc_free_dsymbol(obj);
}
break;
default:
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
}
return 0;
}
void
Init_heap(void)
{
rb_objspace_t *objspace = &rb_objspace;
#if RGENGC_ESTIMATE_OLDMALLOC
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
#endif
heap_add_pages(objspace, heap_eden, gc_params.heap_init_slots / HEAP_OBJ_LIMIT);
init_mark_stack(&objspace->mark_stack);
#ifdef USE_SIGALTSTACK
{
/* altstack of another threads are allocated in another place */
rb_thread_t *th = GET_THREAD();
void *tmp = th->altstack;
th->altstack = malloc(rb_sigaltstack_size());
free(tmp); /* free previously allocated area */
}
#endif
objspace->profile.invoke_time = getrusage_time();
finalizer_table = st_init_numtable();
}
typedef int each_obj_callback(void *, void *, size_t, void *);
struct each_obj_args {
each_obj_callback *callback;
void *data;
};
static VALUE
objspace_each_objects(VALUE arg)
{
size_t i;
struct heap_page_body *last_body = 0;
struct heap_page *page;
RVALUE *pstart, *pend;
rb_objspace_t *objspace = &rb_objspace;
struct each_obj_args *args = (struct each_obj_args *)arg;
i = 0;
while (i < heap_pages_used) {
while (0 < i && last_body < heap_pages_sorted[i-1]->body) i--;
while (i < heap_pages_used && heap_pages_sorted[i]->body <= last_body) i++;
if (heap_pages_used <= i) break;
page = heap_pages_sorted[i];
last_body = page->body;
pstart = page->start;
pend = pstart + page->limit;
if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
break;
}
}
return Qnil;
}
/*
* rb_objspace_each_objects() is special C API to walk through
* Ruby object space. This C API is too difficult to use it.
* To be frank, you should not use it. Or you need to read the
* source code of this function and understand what this function does.
*
* 'callback' will be called several times (the number of heap page,
* at current implementation) with:
* vstart: a pointer to the first living object of the heap_page.
* vend: a pointer to next to the valid heap_page area.
* stride: a distance to next VALUE.
*
* If callback() returns non-zero, the iteration will be stopped.
*
* This is a sample callback code to iterate liveness objects:
*
* int
* sample_callback(void *vstart, void *vend, int stride, void *data) {
* VALUE v = (VALUE)vstart;
* for (; v != (VALUE)vend; v += stride) {
* if (RBASIC(v)->flags) { // liveness check
* // do something with live object 'v'
* }
* return 0; // continue to iteration
* }
*
* Note: 'vstart' is not a top of heap_page. This point the first
* living object to grasp at least one object to avoid GC issue.
* This means that you can not walk through all Ruby object page
* including freed object page.
*
* Note: On this implementation, 'stride' is same as sizeof(RVALUE).
* However, there are possibilities to pass variable values with
* 'stride' with some reasons. You must use stride instead of
* use some constant value in the iteration.
*/
void
rb_objspace_each_objects(each_obj_callback *callback, void *data)
{
struct each_obj_args args;
rb_objspace_t *objspace = &rb_objspace;
int prev_dont_lazy_sweep = objspace->flags.dont_lazy_sweep;
gc_rest_sweep(objspace);
objspace->flags.dont_lazy_sweep = TRUE;
args.callback = callback;
args.data = data;
if (prev_dont_lazy_sweep) {
objspace_each_objects((VALUE)&args);
}
else {
rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
}
}
void
rb_objspace_each_objects_without_setup(each_obj_callback *callback, void *data)
{
struct each_obj_args args;
args.callback = callback;
args.data = data;
objspace_each_objects((VALUE)&args);
}
struct os_each_struct {
size_t num;
VALUE of;
};
static int
internal_object_p(VALUE obj)
{
RVALUE *p = (RVALUE *)obj;
if (p->as.basic.flags) {
switch (BUILTIN_TYPE(p)) {
case T_NONE:
case T_ICLASS:
case T_NODE:
case T_ZOMBIE:
break;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON))
break;
default:
if (!p->as.basic.klass) break;
return 0;
}
}
return 1;
}
int
rb_objspace_internal_object_p(VALUE obj)
{
return internal_object_p(obj);
}
static int
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
{
struct os_each_struct *oes = (struct os_each_struct *)data;
RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
for (; p != pend; p++) {
volatile VALUE v = (VALUE)p;
if (!internal_object_p(v)) {
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
rb_yield(v);
oes->num++;
}
}
}
return 0;
}
static VALUE
os_obj_of(VALUE of)
{
struct os_each_struct oes;
oes.num = 0;
oes.of = of;
rb_objspace_each_objects(os_obj_of_i, &oes);
return SIZET2NUM(oes.num);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
* ObjectSpace.each_object([module]) -> an_enumerator
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, <code>each_object</code>
* returns both the numbers we defined and several constants defined in
* the <code>Math</code> module.
*
* If no block is given, an enumerator is returned instead.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
if (argc == 0) {
of = 0;
}
else {
rb_scan_args(argc, argv, "01", &of);
}
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(VALUE os, VALUE obj)
{
return rb_undefine_finalizer(obj);
}
VALUE
rb_undefine_finalizer(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
st_data_t data = obj;
rb_check_frozen(obj);
st_delete(finalizer_table, &data, 0);
FL_UNSET(obj, FL_FINALIZE);
return obj;
}
static void
should_be_callable(VALUE block)
{
if (!rb_obj_respond_to(block, rb_intern("call"), TRUE)) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
}
static void
should_be_finalizable(VALUE obj)
{
rb_check_frozen(obj);
if (!FL_ABLE(obj)) {
rb_raise(rb_eArgError, "cannot define finalizer for %s",
rb_obj_classname(obj));
}
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed.
*
*/
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
VALUE obj, block;
rb_scan_args(argc, argv, "11", &obj, &block);
should_be_finalizable(obj);
if (argc == 1) {
block = rb_block_proc();
}
else {
should_be_callable(block);
}
return define_final0(obj, block);
}
static VALUE
define_final0(VALUE obj, VALUE block)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
RBASIC(obj)->flags |= FL_FINALIZE;
block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
OBJ_FREEZE(block);
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
rb_ary_push(table, block);
}
else {
table = rb_ary_new3(1, block);
RBASIC_CLEAR_CLASS(table);
st_add_direct(finalizer_table, obj, table);
}
return block;
}
VALUE
rb_define_finalizer(VALUE obj, VALUE block)
{
should_be_finalizable(obj);
should_be_callable(block);
return define_final0(obj, block);
}
void
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
st_insert(finalizer_table, dest, table);
}
FL_SET(dest, FL_FINALIZE);
}
static VALUE
run_single_final(VALUE arg)
{
VALUE *args = (VALUE *)arg;
rb_eval_cmd(args[0], args[1], (int)args[2]);
return Qnil;
}
static void
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
{
long i;
int status;
VALUE args[3];
VALUE objid = nonspecial_obj_id(obj);
if (RARRAY_LEN(table) > 0) {
args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
}
else {
args[1] = 0;
}
args[2] = (VALUE)rb_safe_level();
for (i=0; i<RARRAY_LEN(table); i++) {
VALUE final = RARRAY_AREF(table, i);
args[0] = RARRAY_AREF(final, 1);
args[2] = FIX2INT(RARRAY_AREF(final, 0));
status = 0;
rb_protect(run_single_final, (VALUE)args, &status);
if (status)
rb_set_errinfo(Qnil);
}
}
static void
run_final(rb_objspace_t *objspace, VALUE obj)
{
RUBY_DATA_FUNC free_func = 0;
st_data_t key, table;
heap_pages_final_slots--;
RBASIC_CLEAR_CLASS(obj);
if (RTYPEDDATA_P(obj)) {
free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
}
else {
free_func = RDATA(obj)->dfree;
}
if (free_func) {
(*free_func)(DATA_PTR(obj));
}
key = (st_data_t)obj;
if (st_delete(finalizer_table, &key, &table)) {
run_finalizer(objspace, obj, (VALUE)table);
}
}
static void
finalize_list(rb_objspace_t *objspace, RVALUE *p)
{
while (p) {
RVALUE *tmp = p->as.free.next;
struct heap_page *page = GET_HEAP_PAGE(p);
run_final(objspace, (VALUE)p);
objspace->profile.total_freed_object_num++;
page->final_slots--;
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(p), (VALUE)p);
heap_pages_swept_slots++;
p = tmp;
}
}
static void
finalize_deferred(rb_objspace_t *objspace)
{
RVALUE *p;
while ((p = ATOMIC_PTR_EXCHANGE(heap_pages_deferred_final, 0)) != 0) {
finalize_list(objspace, p);
}
}
static void
gc_finalize_deferred(void *dmy)
{
rb_objspace_t *objspace = &rb_objspace;
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
finalize_deferred(objspace);
ATOMIC_SET(finalizing, 0);
}
/* TODO: to keep compatibility, maybe unused. */
void
rb_gc_finalize_deferred(void)
{
gc_finalize_deferred(0);
}
static void
gc_finalize_deferred_register(void)
{
if (rb_postponed_job_register_one(0, gc_finalize_deferred, 0) == 0) {
rb_bug("gc_finalize_deferred_register: can't register finalizer.");
}
}
struct force_finalize_list {
VALUE obj;
VALUE table;
struct force_finalize_list *next;
};
static int
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
{
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
curr->obj = key;
curr->table = val;
curr->next = *prev;
*prev = curr;
return ST_CONTINUE;
}
void
rb_gc_call_finalizer_at_exit(void)
{
rb_objspace_call_finalizer(&rb_objspace);
}
static void
rb_objspace_call_finalizer(rb_objspace_t *objspace)
{
RVALUE *p, *pend;
size_t i;
gc_rest_sweep(objspace);
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
/* run finalizers */
finalize_deferred(objspace);
assert(heap_pages_deferred_final == 0);
/* force to run finalizer */
while (finalizer_table->num_entries) {
struct force_finalize_list *list = 0;
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
while (list) {
struct force_finalize_list *curr = list;
st_data_t obj = (st_data_t)curr->obj;
run_finalizer(objspace, curr->obj, curr->table);
st_delete(finalizer_table, &obj, 0);
list = curr->next;
xfree(curr);
}
}
/* finalizers are part of garbage collection */
during_gc++;
/* run data object's finalizers */
for (i = 0; i < heap_pages_used; i++) {
p = heap_pages_sorted[i]->start; pend = p + heap_pages_sorted[i]->limit;
while (p < pend) {
switch (BUILTIN_TYPE(p)) {
case T_DATA:
if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break;
if (rb_obj_is_thread((VALUE)p)) break;
if (rb_obj_is_mutex((VALUE)p)) break;
if (rb_obj_is_fiber((VALUE)p)) break;
p->as.free.flags = 0;
if (RTYPEDDATA_P(p)) {
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
}
if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
xfree(DATA_PTR(p));
}
else if (RANY(p)->as.data.dfree) {
make_deferred(objspace, RANY(p));
}
break;
case T_FILE:
if (RANY(p)->as.file.fptr) {
make_io_deferred(objspace, RANY(p));
}
break;
}
p++;
}
}
during_gc = 0;
if (heap_pages_deferred_final) {
finalize_list(objspace, heap_pages_deferred_final);
}
st_free_table(finalizer_table);
finalizer_table = 0;
ATOMIC_SET(finalizing, 0);
}
static inline int
is_id_value(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
return TRUE;
}
static inline int
heap_is_swept_object(rb_objspace_t *objspace, rb_heap_t *heap, VALUE ptr)
{
struct heap_page *page = GET_HEAP_PAGE(ptr);
return page->before_sweep ? FALSE : TRUE;
}
static inline int
is_swept_object(rb_objspace_t *objspace, VALUE ptr)
{
if (heap_is_swept_object(objspace, heap_eden, ptr)) {
return TRUE;
}
else {
return FALSE;
}
}
static inline int
is_dead_object(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_lazy_sweeping(heap_eden) || MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) return FALSE;
if (!is_swept_object(objspace, ptr)) return TRUE;
return FALSE;
}
static inline int
is_live_object(rb_objspace_t *objspace, VALUE ptr)
{
switch (BUILTIN_TYPE(ptr)) {
case 0: case T_ZOMBIE:
return FALSE;
}
if (is_dead_object(objspace, ptr)) return FALSE;
return TRUE;
}
static inline int
is_markable_object(rb_objspace_t *objspace, VALUE obj)
{
if (rb_special_const_p(obj)) return 0; /* special const is not markable */
if (RGENGC_CHECK_MODE) {
if (!is_pointer_to_heap(objspace, (void *)obj)) rb_bug("is_markable_object: %p is not pointer to heap", (void *)obj);
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("is_markable_object: %p is T_NONE", (void *)obj);
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("is_markable_object: %p is T_ZOMBIE", (void *)obj);
}
return 1;
}
int
rb_objspace_markable_object_p(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
return is_markable_object(objspace, obj) && is_live_object(objspace, obj);
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
*/
static VALUE
id2ref(VALUE obj, VALUE objid)
{
#if SIZEOF_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULONG(x)
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULL(x)
#endif
rb_objspace_t *objspace = &rb_objspace;
VALUE ptr;
void *p0;
ptr = NUM2PTR(objid);
p0 = (void *)ptr;
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
if (FLONUM_P(ptr)) return (VALUE)ptr;
ptr = obj_id_to_ref(objid);
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
if (rb_id2name(symid) == 0)
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
if (!is_id_value(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is not id value", p0);
}
if (!is_live_object(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is recycled object", p0);
}
return (VALUE)ptr;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ -> integer
* obj.object_id -> integer
*
* Returns an integer identifier for +obj+.
*
* The same number will be returned on all calls to +object_id+ for a given object,
* and no two active objects will share an id.
*
* Note that some objects of builtin classes are reused for optimization.
* This is the case for immediate values and frozen string litterals.
* Immediate values are not passed by reference but are passed by value:
* +nil+, +true+, +false+, Fixnums, Symbols. Some Floats may be immediates too.
*
* Object.new.object_id == Object.new.object_id # => false
* (21 * 2).object_id == (21 * 2).object_id # => true
* "hello".object_id == "hello".object_id # => false
* "hi".freeze.object_id == "hi".freeze.object_id # => true
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (STATIC_SYM_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
return LONG2NUM((SIGNED_VALUE)obj);
#else
return LL2NUM((SIGNED_VALUE)obj);
#endif
}
else if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return nonspecial_obj_id(obj);
}
size_t rb_str_memsize(VALUE);
size_t rb_ary_memsize(VALUE);
size_t rb_io_memsize(const rb_io_t *);
size_t rb_generic_ivar_memsize(VALUE);
#include "regint.h"
static size_t
obj_memsize_of(VALUE obj, int use_tdata)
{
size_t size = 0;
if (SPECIAL_CONST_P(obj)) {
return 0;
}
if (FL_TEST(obj, FL_EXIVAR)) {
size += rb_generic_ivar_memsize(obj);
}
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RBASIC(obj)->flags & ROBJECT_EMBED) &&
ROBJECT(obj)->as.heap.ivptr) {
size += ROBJECT(obj)->as.heap.numiv * sizeof(VALUE);
}
break;
case T_MODULE:
case T_CLASS:
if (RCLASS_M_TBL_WRAPPER(obj)) {
size += sizeof(struct method_table_wrapper);
}
if (RCLASS_M_TBL(obj)) {
size += st_memsize(RCLASS_M_TBL(obj));
}
if (RCLASS_EXT(obj)) {
if (RCLASS_IV_TBL(obj)) {
size += st_memsize(RCLASS_IV_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
size += st_memsize(RCLASS_IV_INDEX_TBL(obj));
}
if (RCLASS(obj)->ptr->iv_tbl) {
size += st_memsize(RCLASS(obj)->ptr->iv_tbl);
}
if (RCLASS(obj)->ptr->const_tbl) {
size += st_memsize(RCLASS(obj)->ptr->const_tbl);
}
size += sizeof(rb_classext_t);
}
break;
case T_STRING:
size += rb_str_memsize(obj);
break;
case T_ARRAY:
size += rb_ary_memsize(obj);
break;
case T_HASH:
if (RHASH(obj)->ntbl) {
size += st_memsize(RHASH(obj)->ntbl);
}
break;
case T_REGEXP:
if (RREGEXP(obj)->ptr) {
size += onig_memsize(RREGEXP(obj)->ptr);
}
break;
case T_DATA:
if (use_tdata) size += rb_objspace_data_type_memsize(obj);
break;
case T_MATCH:
if (RMATCH(obj)->rmatch) {
struct rmatch *rm = RMATCH(obj)->rmatch;
size += onig_region_memsize(&rm->regs);
size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated;
size += sizeof(struct rmatch);
}
break;
case T_FILE:
if (RFILE(obj)->fptr) {
size += rb_io_memsize(RFILE(obj)->fptr);
}
break;
case T_RATIONAL:
case T_COMPLEX:
break;
case T_ICLASS:
/* iClass shares table with the module */
break;
case T_FLOAT:
case T_SYMBOL:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
size += BIGNUM_LEN(obj) * sizeof(BDIGIT);
}
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RNODE(obj)->u1.tbl) {
/* TODO: xfree(RANY(obj)->as.node.u1.tbl); */
}
break;
case NODE_ALLOCA:
/* TODO: xfree(RANY(obj)->as.node.u1.node); */
;
}
break; /* no need to free iv_tbl */
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RSTRUCT(obj)->as.heap.ptr) {
size += sizeof(VALUE) * RSTRUCT_LEN(obj);
}
break;
case T_ZOMBIE:
break;
default:
rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)",
BUILTIN_TYPE(obj), (void*)obj);
}
return size;
}
size_t
rb_obj_memsize_of(VALUE obj)
{
return obj_memsize_of(obj, TRUE);
}
static int
set_zero(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE k = (VALUE)key;
VALUE hash = (VALUE)arg;
rb_hash_aset(hash, k, INT2FIX(0));
return ST_CONTINUE;
}
/*
* call-seq:
* ObjectSpace.count_objects([result_hash]) -> hash
*
* Counts objects for each type.
*
* It returns a hash, such as:
* {
* :TOTAL=>10000,
* :FREE=>3011,
* :T_OBJECT=>6,
* :T_CLASS=>404,
* # ...
* }
*
* The contents of the returned hash are implementation specific.
* It may be changed in future.
*
* If the optional argument +result_hash+ is given,
* it is overwritten and returned. This is intended to avoid probe effect.
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
rb_objspace_t *objspace = &rb_objspace;
size_t counts[T_MASK+1];
size_t freed = 0;
size_t total = 0;
size_t i;
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
for (i = 0; i < heap_pages_used; i++) {
struct heap_page *page = heap_pages_sorted[i];
RVALUE *p, *pend;
p = page->start; pend = p + page->limit;
for (;p < pend; p++) {
if (p->as.basic.flags) {
counts[BUILTIN_TYPE(p)]++;
}
else {
freed++;
}
}
total += page->limit;
}
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL_RAW(hash), set_zero, hash);
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
for (i = 0; i <= T_MASK; i++) {
VALUE type;
switch (i) {
#define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
COUNT_TYPE(T_NONE);
COUNT_TYPE(T_OBJECT);
COUNT_TYPE(T_CLASS);
COUNT_TYPE(T_MODULE);
COUNT_TYPE(T_FLOAT);
COUNT_TYPE(T_STRING);
COUNT_TYPE(T_REGEXP);
COUNT_TYPE(T_ARRAY);
COUNT_TYPE(T_HASH);
COUNT_TYPE(T_STRUCT);
COUNT_TYPE(T_BIGNUM);
COUNT_TYPE(T_FILE);
COUNT_TYPE(T_DATA);
COUNT_TYPE(T_MATCH);
COUNT_TYPE(T_COMPLEX);
COUNT_TYPE(T_RATIONAL);
COUNT_TYPE(T_NIL);
COUNT_TYPE(T_TRUE);
COUNT_TYPE(T_FALSE);
COUNT_TYPE(T_SYMBOL);
COUNT_TYPE(T_FIXNUM);
COUNT_TYPE(T_UNDEF);
COUNT_TYPE(T_NODE);
COUNT_TYPE(T_ICLASS);
COUNT_TYPE(T_ZOMBIE);
#undef COUNT_TYPE
default: type = INT2NUM(i); break;
}
if (counts[i])
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
return hash;
}
/*
------------------------ Garbage Collection ------------------------
*/
/* Sweeping */
static VALUE
lazy_sweep_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->flags.dont_lazy_sweep = FALSE;
return Qnil;
}
static size_t
objspace_live_slot(rb_objspace_t *objspace)
{
return objspace->profile.total_allocated_object_num - objspace->profile.total_freed_object_num;
}
static size_t
objspace_total_slot(rb_objspace_t *objspace)
{
return heap_eden->total_slots + heap_tomb->total_slots;
}
static size_t
objspace_free_slot(rb_objspace_t *objspace)
{
return objspace_total_slot(objspace) - (objspace_live_slot(objspace) - heap_pages_final_slots);
}
static void
gc_setup_mark_bits(struct heap_page *page)
{
#if USE_RGENGC
/* copy oldgen bitmap to mark bitmap */
memcpy(&page->mark_bits[0], &page->oldgen_bits[0], HEAP_BITMAP_SIZE);
#else
/* clear mark bitmap */
memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE);
#endif
}
static inline void
gc_page_sweep(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *sweep_page)
{
int i;
size_t empty_slots = 0, freed_slots = 0, final_slots = 0;
RVALUE *p, *pend,*offset;
bits_t *bits, bitset;
rgengc_report(1, objspace, "page_sweep: start.\n");
sweep_page->before_sweep = 0;
p = sweep_page->start; pend = p + sweep_page->limit;
offset = p - NUM_IN_PAGE(p);
bits = sweep_page->mark_bits;
/* create guard : fill 1 out-of-range */
bits[BITMAP_INDEX(p)] |= BITMAP_BIT(p)-1;
bits[BITMAP_INDEX(pend)] |= ~(BITMAP_BIT(pend) - 1);
for (i=0; i < HEAP_BITMAP_LIMIT; i++) {
bitset = ~bits[i];
if (bitset) {
p = offset + i * BITS_BITLENGTH;
do {
if ((bitset & 1) && BUILTIN_TYPE(p) != T_ZOMBIE) {
if (p->as.basic.flags) {
rgengc_report(3, objspace, "page_sweep: free %p (%s)\n", p, obj_type_name((VALUE)p));
#if USE_RGENGC && RGENGC_CHECK_MODE
if (objspace->rgengc.during_minor_gc && RVALUE_OLD_P((VALUE)p)) rb_bug("page_sweep: %p (%s) is old while minor GC.", p, obj_type_name((VALUE)p));
if (rgengc_remembered(objspace, (VALUE)p)) rb_bug("page_sweep: %p (%s) is remembered.", p, obj_type_name((VALUE)p));
#endif
if (obj_free(objspace, (VALUE)p)) {
final_slots++;
}
else if (FL_TEST(p, FL_FINALIZE)) {
RDATA(p)->dfree = 0;
make_deferred(objspace,p);
final_slots++;
}
else {
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
heap_page_add_freeobj(objspace, sweep_page, (VALUE)p);
rgengc_report(3, objspace, "page_sweep: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p));
freed_slots++;
}
}
else {
empty_slots++;
}
}
p++;
bitset >>= 1;
} while (bitset);
}
}
gc_setup_mark_bits(sweep_page);
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->removing_objects += final_slots + freed_slots;
record->empty_objects += empty_slots;
}
#endif
if (final_slots + freed_slots + empty_slots == sweep_page->limit) {
/* there are no living objects -> move this page to tomb heap */
heap_unlink_page(objspace, heap, sweep_page);
heap_add_page(objspace, heap_tomb, sweep_page);
}
else {
if (freed_slots + empty_slots > 0) {
heap_add_freepage(objspace, heap, sweep_page);
}
else {
sweep_page->free_next = NULL;
}
}
heap_pages_swept_slots += freed_slots + empty_slots;
objspace->profile.total_freed_object_num += freed_slots;
heap_pages_final_slots += final_slots;
sweep_page->final_slots = final_slots;
if (0) fprintf(stderr, "gc_page_sweep(%d): freed?: %d, limt: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n",
(int)rb_gc_count(),
final_slots + freed_slots + empty_slots == sweep_page->limit,
(int)sweep_page->limit, (int)freed_slots, (int)empty_slots, (int)final_slots);
if (heap_pages_deferred_final && !finalizing) {
rb_thread_t *th = GET_THREAD();
if (th) {
gc_finalize_deferred_register();
}
}
rgengc_report(1, objspace, "page_sweep: end.\n");
}
/* allocate additional minimum page to work */
static void
gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (!heap->free_pages) {
/* there is no free after page_sweep() */
heap_set_increment(objspace, 0);
if (!heap_increment(objspace, heap)) { /* can't allocate additional free objects */
during_gc = 0;
rb_memerror();
}
}
}
static void
gc_before_heap_sweep(rb_objspace_t *objspace, rb_heap_t *heap)
{
heap->sweep_pages = heap->pages;
heap->free_pages = NULL;
if (heap->using_page) {
RVALUE **p = &heap->using_page->freelist;
while (*p) {
p = &(*p)->as.free.next;
}
*p = heap->freelist;
heap->using_page = NULL;
}
heap->freelist = NULL;
}
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
__attribute__((noinline))
#endif
static void
gc_before_sweep(rb_objspace_t *objspace)
{
rb_heap_t *heap;
size_t total_limit_slot;
rgengc_report(1, objspace, "gc_before_sweep\n");
/* sweep unlinked method entries */
if (GET_VM()->unlinked_method_entry_list) {
rb_sweep_method_entry(GET_VM());
}
heap_pages_swept_slots = 0;
total_limit_slot = objspace_total_slot(objspace);
heap_pages_min_free_slots = (size_t)(total_limit_slot * 0.30);
if (heap_pages_min_free_slots < gc_params.heap_free_slots) {
heap_pages_min_free_slots = gc_params.heap_free_slots;
}
heap_pages_max_free_slots = (size_t)(total_limit_slot * 0.80);
if (heap_pages_max_free_slots < gc_params.heap_init_slots) {
heap_pages_max_free_slots = gc_params.heap_init_slots;
}
if (0) fprintf(stderr, "heap_pages_min_free_slots: %d, heap_pages_max_free_slots: %d\n",
(int)heap_pages_min_free_slots, (int)heap_pages_max_free_slots);
heap = heap_eden;
gc_before_heap_sweep(objspace, heap);
gc_prof_set_malloc_info(objspace);
/* reset malloc info */
if (0) fprintf(stderr, "%d\t%d\t%d\n", (int)rb_gc_count(), (int)malloc_increase, (int)malloc_limit);
{
size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
size_t old_limit = malloc_limit;
if (inc > malloc_limit) {
malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor);
if (gc_params.malloc_limit_max > 0 && /* ignore max-check if 0 */
malloc_limit > gc_params.malloc_limit_max) {
malloc_limit = gc_params.malloc_limit_max;
}
}
else {
malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */
if (malloc_limit < gc_params.malloc_limit_min) {
malloc_limit = gc_params.malloc_limit_min;
}
}
if (0) {
if (old_limit != malloc_limit) {
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n",
rb_gc_count(), old_limit, malloc_limit);
}
else {
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n",
rb_gc_count(), malloc_limit);
}
}
}
/* reset oldmalloc info */
#if RGENGC_ESTIMATE_OLDMALLOC
if (objspace->rgengc.during_minor_gc) {
if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) {
objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_OLDMALLOC;;
objspace->rgengc.oldmalloc_increase_limit =
(size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor);
if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max;
}
}
if (0) fprintf(stderr, "%d\t%d\t%u\t%u\t%d\n",
(int)rb_gc_count(),
(int)objspace->rgengc.need_major_gc,
(unsigned int)objspace->rgengc.oldmalloc_increase,
(unsigned int)objspace->rgengc.oldmalloc_increase_limit,
(unsigned int)gc_params.oldmalloc_limit_max);
}
else {
/* major GC */
objspace->rgengc.oldmalloc_increase = 0;
if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) {
objspace->rgengc.oldmalloc_increase_limit =
(size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1));
if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
}
}
}
#endif
}
static void
gc_after_sweep(rb_objspace_t *objspace)
{
rb_heap_t *heap = heap_eden;
rgengc_report(1, objspace, "after_gc_sweep: heap->total_slots: %d, heap->swept_slots: %d, min_free_slots: %d\n",
(int)heap->total_slots, (int)heap_pages_swept_slots, (int)heap_pages_min_free_slots);
if (heap_pages_swept_slots < heap_pages_min_free_slots) {
heap_set_increment(objspace, (heap_pages_min_free_slots - heap_pages_swept_slots) / HEAP_OBJ_LIMIT);
heap_increment(objspace, heap);
#if USE_RGENGC
if (objspace->rgengc.remembered_shady_object_count + objspace->rgengc.old_object_count > (heap_pages_length * HEAP_OBJ_LIMIT) / 2) {
/* if [old]+[remembered shady] > [all object count]/2, then do major GC */
objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_RESCAN;
}
#endif
}
gc_prof_set_heap_info(objspace);
heap_pages_free_unused_pages(objspace);
/* if heap_pages has unused pages, then assign them to increment */
if (heap_pages_increment < heap_tomb->page_length) {
heap_pages_increment = heap_tomb->page_length;
heap_pages_expand_sorted(objspace);
}
#if RGENGC_PROFILE > 0
if (0) {
fprintf(stderr, "%d\t%d\t%d\t%d\t%d\t%d\t%d\n",
(int)rb_gc_count(),
(int)objspace->profile.major_gc_count,
(int)objspace->profile.minor_gc_count,
(int)objspace->profile.promote_infant_count,
#if RGENGC_AGE2_PROMOTION
(int)objspace->profile.promote_young_count,
#else
0,
#endif
(int)objspace->profile.remembered_normal_object_count,
(int)objspace->rgengc.remembered_shady_object_count);
}
#endif
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0);
}
static int
gc_heap_lazy_sweep(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = heap->sweep_pages, *next;
int result = FALSE;
if (page == NULL) return FALSE;
#if GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_start(objspace);
#endif
while (page) {
heap->sweep_pages = next = page->next;
gc_page_sweep(objspace, heap, page);
if (!next) gc_after_sweep(objspace);
if (heap->free_pages) {
result = TRUE;
break;
}
page = next;
}
#if GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_stop(objspace);
#endif
return result;
}
static void
gc_heap_rest_sweep(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (is_lazy_sweeping(heap)) {
during_gc++;
while (is_lazy_sweeping(heap)) {
gc_heap_lazy_sweep(objspace, heap);
}
during_gc = 0;
}
}
static void
gc_rest_sweep(rb_objspace_t *objspace)
{
rb_heap_t *heap = heap_eden; /* lazy sweep only for eden */
gc_heap_rest_sweep(objspace, heap);
}
static void
gc_sweep(rb_objspace_t *objspace, int immediate_sweep)
{
if (immediate_sweep) {
#if !GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_start(objspace);
#endif
gc_before_sweep(objspace);
gc_heap_rest_sweep(objspace, heap_eden);
#if !GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_stop(objspace);
#endif
}
else {
struct heap_page *page;
gc_before_sweep(objspace);
page = heap_eden->sweep_pages;
while (page) {
page->before_sweep = 1;
page = page->next;
}
gc_heap_lazy_sweep(objspace, heap_eden);
}
gc_heap_prepare_minimum_pages(objspace, heap_eden);
}
/* Marking - Marking stack */
static void push_mark_stack(mark_stack_t *, VALUE);
static int pop_mark_stack(mark_stack_t *, VALUE *);
static void shrink_stack_chunk_cache(mark_stack_t *stack);
static stack_chunk_t *
stack_chunk_alloc(void)
{
stack_chunk_t *res;
res = malloc(sizeof(stack_chunk_t));
if (!res)
rb_memerror();
return res;
}
static inline int
is_mark_stack_empty(mark_stack_t *stack)
{
return stack->chunk == NULL;
}
static void
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
{
chunk->next = stack->cache;
stack->cache = chunk;
stack->cache_size++;
}
static void
shrink_stack_chunk_cache(mark_stack_t *stack)
{
stack_chunk_t *chunk;
if (stack->unused_cache_size > (stack->cache_size/2)) {
chunk = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
free(chunk);
}
stack->unused_cache_size = stack->cache_size;
}
static void
push_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *next;
assert(stack->index == stack->limit);
if (stack->cache_size > 0) {
next = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
if (stack->unused_cache_size > stack->cache_size)
stack->unused_cache_size = stack->cache_size;
}
else {
next = stack_chunk_alloc();
}
next->next = stack->chunk;
stack->chunk = next;
stack->index = 0;
}
static void
pop_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *prev;
prev = stack->chunk->next;
assert(stack->index == 0);
add_stack_chunk_cache(stack, stack->chunk);
stack->chunk = prev;
stack->index = stack->limit;
}
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
static void
free_stack_chunks(mark_stack_t *stack)
{
stack_chunk_t *chunk = stack->chunk;
stack_chunk_t *next = NULL;
while (chunk != NULL) {
next = chunk->next;
free(chunk);
chunk = next;
}
}
#endif
static void
push_mark_stack(mark_stack_t *stack, VALUE data)
{
if (stack->index == stack->limit) {
push_mark_stack_chunk(stack);
}
stack->chunk->data[stack->index++] = data;
}
static int
pop_mark_stack(mark_stack_t *stack, VALUE *data)
{
if (is_mark_stack_empty(stack)) {
return FALSE;
}
if (stack->index == 1) {
*data = stack->chunk->data[--stack->index];
pop_mark_stack_chunk(stack);
}
else {
*data = stack->chunk->data[--stack->index];
}
return TRUE;
}
static void
init_mark_stack(mark_stack_t *stack)
{
int i;
if (0) push_mark_stack_chunk(stack);
stack->index = stack->limit = STACK_CHUNK_SIZE;
for (i=0; i < 4; i++) {
add_stack_chunk_cache(stack, stack_chunk_alloc());
}
stack->unused_cache_size = stack->cache_size;
}
/* Marking */
#ifdef __ia64
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine.stack_end), th->machine.register_stack_end = rb_ia64_bsp())
#else
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine.stack_end)
#endif
#define STACK_START (th->machine.stack_start)
#define STACK_END (th->machine.stack_end)
#define STACK_LEVEL_MAX (th->machine.stack_maxsize/sizeof(VALUE))
#if STACK_GROW_DIRECTION < 0
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
#else
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
: (size_t)(STACK_END - STACK_START + 1))
#endif
#if !STACK_GROW_DIRECTION
int ruby_stack_grow_direction;
int
ruby_get_stack_grow_direction(volatile VALUE *addr)
{
VALUE *end;
SET_MACHINE_STACK_END(&end);
if (end > addr) return ruby_stack_grow_direction = 1;
return ruby_stack_grow_direction = -1;
}
#endif
size_t
ruby_stack_length(VALUE **p)
{
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
return STACK_LENGTH;
}
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
static int
stack_check(int water_mark)
{
int ret;
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
#ifdef __ia64
if (!ret) {
ret = (VALUE*)rb_ia64_bsp() - th->machine.register_stack_start >
th->machine.register_stack_maxsize/sizeof(VALUE) - water_mark;
}
#endif
return ret;
}
#endif
#define STACKFRAME_FOR_CALL_CFUNC 512
int
ruby_stack_check(void)
{
#if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
return 0;
#else
return stack_check(STACKFRAME_FOR_CALL_CFUNC);
#endif
}
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
static void
mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
{
VALUE v;
while (n--) {
v = *x;
gc_mark_maybe(objspace, v);
x++;
}
}
static void
gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
{
long n;
if (end <= start) return;
n = end - start;
mark_locations_array(objspace, start, n);
}
void
rb_gc_mark_locations(VALUE *start, VALUE *end)
{
gc_mark_locations(&rb_objspace, start, end);
}
#define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
struct mark_tbl_arg {
rb_objspace_t *objspace;
};
static int
mark_entry(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_tbl(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl || tbl->num_entries == 0) return;
arg.objspace = objspace;
st_foreach(tbl, mark_entry, (st_data_t)&arg);
}
static int
mark_key(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)key);
return ST_CONTINUE;
}
static void
mark_set(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_key, (st_data_t)&arg);
}
void
rb_mark_set(st_table *tbl)
{
mark_set(&rb_objspace, tbl);
}
static int
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)key);
gc_mark(arg->objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_hash(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
}
void
rb_mark_hash(st_table *tbl)
{
mark_hash(&rb_objspace, tbl);
}
static void
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
{
const rb_method_definition_t *def = me->def;
gc_mark(objspace, me->klass);
again:
if (!def) return;
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
gc_mark(objspace, def->body.iseq->self);
break;
case VM_METHOD_TYPE_BMETHOD:
gc_mark(objspace, def->body.proc);
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
gc_mark(objspace, def->body.attr.location);
break;
case VM_METHOD_TYPE_REFINED:
if (def->body.orig_me) {
def = def->body.orig_me->def;
goto again;
}
break;
default:
break; /* ignore */
}
}
void
rb_mark_method_entry(const rb_method_entry_t *me)
{
mark_method_entry(&rb_objspace, me);
}
static int
mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
mark_method_entry(arg->objspace, me);
return ST_CONTINUE;
}
static void
mark_m_tbl_wrapper(rb_objspace_t *objspace, struct method_table_wrapper *wrapper)
{
struct mark_tbl_arg arg;
if (!wrapper || !wrapper->tbl) return;
if (LIKELY(objspace->mark_func_data == 0)) {
/* prevent multiple marking during same GC cycle,
* since m_tbl is shared between several T_ICLASS */
size_t serial = rb_gc_count();
if (wrapper->serial == serial) return;
wrapper->serial = serial;
}
arg.objspace = objspace;
st_foreach(wrapper->tbl, mark_method_entry_i, (st_data_t)&arg);
}
static int
mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, ce->value);
gc_mark(arg->objspace, ce->file);
return ST_CONTINUE;
}
static void
mark_const_tbl(rb_objspace_t *objspace, st_table *tbl)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
}
#if STACK_GROW_DIRECTION < 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
#elif STACK_GROW_DIRECTION > 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
#else
#define GET_STACK_BOUNDS(start, end, appendix) \
((STACK_END < STACK_START) ? \
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
#endif
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
{
union {
rb_jmp_buf j;
VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
} save_regs_gc_mark;
VALUE *stack_start, *stack_end;
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf (and stack) */
rb_setjmp(save_regs_gc_mark.j);
/* SET_STACK_END must be called in this function because
* the stack frame of this function may contain
* callee save registers and they should be marked. */
SET_STACK_END;
GET_STACK_BOUNDS(stack_start, stack_end, 1);
mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine.register_stack_start, th->machine.register_stack_end);
#endif
#if defined(__mc68000__)
mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
(STACK_START - STACK_END));
#endif
}
void
rb_gc_mark_machine_stack(rb_thread_t *th)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE *stack_start, *stack_end;
GET_STACK_BOUNDS(stack_start, stack_end, 0);
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine.register_stack_start, th->machine.register_stack_end);
#endif
}
void
rb_mark_tbl(st_table *tbl)
{
mark_tbl(&rb_objspace, tbl);
}
static void
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj)
{
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
if (is_pointer_to_heap(objspace, (void *)obj)) {
int type = BUILTIN_TYPE(obj);
if (type != T_ZOMBIE && type != T_NONE) {
gc_mark(objspace, obj);
}
}
}
void
rb_gc_mark_maybe(VALUE obj)
{
gc_mark_maybe(&rb_objspace, obj);
}
static inline int
gc_marked(rb_objspace_t *objspace, VALUE ptr)
{
register bits_t *bits = GET_HEAP_MARK_BITS(ptr);
if (MARKED_IN_BITMAP(bits, ptr)) return 1;
return 0;
}
static inline int
gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr)
{
register bits_t *bits = GET_HEAP_MARK_BITS(ptr);
if (gc_marked(objspace, ptr)) return 0;
MARK_IN_BITMAP(bits, ptr);
return 1;
}
static void
rgengc_check_relation(rb_objspace_t *objspace, VALUE obj)
{
#if USE_RGENGC
if (objspace->rgengc.parent_object_is_old) {
if (!RVALUE_WB_PROTECTED(obj)) {
if (rgengc_remember(objspace, obj)) {
objspace->rgengc.remembered_shady_object_count++;
}
}
#if RGENGC_AGE2_PROMOTION
else {
if (gc_marked(objspace, obj)) {
if (!RVALUE_OLD_P(obj)) {
/* An object pointed from an OLD object should be OLD. */
rgengc_remember(objspace, obj);
}
}
else {
if (RVALUE_INFANT_P(obj)) {
RVALUE_PROMOTE_INFANT(objspace, obj);
}
}
}
#endif
}
#endif
}
static void
gc_mark(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_markable_object(objspace, ptr)) return;
if (LIKELY(objspace->mark_func_data == 0)) {
rgengc_check_relation(objspace, ptr);
if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
push_mark_stack(&objspace->mark_stack, ptr);
}
else {
objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data);
}
}
void
rb_gc_mark(VALUE ptr)
{
gc_mark(&rb_objspace, ptr);
}
/* CAUTION: THIS FUNCTION ENABLE *ONLY BEFORE* SWEEPING.
* This function is only for GC_END_MARK timing.
*/
int
rb_objspace_marked_object_p(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
return gc_marked(objspace, obj) ? TRUE : FALSE;
}
/* resurrect non-marked `obj' if obj is before swept */
void
rb_gc_resurrect(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
if (is_lazy_sweeping(heap_eden) &&
!gc_marked(objspace, obj) &&
!is_swept_object(objspace, obj)) {
gc_mark_ptr(objspace, obj);
}
}
static void
gc_mark_children(rb_objspace_t *objspace, VALUE ptr)
{
register RVALUE *obj = RANY(ptr);
goto marking; /* skip */
again:
if (LIKELY(objspace->mark_func_data == 0)) {
obj = RANY(ptr);
if (!is_markable_object(objspace, ptr)) return;
rgengc_check_relation(objspace, ptr);
if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
}
else {
gc_mark(objspace, ptr);
return;
}
marking:
#if USE_RGENGC
check_gen_consistency((VALUE)obj);
if (LIKELY(objspace->mark_func_data == 0)) {
/* minor/major common */
if (RVALUE_WB_PROTECTED(obj)) {
if (RVALUE_INFANT_P((VALUE)obj)) {
/* infant -> young */
RVALUE_PROMOTE_INFANT(objspace, (VALUE)obj);
#if RGENGC_AGE2_PROMOTION
objspace->rgengc.parent_object_is_old = FALSE;
#else
objspace->rgengc.parent_object_is_old = TRUE;
#endif
rgengc_report(3, objspace, "gc_mark_children: promote infant -> young %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
}
else {
objspace->rgengc.parent_object_is_old = TRUE;
#if RGENGC_AGE2_PROMOTION
if (RVALUE_YOUNG_P((VALUE)obj)) {
/* young -> old */
RVALUE_PROMOTE_YOUNG(objspace, (VALUE)obj);
rgengc_report(3, objspace, "gc_mark_children: promote young -> old %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
}
else {
#endif
if (!objspace->rgengc.during_minor_gc) {
/* major/full GC */
objspace->rgengc.old_object_count++;
}
#if RGENGC_AGE2_PROMOTION
}
#endif
}
}
else {
rgengc_report(3, objspace, "gc_mark_children: do not promote non-WB-protected %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
objspace->rgengc.parent_object_is_old = FALSE;
}
}
check_gen_consistency((VALUE)obj);
#endif /* USE_RGENGC */
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(ptr);
}
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_IF: /* 1,2,3 */
case NODE_FOR:
case NODE_ITER:
case NODE_WHEN:
case NODE_MASGN:
case NODE_RESCUE:
case NODE_RESBODY:
case NODE_CLASS:
case NODE_BLOCK_PASS:
gc_mark(objspace, (VALUE)obj->as.node.u2.node);
/* fall through */
case NODE_BLOCK: /* 1,3 */
case NODE_ARRAY:
case NODE_DSTR:
case NODE_DXSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_ENSURE:
case NODE_CALL:
case NODE_DEFS:
case NODE_OP_ASGN1:
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
/* fall through */
case NODE_SUPER: /* 3 */
case NODE_FCALL:
case NODE_DEFN:
case NODE_ARGS_AUX:
ptr = (VALUE)obj->as.node.u3.node;
goto again;
case NODE_WHILE: /* 1,2 */
case NODE_UNTIL:
case NODE_AND:
case NODE_OR:
case NODE_CASE:
case NODE_SCLASS:
case NODE_DOT2:
case NODE_DOT3:
case NODE_FLIP2:
case NODE_FLIP3:
case NODE_MATCH2:
case NODE_MATCH3:
case NODE_OP_ASGN_OR:
case NODE_OP_ASGN_AND:
case NODE_MODULE:
case NODE_ALIAS:
case NODE_VALIAS:
case NODE_ARGSCAT:
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
/* fall through */
case NODE_GASGN: /* 2 */
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_IASGN:
case NODE_IASGN2:
case NODE_CVASGN:
case NODE_COLON3:
case NODE_OPT_N:
case NODE_EVSTR:
case NODE_UNDEF:
case NODE_POSTEXE:
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_HASH: /* 1 */
case NODE_LIT:
case NODE_STR:
case NODE_XSTR:
case NODE_DEFINED:
case NODE_MATCH:
case NODE_RETURN:
case NODE_BREAK:
case NODE_NEXT:
case NODE_YIELD:
case NODE_COLON2:
case NODE_SPLAT:
case NODE_TO_ARY:
ptr = (VALUE)obj->as.node.u1.node;
goto again;
case NODE_SCOPE: /* 2,3 */
case NODE_CDECL:
case NODE_OPT_ARG:
gc_mark(objspace, (VALUE)obj->as.node.u3.node);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ARGS: /* custom */
{
struct rb_args_info *args = obj->as.node.u3.args;
if (args) {
if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init);
if (args->post_init) gc_mark(objspace, (VALUE)args->post_init);
if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args);
if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args);
if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg);
}
}
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ZARRAY: /* - */
case NODE_ZSUPER:
case NODE_VCALL:
case NODE_GVAR:
case NODE_LVAR:
case NODE_DVAR:
case NODE_IVAR:
case NODE_CVAR:
case NODE_NTH_REF:
case NODE_BACK_REF:
case NODE_REDO:
case NODE_RETRY:
case NODE_SELF:
case NODE_NIL:
case NODE_TRUE:
case NODE_FALSE:
case NODE_ERRINFO:
case NODE_BLOCK_ARG:
break;
case NODE_ALLOCA:
mark_locations_array(objspace,
(VALUE*)obj->as.node.u1.value,
obj->as.node.u3.cnt);
gc_mark(objspace, (VALUE)obj->as.node.u2.node);
break;
case NODE_CREF:
gc_mark(objspace, obj->as.node.nd_refinements);
gc_mark(objspace, (VALUE)obj->as.node.nd_clss);
ptr = (VALUE)obj->as.node.nd_next;
goto again;
default: /* unlisted NODE */
gc_mark_maybe(objspace, (VALUE)obj->as.node.u1.node);
gc_mark_maybe(objspace, (VALUE)obj->as.node.u2.node);
gc_mark_maybe(objspace, (VALUE)obj->as.node.u3.node);
}
return; /* no need to mark class. */
}
gc_mark(objspace, obj->as.basic.klass);
switch (BUILTIN_TYPE(obj)) {
case T_ICLASS:
case T_CLASS:
case T_MODULE:
mark_m_tbl_wrapper(objspace, RCLASS_M_TBL_WRAPPER(obj));
if (!RCLASS_EXT(obj)) break;
mark_tbl(objspace, RCLASS_IV_TBL(obj));
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
ptr = RCLASS_SUPER((VALUE)obj);
goto again;
case T_ARRAY:
if (FL_TEST(obj, ELTS_SHARED)) {
ptr = obj->as.array.as.heap.aux.shared;
goto again;
}
else {
long i, len = RARRAY_LEN(obj);
const VALUE *ptr = RARRAY_CONST_PTR(obj);
for (i=0; i < len; i++) {
gc_mark(objspace, *ptr++);
}
}
break;
case T_HASH:
mark_hash(objspace, obj->as.hash.ntbl);
ptr = obj->as.hash.ifnone;
goto again;
case T_STRING:
if (STR_SHARED_P(obj)) {
ptr = obj->as.string.as.heap.aux.shared;
goto again;
}
break;
case T_DATA:
if (RTYPEDDATA_P(obj)) {
RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
if (mark_func) (*mark_func)(DATA_PTR(obj));
}
else {
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
}
break;
case T_OBJECT:
{
long i, len = ROBJECT_NUMIV(obj);
VALUE *ptr = ROBJECT_IVPTR(obj);
for (i = 0; i < len; i++) {
gc_mark(objspace, *ptr++);
}
}
break;
case T_FILE:
if (obj->as.file.fptr) {
gc_mark(objspace, obj->as.file.fptr->pathv);
gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing);
gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat);
gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts);
gc_mark(objspace, obj->as.file.fptr->encs.ecopts);
gc_mark(objspace, obj->as.file.fptr->write_lock);
}
break;
case T_REGEXP:
ptr = obj->as.regexp.src;
goto again;
case T_FLOAT:
case T_BIGNUM:
case T_SYMBOL:
break;
case T_MATCH:
gc_mark(objspace, obj->as.match.regexp);
if (obj->as.match.str) {
ptr = obj->as.match.str;
goto again;
}
break;
case T_RATIONAL:
gc_mark(objspace, obj->as.rational.num);
ptr = obj->as.rational.den;
goto again;
case T_COMPLEX:
gc_mark(objspace, obj->as.complex.real);
ptr = obj->as.complex.imag;
goto again;
case T_STRUCT:
{
long len = RSTRUCT_LEN(obj);
const VALUE *ptr = RSTRUCT_CONST_PTR(obj);
while (len--) {
gc_mark(objspace, *ptr++);
}
}
break;
default:
#if GC_DEBUG
rb_gcdebug_print_obj_condition((VALUE)obj);
#endif
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
BUILTIN_TYPE(obj), (void *)obj,
is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
}
}
static void
gc_mark_stacked_objects(rb_objspace_t *objspace)
{
mark_stack_t *mstack = &objspace->mark_stack;
VALUE obj = 0;
if (!mstack->index) return;
while (pop_mark_stack(mstack, &obj)) {
if (RGENGC_CHECK_MODE > 0 && !gc_marked(objspace, obj)) {
rb_bug("gc_mark_stacked_objects: %p (%s) is infant, but not marked.", (void *)obj, obj_type_name(obj));
}
gc_mark_children(objspace, obj);
}
shrink_stack_chunk_cache(mstack);
}
#ifndef RGENGC_PRINT_TICK
#define RGENGC_PRINT_TICK 0
#endif
/* the following code is only for internal tuning. */
/* Source code to use RDTSC is quoted and modified from
* http://www.mcs.anl.gov/~kazutomo/rdtsc.html
* written by Kazutomo Yoshii <kazutomo@mcs.anl.gov>
*/
#if RGENGC_PRINT_TICK
#if defined(__GNUC__) && defined(__i386__)
typedef unsigned long long tick_t;
static inline tick_t
tick(void)
{
unsigned long long int x;
__asm__ __volatile__ ("rdtsc" : "=A" (x));
return x;
}
#elif defined(__GNUC__) && defined(__x86_64__)
typedef unsigned long long tick_t;
static __inline__ tick_t
tick(void)
{
unsigned long hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32);
}
#elif defined(_WIN32) && defined(_MSC_VER)
#include <intrin.h>
typedef unsigned __int64 tick_t;
static inline tick_t
tick(void)
{
return __rdtsc();
}
#else /* use clock */
typedef clock_t tick_t;
static inline tick_t
tick(void)
{
return clock();
}
#endif
#define MAX_TICKS 0x100
static tick_t mark_ticks[MAX_TICKS];
static const char *mark_ticks_categories[MAX_TICKS];
static void
show_mark_ticks(void)
{
int i;
fprintf(stderr, "mark ticks result:\n");
for (i=0; i<MAX_TICKS; i++) {
const char *category = mark_ticks_categories[i];
if (category) {
fprintf(stderr, "%s\t%8lu\n", category, (unsigned long)mark_ticks[i]);
}
else {
break;
}
}
}
#endif /* RGENGC_PRINT_TICK */
static void
gc_mark_roots(rb_objspace_t *objspace, int full_mark, const char **categoryp)
{
struct gc_list *list;
rb_thread_t *th = GET_THREAD();
if (categoryp) *categoryp = "xxx";
#if RGENGC_PRINT_TICK
tick_t start_tick = tick();
int tick_count = 0;
const char *prev_category = 0;
if (mark_ticks_categories[0] == 0) {
atexit(show_mark_ticks);
}
#endif
#if RGENGC_PRINT_TICK
#define MARK_CHECKPOINT_PRINT_TICK(category) do { \
if (prev_category) { \
tick_t t = tick(); \
mark_ticks[tick_count] = t - start_tick; \
mark_ticks_categories[tick_count] = prev_category; \
tick_count++; \
} \
prev_category = category; \
start_tick = tick(); \
} while (0)
#else /* RGENGC_PRINT_TICK */
#define MARK_CHECKPOINT_PRINT_TICK(category)
#endif
#define MARK_CHECKPOINT(category) do { \
if (categoryp) *categoryp = category; \
MARK_CHECKPOINT_PRINT_TICK(category); \
} while (0)
MARK_CHECKPOINT("vm");
SET_STACK_END;
th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
MARK_CHECKPOINT("finalizers");
mark_tbl(objspace, finalizer_table);
MARK_CHECKPOINT("machine_context");
mark_current_machine_context(objspace, th);
MARK_CHECKPOINT("symbols");
#if USE_RGENGC
objspace->rgengc.parent_object_is_old = TRUE;
rb_gc_mark_symbols(full_mark);
objspace->rgengc.parent_object_is_old = FALSE;
#else
rb_gc_mark_symbols(full_mark);
#endif
MARK_CHECKPOINT("encodings");
rb_gc_mark_encodings();
/* mark protected global variables */
MARK_CHECKPOINT("global_list");
for (list = global_List; list; list = list->next) {
rb_gc_mark_maybe(*list->varptr);
}
MARK_CHECKPOINT("end_proc");
rb_mark_end_proc();
MARK_CHECKPOINT("global_tbl");
rb_gc_mark_global_tbl();
/* mark generic instance variables for special constants */
MARK_CHECKPOINT("generic_ivars");
rb_mark_generic_ivar_tbl();
MARK_CHECKPOINT("parser");
rb_gc_mark_parser();
MARK_CHECKPOINT("live_method_entries");
rb_gc_mark_unlinked_live_method_entries(th->vm);
MARK_CHECKPOINT("finish");
#undef MARK_CHECKPOINT
}
static void
gc_marks_body(rb_objspace_t *objspace, int full_mark)
{
/* start marking */
rgengc_report(1, objspace, "gc_marks_body: start (%s)\n", full_mark ? "full" : "minor");
#if USE_RGENGC
objspace->rgengc.parent_object_is_old = FALSE;
objspace->rgengc.during_minor_gc = full_mark ? FALSE : TRUE;
if (objspace->rgengc.during_minor_gc) {
objspace->profile.minor_gc_count++;
rgengc_rememberset_mark(objspace, heap_eden);
}
else {
objspace->profile.major_gc_count++;
rgengc_mark_and_rememberset_clear(objspace, heap_eden);
}
#endif
gc_mark_roots(objspace, full_mark, 0);
gc_mark_stacked_objects(objspace);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0);
rgengc_report(1, objspace, "gc_marks_body: end (%s)\n", full_mark ? "full" : "minor");
}
#if RGENGC_CHECK_MODE >= 3
#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01)
#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01)
#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1))
struct reflist {
VALUE *list;
int pos;
int size;
};
static struct reflist *
reflist_create(VALUE obj)
{
struct reflist *refs = xmalloc(sizeof(struct reflist));
refs->size = 1;
refs->list = ALLOC_N(VALUE, refs->size);
refs->list[0] = obj;
refs->pos = 1;
return refs;
}
static void
reflist_destruct(struct reflist *refs)
{
xfree(refs->list);
xfree(refs);
}
static void
reflist_add(struct reflist *refs, VALUE obj)
{
if (refs->pos == refs->size) {
refs->size *= 2;
SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2);
}
refs->list[refs->pos++] = obj;
}
static void
reflist_dump(struct reflist *refs)
{
int i;
for (i=0; i<refs->pos; i++) {
VALUE obj = refs->list[i];
if (IS_ROOTSIG(obj)) { /* root */
fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj));
}
else {
fprintf(stderr, "<%p@%s>", (void *)obj, obj_type_name(obj));
}
if (i+1 < refs->pos) fprintf(stderr, ", ");
}
}
#if RGENGC_CHECK_MODE >= 3
static int
reflist_refered_from_machine_context(struct reflist *refs)
{
int i;
for (i=0; i<refs->pos; i++) {
VALUE obj = refs->list[i];
if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1;
}
return 0;
}
#endif
struct allrefs {
rb_objspace_t *objspace;
/* a -> obj1
* b -> obj1
* c -> obj1
* c -> obj2
* d -> obj3
* #=> {obj1 => [a, b, c], obj2 => [c, d]}
*/
struct st_table *references;
const char *category;
VALUE root_obj;
};
static int
allrefs_add(struct allrefs *data, VALUE obj)
{
struct reflist *refs;
if (st_lookup(data->references, obj, (st_data_t *)&refs)) {
reflist_add(refs, data->root_obj);
return 0;
}
else {
refs = reflist_create(data->root_obj);
st_insert(data->references, obj, (st_data_t)refs);
return 1;
}
}
static void
allrefs_i(VALUE obj, void *ptr)
{
struct allrefs *data = (struct allrefs *)ptr;
if (allrefs_add(data, obj)) {
push_mark_stack(&data->objspace->mark_stack, obj);
}
}
static void
allrefs_roots_i(VALUE obj, void *ptr)
{
struct allrefs *data = (struct allrefs *)ptr;
if (strlen(data->category) == 0) rb_bug("!!!");
data->root_obj = MAKE_ROOTSIG(data->category);
if (allrefs_add(data, obj)) {
push_mark_stack(&data->objspace->mark_stack, obj);
}
}
static st_table *
objspace_allrefs(rb_objspace_t *objspace)
{
struct allrefs data;
struct mark_func_data_struct mfd;
VALUE obj;
data.objspace = objspace;
data.references = st_init_numtable();
mfd.mark_func = allrefs_roots_i;
mfd.data = &data;
/* traverse root objects */
objspace->mark_func_data = &mfd;
gc_mark_roots(objspace, TRUE, &data.category);
objspace->mark_func_data = 0;
/* traverse rest objects reachable from root objects */
while (pop_mark_stack(&objspace->mark_stack, &obj)) {
rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data);
}
shrink_stack_chunk_cache(&objspace->mark_stack);
return data.references;
}
static int
objspaec_allrefs_destruct_i(st_data_t key, st_data_t value, void *ptr)
{
struct reflist *refs = (struct reflist *)value;
reflist_destruct(refs);
return ST_CONTINUE;
}
static void
objspace_allrefs_destruct(struct st_table *refs)
{
st_foreach(refs, objspaec_allrefs_destruct_i, 0);
st_free_table(refs);
}
#if RGENGC_CHECK_MODE >= 4
static int
allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr)
{
VALUE obj = (VALUE)k;
struct reflist *refs = (struct reflist *)v;
fprintf(stderr, "[allrefs_dump_i] %p (%s%s%s%s) <- ",
(void *)obj, obj_type_name(obj),
RVALUE_OLD_P(obj) ? "[O]" : "[Y]",
RVALUE_WB_PROTECTED(obj) ? "[W]" : "",
MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) ? "[R]" : "");
reflist_dump(refs);
fprintf(stderr, "\n");
return ST_CONTINUE;
}
static void
allrefs_dump(rb_objspace_t *objspace)
{
fprintf(stderr, "[all refs] (size: %d)\n", (int)objspace->rgengc.allrefs_table->num_entries);
st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0);
}
#endif
#if RGENGC_CHECK_MODE >= 3
static int
gc_check_after_marks_i(st_data_t k, st_data_t v, void *ptr)
{
VALUE obj = k;
struct reflist *refs = (struct reflist *)v;
rb_objspace_t *objspace = (rb_objspace_t *)ptr;
/* object should be marked or oldgen */
if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) {
fprintf(stderr, "gc_check_after_marks_i: %p (%s) is not marked and not oldgen.\n", (void *)obj, obj_type_name(obj));
fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj);
reflist_dump(refs);
if (reflist_refered_from_machine_context(refs)) {
fprintf(stderr, " (marked from machine stack).\n");
/* marked from machine context can be false positive */
}
else {
objspace->rgengc.error_count++;
fprintf(stderr, "\n");
}
}
return ST_CONTINUE;
}
#endif
static void
gc_marks_check(rb_objspace_t *objspace, int (*checker_func)(ANYARGS), const char *checker_name)
{
size_t saved_malloc_increase = objspace->malloc_params.increase;
#if RGENGC_ESTIMATE_OLDMALLOC
size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase;
#endif
VALUE already_disabled = rb_gc_disable();
objspace->rgengc.allrefs_table = objspace_allrefs(objspace);
if (checker_func) {
st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace);
}
if (objspace->rgengc.error_count > 0) {
#if RGENGC_CHECK_MODE >= 4
allrefs_dump(objspace);
#endif
if (checker_name) rb_bug("%s: GC has problem.", checker_name);
}
objspace_allrefs_destruct(objspace->rgengc.allrefs_table);
objspace->rgengc.allrefs_table = 0;
if (already_disabled == Qfalse) rb_gc_enable();
objspace->malloc_params.increase = saved_malloc_increase;
#if RGENGC_ESTIMATE_OLDMALLOC
objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase;
#endif
}
#endif /* RGENGC_CHECK_MODE >= 2 */
#if USE_RGENGC
struct verify_internal_consistency_struct {
rb_objspace_t *objspace;
int err_count;
VALUE parent;
};
static void
verify_internal_consistency_reachable_i(VALUE child, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
assert(RVALUE_OLD_P(data->parent));
if (!RVALUE_OLD_P(child)) {
if (!MARKED_IN_BITMAP(GET_HEAP_PAGE(data->parent)->rememberset_bits, data->parent) &&
!MARKED_IN_BITMAP(GET_HEAP_PAGE(child)->rememberset_bits, child)) {
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss %p (%s) -> %p (%s)\n",
(void *)data->parent, obj_type_name(data->parent),
(void *)child, obj_type_name(child));
data->err_count++;
}
}
}
static int
verify_internal_consistency_i(void *page_start, void *page_end, size_t stride, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
VALUE v;
for (v = (VALUE)page_start; v != (VALUE)page_end; v += stride) {
if (is_live_object(data->objspace, v)) {
if (RVALUE_OLD_P(v)) {
data->parent = v;
/* reachable objects from an oldgen object should be old or (young with remember) */
rb_objspace_reachable_objects_from(v, verify_internal_consistency_reachable_i, (void *)data);
}
}
}
return 0;
}
#endif /* USE_RGENGC */
/*
* call-seq:
* GC.verify_internal_consistency -> nil
*
* Verify internal consistency.
*
* This method is implementation specific.
* Now this method checks generational consistency
* if RGenGC is supported.
*/
static VALUE
gc_verify_internal_consistency(VALUE self)
{
#if USE_RGENGC
struct verify_internal_consistency_struct data;
data.objspace = &rb_objspace;
data.err_count = 0;
{
struct each_obj_args eo_args;
eo_args.callback = verify_internal_consistency_i;
eo_args.data = (void *)&data;
objspace_each_objects((VALUE)&eo_args);
}
if (data.err_count != 0) {
#if RGENGC_CHECK_MODE >= 4
rb_objspace_t *objspace = &rb_objspace;
objspace->rgengc.error_count = data.err_count;
gc_marks_check(objspace, NULL, NULL);
allrefs_dump(objspace);
#endif
rb_bug("gc_verify_internal_consistency: found internal consistency.");
}
#endif
return Qnil;
}
static void
gc_marks(rb_objspace_t *objspace, int full_mark)
{
struct mark_func_data_struct *prev_mark_func_data;
gc_prof_mark_timer_start(objspace);
{
/* setup marking */
prev_mark_func_data = objspace->mark_func_data;
objspace->mark_func_data = 0;
#if USE_RGENGC
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(Qnil);
#endif
if (full_mark == TRUE) { /* major/full GC */
objspace->rgengc.remembered_shady_object_count = 0;
objspace->rgengc.old_object_count = 0;
#if RGENGC_AGE2_PROMOTION
objspace->rgengc.young_object_count = 0;
#endif
gc_marks_body(objspace, TRUE);
{
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */
const double r = gc_params.oldobject_limit_factor;
objspace->rgengc.remembered_shady_object_limit = (size_t)(objspace->rgengc.remembered_shady_object_count * r);
objspace->rgengc.old_object_limit = (size_t)(objspace->rgengc.old_object_count * r);
}
}
else { /* minor GC */
gc_marks_body(objspace, FALSE);
}
#if RGENGC_PROFILE > 0
if (gc_prof_record(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->old_objects = objspace->rgengc.old_object_count;
}
#endif
#if RGENGC_CHECK_MODE >= 3
gc_marks_check(objspace, gc_check_after_marks_i, "after_marks");
#endif
#else /* USE_RGENGC */
gc_marks_body(objspace, TRUE);
#endif
objspace->mark_func_data = prev_mark_func_data;
}
gc_prof_mark_timer_stop(objspace);
}
/* RGENGC */
static void
rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
{
if (level <= RGENGC_DEBUG) {
char buf[1024];
FILE *out = stderr;
va_list args;
const char *status = " ";
#if USE_RGENGC
if (during_gc) {
status = objspace->rgengc.during_minor_gc ? "-" : "+";
}
#endif
va_start(args, fmt);
vsnprintf(buf, 1024, fmt, args);
va_end(args);
fprintf(out, "%s|", status);
fputs(buf, out);
}
}
#if USE_RGENGC
/* bit operations */
static int
rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj)
{
bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj);
return MARKED_IN_BITMAP(bits, obj) ? 1 : 0;
}
static int
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
{
bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj);
if (MARKED_IN_BITMAP(bits, obj)) {
return FALSE;
}
else {
MARK_IN_BITMAP(bits, obj);
return TRUE;
}
}
/* wb, etc */
/* return FALSE if already remembered */
static int
rgengc_remember(rb_objspace_t *objspace, VALUE obj)
{
rgengc_report(2, objspace, "rgengc_remember: %p (%s, %s) %s\n", (void *)obj, obj_type_name(obj),
RVALUE_WB_PROTECTED(obj) ? "WB-protected" : "non-WB-protected",
rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now");
#if RGENGC_CHECK_MODE > 0
{
switch (BUILTIN_TYPE(obj)) {
case T_NONE:
case T_ZOMBIE:
rb_bug("rgengc_remember: should not remember %p (%s)",
(void *)obj, obj_type_name(obj));
default:
;
}
}
#endif
if (RGENGC_PROFILE) {
if (!rgengc_remembered(objspace, obj)) {
#if RGENGC_PROFILE > 0
if (RVALUE_WB_PROTECTED(obj)) {
objspace->profile.remembered_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
else {
objspace->profile.remembered_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif /* RGENGC_PROFILE > 0 */
}
}
return rgengc_remembersetbits_set(objspace, obj);
}
static int
rgengc_remembered(rb_objspace_t *objspace, VALUE obj)
{
int result = rgengc_remembersetbits_get(objspace, obj);
check_gen_consistency(obj);
rgengc_report(6, objspace, "gc_remembered: %p (%s) => %d\n", (void *)obj, obj_type_name(obj), result);
return result;
}
static void
rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap)
{
size_t j;
RVALUE *p, *offset;
bits_t *bits, bitset;
struct heap_page *page = heap->pages;
#if RGENGC_PROFILE > 0
size_t shady_object_count = 0, clear_count = 0;
#endif
while (page) {
p = page->start;
bits = page->rememberset_bits;
offset = p - NUM_IN_PAGE(p);
for (j=0; j < HEAP_BITMAP_LIMIT; j++) {
if (bits[j]) {
p = offset + j * BITS_BITLENGTH;
bitset = bits[j];
do {
if (bitset & 1) {
/* mark before RVALUE_PROMOTE_... */
gc_mark_ptr(objspace, (VALUE)p);
if (RVALUE_WB_PROTECTED(p)) {
rgengc_report(2, objspace, "rgengc_rememberset_mark: clear %p (%s)\n", p, obj_type_name((VALUE)p));
#if RGENGC_AGE2_PROMOTION
if (RVALUE_INFANT_P((VALUE)p)) {
/* infant objects should remain in remembered because remembered objects should become old objects */
/* young objects become old objects soon */
}
else {
CLEAR_IN_BITMAP(bits, p);
}
#else
CLEAR_IN_BITMAP(bits, p);
#endif
#if RGENGC_PROFILE > 0
clear_count++;
#endif
}
else {
#if RGENGC_PROFILE > 0
shady_object_count++;
#endif
}
rgengc_report(2, objspace, "rgengc_rememberset_mark: mark %p (%s)\n", p, obj_type_name((VALUE)p));
gc_mark_children(objspace, (VALUE) p);
}
p++;
bitset >>= 1;
} while (bitset);
}
}
page = page->next;
}
rgengc_report(2, objspace, "rgengc_rememberset_mark: finished\n");
#if RGENGC_PROFILE > 0
rgengc_report(2, objspace, "rgengc_rememberset_mark: clear_count: %"PRIdSIZE", shady_object_count: %"PRIdSIZE"\n", clear_count, shady_object_count);
if (gc_prof_record(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->remembered_normal_objects = clear_count;
record->remembered_shady_objects = shady_object_count;
}
#endif
}
static void
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = heap->pages;
while (page) {
memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE);
memset(&page->rememberset_bits[0], 0, HEAP_BITMAP_SIZE);
page = page->next;
}
}
/* RGENGC: APIs */
void
rb_gc_writebarrier(VALUE a, VALUE b)
{
if (RGENGC_CHECK_MODE) {
if (!RVALUE_PROMOTED_P(a)) rb_bug("rb_gc_writebarrier: referer object %p (%s) is not promoted.", (void *)a, obj_type_name(a));
}
if (!RVALUE_OLD_P(b) && RVALUE_OLD_BITMAP_P(a)) {
rb_objspace_t *objspace = &rb_objspace;
if (!rgengc_remembered(objspace, a)) {
rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n",
(void *)a, obj_type_name(a), (void *)b, obj_type_name(b));
rgengc_remember(objspace, a);
}
}
}
void
rb_gc_writebarrier_unprotect_promoted(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
if (RGENGC_CHECK_MODE) {
if (!RVALUE_PROMOTED_P(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on non-promoted object");
if (!RVALUE_WB_PROTECTED(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on shady object");
}
rgengc_report(1, objspace, "rb_gc_writebarrier_unprotect_promoted: %p (%s)%s\n", (void *)obj, obj_type_name(obj),
rgengc_remembered(objspace, obj) ? " (already remembered)" : "");
if (RVALUE_OLD_P(obj)) {
RVALUE_DEMOTE_FROM_OLD(obj);
rgengc_remember(objspace, obj);
objspace->rgengc.remembered_shady_object_count++;
#if RGENGC_PROFILE
objspace->profile.shade_operation_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
#endif /* RGENGC_PROFILE >= 2 */
#endif /* RGENGC_PROFILE */
}
#if RGENGC_AGE2_PROMOTION
else {
RVALUE_DEMOTE_FROM_YOUNG(obj);
}
#endif
}
void
rb_gc_writebarrier_remember_promoted(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
rgengc_remember(objspace, obj);
}
static st_table *rgengc_unprotect_logging_table;
static int
rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val)
{
fprintf(stderr, "%s\t%d\n", (char *)key, (int)val);
return ST_CONTINUE;
}
static void
rgengc_unprotect_logging_exit_func(void)
{
st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0);
}
void
rb_gc_unprotect_logging(void *objptr, const char *filename, int line)
{
VALUE obj = (VALUE)objptr;
if (rgengc_unprotect_logging_table == 0) {
rgengc_unprotect_logging_table = st_init_strtable();
atexit(rgengc_unprotect_logging_exit_func);
}
if (OBJ_WB_PROTECTED(obj)) {
char buff[0x100];
st_data_t cnt = 1;
char *ptr = buff;
snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_type_name(obj), filename, line);
if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) {
cnt++;
}
else {
ptr = (char *)malloc(strlen(buff) + 1);
strcpy(ptr, buff);
}
st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt);
}
}
#endif /* USE_RGENGC */
/* RGENGC analysis information */
VALUE
rb_obj_rgengc_writebarrier_protected_p(VALUE obj)
{
return OBJ_WB_PROTECTED(obj) ? Qtrue : Qfalse;
}
VALUE
rb_obj_rgengc_promoted_p(VALUE obj)
{
return OBJ_PROMOTED(obj) ? Qtrue : Qfalse;
}
size_t
rb_obj_gc_flags(VALUE obj, ID* flags, size_t max)
{
size_t n = 0;
static ID ID_marked;
#if USE_RGENGC
static ID ID_wb_protected, ID_old, ID_remembered;
#if RGENGC_AGE2_PROMOTION
static ID ID_young, ID_infant;
#endif
#endif
if (!ID_marked) {
#define I(s) ID_##s = rb_intern(#s);
I(marked);
#if USE_RGENGC
I(wb_protected);
I(old);
I(remembered);
#if RGENGC_AGE2_PROMOTION
I(young);
I(infant);
#endif
#endif
#undef I
}
#if USE_RGENGC
if (OBJ_WB_PROTECTED(obj) && n<max)
flags[n++] = ID_wb_protected;
if (RVALUE_OLD_P(obj) && n<max)
flags[n++] = ID_old;
#if RGENGC_AGE2_PROMOTION
if (RVALUE_YOUNG_P(obj) && n<max)
flags[n++] = ID_young;
if (RVALUE_INFANT_P(obj) && n<max)
flags[n++] = ID_infant;
#endif
if (MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) && n<max)
flags[n++] = ID_remembered;
#endif
if (MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) && n<max)
flags[n++] = ID_marked;
return n;
}
/* GC */
void
rb_gc_force_recycle(VALUE p)
{
rb_objspace_t *objspace = &rb_objspace;
#if USE_RGENGC
CLEAR_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(p), p);
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(p), p);
if (!GET_HEAP_PAGE(p)->before_sweep) {
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(p), p);
}
#endif
objspace->profile.total_freed_object_num++;
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(p), p);
/* Disable counting swept_slots because there are no meaning.
* if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) {
* objspace->heap.swept_slots++;
* }
*/
}
void
rb_gc_register_mark_object(VALUE obj)
{
VALUE ary = GET_THREAD()->vm->mark_object_ary;
rb_ary_push(ary, obj);
}
void
rb_gc_register_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_List;
tmp->varptr = addr;
global_List = tmp;
}
void
rb_gc_unregister_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp = global_List;
if (tmp->varptr == addr) {
global_List = tmp->next;
xfree(tmp);
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
xfree(t);
break;
}
tmp = tmp->next;
}
}
void
rb_global_variable(VALUE *var)
{
rb_gc_register_address(var);
}
#define GC_NOTIFY 0
enum {
gc_stress_no_major,
gc_stress_no_immediate_sweep,
gc_stress_full_mark_after_malloc,
gc_stress_max
};
#define gc_stress_full_mark_after_malloc_p() \
(FIXNUM_P(ruby_gc_stress) && (FIX2LONG(ruby_gc_stress) & (1<<gc_stress_full_mark_after_malloc)))
static int
garbage_collect_body(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
{
if (ruby_gc_stress && !ruby_disable_gc_stress) {
int flag = FIXNUM_P(ruby_gc_stress) ? FIX2INT(ruby_gc_stress) : 0;
if (flag & (1<<gc_stress_no_major))
reason &= ~GPR_FLAG_MAJOR_MASK;
else
reason |= GPR_FLAG_MAJOR_BY_STRESS;
immediate_sweep = !(flag & (1<<gc_stress_no_immediate_sweep));
}
else {
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_lazy_sweep) {
immediate_sweep = TRUE;
}
#if USE_RGENGC
if (full_mark) {
reason |= GPR_FLAG_MAJOR_BY_NOFREE;
}
if (objspace->rgengc.need_major_gc) {
reason |= objspace->rgengc.need_major_gc;
objspace->rgengc.need_major_gc = GPR_FLAG_NONE;
}
if (objspace->rgengc.remembered_shady_object_count > objspace->rgengc.remembered_shady_object_limit) {
reason |= GPR_FLAG_MAJOR_BY_SHADY;
}
if (objspace->rgengc.old_object_count > objspace->rgengc.old_object_limit) {
reason |= GPR_FLAG_MAJOR_BY_OLDGEN;
}
#endif
}
if (immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP;
full_mark = (reason & GPR_FLAG_MAJOR_MASK) ? TRUE : FALSE;
if (GC_NOTIFY) fprintf(stderr, "start garbage_collect(%d, %d, %d)\n", full_mark, immediate_sweep, reason);
objspace->profile.count++;
objspace->profile.latest_gc_info = reason;
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */);
objspace->profile.total_allocated_object_num_at_gc_start = objspace->profile.total_allocated_object_num;
objspace->profile.heap_used_at_gc_start = heap_pages_used;
gc_prof_setup_new_record(objspace, reason);
gc_prof_timer_start(objspace);
{
if (during_gc == 0) {
rb_bug("during_gc should not be 0. RUBY_INTERNAL_EVENT_GC_START user should not cause GC in events.");
}
gc_marks(objspace, full_mark);
gc_sweep(objspace, immediate_sweep);
during_gc = 0;
}
gc_prof_timer_stop(objspace);
if (GC_NOTIFY) fprintf(stderr, "end garbage_collect()\n");
return TRUE;
}
static int
heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap)
{
if (dont_gc || during_gc) {
if (!heap->freelist && !heap->free_pages) {
if (!heap_increment(objspace, heap)) {
heap_set_increment(objspace, 0);
heap_increment(objspace, heap);
}
}
return FALSE;
}
return TRUE;
}
static int
ready_to_gc(rb_objspace_t *objspace)
{
return heap_ready_to_gc(objspace, heap_eden);
}
static int
garbage_collect(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
{
if (!heap_pages_used) {
during_gc = 0;
return FALSE;
}
if (!ready_to_gc(objspace)) {
during_gc = 0;
return TRUE;
}
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time();
#endif
gc_rest_sweep(objspace);
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
#endif
during_gc++;
return garbage_collect_body(objspace, full_mark, immediate_sweep, reason);
}
struct objspace_and_reason {
rb_objspace_t *objspace;
int reason;
int full_mark;
int immediate_sweep;
};
static void *
gc_with_gvl(void *ptr)
{
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
return (void *)(VALUE)garbage_collect(oar->objspace, oar->full_mark, oar->immediate_sweep, oar->reason);
}
static int
garbage_collect_with_gvl(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
{
if (dont_gc) return TRUE;
if (ruby_thread_has_gvl_p()) {
return garbage_collect(objspace, full_mark, immediate_sweep, reason);
}
else {
if (ruby_native_thread_p()) {
struct objspace_and_reason oar;
oar.objspace = objspace;
oar.reason = reason;
oar.full_mark = full_mark;
oar.immediate_sweep = immediate_sweep;
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
int
rb_garbage_collect(void)
{
return garbage_collect(&rb_objspace, TRUE, TRUE, GPR_FLAG_CAPI);
}
#undef Init_stack
void
Init_stack(volatile VALUE *addr)
{
ruby_init_stack(addr);
}
/*
* call-seq:
* GC.start -> nil
* GC.garbage_collect -> nil
* GC.start(full_mark: true, immediate_sweep: true) -> nil
* GC.garbage_collect(full_mark: true, immediate_sweep: true) -> nil
*
* Initiates garbage collection, unless manually disabled.
*
* This method is defined with keyword arguments that default to true:
*
* def GC.start(full_mark: true, immediate_sweep: true); end
*
* Use full_mark: false to perform a minor GC.
* Use immediate_sweep: false to defer sweeping (use lazy sweep).
*
* Note: These keyword arguments are implementation and version dependent. They
* are not guaranteed to be future-compatible, and may be ignored if the
* underlying implementation does not support them.
*/
static VALUE
gc_start_internal(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
int full_mark = TRUE, immediate_sweep = TRUE;
VALUE opt = Qnil;
static ID keyword_ids[2];
rb_scan_args(argc, argv, "0:", &opt);
if (!NIL_P(opt)) {
VALUE kwvals[2];
if (!keyword_ids[0]) {
keyword_ids[0] = rb_intern("full_mark");
keyword_ids[1] = rb_intern("immediate_sweep");
}
rb_get_kwargs(opt, keyword_ids, 0, 2, kwvals);
if (kwvals[0] != Qundef)
full_mark = RTEST(kwvals[0]);
if (kwvals[1] != Qundef)
immediate_sweep = RTEST(kwvals[1]);
}
garbage_collect(objspace, full_mark, immediate_sweep, GPR_FLAG_METHOD);
if (!finalizing) finalize_deferred(objspace);
return Qnil;
}
VALUE
rb_gc_start(void)
{
rb_gc();
return Qnil;
}
void
rb_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
garbage_collect(objspace, TRUE, TRUE, GPR_FLAG_CAPI);
if (!finalizing) finalize_deferred(objspace);
}
int
rb_during_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
return during_gc;
}
#if RGENGC_PROFILE >= 2
static void
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
{
VALUE result = rb_hash_new();
int i;
for (i=0; i<T_MASK; i++) {
const char *type = type_name(i, 0);
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
}
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
}
#endif
size_t
rb_gc_count(void)
{
return rb_objspace.profile.count;
}
/*
* call-seq:
* GC.count -> Integer
*
* The number of times GC occurred.
*
* It returns the number of times GC occurred since the process started.
*
*/
static VALUE
gc_count(VALUE self)
{
return SIZET2NUM(rb_gc_count());
}
static VALUE
gc_info_decode(int flags, VALUE hash_or_key)
{
static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer;
static VALUE sym_nofree, sym_oldgen, sym_shady, sym_rescan, sym_stress;
#if RGENGC_ESTIMATE_OLDMALLOC
static VALUE sym_oldmalloc;
#endif
static VALUE sym_newobj, sym_malloc, sym_method, sym_capi;
VALUE hash = Qnil, key = Qnil;
VALUE major_by;
if (SYMBOL_P(hash_or_key))
key = hash_or_key;
else if (RB_TYPE_P(hash_or_key, T_HASH))
hash = hash_or_key;
else
rb_raise(rb_eTypeError, "non-hash or symbol given");
if (sym_major_by == Qnil) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(major_by);
S(gc_by);
S(immediate_sweep);
S(have_finalizer);
S(nofree);
S(oldgen);
S(shady);
S(rescan);
S(stress);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc);
#endif
S(newobj);
S(malloc);
S(method);
S(capi);
#undef S
}
#define SET(name, attr) \
if (key == sym_##name) \
return (attr); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, (attr));
major_by =
(flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
(flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
(flags & GPR_FLAG_MAJOR_BY_RESCAN) ? sym_rescan :
(flags & GPR_FLAG_MAJOR_BY_STRESS) ? sym_stress :
#if RGENGC_ESTIMATE_OLDMALLOC
(flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
#endif
(flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
Qnil;
SET(major_by, major_by);
SET(gc_by,
(flags & GPR_FLAG_NEWOBJ) ? sym_newobj :
(flags & GPR_FLAG_MALLOC) ? sym_malloc :
(flags & GPR_FLAG_METHOD) ? sym_method :
(flags & GPR_FLAG_CAPI) ? sym_capi :
(flags & GPR_FLAG_STRESS) ? sym_stress :
Qnil
);
SET(have_finalizer, (flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
SET(immediate_sweep, (flags & GPR_FLAG_IMMEDIATE_SWEEP) ? Qtrue : Qfalse);
#undef SET
if (!NIL_P(key)) {/* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return hash;
}
VALUE
rb_gc_latest_gc_info(VALUE key)
{
rb_objspace_t *objspace = &rb_objspace;
return gc_info_decode(objspace->profile.latest_gc_info, key);
}
/*
* call-seq:
* GC.latest_gc_info -> {:gc_by=>:newobj}
* GC.latest_gc_info(hash) -> hash
* GC.latest_gc_info(:major_by) -> :malloc
*
* Returns information about the most recent garbage collection.
*/
static VALUE
gc_latest_gc_info(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE arg = Qnil;
if (rb_scan_args(argc, argv, "01", &arg) == 1) {
if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
}
if (arg == Qnil)
arg = rb_hash_new();
return gc_info_decode(objspace->profile.latest_gc_info, arg);
}
static VALUE
gc_stat_internal(VALUE hash_or_sym, size_t *out)
{
static VALUE sym_count;
static VALUE sym_heap_used, sym_heap_length, sym_heap_increment;
static VALUE sym_heap_live_slot, sym_heap_free_slot, sym_heap_final_slot, sym_heap_swept_slot;
static VALUE sym_heap_eden_page_length, sym_heap_tomb_page_length;
static VALUE sym_total_allocated_object, sym_total_freed_object;
static VALUE sym_malloc_increase, sym_malloc_limit;
#if USE_RGENGC
static VALUE sym_minor_gc_count, sym_major_gc_count;
static VALUE sym_remembered_shady_object, sym_remembered_shady_object_limit;
static VALUE sym_old_object, sym_old_object_limit;
#if RGENGC_ESTIMATE_OLDMALLOC
static VALUE sym_oldmalloc_increase, sym_oldmalloc_limit;
#endif
#if RGENGC_PROFILE
static VALUE sym_generated_normal_object_count, sym_generated_shady_object_count;
static VALUE sym_shade_operation_count, sym_promote_infant_count, sym_promote_young_count;
static VALUE sym_remembered_normal_object_count, sym_remembered_shady_object_count;
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
rb_objspace_t *objspace = &rb_objspace;
VALUE hash = Qnil, key = Qnil;
if (RB_TYPE_P(hash_or_sym, T_HASH))
hash = hash_or_sym;
else if (SYMBOL_P(hash_or_sym) && out)
key = hash_or_sym;
else
rb_raise(rb_eTypeError, "non-hash or symbol argument");
if (sym_count == 0) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(count);
S(heap_used);
S(heap_length);
S(heap_increment);
S(heap_live_slot);
S(heap_free_slot);
S(heap_final_slot);
S(heap_swept_slot);
S(heap_eden_page_length);
S(heap_tomb_page_length);
S(total_allocated_object);
S(total_freed_object);
S(malloc_increase);
S(malloc_limit);
#if USE_RGENGC
S(minor_gc_count);
S(major_gc_count);
S(remembered_shady_object);
S(remembered_shady_object_limit);
S(old_object);
S(old_object_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc_increase);
S(oldmalloc_limit);
#endif
#if RGENGC_PROFILE
S(generated_normal_object_count);
S(generated_shady_object_count);
S(shade_operation_count);
S(promote_infant_count);
S(promote_young_count);
S(remembered_normal_object_count);
S(remembered_shady_object_count);
#endif /* USE_RGENGC */
#endif /* RGENGC_PROFILE */
#undef S
}
#define SET(name, attr) \
if (key == sym_##name) \
return (*out = attr, Qnil); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, SIZET2NUM(attr));
SET(count, objspace->profile.count);
/* implementation dependent counters */
SET(heap_used, heap_pages_used);
SET(heap_length, heap_pages_length);
SET(heap_increment, heap_pages_increment);
SET(heap_live_slot, objspace_live_slot(objspace));
SET(heap_free_slot, objspace_free_slot(objspace));
SET(heap_final_slot, heap_pages_final_slots);
SET(heap_swept_slot, heap_pages_swept_slots);
SET(heap_eden_page_length, heap_eden->page_length);
SET(heap_tomb_page_length, heap_tomb->page_length);
SET(total_allocated_object, objspace->profile.total_allocated_object_num);
SET(total_freed_object, objspace->profile.total_freed_object_num);
SET(malloc_increase, malloc_increase);
SET(malloc_limit, malloc_limit);
#if USE_RGENGC
SET(minor_gc_count, objspace->profile.minor_gc_count);
SET(major_gc_count, objspace->profile.major_gc_count);
SET(remembered_shady_object, objspace->rgengc.remembered_shady_object_count);
SET(remembered_shady_object_limit, objspace->rgengc.remembered_shady_object_limit);
SET(old_object, objspace->rgengc.old_object_count);
SET(old_object_limit, objspace->rgengc.old_object_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
SET(oldmalloc_increase, objspace->rgengc.oldmalloc_increase);
SET(oldmalloc_limit, objspace->rgengc.oldmalloc_increase_limit);
#endif
#if RGENGC_PROFILE
SET(generated_normal_object_count, objspace->profile.generated_normal_object_count);
SET(generated_shady_object_count, objspace->profile.generated_shady_object_count);
SET(shade_operation_count, objspace->profile.shade_operation_count);
SET(promote_infant_count, objspace->profile.promote_infant_count);
#if RGENGC_AGE2_PROMOTION
SET(promote_young_count, objspace->profile.promote_young_count);
#endif
SET(remembered_normal_object_count, objspace->profile.remembered_normal_object_count);
SET(remembered_shady_object_count, objspace->profile.remembered_shady_object_count);
#endif /* RGENGC_PROFILE */
#endif /* USE_RGENGC */
#undef SET
if (!NIL_P(key)) { /* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
#if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2
if (hash != Qnil) {
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
gc_count_add_each_types(hash, "promote_infant_types", objspace->profile.promote_infant_types);
#if RGENGC_AGE2_PROMOTION
gc_count_add_each_types(hash, "promote_young_types", objspace->profile.promote_young_types);
#endif
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
}
#endif
return hash;
}
/*
* call-seq:
* GC.stat -> Hash
* GC.stat(hash) -> hash
* GC.stat(:key) -> Numeric
*
* Returns a Hash containing information about the GC.
*
* The hash includes information about internal statistics about GC such as:
*
* {
* :count=>2,
* :heap_used=>9,
* :heap_length=>11,
* :heap_increment=>2,
* :heap_live_slot=>6836,
* :heap_free_slot=>519,
* :heap_final_slot=>0,
* :heap_swept_slot=>818,
* :total_allocated_object=>7674,
* :total_freed_object=>838,
* :malloc_increase=>181034,
* :malloc_limit=>16777216,
* :minor_gc_count=>2,
* :major_gc_count=>0,
* :remembered_shady_object=>55,
* :remembered_shady_object_limit=>0,
* :old_object=>2422,
* :old_object_limit=>0,
* :oldmalloc_increase=>277386,
* :oldmalloc_limit=>16777216
* }
*
* The contents of the hash are implementation specific and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
gc_stat(int argc, VALUE *argv, VALUE self)
{
VALUE arg = Qnil;
if (rb_scan_args(argc, argv, "01", &arg) == 1) {
if (SYMBOL_P(arg)) {
size_t value = 0;
gc_stat_internal(arg, &value);
return SIZET2NUM(value);
}
else if (!RB_TYPE_P(arg, T_HASH)) {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
}
if (arg == Qnil) {
arg = rb_hash_new();
}
gc_stat_internal(arg, 0);
return arg;
}
size_t
rb_gc_stat(VALUE key)
{
if (SYMBOL_P(key)) {
size_t value = 0;
gc_stat_internal(key, &value);
return value;
}
else {
gc_stat_internal(key, 0);
return 0;
}
}
/*
* call-seq:
* GC.stress -> fixnum, true or false
*
* Returns current status of GC stress mode.
*/
static VALUE
gc_stress_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return ruby_gc_stress;
}
/*
* call-seq:
* GC.stress = flag -> flag
*
* Updates the GC stress mode.
*
* When stress mode is enabled, the GC is invoked at every GC opportunity:
* all memory and object allocations.
*
* Enabling stress mode will degrade performance, it is only for debugging.
*
* flag can be true, false, or a fixnum bit-ORed following flags.
* 0x01:: no major GC
* 0x02:: no immediate sweep
* 0x04:: full mark after malloc/calloc/realloc
*/
static VALUE
gc_stress_set(VALUE self, VALUE flag)
{
rb_objspace_t *objspace = &rb_objspace;
rb_secure(2);
ruby_gc_stress = FIXNUM_P(flag) ? flag : (RTEST(flag) ? Qtrue : Qfalse);
return flag;
}
/*
* call-seq:
* GC.enable -> true or false
*
* Enables garbage collection, returning +true+ if garbage
* collection was previously disabled.
*
* GC.disable #=> false
* GC.enable #=> true
* GC.enable #=> false
*
*/
VALUE
rb_gc_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
dont_gc = FALSE;
return old ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC.disable -> true or false
*
* Disables garbage collection, returning +true+ if garbage
* collection was already disabled.
*
* GC.disable #=> false
* GC.disable #=> true
*
*/
VALUE
rb_gc_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
gc_rest_sweep(objspace);
dont_gc = TRUE;
return old ? Qtrue : Qfalse;
}
static int
get_envparam_size(const char *name, size_t *default_value, size_t lower_bound)
{
char *ptr = getenv(name);
ssize_t val;
if (ptr != NULL && *ptr) {
size_t unit = 0;
char *end;
#if SIZEOF_SIZE_T == SIZEOF_LONG_LONG
val = strtoll(ptr, &end, 0);
#else
val = strtol(ptr, &end, 0);
#endif
switch (*end) {
case 'k': case 'K':
unit = 1024;
++end;
break;
case 'm': case 'M':
unit = 1024*1024;
++end;
break;
case 'g': case 'G':
unit = 1024*1024*1024;
++end;
break;
}
while (*end && isspace((unsigned char)*end)) end++;
if (*end) {
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
return 0;
}
if (unit > 0) {
if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr);
return 0;
}
val *= unit;
}
if (val > 0 && (size_t)val > lower_bound) {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIdSIZE")\n", name, val, *default_value);
}
*default_value = (size_t)val;
return 1;
}
else {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIdSIZE") is ignored because it must be greater than %"PRIdSIZE".\n",
name, val, *default_value, lower_bound);
}
return 0;
}
}
return 0;
}
static int
get_envparam_double(const char *name, double *default_value, double lower_bound)
{
char *ptr = getenv(name);
double val;
if (ptr != NULL && *ptr) {
char *end;
val = strtod(ptr, &end);
if (!*ptr || *end) {
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
return 0;
}
if (val > lower_bound) {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value);
*default_value = val;
return 1;
}
else {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n", name, val, *default_value, lower_bound);
}
}
return 0;
}
static void
gc_set_initial_pages(void)
{
size_t min_pages;
rb_objspace_t *objspace = &rb_objspace;
min_pages = gc_params.heap_init_slots / HEAP_OBJ_LIMIT;
if (min_pages > heap_eden->page_length) {
heap_add_pages(objspace, heap_eden, min_pages - heap_eden->page_length);
}
}
/*
* GC tuning environment variables
*
* * RUBY_GC_HEAP_INIT_SLOTS
* - Initial allocation slots.
* * RUBY_GC_HEAP_FREE_SLOTS
* - Prepare at least this amount of slots after GC.
* - Allocate slots if there are not enough slots.
* * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1)
* - Allocate slots by this factor.
* - (next slots number) = (current slots number) * (this factor)
* * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1)
* - Allocation rate is limited to this factor.
* * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1)
* - Do full GC when the number of old objects is more than R * N
* where R is this factor and
* N is the number of old objects just after last full GC.
*
* * obsolete
* * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1)
* * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1)
*
* * RUBY_GC_MALLOC_LIMIT
* * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1)
* * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
*
* * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1)
* * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1)
* * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
*/
void
ruby_gc_set_params(int safe_level)
{
if (safe_level > 0) return;
/* RUBY_GC_HEAP_FREE_SLOTS */
if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) {
/* ok */
}
else if (get_envparam_size("RUBY_FREE_MIN", &gc_params.heap_free_slots, 0)) {
rb_warn("RUBY_FREE_MIN is obsolete. Use RUBY_GC_HEAP_FREE_SLOTS instead.");
}
/* RUBY_GC_HEAP_INIT_SLOTS */
if (get_envparam_size("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) {
gc_set_initial_pages();
}
else if (get_envparam_size("RUBY_HEAP_MIN_SLOTS", &gc_params.heap_init_slots, 0)) {
rb_warn("RUBY_HEAP_MIN_SLOTS is obsolete. Use RUBY_GC_HEAP_INIT_SLOTS instead.");
gc_set_initial_pages();
}
get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0);
get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0);
get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0);
get_envparam_size ("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0);
get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0);
get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0);
#if RGENGC_ESTIMATE_OLDMALLOC
if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) {
rb_objspace_t *objspace = &rb_objspace;
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
}
get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0);
get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0);
#endif
}
void
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
{
rb_objspace_t *objspace = &rb_objspace;
if (is_markable_object(objspace, obj)) {
struct mark_func_data_struct mfd;
mfd.mark_func = func;
mfd.data = data;
objspace->mark_func_data = &mfd;
gc_mark_children(objspace, obj);
objspace->mark_func_data = 0;
}
}
struct root_objects_data {
const char *category;
void (*func)(const char *category, VALUE, void *);
void *data;
};
static void
root_objects_from(VALUE obj, void *ptr)
{
const struct root_objects_data *data = (struct root_objects_data *)ptr;
(*data->func)(data->category, obj, data->data);
}
void
rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data)
{
rb_objspace_t *objspace = &rb_objspace;
struct root_objects_data data;
struct mark_func_data_struct mfd;
data.func = func;
data.data = passing_data;
mfd.mark_func = root_objects_from;
mfd.data = &data;
objspace->mark_func_data = &mfd;
{
gc_mark_roots(objspace, TRUE, &data.category);
}
objspace->mark_func_data = 0;
}
/*
------------------------ Extended allocator ------------------------
*/
static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size);
static void *
negative_size_allocation_error_with_gvl(void *ptr)
{
rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
return 0; /* should not be reached */
}
static void
negative_size_allocation_error(const char *msg)
{
if (ruby_thread_has_gvl_p()) {
rb_raise(rb_eNoMemError, "%s", msg);
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
}
else {
fprintf(stderr, "[FATAL] %s\n", msg);
exit(EXIT_FAILURE);
}
}
}
static void *
ruby_memerror_body(void *dummy)
{
rb_memerror();
return 0;
}
static void
ruby_memerror(void)
{
if (ruby_thread_has_gvl_p()) {
rb_memerror();
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(ruby_memerror_body, 0);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
void
rb_memerror(void)
{
rb_thread_t *th = GET_THREAD();
if (!nomem_error ||
rb_thread_raised_p(th, RAISED_NOMEMORY)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
rb_thread_raised_clear(th);
GET_THREAD()->errinfo = nomem_error;
JUMP_TAG(TAG_RAISE);
}
rb_thread_raised_set(th, RAISED_NOMEMORY);
rb_exc_raise(nomem_error);
}
static void *
aligned_malloc(size_t alignment, size_t size)
{
void *res;
#if defined __MINGW32__
res = __mingw_aligned_malloc(size, alignment);
#elif defined _WIN32 && !defined __CYGWIN__
void *_aligned_malloc(size_t, size_t);
res = _aligned_malloc(size, alignment);
#elif defined(HAVE_POSIX_MEMALIGN)
if (posix_memalign(&res, alignment, size) == 0) {
return res;
}
else {
return NULL;
}
#elif defined(HAVE_MEMALIGN)
res = memalign(alignment, size);
#else
char* aligned;
res = malloc(alignment + size + sizeof(void*));
aligned = (char*)res + alignment + sizeof(void*);
aligned -= ((VALUE)aligned & (alignment - 1));
((void**)aligned)[-1] = res;
res = (void*)aligned;
#endif
#if defined(_DEBUG) || GC_DEBUG
/* alignment must be a power of 2 */
assert(((alignment - 1) & alignment) == 0);
assert(alignment % sizeof(void*) == 0);
#endif
return res;
}
static void
aligned_free(void *ptr)
{
#if defined __MINGW32__
__mingw_aligned_free(ptr);
#elif defined _WIN32 && !defined __CYGWIN__
_aligned_free(ptr);
#elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
free(ptr);
#else
free(((void**)ptr)[-1]);
#endif
}
static inline size_t
objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint)
{
#ifdef HAVE_MALLOC_USABLE_SIZE
return malloc_usable_size(ptr);
#else
return hint;
#endif
}
enum memop_type {
MEMOP_TYPE_MALLOC = 1,
MEMOP_TYPE_FREE = 2,
MEMOP_TYPE_REALLOC = 3
};
static inline void
atomic_sub_nounderflow(size_t *var, size_t sub)
{
if (sub == 0) return;
while (1) {
size_t val = *var;
if (val < sub) sub = val;
if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break;
}
}
static void
objspace_malloc_increase(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
{
if (new_size > old_size) {
ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size);
#if RGENGC_ESTIMATE_OLDMALLOC
ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size);
#endif
}
else {
atomic_sub_nounderflow(&malloc_increase, old_size - new_size);
#if RGENGC_ESTIMATE_OLDMALLOC
atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size);
#endif
}
if (type != MEMOP_TYPE_FREE &&
ruby_gc_stress && !ruby_disable_gc_stress &&
ruby_native_thread_p()) {
garbage_collect_with_gvl(objspace, gc_stress_full_mark_after_malloc_p(), TRUE, GPR_FLAG_MALLOC);
}
if (type == MEMOP_TYPE_MALLOC) {
retry:
if (malloc_increase > malloc_limit && ruby_native_thread_p()) {
if (ruby_thread_has_gvl_p() && is_lazy_sweeping(heap_eden)) {
gc_rest_sweep(objspace); /* rest_sweep can reduce malloc_increase */
goto retry;
}
garbage_collect_with_gvl(objspace, FALSE, TRUE, GPR_FLAG_MALLOC);
}
}
#if MALLOC_ALLOCATED_SIZE
if (new_size >= old_size) {
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size);
}
else {
size_t dec_size = old_size - new_size;
size_t allocated_size = objspace->malloc_params.allocated_size;
#if MALLOC_ALLOCATED_SIZE_CHECK
if (allocated_size < dec_size) {
rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size.");
}
#endif
atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size);
}
if (0) fprintf(stderr, "incraese - ptr: %p, type: %s, new_size: %d, old_size: %d\n",
mem,
type == MEMOP_TYPE_MALLOC ? "malloc" :
type == MEMOP_TYPE_FREE ? "free " :
type == MEMOP_TYPE_REALLOC ? "realloc": "error",
(int)new_size, (int)old_size);
switch (type) {
case MEMOP_TYPE_MALLOC:
ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
break;
case MEMOP_TYPE_FREE:
{
size_t allocations = objspace->malloc_params.allocations;
if (allocations > 0) {
atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1);
}
#if MALLOC_ALLOCATED_SIZE_CHECK
else {
assert(objspace->malloc_params.allocations > 0);
}
#endif
}
break;
case MEMOP_TYPE_REALLOC: /* ignore */ break;
}
#endif
}
static inline size_t
objspace_malloc_prepare(rb_objspace_t *objspace, size_t size)
{
if ((ssize_t)size < 0) {
negative_size_allocation_error("negative allocation size (or too big)");
}
if (size == 0) size = 1;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
return size;
}
static inline void *
objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
{
#if CALC_EXACT_MALLOC_SIZE
((size_t *)mem)[0] = size;
mem = (size_t *)mem + 1;
#endif
return mem;
}
#define TRY_WITH_GC(alloc) do { \
if (!(alloc) && \
(!garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC) || /* full mark && immediate sweep */ \
!(alloc))) { \
ruby_memerror(); \
} \
} while (0)
static void *
objspace_xmalloc(rb_objspace_t *objspace, size_t size)
{
void *mem;
size = objspace_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = malloc(size));
size = objspace_malloc_size(objspace, mem, size);
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC);
return objspace_malloc_fixup(objspace, mem, size);
}
static void *
objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size)
{
void *mem;
if ((ssize_t)new_size < 0) {
negative_size_allocation_error("negative re-allocation size");
}
if (!ptr) return objspace_xmalloc(objspace, new_size);
/*
* The behavior of realloc(ptr, 0) is implementation defined.
* Therefore we don't use realloc(ptr, 0) for portability reason.
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
*/
if (new_size == 0) {
objspace_xfree(objspace, ptr, old_size);
return 0;
}
#if CALC_EXACT_MALLOC_SIZE
new_size += sizeof(size_t);
ptr = (size_t *)ptr - 1;
old_size = ((size_t *)ptr)[0];
#endif
old_size = objspace_malloc_size(objspace, ptr, old_size);
TRY_WITH_GC(mem = realloc(ptr, new_size));
new_size = objspace_malloc_size(objspace, mem, new_size);
#if CALC_EXACT_MALLOC_SIZE
((size_t *)mem)[0] = new_size;
mem = (size_t *)mem + 1;
#endif
objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC);
return mem;
}
static void
objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size)
{
#if CALC_EXACT_MALLOC_SIZE
ptr = ((size_t *)ptr) - 1;
old_size = ((size_t*)ptr)[0];
#endif
old_size = objspace_malloc_size(objspace, ptr, old_size);
free(ptr);
objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE);
}
void *
ruby_xmalloc(size_t size)
{
return objspace_xmalloc(&rb_objspace, size);
}
static inline size_t
xmalloc2_size(size_t n, size_t size)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "malloc: possible integer overflow");
}
return len;
}
void *
ruby_xmalloc2(size_t n, size_t size)
{
return objspace_xmalloc(&rb_objspace, xmalloc2_size(n, size));
}
static void *
objspace_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
{
void *mem;
size_t size;
size = xmalloc2_size(count, elsize);
size = objspace_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = calloc(1, size));
size = objspace_malloc_size(objspace, mem, size);
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC);
return objspace_malloc_fixup(objspace, mem, size);
}
void *
ruby_xcalloc(size_t n, size_t size)
{
return objspace_xcalloc(&rb_objspace, n, size);
}
#ifdef ruby_sized_xrealloc
#undef ruby_sized_xrealloc
#endif
void *
ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size)
{
return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size);
}
void *
ruby_xrealloc(void *ptr, size_t new_size)
{
return ruby_sized_xrealloc(ptr, new_size, 0);
}
#ifdef ruby_sized_xrealloc2
#undef ruby_sized_xrealloc2
#endif
void *
ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "realloc: possible integer overflow");
}
return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size);
}
void *
ruby_xrealloc2(void *ptr, size_t n, size_t size)
{
return ruby_sized_xrealloc2(ptr, n, size, 0);
}
#ifdef ruby_sized_xfree
#undef ruby_sized_xfree
#endif
void
ruby_sized_xfree(void *x, size_t size)
{
if (x) {
objspace_xfree(&rb_objspace, x, size);
}
}
void
ruby_xfree(void *x)
{
ruby_sized_xfree(x, 0);
}
/* Mimic ruby_xmalloc, but need not rb_objspace.
* should return pointer suitable for ruby_xfree
*/
void *
ruby_mimmalloc(size_t size)
{
void *mem;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
mem = malloc(size);
#if CALC_EXACT_MALLOC_SIZE
/* set 0 for consistency of allocated_size/allocations */
((size_t *)mem)[0] = 0;
mem = (size_t *)mem + 1;
#endif
return mem;
}
void
ruby_mimfree(void *ptr)
{
size_t *mem = (size_t *)ptr;
#if CALC_EXACT_MALLOC_SIZE
mem = mem - 1;
#endif
free(mem);
}
#if MALLOC_ALLOCATED_SIZE
/*
* call-seq:
* GC.malloc_allocated_size -> Integer
*
* Returns the size of memory allocated by malloc().
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocated_size(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocated_size);
}
/*
* call-seq:
* GC.malloc_allocations -> Integer
*
* Returns the number of malloc() allocations.
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocations(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocations);
}
#endif
/*
------------------------------ WeakMap ------------------------------
*/
struct weakmap {
st_table *obj2wmap; /* obj -> [ref,...] */
st_table *wmap2obj; /* ref -> obj */
VALUE final;
};
#define WMAP_DELETE_DEAD_OBJECT_IN_MARK 0
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK
static int
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (!is_live_object(objspace, obj)) return ST_DELETE;
return ST_CONTINUE;
}
#endif
static void
wmap_mark(void *ptr)
{
struct weakmap *w = ptr;
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK
if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
#endif
rb_gc_mark(w->final);
}
static int
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE *ptr = (VALUE *)val;
ruby_sized_xfree(ptr, (ptr[0] + 1) * sizeof(VALUE));
return ST_CONTINUE;
}
static void
wmap_free(void *ptr)
{
struct weakmap *w = ptr;
st_foreach(w->obj2wmap, wmap_free_map, 0);
st_free_table(w->obj2wmap);
st_free_table(w->wmap2obj);
}
static int
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE *ptr = (VALUE *)val;
*(size_t *)arg += (ptr[0] + 1) * sizeof(VALUE);
return ST_CONTINUE;
}
static size_t
wmap_memsize(const void *ptr)
{
size_t size;
const struct weakmap *w = ptr;
if (!w) return 0;
size = sizeof(*w);
size += st_memsize(w->obj2wmap);
size += st_memsize(w->wmap2obj);
st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
return size;
}
static const rb_data_type_t weakmap_type = {
"weakmap",
{
wmap_mark,
wmap_free,
wmap_memsize,
},
NULL, NULL, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
wmap_allocate(VALUE klass)
{
struct weakmap *w;
VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
w->obj2wmap = st_init_numtable();
w->wmap2obj = st_init_numtable();
w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
return obj;
}
static int
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
VALUE wmap, *ptr, size, i, j;
if (!existing) return ST_STOP;
wmap = (VALUE)arg, ptr = (VALUE *)*value;
for (i = j = 1, size = ptr[0]; i <= size; ++i) {
if (ptr[i] != wmap) {
ptr[j++] = ptr[i];
}
}
if (j == 1) {
ruby_sized_xfree(ptr, i * sizeof(VALUE));
return ST_DELETE;
}
if (j < i) {
ptr = ruby_sized_xrealloc2(ptr, j, sizeof(VALUE), i);
ptr[0] = j;
*value = (st_data_t)ptr;
}
return ST_CONTINUE;
}
static VALUE
wmap_finalize(VALUE self, VALUE objid)
{
st_data_t orig, wmap, data;
VALUE obj, *rids, i, size;
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
/* Get reference from object id. */
obj = obj_id_to_ref(objid);
/* obj is original referenced object and/or weak reference. */
orig = (st_data_t)obj;
if (st_delete(w->obj2wmap, &orig, &data)) {
rids = (VALUE *)data;
size = *rids++;
for (i = 0; i < size; ++i) {
wmap = (st_data_t)rids[i];
st_delete(w->wmap2obj, &wmap, NULL);
}
ruby_sized_xfree((VALUE *)data, (size + 1) * sizeof(VALUE));
}
wmap = (st_data_t)obj;
if (st_delete(w->wmap2obj, &wmap, &orig)) {
wmap = (st_data_t)obj;
st_update(w->obj2wmap, orig, wmap_final_func, wmap);
}
return self;
}
struct wmap_iter_arg {
rb_objspace_t *objspace;
VALUE value;
};
static int
wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE str = (VALUE)arg;
VALUE k = (VALUE)key, v = (VALUE)val;
if (RSTRING_PTR(str)[0] == '#') {
rb_str_cat2(str, ", ");
}
else {
rb_str_cat2(str, ": ");
RSTRING_PTR(str)[0] = '#';
}
k = SPECIAL_CONST_P(k) ? rb_inspect(k) : rb_any_to_s(k);
rb_str_append(str, k);
rb_str_cat2(str, " => ");
v = SPECIAL_CONST_P(v) ? rb_inspect(v) : rb_any_to_s(v);
rb_str_append(str, v);
OBJ_INFECT(str, k);
OBJ_INFECT(str, v);
return ST_CONTINUE;
}
static VALUE
wmap_inspect(VALUE self)
{
VALUE str;
VALUE c = rb_class_name(CLASS_OF(self));
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self);
if (w->wmap2obj) {
st_foreach(w->wmap2obj, wmap_inspect_i, str);
}
RSTRING_PTR(str)[0] = '#';
rb_str_cat2(str, ">");
return str;
}
static int
wmap_each_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_yield_values(2, (VALUE)key, obj);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace);
return self;
}
static int
wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_yield((VALUE)key);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each_key(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace);
return self;
}
static int
wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_yield(obj);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each_value(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace);
return self;
}
static int
wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE ary = argp->value;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_ary_push(ary, (VALUE)key);
}
return ST_CONTINUE;
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_keys(VALUE self)
{
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
args.objspace = &rb_objspace;
args.value = rb_ary_new();
st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)&args);
return args.value;
}
static int
wmap_values_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE ary = argp->value;
VALUE obj = (VALUE)val;
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
rb_ary_push(ary, obj);
}
return ST_CONTINUE;
}
/* Iterates over values and objects in a weakly referenced object */
static VALUE
wmap_values(VALUE self)
{
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
args.objspace = &rb_objspace;
args.value = rb_ary_new();
st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args);
return args.value;
}
static int
wmap_aset_update(st_data_t *key, st_data_t *val, st_data_t arg, int existing)
{
VALUE size, *ptr, *optr;
if (existing) {
size = (ptr = optr = (VALUE *)*val)[0];
++size;
ptr = ruby_sized_xrealloc2(ptr, size + 1, sizeof(VALUE), size);
}
else {
optr = 0;
size = 1;
ptr = ruby_xmalloc2(2, sizeof(VALUE));
}
ptr[0] = size;
ptr[size] = (VALUE)arg;
if (ptr == optr) return ST_STOP;
*val = (st_data_t)ptr;
return ST_CONTINUE;
}
/* Creates a weak reference from the given key to the given value */
static VALUE
wmap_aset(VALUE self, VALUE wmap, VALUE orig)
{
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
should_be_finalizable(orig);
should_be_finalizable(wmap);
define_final0(orig, w->final);
define_final0(wmap, w->final);
st_update(w->obj2wmap, (st_data_t)orig, wmap_aset_update, wmap);
st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
return nonspecial_obj_id(orig);
}
/* Retrieves a weakly referenced object with the given key */
static VALUE
wmap_aref(VALUE self, VALUE wmap)
{
st_data_t data;
VALUE obj;
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
obj = (VALUE)data;
if (!is_id_value(objspace, obj)) return Qnil;
if (!is_live_object(objspace, obj)) return Qnil;
return obj;
}
/* Returns +true+ if +key+ is registered */
static VALUE
wmap_has_key(VALUE self, VALUE key)
{
return NIL_P(wmap_aref(self, key)) ? Qfalse : Qtrue;
}
static VALUE
wmap_size(VALUE self)
{
struct weakmap *w;
st_index_t n;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
n = w->wmap2obj->num_entries;
#if SIZEOF_ST_INDEX_T <= SIZEOF_LONG
return ULONG2NUM(n);
#else
return ULL2NUM(n);
#endif
}
/*
------------------------------ GC profiler ------------------------------
*/
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
static double
getrusage_time(void)
{
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
{
static int try_clock_gettime = 1;
struct timespec ts;
if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) {
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
else {
try_clock_gettime = 0;
}
}
#endif
#ifdef RUSAGE_SELF
{
struct rusage usage;
struct timeval time;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
time = usage.ru_utime;
return time.tv_sec + time.tv_usec * 1e-6;
}
}
#endif
#ifdef _WIN32
{
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER ui;
LONG_LONG q;
double t;
if (GetProcessTimes(GetCurrentProcess(),
&creation_time, &exit_time, &kernel_time, &user_time) != 0) {
memcpy(&ui, &user_time, sizeof(FILETIME));
q = ui.QuadPart / 10L;
t = (DWORD)(q % 1000000L) * 1e-6;
q /= 1000000L;
#ifdef __GNUC__
t += q;
#else
t += (double)(DWORD)(q >> 16) * (1 << 16);
t += (DWORD)q & ~(~0 << 16);
#endif
return t;
}
}
#endif
return 0.0;
}
static inline void
gc_prof_setup_new_record(rb_objspace_t *objspace, int reason)
{
if (objspace->profile.run) {
size_t index = objspace->profile.next_index;
gc_profile_record *record;
/* create new record */
objspace->profile.next_index++;
if (!objspace->profile.records) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
objspace->profile.records = malloc(sizeof(gc_profile_record) * objspace->profile.size);
}
if (index >= objspace->profile.size) {
objspace->profile.size += 1000;
objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size);
}
if (!objspace->profile.records) {
rb_bug("gc_profile malloc or realloc miss");
}
record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1];
MEMZERO(record, gc_profile_record, 1);
/* setup before-GC parameter */
record->flags = reason | ((ruby_gc_stress && !ruby_disable_gc_stress) ? GPR_FLAG_STRESS : 0);
#if MALLOC_ALLOCATED_SIZE
record->allocated_size = malloc_allocated_size;
#endif
#if GC_PROFILE_DETAIL_MEMORY
#ifdef RUSAGE_SELF
{
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
record->maxrss = usage.ru_maxrss;
record->minflt = usage.ru_minflt;
record->majflt = usage.ru_majflt;
}
}
#endif
#endif
}
}
static inline void
gc_prof_timer_start(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
#if GC_PROFILE_MORE_DETAIL
record->prepare_time = objspace->profile.prepare_time;
#endif
record->gc_time = 0;
record->gc_invoke_time = getrusage_time();
}
}
static double
elapsed_time_from(double time)
{
double now = getrusage_time();
if (now > time) {
return now - time;
}
else {
return 0;
}
}
static inline void
gc_prof_timer_stop(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->gc_time = elapsed_time_from(record->gc_invoke_time);
record->gc_invoke_time -= objspace->profile.invoke_time;
}
}
static inline void
gc_prof_mark_timer_start(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
RUBY_DTRACE_GC_MARK_BEGIN();
}
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_prof_record(objspace)->gc_mark_time = getrusage_time();
}
#endif
}
static inline void
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
RUBY_DTRACE_GC_MARK_END();
}
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->gc_mark_time = elapsed_time_from(record->gc_mark_time);
}
#endif
}
static inline void
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
RUBY_DTRACE_GC_SWEEP_BEGIN();
}
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) {
objspace->profile.gc_sweep_start_time = getrusage_time();
}
}
}
static inline void
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
{
if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
RUBY_DTRACE_GC_SWEEP_END();
}
if (gc_prof_enabled(objspace)) {
double sweep_time;
gc_profile_record *record = gc_prof_record(objspace);
if (record->gc_time > 0) {
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
/* need to accumulate GC time for lazy sweep after gc() */
record->gc_time += sweep_time;
}
else if (GC_PROFILE_MORE_DETAIL) {
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
}
#if GC_PROFILE_MORE_DETAIL
record->gc_sweep_time += sweep_time;
if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE;
#endif
if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE;
}
}
static inline void
gc_prof_set_malloc_info(rb_objspace_t *objspace)
{
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->allocate_increase = malloc_increase;
record->allocate_limit = malloc_limit;
}
#endif
}
static inline void
gc_prof_set_heap_info(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
size_t live = objspace->profile.total_allocated_object_num_at_gc_start - objspace->profile.total_freed_object_num;
size_t total = objspace->profile.heap_used_at_gc_start * HEAP_OBJ_LIMIT;
#if GC_PROFILE_MORE_DETAIL
record->heap_use_pages = objspace->profile.heap_used_at_gc_start;
record->heap_live_objects = live;
record->heap_free_objects = total - live;
#endif
record->heap_total_objects = total;
record->heap_use_size = live * sizeof(RVALUE);
record->heap_total_size = total * sizeof(RVALUE);
}
}
/*
* call-seq:
* GC::Profiler.clear -> nil
*
* Clears the GC profiler data.
*
*/
static VALUE
gc_profile_clear(void)
{
rb_objspace_t *objspace = &rb_objspace;
if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2;
objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size);
if (!objspace->profile.records) {
rb_memerror();
}
}
MEMZERO(objspace->profile.records, gc_profile_record, objspace->profile.size);
objspace->profile.next_index = 0;
objspace->profile.current_record = 0;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.raw_data -> [Hash, ...]
*
* Returns an Array of individual raw profile data Hashes ordered
* from earliest to latest by +:GC_INVOKE_TIME+.
*
* For example:
*
* [
* {
* :GC_TIME=>1.3000000000000858e-05,
* :GC_INVOKE_TIME=>0.010634999999999999,
* :HEAP_USE_SIZE=>289640,
* :HEAP_TOTAL_SIZE=>588960,
* :HEAP_TOTAL_OBJECTS=>14724,
* :GC_IS_MARKED=>false
* },
* # ...
* ]
*
* The keys mean:
*
* +:GC_TIME+::
* Time elapsed in seconds for this GC run
* +:GC_INVOKE_TIME+::
* Time elapsed in seconds from startup to when the GC was invoked
* +:HEAP_USE_SIZE+::
* Total bytes of heap used
* +:HEAP_TOTAL_SIZE+::
* Total size of heap in bytes
* +:HEAP_TOTAL_OBJECTS+::
* Total number of objects
* +:GC_IS_MARKED+::
* Returns +true+ if the GC is in mark phase
*
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
* to the following hash keys:
*
* +:GC_MARK_TIME+::
* +:GC_SWEEP_TIME+::
* +:ALLOCATE_INCREASE+::
* +:ALLOCATE_LIMIT+::
* +:HEAP_USE_PAGES+::
* +:HEAP_LIVE_OBJECTS+::
* +:HEAP_FREE_OBJECTS+::
* +:HAVE_FINALIZE+::
*
*/
static VALUE
gc_profile_record_get(void)
{
VALUE prof;
VALUE gc_profile = rb_ary_new();
size_t i;
rb_objspace_t *objspace = (&rb_objspace);
if (!objspace->profile.run) {
return Qnil;
}
for (i =0; i < objspace->profile.next_index; i++) {
gc_profile_record *record = &objspace->profile.records[i];
prof = rb_hash_new();
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(record->flags, rb_hash_new()));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
#if GC_PROFILE_MORE_DETAIL
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
#endif
#if RGENGC_PROFILE > 0
rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects));
#endif
rb_ary_push(gc_profile, prof);
}
return gc_profile;
}
#if GC_PROFILE_MORE_DETAIL
#define MAJOR_REASON_MAX 0x10
static char *
gc_profile_dump_major_reason(int flags, char *buff)
{
int reason = flags & GPR_FLAG_MAJOR_MASK;
int i = 0;
if (reason == GPR_FLAG_NONE) {
buff[0] = '-';
buff[1] = 0;
}
else {
#define C(x, s) \
if (reason & GPR_FLAG_MAJOR_BY_##x) { \
buff[i++] = #x[0]; \
if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \
buff[i] = 0; \
}
C(NOFREE, N);
C(OLDGEN, O);
C(SHADY, S);
C(RESCAN, R);
C(STRESS, T);
#if RGENGC_ESTIMATE_OLDMALLOC
C(OLDMALLOC, M);
#endif
#undef C
}
return buff;
}
#endif
static void
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
{
rb_objspace_t *objspace = &rb_objspace;
size_t count = objspace->profile.next_index;
#ifdef MAJOR_REASON_MAX
char reason_str[MAJOR_REASON_MAX];
#endif
if (objspace->profile.run && count /* > 1 */) {
size_t i;
const gc_profile_record *record;
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count));
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.records[i];
append(out, rb_sprintf("%5"PRIdSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
i+1, record->gc_invoke_time, record->heap_use_size,
record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
}
#if GC_PROFILE_MORE_DETAIL
append(out, rb_str_new_cstr("\n\n" \
"More detail.\n" \
"Prepare Time = Previously GC's rest sweep time\n"
"Index Flags Allocate Inc. Allocate Limit"
#if CALC_EXACT_MALLOC_SIZE
" Allocated Size"
#endif
" Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj"
#if RGENGC_PROFILE
" OldgenObj RemNormObj RemShadObj"
#endif
#if GC_PROFILE_DETAIL_MEMORY
" MaxRSS(KB) MinorFLT MajorFLT"
#endif
"\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.records[i];
append(out, rb_sprintf("%5"PRIdSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
#if CALC_EXACT_MALLOC_SIZE
" %15"PRIuSIZE
#endif
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
#if RGENGC_PROFILE
"%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
#endif
#if GC_PROFILE_DETAIL_MEMORY
"%11ld %8ld %8ld"
#endif
"\n",
i+1,
gc_profile_dump_major_reason(record->flags, reason_str),
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
(record->flags & GPR_FLAG_METHOD) ? "METHOD" :
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
record->allocate_increase, record->allocate_limit,
#if CALC_EXACT_MALLOC_SIZE
record->allocated_size,
#endif
record->heap_use_pages,
record->gc_mark_time*1000,
record->gc_sweep_time*1000,
record->prepare_time*1000,
record->heap_live_objects,
record->heap_free_objects,
record->removing_objects,
record->empty_objects
#if RGENGC_PROFILE
,
record->old_objects,
record->remembered_normal_objects,
record->remembered_shady_objects
#endif
#if GC_PROFILE_DETAIL_MEMORY
,
record->maxrss / 1024,
record->minflt,
record->majflt
#endif
));
}
#endif
}
}
/*
* call-seq:
* GC::Profiler.result -> String
*
* Returns a profile data report such as:
*
* GC 1 invokes.
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
* 1 0.012 159240 212940 10647 0.00000000000001530000
*/
static VALUE
gc_profile_result(void)
{
VALUE str = rb_str_buf_new(0);
gc_profile_dump_on(str, rb_str_buf_append);
return str;
}
/*
* call-seq:
* GC::Profiler.report
* GC::Profiler.report(io)
*
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
*
*/
static VALUE
gc_profile_report(int argc, VALUE *argv, VALUE self)
{
VALUE out;
if (argc == 0) {
out = rb_stdout;
}
else {
rb_scan_args(argc, argv, "01", &out);
}
gc_profile_dump_on(out, rb_io_write);
return Qnil;
}
/*
* call-seq:
* GC::Profiler.total_time -> float
*
* The total time used for garbage collection in seconds
*/
static VALUE
gc_profile_total_time(VALUE self)
{
double time = 0;
rb_objspace_t *objspace = &rb_objspace;
if (objspace->profile.run && objspace->profile.next_index > 0) {
size_t i;
size_t count = objspace->profile.next_index;
for (i = 0; i < count; i++) {
time += objspace->profile.records[i].gc_time;
}
}
return DBL2NUM(time);
}
/*
* call-seq:
* GC::Profiler.enabled? -> true or false
*
* The current status of GC profile mode.
*/
static VALUE
gc_profile_enable_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return objspace->profile.run ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC::Profiler.enable -> nil
*
* Starts the GC profiler.
*
*/
static VALUE
gc_profile_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = TRUE;
objspace->profile.current_record = 0;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.disable -> nil
*
* Stops the GC profiler.
*
*/
static VALUE
gc_profile_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = FALSE;
objspace->profile.current_record = 0;
return Qnil;
}
/*
------------------------------ DEBUG ------------------------------
*/
static const char *
type_name(int type, VALUE obj)
{
switch (type) {
#define TYPE_NAME(t) case (t): return #t;
TYPE_NAME(T_NONE);
TYPE_NAME(T_OBJECT);
TYPE_NAME(T_CLASS);
TYPE_NAME(T_MODULE);
TYPE_NAME(T_FLOAT);
TYPE_NAME(T_STRING);
TYPE_NAME(T_REGEXP);
TYPE_NAME(T_ARRAY);
TYPE_NAME(T_HASH);
TYPE_NAME(T_STRUCT);
TYPE_NAME(T_BIGNUM);
TYPE_NAME(T_FILE);
TYPE_NAME(T_MATCH);
TYPE_NAME(T_COMPLEX);
TYPE_NAME(T_RATIONAL);
TYPE_NAME(T_NIL);
TYPE_NAME(T_TRUE);
TYPE_NAME(T_FALSE);
TYPE_NAME(T_SYMBOL);
TYPE_NAME(T_FIXNUM);
TYPE_NAME(T_UNDEF);
TYPE_NAME(T_NODE);
TYPE_NAME(T_ICLASS);
TYPE_NAME(T_ZOMBIE);
case T_DATA:
if (obj && rb_objspace_data_type_name(obj)) {
return rb_objspace_data_type_name(obj);
}
return "T_DATA";
#undef TYPE_NAME
}
return "unknown";
}
static const char *
obj_type_name(VALUE obj)
{
return type_name(TYPE(obj), obj);
}
#if GC_DEBUG
void
rb_gcdebug_print_obj_condition(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
fprintf(stderr, "created at: %s:%d\n", RSTRING_PTR(RANY(obj)->file), FIX2INT(RANY(obj)->line));
if (is_pointer_to_heap(objspace, (void *)obj)) {
fprintf(stderr, "pointer to heap?: true\n");
}
else {
fprintf(stderr, "pointer to heap?: false\n");
return;
}
fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false");
#if USE_RGENGC
#if RGENGC_AGE2_PROMOTION
fprintf(stderr, "young? : %s\n", RVALUE_YOUNG_P(obj) ? "true" : "false");
#endif
fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false");
fprintf(stderr, "WB-protected?: %s\n", RVALUE_WB_PROTECTED(obj) ? "true" : "false");
fprintf(stderr, "remembered? : %s\n", MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) ? "true" : "false");
#endif
if (is_lazy_sweeping(heap_eden)) {
fprintf(stderr, "lazy sweeping?: true\n");
fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet");
}
else {
fprintf(stderr, "lazy sweeping?: false\n");
}
}
static VALUE
gcdebug_sential(VALUE obj, VALUE name)
{
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
return Qnil;
}
void
rb_gcdebug_sentinel(VALUE obj, const char *name)
{
rb_define_finalizer(obj, rb_proc_new(gcdebug_sential, (VALUE)name));
}
#endif /* GC_DEBUG */
/*
* Document-module: ObjectSpace
*
* The ObjectSpace module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* ObjectSpace also provides support for object finalizers, procs that will be
* called when a specific object is about to be destroyed by garbage
* collection.
*
* a = "A"
* b = "B"
*
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
*
* _produces:_
*
* Finalizer two on 537763470
* Finalizer one on 537763480
*/
/*
* Document-class: ObjectSpace::WeakMap
*
* An ObjectSpace::WeakMap object holds references to
* any objects, but those objects can get garbage collected.
*
* This class is mostly used internally by WeakRef, please use
* +lib/weakref.rb+ for the public interface.
*/
/* Document-class: GC::Profiler
*
* The GC profiler provides access to information on GC runs including time,
* length and object space size.
*
* Example:
*
* GC::Profiler.enable
*
* require 'rdoc/rdoc'
*
* GC::Profiler.report
*
* GC::Profiler.disable
*
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
*/
/*
* The GC module provides an interface to Ruby's mark and
* sweep garbage collection mechanism.
*
* Some of the underlying methods are also available via the ObjectSpace
* module.
*
* You may obtain information about the operation of the GC through
* GC::Profiler.
*/
void
Init_GC(void)
{
VALUE rb_mObjSpace;
VALUE rb_mProfiler;
VALUE gc_constants;
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", gc_start_internal, -1);
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
rb_define_singleton_method(rb_mGC, "latest_gc_info", gc_latest_gc_info, -1);
rb_define_method(rb_mGC, "garbage_collect", gc_start_internal, -1);
gc_constants = rb_hash_new();
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(sizeof(RVALUE)));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_OBJ_LIMIT")), SIZET2NUM(HEAP_OBJ_LIMIT));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_BITMAP_SIZE")), SIZET2NUM(HEAP_BITMAP_SIZE));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_BITMAP_PLANES")), SIZET2NUM(HEAP_BITMAP_PLANES));
OBJ_FREEZE(gc_constants);
rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants);
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
rb_mObjSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObjSpace, "garbage_collect", gc_start_internal, -1);
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObjSpace, "_id2ref", id2ref, 1);
nomem_error = rb_exc_new3(rb_eNoMemError,
rb_obj_freeze(rb_str_new2("failed to allocate memory")));
OBJ_TAINT(nomem_error);
OBJ_FREEZE(nomem_error);
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
{
VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject);
rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0);
rb_define_method(rb_cWeakMap, "each", wmap_each, 0);
rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0);
rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0);
rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0);
rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0);
rb_define_method(rb_cWeakMap, "values", wmap_values, 0);
rb_define_method(rb_cWeakMap, "size", wmap_size, 0);
rb_define_method(rb_cWeakMap, "length", wmap_size, 0);
rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
rb_include_module(rb_cWeakMap, rb_mEnumerable);
}
/* internal methods */
rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency, 0);
#if MALLOC_ALLOCATED_SIZE
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
#endif
/* ::GC::OPTS, which shows GC build options */
{
VALUE opts;
rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new());
#define OPT(o) if (o) rb_ary_push(opts, rb_str_new2(#o))
OPT(GC_DEBUG);
OPT(USE_RGENGC);
OPT(RGENGC_DEBUG);
OPT(RGENGC_CHECK_MODE);
OPT(RGENGC_PROFILE);
OPT(RGENGC_AGE2_PROMOTION);
OPT(RGENGC_ESTIMATE_OLDMALLOC);
OPT(GC_PROFILE_MORE_DETAIL);
OPT(GC_ENABLE_LAZY_SWEEP);
OPT(CALC_EXACT_MALLOC_SIZE);
OPT(MALLOC_ALLOCATED_SIZE);
OPT(MALLOC_ALLOCATED_SIZE_CHECK);
OPT(GC_PROFILE_DETAIL_MEMORY);
#undef OPT
}
}