зеркало из https://github.com/github/ruby.git
13799 строки
403 KiB
C
13799 строки
403 KiB
C
/**********************************************************************
|
|
|
|
gc.c -
|
|
|
|
$Author$
|
|
created at: Tue Oct 5 09:44:46 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
|
|
Copyright (C) 2000 Information-technology Promotion Agency, Japan
|
|
|
|
**********************************************************************/
|
|
|
|
#define rb_data_object_alloc rb_data_object_alloc
|
|
#define rb_data_typed_object_alloc rb_data_typed_object_alloc
|
|
|
|
#include "ruby/internal/config.h"
|
|
#ifdef _WIN32
|
|
# include "ruby/ruby.h"
|
|
#endif
|
|
|
|
#include <signal.h>
|
|
|
|
#ifndef _WIN32
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
|
|
# include "wasm/setjmp.h"
|
|
# include "wasm/machine.h"
|
|
#else
|
|
# include <setjmp.h>
|
|
#endif
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
|
|
/* MALLOC_HEADERS_BEGIN */
|
|
#ifndef HAVE_MALLOC_USABLE_SIZE
|
|
# ifdef _WIN32
|
|
# define HAVE_MALLOC_USABLE_SIZE
|
|
# define malloc_usable_size(a) _msize(a)
|
|
# elif defined HAVE_MALLOC_SIZE
|
|
# define HAVE_MALLOC_USABLE_SIZE
|
|
# define malloc_usable_size(a) malloc_size(a)
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef HAVE_MALLOC_USABLE_SIZE
|
|
# ifdef RUBY_ALTERNATIVE_MALLOC_HEADER
|
|
/* Alternative malloc header is included in ruby/missing.h */
|
|
# elif defined(HAVE_MALLOC_H)
|
|
# include <malloc.h>
|
|
# elif defined(HAVE_MALLOC_NP_H)
|
|
# include <malloc_np.h>
|
|
# elif defined(HAVE_MALLOC_MALLOC_H)
|
|
# include <malloc/malloc.h>
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef HAVE_MALLOC_TRIM
|
|
# include <malloc.h>
|
|
|
|
# ifdef __EMSCRIPTEN__
|
|
/* malloc_trim is defined in emscripten/emmalloc.h on emscripten. */
|
|
# include <emscripten/emmalloc.h>
|
|
# endif
|
|
#endif
|
|
|
|
#if !defined(PAGE_SIZE) && defined(HAVE_SYS_USER_H)
|
|
/* LIST_HEAD conflicts with sys/queue.h on macOS */
|
|
# include <sys/user.h>
|
|
#endif
|
|
/* MALLOC_HEADERS_END */
|
|
|
|
#ifdef HAVE_SYS_TIME_H
|
|
# include <sys/time.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_RESOURCE_H
|
|
# include <sys/resource.h>
|
|
#endif
|
|
|
|
#if defined _WIN32 || defined __CYGWIN__
|
|
# include <windows.h>
|
|
#elif defined(HAVE_POSIX_MEMALIGN)
|
|
#elif defined(HAVE_MEMALIGN)
|
|
# include <malloc.h>
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
|
|
#ifdef __EMSCRIPTEN__
|
|
#include <emscripten.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
|
|
# include <mach/task.h>
|
|
# include <mach/mach_init.h>
|
|
# include <mach/mach_port.h>
|
|
#endif
|
|
#undef LIST_HEAD /* ccan/list conflicts with BSD-origin sys/queue.h. */
|
|
|
|
#include "constant.h"
|
|
#include "darray.h"
|
|
#include "debug_counter.h"
|
|
#include "eval_intern.h"
|
|
#include "id_table.h"
|
|
#include "internal.h"
|
|
#include "internal/class.h"
|
|
#include "internal/compile.h"
|
|
#include "internal/complex.h"
|
|
#include "internal/cont.h"
|
|
#include "internal/error.h"
|
|
#include "internal/eval.h"
|
|
#include "internal/gc.h"
|
|
#include "internal/hash.h"
|
|
#include "internal/imemo.h"
|
|
#include "internal/io.h"
|
|
#include "internal/numeric.h"
|
|
#include "internal/object.h"
|
|
#include "internal/proc.h"
|
|
#include "internal/rational.h"
|
|
#include "internal/sanitizers.h"
|
|
#include "internal/struct.h"
|
|
#include "internal/symbol.h"
|
|
#include "internal/thread.h"
|
|
#include "internal/variable.h"
|
|
#include "internal/warnings.h"
|
|
#include "rjit.h"
|
|
#include "probes.h"
|
|
#include "regint.h"
|
|
#include "ruby/debug.h"
|
|
#include "ruby/io.h"
|
|
#include "ruby/re.h"
|
|
#include "ruby/st.h"
|
|
#include "ruby/thread.h"
|
|
#include "ruby/util.h"
|
|
#include "ruby_assert.h"
|
|
#include "ruby_atomic.h"
|
|
#include "symbol.h"
|
|
#include "vm_core.h"
|
|
#include "vm_sync.h"
|
|
#include "vm_callinfo.h"
|
|
#include "ractor_core.h"
|
|
|
|
#include "builtin.h"
|
|
#include "shape.h"
|
|
|
|
#define rb_setjmp(env) RUBY_SETJMP(env)
|
|
#define rb_jmp_buf rb_jmpbuf_t
|
|
#undef rb_data_object_wrap
|
|
|
|
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
|
|
static size_t malloc_offset = 0;
|
|
#if defined(HAVE_MALLOC_USABLE_SIZE)
|
|
static size_t
|
|
gc_compute_malloc_offset(void)
|
|
{
|
|
// Different allocators use different metadata storage strategies which result in different
|
|
// ideal sizes.
|
|
// For instance malloc(64) will waste 8B with glibc, but waste 0B with jemalloc.
|
|
// But malloc(56) will waste 0B with glibc, but waste 8B with jemalloc.
|
|
// So we try allocating 64, 56 and 48 bytes and select the first offset that doesn't
|
|
// waste memory.
|
|
// This was tested on Linux with glibc 2.35 and jemalloc 5, and for both it result in
|
|
// no wasted memory.
|
|
size_t offset = 0;
|
|
for (offset = 0; offset <= 16; offset += 8) {
|
|
size_t allocated = (64 - offset);
|
|
void *test_ptr = malloc(allocated);
|
|
size_t wasted = malloc_usable_size(test_ptr) - allocated;
|
|
free(test_ptr);
|
|
|
|
if (wasted == 0) {
|
|
return offset;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static size_t
|
|
gc_compute_malloc_offset(void)
|
|
{
|
|
// If we don't have malloc_usable_size, we use powers of 2.
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
size_t
|
|
rb_malloc_grow_capa(size_t current, size_t type_size)
|
|
{
|
|
size_t current_capacity = current;
|
|
if (current_capacity < 4) {
|
|
current_capacity = 4;
|
|
}
|
|
current_capacity *= type_size;
|
|
|
|
// We double the current capacity.
|
|
size_t new_capacity = (current_capacity * 2);
|
|
|
|
// And round up to the next power of 2 if it's not already one.
|
|
if (rb_popcount64(new_capacity) != 1) {
|
|
new_capacity = (size_t)(1 << (64 - nlz_int64(new_capacity)));
|
|
}
|
|
|
|
new_capacity -= malloc_offset;
|
|
new_capacity /= type_size;
|
|
if (current > new_capacity) {
|
|
rb_bug("rb_malloc_grow_capa: current_capacity=%zu, new_capacity=%zu, malloc_offset=%zu", current, new_capacity, malloc_offset);
|
|
}
|
|
RUBY_ASSERT(new_capacity > current);
|
|
return new_capacity;
|
|
}
|
|
|
|
static inline struct rbimpl_size_mul_overflow_tag
|
|
size_add_overflow(size_t x, size_t y)
|
|
{
|
|
size_t z;
|
|
bool p;
|
|
#if 0
|
|
|
|
#elif defined(ckd_add)
|
|
p = ckd_add(&z, x, y);
|
|
|
|
#elif __has_builtin(__builtin_add_overflow)
|
|
p = __builtin_add_overflow(x, y, &z);
|
|
|
|
#elif defined(DSIZE_T)
|
|
RB_GNUC_EXTENSION DSIZE_T dx = x;
|
|
RB_GNUC_EXTENSION DSIZE_T dy = y;
|
|
RB_GNUC_EXTENSION DSIZE_T dz = dx + dy;
|
|
p = dz > SIZE_MAX;
|
|
z = (size_t)dz;
|
|
|
|
#else
|
|
z = x + y;
|
|
p = z < y;
|
|
|
|
#endif
|
|
return (struct rbimpl_size_mul_overflow_tag) { p, z, };
|
|
}
|
|
|
|
static inline struct rbimpl_size_mul_overflow_tag
|
|
size_mul_add_overflow(size_t x, size_t y, size_t z) /* x * y + z */
|
|
{
|
|
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
|
|
struct rbimpl_size_mul_overflow_tag u = size_add_overflow(t.right, z);
|
|
return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left, u.right };
|
|
}
|
|
|
|
static inline struct rbimpl_size_mul_overflow_tag
|
|
size_mul_add_mul_overflow(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
|
|
{
|
|
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
|
|
struct rbimpl_size_mul_overflow_tag u = rbimpl_size_mul_overflow(z, w);
|
|
struct rbimpl_size_mul_overflow_tag v = size_add_overflow(t.right, u.right);
|
|
return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left || v.left, v.right };
|
|
}
|
|
|
|
PRINTF_ARGS(NORETURN(static void gc_raise(VALUE, const char*, ...)), 2, 3);
|
|
|
|
static inline size_t
|
|
size_mul_or_raise(size_t x, size_t y, VALUE exc)
|
|
{
|
|
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
|
|
if (LIKELY(!t.left)) {
|
|
return t.right;
|
|
}
|
|
else if (rb_during_gc()) {
|
|
rb_memerror(); /* or...? */
|
|
}
|
|
else {
|
|
gc_raise(
|
|
exc,
|
|
"integer overflow: %"PRIuSIZE
|
|
" * %"PRIuSIZE
|
|
" > %"PRIuSIZE,
|
|
x, y, (size_t)SIZE_MAX);
|
|
}
|
|
}
|
|
|
|
size_t
|
|
rb_size_mul_or_raise(size_t x, size_t y, VALUE exc)
|
|
{
|
|
return size_mul_or_raise(x, y, exc);
|
|
}
|
|
|
|
static inline size_t
|
|
size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc)
|
|
{
|
|
struct rbimpl_size_mul_overflow_tag t = size_mul_add_overflow(x, y, z);
|
|
if (LIKELY(!t.left)) {
|
|
return t.right;
|
|
}
|
|
else if (rb_during_gc()) {
|
|
rb_memerror(); /* or...? */
|
|
}
|
|
else {
|
|
gc_raise(
|
|
exc,
|
|
"integer overflow: %"PRIuSIZE
|
|
" * %"PRIuSIZE
|
|
" + %"PRIuSIZE
|
|
" > %"PRIuSIZE,
|
|
x, y, z, (size_t)SIZE_MAX);
|
|
}
|
|
}
|
|
|
|
size_t
|
|
rb_size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc)
|
|
{
|
|
return size_mul_add_or_raise(x, y, z, exc);
|
|
}
|
|
|
|
static inline size_t
|
|
size_mul_add_mul_or_raise(size_t x, size_t y, size_t z, size_t w, VALUE exc)
|
|
{
|
|
struct rbimpl_size_mul_overflow_tag t = size_mul_add_mul_overflow(x, y, z, w);
|
|
if (LIKELY(!t.left)) {
|
|
return t.right;
|
|
}
|
|
else if (rb_during_gc()) {
|
|
rb_memerror(); /* or...? */
|
|
}
|
|
else {
|
|
gc_raise(
|
|
exc,
|
|
"integer overflow: %"PRIdSIZE
|
|
" * %"PRIdSIZE
|
|
" + %"PRIdSIZE
|
|
" * %"PRIdSIZE
|
|
" > %"PRIdSIZE,
|
|
x, y, z, w, (size_t)SIZE_MAX);
|
|
}
|
|
}
|
|
|
|
#if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL
|
|
/* trick the compiler into thinking a external signal handler uses this */
|
|
volatile VALUE rb_gc_guarded_val;
|
|
volatile VALUE *
|
|
rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val)
|
|
{
|
|
rb_gc_guarded_val = val;
|
|
|
|
return ptr;
|
|
}
|
|
#endif
|
|
|
|
#ifndef GC_HEAP_INIT_SLOTS
|
|
#define GC_HEAP_INIT_SLOTS 10000
|
|
#endif
|
|
#ifndef GC_HEAP_FREE_SLOTS
|
|
#define GC_HEAP_FREE_SLOTS 4096
|
|
#endif
|
|
#ifndef GC_HEAP_GROWTH_FACTOR
|
|
#define GC_HEAP_GROWTH_FACTOR 1.8
|
|
#endif
|
|
#ifndef GC_HEAP_GROWTH_MAX_SLOTS
|
|
#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */
|
|
#endif
|
|
#ifndef GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO
|
|
# define GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO 0.01
|
|
#endif
|
|
#ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR
|
|
#define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0
|
|
#endif
|
|
|
|
#ifndef GC_HEAP_FREE_SLOTS_MIN_RATIO
|
|
#define GC_HEAP_FREE_SLOTS_MIN_RATIO 0.20
|
|
#endif
|
|
#ifndef GC_HEAP_FREE_SLOTS_GOAL_RATIO
|
|
#define GC_HEAP_FREE_SLOTS_GOAL_RATIO 0.40
|
|
#endif
|
|
#ifndef GC_HEAP_FREE_SLOTS_MAX_RATIO
|
|
#define GC_HEAP_FREE_SLOTS_MAX_RATIO 0.65
|
|
#endif
|
|
|
|
#ifndef GC_MALLOC_LIMIT_MIN
|
|
#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
|
|
#endif
|
|
#ifndef GC_MALLOC_LIMIT_MAX
|
|
#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */)
|
|
#endif
|
|
#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR
|
|
#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4
|
|
#endif
|
|
|
|
#ifndef GC_OLDMALLOC_LIMIT_MIN
|
|
#define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
|
|
#endif
|
|
#ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR
|
|
#define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2
|
|
#endif
|
|
#ifndef GC_OLDMALLOC_LIMIT_MAX
|
|
#define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */)
|
|
#endif
|
|
|
|
#ifndef GC_CAN_COMPILE_COMPACTION
|
|
#if defined(__wasi__) /* WebAssembly doesn't support signals */
|
|
# define GC_CAN_COMPILE_COMPACTION 0
|
|
#else
|
|
# define GC_CAN_COMPILE_COMPACTION 1
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef PRINT_MEASURE_LINE
|
|
#define PRINT_MEASURE_LINE 0
|
|
#endif
|
|
#ifndef PRINT_ENTER_EXIT_TICK
|
|
#define PRINT_ENTER_EXIT_TICK 0
|
|
#endif
|
|
#ifndef PRINT_ROOT_TICKS
|
|
#define PRINT_ROOT_TICKS 0
|
|
#endif
|
|
|
|
#define USE_TICK_T (PRINT_ENTER_EXIT_TICK || PRINT_MEASURE_LINE || PRINT_ROOT_TICKS)
|
|
|
|
typedef struct {
|
|
size_t size_pool_init_slots[SIZE_POOL_COUNT];
|
|
size_t heap_free_slots;
|
|
double growth_factor;
|
|
size_t growth_max_slots;
|
|
|
|
double heap_free_slots_min_ratio;
|
|
double heap_free_slots_goal_ratio;
|
|
double heap_free_slots_max_ratio;
|
|
double uncollectible_wb_unprotected_objects_limit_ratio;
|
|
double oldobject_limit_factor;
|
|
|
|
size_t malloc_limit_min;
|
|
size_t malloc_limit_max;
|
|
double malloc_limit_growth_factor;
|
|
|
|
size_t oldmalloc_limit_min;
|
|
size_t oldmalloc_limit_max;
|
|
double oldmalloc_limit_growth_factor;
|
|
} ruby_gc_params_t;
|
|
|
|
static ruby_gc_params_t gc_params = {
|
|
{ 0 },
|
|
GC_HEAP_FREE_SLOTS,
|
|
GC_HEAP_GROWTH_FACTOR,
|
|
GC_HEAP_GROWTH_MAX_SLOTS,
|
|
|
|
GC_HEAP_FREE_SLOTS_MIN_RATIO,
|
|
GC_HEAP_FREE_SLOTS_GOAL_RATIO,
|
|
GC_HEAP_FREE_SLOTS_MAX_RATIO,
|
|
GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO,
|
|
GC_HEAP_OLDOBJECT_LIMIT_FACTOR,
|
|
|
|
GC_MALLOC_LIMIT_MIN,
|
|
GC_MALLOC_LIMIT_MAX,
|
|
GC_MALLOC_LIMIT_GROWTH_FACTOR,
|
|
|
|
GC_OLDMALLOC_LIMIT_MIN,
|
|
GC_OLDMALLOC_LIMIT_MAX,
|
|
GC_OLDMALLOC_LIMIT_GROWTH_FACTOR,
|
|
};
|
|
|
|
/* GC_DEBUG:
|
|
* enable to embed GC debugging information.
|
|
*/
|
|
#ifndef GC_DEBUG
|
|
#define GC_DEBUG 0
|
|
#endif
|
|
|
|
/* RGENGC_DEBUG:
|
|
* 1: basic information
|
|
* 2: remember set operation
|
|
* 3: mark
|
|
* 4:
|
|
* 5: sweep
|
|
*/
|
|
#ifndef RGENGC_DEBUG
|
|
#ifdef RUBY_DEVEL
|
|
#define RGENGC_DEBUG -1
|
|
#else
|
|
#define RGENGC_DEBUG 0
|
|
#endif
|
|
#endif
|
|
#if RGENGC_DEBUG < 0 && !defined(_MSC_VER)
|
|
# define RGENGC_DEBUG_ENABLED(level) (-(RGENGC_DEBUG) >= (level) && ruby_rgengc_debug >= (level))
|
|
#elif defined(HAVE_VA_ARGS_MACRO)
|
|
# define RGENGC_DEBUG_ENABLED(level) ((RGENGC_DEBUG) >= (level))
|
|
#else
|
|
# define RGENGC_DEBUG_ENABLED(level) 0
|
|
#endif
|
|
int ruby_rgengc_debug;
|
|
|
|
/* RGENGC_CHECK_MODE
|
|
* 0: disable all assertions
|
|
* 1: enable assertions (to debug RGenGC)
|
|
* 2: enable internal consistency check at each GC (for debugging)
|
|
* 3: enable internal consistency check at each GC steps (for debugging)
|
|
* 4: enable liveness check
|
|
* 5: show all references
|
|
*/
|
|
#ifndef RGENGC_CHECK_MODE
|
|
#define RGENGC_CHECK_MODE 0
|
|
#endif
|
|
|
|
// Note: using RUBY_ASSERT_WHEN() extend a macro in expr (info by nobu).
|
|
#define GC_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(RGENGC_CHECK_MODE > 0, expr, #expr)
|
|
|
|
/* RGENGC_PROFILE
|
|
* 0: disable RGenGC profiling
|
|
* 1: enable profiling for basic information
|
|
* 2: enable profiling for each types
|
|
*/
|
|
#ifndef RGENGC_PROFILE
|
|
#define RGENGC_PROFILE 0
|
|
#endif
|
|
|
|
/* RGENGC_ESTIMATE_OLDMALLOC
|
|
* Enable/disable to estimate increase size of malloc'ed size by old objects.
|
|
* If estimation exceeds threshold, then will invoke full GC.
|
|
* 0: disable estimation.
|
|
* 1: enable estimation.
|
|
*/
|
|
#ifndef RGENGC_ESTIMATE_OLDMALLOC
|
|
#define RGENGC_ESTIMATE_OLDMALLOC 1
|
|
#endif
|
|
|
|
/* RGENGC_FORCE_MAJOR_GC
|
|
* Force major/full GC if this macro is not 0.
|
|
*/
|
|
#ifndef RGENGC_FORCE_MAJOR_GC
|
|
#define RGENGC_FORCE_MAJOR_GC 0
|
|
#endif
|
|
|
|
#ifndef GC_PROFILE_MORE_DETAIL
|
|
#define GC_PROFILE_MORE_DETAIL 0
|
|
#endif
|
|
#ifndef GC_PROFILE_DETAIL_MEMORY
|
|
#define GC_PROFILE_DETAIL_MEMORY 0
|
|
#endif
|
|
#ifndef GC_ENABLE_LAZY_SWEEP
|
|
#define GC_ENABLE_LAZY_SWEEP 1
|
|
#endif
|
|
#ifndef CALC_EXACT_MALLOC_SIZE
|
|
#define CALC_EXACT_MALLOC_SIZE USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
#endif
|
|
#if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0
|
|
#ifndef MALLOC_ALLOCATED_SIZE
|
|
#define MALLOC_ALLOCATED_SIZE 0
|
|
#endif
|
|
#else
|
|
#define MALLOC_ALLOCATED_SIZE 0
|
|
#endif
|
|
#ifndef MALLOC_ALLOCATED_SIZE_CHECK
|
|
#define MALLOC_ALLOCATED_SIZE_CHECK 0
|
|
#endif
|
|
|
|
#ifndef GC_DEBUG_STRESS_TO_CLASS
|
|
#define GC_DEBUG_STRESS_TO_CLASS RUBY_DEBUG
|
|
#endif
|
|
|
|
#ifndef RGENGC_OBJ_INFO
|
|
#define RGENGC_OBJ_INFO (RGENGC_DEBUG | RGENGC_CHECK_MODE)
|
|
#endif
|
|
|
|
typedef enum {
|
|
GPR_FLAG_NONE = 0x000,
|
|
/* major reason */
|
|
GPR_FLAG_MAJOR_BY_NOFREE = 0x001,
|
|
GPR_FLAG_MAJOR_BY_OLDGEN = 0x002,
|
|
GPR_FLAG_MAJOR_BY_SHADY = 0x004,
|
|
GPR_FLAG_MAJOR_BY_FORCE = 0x008,
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020,
|
|
#endif
|
|
GPR_FLAG_MAJOR_MASK = 0x0ff,
|
|
|
|
/* gc reason */
|
|
GPR_FLAG_NEWOBJ = 0x100,
|
|
GPR_FLAG_MALLOC = 0x200,
|
|
GPR_FLAG_METHOD = 0x400,
|
|
GPR_FLAG_CAPI = 0x800,
|
|
GPR_FLAG_STRESS = 0x1000,
|
|
|
|
/* others */
|
|
GPR_FLAG_IMMEDIATE_SWEEP = 0x2000,
|
|
GPR_FLAG_HAVE_FINALIZE = 0x4000,
|
|
GPR_FLAG_IMMEDIATE_MARK = 0x8000,
|
|
GPR_FLAG_FULL_MARK = 0x10000,
|
|
GPR_FLAG_COMPACT = 0x20000,
|
|
|
|
GPR_DEFAULT_REASON =
|
|
(GPR_FLAG_FULL_MARK | GPR_FLAG_IMMEDIATE_MARK |
|
|
GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_CAPI),
|
|
} gc_profile_record_flag;
|
|
|
|
typedef struct gc_profile_record {
|
|
unsigned int flags;
|
|
|
|
double gc_time;
|
|
double gc_invoke_time;
|
|
|
|
size_t heap_total_objects;
|
|
size_t heap_use_size;
|
|
size_t heap_total_size;
|
|
size_t moved_objects;
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
double gc_mark_time;
|
|
double gc_sweep_time;
|
|
|
|
size_t heap_use_pages;
|
|
size_t heap_live_objects;
|
|
size_t heap_free_objects;
|
|
|
|
size_t allocate_increase;
|
|
size_t allocate_limit;
|
|
|
|
double prepare_time;
|
|
size_t removing_objects;
|
|
size_t empty_objects;
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
long maxrss;
|
|
long minflt;
|
|
long majflt;
|
|
#endif
|
|
#endif
|
|
#if MALLOC_ALLOCATED_SIZE
|
|
size_t allocated_size;
|
|
#endif
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
size_t old_objects;
|
|
size_t remembered_normal_objects;
|
|
size_t remembered_shady_objects;
|
|
#endif
|
|
} gc_profile_record;
|
|
|
|
struct RMoved {
|
|
VALUE flags;
|
|
VALUE dummy;
|
|
VALUE destination;
|
|
shape_id_t original_shape_id;
|
|
};
|
|
|
|
#define RMOVED(obj) ((struct RMoved *)(obj))
|
|
|
|
typedef struct RVALUE {
|
|
union {
|
|
struct {
|
|
VALUE flags; /* always 0 for freed obj */
|
|
struct RVALUE *next;
|
|
} free;
|
|
struct RMoved moved;
|
|
struct RBasic basic;
|
|
struct RObject object;
|
|
struct RClass klass;
|
|
struct RFloat flonum;
|
|
struct RString string;
|
|
struct RArray array;
|
|
struct RRegexp regexp;
|
|
struct RHash hash;
|
|
struct RData data;
|
|
struct RTypedData typeddata;
|
|
struct RStruct rstruct;
|
|
struct RBignum bignum;
|
|
struct RFile file;
|
|
struct RMatch match;
|
|
struct RRational rational;
|
|
struct RComplex complex;
|
|
struct RSymbol symbol;
|
|
union {
|
|
rb_cref_t cref;
|
|
struct vm_svar svar;
|
|
struct vm_throw_data throw_data;
|
|
struct vm_ifunc ifunc;
|
|
struct MEMO memo;
|
|
struct rb_method_entry_struct ment;
|
|
const rb_iseq_t iseq;
|
|
rb_env_t env;
|
|
struct rb_imemo_tmpbuf_struct alloc;
|
|
rb_ast_t ast;
|
|
} imemo;
|
|
struct {
|
|
struct RBasic basic;
|
|
VALUE v1;
|
|
VALUE v2;
|
|
VALUE v3;
|
|
} values;
|
|
} as;
|
|
} RVALUE;
|
|
|
|
/* These members ae located at the end of the slot that the object is in. */
|
|
#if RACTOR_CHECK_MODE || GC_DEBUG
|
|
struct rvalue_overhead {
|
|
# if RACTOR_CHECK_MODE
|
|
uint32_t _ractor_belonging_id;
|
|
# endif
|
|
# if GC_DEBUG
|
|
const char *file;
|
|
int line;
|
|
# endif
|
|
};
|
|
|
|
// Make sure that RVALUE_OVERHEAD aligns to sizeof(VALUE)
|
|
# define RVALUE_OVERHEAD (sizeof(struct { \
|
|
union { \
|
|
struct rvalue_overhead overhead; \
|
|
VALUE value; \
|
|
}; \
|
|
}))
|
|
# define GET_RVALUE_OVERHEAD(obj) ((struct rvalue_overhead *)((uintptr_t)obj + rb_gc_obj_slot_size(obj)))
|
|
#else
|
|
# define RVALUE_OVERHEAD 0
|
|
#endif
|
|
|
|
STATIC_ASSERT(sizeof_rvalue, sizeof(RVALUE) == (SIZEOF_VALUE * 5));
|
|
STATIC_ASSERT(alignof_rvalue, RUBY_ALIGNOF(RVALUE) == SIZEOF_VALUE);
|
|
|
|
typedef uintptr_t bits_t;
|
|
enum {
|
|
BITS_SIZE = sizeof(bits_t),
|
|
BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT )
|
|
};
|
|
|
|
struct heap_page_header {
|
|
struct heap_page *page;
|
|
};
|
|
|
|
struct heap_page_body {
|
|
struct heap_page_header header;
|
|
/* char gap[]; */
|
|
/* RVALUE values[]; */
|
|
};
|
|
|
|
#define STACK_CHUNK_SIZE 500
|
|
|
|
typedef struct stack_chunk {
|
|
VALUE data[STACK_CHUNK_SIZE];
|
|
struct stack_chunk *next;
|
|
} stack_chunk_t;
|
|
|
|
typedef struct mark_stack {
|
|
stack_chunk_t *chunk;
|
|
stack_chunk_t *cache;
|
|
int index;
|
|
int limit;
|
|
size_t cache_size;
|
|
size_t unused_cache_size;
|
|
} mark_stack_t;
|
|
|
|
#define SIZE_POOL_EDEN_HEAP(size_pool) (&(size_pool)->eden_heap)
|
|
#define SIZE_POOL_TOMB_HEAP(size_pool) (&(size_pool)->tomb_heap)
|
|
|
|
typedef int (*gc_compact_compare_func)(const void *l, const void *r, void *d);
|
|
|
|
typedef struct rb_heap_struct {
|
|
struct heap_page *free_pages;
|
|
struct ccan_list_head pages;
|
|
struct heap_page *sweeping_page; /* iterator for .pages */
|
|
struct heap_page *compact_cursor;
|
|
uintptr_t compact_cursor_index;
|
|
struct heap_page *pooled_pages;
|
|
size_t total_pages; /* total page count in a heap */
|
|
size_t total_slots; /* total slot count (about total_pages * HEAP_PAGE_OBJ_LIMIT) */
|
|
} rb_heap_t;
|
|
|
|
typedef struct rb_size_pool_struct {
|
|
short slot_size;
|
|
|
|
size_t allocatable_pages;
|
|
|
|
/* Basic statistics */
|
|
size_t total_allocated_pages;
|
|
size_t total_freed_pages;
|
|
size_t force_major_gc_count;
|
|
size_t force_incremental_marking_finish_count;
|
|
size_t total_allocated_objects;
|
|
size_t total_freed_objects;
|
|
|
|
/* Sweeping statistics */
|
|
size_t freed_slots;
|
|
size_t empty_slots;
|
|
|
|
rb_heap_t eden_heap;
|
|
rb_heap_t tomb_heap;
|
|
} rb_size_pool_t;
|
|
|
|
enum gc_mode {
|
|
gc_mode_none,
|
|
gc_mode_marking,
|
|
gc_mode_sweeping,
|
|
gc_mode_compacting,
|
|
};
|
|
|
|
typedef struct rb_objspace {
|
|
struct {
|
|
size_t limit;
|
|
size_t increase;
|
|
#if MALLOC_ALLOCATED_SIZE
|
|
size_t allocated_size;
|
|
size_t allocations;
|
|
#endif
|
|
|
|
} malloc_params;
|
|
|
|
struct {
|
|
unsigned int mode : 2;
|
|
unsigned int immediate_sweep : 1;
|
|
unsigned int dont_gc : 1;
|
|
unsigned int dont_incremental : 1;
|
|
unsigned int during_gc : 1;
|
|
unsigned int during_compacting : 1;
|
|
unsigned int during_reference_updating : 1;
|
|
unsigned int gc_stressful: 1;
|
|
unsigned int has_newobj_hook: 1;
|
|
unsigned int during_minor_gc : 1;
|
|
unsigned int during_incremental_marking : 1;
|
|
unsigned int measure_gc : 1;
|
|
} flags;
|
|
|
|
rb_event_flag_t hook_events;
|
|
unsigned long long next_object_id;
|
|
|
|
rb_size_pool_t size_pools[SIZE_POOL_COUNT];
|
|
|
|
struct {
|
|
rb_atomic_t finalizing;
|
|
} atomic_flags;
|
|
|
|
mark_stack_t mark_stack;
|
|
size_t marked_slots;
|
|
|
|
struct {
|
|
struct heap_page **sorted;
|
|
size_t allocated_pages;
|
|
size_t allocatable_pages;
|
|
size_t sorted_length;
|
|
uintptr_t range[2];
|
|
size_t freeable_pages;
|
|
|
|
/* final */
|
|
size_t final_slots;
|
|
VALUE deferred_final;
|
|
} heap_pages;
|
|
|
|
st_table *finalizer_table;
|
|
|
|
struct {
|
|
int run;
|
|
unsigned int latest_gc_info;
|
|
gc_profile_record *records;
|
|
gc_profile_record *current_record;
|
|
size_t next_index;
|
|
size_t size;
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
double prepare_time;
|
|
#endif
|
|
double invoke_time;
|
|
|
|
size_t minor_gc_count;
|
|
size_t major_gc_count;
|
|
size_t compact_count;
|
|
size_t read_barrier_faults;
|
|
#if RGENGC_PROFILE > 0
|
|
size_t total_generated_normal_object_count;
|
|
size_t total_generated_shady_object_count;
|
|
size_t total_shade_operation_count;
|
|
size_t total_promoted_count;
|
|
size_t total_remembered_normal_object_count;
|
|
size_t total_remembered_shady_object_count;
|
|
|
|
#if RGENGC_PROFILE >= 2
|
|
size_t generated_normal_object_count_types[RUBY_T_MASK];
|
|
size_t generated_shady_object_count_types[RUBY_T_MASK];
|
|
size_t shade_operation_count_types[RUBY_T_MASK];
|
|
size_t promoted_types[RUBY_T_MASK];
|
|
size_t remembered_normal_object_count_types[RUBY_T_MASK];
|
|
size_t remembered_shady_object_count_types[RUBY_T_MASK];
|
|
#endif
|
|
#endif /* RGENGC_PROFILE */
|
|
|
|
/* temporary profiling space */
|
|
double gc_sweep_start_time;
|
|
size_t total_allocated_objects_at_gc_start;
|
|
size_t heap_used_at_gc_start;
|
|
|
|
/* basic statistics */
|
|
size_t count;
|
|
uint64_t marking_time_ns;
|
|
struct timespec marking_start_time;
|
|
uint64_t sweeping_time_ns;
|
|
struct timespec sweeping_start_time;
|
|
|
|
/* Weak references */
|
|
size_t weak_references_count;
|
|
size_t retained_weak_references_count;
|
|
} profile;
|
|
|
|
VALUE gc_stress_mode;
|
|
|
|
struct {
|
|
VALUE parent_object;
|
|
int need_major_gc;
|
|
size_t last_major_gc;
|
|
size_t uncollectible_wb_unprotected_objects;
|
|
size_t uncollectible_wb_unprotected_objects_limit;
|
|
size_t old_objects;
|
|
size_t old_objects_limit;
|
|
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
size_t oldmalloc_increase;
|
|
size_t oldmalloc_increase_limit;
|
|
#endif
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
struct st_table *allrefs_table;
|
|
size_t error_count;
|
|
#endif
|
|
} rgengc;
|
|
|
|
struct {
|
|
size_t considered_count_table[T_MASK];
|
|
size_t moved_count_table[T_MASK];
|
|
size_t moved_up_count_table[T_MASK];
|
|
size_t moved_down_count_table[T_MASK];
|
|
size_t total_moved;
|
|
|
|
/* This function will be used, if set, to sort the heap prior to compaction */
|
|
gc_compact_compare_func compare_func;
|
|
} rcompactor;
|
|
|
|
struct {
|
|
size_t pooled_slots;
|
|
size_t step_slots;
|
|
} rincgc;
|
|
|
|
st_table *id_to_obj_tbl;
|
|
st_table *obj_to_id_tbl;
|
|
|
|
#if GC_DEBUG_STRESS_TO_CLASS
|
|
VALUE stress_to_class;
|
|
#endif
|
|
|
|
rb_darray(VALUE *) weak_references;
|
|
rb_postponed_job_handle_t finalize_deferred_pjob;
|
|
|
|
#ifdef RUBY_ASAN_ENABLED
|
|
const rb_execution_context_t *marking_machine_context_ec;
|
|
#endif
|
|
|
|
} rb_objspace_t;
|
|
|
|
|
|
#ifndef HEAP_PAGE_ALIGN_LOG
|
|
/* default tiny heap size: 64KiB */
|
|
#define HEAP_PAGE_ALIGN_LOG 16
|
|
#endif
|
|
|
|
#define BASE_SLOT_SIZE (sizeof(RVALUE) + RVALUE_OVERHEAD)
|
|
|
|
#define CEILDIV(i, mod) roomof(i, mod)
|
|
enum {
|
|
HEAP_PAGE_ALIGN = (1UL << HEAP_PAGE_ALIGN_LOG),
|
|
HEAP_PAGE_ALIGN_MASK = (~(~0UL << HEAP_PAGE_ALIGN_LOG)),
|
|
HEAP_PAGE_SIZE = HEAP_PAGE_ALIGN,
|
|
HEAP_PAGE_OBJ_LIMIT = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)) / BASE_SLOT_SIZE),
|
|
HEAP_PAGE_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_PAGE_SIZE, BASE_SLOT_SIZE), BITS_BITLENGTH),
|
|
HEAP_PAGE_BITMAP_SIZE = (BITS_SIZE * HEAP_PAGE_BITMAP_LIMIT),
|
|
};
|
|
#define HEAP_PAGE_ALIGN (1 << HEAP_PAGE_ALIGN_LOG)
|
|
#define HEAP_PAGE_SIZE HEAP_PAGE_ALIGN
|
|
|
|
#if !defined(INCREMENTAL_MARK_STEP_ALLOCATIONS)
|
|
# define INCREMENTAL_MARK_STEP_ALLOCATIONS 500
|
|
#endif
|
|
|
|
#undef INIT_HEAP_PAGE_ALLOC_USE_MMAP
|
|
/* Must define either HEAP_PAGE_ALLOC_USE_MMAP or
|
|
* INIT_HEAP_PAGE_ALLOC_USE_MMAP. */
|
|
|
|
#ifndef HAVE_MMAP
|
|
/* We can't use mmap of course, if it is not available. */
|
|
static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
|
|
|
|
#elif defined(__wasm__)
|
|
/* wasmtime does not have proper support for mmap.
|
|
* See https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-rationale.md#why-no-mmap-and-friends
|
|
*/
|
|
static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
|
|
|
|
#elif HAVE_CONST_PAGE_SIZE
|
|
/* If we have the PAGE_SIZE and it is a constant, then we can directly use it. */
|
|
static const bool HEAP_PAGE_ALLOC_USE_MMAP = (PAGE_SIZE <= HEAP_PAGE_SIZE);
|
|
|
|
#elif defined(PAGE_MAX_SIZE) && (PAGE_MAX_SIZE <= HEAP_PAGE_SIZE)
|
|
/* If we can use the maximum page size. */
|
|
static const bool HEAP_PAGE_ALLOC_USE_MMAP = true;
|
|
|
|
#elif defined(PAGE_SIZE)
|
|
/* If the PAGE_SIZE macro can be used dynamically. */
|
|
# define INIT_HEAP_PAGE_ALLOC_USE_MMAP (PAGE_SIZE <= HEAP_PAGE_SIZE)
|
|
|
|
#elif defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE)
|
|
/* If we can use sysconf to determine the page size. */
|
|
# define INIT_HEAP_PAGE_ALLOC_USE_MMAP (sysconf(_SC_PAGE_SIZE) <= HEAP_PAGE_SIZE)
|
|
|
|
#else
|
|
/* Otherwise we can't determine the system page size, so don't use mmap. */
|
|
static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
|
|
#endif
|
|
|
|
#ifdef INIT_HEAP_PAGE_ALLOC_USE_MMAP
|
|
/* We can determine the system page size at runtime. */
|
|
# define HEAP_PAGE_ALLOC_USE_MMAP (heap_page_alloc_use_mmap != false)
|
|
|
|
static bool heap_page_alloc_use_mmap;
|
|
#endif
|
|
|
|
#define RVALUE_AGE_BIT_COUNT 2
|
|
#define RVALUE_AGE_BIT_MASK (((bits_t)1 << RVALUE_AGE_BIT_COUNT) - 1)
|
|
|
|
struct heap_page {
|
|
short slot_size;
|
|
short total_slots;
|
|
short free_slots;
|
|
short final_slots;
|
|
short pinned_slots;
|
|
struct {
|
|
unsigned int before_sweep : 1;
|
|
unsigned int has_remembered_objects : 1;
|
|
unsigned int has_uncollectible_wb_unprotected_objects : 1;
|
|
unsigned int in_tomb : 1;
|
|
} flags;
|
|
|
|
rb_size_pool_t *size_pool;
|
|
|
|
struct heap_page *free_next;
|
|
uintptr_t start;
|
|
RVALUE *freelist;
|
|
struct ccan_list_node page_node;
|
|
|
|
bits_t wb_unprotected_bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
/* the following three bitmaps are cleared at the beginning of full GC */
|
|
bits_t mark_bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
bits_t uncollectible_bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
bits_t marking_bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
|
|
bits_t remembered_bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
|
|
/* If set, the object is not movable */
|
|
bits_t pinned_bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
bits_t age_bits[HEAP_PAGE_BITMAP_LIMIT * RVALUE_AGE_BIT_COUNT];
|
|
};
|
|
|
|
/*
|
|
* When asan is enabled, this will prohibit writing to the freelist until it is unlocked
|
|
*/
|
|
static void
|
|
asan_lock_freelist(struct heap_page *page)
|
|
{
|
|
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*));
|
|
}
|
|
|
|
/*
|
|
* When asan is enabled, this will enable the ability to write to the freelist
|
|
*/
|
|
static void
|
|
asan_unlock_freelist(struct heap_page *page)
|
|
{
|
|
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false);
|
|
}
|
|
|
|
#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_PAGE_ALIGN_MASK)))
|
|
#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header)
|
|
#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page)
|
|
|
|
#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_PAGE_ALIGN_MASK) / BASE_SLOT_SIZE)
|
|
#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH )
|
|
#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1))
|
|
#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p))
|
|
|
|
/* Bitmap Operations */
|
|
#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p))
|
|
#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p))
|
|
#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
|
|
|
|
/* getting bitmap */
|
|
#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0])
|
|
#define GET_HEAP_PINNED_BITS(x) (&GET_HEAP_PAGE(x)->pinned_bits[0])
|
|
#define GET_HEAP_UNCOLLECTIBLE_BITS(x) (&GET_HEAP_PAGE(x)->uncollectible_bits[0])
|
|
#define GET_HEAP_WB_UNPROTECTED_BITS(x) (&GET_HEAP_PAGE(x)->wb_unprotected_bits[0])
|
|
#define GET_HEAP_MARKING_BITS(x) (&GET_HEAP_PAGE(x)->marking_bits[0])
|
|
|
|
#define GC_SWEEP_PAGES_FREEABLE_PER_STEP 3
|
|
|
|
#define RVALUE_AGE_BITMAP_INDEX(n) (NUM_IN_PAGE(n) / (BITS_BITLENGTH / RVALUE_AGE_BIT_COUNT))
|
|
#define RVALUE_AGE_BITMAP_OFFSET(n) ((NUM_IN_PAGE(n) % (BITS_BITLENGTH / RVALUE_AGE_BIT_COUNT)) * RVALUE_AGE_BIT_COUNT)
|
|
|
|
#define RVALUE_OLD_AGE 3
|
|
|
|
static int
|
|
RVALUE_AGE_GET(VALUE obj)
|
|
{
|
|
bits_t *age_bits = GET_HEAP_PAGE(obj)->age_bits;
|
|
return (int)(age_bits[RVALUE_AGE_BITMAP_INDEX(obj)] >> RVALUE_AGE_BITMAP_OFFSET(obj)) & RVALUE_AGE_BIT_MASK;
|
|
}
|
|
|
|
static void
|
|
RVALUE_AGE_SET(VALUE obj, int age)
|
|
{
|
|
RUBY_ASSERT(age <= RVALUE_OLD_AGE);
|
|
bits_t *age_bits = GET_HEAP_PAGE(obj)->age_bits;
|
|
// clear the bits
|
|
age_bits[RVALUE_AGE_BITMAP_INDEX(obj)] &= ~(RVALUE_AGE_BIT_MASK << (RVALUE_AGE_BITMAP_OFFSET(obj)));
|
|
// shift the correct value in
|
|
age_bits[RVALUE_AGE_BITMAP_INDEX(obj)] |= ((bits_t)age << RVALUE_AGE_BITMAP_OFFSET(obj));
|
|
if (age == RVALUE_OLD_AGE) {
|
|
RB_FL_SET_RAW(obj, RUBY_FL_PROMOTED);
|
|
}
|
|
else {
|
|
RB_FL_UNSET_RAW(obj, RUBY_FL_PROMOTED);
|
|
}
|
|
}
|
|
|
|
/* Aliases */
|
|
#define rb_objspace (*rb_objspace_of(GET_VM()))
|
|
#define rb_objspace_of(vm) ((vm)->objspace)
|
|
#define unless_objspace(objspace) \
|
|
rb_objspace_t *objspace; \
|
|
rb_vm_t *unless_objspace_vm = GET_VM(); \
|
|
if (unless_objspace_vm) objspace = unless_objspace_vm->objspace; \
|
|
else /* return; or objspace will be warned uninitialized */
|
|
|
|
#define malloc_limit objspace->malloc_params.limit
|
|
#define malloc_increase objspace->malloc_params.increase
|
|
#define malloc_allocated_size objspace->malloc_params.allocated_size
|
|
#define heap_pages_sorted objspace->heap_pages.sorted
|
|
#define heap_allocated_pages objspace->heap_pages.allocated_pages
|
|
#define heap_pages_sorted_length objspace->heap_pages.sorted_length
|
|
#define heap_pages_lomem objspace->heap_pages.range[0]
|
|
#define heap_pages_himem objspace->heap_pages.range[1]
|
|
#define heap_pages_freeable_pages objspace->heap_pages.freeable_pages
|
|
#define heap_pages_final_slots objspace->heap_pages.final_slots
|
|
#define heap_pages_deferred_final objspace->heap_pages.deferred_final
|
|
#define size_pools objspace->size_pools
|
|
#define during_gc objspace->flags.during_gc
|
|
#define finalizing objspace->atomic_flags.finalizing
|
|
#define finalizer_table objspace->finalizer_table
|
|
#define ruby_gc_stressful objspace->flags.gc_stressful
|
|
#define ruby_gc_stress_mode objspace->gc_stress_mode
|
|
#if GC_DEBUG_STRESS_TO_CLASS
|
|
#define stress_to_class objspace->stress_to_class
|
|
#define set_stress_to_class(c) (stress_to_class = (c))
|
|
#else
|
|
#define stress_to_class (objspace, 0)
|
|
#define set_stress_to_class(c) (objspace, (c))
|
|
#endif
|
|
|
|
#if 0
|
|
#define dont_gc_on() (fprintf(stderr, "dont_gc_on@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 1)
|
|
#define dont_gc_off() (fprintf(stderr, "dont_gc_off@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 0)
|
|
#define dont_gc_set(b) (fprintf(stderr, "dont_gc_set(%d)@%s:%d\n", __FILE__, __LINE__), (int)b), objspace->flags.dont_gc = (b))
|
|
#define dont_gc_val() (objspace->flags.dont_gc)
|
|
#else
|
|
#define dont_gc_on() (objspace->flags.dont_gc = 1)
|
|
#define dont_gc_off() (objspace->flags.dont_gc = 0)
|
|
#define dont_gc_set(b) (((int)b), objspace->flags.dont_gc = (b))
|
|
#define dont_gc_val() (objspace->flags.dont_gc)
|
|
#endif
|
|
|
|
static inline enum gc_mode
|
|
gc_mode_verify(enum gc_mode mode)
|
|
{
|
|
#if RGENGC_CHECK_MODE > 0
|
|
switch (mode) {
|
|
case gc_mode_none:
|
|
case gc_mode_marking:
|
|
case gc_mode_sweeping:
|
|
case gc_mode_compacting:
|
|
break;
|
|
default:
|
|
rb_bug("gc_mode_verify: unreachable (%d)", (int)mode);
|
|
}
|
|
#endif
|
|
return mode;
|
|
}
|
|
|
|
static inline bool
|
|
has_sweeping_pages(rb_objspace_t *objspace)
|
|
{
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
if (SIZE_POOL_EDEN_HEAP(&size_pools[i])->sweeping_page) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static inline size_t
|
|
heap_eden_total_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
count += SIZE_POOL_EDEN_HEAP(&size_pools[i])->total_pages;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
heap_eden_total_slots(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
count += SIZE_POOL_EDEN_HEAP(&size_pools[i])->total_slots;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
heap_tomb_total_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
count += SIZE_POOL_TOMB_HEAP(&size_pools[i])->total_pages;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
heap_allocatable_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
count += size_pools[i].allocatable_pages;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
heap_allocatable_slots(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
int slot_size_multiple = size_pool->slot_size / BASE_SLOT_SIZE;
|
|
count += size_pool->allocatable_pages * HEAP_PAGE_OBJ_LIMIT / slot_size_multiple;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
total_allocated_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
count += size_pool->total_allocated_pages;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
total_freed_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
count += size_pool->total_freed_pages;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
total_allocated_objects(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
count += size_pool->total_allocated_objects;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static inline size_t
|
|
total_freed_objects(rb_objspace_t *objspace)
|
|
{
|
|
size_t count = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
count += size_pool->total_freed_objects;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define gc_mode(objspace) gc_mode_verify((enum gc_mode)(objspace)->flags.mode)
|
|
#define gc_mode_set(objspace, m) ((objspace)->flags.mode = (unsigned int)gc_mode_verify(m))
|
|
#define gc_needs_major_flags objspace->rgengc.need_major_gc
|
|
|
|
#define is_marking(objspace) (gc_mode(objspace) == gc_mode_marking)
|
|
#define is_sweeping(objspace) (gc_mode(objspace) == gc_mode_sweeping)
|
|
#define is_full_marking(objspace) ((objspace)->flags.during_minor_gc == FALSE)
|
|
#define is_incremental_marking(objspace) ((objspace)->flags.during_incremental_marking != FALSE)
|
|
#define will_be_incremental_marking(objspace) ((objspace)->rgengc.need_major_gc != GPR_FLAG_NONE)
|
|
#define GC_INCREMENTAL_SWEEP_SLOT_COUNT 2048
|
|
#define GC_INCREMENTAL_SWEEP_POOL_SLOT_COUNT 1024
|
|
#define is_lazy_sweeping(objspace) (GC_ENABLE_LAZY_SWEEP && has_sweeping_pages(objspace))
|
|
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
|
|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
|
|
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
|
|
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
|
|
#else
|
|
# error not supported
|
|
#endif
|
|
|
|
#define RANY(o) ((RVALUE*)(o))
|
|
|
|
struct RZombie {
|
|
struct RBasic basic;
|
|
VALUE next;
|
|
void (*dfree)(void *);
|
|
void *data;
|
|
};
|
|
|
|
#define RZOMBIE(o) ((struct RZombie *)(o))
|
|
|
|
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
|
|
|
|
#if RUBY_MARK_FREE_DEBUG
|
|
int ruby_gc_debug_indent = 0;
|
|
#endif
|
|
VALUE rb_mGC;
|
|
int ruby_disable_gc = 0;
|
|
int ruby_enable_autocompact = 0;
|
|
#if RGENGC_CHECK_MODE
|
|
gc_compact_compare_func ruby_autocompact_compare_func;
|
|
#endif
|
|
|
|
void rb_vm_update_references(void *ptr);
|
|
|
|
void rb_gcdebug_print_obj_condition(VALUE obj);
|
|
|
|
NORETURN(static void *gc_vraise(void *ptr));
|
|
NORETURN(static void gc_raise(VALUE exc, const char *fmt, ...));
|
|
NORETURN(static void negative_size_allocation_error(const char *));
|
|
|
|
static void init_mark_stack(mark_stack_t *stack);
|
|
static int garbage_collect(rb_objspace_t *, unsigned int reason);
|
|
|
|
static int gc_start(rb_objspace_t *objspace, unsigned int reason);
|
|
static void gc_rest(rb_objspace_t *objspace);
|
|
|
|
enum gc_enter_event {
|
|
gc_enter_event_start,
|
|
gc_enter_event_continue,
|
|
gc_enter_event_rest,
|
|
gc_enter_event_finalizer,
|
|
gc_enter_event_rb_memerror,
|
|
};
|
|
|
|
static inline void gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev);
|
|
static inline void gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev);
|
|
static void gc_marking_enter(rb_objspace_t *objspace);
|
|
static void gc_marking_exit(rb_objspace_t *objspace);
|
|
static void gc_sweeping_enter(rb_objspace_t *objspace);
|
|
static void gc_sweeping_exit(rb_objspace_t *objspace);
|
|
static bool gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap);
|
|
|
|
static void gc_sweep(rb_objspace_t *objspace);
|
|
static void gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool);
|
|
static void gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap);
|
|
|
|
static inline void gc_mark(rb_objspace_t *objspace, VALUE ptr);
|
|
static inline void gc_pin(rb_objspace_t *objspace, VALUE ptr);
|
|
static inline void gc_mark_and_pin(rb_objspace_t *objspace, VALUE ptr);
|
|
NO_SANITIZE("memory", static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr));
|
|
|
|
static int gc_mark_stacked_objects_incremental(rb_objspace_t *, size_t count);
|
|
NO_SANITIZE("memory", static inline int is_pointer_to_heap(rb_objspace_t *objspace, const void *ptr));
|
|
|
|
static size_t obj_memsize_of(VALUE obj, int use_all_types);
|
|
static void gc_verify_internal_consistency(rb_objspace_t *objspace);
|
|
|
|
static VALUE gc_disable_no_rest(rb_objspace_t *);
|
|
|
|
static double getrusage_time(void);
|
|
static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason);
|
|
static inline void gc_prof_timer_start(rb_objspace_t *);
|
|
static inline void gc_prof_timer_stop(rb_objspace_t *);
|
|
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
|
|
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
|
|
static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
|
|
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
|
|
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
|
|
static inline void gc_prof_set_heap_info(rb_objspace_t *);
|
|
|
|
#define TYPED_UPDATE_IF_MOVED(_objspace, _type, _thing) do { \
|
|
if (gc_object_moved_p((_objspace), (VALUE)(_thing))) { \
|
|
*(_type *)&(_thing) = (_type)RMOVED(_thing)->destination; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define UPDATE_IF_MOVED(_objspace, _thing) TYPED_UPDATE_IF_MOVED(_objspace, VALUE, _thing)
|
|
|
|
#define gc_prof_record(objspace) (objspace)->profile.current_record
|
|
#define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record)
|
|
|
|
#ifdef HAVE_VA_ARGS_MACRO
|
|
# define gc_report(level, objspace, ...) \
|
|
if (!RGENGC_DEBUG_ENABLED(level)) {} else gc_report_body(level, objspace, __VA_ARGS__)
|
|
#else
|
|
# define gc_report if (!RGENGC_DEBUG_ENABLED(0)) {} else gc_report_body
|
|
#endif
|
|
PRINTF_ARGS(static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4);
|
|
static const char *obj_info(VALUE obj);
|
|
static const char *obj_info_basic(VALUE obj);
|
|
static const char *obj_type_name(VALUE obj);
|
|
|
|
static void gc_finalize_deferred(void *dmy);
|
|
|
|
#if USE_TICK_T
|
|
/* the following code is only for internal tuning. */
|
|
|
|
/* Source code to use RDTSC is quoted and modified from
|
|
* https://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
|
* written by Kazutomo Yoshii <kazutomo@mcs.anl.gov>
|
|
*/
|
|
|
|
#if defined(__GNUC__) && defined(__i386__)
|
|
typedef unsigned long long tick_t;
|
|
#define PRItick "llu"
|
|
static inline tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long long int x;
|
|
__asm__ __volatile__ ("rdtsc" : "=A" (x));
|
|
return x;
|
|
}
|
|
|
|
#elif defined(__GNUC__) && defined(__x86_64__)
|
|
typedef unsigned long long tick_t;
|
|
#define PRItick "llu"
|
|
|
|
static __inline__ tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long hi, lo;
|
|
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
|
return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32);
|
|
}
|
|
|
|
#elif defined(__powerpc64__) && (GCC_VERSION_SINCE(4,8,0) || defined(__clang__))
|
|
typedef unsigned long long tick_t;
|
|
#define PRItick "llu"
|
|
|
|
static __inline__ tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long long val = __builtin_ppc_get_timebase();
|
|
return val;
|
|
}
|
|
|
|
/* Implementation for macOS PPC by @nobu
|
|
* See: https://github.com/ruby/ruby/pull/5975#discussion_r890045558
|
|
*/
|
|
#elif defined(__POWERPC__) && defined(__APPLE__)
|
|
typedef unsigned long long tick_t;
|
|
#define PRItick "llu"
|
|
|
|
static __inline__ tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long int upper, lower, tmp;
|
|
# define mftbu(r) __asm__ volatile("mftbu %0" : "=r"(r))
|
|
# define mftb(r) __asm__ volatile("mftb %0" : "=r"(r))
|
|
do {
|
|
mftbu(upper);
|
|
mftb(lower);
|
|
mftbu(tmp);
|
|
} while (tmp != upper);
|
|
return ((tick_t)upper << 32) | lower;
|
|
}
|
|
|
|
#elif defined(__aarch64__) && defined(__GNUC__)
|
|
typedef unsigned long tick_t;
|
|
#define PRItick "lu"
|
|
|
|
static __inline__ tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long val;
|
|
__asm__ __volatile__ ("mrs %0, cntvct_el0" : "=r" (val));
|
|
return val;
|
|
}
|
|
|
|
|
|
#elif defined(_WIN32) && defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
typedef unsigned __int64 tick_t;
|
|
#define PRItick "llu"
|
|
|
|
static inline tick_t
|
|
tick(void)
|
|
{
|
|
return __rdtsc();
|
|
}
|
|
|
|
#else /* use clock */
|
|
typedef clock_t tick_t;
|
|
#define PRItick "llu"
|
|
|
|
static inline tick_t
|
|
tick(void)
|
|
{
|
|
return clock();
|
|
}
|
|
#endif /* TSC */
|
|
#else /* USE_TICK_T */
|
|
#define MEASURE_LINE(expr) expr
|
|
#endif /* USE_TICK_T */
|
|
|
|
#define asan_unpoisoning_object(obj) \
|
|
for (void *poisoned = asan_unpoison_object_temporary(obj), \
|
|
*unpoisoning = &poisoned; /* flag to loop just once */ \
|
|
unpoisoning; \
|
|
unpoisoning = asan_poison_object_restore(obj, poisoned))
|
|
|
|
#define FL_CHECK2(name, x, pred) \
|
|
((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? \
|
|
(rb_bug(name": SPECIAL_CONST (%p)", (void *)(x)), 0) : (pred))
|
|
#define FL_TEST2(x,f) FL_CHECK2("FL_TEST2", x, FL_TEST_RAW((x),(f)) != 0)
|
|
#define FL_SET2(x,f) FL_CHECK2("FL_SET2", x, RBASIC(x)->flags |= (f))
|
|
#define FL_UNSET2(x,f) FL_CHECK2("FL_UNSET2", x, RBASIC(x)->flags &= ~(f))
|
|
|
|
static inline VALUE check_rvalue_consistency(const VALUE obj);
|
|
|
|
static inline int
|
|
RVALUE_MARKED(VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
return MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), (obj)) != 0;
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_PINNED(VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
|
|
return MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), (obj)) != 0;
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_WB_UNPROTECTED(VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
return MARKED_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), (obj)) != 0;
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_MARKING(VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
return MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), (obj)) != 0;
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_REMEMBERED(VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
return MARKED_IN_BITMAP(GET_HEAP_PAGE(obj)->remembered_bits, obj) != 0;
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_UNCOLLECTIBLE(VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
return MARKED_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), (obj)) != 0;
|
|
}
|
|
|
|
#define RVALUE_PAGE_MARKED(page, obj) MARKED_IN_BITMAP((page)->mark_bits, (obj))
|
|
#define RVALUE_PAGE_WB_UNPROTECTED(page, obj) MARKED_IN_BITMAP((page)->wb_unprotected_bits, (obj))
|
|
#define RVALUE_PAGE_UNCOLLECTIBLE(page, obj) MARKED_IN_BITMAP((page)->uncollectible_bits, (obj))
|
|
#define RVALUE_PAGE_MARKING(page, obj) MARKED_IN_BITMAP((page)->marking_bits, (obj))
|
|
|
|
static int rgengc_remember(rb_objspace_t *objspace, VALUE obj);
|
|
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
|
|
static int
|
|
check_rvalue_consistency_force(const VALUE obj, int terminate)
|
|
{
|
|
int err = 0;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
RB_VM_LOCK_ENTER_NO_BARRIER();
|
|
{
|
|
if (SPECIAL_CONST_P(obj)) {
|
|
fprintf(stderr, "check_rvalue_consistency: %p is a special const.\n", (void *)obj);
|
|
err++;
|
|
}
|
|
else if (!is_pointer_to_heap(objspace, (void *)obj)) {
|
|
/* check if it is in tomb_pages */
|
|
struct heap_page *page = NULL;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
ccan_list_for_each(&size_pool->tomb_heap.pages, page, page_node) {
|
|
if (page->start <= (uintptr_t)obj &&
|
|
(uintptr_t)obj < (page->start + (page->total_slots * size_pool->slot_size))) {
|
|
fprintf(stderr, "check_rvalue_consistency: %p is in a tomb_heap (%p).\n",
|
|
(void *)obj, (void *)page);
|
|
err++;
|
|
goto skip;
|
|
}
|
|
}
|
|
}
|
|
bp();
|
|
fprintf(stderr, "check_rvalue_consistency: %p is not a Ruby object.\n", (void *)obj);
|
|
err++;
|
|
skip:
|
|
;
|
|
}
|
|
else {
|
|
const int wb_unprotected_bit = RVALUE_WB_UNPROTECTED(obj);
|
|
const int uncollectible_bit = RVALUE_UNCOLLECTIBLE(obj) != 0;
|
|
const int mark_bit = RVALUE_MARKED(obj);
|
|
const int marking_bit = RVALUE_MARKING(obj);
|
|
const int remembered_bit = MARKED_IN_BITMAP(GET_HEAP_PAGE(obj)->remembered_bits, obj) != 0;
|
|
const int age = RVALUE_AGE_GET((VALUE)obj);
|
|
|
|
if (GET_HEAP_PAGE(obj)->flags.in_tomb) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is in tomb page.\n", obj_info(obj));
|
|
err++;
|
|
}
|
|
if (BUILTIN_TYPE(obj) == T_NONE) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is T_NONE.\n", obj_info(obj));
|
|
err++;
|
|
}
|
|
if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is T_ZOMBIE.\n", obj_info(obj));
|
|
err++;
|
|
}
|
|
|
|
obj_memsize_of((VALUE)obj, FALSE);
|
|
|
|
/* check generation
|
|
*
|
|
* OLD == age == 3 && old-bitmap && mark-bit (except incremental marking)
|
|
*/
|
|
if (age > 0 && wb_unprotected_bit) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is not WB protected, but age is %d > 0.\n", obj_info(obj), age);
|
|
err++;
|
|
}
|
|
|
|
if (!is_marking(objspace) && uncollectible_bit && !mark_bit) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but is not marked while !gc.\n", obj_info(obj));
|
|
err++;
|
|
}
|
|
|
|
if (!is_full_marking(objspace)) {
|
|
if (uncollectible_bit && age != RVALUE_OLD_AGE && !wb_unprotected_bit) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but not old (age: %d) and not WB unprotected.\n",
|
|
obj_info(obj), age);
|
|
err++;
|
|
}
|
|
if (remembered_bit && age != RVALUE_OLD_AGE) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is remembered, but not old (age: %d).\n",
|
|
obj_info(obj), age);
|
|
err++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check coloring
|
|
*
|
|
* marking:false marking:true
|
|
* marked:false white *invalid*
|
|
* marked:true black grey
|
|
*/
|
|
if (is_incremental_marking(objspace) && marking_bit) {
|
|
if (!is_marking(objspace) && !mark_bit) {
|
|
fprintf(stderr, "check_rvalue_consistency: %s is marking, but not marked.\n", obj_info(obj));
|
|
err++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
RB_VM_LOCK_LEAVE_NO_BARRIER();
|
|
|
|
if (err > 0 && terminate) {
|
|
rb_bug("check_rvalue_consistency_force: there is %d errors.", err);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE == 0
|
|
static inline VALUE
|
|
check_rvalue_consistency(const VALUE obj)
|
|
{
|
|
return obj;
|
|
}
|
|
#else
|
|
static VALUE
|
|
check_rvalue_consistency(const VALUE obj)
|
|
{
|
|
check_rvalue_consistency_force(obj, TRUE);
|
|
return obj;
|
|
}
|
|
#endif
|
|
|
|
static inline int
|
|
gc_object_moved_p(rb_objspace_t * objspace, VALUE obj)
|
|
{
|
|
if (RB_SPECIAL_CONST_P(obj)) {
|
|
return FALSE;
|
|
}
|
|
else {
|
|
void *poisoned = asan_unpoison_object_temporary(obj);
|
|
|
|
int ret = BUILTIN_TYPE(obj) == T_MOVED;
|
|
/* Re-poison slot if it's not the one we want */
|
|
if (poisoned) {
|
|
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
|
|
asan_poison_object(obj);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_OLD_P(VALUE obj)
|
|
{
|
|
GC_ASSERT(!RB_SPECIAL_CONST_P(obj));
|
|
check_rvalue_consistency(obj);
|
|
// Because this will only ever be called on GC controlled objects,
|
|
// we can use the faster _RAW function here
|
|
return RB_OBJ_PROMOTED_RAW(obj);
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
|
|
{
|
|
MARK_IN_BITMAP(&page->uncollectible_bits[0], obj);
|
|
objspace->rgengc.old_objects++;
|
|
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.total_promoted_count++;
|
|
objspace->profile.promoted_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
RB_DEBUG_COUNTER_INC(obj_promote);
|
|
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, GET_HEAP_PAGE(obj), obj);
|
|
}
|
|
|
|
/* set age to age+1 */
|
|
static inline void
|
|
RVALUE_AGE_INC(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
int age = RVALUE_AGE_GET((VALUE)obj);
|
|
|
|
if (RGENGC_CHECK_MODE && age == RVALUE_OLD_AGE) {
|
|
rb_bug("RVALUE_AGE_INC: can not increment age of OLD object %s.", obj_info(obj));
|
|
}
|
|
|
|
age++;
|
|
RVALUE_AGE_SET(obj, age);
|
|
|
|
if (age == RVALUE_OLD_AGE) {
|
|
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj);
|
|
}
|
|
|
|
check_rvalue_consistency(obj);
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_AGE_SET_CANDIDATE(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
GC_ASSERT(!RVALUE_OLD_P(obj));
|
|
RVALUE_AGE_SET(obj, RVALUE_OLD_AGE - 1);
|
|
check_rvalue_consistency(obj);
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_AGE_RESET(VALUE obj)
|
|
{
|
|
RVALUE_AGE_SET(obj, 0);
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_DEMOTE(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
GC_ASSERT(RVALUE_OLD_P(obj));
|
|
|
|
if (!is_incremental_marking(objspace) && RVALUE_REMEMBERED(obj)) {
|
|
CLEAR_IN_BITMAP(GET_HEAP_PAGE(obj)->remembered_bits, obj);
|
|
}
|
|
|
|
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj);
|
|
RVALUE_AGE_RESET(obj);
|
|
|
|
if (RVALUE_MARKED(obj)) {
|
|
objspace->rgengc.old_objects--;
|
|
}
|
|
|
|
check_rvalue_consistency(obj);
|
|
}
|
|
|
|
static inline int
|
|
RVALUE_BLACK_P(VALUE obj)
|
|
{
|
|
return RVALUE_MARKED(obj) && !RVALUE_MARKING(obj);
|
|
}
|
|
|
|
#if 0
|
|
static inline int
|
|
RVALUE_GREY_P(VALUE obj)
|
|
{
|
|
return RVALUE_MARKED(obj) && RVALUE_MARKING(obj);
|
|
}
|
|
#endif
|
|
|
|
static inline int
|
|
RVALUE_WHITE_P(VALUE obj)
|
|
{
|
|
return RVALUE_MARKED(obj) == FALSE;
|
|
}
|
|
|
|
/*
|
|
--------------------------- ObjectSpace -----------------------------
|
|
*/
|
|
|
|
static inline void *
|
|
calloc1(size_t n)
|
|
{
|
|
return calloc(1, n);
|
|
}
|
|
|
|
static VALUE initial_stress = Qfalse;
|
|
|
|
void
|
|
rb_gc_initial_stress_set(VALUE flag)
|
|
{
|
|
initial_stress = flag;
|
|
}
|
|
|
|
static void *rb_gc_impl_objspace_alloc(void);
|
|
|
|
#if USE_SHARED_GC
|
|
# include "dln.h"
|
|
|
|
# define RUBY_GC_LIBRARY_PATH "RUBY_GC_LIBRARY_PATH"
|
|
|
|
void
|
|
ruby_external_gc_init(void)
|
|
{
|
|
char *gc_so_path = getenv(RUBY_GC_LIBRARY_PATH);
|
|
void *handle = NULL;
|
|
if (gc_so_path && dln_supported_p()) {
|
|
char error[1024];
|
|
handle = dln_open(gc_so_path, error, sizeof(error));
|
|
if (!handle) {
|
|
fprintf(stderr, "%s", error);
|
|
rb_bug("ruby_external_gc_init: Shared library %s cannot be opened", gc_so_path);
|
|
}
|
|
}
|
|
|
|
# define load_external_gc_func(name) do { \
|
|
if (handle) { \
|
|
rb_gc_functions->name = dln_symbol(handle, "rb_gc_impl_" #name); \
|
|
if (!rb_gc_functions->name) { \
|
|
rb_bug("ruby_external_gc_init: " #name " func not exported by library %s", gc_so_path); \
|
|
} \
|
|
} \
|
|
else { \
|
|
rb_gc_functions->name = rb_gc_impl_##name; \
|
|
} \
|
|
} while (0)
|
|
|
|
load_external_gc_func(objspace_alloc);
|
|
|
|
# undef load_external_gc_func
|
|
}
|
|
|
|
# define rb_gc_impl_objspace_alloc rb_gc_functions->objspace_alloc
|
|
#endif
|
|
|
|
rb_objspace_t *
|
|
rb_objspace_alloc(void)
|
|
{
|
|
#if USE_SHARED_GC
|
|
ruby_external_gc_init();
|
|
#endif
|
|
return (rb_objspace_t *)rb_gc_impl_objspace_alloc();
|
|
}
|
|
|
|
#if USE_SHARED_GC
|
|
# undef rb_gc_impl_objspace_alloc
|
|
#endif
|
|
|
|
static void free_stack_chunks(mark_stack_t *);
|
|
static void mark_stack_free_cache(mark_stack_t *);
|
|
static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page);
|
|
|
|
void
|
|
rb_objspace_free(rb_objspace_t *objspace)
|
|
{
|
|
if (is_lazy_sweeping(objspace))
|
|
rb_bug("lazy sweeping underway when freeing object space");
|
|
|
|
free(objspace->profile.records);
|
|
objspace->profile.records = NULL;
|
|
|
|
if (heap_pages_sorted) {
|
|
size_t i;
|
|
size_t total_heap_pages = heap_allocated_pages;
|
|
for (i = 0; i < total_heap_pages; ++i) {
|
|
heap_page_free(objspace, heap_pages_sorted[i]);
|
|
}
|
|
free(heap_pages_sorted);
|
|
heap_allocated_pages = 0;
|
|
heap_pages_sorted_length = 0;
|
|
heap_pages_lomem = 0;
|
|
heap_pages_himem = 0;
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
SIZE_POOL_EDEN_HEAP(size_pool)->total_pages = 0;
|
|
SIZE_POOL_EDEN_HEAP(size_pool)->total_slots = 0;
|
|
}
|
|
}
|
|
st_free_table(objspace->id_to_obj_tbl);
|
|
st_free_table(objspace->obj_to_id_tbl);
|
|
|
|
free_stack_chunks(&objspace->mark_stack);
|
|
mark_stack_free_cache(&objspace->mark_stack);
|
|
|
|
rb_darray_free(objspace->weak_references);
|
|
|
|
free(objspace);
|
|
}
|
|
|
|
static void
|
|
heap_pages_expand_sorted_to(rb_objspace_t *objspace, size_t next_length)
|
|
{
|
|
struct heap_page **sorted;
|
|
size_t size = size_mul_or_raise(next_length, sizeof(struct heap_page *), rb_eRuntimeError);
|
|
|
|
gc_report(3, objspace, "heap_pages_expand_sorted: next_length: %"PRIdSIZE", size: %"PRIdSIZE"\n",
|
|
next_length, size);
|
|
|
|
if (heap_pages_sorted_length > 0) {
|
|
sorted = (struct heap_page **)realloc(heap_pages_sorted, size);
|
|
if (sorted) heap_pages_sorted = sorted;
|
|
}
|
|
else {
|
|
sorted = heap_pages_sorted = (struct heap_page **)malloc(size);
|
|
}
|
|
|
|
if (sorted == 0) {
|
|
rb_memerror();
|
|
}
|
|
|
|
heap_pages_sorted_length = next_length;
|
|
}
|
|
|
|
static void
|
|
heap_pages_expand_sorted(rb_objspace_t *objspace)
|
|
{
|
|
/* usually heap_allocatable_pages + heap_eden->total_pages == heap_pages_sorted_length
|
|
* because heap_allocatable_pages contains heap_tomb->total_pages (recycle heap_tomb pages).
|
|
* however, if there are pages which do not have empty slots, then try to create new pages
|
|
* so that the additional allocatable_pages counts (heap_tomb->total_pages) are added.
|
|
*/
|
|
size_t next_length = heap_allocatable_pages(objspace);
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
next_length += SIZE_POOL_EDEN_HEAP(size_pool)->total_pages;
|
|
next_length += SIZE_POOL_TOMB_HEAP(size_pool)->total_pages;
|
|
}
|
|
|
|
if (next_length > heap_pages_sorted_length) {
|
|
heap_pages_expand_sorted_to(objspace, next_length);
|
|
}
|
|
|
|
GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length);
|
|
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length);
|
|
}
|
|
|
|
static void
|
|
size_pool_allocatable_pages_set(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t s)
|
|
{
|
|
size_pool->allocatable_pages = s;
|
|
heap_pages_expand_sorted(objspace);
|
|
}
|
|
|
|
static inline void
|
|
heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
|
|
{
|
|
ASSERT_vm_locking();
|
|
|
|
RVALUE *p = (RVALUE *)obj;
|
|
|
|
asan_unpoison_object(obj, false);
|
|
|
|
asan_unlock_freelist(page);
|
|
|
|
p->as.free.flags = 0;
|
|
p->as.free.next = page->freelist;
|
|
page->freelist = p;
|
|
asan_lock_freelist(page);
|
|
|
|
RVALUE_AGE_RESET(obj);
|
|
|
|
if (RGENGC_CHECK_MODE &&
|
|
/* obj should belong to page */
|
|
!(page->start <= (uintptr_t)obj &&
|
|
(uintptr_t)obj < ((uintptr_t)page->start + (page->total_slots * page->slot_size)) &&
|
|
obj % BASE_SLOT_SIZE == 0)) {
|
|
rb_bug("heap_page_add_freeobj: %p is not rvalue.", (void *)p);
|
|
}
|
|
|
|
asan_poison_object(obj);
|
|
gc_report(3, objspace, "heap_page_add_freeobj: add %p to freelist\n", (void *)obj);
|
|
}
|
|
|
|
static inline void
|
|
heap_add_freepage(rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
asan_unlock_freelist(page);
|
|
GC_ASSERT(page->free_slots != 0);
|
|
GC_ASSERT(page->freelist != NULL);
|
|
|
|
page->free_next = heap->free_pages;
|
|
heap->free_pages = page;
|
|
|
|
RUBY_DEBUG_LOG("page:%p freelist:%p", (void *)page, (void *)page->freelist);
|
|
|
|
asan_lock_freelist(page);
|
|
}
|
|
|
|
static inline void
|
|
heap_add_poolpage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
asan_unlock_freelist(page);
|
|
GC_ASSERT(page->free_slots != 0);
|
|
GC_ASSERT(page->freelist != NULL);
|
|
|
|
page->free_next = heap->pooled_pages;
|
|
heap->pooled_pages = page;
|
|
objspace->rincgc.pooled_slots += page->free_slots;
|
|
|
|
asan_lock_freelist(page);
|
|
}
|
|
|
|
static void
|
|
heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
ccan_list_del(&page->page_node);
|
|
heap->total_pages--;
|
|
heap->total_slots -= page->total_slots;
|
|
}
|
|
|
|
static void rb_aligned_free(void *ptr, size_t size);
|
|
|
|
static void
|
|
heap_page_body_free(struct heap_page_body *page_body)
|
|
{
|
|
GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0);
|
|
|
|
if (HEAP_PAGE_ALLOC_USE_MMAP) {
|
|
#ifdef HAVE_MMAP
|
|
GC_ASSERT(HEAP_PAGE_SIZE % sysconf(_SC_PAGE_SIZE) == 0);
|
|
if (munmap(page_body, HEAP_PAGE_SIZE)) {
|
|
rb_bug("heap_page_body_free: munmap failed");
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
rb_aligned_free(page_body, HEAP_PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
heap_page_free(rb_objspace_t *objspace, struct heap_page *page)
|
|
{
|
|
heap_allocated_pages--;
|
|
page->size_pool->total_freed_pages++;
|
|
heap_page_body_free(GET_PAGE_BODY(page->start));
|
|
free(page);
|
|
}
|
|
|
|
static void *
|
|
rb_aligned_malloc(size_t alignment, size_t size)
|
|
{
|
|
/* alignment must be a power of 2 */
|
|
GC_ASSERT(((alignment - 1) & alignment) == 0);
|
|
GC_ASSERT(alignment % sizeof(void*) == 0);
|
|
|
|
void *res;
|
|
|
|
#if defined __MINGW32__
|
|
res = __mingw_aligned_malloc(size, alignment);
|
|
#elif defined _WIN32
|
|
void *_aligned_malloc(size_t, size_t);
|
|
res = _aligned_malloc(size, alignment);
|
|
#elif defined(HAVE_POSIX_MEMALIGN)
|
|
if (posix_memalign(&res, alignment, size) != 0) {
|
|
return NULL;
|
|
}
|
|
#elif defined(HAVE_MEMALIGN)
|
|
res = memalign(alignment, size);
|
|
#else
|
|
char* aligned;
|
|
res = malloc(alignment + size + sizeof(void*));
|
|
aligned = (char*)res + alignment + sizeof(void*);
|
|
aligned -= ((VALUE)aligned & (alignment - 1));
|
|
((void**)aligned)[-1] = res;
|
|
res = (void*)aligned;
|
|
#endif
|
|
|
|
GC_ASSERT((uintptr_t)res % alignment == 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
heap_pages_free_unused_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t i, j;
|
|
|
|
bool has_pages_in_tomb_heap = FALSE;
|
|
for (i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
if (!ccan_list_empty(&SIZE_POOL_TOMB_HEAP(&size_pools[i])->pages)) {
|
|
has_pages_in_tomb_heap = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (has_pages_in_tomb_heap) {
|
|
for (i = j = 0; j < heap_allocated_pages; i++) {
|
|
struct heap_page *page = heap_pages_sorted[i];
|
|
|
|
if (page->flags.in_tomb && page->free_slots == page->total_slots) {
|
|
heap_unlink_page(objspace, SIZE_POOL_TOMB_HEAP(page->size_pool), page);
|
|
heap_page_free(objspace, page);
|
|
}
|
|
else {
|
|
if (i != j) {
|
|
heap_pages_sorted[j] = page;
|
|
}
|
|
j++;
|
|
}
|
|
}
|
|
|
|
struct heap_page *hipage = heap_pages_sorted[heap_allocated_pages - 1];
|
|
uintptr_t himem = (uintptr_t)hipage->start + (hipage->total_slots * hipage->slot_size);
|
|
GC_ASSERT(himem <= heap_pages_himem);
|
|
heap_pages_himem = himem;
|
|
|
|
struct heap_page *lopage = heap_pages_sorted[0];
|
|
uintptr_t lomem = (uintptr_t)lopage->start;
|
|
GC_ASSERT(lomem >= heap_pages_lomem);
|
|
heap_pages_lomem = lomem;
|
|
|
|
GC_ASSERT(j == heap_allocated_pages);
|
|
}
|
|
}
|
|
|
|
static struct heap_page_body *
|
|
heap_page_body_allocate(void)
|
|
{
|
|
struct heap_page_body *page_body;
|
|
|
|
if (HEAP_PAGE_ALLOC_USE_MMAP) {
|
|
#ifdef HAVE_MMAP
|
|
GC_ASSERT(HEAP_PAGE_ALIGN % sysconf(_SC_PAGE_SIZE) == 0);
|
|
|
|
char *ptr = mmap(NULL, HEAP_PAGE_ALIGN + HEAP_PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (ptr == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
|
|
char *aligned = ptr + HEAP_PAGE_ALIGN;
|
|
aligned -= ((VALUE)aligned & (HEAP_PAGE_ALIGN - 1));
|
|
GC_ASSERT(aligned > ptr);
|
|
GC_ASSERT(aligned <= ptr + HEAP_PAGE_ALIGN);
|
|
|
|
size_t start_out_of_range_size = aligned - ptr;
|
|
GC_ASSERT(start_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0);
|
|
if (start_out_of_range_size > 0) {
|
|
if (munmap(ptr, start_out_of_range_size)) {
|
|
rb_bug("heap_page_body_allocate: munmap failed for start");
|
|
}
|
|
}
|
|
|
|
size_t end_out_of_range_size = HEAP_PAGE_ALIGN - start_out_of_range_size;
|
|
GC_ASSERT(end_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0);
|
|
if (end_out_of_range_size > 0) {
|
|
if (munmap(aligned + HEAP_PAGE_SIZE, end_out_of_range_size)) {
|
|
rb_bug("heap_page_body_allocate: munmap failed for end");
|
|
}
|
|
}
|
|
|
|
page_body = (struct heap_page_body *)aligned;
|
|
#endif
|
|
}
|
|
else {
|
|
page_body = rb_aligned_malloc(HEAP_PAGE_ALIGN, HEAP_PAGE_SIZE);
|
|
}
|
|
|
|
GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0);
|
|
|
|
return page_body;
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_page_allocate(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
|
|
{
|
|
uintptr_t start, end, p;
|
|
struct heap_page *page;
|
|
uintptr_t hi, lo, mid;
|
|
size_t stride = size_pool->slot_size;
|
|
unsigned int limit = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)))/(int)stride;
|
|
|
|
/* assign heap_page body (contains heap_page_header and RVALUEs) */
|
|
struct heap_page_body *page_body = heap_page_body_allocate();
|
|
if (page_body == 0) {
|
|
rb_memerror();
|
|
}
|
|
|
|
/* assign heap_page entry */
|
|
page = calloc1(sizeof(struct heap_page));
|
|
if (page == 0) {
|
|
heap_page_body_free(page_body);
|
|
rb_memerror();
|
|
}
|
|
|
|
/* adjust obj_limit (object number available in this page) */
|
|
start = (uintptr_t)((VALUE)page_body + sizeof(struct heap_page_header));
|
|
|
|
if (start % BASE_SLOT_SIZE != 0) {
|
|
int delta = BASE_SLOT_SIZE - (start % BASE_SLOT_SIZE);
|
|
start = start + delta;
|
|
GC_ASSERT(NUM_IN_PAGE(start) == 0 || NUM_IN_PAGE(start) == 1);
|
|
|
|
/* Find a num in page that is evenly divisible by `stride`.
|
|
* This is to ensure that objects are aligned with bit planes.
|
|
* In other words, ensure there are an even number of objects
|
|
* per bit plane. */
|
|
if (NUM_IN_PAGE(start) == 1) {
|
|
start += stride - BASE_SLOT_SIZE;
|
|
}
|
|
|
|
GC_ASSERT(NUM_IN_PAGE(start) * BASE_SLOT_SIZE % stride == 0);
|
|
|
|
limit = (HEAP_PAGE_SIZE - (int)(start - (uintptr_t)page_body))/(int)stride;
|
|
}
|
|
end = start + (limit * (int)stride);
|
|
|
|
/* setup heap_pages_sorted */
|
|
lo = 0;
|
|
hi = (uintptr_t)heap_allocated_pages;
|
|
while (lo < hi) {
|
|
struct heap_page *mid_page;
|
|
|
|
mid = (lo + hi) / 2;
|
|
mid_page = heap_pages_sorted[mid];
|
|
if ((uintptr_t)mid_page->start < start) {
|
|
lo = mid + 1;
|
|
}
|
|
else if ((uintptr_t)mid_page->start > start) {
|
|
hi = mid;
|
|
}
|
|
else {
|
|
rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid);
|
|
}
|
|
}
|
|
|
|
if (hi < (uintptr_t)heap_allocated_pages) {
|
|
MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_allocated_pages - hi);
|
|
}
|
|
|
|
heap_pages_sorted[hi] = page;
|
|
|
|
heap_allocated_pages++;
|
|
|
|
GC_ASSERT(heap_eden_total_pages(objspace) + heap_allocatable_pages(objspace) <= heap_pages_sorted_length);
|
|
GC_ASSERT(heap_eden_total_pages(objspace) + heap_tomb_total_pages(objspace) == heap_allocated_pages - 1);
|
|
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length);
|
|
|
|
size_pool->total_allocated_pages++;
|
|
|
|
if (heap_allocated_pages > heap_pages_sorted_length) {
|
|
rb_bug("heap_page_allocate: allocated(%"PRIdSIZE") > sorted(%"PRIdSIZE")",
|
|
heap_allocated_pages, heap_pages_sorted_length);
|
|
}
|
|
|
|
if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start;
|
|
if (heap_pages_himem < end) heap_pages_himem = end;
|
|
|
|
page->start = start;
|
|
page->total_slots = limit;
|
|
page->slot_size = size_pool->slot_size;
|
|
page->size_pool = size_pool;
|
|
page_body->header.page = page;
|
|
|
|
for (p = start; p != end; p += stride) {
|
|
gc_report(3, objspace, "assign_heap_page: %p is added to freelist\n", (void *)p);
|
|
heap_page_add_freeobj(objspace, page, (VALUE)p);
|
|
}
|
|
page->free_slots = limit;
|
|
|
|
asan_lock_freelist(page);
|
|
return page;
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_page_resurrect(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
|
|
{
|
|
struct heap_page *page = 0, *next;
|
|
|
|
ccan_list_for_each_safe(&SIZE_POOL_TOMB_HEAP(size_pool)->pages, page, next, page_node) {
|
|
asan_unlock_freelist(page);
|
|
if (page->freelist != NULL) {
|
|
heap_unlink_page(objspace, &size_pool->tomb_heap, page);
|
|
asan_lock_freelist(page);
|
|
return page;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_page_create(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
|
|
{
|
|
struct heap_page *page;
|
|
const char *method = "recycle";
|
|
|
|
size_pool->allocatable_pages--;
|
|
|
|
page = heap_page_resurrect(objspace, size_pool);
|
|
|
|
if (page == NULL) {
|
|
page = heap_page_allocate(objspace, size_pool);
|
|
method = "allocate";
|
|
}
|
|
if (0) fprintf(stderr, "heap_page_create: %s - %p, "
|
|
"heap_allocated_pages: %"PRIdSIZE", "
|
|
"heap_allocated_pages: %"PRIdSIZE", "
|
|
"tomb->total_pages: %"PRIdSIZE"\n",
|
|
method, (void *)page, heap_pages_sorted_length, heap_allocated_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages);
|
|
return page;
|
|
}
|
|
|
|
static void
|
|
heap_add_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
/* Adding to eden heap during incremental sweeping is forbidden */
|
|
GC_ASSERT(!(heap == SIZE_POOL_EDEN_HEAP(size_pool) && heap->sweeping_page));
|
|
page->flags.in_tomb = (heap == SIZE_POOL_TOMB_HEAP(size_pool));
|
|
ccan_list_add_tail(&heap->pages, &page->page_node);
|
|
heap->total_pages++;
|
|
heap->total_slots += page->total_slots;
|
|
}
|
|
|
|
static void
|
|
heap_assign_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page = heap_page_create(objspace, size_pool);
|
|
heap_add_page(objspace, size_pool, heap, page);
|
|
heap_add_freepage(heap, page);
|
|
}
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void
|
|
heap_add_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, size_t add)
|
|
{
|
|
size_t i;
|
|
|
|
size_pool_allocatable_pages_set(objspace, size_pool, add);
|
|
|
|
for (i = 0; i < add; i++) {
|
|
heap_assign_page(objspace, size_pool, heap);
|
|
}
|
|
|
|
GC_ASSERT(size_pool->allocatable_pages == 0);
|
|
}
|
|
#endif
|
|
|
|
static size_t
|
|
slots_to_pages_for_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t slots)
|
|
{
|
|
size_t multiple = size_pool->slot_size / BASE_SLOT_SIZE;
|
|
/* Due to alignment, heap pages may have one less slot. We should
|
|
* ensure there is enough pages to guarantee that we will have at
|
|
* least the required number of slots after allocating all the pages. */
|
|
size_t slots_per_page = (HEAP_PAGE_OBJ_LIMIT / multiple) - 1;
|
|
return CEILDIV(slots, slots_per_page);
|
|
}
|
|
|
|
static size_t
|
|
minimum_pages_for_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
|
|
{
|
|
size_t size_pool_idx = size_pool - size_pools;
|
|
size_t init_slots = gc_params.size_pool_init_slots[size_pool_idx];
|
|
return slots_to_pages_for_size_pool(objspace, size_pool, init_slots);
|
|
}
|
|
|
|
static size_t
|
|
heap_extend_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t free_slots, size_t total_slots, size_t used)
|
|
{
|
|
double goal_ratio = gc_params.heap_free_slots_goal_ratio;
|
|
size_t next_used;
|
|
|
|
if (goal_ratio == 0.0) {
|
|
next_used = (size_t)(used * gc_params.growth_factor);
|
|
}
|
|
else if (total_slots == 0) {
|
|
next_used = minimum_pages_for_size_pool(objspace, size_pool);
|
|
}
|
|
else {
|
|
/* Find `f' where free_slots = f * total_slots * goal_ratio
|
|
* => f = (total_slots - free_slots) / ((1 - goal_ratio) * total_slots)
|
|
*/
|
|
double f = (double)(total_slots - free_slots) / ((1 - goal_ratio) * total_slots);
|
|
|
|
if (f > gc_params.growth_factor) f = gc_params.growth_factor;
|
|
if (f < 1.0) f = 1.1;
|
|
|
|
next_used = (size_t)(f * used);
|
|
|
|
if (0) {
|
|
fprintf(stderr,
|
|
"free_slots(%8"PRIuSIZE")/total_slots(%8"PRIuSIZE")=%1.2f,"
|
|
" G(%1.2f), f(%1.2f),"
|
|
" used(%8"PRIuSIZE") => next_used(%8"PRIuSIZE")\n",
|
|
free_slots, total_slots, free_slots/(double)total_slots,
|
|
goal_ratio, f, used, next_used);
|
|
}
|
|
}
|
|
|
|
if (gc_params.growth_max_slots > 0) {
|
|
size_t max_used = (size_t)(used + gc_params.growth_max_slots/HEAP_PAGE_OBJ_LIMIT);
|
|
if (next_used > max_used) next_used = max_used;
|
|
}
|
|
|
|
size_t extend_page_count = next_used - used;
|
|
/* Extend by at least 1 page. */
|
|
if (extend_page_count == 0) extend_page_count = 1;
|
|
|
|
return extend_page_count;
|
|
}
|
|
|
|
static int
|
|
heap_increment(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
if (size_pool->allocatable_pages > 0) {
|
|
gc_report(1, objspace, "heap_increment: heap_pages_sorted_length: %"PRIdSIZE", "
|
|
"heap_pages_inc: %"PRIdSIZE", heap->total_pages: %"PRIdSIZE"\n",
|
|
heap_pages_sorted_length, size_pool->allocatable_pages, heap->total_pages);
|
|
|
|
GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length);
|
|
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length);
|
|
|
|
heap_assign_page(objspace, size_pool, heap);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static void
|
|
gc_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
unsigned int lock_lev;
|
|
gc_enter(objspace, gc_enter_event_continue, &lock_lev);
|
|
|
|
/* Continue marking if in incremental marking. */
|
|
if (is_incremental_marking(objspace)) {
|
|
if (gc_marks_continue(objspace, size_pool, heap)) {
|
|
gc_sweep(objspace);
|
|
}
|
|
}
|
|
|
|
/* Continue sweeping if in lazy sweeping or the previous incremental
|
|
* marking finished and did not yield a free page. */
|
|
if (heap->free_pages == NULL && is_lazy_sweeping(objspace)) {
|
|
gc_sweep_continue(objspace, size_pool, heap);
|
|
}
|
|
|
|
gc_exit(objspace, gc_enter_event_continue, &lock_lev);
|
|
}
|
|
|
|
static void
|
|
heap_prepare(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
GC_ASSERT(heap->free_pages == NULL);
|
|
|
|
/* Continue incremental marking or lazy sweeping, if in any of those steps. */
|
|
gc_continue(objspace, size_pool, heap);
|
|
|
|
/* If we still don't have a free page and not allowed to create a new page,
|
|
* we should start a new GC cycle. */
|
|
if (heap->free_pages == NULL &&
|
|
(will_be_incremental_marking(objspace) ||
|
|
(heap_increment(objspace, size_pool, heap) == FALSE))) {
|
|
if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) {
|
|
rb_memerror();
|
|
}
|
|
else {
|
|
/* Do steps of incremental marking or lazy sweeping if the GC run permits. */
|
|
gc_continue(objspace, size_pool, heap);
|
|
|
|
/* If we're not incremental marking (e.g. a minor GC) or finished
|
|
* sweeping and still don't have a free page, then
|
|
* gc_sweep_finish_size_pool should allow us to create a new page. */
|
|
if (heap->free_pages == NULL && !heap_increment(objspace, size_pool, heap)) {
|
|
if (gc_needs_major_flags == GPR_FLAG_NONE) {
|
|
rb_bug("cannot create a new page after GC");
|
|
}
|
|
else { // Major GC is required, which will allow us to create new page
|
|
if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) {
|
|
rb_memerror();
|
|
}
|
|
else {
|
|
/* Do steps of incremental marking or lazy sweeping. */
|
|
gc_continue(objspace, size_pool, heap);
|
|
|
|
if (heap->free_pages == NULL &&
|
|
!heap_increment(objspace, size_pool, heap)) {
|
|
rb_bug("cannot create a new page after major GC");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
GC_ASSERT(heap->free_pages != NULL);
|
|
}
|
|
|
|
void
|
|
rb_objspace_set_event_hook(const rb_event_flag_t event)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
|
|
objspace->flags.has_newobj_hook = !!(objspace->hook_events & RUBY_INTERNAL_EVENT_NEWOBJ);
|
|
}
|
|
|
|
static void
|
|
gc_event_hook_body(rb_execution_context_t *ec, rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data)
|
|
{
|
|
if (UNLIKELY(!ec->cfp)) return;
|
|
EXEC_EVENT_HOOK(ec, event, ec->cfp->self, 0, 0, 0, data);
|
|
}
|
|
|
|
#define gc_event_newobj_hook_needed_p(objspace) ((objspace)->flags.has_newobj_hook)
|
|
#define gc_event_hook_needed_p(objspace, event) ((objspace)->hook_events & (event))
|
|
|
|
#define gc_event_hook_prep(objspace, event, data, prep) do { \
|
|
if (UNLIKELY(gc_event_hook_needed_p(objspace, event))) { \
|
|
prep; \
|
|
gc_event_hook_body(GET_EC(), (objspace), (event), (data)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define gc_event_hook(objspace, event, data) gc_event_hook_prep(objspace, event, data, (void)0)
|
|
|
|
static inline VALUE
|
|
newobj_init(VALUE klass, VALUE flags, int wb_protected, rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
#if !__has_feature(memory_sanitizer)
|
|
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
|
|
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
|
|
#endif
|
|
RVALUE *p = RANY(obj);
|
|
p->as.basic.flags = flags;
|
|
*((VALUE *)&p->as.basic.klass) = klass;
|
|
|
|
int t = flags & RUBY_T_MASK;
|
|
if (t == T_CLASS || t == T_MODULE || t == T_ICLASS) {
|
|
RVALUE_AGE_SET_CANDIDATE(objspace, obj);
|
|
}
|
|
|
|
#if RACTOR_CHECK_MODE
|
|
rb_ractor_setup_belonging(obj);
|
|
#endif
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
p->as.values.v1 = p->as.values.v2 = p->as.values.v3 = 0;
|
|
|
|
RB_VM_LOCK_ENTER_NO_BARRIER();
|
|
{
|
|
check_rvalue_consistency(obj);
|
|
|
|
GC_ASSERT(RVALUE_MARKED(obj) == FALSE);
|
|
GC_ASSERT(RVALUE_MARKING(obj) == FALSE);
|
|
GC_ASSERT(RVALUE_OLD_P(obj) == FALSE);
|
|
GC_ASSERT(RVALUE_WB_UNPROTECTED(obj) == FALSE);
|
|
|
|
if (RVALUE_REMEMBERED((VALUE)obj)) rb_bug("newobj: %s is remembered.", obj_info(obj));
|
|
}
|
|
RB_VM_LOCK_LEAVE_NO_BARRIER();
|
|
#endif
|
|
|
|
if (UNLIKELY(wb_protected == FALSE)) {
|
|
ASSERT_vm_locking();
|
|
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
|
|
}
|
|
|
|
#if RGENGC_PROFILE
|
|
if (wb_protected) {
|
|
objspace->profile.total_generated_normal_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
else {
|
|
objspace->profile.total_generated_shady_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if GC_DEBUG
|
|
GET_RVALUE_OVERHEAD(obj)->file = rb_source_location_cstr(&GET_RVALUE_OVERHEAD(obj)->line);
|
|
GC_ASSERT(!SPECIAL_CONST_P(obj)); /* check alignment */
|
|
#endif
|
|
|
|
gc_report(5, objspace, "newobj: %s\n", obj_info_basic(obj));
|
|
|
|
// RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj));
|
|
return obj;
|
|
}
|
|
|
|
size_t
|
|
rb_gc_obj_slot_size(VALUE obj)
|
|
{
|
|
return GET_HEAP_PAGE(obj)->slot_size - RVALUE_OVERHEAD;
|
|
}
|
|
|
|
static inline size_t
|
|
size_pool_slot_size(unsigned char pool_id)
|
|
{
|
|
GC_ASSERT(pool_id < SIZE_POOL_COUNT);
|
|
|
|
size_t slot_size = (1 << pool_id) * BASE_SLOT_SIZE;
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
GC_ASSERT(size_pools[pool_id].slot_size == (short)slot_size);
|
|
#endif
|
|
|
|
slot_size -= RVALUE_OVERHEAD;
|
|
|
|
return slot_size;
|
|
}
|
|
|
|
bool
|
|
rb_gc_size_allocatable_p(size_t size)
|
|
{
|
|
return size <= size_pool_slot_size(SIZE_POOL_COUNT - 1);
|
|
}
|
|
|
|
static size_t size_pool_sizes[SIZE_POOL_COUNT + 1] = { 0 };
|
|
|
|
size_t *
|
|
rb_gc_size_pool_sizes(void)
|
|
{
|
|
if (size_pool_sizes[0] == 0) {
|
|
for (unsigned char i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
size_pool_sizes[i] = size_pool_slot_size(i);
|
|
}
|
|
}
|
|
|
|
return size_pool_sizes;
|
|
}
|
|
|
|
size_t
|
|
rb_gc_size_pool_id_for_size(size_t size)
|
|
{
|
|
size += RVALUE_OVERHEAD;
|
|
|
|
size_t slot_count = CEILDIV(size, BASE_SLOT_SIZE);
|
|
|
|
/* size_pool_idx is ceil(log2(slot_count)) */
|
|
size_t size_pool_idx = 64 - nlz_int64(slot_count - 1);
|
|
|
|
if (size_pool_idx >= SIZE_POOL_COUNT) {
|
|
rb_bug("rb_gc_size_pool_id_for_size: allocation size too large "
|
|
"(size=%"PRIuSIZE"u, size_pool_idx=%"PRIuSIZE"u)", size, size_pool_idx);
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
GC_ASSERT(size <= (size_t)size_pools[size_pool_idx].slot_size);
|
|
if (size_pool_idx > 0) GC_ASSERT(size > (size_t)size_pools[size_pool_idx - 1].slot_size);
|
|
#endif
|
|
|
|
return size_pool_idx;
|
|
}
|
|
|
|
static inline VALUE
|
|
ractor_cache_allocate_slot(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache,
|
|
size_t size_pool_idx)
|
|
{
|
|
rb_ractor_newobj_size_pool_cache_t *size_pool_cache = &cache->size_pool_caches[size_pool_idx];
|
|
RVALUE *p = size_pool_cache->freelist;
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
// Not allowed to allocate without running an incremental marking step
|
|
if (cache->incremental_mark_step_allocated_slots >= INCREMENTAL_MARK_STEP_ALLOCATIONS) {
|
|
return Qfalse;
|
|
}
|
|
|
|
if (p) {
|
|
cache->incremental_mark_step_allocated_slots++;
|
|
}
|
|
}
|
|
|
|
if (p) {
|
|
VALUE obj = (VALUE)p;
|
|
MAYBE_UNUSED(const size_t) stride = size_pool_slot_size(size_pool_idx);
|
|
size_pool_cache->freelist = p->as.free.next;
|
|
asan_unpoison_memory_region(p, stride, true);
|
|
#if RGENGC_CHECK_MODE
|
|
GC_ASSERT(rb_gc_obj_slot_size(obj) == stride);
|
|
// zero clear
|
|
MEMZERO((char *)obj, char, stride);
|
|
#endif
|
|
return obj;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_next_free_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
ASSERT_vm_locking();
|
|
|
|
struct heap_page *page;
|
|
|
|
if (heap->free_pages == NULL) {
|
|
heap_prepare(objspace, size_pool, heap);
|
|
}
|
|
|
|
page = heap->free_pages;
|
|
heap->free_pages = page->free_next;
|
|
|
|
GC_ASSERT(page->free_slots != 0);
|
|
RUBY_DEBUG_LOG("page:%p freelist:%p cnt:%d", (void *)page, (void *)page->freelist, page->free_slots);
|
|
|
|
asan_unlock_freelist(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
static inline void
|
|
ractor_cache_set_page(rb_ractor_newobj_cache_t *cache, size_t size_pool_idx,
|
|
struct heap_page *page)
|
|
{
|
|
gc_report(3, &rb_objspace, "ractor_set_cache: Using page %p\n", (void *)GET_PAGE_BODY(page->start));
|
|
|
|
rb_ractor_newobj_size_pool_cache_t *size_pool_cache = &cache->size_pool_caches[size_pool_idx];
|
|
|
|
GC_ASSERT(size_pool_cache->freelist == NULL);
|
|
GC_ASSERT(page->free_slots != 0);
|
|
GC_ASSERT(page->freelist != NULL);
|
|
|
|
size_pool_cache->using_page = page;
|
|
size_pool_cache->freelist = page->freelist;
|
|
page->free_slots = 0;
|
|
page->freelist = NULL;
|
|
|
|
asan_unpoison_object((VALUE)size_pool_cache->freelist, false);
|
|
GC_ASSERT(RB_TYPE_P((VALUE)size_pool_cache->freelist, T_NONE));
|
|
asan_poison_object((VALUE)size_pool_cache->freelist);
|
|
}
|
|
|
|
static inline VALUE
|
|
newobj_fill(VALUE obj, VALUE v1, VALUE v2, VALUE v3)
|
|
{
|
|
RVALUE *p = (RVALUE *)obj;
|
|
p->as.values.v1 = v1;
|
|
p->as.values.v2 = v2;
|
|
p->as.values.v3 = v3;
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
newobj_alloc(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t size_pool_idx, bool vm_locked)
|
|
{
|
|
rb_size_pool_t *size_pool = &size_pools[size_pool_idx];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
VALUE obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx);
|
|
|
|
if (UNLIKELY(obj == Qfalse)) {
|
|
unsigned int lev;
|
|
bool unlock_vm = false;
|
|
|
|
if (!vm_locked) {
|
|
RB_VM_LOCK_ENTER_CR_LEV(GET_RACTOR(), &lev);
|
|
vm_locked = true;
|
|
unlock_vm = true;
|
|
}
|
|
|
|
{
|
|
ASSERT_vm_locking();
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
gc_continue(objspace, size_pool, heap);
|
|
cache->incremental_mark_step_allocated_slots = 0;
|
|
|
|
// Retry allocation after resetting incremental_mark_step_allocated_slots
|
|
obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx);
|
|
}
|
|
|
|
if (obj == Qfalse) {
|
|
// Get next free page (possibly running GC)
|
|
struct heap_page *page = heap_next_free_page(objspace, size_pool, heap);
|
|
ractor_cache_set_page(cache, size_pool_idx, page);
|
|
|
|
// Retry allocation after moving to new page
|
|
obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx);
|
|
}
|
|
}
|
|
|
|
if (unlock_vm) {
|
|
RB_VM_LOCK_LEAVE_CR_LEV(GET_RACTOR(), &lev);
|
|
}
|
|
|
|
if (UNLIKELY(obj == Qfalse)) {
|
|
rb_memerror();
|
|
}
|
|
}
|
|
|
|
size_pool->total_allocated_objects++;
|
|
|
|
return obj;
|
|
}
|
|
|
|
static void
|
|
newobj_zero_slot(VALUE obj)
|
|
{
|
|
memset((char *)obj + sizeof(struct RBasic), 0, rb_gc_obj_slot_size(obj) - sizeof(struct RBasic));
|
|
}
|
|
|
|
ALWAYS_INLINE(static VALUE newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, int wb_protected, size_t size_pool_idx));
|
|
|
|
static inline VALUE
|
|
newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, int wb_protected, size_t size_pool_idx)
|
|
{
|
|
VALUE obj;
|
|
unsigned int lev;
|
|
|
|
RB_VM_LOCK_ENTER_CR_LEV(GET_RACTOR(), &lev);
|
|
{
|
|
if (UNLIKELY(during_gc || ruby_gc_stressful)) {
|
|
if (during_gc) {
|
|
dont_gc_on();
|
|
during_gc = 0;
|
|
rb_bug("object allocation during garbage collection phase");
|
|
}
|
|
|
|
if (ruby_gc_stressful) {
|
|
if (!garbage_collect(objspace, GPR_FLAG_NEWOBJ)) {
|
|
rb_memerror();
|
|
}
|
|
}
|
|
}
|
|
|
|
obj = newobj_alloc(objspace, cache, size_pool_idx, true);
|
|
newobj_init(klass, flags, wb_protected, objspace, obj);
|
|
|
|
gc_event_hook_prep(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj, newobj_zero_slot(obj));
|
|
}
|
|
RB_VM_LOCK_LEAVE_CR_LEV(GET_RACTOR(), &lev);
|
|
|
|
return obj;
|
|
}
|
|
|
|
NOINLINE(static VALUE newobj_slowpath_wb_protected(VALUE klass, VALUE flags,
|
|
rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t size_pool_idx));
|
|
NOINLINE(static VALUE newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags,
|
|
rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t size_pool_idx));
|
|
|
|
static VALUE
|
|
newobj_slowpath_wb_protected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t size_pool_idx)
|
|
{
|
|
return newobj_slowpath(klass, flags, objspace, cache, TRUE, size_pool_idx);
|
|
}
|
|
|
|
static VALUE
|
|
newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t size_pool_idx)
|
|
{
|
|
return newobj_slowpath(klass, flags, objspace, cache, FALSE, size_pool_idx);
|
|
}
|
|
|
|
static inline VALUE
|
|
newobj_of(rb_ractor_t *cr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size)
|
|
{
|
|
VALUE obj;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
RB_DEBUG_COUNTER_INC(obj_newobj);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(obj_newobj_wb_unprotected, !wb_protected);
|
|
|
|
if (UNLIKELY(stress_to_class)) {
|
|
long i, cnt = RARRAY_LEN(stress_to_class);
|
|
for (i = 0; i < cnt; ++i) {
|
|
if (klass == RARRAY_AREF(stress_to_class, i)) rb_memerror();
|
|
}
|
|
}
|
|
|
|
size_t size_pool_idx = rb_gc_size_pool_id_for_size(alloc_size);
|
|
|
|
rb_ractor_newobj_cache_t *cache = &cr->newobj_cache;
|
|
|
|
if (!UNLIKELY(during_gc ||
|
|
ruby_gc_stressful ||
|
|
gc_event_newobj_hook_needed_p(objspace)) &&
|
|
wb_protected) {
|
|
obj = newobj_alloc(objspace, cache, size_pool_idx, false);
|
|
newobj_init(klass, flags, wb_protected, objspace, obj);
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_newobj_slowpath);
|
|
|
|
obj = wb_protected ?
|
|
newobj_slowpath_wb_protected(klass, flags, objspace, cache, size_pool_idx) :
|
|
newobj_slowpath_wb_unprotected(klass, flags, objspace, cache, size_pool_idx);
|
|
}
|
|
|
|
return newobj_fill(obj, v1, v2, v3);
|
|
}
|
|
|
|
VALUE
|
|
rb_wb_unprotected_newobj_of(VALUE klass, VALUE flags, size_t size)
|
|
{
|
|
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
|
|
return newobj_of(GET_RACTOR(), klass, flags, 0, 0, 0, FALSE, size);
|
|
}
|
|
|
|
VALUE
|
|
rb_wb_protected_newobj_of(rb_execution_context_t *ec, VALUE klass, VALUE flags, size_t size)
|
|
{
|
|
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
|
|
return newobj_of(rb_ec_ractor_ptr(ec), klass, flags, 0, 0, 0, TRUE, size);
|
|
}
|
|
|
|
#define UNEXPECTED_NODE(func) \
|
|
rb_bug(#func"(): GC does not handle T_NODE 0x%x(%p) 0x%"PRIxVALUE, \
|
|
BUILTIN_TYPE(obj), (void*)(obj), RBASIC(obj)->flags)
|
|
|
|
static inline void
|
|
rb_data_object_check(VALUE klass)
|
|
{
|
|
if (klass != rb_cObject && (rb_get_alloc_func(klass) == rb_class_allocate_instance)) {
|
|
rb_undef_alloc_func(klass);
|
|
rb_warn("undefining the allocator of T_DATA class %"PRIsVALUE, klass);
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_data_object_wrap(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
|
|
{
|
|
RUBY_ASSERT_ALWAYS(dfree != (RUBY_DATA_FUNC)1);
|
|
if (klass) rb_data_object_check(klass);
|
|
return newobj_of(GET_RACTOR(), klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap, !dmark, sizeof(struct RTypedData));
|
|
}
|
|
|
|
VALUE
|
|
rb_data_object_zalloc(VALUE klass, size_t size, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
|
|
{
|
|
VALUE obj = rb_data_object_wrap(klass, 0, dmark, dfree);
|
|
DATA_PTR(obj) = xcalloc(1, size);
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
typed_data_alloc(VALUE klass, VALUE typed_flag, void *datap, const rb_data_type_t *type, size_t size)
|
|
{
|
|
RBIMPL_NONNULL_ARG(type);
|
|
if (klass) rb_data_object_check(klass);
|
|
bool wb_protected = (type->flags & RUBY_FL_WB_PROTECTED) || !type->function.dmark;
|
|
return newobj_of(GET_RACTOR(), klass, T_DATA, (VALUE)type, 1 | typed_flag, (VALUE)datap, wb_protected, size);
|
|
}
|
|
|
|
VALUE
|
|
rb_data_typed_object_wrap(VALUE klass, void *datap, const rb_data_type_t *type)
|
|
{
|
|
if (UNLIKELY(type->flags & RUBY_TYPED_EMBEDDABLE)) {
|
|
rb_raise(rb_eTypeError, "Cannot wrap an embeddable TypedData");
|
|
}
|
|
|
|
return typed_data_alloc(klass, 0, datap, type, sizeof(struct RTypedData));
|
|
}
|
|
|
|
VALUE
|
|
rb_data_typed_object_zalloc(VALUE klass, size_t size, const rb_data_type_t *type)
|
|
{
|
|
if (type->flags & RUBY_TYPED_EMBEDDABLE) {
|
|
if (!(type->flags & RUBY_TYPED_FREE_IMMEDIATELY)) {
|
|
rb_raise(rb_eTypeError, "Embeddable TypedData must be freed immediately");
|
|
}
|
|
|
|
size_t embed_size = offsetof(struct RTypedData, data) + size;
|
|
if (rb_gc_size_allocatable_p(embed_size)) {
|
|
VALUE obj = typed_data_alloc(klass, TYPED_DATA_EMBEDDED, 0, type, embed_size);
|
|
memset((char *)obj + offsetof(struct RTypedData, data), 0, size);
|
|
return obj;
|
|
}
|
|
}
|
|
|
|
VALUE obj = typed_data_alloc(klass, 0, NULL, type, sizeof(struct RTypedData));
|
|
DATA_PTR(obj) = xcalloc(1, size);
|
|
return obj;
|
|
}
|
|
|
|
static size_t
|
|
rb_objspace_data_type_memsize(VALUE obj)
|
|
{
|
|
size_t size = 0;
|
|
if (RTYPEDDATA_P(obj)) {
|
|
const rb_data_type_t *type = RTYPEDDATA_TYPE(obj);
|
|
const void *ptr = RTYPEDDATA_GET_DATA(obj);
|
|
|
|
if (RTYPEDDATA_TYPE(obj)->flags & RUBY_TYPED_EMBEDDABLE && !RTYPEDDATA_EMBEDDED_P(obj)) {
|
|
#ifdef HAVE_MALLOC_USABLE_SIZE
|
|
size += malloc_usable_size((void *)ptr);
|
|
#endif
|
|
}
|
|
|
|
if (ptr && type->function.dsize) {
|
|
size += type->function.dsize(ptr);
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
const char *
|
|
rb_objspace_data_type_name(VALUE obj)
|
|
{
|
|
if (RTYPEDDATA_P(obj)) {
|
|
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ptr_in_page_body_p(const void *ptr, const void *memb)
|
|
{
|
|
struct heap_page *page = *(struct heap_page **)memb;
|
|
uintptr_t p_body = (uintptr_t)GET_PAGE_BODY(page->start);
|
|
|
|
if ((uintptr_t)ptr >= p_body) {
|
|
return (uintptr_t)ptr < (p_body + HEAP_PAGE_SIZE) ? 0 : 1;
|
|
}
|
|
else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
PUREFUNC(static inline struct heap_page * heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr);)
|
|
static inline struct heap_page *
|
|
heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr)
|
|
{
|
|
struct heap_page **res;
|
|
|
|
if (ptr < (uintptr_t)heap_pages_lomem ||
|
|
ptr > (uintptr_t)heap_pages_himem) {
|
|
return NULL;
|
|
}
|
|
|
|
res = bsearch((void *)ptr, heap_pages_sorted,
|
|
(size_t)heap_allocated_pages, sizeof(struct heap_page *),
|
|
ptr_in_page_body_p);
|
|
|
|
if (res) {
|
|
return *res;
|
|
}
|
|
else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
PUREFUNC(static inline int is_pointer_to_heap(rb_objspace_t *objspace, const void *ptr);)
|
|
static inline int
|
|
is_pointer_to_heap(rb_objspace_t *objspace, const void *ptr)
|
|
{
|
|
register uintptr_t p = (uintptr_t)ptr;
|
|
register struct heap_page *page;
|
|
|
|
RB_DEBUG_COUNTER_INC(gc_isptr_trial);
|
|
|
|
if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE;
|
|
RB_DEBUG_COUNTER_INC(gc_isptr_range);
|
|
|
|
if (p % BASE_SLOT_SIZE != 0) return FALSE;
|
|
RB_DEBUG_COUNTER_INC(gc_isptr_align);
|
|
|
|
page = heap_page_for_ptr(objspace, (uintptr_t)ptr);
|
|
if (page) {
|
|
RB_DEBUG_COUNTER_INC(gc_isptr_maybe);
|
|
if (page->flags.in_tomb) {
|
|
return FALSE;
|
|
}
|
|
else {
|
|
if (p < page->start) return FALSE;
|
|
if (p >= page->start + (page->total_slots * page->slot_size)) return FALSE;
|
|
if ((NUM_IN_PAGE(p) * BASE_SLOT_SIZE) % page->slot_size != 0) return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
cvar_table_free_i(VALUE value, void *ctx)
|
|
{
|
|
xfree((void *)value);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
#define ZOMBIE_OBJ_KEPT_FLAGS (FL_SEEN_OBJ_ID | FL_FINALIZE)
|
|
|
|
static inline void
|
|
make_zombie(rb_objspace_t *objspace, VALUE obj, void (*dfree)(void *), void *data)
|
|
{
|
|
struct RZombie *zombie = RZOMBIE(obj);
|
|
zombie->basic.flags = T_ZOMBIE | (zombie->basic.flags & ZOMBIE_OBJ_KEPT_FLAGS);
|
|
zombie->dfree = dfree;
|
|
zombie->data = data;
|
|
VALUE prev, next = heap_pages_deferred_final;
|
|
do {
|
|
zombie->next = prev = next;
|
|
next = RUBY_ATOMIC_VALUE_CAS(heap_pages_deferred_final, prev, obj);
|
|
} while (next != prev);
|
|
|
|
struct heap_page *page = GET_HEAP_PAGE(obj);
|
|
page->final_slots++;
|
|
heap_pages_final_slots++;
|
|
}
|
|
|
|
static inline void
|
|
make_io_zombie(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
rb_io_t *fptr = RANY(obj)->as.file.fptr;
|
|
make_zombie(objspace, obj, rb_io_fptr_finalize_internal, fptr);
|
|
}
|
|
|
|
static void
|
|
obj_free_object_id(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
ASSERT_vm_locking();
|
|
st_data_t o = (st_data_t)obj, id;
|
|
|
|
GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID));
|
|
FL_UNSET(obj, FL_SEEN_OBJ_ID);
|
|
|
|
if (st_delete(objspace->obj_to_id_tbl, &o, &id)) {
|
|
GC_ASSERT(id);
|
|
st_delete(objspace->id_to_obj_tbl, &id, NULL);
|
|
}
|
|
else {
|
|
rb_bug("Object ID seen, but not in mapping table: %s", obj_info(obj));
|
|
}
|
|
}
|
|
|
|
static bool
|
|
rb_data_free(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
void *data = RTYPEDDATA_P(obj) ? RTYPEDDATA_GET_DATA(obj) : DATA_PTR(obj);
|
|
if (data) {
|
|
int free_immediately = false;
|
|
void (*dfree)(void *);
|
|
|
|
if (RTYPEDDATA_P(obj)) {
|
|
free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0;
|
|
dfree = RANY(obj)->as.typeddata.type->function.dfree;
|
|
}
|
|
else {
|
|
dfree = RANY(obj)->as.data.dfree;
|
|
}
|
|
|
|
if (dfree) {
|
|
if (dfree == RUBY_DEFAULT_FREE) {
|
|
if (!RTYPEDDATA_EMBEDDED_P(obj)) {
|
|
xfree(data);
|
|
RB_DEBUG_COUNTER_INC(obj_data_xfree);
|
|
}
|
|
}
|
|
else if (free_immediately) {
|
|
(*dfree)(data);
|
|
if (RTYPEDDATA_TYPE(obj)->flags & RUBY_TYPED_EMBEDDABLE && !RTYPEDDATA_EMBEDDED_P(obj)) {
|
|
xfree(data);
|
|
}
|
|
|
|
RB_DEBUG_COUNTER_INC(obj_data_imm_free);
|
|
}
|
|
else {
|
|
make_zombie(objspace, obj, dfree, data);
|
|
RB_DEBUG_COUNTER_INC(obj_data_zombie);
|
|
return FALSE;
|
|
}
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_data_empty);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
obj_free(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
RB_DEBUG_COUNTER_INC(obj_free);
|
|
// RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj));
|
|
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj);
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_NIL:
|
|
case T_FIXNUM:
|
|
case T_TRUE:
|
|
case T_FALSE:
|
|
rb_bug("obj_free() called for broken object");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
rb_free_generic_ivar((VALUE)obj);
|
|
FL_UNSET(obj, FL_EXIVAR);
|
|
}
|
|
|
|
if (FL_TEST(obj, FL_SEEN_OBJ_ID) && !FL_TEST(obj, FL_FINALIZE)) {
|
|
obj_free_object_id(objspace, obj);
|
|
}
|
|
|
|
if (RVALUE_WB_UNPROTECTED(obj)) CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
#define CHECK(x) if (x(obj) != FALSE) rb_bug("obj_free: " #x "(%s) != FALSE", obj_info(obj))
|
|
CHECK(RVALUE_WB_UNPROTECTED);
|
|
CHECK(RVALUE_MARKED);
|
|
CHECK(RVALUE_MARKING);
|
|
CHECK(RVALUE_UNCOLLECTIBLE);
|
|
#undef CHECK
|
|
#endif
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_OBJECT:
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
RB_DEBUG_COUNTER_INC(obj_obj_too_complex);
|
|
st_free_table(ROBJECT_IV_HASH(obj));
|
|
}
|
|
else if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) {
|
|
RB_DEBUG_COUNTER_INC(obj_obj_embed);
|
|
}
|
|
else {
|
|
xfree(RANY(obj)->as.object.as.heap.ivptr);
|
|
RB_DEBUG_COUNTER_INC(obj_obj_ptr);
|
|
}
|
|
break;
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
rb_id_table_free(RCLASS_M_TBL(obj));
|
|
rb_cc_table_free(obj);
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
st_free_table((st_table *)RCLASS_IVPTR(obj));
|
|
}
|
|
else {
|
|
xfree(RCLASS_IVPTR(obj));
|
|
}
|
|
|
|
if (RCLASS_CONST_TBL(obj)) {
|
|
rb_free_const_table(RCLASS_CONST_TBL(obj));
|
|
}
|
|
if (RCLASS_CVC_TBL(obj)) {
|
|
rb_id_table_foreach_values(RCLASS_CVC_TBL(obj), cvar_table_free_i, NULL);
|
|
rb_id_table_free(RCLASS_CVC_TBL(obj));
|
|
}
|
|
rb_class_remove_subclass_head(obj);
|
|
rb_class_remove_from_module_subclasses(obj);
|
|
rb_class_remove_from_super_subclasses(obj);
|
|
if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
|
|
xfree(RCLASS_SUPERCLASSES(obj));
|
|
}
|
|
|
|
(void)RB_DEBUG_COUNTER_INC_IF(obj_module_ptr, BUILTIN_TYPE(obj) == T_MODULE);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(obj_class_ptr, BUILTIN_TYPE(obj) == T_CLASS);
|
|
break;
|
|
case T_STRING:
|
|
rb_str_free(obj);
|
|
break;
|
|
case T_ARRAY:
|
|
rb_ary_free(obj);
|
|
break;
|
|
case T_HASH:
|
|
#if USE_DEBUG_COUNTER
|
|
switch (RHASH_SIZE(obj)) {
|
|
case 0:
|
|
RB_DEBUG_COUNTER_INC(obj_hash_empty);
|
|
break;
|
|
case 1:
|
|
RB_DEBUG_COUNTER_INC(obj_hash_1);
|
|
break;
|
|
case 2:
|
|
RB_DEBUG_COUNTER_INC(obj_hash_2);
|
|
break;
|
|
case 3:
|
|
RB_DEBUG_COUNTER_INC(obj_hash_3);
|
|
break;
|
|
case 4:
|
|
RB_DEBUG_COUNTER_INC(obj_hash_4);
|
|
break;
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
RB_DEBUG_COUNTER_INC(obj_hash_5_8);
|
|
break;
|
|
default:
|
|
GC_ASSERT(RHASH_SIZE(obj) > 8);
|
|
RB_DEBUG_COUNTER_INC(obj_hash_g8);
|
|
}
|
|
|
|
if (RHASH_AR_TABLE_P(obj)) {
|
|
if (RHASH_AR_TABLE(obj) == NULL) {
|
|
RB_DEBUG_COUNTER_INC(obj_hash_null);
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_hash_ar);
|
|
}
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_hash_st);
|
|
}
|
|
#endif
|
|
|
|
rb_hash_free(obj);
|
|
break;
|
|
case T_REGEXP:
|
|
if (RANY(obj)->as.regexp.ptr) {
|
|
onig_free(RANY(obj)->as.regexp.ptr);
|
|
RB_DEBUG_COUNTER_INC(obj_regexp_ptr);
|
|
}
|
|
break;
|
|
case T_DATA:
|
|
if (!rb_data_free(objspace, obj)) return false;
|
|
break;
|
|
case T_MATCH:
|
|
{
|
|
rb_matchext_t *rm = RMATCH_EXT(obj);
|
|
#if USE_DEBUG_COUNTER
|
|
if (rm->regs.num_regs >= 8) {
|
|
RB_DEBUG_COUNTER_INC(obj_match_ge8);
|
|
}
|
|
else if (rm->regs.num_regs >= 4) {
|
|
RB_DEBUG_COUNTER_INC(obj_match_ge4);
|
|
}
|
|
else if (rm->regs.num_regs >= 1) {
|
|
RB_DEBUG_COUNTER_INC(obj_match_under4);
|
|
}
|
|
#endif
|
|
onig_region_free(&rm->regs, 0);
|
|
xfree(rm->char_offset);
|
|
|
|
RB_DEBUG_COUNTER_INC(obj_match_ptr);
|
|
}
|
|
break;
|
|
case T_FILE:
|
|
if (RANY(obj)->as.file.fptr) {
|
|
make_io_zombie(objspace, obj);
|
|
RB_DEBUG_COUNTER_INC(obj_file_ptr);
|
|
return FALSE;
|
|
}
|
|
break;
|
|
case T_RATIONAL:
|
|
RB_DEBUG_COUNTER_INC(obj_rational);
|
|
break;
|
|
case T_COMPLEX:
|
|
RB_DEBUG_COUNTER_INC(obj_complex);
|
|
break;
|
|
case T_MOVED:
|
|
break;
|
|
case T_ICLASS:
|
|
/* Basically , T_ICLASS shares table with the module */
|
|
if (RICLASS_OWNS_M_TBL_P(obj)) {
|
|
/* Method table is not shared for origin iclasses of classes */
|
|
rb_id_table_free(RCLASS_M_TBL(obj));
|
|
}
|
|
if (RCLASS_CALLABLE_M_TBL(obj) != NULL) {
|
|
rb_id_table_free(RCLASS_CALLABLE_M_TBL(obj));
|
|
}
|
|
rb_class_remove_subclass_head(obj);
|
|
rb_cc_table_free(obj);
|
|
rb_class_remove_from_module_subclasses(obj);
|
|
rb_class_remove_from_super_subclasses(obj);
|
|
|
|
RB_DEBUG_COUNTER_INC(obj_iclass_ptr);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
RB_DEBUG_COUNTER_INC(obj_float);
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
if (!BIGNUM_EMBED_P(obj) && BIGNUM_DIGITS(obj)) {
|
|
xfree(BIGNUM_DIGITS(obj));
|
|
RB_DEBUG_COUNTER_INC(obj_bignum_ptr);
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_bignum_embed);
|
|
}
|
|
break;
|
|
|
|
case T_NODE:
|
|
UNEXPECTED_NODE(obj_free);
|
|
break;
|
|
|
|
case T_STRUCT:
|
|
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) ||
|
|
RANY(obj)->as.rstruct.as.heap.ptr == NULL) {
|
|
RB_DEBUG_COUNTER_INC(obj_struct_embed);
|
|
}
|
|
else {
|
|
xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr);
|
|
RB_DEBUG_COUNTER_INC(obj_struct_ptr);
|
|
}
|
|
break;
|
|
|
|
case T_SYMBOL:
|
|
{
|
|
rb_gc_free_dsymbol(obj);
|
|
RB_DEBUG_COUNTER_INC(obj_symbol);
|
|
}
|
|
break;
|
|
|
|
case T_IMEMO:
|
|
rb_imemo_free((VALUE)obj);
|
|
break;
|
|
|
|
default:
|
|
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
|
|
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
|
|
}
|
|
|
|
if (FL_TEST(obj, FL_FINALIZE)) {
|
|
make_zombie(objspace, obj, 0, 0);
|
|
return FALSE;
|
|
}
|
|
else {
|
|
RBASIC(obj)->flags = 0;
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
#define OBJ_ID_INCREMENT (BASE_SLOT_SIZE)
|
|
#define OBJ_ID_INITIAL (OBJ_ID_INCREMENT)
|
|
|
|
static int
|
|
object_id_cmp(st_data_t x, st_data_t y)
|
|
{
|
|
if (RB_BIGNUM_TYPE_P(x)) {
|
|
return !rb_big_eql(x, y);
|
|
}
|
|
else {
|
|
return x != y;
|
|
}
|
|
}
|
|
|
|
static st_index_t
|
|
object_id_hash(st_data_t n)
|
|
{
|
|
if (RB_BIGNUM_TYPE_P(n)) {
|
|
return FIX2LONG(rb_big_hash(n));
|
|
}
|
|
else {
|
|
return st_numhash(n);
|
|
}
|
|
}
|
|
static const struct st_hash_type object_id_hash_type = {
|
|
object_id_cmp,
|
|
object_id_hash,
|
|
};
|
|
|
|
static void *
|
|
rb_gc_impl_objspace_alloc(void)
|
|
{
|
|
rb_objspace_t *objspace = calloc1(sizeof(rb_objspace_t));
|
|
ruby_current_vm_ptr->objspace = objspace;
|
|
|
|
objspace->flags.gc_stressful = RTEST(initial_stress);
|
|
objspace->gc_stress_mode = initial_stress;
|
|
|
|
objspace->flags.measure_gc = 1;
|
|
malloc_limit = gc_params.malloc_limit_min;
|
|
objspace->finalize_deferred_pjob = rb_postponed_job_preregister(0, gc_finalize_deferred, objspace);
|
|
if (objspace->finalize_deferred_pjob == POSTPONED_JOB_HANDLE_INVALID) {
|
|
rb_bug("Could not preregister postponed job for GC");
|
|
}
|
|
|
|
// TODO: debug why on Windows Ruby crashes on boot when GC is on.
|
|
#ifdef _WIN32
|
|
dont_gc_on();
|
|
#endif
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
|
|
size_pool->slot_size = (1 << i) * BASE_SLOT_SIZE;
|
|
|
|
ccan_list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages);
|
|
ccan_list_head_init(&SIZE_POOL_TOMB_HEAP(size_pool)->pages);
|
|
|
|
gc_params.size_pool_init_slots[i] = GC_HEAP_INIT_SLOTS;
|
|
|
|
size_pool->allocatable_pages = minimum_pages_for_size_pool(objspace, size_pool);
|
|
}
|
|
|
|
rb_darray_make(&objspace->weak_references, 0);
|
|
|
|
#if defined(INIT_HEAP_PAGE_ALLOC_USE_MMAP)
|
|
/* Need to determine if we can use mmap at runtime. */
|
|
heap_page_alloc_use_mmap = INIT_HEAP_PAGE_ALLOC_USE_MMAP;
|
|
#endif
|
|
|
|
objspace->next_object_id = OBJ_ID_INITIAL;
|
|
objspace->id_to_obj_tbl = st_init_table(&object_id_hash_type);
|
|
objspace->obj_to_id_tbl = st_init_numtable();
|
|
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
|
|
#endif
|
|
|
|
heap_pages_expand_sorted(objspace);
|
|
|
|
init_mark_stack(&objspace->mark_stack);
|
|
|
|
objspace->profile.invoke_time = getrusage_time();
|
|
finalizer_table = st_init_numtable();
|
|
return objspace;
|
|
}
|
|
|
|
typedef int each_obj_callback(void *, void *, size_t, void *);
|
|
typedef int each_page_callback(struct heap_page *, void *);
|
|
|
|
static void objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected);
|
|
static void objspace_reachable_objects_from_root(rb_objspace_t *, void (func)(const char *, VALUE, void *), void *);
|
|
|
|
struct each_obj_data {
|
|
rb_objspace_t *objspace;
|
|
bool reenable_incremental;
|
|
|
|
each_obj_callback *each_obj_callback;
|
|
each_page_callback *each_page_callback;
|
|
void *data;
|
|
|
|
struct heap_page **pages[SIZE_POOL_COUNT];
|
|
size_t pages_counts[SIZE_POOL_COUNT];
|
|
};
|
|
|
|
static VALUE
|
|
objspace_each_objects_ensure(VALUE arg)
|
|
{
|
|
struct each_obj_data *data = (struct each_obj_data *)arg;
|
|
rb_objspace_t *objspace = data->objspace;
|
|
|
|
/* Reenable incremental GC */
|
|
if (data->reenable_incremental) {
|
|
objspace->flags.dont_incremental = FALSE;
|
|
}
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
struct heap_page **pages = data->pages[i];
|
|
free(pages);
|
|
}
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
objspace_each_objects_try(VALUE arg)
|
|
{
|
|
struct each_obj_data *data = (struct each_obj_data *)arg;
|
|
rb_objspace_t *objspace = data->objspace;
|
|
|
|
/* Copy pages from all size_pools to their respective buffers. */
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
size_t size = size_mul_or_raise(SIZE_POOL_EDEN_HEAP(size_pool)->total_pages, sizeof(struct heap_page *), rb_eRuntimeError);
|
|
|
|
struct heap_page **pages = malloc(size);
|
|
if (!pages) rb_memerror();
|
|
|
|
/* Set up pages buffer by iterating over all pages in the current eden
|
|
* heap. This will be a snapshot of the state of the heap before we
|
|
* call the callback over each page that exists in this buffer. Thus it
|
|
* is safe for the callback to allocate objects without possibly entering
|
|
* an infinite loop. */
|
|
struct heap_page *page = 0;
|
|
size_t pages_count = 0;
|
|
ccan_list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) {
|
|
pages[pages_count] = page;
|
|
pages_count++;
|
|
}
|
|
data->pages[i] = pages;
|
|
data->pages_counts[i] = pages_count;
|
|
GC_ASSERT(pages_count == SIZE_POOL_EDEN_HEAP(size_pool)->total_pages);
|
|
}
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
size_t pages_count = data->pages_counts[i];
|
|
struct heap_page **pages = data->pages[i];
|
|
|
|
struct heap_page *page = ccan_list_top(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, struct heap_page, page_node);
|
|
for (size_t i = 0; i < pages_count; i++) {
|
|
/* If we have reached the end of the linked list then there are no
|
|
* more pages, so break. */
|
|
if (page == NULL) break;
|
|
|
|
/* If this page does not match the one in the buffer, then move to
|
|
* the next page in the buffer. */
|
|
if (pages[i] != page) continue;
|
|
|
|
uintptr_t pstart = (uintptr_t)page->start;
|
|
uintptr_t pend = pstart + (page->total_slots * size_pool->slot_size);
|
|
|
|
if (data->each_obj_callback &&
|
|
(*data->each_obj_callback)((void *)pstart, (void *)pend, size_pool->slot_size, data->data)) {
|
|
break;
|
|
}
|
|
if (data->each_page_callback &&
|
|
(*data->each_page_callback)(page, data->data)) {
|
|
break;
|
|
}
|
|
|
|
page = ccan_list_next(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node);
|
|
}
|
|
}
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* rb_objspace_each_objects() is special C API to walk through
|
|
* Ruby object space. This C API is too difficult to use it.
|
|
* To be frank, you should not use it. Or you need to read the
|
|
* source code of this function and understand what this function does.
|
|
*
|
|
* 'callback' will be called several times (the number of heap page,
|
|
* at current implementation) with:
|
|
* vstart: a pointer to the first living object of the heap_page.
|
|
* vend: a pointer to next to the valid heap_page area.
|
|
* stride: a distance to next VALUE.
|
|
*
|
|
* If callback() returns non-zero, the iteration will be stopped.
|
|
*
|
|
* This is a sample callback code to iterate liveness objects:
|
|
*
|
|
* static int
|
|
* sample_callback(void *vstart, void *vend, int stride, void *data)
|
|
* {
|
|
* VALUE v = (VALUE)vstart;
|
|
* for (; v != (VALUE)vend; v += stride) {
|
|
* if (!rb_objspace_internal_object_p(v)) { // liveness check
|
|
* // do something with live object 'v'
|
|
* }
|
|
* }
|
|
* return 0; // continue to iteration
|
|
* }
|
|
*
|
|
* Note: 'vstart' is not a top of heap_page. This point the first
|
|
* living object to grasp at least one object to avoid GC issue.
|
|
* This means that you can not walk through all Ruby object page
|
|
* including freed object page.
|
|
*
|
|
* Note: On this implementation, 'stride' is the same as sizeof(RVALUE).
|
|
* However, there are possibilities to pass variable values with
|
|
* 'stride' with some reasons. You must use stride instead of
|
|
* use some constant value in the iteration.
|
|
*/
|
|
void
|
|
rb_objspace_each_objects(each_obj_callback *callback, void *data)
|
|
{
|
|
objspace_each_objects(&rb_objspace, callback, data, TRUE);
|
|
}
|
|
|
|
static void
|
|
objspace_each_exec(bool protected, struct each_obj_data *each_obj_data)
|
|
{
|
|
/* Disable incremental GC */
|
|
rb_objspace_t *objspace = each_obj_data->objspace;
|
|
bool reenable_incremental = FALSE;
|
|
if (protected) {
|
|
reenable_incremental = !objspace->flags.dont_incremental;
|
|
|
|
gc_rest(objspace);
|
|
objspace->flags.dont_incremental = TRUE;
|
|
}
|
|
|
|
each_obj_data->reenable_incremental = reenable_incremental;
|
|
memset(&each_obj_data->pages, 0, sizeof(each_obj_data->pages));
|
|
memset(&each_obj_data->pages_counts, 0, sizeof(each_obj_data->pages_counts));
|
|
rb_ensure(objspace_each_objects_try, (VALUE)each_obj_data,
|
|
objspace_each_objects_ensure, (VALUE)each_obj_data);
|
|
}
|
|
|
|
static void
|
|
objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected)
|
|
{
|
|
struct each_obj_data each_obj_data = {
|
|
.objspace = objspace,
|
|
.each_obj_callback = callback,
|
|
.each_page_callback = NULL,
|
|
.data = data,
|
|
};
|
|
objspace_each_exec(protected, &each_obj_data);
|
|
}
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void
|
|
objspace_each_pages(rb_objspace_t *objspace, each_page_callback *callback, void *data, bool protected)
|
|
{
|
|
struct each_obj_data each_obj_data = {
|
|
.objspace = objspace,
|
|
.each_obj_callback = NULL,
|
|
.each_page_callback = callback,
|
|
.data = data,
|
|
};
|
|
objspace_each_exec(protected, &each_obj_data);
|
|
}
|
|
#endif
|
|
|
|
struct os_each_struct {
|
|
size_t num;
|
|
VALUE of;
|
|
};
|
|
|
|
static int
|
|
internal_object_p(VALUE obj)
|
|
{
|
|
RVALUE *p = (RVALUE *)obj;
|
|
void *ptr = asan_unpoison_object_temporary(obj);
|
|
bool used_p = p->as.basic.flags;
|
|
|
|
if (used_p) {
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_NODE:
|
|
UNEXPECTED_NODE(internal_object_p);
|
|
break;
|
|
case T_NONE:
|
|
case T_MOVED:
|
|
case T_IMEMO:
|
|
case T_ICLASS:
|
|
case T_ZOMBIE:
|
|
break;
|
|
case T_CLASS:
|
|
if (!p->as.basic.klass) break;
|
|
if (RCLASS_SINGLETON_P(obj)) {
|
|
return rb_singleton_class_internal_p(obj);
|
|
}
|
|
return 0;
|
|
default:
|
|
if (!p->as.basic.klass) break;
|
|
return 0;
|
|
}
|
|
}
|
|
if (ptr || ! used_p) {
|
|
asan_poison_object(obj);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
rb_objspace_internal_object_p(VALUE obj)
|
|
{
|
|
return internal_object_p(obj);
|
|
}
|
|
|
|
static int
|
|
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
|
|
{
|
|
struct os_each_struct *oes = (struct os_each_struct *)data;
|
|
|
|
VALUE v = (VALUE)vstart;
|
|
for (; v != (VALUE)vend; v += stride) {
|
|
if (!internal_object_p(v)) {
|
|
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
|
|
if (!rb_multi_ractor_p() || rb_ractor_shareable_p(v)) {
|
|
rb_yield(v);
|
|
oes->num++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
os_obj_of(VALUE of)
|
|
{
|
|
struct os_each_struct oes;
|
|
|
|
oes.num = 0;
|
|
oes.of = of;
|
|
rb_objspace_each_objects(os_obj_of_i, &oes);
|
|
return SIZET2NUM(oes.num);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.each_object([module]) {|obj| ... } -> integer
|
|
* ObjectSpace.each_object([module]) -> an_enumerator
|
|
*
|
|
* Calls the block once for each living, nonimmediate object in this
|
|
* Ruby process. If <i>module</i> is specified, calls the block
|
|
* for only those classes or modules that match (or are a subclass of)
|
|
* <i>module</i>. Returns the number of objects found. Immediate
|
|
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
|
|
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
|
|
* never returned. In the example below, #each_object returns both
|
|
* the numbers we defined and several constants defined in the Math
|
|
* module.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = 102.7
|
|
* b = 95 # Won't be returned
|
|
* c = 12345678987654321
|
|
* count = ObjectSpace.each_object(Numeric) {|x| p x }
|
|
* puts "Total count: #{count}"
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* 12345678987654321
|
|
* 102.7
|
|
* 2.71828182845905
|
|
* 3.14159265358979
|
|
* 2.22044604925031e-16
|
|
* 1.7976931348623157e+308
|
|
* 2.2250738585072e-308
|
|
* Total count: 7
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
os_each_obj(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
VALUE of;
|
|
|
|
of = (!rb_check_arity(argc, 0, 1) ? 0 : argv[0]);
|
|
RETURN_ENUMERATOR(os, 1, &of);
|
|
return os_obj_of(of);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.undefine_finalizer(obj)
|
|
*
|
|
* Removes all finalizers for <i>obj</i>.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
undefine_final(VALUE os, VALUE obj)
|
|
{
|
|
return rb_undefine_finalizer(obj);
|
|
}
|
|
|
|
VALUE
|
|
rb_undefine_finalizer(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
st_data_t data = obj;
|
|
rb_check_frozen(obj);
|
|
st_delete(finalizer_table, &data, 0);
|
|
FL_UNSET(obj, FL_FINALIZE);
|
|
return obj;
|
|
}
|
|
|
|
static void
|
|
should_be_callable(VALUE block)
|
|
{
|
|
if (!rb_obj_respond_to(block, idCall, TRUE)) {
|
|
rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)",
|
|
rb_obj_class(block));
|
|
}
|
|
}
|
|
|
|
static void
|
|
should_be_finalizable(VALUE obj)
|
|
{
|
|
if (!FL_ABLE(obj)) {
|
|
rb_raise(rb_eArgError, "cannot define finalizer for %s",
|
|
rb_obj_classname(obj));
|
|
}
|
|
rb_check_frozen(obj);
|
|
}
|
|
|
|
static VALUE
|
|
rb_define_finalizer_no_check(VALUE obj, VALUE block)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE table;
|
|
st_data_t data;
|
|
|
|
RBASIC(obj)->flags |= FL_FINALIZE;
|
|
|
|
if (st_lookup(finalizer_table, obj, &data)) {
|
|
table = (VALUE)data;
|
|
|
|
/* avoid duplicate block, table is usually small */
|
|
{
|
|
long len = RARRAY_LEN(table);
|
|
long i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
VALUE recv = RARRAY_AREF(table, i);
|
|
if (rb_equal(recv, block)) {
|
|
block = recv;
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
|
|
rb_ary_push(table, block);
|
|
}
|
|
else {
|
|
table = rb_ary_new3(1, block);
|
|
RBASIC_CLEAR_CLASS(table);
|
|
st_add_direct(finalizer_table, obj, table);
|
|
}
|
|
end:
|
|
block = rb_ary_new3(2, INT2FIX(0), block);
|
|
OBJ_FREEZE(block);
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.define_finalizer(obj, aProc=proc())
|
|
*
|
|
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
|
|
* was destroyed. The object ID of the <i>obj</i> will be passed
|
|
* as an argument to <i>aProc</i>. If <i>aProc</i> is a lambda or
|
|
* method, make sure it can be called with a single argument.
|
|
*
|
|
* The return value is an array <code>[0, aProc]</code>.
|
|
*
|
|
* The two recommended patterns are to either create the finaliser proc
|
|
* in a non-instance method where it can safely capture the needed state,
|
|
* or to use a custom callable object that stores the needed state
|
|
* explicitly as instance variables.
|
|
*
|
|
* class Foo
|
|
* def initialize(data_needed_for_finalization)
|
|
* ObjectSpace.define_finalizer(self, self.class.create_finalizer(data_needed_for_finalization))
|
|
* end
|
|
*
|
|
* def self.create_finalizer(data_needed_for_finalization)
|
|
* proc {
|
|
* puts "finalizing #{data_needed_for_finalization}"
|
|
* }
|
|
* end
|
|
* end
|
|
*
|
|
* class Bar
|
|
* class Remover
|
|
* def initialize(data_needed_for_finalization)
|
|
* @data_needed_for_finalization = data_needed_for_finalization
|
|
* end
|
|
*
|
|
* def call(id)
|
|
* puts "finalizing #{@data_needed_for_finalization}"
|
|
* end
|
|
* end
|
|
*
|
|
* def initialize(data_needed_for_finalization)
|
|
* ObjectSpace.define_finalizer(self, Remover.new(data_needed_for_finalization))
|
|
* end
|
|
* end
|
|
*
|
|
* Note that if your finalizer references the object to be
|
|
* finalized it will never be run on GC, although it will still be
|
|
* run at exit. You will get a warning if you capture the object
|
|
* to be finalized as the receiver of the finalizer.
|
|
*
|
|
* class CapturesSelf
|
|
* def initialize(name)
|
|
* ObjectSpace.define_finalizer(self, proc {
|
|
* # this finalizer will only be run on exit
|
|
* puts "finalizing #{name}"
|
|
* })
|
|
* end
|
|
* end
|
|
*
|
|
* Also note that finalization can be unpredictable and is never guaranteed
|
|
* to be run except on exit.
|
|
*/
|
|
|
|
static VALUE
|
|
define_final(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
VALUE obj, block;
|
|
|
|
rb_scan_args(argc, argv, "11", &obj, &block);
|
|
should_be_finalizable(obj);
|
|
if (argc == 1) {
|
|
block = rb_block_proc();
|
|
}
|
|
else {
|
|
should_be_callable(block);
|
|
}
|
|
|
|
if (rb_callable_receiver(block) == obj) {
|
|
rb_warn("finalizer references object to be finalized");
|
|
}
|
|
|
|
return rb_define_finalizer_no_check(obj, block);
|
|
}
|
|
|
|
VALUE
|
|
rb_define_finalizer(VALUE obj, VALUE block)
|
|
{
|
|
should_be_finalizable(obj);
|
|
should_be_callable(block);
|
|
return rb_define_finalizer_no_check(obj, block);
|
|
}
|
|
|
|
void
|
|
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE table;
|
|
st_data_t data;
|
|
|
|
if (!FL_TEST(obj, FL_FINALIZE)) return;
|
|
|
|
if (RB_LIKELY(st_lookup(finalizer_table, obj, &data))) {
|
|
table = (VALUE)data;
|
|
st_insert(finalizer_table, dest, table);
|
|
FL_SET(dest, FL_FINALIZE);
|
|
}
|
|
else {
|
|
rb_bug("rb_gc_copy_finalizer: FL_FINALIZE set but not found in finalizer_table: %s", obj_info(obj));
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
run_single_final(VALUE cmd, VALUE objid)
|
|
{
|
|
return rb_check_funcall(cmd, idCall, 1, &objid);
|
|
}
|
|
|
|
static void
|
|
warn_exception_in_finalizer(rb_execution_context_t *ec, VALUE final)
|
|
{
|
|
if (!UNDEF_P(final) && !NIL_P(ruby_verbose)) {
|
|
VALUE errinfo = ec->errinfo;
|
|
rb_warn("Exception in finalizer %+"PRIsVALUE, final);
|
|
rb_ec_error_print(ec, errinfo);
|
|
}
|
|
}
|
|
|
|
static void
|
|
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
|
|
{
|
|
long i;
|
|
enum ruby_tag_type state;
|
|
volatile struct {
|
|
VALUE errinfo;
|
|
VALUE objid;
|
|
VALUE final;
|
|
rb_control_frame_t *cfp;
|
|
VALUE *sp;
|
|
long finished;
|
|
} saved;
|
|
|
|
rb_execution_context_t * volatile ec = GET_EC();
|
|
#define RESTORE_FINALIZER() (\
|
|
ec->cfp = saved.cfp, \
|
|
ec->cfp->sp = saved.sp, \
|
|
ec->errinfo = saved.errinfo)
|
|
|
|
saved.errinfo = ec->errinfo;
|
|
saved.objid = rb_obj_id(obj);
|
|
saved.cfp = ec->cfp;
|
|
saved.sp = ec->cfp->sp;
|
|
saved.finished = 0;
|
|
saved.final = Qundef;
|
|
|
|
EC_PUSH_TAG(ec);
|
|
state = EC_EXEC_TAG();
|
|
if (state != TAG_NONE) {
|
|
++saved.finished; /* skip failed finalizer */
|
|
warn_exception_in_finalizer(ec, ATOMIC_VALUE_EXCHANGE(saved.final, Qundef));
|
|
}
|
|
for (i = saved.finished;
|
|
RESTORE_FINALIZER(), i<RARRAY_LEN(table);
|
|
saved.finished = ++i) {
|
|
run_single_final(saved.final = RARRAY_AREF(table, i), saved.objid);
|
|
}
|
|
EC_POP_TAG();
|
|
#undef RESTORE_FINALIZER
|
|
}
|
|
|
|
static void
|
|
run_final(rb_objspace_t *objspace, VALUE zombie)
|
|
{
|
|
if (RZOMBIE(zombie)->dfree) {
|
|
RZOMBIE(zombie)->dfree(RZOMBIE(zombie)->data);
|
|
}
|
|
|
|
st_data_t key = (st_data_t)zombie;
|
|
if (FL_TEST_RAW(zombie, FL_FINALIZE)) {
|
|
FL_UNSET(zombie, FL_FINALIZE);
|
|
st_data_t table;
|
|
if (st_delete(finalizer_table, &key, &table)) {
|
|
run_finalizer(objspace, zombie, (VALUE)table);
|
|
}
|
|
else {
|
|
rb_bug("FL_FINALIZE flag is set, but finalizers are not found");
|
|
}
|
|
}
|
|
else {
|
|
GC_ASSERT(!st_lookup(finalizer_table, key, NULL));
|
|
}
|
|
}
|
|
|
|
static void
|
|
finalize_list(rb_objspace_t *objspace, VALUE zombie)
|
|
{
|
|
while (zombie) {
|
|
VALUE next_zombie;
|
|
struct heap_page *page;
|
|
asan_unpoison_object(zombie, false);
|
|
next_zombie = RZOMBIE(zombie)->next;
|
|
page = GET_HEAP_PAGE(zombie);
|
|
|
|
run_final(objspace, zombie);
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
GC_ASSERT(BUILTIN_TYPE(zombie) == T_ZOMBIE);
|
|
if (FL_TEST(zombie, FL_SEEN_OBJ_ID)) {
|
|
obj_free_object_id(objspace, zombie);
|
|
}
|
|
|
|
GC_ASSERT(heap_pages_final_slots > 0);
|
|
GC_ASSERT(page->final_slots > 0);
|
|
|
|
heap_pages_final_slots--;
|
|
page->final_slots--;
|
|
page->free_slots++;
|
|
heap_page_add_freeobj(objspace, page, zombie);
|
|
page->size_pool->total_freed_objects++;
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
zombie = next_zombie;
|
|
}
|
|
}
|
|
|
|
static void
|
|
finalize_deferred_heap_pages(rb_objspace_t *objspace)
|
|
{
|
|
VALUE zombie;
|
|
while ((zombie = ATOMIC_VALUE_EXCHANGE(heap_pages_deferred_final, 0)) != 0) {
|
|
finalize_list(objspace, zombie);
|
|
}
|
|
}
|
|
|
|
static void
|
|
finalize_deferred(rb_objspace_t *objspace)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
ec->interrupt_mask |= PENDING_INTERRUPT_MASK;
|
|
finalize_deferred_heap_pages(objspace);
|
|
ec->interrupt_mask &= ~PENDING_INTERRUPT_MASK;
|
|
}
|
|
|
|
static void
|
|
gc_finalize_deferred(void *dmy)
|
|
{
|
|
rb_objspace_t *objspace = dmy;
|
|
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
|
|
|
|
finalize_deferred(objspace);
|
|
ATOMIC_SET(finalizing, 0);
|
|
}
|
|
|
|
static void
|
|
gc_finalize_deferred_register(rb_objspace_t *objspace)
|
|
{
|
|
/* will enqueue a call to gc_finalize_deferred */
|
|
rb_postponed_job_trigger(objspace->finalize_deferred_pjob);
|
|
}
|
|
|
|
static int pop_mark_stack(mark_stack_t *stack, VALUE *data);
|
|
|
|
static void
|
|
gc_abort(rb_objspace_t *objspace)
|
|
{
|
|
if (is_incremental_marking(objspace)) {
|
|
/* Remove all objects from the mark stack. */
|
|
VALUE obj;
|
|
while (pop_mark_stack(&objspace->mark_stack, &obj));
|
|
|
|
objspace->flags.during_incremental_marking = FALSE;
|
|
}
|
|
|
|
if (is_lazy_sweeping(objspace)) {
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
heap->sweeping_page = NULL;
|
|
struct heap_page *page = NULL;
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
page->flags.before_sweep = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
rgengc_mark_and_rememberset_clear(objspace, heap);
|
|
}
|
|
|
|
gc_mode_set(objspace, gc_mode_none);
|
|
}
|
|
|
|
struct force_finalize_list {
|
|
VALUE obj;
|
|
VALUE table;
|
|
struct force_finalize_list *next;
|
|
};
|
|
|
|
static int
|
|
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
|
|
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
|
|
curr->obj = key;
|
|
curr->table = val;
|
|
curr->next = *prev;
|
|
*prev = curr;
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
gc_each_object(rb_objspace_t *objspace, void (*func)(VALUE obj, void *data), void *data)
|
|
{
|
|
for (size_t i = 0; i < heap_allocated_pages; i++) {
|
|
struct heap_page *page = heap_pages_sorted[i];
|
|
short stride = page->slot_size;
|
|
|
|
uintptr_t p = (uintptr_t)page->start;
|
|
uintptr_t pend = p + page->total_slots * stride;
|
|
for (; p < pend; p += stride) {
|
|
VALUE obj = (VALUE)p;
|
|
|
|
void *poisoned = asan_unpoison_object_temporary(obj);
|
|
|
|
func(obj, data);
|
|
|
|
if (poisoned) {
|
|
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
|
|
asan_poison_object(obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool rb_obj_is_main_ractor(VALUE gv);
|
|
|
|
static void
|
|
rb_objspace_free_objects_i(VALUE obj, void *data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
if (BUILTIN_TYPE(obj) != T_NONE) {
|
|
obj_free(objspace, obj);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_objspace_free_objects(rb_objspace_t *objspace)
|
|
{
|
|
gc_each_object(objspace, rb_objspace_free_objects_i, objspace);
|
|
}
|
|
|
|
static void
|
|
rb_objspace_call_finalizer_i(VALUE obj, void *data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_DATA:
|
|
if (!rb_free_at_exit && (!DATA_PTR(obj) || !RANY(obj)->as.data.dfree)) break;
|
|
if (rb_obj_is_thread(obj)) break;
|
|
if (rb_obj_is_mutex(obj)) break;
|
|
if (rb_obj_is_fiber(obj)) break;
|
|
if (rb_obj_is_main_ractor(obj)) break;
|
|
|
|
obj_free(objspace, obj);
|
|
break;
|
|
case T_FILE:
|
|
obj_free(objspace, obj);
|
|
break;
|
|
case T_NONE:
|
|
break;
|
|
default:
|
|
if (rb_free_at_exit) {
|
|
obj_free(objspace, obj);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_objspace_call_finalizer(rb_objspace_t *objspace)
|
|
{
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_verify_internal_consistency(objspace);
|
|
#endif
|
|
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
|
|
|
|
/* run finalizers */
|
|
finalize_deferred(objspace);
|
|
GC_ASSERT(heap_pages_deferred_final == 0);
|
|
|
|
/* prohibit incremental GC */
|
|
objspace->flags.dont_incremental = 1;
|
|
|
|
/* force to run finalizer */
|
|
while (finalizer_table->num_entries) {
|
|
struct force_finalize_list *list = 0;
|
|
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
|
|
while (list) {
|
|
struct force_finalize_list *curr = list;
|
|
|
|
st_data_t obj = (st_data_t)curr->obj;
|
|
st_delete(finalizer_table, &obj, 0);
|
|
FL_UNSET(curr->obj, FL_FINALIZE);
|
|
|
|
run_finalizer(objspace, curr->obj, curr->table);
|
|
|
|
list = curr->next;
|
|
xfree(curr);
|
|
}
|
|
}
|
|
|
|
/* Abort incremental marking and lazy sweeping to speed up shutdown. */
|
|
gc_abort(objspace);
|
|
|
|
/* prohibit GC because force T_DATA finalizers can break an object graph consistency */
|
|
dont_gc_on();
|
|
|
|
/* running data/file finalizers are part of garbage collection */
|
|
unsigned int lock_lev;
|
|
gc_enter(objspace, gc_enter_event_finalizer, &lock_lev);
|
|
|
|
gc_each_object(objspace, rb_objspace_call_finalizer_i, objspace);
|
|
|
|
gc_exit(objspace, gc_enter_event_finalizer, &lock_lev);
|
|
|
|
finalize_deferred_heap_pages(objspace);
|
|
|
|
st_free_table(finalizer_table);
|
|
finalizer_table = 0;
|
|
ATOMIC_SET(finalizing, 0);
|
|
}
|
|
|
|
/* garbage objects will be collected soon. */
|
|
static inline bool
|
|
is_garbage_object(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
return is_lazy_sweeping(objspace) && GET_HEAP_PAGE(ptr)->flags.before_sweep &&
|
|
!RVALUE_MARKED(ptr);
|
|
}
|
|
|
|
static inline bool
|
|
is_live_object(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
switch (BUILTIN_TYPE(ptr)) {
|
|
case T_NONE:
|
|
case T_MOVED:
|
|
case T_ZOMBIE:
|
|
return FALSE;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return !is_garbage_object(objspace, ptr);
|
|
}
|
|
|
|
static inline int
|
|
is_markable_object(VALUE obj)
|
|
{
|
|
return !RB_SPECIAL_CONST_P(obj);
|
|
}
|
|
|
|
int
|
|
rb_objspace_markable_object_p(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return is_markable_object(obj) && is_live_object(objspace, obj);
|
|
}
|
|
|
|
int
|
|
rb_objspace_garbage_object_p(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return is_garbage_object(objspace, obj);
|
|
}
|
|
|
|
bool
|
|
rb_gc_is_ptr_to_obj(const void *ptr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return is_pointer_to_heap(objspace, ptr);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace._id2ref(object_id) -> an_object
|
|
*
|
|
* Converts an object id to a reference to the object. May not be
|
|
* called on an object id passed as a parameter to a finalizer.
|
|
*
|
|
* s = "I am a string" #=> "I am a string"
|
|
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
|
|
* r == s #=> true
|
|
*
|
|
* On multi-ractor mode, if the object is not shareable, it raises
|
|
* RangeError.
|
|
*/
|
|
|
|
static VALUE
|
|
id2ref(VALUE objid)
|
|
{
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
#define NUM2PTR(x) NUM2ULONG(x)
|
|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
|
|
#define NUM2PTR(x) NUM2ULL(x)
|
|
#endif
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
objid = rb_to_int(objid);
|
|
if (FIXNUM_P(objid) || rb_big_size(objid) <= SIZEOF_VOIDP) {
|
|
VALUE ptr = NUM2PTR(objid);
|
|
if (SPECIAL_CONST_P(ptr)) {
|
|
if (ptr == Qtrue) return Qtrue;
|
|
if (ptr == Qfalse) return Qfalse;
|
|
if (NIL_P(ptr)) return Qnil;
|
|
if (FIXNUM_P(ptr)) return ptr;
|
|
if (FLONUM_P(ptr)) return ptr;
|
|
|
|
if (SYMBOL_P(ptr)) {
|
|
// Check that the symbol is valid
|
|
if (rb_static_id_valid_p(SYM2ID(ptr))) {
|
|
return ptr;
|
|
}
|
|
else {
|
|
rb_raise(rb_eRangeError, "%p is not symbol id value", (void *)ptr);
|
|
}
|
|
}
|
|
|
|
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_int2str(objid, 10));
|
|
}
|
|
}
|
|
|
|
VALUE orig;
|
|
if (st_lookup(objspace->id_to_obj_tbl, objid, &orig) &&
|
|
is_live_object(objspace, orig)) {
|
|
if (!rb_multi_ractor_p() || rb_ractor_shareable_p(orig)) {
|
|
return orig;
|
|
}
|
|
else {
|
|
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is id of the unshareable object on multi-ractor", rb_int2str(objid, 10));
|
|
}
|
|
}
|
|
|
|
if (rb_int_ge(objid, ULL2NUM(objspace->next_object_id))) {
|
|
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_int2str(objid, 10));
|
|
}
|
|
else {
|
|
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is recycled object", rb_int2str(objid, 10));
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
os_id2ref(VALUE os, VALUE objid)
|
|
{
|
|
return id2ref(objid);
|
|
}
|
|
|
|
static VALUE
|
|
rb_find_object_id(VALUE obj, VALUE (*get_heap_object_id)(VALUE))
|
|
{
|
|
if (SPECIAL_CONST_P(obj)) {
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
return LONG2NUM((SIGNED_VALUE)obj);
|
|
#else
|
|
return LL2NUM((SIGNED_VALUE)obj);
|
|
#endif
|
|
}
|
|
|
|
return get_heap_object_id(obj);
|
|
}
|
|
|
|
static VALUE
|
|
cached_object_id(VALUE obj)
|
|
{
|
|
VALUE id;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
if (st_lookup(objspace->obj_to_id_tbl, (st_data_t)obj, &id)) {
|
|
GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID));
|
|
}
|
|
else {
|
|
GC_ASSERT(!FL_TEST(obj, FL_SEEN_OBJ_ID));
|
|
|
|
id = ULL2NUM(objspace->next_object_id);
|
|
objspace->next_object_id += OBJ_ID_INCREMENT;
|
|
|
|
VALUE already_disabled = rb_gc_disable_no_rest();
|
|
st_insert(objspace->obj_to_id_tbl, (st_data_t)obj, (st_data_t)id);
|
|
st_insert(objspace->id_to_obj_tbl, (st_data_t)id, (st_data_t)obj);
|
|
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
|
|
FL_SET(obj, FL_SEEN_OBJ_ID);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
return id;
|
|
}
|
|
|
|
static VALUE
|
|
nonspecial_obj_id(VALUE obj)
|
|
{
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
return (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG);
|
|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
|
|
return LL2NUM((SIGNED_VALUE)(obj) / 2);
|
|
#else
|
|
# error not supported
|
|
#endif
|
|
}
|
|
|
|
VALUE
|
|
rb_memory_id(VALUE obj)
|
|
{
|
|
return rb_find_object_id(obj, nonspecial_obj_id);
|
|
}
|
|
|
|
/*
|
|
* Document-method: __id__
|
|
* Document-method: object_id
|
|
*
|
|
* call-seq:
|
|
* obj.__id__ -> integer
|
|
* obj.object_id -> integer
|
|
*
|
|
* Returns an integer identifier for +obj+.
|
|
*
|
|
* The same number will be returned on all calls to +object_id+ for a given
|
|
* object, and no two active objects will share an id.
|
|
*
|
|
* Note: that some objects of builtin classes are reused for optimization.
|
|
* This is the case for immediate values and frozen string literals.
|
|
*
|
|
* BasicObject implements +__id__+, Kernel implements +object_id+.
|
|
*
|
|
* Immediate values are not passed by reference but are passed by value:
|
|
* +nil+, +true+, +false+, Fixnums, Symbols, and some Floats.
|
|
*
|
|
* Object.new.object_id == Object.new.object_id # => false
|
|
* (21 * 2).object_id == (21 * 2).object_id # => true
|
|
* "hello".object_id == "hello".object_id # => false
|
|
* "hi".freeze.object_id == "hi".freeze.object_id # => true
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_id(VALUE obj)
|
|
{
|
|
/*
|
|
* 32-bit VALUE space
|
|
* MSB ------------------------ LSB
|
|
* false 00000000000000000000000000000000
|
|
* true 00000000000000000000000000000010
|
|
* nil 00000000000000000000000000000100
|
|
* undef 00000000000000000000000000000110
|
|
* symbol ssssssssssssssssssssssss00001110
|
|
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
|
|
* fixnum fffffffffffffffffffffffffffffff1
|
|
*
|
|
* object_id space
|
|
* LSB
|
|
* false 00000000000000000000000000000000
|
|
* true 00000000000000000000000000000010
|
|
* nil 00000000000000000000000000000100
|
|
* undef 00000000000000000000000000000110
|
|
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
|
|
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
|
|
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
|
|
*
|
|
* where A = sizeof(RVALUE)/4
|
|
*
|
|
* sizeof(RVALUE) is
|
|
* 20 if 32-bit, double is 4-byte aligned
|
|
* 24 if 32-bit, double is 8-byte aligned
|
|
* 40 if 64-bit
|
|
*/
|
|
|
|
return rb_find_object_id(obj, cached_object_id);
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
cc_table_memsize_i(VALUE ccs_ptr, void *data_ptr)
|
|
{
|
|
size_t *total_size = data_ptr;
|
|
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
|
|
*total_size += sizeof(*ccs);
|
|
*total_size += sizeof(ccs->entries[0]) * ccs->capa;
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static size_t
|
|
cc_table_memsize(struct rb_id_table *cc_table)
|
|
{
|
|
size_t total = rb_id_table_memsize(cc_table);
|
|
rb_id_table_foreach_values(cc_table, cc_table_memsize_i, &total);
|
|
return total;
|
|
}
|
|
|
|
static size_t
|
|
obj_memsize_of(VALUE obj, int use_all_types)
|
|
{
|
|
size_t size = 0;
|
|
|
|
if (SPECIAL_CONST_P(obj)) {
|
|
return 0;
|
|
}
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
size += rb_generic_ivar_memsize(obj);
|
|
}
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_OBJECT:
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
size += rb_st_memsize(ROBJECT_IV_HASH(obj));
|
|
}
|
|
else if (!(RBASIC(obj)->flags & ROBJECT_EMBED)) {
|
|
size += ROBJECT_IV_CAPACITY(obj) * sizeof(VALUE);
|
|
}
|
|
break;
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
if (RCLASS_M_TBL(obj)) {
|
|
size += rb_id_table_memsize(RCLASS_M_TBL(obj));
|
|
}
|
|
// class IV sizes are allocated as powers of two
|
|
size += SIZEOF_VALUE << bit_length(RCLASS_IV_COUNT(obj));
|
|
if (RCLASS_CVC_TBL(obj)) {
|
|
size += rb_id_table_memsize(RCLASS_CVC_TBL(obj));
|
|
}
|
|
if (RCLASS_EXT(obj)->const_tbl) {
|
|
size += rb_id_table_memsize(RCLASS_EXT(obj)->const_tbl);
|
|
}
|
|
if (RCLASS_CC_TBL(obj)) {
|
|
size += cc_table_memsize(RCLASS_CC_TBL(obj));
|
|
}
|
|
if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
|
|
size += (RCLASS_SUPERCLASS_DEPTH(obj) + 1) * sizeof(VALUE);
|
|
}
|
|
break;
|
|
case T_ICLASS:
|
|
if (RICLASS_OWNS_M_TBL_P(obj)) {
|
|
if (RCLASS_M_TBL(obj)) {
|
|
size += rb_id_table_memsize(RCLASS_M_TBL(obj));
|
|
}
|
|
}
|
|
if (RCLASS_CC_TBL(obj)) {
|
|
size += cc_table_memsize(RCLASS_CC_TBL(obj));
|
|
}
|
|
break;
|
|
case T_STRING:
|
|
size += rb_str_memsize(obj);
|
|
break;
|
|
case T_ARRAY:
|
|
size += rb_ary_memsize(obj);
|
|
break;
|
|
case T_HASH:
|
|
if (RHASH_ST_TABLE_P(obj)) {
|
|
VM_ASSERT(RHASH_ST_TABLE(obj) != NULL);
|
|
/* st_table is in the slot */
|
|
size += st_memsize(RHASH_ST_TABLE(obj)) - sizeof(st_table);
|
|
}
|
|
break;
|
|
case T_REGEXP:
|
|
if (RREGEXP_PTR(obj)) {
|
|
size += onig_memsize(RREGEXP_PTR(obj));
|
|
}
|
|
break;
|
|
case T_DATA:
|
|
if (use_all_types) size += rb_objspace_data_type_memsize(obj);
|
|
break;
|
|
case T_MATCH:
|
|
{
|
|
rb_matchext_t *rm = RMATCH_EXT(obj);
|
|
size += onig_region_memsize(&rm->regs);
|
|
size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated;
|
|
}
|
|
break;
|
|
case T_FILE:
|
|
if (RFILE(obj)->fptr) {
|
|
size += rb_io_memsize(RFILE(obj)->fptr);
|
|
}
|
|
break;
|
|
case T_RATIONAL:
|
|
case T_COMPLEX:
|
|
break;
|
|
case T_IMEMO:
|
|
size += rb_imemo_memsize(obj);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
case T_SYMBOL:
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
|
|
size += BIGNUM_LEN(obj) * sizeof(BDIGIT);
|
|
}
|
|
break;
|
|
|
|
case T_NODE:
|
|
UNEXPECTED_NODE(obj_memsize_of);
|
|
break;
|
|
|
|
case T_STRUCT:
|
|
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
|
|
RSTRUCT(obj)->as.heap.ptr) {
|
|
size += sizeof(VALUE) * RSTRUCT_LEN(obj);
|
|
}
|
|
break;
|
|
|
|
case T_ZOMBIE:
|
|
case T_MOVED:
|
|
break;
|
|
|
|
default:
|
|
rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)",
|
|
BUILTIN_TYPE(obj), (void*)obj);
|
|
}
|
|
|
|
return size + rb_gc_obj_slot_size(obj);
|
|
}
|
|
|
|
size_t
|
|
rb_obj_memsize_of(VALUE obj)
|
|
{
|
|
return obj_memsize_of(obj, TRUE);
|
|
}
|
|
|
|
static int
|
|
set_zero(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
VALUE k = (VALUE)key;
|
|
VALUE hash = (VALUE)arg;
|
|
rb_hash_aset(hash, k, INT2FIX(0));
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static VALUE
|
|
type_sym(size_t type)
|
|
{
|
|
switch (type) {
|
|
#define COUNT_TYPE(t) case (t): return ID2SYM(rb_intern(#t)); break;
|
|
COUNT_TYPE(T_NONE);
|
|
COUNT_TYPE(T_OBJECT);
|
|
COUNT_TYPE(T_CLASS);
|
|
COUNT_TYPE(T_MODULE);
|
|
COUNT_TYPE(T_FLOAT);
|
|
COUNT_TYPE(T_STRING);
|
|
COUNT_TYPE(T_REGEXP);
|
|
COUNT_TYPE(T_ARRAY);
|
|
COUNT_TYPE(T_HASH);
|
|
COUNT_TYPE(T_STRUCT);
|
|
COUNT_TYPE(T_BIGNUM);
|
|
COUNT_TYPE(T_FILE);
|
|
COUNT_TYPE(T_DATA);
|
|
COUNT_TYPE(T_MATCH);
|
|
COUNT_TYPE(T_COMPLEX);
|
|
COUNT_TYPE(T_RATIONAL);
|
|
COUNT_TYPE(T_NIL);
|
|
COUNT_TYPE(T_TRUE);
|
|
COUNT_TYPE(T_FALSE);
|
|
COUNT_TYPE(T_SYMBOL);
|
|
COUNT_TYPE(T_FIXNUM);
|
|
COUNT_TYPE(T_IMEMO);
|
|
COUNT_TYPE(T_UNDEF);
|
|
COUNT_TYPE(T_NODE);
|
|
COUNT_TYPE(T_ICLASS);
|
|
COUNT_TYPE(T_ZOMBIE);
|
|
COUNT_TYPE(T_MOVED);
|
|
#undef COUNT_TYPE
|
|
default: return SIZET2NUM(type); break;
|
|
}
|
|
}
|
|
|
|
struct count_objects_data {
|
|
size_t counts[T_MASK+1];
|
|
size_t freed;
|
|
size_t total;
|
|
};
|
|
|
|
static void
|
|
count_objects_i(VALUE obj, void *d)
|
|
{
|
|
struct count_objects_data *data = (struct count_objects_data *)d;
|
|
|
|
if (RANY(obj)->as.basic.flags) {
|
|
data->counts[BUILTIN_TYPE(obj)]++;
|
|
}
|
|
else {
|
|
data->freed++;
|
|
}
|
|
|
|
data->total++;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_objects([result_hash]) -> hash
|
|
*
|
|
* Counts all objects grouped by type.
|
|
*
|
|
* It returns a hash, such as:
|
|
* {
|
|
* :TOTAL=>10000,
|
|
* :FREE=>3011,
|
|
* :T_OBJECT=>6,
|
|
* :T_CLASS=>404,
|
|
* # ...
|
|
* }
|
|
*
|
|
* The contents of the returned hash are implementation specific.
|
|
* It may be changed in future.
|
|
*
|
|
* The keys starting with +:T_+ means live objects.
|
|
* For example, +:T_ARRAY+ is the number of arrays.
|
|
* +:FREE+ means object slots which is not used now.
|
|
* +:TOTAL+ means sum of above.
|
|
*
|
|
* If the optional argument +result_hash+ is given,
|
|
* it is overwritten and returned. This is intended to avoid probe effect.
|
|
*
|
|
* h = {}
|
|
* ObjectSpace.count_objects(h)
|
|
* puts h
|
|
* # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 }
|
|
*
|
|
* This method is only expected to work on C Ruby.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
count_objects(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
struct count_objects_data data = { 0 };
|
|
VALUE hash = Qnil;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 1) {
|
|
hash = argv[0];
|
|
if (!RB_TYPE_P(hash, T_HASH))
|
|
rb_raise(rb_eTypeError, "non-hash given");
|
|
}
|
|
|
|
gc_each_object(objspace, count_objects_i, &data);
|
|
|
|
if (NIL_P(hash)) {
|
|
hash = rb_hash_new();
|
|
}
|
|
else if (!RHASH_EMPTY_P(hash)) {
|
|
rb_hash_stlike_foreach(hash, set_zero, hash);
|
|
}
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(data.total));
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(data.freed));
|
|
|
|
for (size_t i = 0; i <= T_MASK; i++) {
|
|
VALUE type = type_sym(i);
|
|
if (data.counts[i])
|
|
rb_hash_aset(hash, type, SIZET2NUM(data.counts[i]));
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
------------------------ Garbage Collection ------------------------
|
|
*/
|
|
|
|
/* Sweeping */
|
|
|
|
static size_t
|
|
objspace_available_slots(rb_objspace_t *objspace)
|
|
{
|
|
size_t total_slots = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
total_slots += SIZE_POOL_EDEN_HEAP(size_pool)->total_slots;
|
|
total_slots += SIZE_POOL_TOMB_HEAP(size_pool)->total_slots;
|
|
}
|
|
return total_slots;
|
|
}
|
|
|
|
static size_t
|
|
objspace_live_slots(rb_objspace_t *objspace)
|
|
{
|
|
return total_allocated_objects(objspace) - total_freed_objects(objspace) - heap_pages_final_slots;
|
|
}
|
|
|
|
static size_t
|
|
objspace_free_slots(rb_objspace_t *objspace)
|
|
{
|
|
return objspace_available_slots(objspace) - objspace_live_slots(objspace) - heap_pages_final_slots;
|
|
}
|
|
|
|
static void
|
|
gc_setup_mark_bits(struct heap_page *page)
|
|
{
|
|
/* copy oldgen bitmap to mark bitmap */
|
|
memcpy(&page->mark_bits[0], &page->uncollectible_bits[0], HEAP_PAGE_BITMAP_SIZE);
|
|
}
|
|
|
|
static int gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj);
|
|
static VALUE gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size);
|
|
|
|
#if defined(_WIN32)
|
|
enum {HEAP_PAGE_LOCK = PAGE_NOACCESS, HEAP_PAGE_UNLOCK = PAGE_READWRITE};
|
|
|
|
static BOOL
|
|
protect_page_body(struct heap_page_body *body, DWORD protect)
|
|
{
|
|
DWORD old_protect;
|
|
return VirtualProtect(body, HEAP_PAGE_SIZE, protect, &old_protect) != 0;
|
|
}
|
|
#else
|
|
enum {HEAP_PAGE_LOCK = PROT_NONE, HEAP_PAGE_UNLOCK = PROT_READ | PROT_WRITE};
|
|
#define protect_page_body(body, protect) !mprotect((body), HEAP_PAGE_SIZE, (protect))
|
|
#endif
|
|
|
|
static void
|
|
lock_page_body(rb_objspace_t *objspace, struct heap_page_body *body)
|
|
{
|
|
if (!protect_page_body(body, HEAP_PAGE_LOCK)) {
|
|
rb_bug("Couldn't protect page %p, errno: %s", (void *)body, strerror(errno));
|
|
}
|
|
else {
|
|
gc_report(5, objspace, "Protecting page in move %p\n", (void *)body);
|
|
}
|
|
}
|
|
|
|
static void
|
|
unlock_page_body(rb_objspace_t *objspace, struct heap_page_body *body)
|
|
{
|
|
if (!protect_page_body(body, HEAP_PAGE_UNLOCK)) {
|
|
rb_bug("Couldn't unprotect page %p, errno: %s", (void *)body, strerror(errno));
|
|
}
|
|
else {
|
|
gc_report(5, objspace, "Unprotecting page in move %p\n", (void *)body);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
try_move(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *free_page, VALUE src)
|
|
{
|
|
GC_ASSERT(gc_is_moveable_obj(objspace, src));
|
|
|
|
struct heap_page *src_page = GET_HEAP_PAGE(src);
|
|
if (!free_page) {
|
|
return false;
|
|
}
|
|
|
|
/* We should return true if either src is successfully moved, or src is
|
|
* unmoveable. A false return will cause the sweeping cursor to be
|
|
* incremented to the next page, and src will attempt to move again */
|
|
GC_ASSERT(RVALUE_MARKED(src));
|
|
|
|
asan_unlock_freelist(free_page);
|
|
VALUE dest = (VALUE)free_page->freelist;
|
|
asan_lock_freelist(free_page);
|
|
asan_unpoison_object(dest, false);
|
|
if (!dest) {
|
|
/* if we can't get something from the freelist then the page must be
|
|
* full */
|
|
return false;
|
|
}
|
|
asan_unlock_freelist(free_page);
|
|
free_page->freelist = RANY(dest)->as.free.next;
|
|
asan_lock_freelist(free_page);
|
|
|
|
GC_ASSERT(RB_BUILTIN_TYPE(dest) == T_NONE);
|
|
|
|
if (src_page->slot_size > free_page->slot_size) {
|
|
objspace->rcompactor.moved_down_count_table[BUILTIN_TYPE(src)]++;
|
|
}
|
|
else if (free_page->slot_size > src_page->slot_size) {
|
|
objspace->rcompactor.moved_up_count_table[BUILTIN_TYPE(src)]++;
|
|
}
|
|
objspace->rcompactor.moved_count_table[BUILTIN_TYPE(src)]++;
|
|
objspace->rcompactor.total_moved++;
|
|
|
|
gc_move(objspace, src, dest, src_page->slot_size, free_page->slot_size);
|
|
gc_pin(objspace, src);
|
|
free_page->free_slots--;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gc_unprotect_pages(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *cursor = heap->compact_cursor;
|
|
|
|
while (cursor) {
|
|
unlock_page_body(objspace, GET_PAGE_BODY(cursor->start));
|
|
cursor = ccan_list_next(&heap->pages, cursor, page_node);
|
|
}
|
|
}
|
|
|
|
static void gc_update_references(rb_objspace_t * objspace);
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page);
|
|
#endif
|
|
|
|
#if defined(__MINGW32__) || defined(_WIN32)
|
|
# define GC_COMPACTION_SUPPORTED 1
|
|
#else
|
|
/* If not MinGW, Windows, or does not have mmap, we cannot use mprotect for
|
|
* the read barrier, so we must disable compaction. */
|
|
# define GC_COMPACTION_SUPPORTED (GC_CAN_COMPILE_COMPACTION && HEAP_PAGE_ALLOC_USE_MMAP)
|
|
#endif
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void
|
|
read_barrier_handler(uintptr_t original_address)
|
|
{
|
|
VALUE obj;
|
|
rb_objspace_t * objspace = &rb_objspace;
|
|
|
|
/* Calculate address aligned to slots. */
|
|
uintptr_t address = original_address - (original_address % BASE_SLOT_SIZE);
|
|
|
|
obj = (VALUE)address;
|
|
|
|
struct heap_page_body *page_body = GET_PAGE_BODY(obj);
|
|
|
|
/* If the page_body is NULL, then mprotect cannot handle it and will crash
|
|
* with "Cannot allocate memory". */
|
|
if (page_body == NULL) {
|
|
rb_bug("read_barrier_handler: segmentation fault at %p", (void *)original_address);
|
|
}
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
unlock_page_body(objspace, page_body);
|
|
|
|
objspace->profile.read_barrier_faults++;
|
|
|
|
invalidate_moved_page(objspace, GET_HEAP_PAGE(obj));
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
}
|
|
#endif
|
|
|
|
#if !GC_CAN_COMPILE_COMPACTION
|
|
static void
|
|
uninstall_handlers(void)
|
|
{
|
|
/* no-op */
|
|
}
|
|
|
|
static void
|
|
install_handlers(void)
|
|
{
|
|
/* no-op */
|
|
}
|
|
#elif defined(_WIN32)
|
|
static LPTOP_LEVEL_EXCEPTION_FILTER old_handler;
|
|
typedef void (*signal_handler)(int);
|
|
static signal_handler old_sigsegv_handler;
|
|
|
|
static LONG WINAPI
|
|
read_barrier_signal(EXCEPTION_POINTERS * info)
|
|
{
|
|
/* EXCEPTION_ACCESS_VIOLATION is what's raised by access to protected pages */
|
|
if (info->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) {
|
|
/* > The second array element specifies the virtual address of the inaccessible data.
|
|
* https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
|
|
*
|
|
* Use this address to invalidate the page */
|
|
read_barrier_handler((uintptr_t)info->ExceptionRecord->ExceptionInformation[1]);
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
else {
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
}
|
|
|
|
static void
|
|
uninstall_handlers(void)
|
|
{
|
|
signal(SIGSEGV, old_sigsegv_handler);
|
|
SetUnhandledExceptionFilter(old_handler);
|
|
}
|
|
|
|
static void
|
|
install_handlers(void)
|
|
{
|
|
/* Remove SEGV handler so that the Unhandled Exception Filter handles it */
|
|
old_sigsegv_handler = signal(SIGSEGV, NULL);
|
|
/* Unhandled Exception Filter has access to the violation address similar
|
|
* to si_addr from sigaction */
|
|
old_handler = SetUnhandledExceptionFilter(read_barrier_signal);
|
|
}
|
|
#else
|
|
static struct sigaction old_sigbus_handler;
|
|
static struct sigaction old_sigsegv_handler;
|
|
|
|
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
|
|
static exception_mask_t old_exception_masks[32];
|
|
static mach_port_t old_exception_ports[32];
|
|
static exception_behavior_t old_exception_behaviors[32];
|
|
static thread_state_flavor_t old_exception_flavors[32];
|
|
static mach_msg_type_number_t old_exception_count;
|
|
|
|
static void
|
|
disable_mach_bad_access_exc(void)
|
|
{
|
|
old_exception_count = sizeof(old_exception_masks) / sizeof(old_exception_masks[0]);
|
|
task_swap_exception_ports(
|
|
mach_task_self(), EXC_MASK_BAD_ACCESS,
|
|
MACH_PORT_NULL, EXCEPTION_DEFAULT, 0,
|
|
old_exception_masks, &old_exception_count,
|
|
old_exception_ports, old_exception_behaviors, old_exception_flavors
|
|
);
|
|
}
|
|
|
|
static void
|
|
restore_mach_bad_access_exc(void)
|
|
{
|
|
for (mach_msg_type_number_t i = 0; i < old_exception_count; i++) {
|
|
task_set_exception_ports(
|
|
mach_task_self(),
|
|
old_exception_masks[i], old_exception_ports[i],
|
|
old_exception_behaviors[i], old_exception_flavors[i]
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
read_barrier_signal(int sig, siginfo_t * info, void * data)
|
|
{
|
|
// setup SEGV/BUS handlers for errors
|
|
struct sigaction prev_sigbus, prev_sigsegv;
|
|
sigaction(SIGBUS, &old_sigbus_handler, &prev_sigbus);
|
|
sigaction(SIGSEGV, &old_sigsegv_handler, &prev_sigsegv);
|
|
|
|
// enable SIGBUS/SEGV
|
|
sigset_t set, prev_set;
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGBUS);
|
|
sigaddset(&set, SIGSEGV);
|
|
sigprocmask(SIG_UNBLOCK, &set, &prev_set);
|
|
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
|
|
disable_mach_bad_access_exc();
|
|
#endif
|
|
// run handler
|
|
read_barrier_handler((uintptr_t)info->si_addr);
|
|
|
|
// reset SEGV/BUS handlers
|
|
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
|
|
restore_mach_bad_access_exc();
|
|
#endif
|
|
sigaction(SIGBUS, &prev_sigbus, NULL);
|
|
sigaction(SIGSEGV, &prev_sigsegv, NULL);
|
|
sigprocmask(SIG_SETMASK, &prev_set, NULL);
|
|
}
|
|
|
|
static void
|
|
uninstall_handlers(void)
|
|
{
|
|
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
|
|
restore_mach_bad_access_exc();
|
|
#endif
|
|
sigaction(SIGBUS, &old_sigbus_handler, NULL);
|
|
sigaction(SIGSEGV, &old_sigsegv_handler, NULL);
|
|
}
|
|
|
|
static void
|
|
install_handlers(void)
|
|
{
|
|
struct sigaction action;
|
|
memset(&action, 0, sizeof(struct sigaction));
|
|
sigemptyset(&action.sa_mask);
|
|
action.sa_sigaction = read_barrier_signal;
|
|
action.sa_flags = SA_SIGINFO | SA_ONSTACK;
|
|
|
|
sigaction(SIGBUS, &action, &old_sigbus_handler);
|
|
sigaction(SIGSEGV, &action, &old_sigsegv_handler);
|
|
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
|
|
disable_mach_bad_access_exc();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
gc_compact_finish(rb_objspace_t *objspace)
|
|
{
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
gc_unprotect_pages(objspace, heap);
|
|
}
|
|
|
|
uninstall_handlers();
|
|
|
|
gc_update_references(objspace);
|
|
objspace->profile.compact_count++;
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
heap->compact_cursor = NULL;
|
|
heap->free_pages = NULL;
|
|
heap->compact_cursor_index = 0;
|
|
}
|
|
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->moved_objects = objspace->rcompactor.total_moved - record->moved_objects;
|
|
}
|
|
objspace->flags.during_compacting = FALSE;
|
|
}
|
|
|
|
struct gc_sweep_context {
|
|
struct heap_page *page;
|
|
int final_slots;
|
|
int freed_slots;
|
|
int empty_slots;
|
|
};
|
|
|
|
static inline void
|
|
gc_sweep_plane(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct gc_sweep_context *ctx)
|
|
{
|
|
struct heap_page * sweep_page = ctx->page;
|
|
short slot_size = sweep_page->slot_size;
|
|
short slot_bits = slot_size / BASE_SLOT_SIZE;
|
|
GC_ASSERT(slot_bits > 0);
|
|
|
|
do {
|
|
VALUE vp = (VALUE)p;
|
|
GC_ASSERT(vp % BASE_SLOT_SIZE == 0);
|
|
|
|
asan_unpoison_object(vp, false);
|
|
if (bitset & 1) {
|
|
switch (BUILTIN_TYPE(vp)) {
|
|
default: /* majority case */
|
|
gc_report(2, objspace, "page_sweep: free %p\n", (void *)p);
|
|
#if RGENGC_CHECK_MODE
|
|
if (!is_full_marking(objspace)) {
|
|
if (RVALUE_OLD_P(vp)) rb_bug("page_sweep: %p - old while minor GC.", (void *)p);
|
|
if (RVALUE_REMEMBERED(vp)) rb_bug("page_sweep: %p - remembered.", (void *)p);
|
|
}
|
|
#endif
|
|
if (obj_free(objspace, vp)) {
|
|
// always add free slots back to the swept pages freelist,
|
|
// so that if we're comapacting, we can re-use the slots
|
|
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, BASE_SLOT_SIZE);
|
|
heap_page_add_freeobj(objspace, sweep_page, vp);
|
|
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp));
|
|
ctx->freed_slots++;
|
|
}
|
|
else {
|
|
ctx->final_slots++;
|
|
}
|
|
break;
|
|
|
|
case T_MOVED:
|
|
if (objspace->flags.during_compacting) {
|
|
/* The sweep cursor shouldn't have made it to any
|
|
* T_MOVED slots while the compact flag is enabled.
|
|
* The sweep cursor and compact cursor move in
|
|
* opposite directions, and when they meet references will
|
|
* get updated and "during_compacting" should get disabled */
|
|
rb_bug("T_MOVED shouldn't be seen until compaction is finished");
|
|
}
|
|
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp));
|
|
ctx->empty_slots++;
|
|
heap_page_add_freeobj(objspace, sweep_page, vp);
|
|
break;
|
|
case T_ZOMBIE:
|
|
/* already counted */
|
|
break;
|
|
case T_NONE:
|
|
ctx->empty_slots++; /* already freed */
|
|
break;
|
|
}
|
|
}
|
|
p += slot_size;
|
|
bitset >>= slot_bits;
|
|
} while (bitset);
|
|
}
|
|
|
|
static inline void
|
|
gc_sweep_page(rb_objspace_t *objspace, rb_heap_t *heap, struct gc_sweep_context *ctx)
|
|
{
|
|
struct heap_page *sweep_page = ctx->page;
|
|
GC_ASSERT(SIZE_POOL_EDEN_HEAP(sweep_page->size_pool) == heap);
|
|
|
|
uintptr_t p;
|
|
bits_t *bits, bitset;
|
|
|
|
gc_report(2, objspace, "page_sweep: start.\n");
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
if (!objspace->flags.immediate_sweep) {
|
|
GC_ASSERT(sweep_page->flags.before_sweep == TRUE);
|
|
}
|
|
#endif
|
|
sweep_page->flags.before_sweep = FALSE;
|
|
sweep_page->free_slots = 0;
|
|
|
|
p = (uintptr_t)sweep_page->start;
|
|
bits = sweep_page->mark_bits;
|
|
|
|
int page_rvalue_count = sweep_page->total_slots * (sweep_page->slot_size / BASE_SLOT_SIZE);
|
|
int out_of_range_bits = (NUM_IN_PAGE(p) + page_rvalue_count) % BITS_BITLENGTH;
|
|
if (out_of_range_bits != 0) { // sizeof(RVALUE) == 64
|
|
bits[BITMAP_INDEX(p) + page_rvalue_count / BITS_BITLENGTH] |= ~(((bits_t)1 << out_of_range_bits) - 1);
|
|
}
|
|
|
|
/* The last bitmap plane may not be used if the last plane does not
|
|
* have enough space for the slot_size. In that case, the last plane must
|
|
* be skipped since none of the bits will be set. */
|
|
int bitmap_plane_count = CEILDIV(NUM_IN_PAGE(p) + page_rvalue_count, BITS_BITLENGTH);
|
|
GC_ASSERT(bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT - 1 ||
|
|
bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT);
|
|
|
|
// Skip out of range slots at the head of the page
|
|
bitset = ~bits[0];
|
|
bitset >>= NUM_IN_PAGE(p);
|
|
if (bitset) {
|
|
gc_sweep_plane(objspace, heap, p, bitset, ctx);
|
|
}
|
|
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
|
|
|
|
for (int i = 1; i < bitmap_plane_count; i++) {
|
|
bitset = ~bits[i];
|
|
if (bitset) {
|
|
gc_sweep_plane(objspace, heap, p, bitset, ctx);
|
|
}
|
|
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
|
|
}
|
|
|
|
if (!heap->compact_cursor) {
|
|
gc_setup_mark_bits(sweep_page);
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->removing_objects += ctx->final_slots + ctx->freed_slots;
|
|
record->empty_objects += ctx->empty_slots;
|
|
}
|
|
#endif
|
|
if (0) fprintf(stderr, "gc_sweep_page(%"PRIdSIZE"): total_slots: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n",
|
|
rb_gc_count(),
|
|
sweep_page->total_slots,
|
|
ctx->freed_slots, ctx->empty_slots, ctx->final_slots);
|
|
|
|
sweep_page->free_slots += ctx->freed_slots + ctx->empty_slots;
|
|
sweep_page->size_pool->total_freed_objects += ctx->freed_slots;
|
|
|
|
if (heap_pages_deferred_final && !finalizing) {
|
|
gc_finalize_deferred_register(objspace);
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
short freelist_len = 0;
|
|
asan_unlock_freelist(sweep_page);
|
|
RVALUE *ptr = sweep_page->freelist;
|
|
while (ptr) {
|
|
freelist_len++;
|
|
ptr = ptr->as.free.next;
|
|
}
|
|
asan_lock_freelist(sweep_page);
|
|
if (freelist_len != sweep_page->free_slots) {
|
|
rb_bug("inconsistent freelist length: expected %d but was %d", sweep_page->free_slots, freelist_len);
|
|
}
|
|
#endif
|
|
|
|
gc_report(2, objspace, "page_sweep: end.\n");
|
|
}
|
|
|
|
static const char *
|
|
gc_mode_name(enum gc_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case gc_mode_none: return "none";
|
|
case gc_mode_marking: return "marking";
|
|
case gc_mode_sweeping: return "sweeping";
|
|
case gc_mode_compacting: return "compacting";
|
|
default: rb_bug("gc_mode_name: unknown mode: %d", (int)mode);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode)
|
|
{
|
|
#if RGENGC_CHECK_MODE
|
|
enum gc_mode prev_mode = gc_mode(objspace);
|
|
switch (prev_mode) {
|
|
case gc_mode_none: GC_ASSERT(mode == gc_mode_marking); break;
|
|
case gc_mode_marking: GC_ASSERT(mode == gc_mode_sweeping); break;
|
|
case gc_mode_sweeping: GC_ASSERT(mode == gc_mode_none || mode == gc_mode_compacting); break;
|
|
case gc_mode_compacting: GC_ASSERT(mode == gc_mode_none); break;
|
|
}
|
|
#endif
|
|
if (0) fprintf(stderr, "gc_mode_transition: %s->%s\n", gc_mode_name(gc_mode(objspace)), gc_mode_name(mode));
|
|
gc_mode_set(objspace, mode);
|
|
}
|
|
|
|
static void
|
|
heap_page_freelist_append(struct heap_page *page, RVALUE *freelist)
|
|
{
|
|
if (freelist) {
|
|
asan_unlock_freelist(page);
|
|
if (page->freelist) {
|
|
RVALUE *p = page->freelist;
|
|
asan_unpoison_object((VALUE)p, false);
|
|
while (p->as.free.next) {
|
|
RVALUE *prev = p;
|
|
p = p->as.free.next;
|
|
asan_poison_object((VALUE)prev);
|
|
asan_unpoison_object((VALUE)p, false);
|
|
}
|
|
p->as.free.next = freelist;
|
|
asan_poison_object((VALUE)p);
|
|
}
|
|
else {
|
|
page->freelist = freelist;
|
|
}
|
|
asan_lock_freelist(page);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_sweep_start_heap(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
heap->sweeping_page = ccan_list_top(&heap->pages, struct heap_page, page_node);
|
|
heap->free_pages = NULL;
|
|
heap->pooled_pages = NULL;
|
|
if (!objspace->flags.immediate_sweep) {
|
|
struct heap_page *page = NULL;
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
page->flags.before_sweep = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
|
|
__attribute__((noinline))
|
|
#endif
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void gc_sort_heap_by_compare_func(rb_objspace_t *objspace, gc_compact_compare_func compare_func);
|
|
static int compare_pinned_slots(const void *left, const void *right, void *d);
|
|
#endif
|
|
|
|
static void
|
|
gc_sweep_start(rb_objspace_t *objspace)
|
|
{
|
|
gc_mode_transition(objspace, gc_mode_sweeping);
|
|
objspace->rincgc.pooled_slots = 0;
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
if (objspace->flags.during_compacting) {
|
|
gc_sort_heap_by_compare_func(
|
|
objspace,
|
|
objspace->rcompactor.compare_func ? objspace->rcompactor.compare_func : compare_pinned_slots
|
|
);
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
gc_sweep_start_heap(objspace, heap);
|
|
|
|
/* We should call gc_sweep_finish_size_pool for size pools with no pages. */
|
|
if (heap->sweeping_page == NULL) {
|
|
GC_ASSERT(heap->total_pages == 0);
|
|
GC_ASSERT(heap->total_slots == 0);
|
|
gc_sweep_finish_size_pool(objspace, size_pool);
|
|
}
|
|
}
|
|
|
|
rb_ractor_t *r = NULL;
|
|
ccan_list_for_each(&GET_VM()->ractor.set, r, vmlr_node) {
|
|
rb_gc_ractor_newobj_cache_clear(&r->newobj_cache);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
|
|
{
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
size_t total_slots = heap->total_slots + SIZE_POOL_TOMB_HEAP(size_pool)->total_slots;
|
|
size_t total_pages = heap->total_pages + SIZE_POOL_TOMB_HEAP(size_pool)->total_pages;
|
|
size_t swept_slots = size_pool->freed_slots + size_pool->empty_slots;
|
|
|
|
size_t init_slots = gc_params.size_pool_init_slots[size_pool - size_pools];
|
|
size_t min_free_slots = (size_t)(MAX(total_slots, init_slots) * gc_params.heap_free_slots_min_ratio);
|
|
|
|
/* If we don't have enough slots and we have pages on the tomb heap, move
|
|
* pages from the tomb heap to the eden heap. This may prevent page
|
|
* creation thrashing (frequently allocating and deallocting pages) and
|
|
* GC thrashing (running GC more frequently than required). */
|
|
struct heap_page *resurrected_page;
|
|
while (swept_slots < min_free_slots &&
|
|
(resurrected_page = heap_page_resurrect(objspace, size_pool))) {
|
|
swept_slots += resurrected_page->free_slots;
|
|
|
|
heap_add_page(objspace, size_pool, heap, resurrected_page);
|
|
heap_add_freepage(heap, resurrected_page);
|
|
}
|
|
|
|
if (swept_slots < min_free_slots) {
|
|
bool grow_heap = is_full_marking(objspace);
|
|
|
|
/* Consider growing or starting a major GC if we are not currently in a
|
|
* major GC and we can't allocate any more pages. */
|
|
if (!is_full_marking(objspace) && size_pool->allocatable_pages == 0) {
|
|
/* The heap is a growth heap if it freed more slots than had empty slots. */
|
|
bool is_growth_heap = size_pool->empty_slots == 0 || size_pool->freed_slots > size_pool->empty_slots;
|
|
|
|
/* Grow this heap if we haven't run at least RVALUE_OLD_AGE minor
|
|
* GC since the last major GC or if this heap is smaller than the
|
|
* the configured initial size. */
|
|
if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE ||
|
|
total_slots < init_slots) {
|
|
grow_heap = TRUE;
|
|
}
|
|
else if (is_growth_heap) { /* Only growth heaps are allowed to start a major GC. */
|
|
gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_NOFREE;
|
|
size_pool->force_major_gc_count++;
|
|
}
|
|
}
|
|
|
|
if (grow_heap) {
|
|
size_t extend_page_count = heap_extend_pages(objspace, size_pool, swept_slots, total_slots, total_pages);
|
|
|
|
if (extend_page_count > size_pool->allocatable_pages) {
|
|
size_pool_allocatable_pages_set(objspace, size_pool, extend_page_count);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_sweep_finish(rb_objspace_t *objspace)
|
|
{
|
|
gc_report(1, objspace, "gc_sweep_finish\n");
|
|
|
|
gc_prof_set_heap_info(objspace);
|
|
heap_pages_free_unused_pages(objspace);
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
|
|
/* if heap_pages has unused pages, then assign them to increment */
|
|
size_t tomb_pages = SIZE_POOL_TOMB_HEAP(size_pool)->total_pages;
|
|
if (size_pool->allocatable_pages < tomb_pages) {
|
|
size_pool->allocatable_pages = tomb_pages;
|
|
}
|
|
|
|
size_pool->freed_slots = 0;
|
|
size_pool->empty_slots = 0;
|
|
|
|
if (!will_be_incremental_marking(objspace)) {
|
|
rb_heap_t *eden_heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
struct heap_page *end_page = eden_heap->free_pages;
|
|
if (end_page) {
|
|
while (end_page->free_next) end_page = end_page->free_next;
|
|
end_page->free_next = eden_heap->pooled_pages;
|
|
}
|
|
else {
|
|
eden_heap->free_pages = eden_heap->pooled_pages;
|
|
}
|
|
eden_heap->pooled_pages = NULL;
|
|
objspace->rincgc.pooled_slots = 0;
|
|
}
|
|
}
|
|
heap_pages_expand_sorted(objspace);
|
|
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0);
|
|
gc_mode_transition(objspace, gc_mode_none);
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_verify_internal_consistency(objspace);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *sweep_page = heap->sweeping_page;
|
|
int unlink_limit = GC_SWEEP_PAGES_FREEABLE_PER_STEP;
|
|
int swept_slots = 0;
|
|
int pooled_slots = 0;
|
|
|
|
if (sweep_page == NULL) return FALSE;
|
|
|
|
#if GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_start(objspace);
|
|
#endif
|
|
|
|
do {
|
|
RUBY_DEBUG_LOG("sweep_page:%p", (void *)sweep_page);
|
|
|
|
struct gc_sweep_context ctx = {
|
|
.page = sweep_page,
|
|
.final_slots = 0,
|
|
.freed_slots = 0,
|
|
.empty_slots = 0,
|
|
};
|
|
gc_sweep_page(objspace, heap, &ctx);
|
|
int free_slots = ctx.freed_slots + ctx.empty_slots;
|
|
|
|
heap->sweeping_page = ccan_list_next(&heap->pages, sweep_page, page_node);
|
|
|
|
if (sweep_page->final_slots + free_slots == sweep_page->total_slots &&
|
|
heap_pages_freeable_pages > 0 &&
|
|
unlink_limit > 0) {
|
|
heap_pages_freeable_pages--;
|
|
unlink_limit--;
|
|
/* there are no living objects -> move this page to tomb heap */
|
|
heap_unlink_page(objspace, heap, sweep_page);
|
|
heap_add_page(objspace, size_pool, SIZE_POOL_TOMB_HEAP(size_pool), sweep_page);
|
|
}
|
|
else if (free_slots > 0) {
|
|
size_pool->freed_slots += ctx.freed_slots;
|
|
size_pool->empty_slots += ctx.empty_slots;
|
|
|
|
if (pooled_slots < GC_INCREMENTAL_SWEEP_POOL_SLOT_COUNT) {
|
|
heap_add_poolpage(objspace, heap, sweep_page);
|
|
pooled_slots += free_slots;
|
|
}
|
|
else {
|
|
heap_add_freepage(heap, sweep_page);
|
|
swept_slots += free_slots;
|
|
if (swept_slots > GC_INCREMENTAL_SWEEP_SLOT_COUNT) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
sweep_page->free_next = NULL;
|
|
}
|
|
} while ((sweep_page = heap->sweeping_page));
|
|
|
|
if (!heap->sweeping_page) {
|
|
gc_sweep_finish_size_pool(objspace, size_pool);
|
|
|
|
if (!has_sweeping_pages(objspace)) {
|
|
gc_sweep_finish(objspace);
|
|
}
|
|
}
|
|
|
|
#if GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_stop(objspace);
|
|
#endif
|
|
|
|
return heap->free_pages != NULL;
|
|
}
|
|
|
|
static void
|
|
gc_sweep_rest(rb_objspace_t *objspace)
|
|
{
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
|
|
while (SIZE_POOL_EDEN_HEAP(size_pool)->sweeping_page) {
|
|
gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *sweep_size_pool, rb_heap_t *heap)
|
|
{
|
|
GC_ASSERT(dont_gc_val() == FALSE);
|
|
if (!GC_ENABLE_LAZY_SWEEP) return;
|
|
|
|
gc_sweeping_enter(objspace);
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
if (!gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool))) {
|
|
/* sweep_size_pool requires a free slot but sweeping did not yield any. */
|
|
if (size_pool == sweep_size_pool) {
|
|
if (size_pool->allocatable_pages > 0) {
|
|
heap_increment(objspace, size_pool, heap);
|
|
}
|
|
else {
|
|
/* Not allowed to create a new page so finish sweeping. */
|
|
gc_sweep_rest(objspace);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gc_sweeping_exit(objspace);
|
|
}
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void
|
|
invalidate_moved_plane(rb_objspace_t *objspace, struct heap_page *page, uintptr_t p, bits_t bitset)
|
|
{
|
|
if (bitset) {
|
|
do {
|
|
if (bitset & 1) {
|
|
VALUE forwarding_object = (VALUE)p;
|
|
VALUE object;
|
|
|
|
if (BUILTIN_TYPE(forwarding_object) == T_MOVED) {
|
|
GC_ASSERT(RVALUE_PINNED(forwarding_object));
|
|
GC_ASSERT(!RVALUE_MARKED(forwarding_object));
|
|
|
|
CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object);
|
|
|
|
object = rb_gc_location(forwarding_object);
|
|
|
|
shape_id_t original_shape_id = 0;
|
|
if (RB_TYPE_P(object, T_OBJECT)) {
|
|
original_shape_id = RMOVED(forwarding_object)->original_shape_id;
|
|
}
|
|
|
|
gc_move(objspace, object, forwarding_object, GET_HEAP_PAGE(object)->slot_size, page->slot_size);
|
|
/* forwarding_object is now our actual object, and "object"
|
|
* is the free slot for the original page */
|
|
|
|
if (original_shape_id) {
|
|
ROBJECT_SET_SHAPE_ID(forwarding_object, original_shape_id);
|
|
}
|
|
|
|
struct heap_page *orig_page = GET_HEAP_PAGE(object);
|
|
orig_page->free_slots++;
|
|
heap_page_add_freeobj(objspace, orig_page, object);
|
|
|
|
GC_ASSERT(RVALUE_MARKED(forwarding_object));
|
|
GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_MOVED);
|
|
GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_NONE);
|
|
}
|
|
}
|
|
p += BASE_SLOT_SIZE;
|
|
bitset >>= 1;
|
|
} while (bitset);
|
|
}
|
|
}
|
|
|
|
static void
|
|
invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page)
|
|
{
|
|
int i;
|
|
bits_t *mark_bits, *pin_bits;
|
|
bits_t bitset;
|
|
|
|
mark_bits = page->mark_bits;
|
|
pin_bits = page->pinned_bits;
|
|
|
|
uintptr_t p = page->start;
|
|
|
|
// Skip out of range slots at the head of the page
|
|
bitset = pin_bits[0] & ~mark_bits[0];
|
|
bitset >>= NUM_IN_PAGE(p);
|
|
invalidate_moved_plane(objspace, page, p, bitset);
|
|
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
|
|
|
|
for (i=1; i < HEAP_PAGE_BITMAP_LIMIT; i++) {
|
|
/* Moved objects are pinned but never marked. We reuse the pin bits
|
|
* to indicate there is a moved object in this slot. */
|
|
bitset = pin_bits[i] & ~mark_bits[i];
|
|
|
|
invalidate_moved_plane(objspace, page, p, bitset);
|
|
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
gc_compact_start(rb_objspace_t *objspace)
|
|
{
|
|
struct heap_page *page = NULL;
|
|
gc_mode_transition(objspace, gc_mode_compacting);
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(&size_pools[i]);
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
page->flags.before_sweep = TRUE;
|
|
}
|
|
|
|
heap->compact_cursor = ccan_list_tail(&heap->pages, struct heap_page, page_node);
|
|
heap->compact_cursor_index = 0;
|
|
}
|
|
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->moved_objects = objspace->rcompactor.total_moved;
|
|
}
|
|
|
|
memset(objspace->rcompactor.considered_count_table, 0, T_MASK * sizeof(size_t));
|
|
memset(objspace->rcompactor.moved_count_table, 0, T_MASK * sizeof(size_t));
|
|
memset(objspace->rcompactor.moved_up_count_table, 0, T_MASK * sizeof(size_t));
|
|
memset(objspace->rcompactor.moved_down_count_table, 0, T_MASK * sizeof(size_t));
|
|
|
|
/* Set up read barrier for pages containing MOVED objects */
|
|
install_handlers();
|
|
}
|
|
|
|
static void gc_sweep_compact(rb_objspace_t *objspace);
|
|
|
|
static void
|
|
gc_sweep(rb_objspace_t *objspace)
|
|
{
|
|
gc_sweeping_enter(objspace);
|
|
|
|
const unsigned int immediate_sweep = objspace->flags.immediate_sweep;
|
|
|
|
gc_report(1, objspace, "gc_sweep: immediate: %d\n", immediate_sweep);
|
|
|
|
gc_sweep_start(objspace);
|
|
if (objspace->flags.during_compacting) {
|
|
gc_sweep_compact(objspace);
|
|
}
|
|
|
|
if (immediate_sweep) {
|
|
#if !GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_start(objspace);
|
|
#endif
|
|
gc_sweep_rest(objspace);
|
|
#if !GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_stop(objspace);
|
|
#endif
|
|
}
|
|
else {
|
|
|
|
/* Sweep every size pool. */
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
|
|
}
|
|
}
|
|
|
|
gc_sweeping_exit(objspace);
|
|
}
|
|
|
|
/* Marking - Marking stack */
|
|
|
|
static stack_chunk_t *
|
|
stack_chunk_alloc(void)
|
|
{
|
|
stack_chunk_t *res;
|
|
|
|
res = malloc(sizeof(stack_chunk_t));
|
|
if (!res)
|
|
rb_memerror();
|
|
|
|
return res;
|
|
}
|
|
|
|
static inline int
|
|
is_mark_stack_empty(mark_stack_t *stack)
|
|
{
|
|
return stack->chunk == NULL;
|
|
}
|
|
|
|
static size_t
|
|
mark_stack_size(mark_stack_t *stack)
|
|
{
|
|
size_t size = stack->index;
|
|
stack_chunk_t *chunk = stack->chunk ? stack->chunk->next : NULL;
|
|
|
|
while (chunk) {
|
|
size += stack->limit;
|
|
chunk = chunk->next;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static void
|
|
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
|
|
{
|
|
chunk->next = stack->cache;
|
|
stack->cache = chunk;
|
|
stack->cache_size++;
|
|
}
|
|
|
|
static void
|
|
shrink_stack_chunk_cache(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *chunk;
|
|
|
|
if (stack->unused_cache_size > (stack->cache_size/2)) {
|
|
chunk = stack->cache;
|
|
stack->cache = stack->cache->next;
|
|
stack->cache_size--;
|
|
free(chunk);
|
|
}
|
|
stack->unused_cache_size = stack->cache_size;
|
|
}
|
|
|
|
static void
|
|
push_mark_stack_chunk(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *next;
|
|
|
|
GC_ASSERT(stack->index == stack->limit);
|
|
|
|
if (stack->cache_size > 0) {
|
|
next = stack->cache;
|
|
stack->cache = stack->cache->next;
|
|
stack->cache_size--;
|
|
if (stack->unused_cache_size > stack->cache_size)
|
|
stack->unused_cache_size = stack->cache_size;
|
|
}
|
|
else {
|
|
next = stack_chunk_alloc();
|
|
}
|
|
next->next = stack->chunk;
|
|
stack->chunk = next;
|
|
stack->index = 0;
|
|
}
|
|
|
|
static void
|
|
pop_mark_stack_chunk(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *prev;
|
|
|
|
prev = stack->chunk->next;
|
|
GC_ASSERT(stack->index == 0);
|
|
add_stack_chunk_cache(stack, stack->chunk);
|
|
stack->chunk = prev;
|
|
stack->index = stack->limit;
|
|
}
|
|
|
|
static void
|
|
mark_stack_chunk_list_free(stack_chunk_t *chunk)
|
|
{
|
|
stack_chunk_t *next = NULL;
|
|
|
|
while (chunk != NULL) {
|
|
next = chunk->next;
|
|
free(chunk);
|
|
chunk = next;
|
|
}
|
|
}
|
|
|
|
static void
|
|
free_stack_chunks(mark_stack_t *stack)
|
|
{
|
|
mark_stack_chunk_list_free(stack->chunk);
|
|
}
|
|
|
|
static void
|
|
mark_stack_free_cache(mark_stack_t *stack)
|
|
{
|
|
mark_stack_chunk_list_free(stack->cache);
|
|
stack->cache_size = 0;
|
|
stack->unused_cache_size = 0;
|
|
}
|
|
|
|
static void
|
|
push_mark_stack(mark_stack_t *stack, VALUE obj)
|
|
{
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_OBJECT:
|
|
case T_CLASS:
|
|
case T_MODULE:
|
|
case T_FLOAT:
|
|
case T_STRING:
|
|
case T_REGEXP:
|
|
case T_ARRAY:
|
|
case T_HASH:
|
|
case T_STRUCT:
|
|
case T_BIGNUM:
|
|
case T_FILE:
|
|
case T_DATA:
|
|
case T_MATCH:
|
|
case T_COMPLEX:
|
|
case T_RATIONAL:
|
|
case T_TRUE:
|
|
case T_FALSE:
|
|
case T_SYMBOL:
|
|
case T_IMEMO:
|
|
case T_ICLASS:
|
|
if (stack->index == stack->limit) {
|
|
push_mark_stack_chunk(stack);
|
|
}
|
|
stack->chunk->data[stack->index++] = obj;
|
|
return;
|
|
|
|
case T_NONE:
|
|
case T_NIL:
|
|
case T_FIXNUM:
|
|
case T_MOVED:
|
|
case T_ZOMBIE:
|
|
case T_UNDEF:
|
|
case T_MASK:
|
|
rb_bug("push_mark_stack() called for broken object");
|
|
break;
|
|
|
|
case T_NODE:
|
|
UNEXPECTED_NODE(push_mark_stack);
|
|
break;
|
|
}
|
|
|
|
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
|
|
BUILTIN_TYPE(obj), (void *)obj,
|
|
is_pointer_to_heap(&rb_objspace, (void *)obj) ? "corrupted object" : "non object");
|
|
}
|
|
|
|
static int
|
|
pop_mark_stack(mark_stack_t *stack, VALUE *data)
|
|
{
|
|
if (is_mark_stack_empty(stack)) {
|
|
return FALSE;
|
|
}
|
|
if (stack->index == 1) {
|
|
*data = stack->chunk->data[--stack->index];
|
|
pop_mark_stack_chunk(stack);
|
|
}
|
|
else {
|
|
*data = stack->chunk->data[--stack->index];
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
init_mark_stack(mark_stack_t *stack)
|
|
{
|
|
int i;
|
|
|
|
MEMZERO(stack, mark_stack_t, 1);
|
|
stack->index = stack->limit = STACK_CHUNK_SIZE;
|
|
|
|
for (i=0; i < 4; i++) {
|
|
add_stack_chunk_cache(stack, stack_chunk_alloc());
|
|
}
|
|
stack->unused_cache_size = stack->cache_size;
|
|
}
|
|
|
|
/* Marking */
|
|
|
|
#define SET_STACK_END SET_MACHINE_STACK_END(&ec->machine.stack_end)
|
|
|
|
#define STACK_START (ec->machine.stack_start)
|
|
#define STACK_END (ec->machine.stack_end)
|
|
#define STACK_LEVEL_MAX (ec->machine.stack_maxsize/sizeof(VALUE))
|
|
|
|
#if STACK_GROW_DIRECTION < 0
|
|
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
|
|
#elif STACK_GROW_DIRECTION > 0
|
|
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
|
|
#else
|
|
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
|
|
: (size_t)(STACK_END - STACK_START + 1))
|
|
#endif
|
|
#if !STACK_GROW_DIRECTION
|
|
int ruby_stack_grow_direction;
|
|
int
|
|
ruby_get_stack_grow_direction(volatile VALUE *addr)
|
|
{
|
|
VALUE *end;
|
|
SET_MACHINE_STACK_END(&end);
|
|
|
|
if (end > addr) return ruby_stack_grow_direction = 1;
|
|
return ruby_stack_grow_direction = -1;
|
|
}
|
|
#endif
|
|
|
|
size_t
|
|
ruby_stack_length(VALUE **p)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
SET_STACK_END;
|
|
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
|
|
return STACK_LENGTH;
|
|
}
|
|
|
|
#define PREVENT_STACK_OVERFLOW 1
|
|
#ifndef PREVENT_STACK_OVERFLOW
|
|
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
|
|
# define PREVENT_STACK_OVERFLOW 1
|
|
#else
|
|
# define PREVENT_STACK_OVERFLOW 0
|
|
#endif
|
|
#endif
|
|
#if PREVENT_STACK_OVERFLOW && !defined(__EMSCRIPTEN__)
|
|
static int
|
|
stack_check(rb_execution_context_t *ec, int water_mark)
|
|
{
|
|
SET_STACK_END;
|
|
|
|
size_t length = STACK_LENGTH;
|
|
size_t maximum_length = STACK_LEVEL_MAX - water_mark;
|
|
|
|
return length > maximum_length;
|
|
}
|
|
#else
|
|
#define stack_check(ec, water_mark) FALSE
|
|
#endif
|
|
|
|
#define STACKFRAME_FOR_CALL_CFUNC 2048
|
|
|
|
int
|
|
rb_ec_stack_check(rb_execution_context_t *ec)
|
|
{
|
|
return stack_check(ec, STACKFRAME_FOR_CALL_CFUNC);
|
|
}
|
|
|
|
int
|
|
ruby_stack_check(void)
|
|
{
|
|
return stack_check(GET_EC(), STACKFRAME_FOR_CALL_CFUNC);
|
|
}
|
|
|
|
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(static void each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE)));
|
|
static void
|
|
each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE))
|
|
{
|
|
VALUE v;
|
|
while (n--) {
|
|
v = *x;
|
|
cb(objspace, v);
|
|
x++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_mark_locations(rb_objspace_t *objspace, const VALUE *start, const VALUE *end, void (*cb)(rb_objspace_t *, VALUE))
|
|
{
|
|
long n;
|
|
|
|
if (end <= start) return;
|
|
n = end - start;
|
|
each_location(objspace, start, n, cb);
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_locations(const VALUE *start, const VALUE *end)
|
|
{
|
|
gc_mark_locations(&rb_objspace, start, end, gc_mark_maybe);
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_values(long n, const VALUE *values)
|
|
{
|
|
long i;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
for (i=0; i<n; i++) {
|
|
gc_mark(objspace, values[i]);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_vm_stack_values(long n, const VALUE *values)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
for (long i = 0; i < n; i++) {
|
|
gc_mark_and_pin(objspace, values[i]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
mark_value(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
gc_mark(objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
mark_value_pin(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
gc_mark_and_pin(objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_tbl_no_pin(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
if (!tbl || tbl->num_entries == 0) return;
|
|
st_foreach(tbl, mark_value, (st_data_t)objspace);
|
|
}
|
|
|
|
static void
|
|
mark_tbl(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
if (!tbl || tbl->num_entries == 0) return;
|
|
st_foreach(tbl, mark_value_pin, (st_data_t)objspace);
|
|
}
|
|
|
|
static int
|
|
mark_key(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
gc_mark_and_pin(objspace, (VALUE)key);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_set(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
if (!tbl) return;
|
|
st_foreach(tbl, mark_key, (st_data_t)objspace);
|
|
}
|
|
|
|
static int
|
|
pin_value(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
gc_mark_and_pin(objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_finalizer_tbl(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
if (!tbl) return;
|
|
st_foreach(tbl, pin_value, (st_data_t)objspace);
|
|
}
|
|
|
|
void
|
|
rb_mark_set(st_table *tbl)
|
|
{
|
|
mark_set(&rb_objspace, tbl);
|
|
}
|
|
|
|
static int
|
|
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
gc_mark(objspace, (VALUE)key);
|
|
gc_mark(objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
pin_key_pin_value(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
gc_mark_and_pin(objspace, (VALUE)key);
|
|
gc_mark_and_pin(objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
pin_key_mark_value(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
gc_mark_and_pin(objspace, (VALUE)key);
|
|
gc_mark(objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_hash(rb_objspace_t *objspace, VALUE hash)
|
|
{
|
|
if (rb_hash_compare_by_id_p(hash)) {
|
|
rb_hash_stlike_foreach(hash, pin_key_mark_value, (st_data_t)objspace);
|
|
}
|
|
else {
|
|
rb_hash_stlike_foreach(hash, mark_keyvalue, (st_data_t)objspace);
|
|
}
|
|
|
|
gc_mark(objspace, RHASH(hash)->ifnone);
|
|
}
|
|
|
|
static void
|
|
mark_st(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
if (!tbl) return;
|
|
st_foreach(tbl, pin_key_pin_value, (st_data_t)objspace);
|
|
}
|
|
|
|
void
|
|
rb_mark_hash(st_table *tbl)
|
|
{
|
|
mark_st(&rb_objspace, tbl);
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
mark_method_entry_i(VALUE me, void *data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
gc_mark(objspace, me);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
|
|
{
|
|
if (tbl) {
|
|
rb_id_table_foreach_values(tbl, mark_method_entry_i, objspace);
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
mark_const_entry_i(VALUE value, void *data)
|
|
{
|
|
const rb_const_entry_t *ce = (const rb_const_entry_t *)value;
|
|
rb_objspace_t *objspace = data;
|
|
|
|
gc_mark(objspace, ce->value);
|
|
gc_mark(objspace, ce->file);
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
|
|
{
|
|
if (!tbl) return;
|
|
rb_id_table_foreach_values(tbl, mark_const_entry_i, objspace);
|
|
}
|
|
|
|
#if STACK_GROW_DIRECTION < 0
|
|
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
|
|
#elif STACK_GROW_DIRECTION > 0
|
|
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
|
|
#else
|
|
#define GET_STACK_BOUNDS(start, end, appendix) \
|
|
((STACK_END < STACK_START) ? \
|
|
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
|
|
#endif
|
|
|
|
static void each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec,
|
|
const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE));
|
|
|
|
static void
|
|
gc_mark_machine_stack_location_maybe(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
gc_mark_maybe(objspace, obj);
|
|
|
|
#ifdef RUBY_ASAN_ENABLED
|
|
const rb_execution_context_t *ec = objspace->marking_machine_context_ec;
|
|
void *fake_frame_start;
|
|
void *fake_frame_end;
|
|
bool is_fake_frame = asan_get_fake_stack_extents(
|
|
ec->machine.asan_fake_stack_handle, obj,
|
|
ec->machine.stack_start, ec->machine.stack_end,
|
|
&fake_frame_start, &fake_frame_end
|
|
);
|
|
if (is_fake_frame) {
|
|
each_stack_location(objspace, ec, fake_frame_start, fake_frame_end, gc_mark_maybe);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(__wasm__)
|
|
|
|
|
|
static VALUE *rb_stack_range_tmp[2];
|
|
|
|
static void
|
|
rb_mark_locations(void *begin, void *end)
|
|
{
|
|
rb_stack_range_tmp[0] = begin;
|
|
rb_stack_range_tmp[1] = end;
|
|
}
|
|
|
|
# if defined(__EMSCRIPTEN__)
|
|
|
|
static void
|
|
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec)
|
|
{
|
|
emscripten_scan_stack(rb_mark_locations);
|
|
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
|
|
|
|
emscripten_scan_registers(rb_mark_locations);
|
|
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
|
|
}
|
|
# else // use Asyncify version
|
|
|
|
static void
|
|
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec)
|
|
{
|
|
VALUE *stack_start, *stack_end;
|
|
SET_STACK_END;
|
|
GET_STACK_BOUNDS(stack_start, stack_end, 1);
|
|
each_stack_location(objspace, ec, stack_start, stack_end, gc_mark_maybe);
|
|
|
|
rb_wasm_scan_locals(rb_mark_locations);
|
|
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
|
|
}
|
|
|
|
# endif
|
|
|
|
#else // !defined(__wasm__)
|
|
|
|
static void
|
|
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec)
|
|
{
|
|
union {
|
|
rb_jmp_buf j;
|
|
VALUE v[sizeof(rb_jmp_buf) / (sizeof(VALUE))];
|
|
} save_regs_gc_mark;
|
|
VALUE *stack_start, *stack_end;
|
|
|
|
FLUSH_REGISTER_WINDOWS;
|
|
memset(&save_regs_gc_mark, 0, sizeof(save_regs_gc_mark));
|
|
/* This assumes that all registers are saved into the jmp_buf (and stack) */
|
|
rb_setjmp(save_regs_gc_mark.j);
|
|
|
|
/* SET_STACK_END must be called in this function because
|
|
* the stack frame of this function may contain
|
|
* callee save registers and they should be marked. */
|
|
SET_STACK_END;
|
|
GET_STACK_BOUNDS(stack_start, stack_end, 1);
|
|
|
|
#ifdef RUBY_ASAN_ENABLED
|
|
objspace->marking_machine_context_ec = ec;
|
|
#endif
|
|
|
|
each_location(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v), gc_mark_machine_stack_location_maybe);
|
|
each_stack_location(objspace, ec, stack_start, stack_end, gc_mark_machine_stack_location_maybe);
|
|
|
|
#ifdef RUBY_ASAN_ENABLED
|
|
objspace->marking_machine_context_ec = NULL;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void
|
|
rb_gc_mark_machine_context(const rb_execution_context_t *ec)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
#ifdef RUBY_ASAN_ENABLED
|
|
objspace->marking_machine_context_ec = ec;
|
|
#endif
|
|
|
|
VALUE *stack_start, *stack_end;
|
|
|
|
GET_STACK_BOUNDS(stack_start, stack_end, 0);
|
|
RUBY_DEBUG_LOG("ec->th:%u stack_start:%p stack_end:%p", rb_ec_thread_ptr(ec)->serial, stack_start, stack_end);
|
|
|
|
each_stack_location(objspace, ec, stack_start, stack_end, gc_mark_machine_stack_location_maybe);
|
|
int num_regs = sizeof(ec->machine.regs)/(sizeof(VALUE));
|
|
each_location(objspace, (VALUE*)&ec->machine.regs, num_regs, gc_mark_machine_stack_location_maybe);
|
|
|
|
#ifdef RUBY_ASAN_ENABLED
|
|
objspace->marking_machine_context_ec = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec,
|
|
const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE))
|
|
{
|
|
|
|
gc_mark_locations(objspace, stack_start, stack_end, cb);
|
|
|
|
#if defined(__mc68000__)
|
|
gc_mark_locations(objspace,
|
|
(VALUE*)((char*)stack_start + 2),
|
|
(VALUE*)((char*)stack_end - 2), cb);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rb_mark_tbl(st_table *tbl)
|
|
{
|
|
mark_tbl(&rb_objspace, tbl);
|
|
}
|
|
|
|
void
|
|
rb_mark_tbl_no_pin(st_table *tbl)
|
|
{
|
|
mark_tbl_no_pin(&rb_objspace, tbl);
|
|
}
|
|
|
|
static void
|
|
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
|
|
|
|
if (is_pointer_to_heap(objspace, (void *)obj)) {
|
|
void *ptr = asan_unpoison_object_temporary(obj);
|
|
|
|
/* Garbage can live on the stack, so do not mark or pin */
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_ZOMBIE:
|
|
case T_NONE:
|
|
break;
|
|
default:
|
|
gc_mark_and_pin(objspace, obj);
|
|
break;
|
|
}
|
|
|
|
if (ptr) {
|
|
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
|
|
asan_poison_object(obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_maybe(VALUE obj)
|
|
{
|
|
gc_mark_maybe(&rb_objspace, obj);
|
|
}
|
|
|
|
static inline int
|
|
gc_mark_set(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
ASSERT_vm_locking();
|
|
if (RVALUE_MARKED(obj)) return 0;
|
|
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
gc_remember_unprotected(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
struct heap_page *page = GET_HEAP_PAGE(obj);
|
|
bits_t *uncollectible_bits = &page->uncollectible_bits[0];
|
|
|
|
if (!MARKED_IN_BITMAP(uncollectible_bits, obj)) {
|
|
page->flags.has_uncollectible_wb_unprotected_objects = TRUE;
|
|
MARK_IN_BITMAP(uncollectible_bits, obj);
|
|
objspace->rgengc.uncollectible_wb_unprotected_objects++;
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
objspace->profile.total_remembered_shady_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
#endif
|
|
return TRUE;
|
|
}
|
|
else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rgengc_check_relation(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
const VALUE old_parent = objspace->rgengc.parent_object;
|
|
|
|
if (old_parent) { /* parent object is old */
|
|
if (RVALUE_WB_UNPROTECTED(obj) || !RVALUE_OLD_P(obj)) {
|
|
rgengc_remember(objspace, old_parent);
|
|
}
|
|
}
|
|
|
|
GC_ASSERT(old_parent == objspace->rgengc.parent_object);
|
|
}
|
|
|
|
static void
|
|
gc_grey(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
#if RGENGC_CHECK_MODE
|
|
if (RVALUE_MARKED(obj) == FALSE) rb_bug("gc_grey: %s is not marked.", obj_info(obj));
|
|
if (RVALUE_MARKING(obj) == TRUE) rb_bug("gc_grey: %s is marking/remembered.", obj_info(obj));
|
|
#endif
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
MARK_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
|
|
}
|
|
|
|
push_mark_stack(&objspace->mark_stack, obj);
|
|
}
|
|
|
|
static void
|
|
gc_aging(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
struct heap_page *page = GET_HEAP_PAGE(obj);
|
|
|
|
GC_ASSERT(RVALUE_MARKING(obj) == FALSE);
|
|
check_rvalue_consistency(obj);
|
|
|
|
if (!RVALUE_PAGE_WB_UNPROTECTED(page, obj)) {
|
|
if (!RVALUE_OLD_P(obj)) {
|
|
gc_report(3, objspace, "gc_aging: YOUNG: %s\n", obj_info(obj));
|
|
RVALUE_AGE_INC(objspace, obj);
|
|
}
|
|
else if (is_full_marking(objspace)) {
|
|
GC_ASSERT(RVALUE_PAGE_UNCOLLECTIBLE(page, obj) == FALSE);
|
|
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, page, obj);
|
|
}
|
|
}
|
|
check_rvalue_consistency(obj);
|
|
|
|
objspace->marked_slots++;
|
|
}
|
|
|
|
NOINLINE(static void gc_mark_ptr(rb_objspace_t *objspace, VALUE obj));
|
|
static void reachable_objects_from_callback(VALUE obj);
|
|
|
|
static void
|
|
gc_mark_ptr(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
if (LIKELY(during_gc)) {
|
|
rgengc_check_relation(objspace, obj);
|
|
if (!gc_mark_set(objspace, obj)) return; /* already marked */
|
|
|
|
if (0) { // for debug GC marking miss
|
|
if (objspace->rgengc.parent_object) {
|
|
RUBY_DEBUG_LOG("%p (%s) parent:%p (%s)",
|
|
(void *)obj, obj_type_name(obj),
|
|
(void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object));
|
|
}
|
|
else {
|
|
RUBY_DEBUG_LOG("%p (%s)", (void *)obj, obj_type_name(obj));
|
|
}
|
|
}
|
|
|
|
if (UNLIKELY(RB_TYPE_P(obj, T_NONE))) {
|
|
rp(obj);
|
|
rb_bug("try to mark T_NONE object"); /* check here will help debugging */
|
|
}
|
|
gc_aging(objspace, obj);
|
|
gc_grey(objspace, obj);
|
|
}
|
|
else {
|
|
reachable_objects_from_callback(obj);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_pin(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
GC_ASSERT(is_markable_object(obj));
|
|
if (UNLIKELY(objspace->flags.during_compacting)) {
|
|
if (LIKELY(during_gc)) {
|
|
if (!RVALUE_PINNED(obj)) {
|
|
GC_ASSERT(GET_HEAP_PAGE(obj)->pinned_slots <= GET_HEAP_PAGE(obj)->total_slots);
|
|
GET_HEAP_PAGE(obj)->pinned_slots++;
|
|
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_mark_and_pin(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
if (!is_markable_object(obj)) return;
|
|
gc_pin(objspace, obj);
|
|
gc_mark_ptr(objspace, obj);
|
|
}
|
|
|
|
static inline void
|
|
gc_mark(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
if (!is_markable_object(obj)) return;
|
|
gc_mark_ptr(objspace, obj);
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_movable(VALUE ptr)
|
|
{
|
|
gc_mark(&rb_objspace, ptr);
|
|
}
|
|
|
|
void
|
|
rb_gc_mark(VALUE ptr)
|
|
{
|
|
gc_mark_and_pin(&rb_objspace, ptr);
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_and_move(VALUE *ptr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
if (RB_SPECIAL_CONST_P(*ptr)) return;
|
|
|
|
if (UNLIKELY(objspace->flags.during_reference_updating)) {
|
|
GC_ASSERT(objspace->flags.during_compacting);
|
|
GC_ASSERT(during_gc);
|
|
|
|
*ptr = rb_gc_location(*ptr);
|
|
}
|
|
else {
|
|
gc_mark_ptr(objspace, *ptr);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_weak(VALUE *ptr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (UNLIKELY(!during_gc)) return;
|
|
|
|
VALUE obj = *ptr;
|
|
if (RB_SPECIAL_CONST_P(obj)) return;
|
|
|
|
GC_ASSERT(objspace->rgengc.parent_object == 0 || FL_TEST(objspace->rgengc.parent_object, FL_WB_PROTECTED));
|
|
|
|
if (UNLIKELY(RB_TYPE_P(obj, T_NONE))) {
|
|
rp(obj);
|
|
rb_bug("try to mark T_NONE object");
|
|
}
|
|
|
|
/* If we are in a minor GC and the other object is old, then obj should
|
|
* already be marked and cannot be reclaimed in this GC cycle so we don't
|
|
* need to add it to the weak refences list. */
|
|
if (!is_full_marking(objspace) && RVALUE_OLD_P(obj)) {
|
|
GC_ASSERT(RVALUE_MARKED(obj));
|
|
GC_ASSERT(!objspace->flags.during_compacting);
|
|
|
|
return;
|
|
}
|
|
|
|
rgengc_check_relation(objspace, obj);
|
|
|
|
DURING_GC_COULD_MALLOC_REGION_START();
|
|
{
|
|
rb_darray_append(&objspace->weak_references, ptr);
|
|
}
|
|
DURING_GC_COULD_MALLOC_REGION_END();
|
|
|
|
objspace->profile.weak_references_count++;
|
|
}
|
|
|
|
void
|
|
rb_gc_remove_weak(VALUE parent_obj, VALUE *ptr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
/* If we're not incremental marking, then the state of the objects can't
|
|
* change so we don't need to do anything. */
|
|
if (!is_incremental_marking(objspace)) return;
|
|
/* If parent_obj has not been marked, then ptr has not yet been marked
|
|
* weak, so we don't need to do anything. */
|
|
if (!RVALUE_MARKED(parent_obj)) return;
|
|
|
|
VALUE **ptr_ptr;
|
|
rb_darray_foreach(objspace->weak_references, i, ptr_ptr) {
|
|
if (*ptr_ptr == ptr) {
|
|
*ptr_ptr = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_mark_set_parent(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
if (RVALUE_OLD_P(obj)) {
|
|
objspace->rgengc.parent_object = obj;
|
|
}
|
|
else {
|
|
objspace->rgengc.parent_object = Qfalse;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
gc_declarative_marking_p(const rb_data_type_t *type)
|
|
{
|
|
return (type->flags & RUBY_TYPED_DECL_MARKING) != 0;
|
|
}
|
|
|
|
static void mark_cvc_tbl(rb_objspace_t *objspace, VALUE klass);
|
|
|
|
static void
|
|
gc_mark_children(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
register RVALUE *any = RANY(obj);
|
|
gc_mark_set_parent(objspace, obj);
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
rb_mark_generic_ivar(obj);
|
|
}
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_FLOAT:
|
|
case T_BIGNUM:
|
|
case T_SYMBOL:
|
|
/* Not immediates, but does not have references and singleton class.
|
|
*
|
|
* RSYMBOL(obj)->fstr intentionally not marked. See log for 96815f1e
|
|
* ("symbol.c: remove rb_gc_mark_symbols()") */
|
|
return;
|
|
|
|
case T_NIL:
|
|
case T_FIXNUM:
|
|
rb_bug("rb_gc_mark() called for broken object");
|
|
break;
|
|
|
|
case T_NODE:
|
|
UNEXPECTED_NODE(rb_gc_mark);
|
|
break;
|
|
|
|
case T_IMEMO:
|
|
rb_imemo_mark_and_move(obj, false);
|
|
return;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
gc_mark(objspace, any->as.basic.klass);
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_CLASS:
|
|
if (FL_TEST(obj, FL_SINGLETON)) {
|
|
gc_mark(objspace, RCLASS_ATTACHED_OBJECT(obj));
|
|
}
|
|
// Continue to the shared T_CLASS/T_MODULE
|
|
case T_MODULE:
|
|
if (RCLASS_SUPER(obj)) {
|
|
gc_mark(objspace, RCLASS_SUPER(obj));
|
|
}
|
|
|
|
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
|
|
mark_cvc_tbl(objspace, obj);
|
|
rb_cc_table_mark(obj);
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
mark_tbl_no_pin(objspace, (st_table *)RCLASS_IVPTR(obj));
|
|
}
|
|
else {
|
|
for (attr_index_t i = 0; i < RCLASS_IV_COUNT(obj); i++) {
|
|
gc_mark(objspace, RCLASS_IVPTR(obj)[i]);
|
|
}
|
|
}
|
|
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
|
|
|
|
gc_mark(objspace, RCLASS_EXT(obj)->classpath);
|
|
break;
|
|
|
|
case T_ICLASS:
|
|
if (RICLASS_OWNS_M_TBL_P(obj)) {
|
|
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
|
|
}
|
|
if (RCLASS_SUPER(obj)) {
|
|
gc_mark(objspace, RCLASS_SUPER(obj));
|
|
}
|
|
|
|
if (RCLASS_INCLUDER(obj)) {
|
|
gc_mark(objspace, RCLASS_INCLUDER(obj));
|
|
}
|
|
mark_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
|
|
rb_cc_table_mark(obj);
|
|
break;
|
|
|
|
case T_ARRAY:
|
|
if (ARY_SHARED_P(obj)) {
|
|
VALUE root = ARY_SHARED_ROOT(obj);
|
|
gc_mark(objspace, root);
|
|
}
|
|
else {
|
|
long i, len = RARRAY_LEN(obj);
|
|
const VALUE *ptr = RARRAY_CONST_PTR(obj);
|
|
for (i=0; i < len; i++) {
|
|
gc_mark(objspace, ptr[i]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_HASH:
|
|
mark_hash(objspace, obj);
|
|
break;
|
|
|
|
case T_STRING:
|
|
if (STR_SHARED_P(obj)) {
|
|
if (STR_EMBED_P(any->as.string.as.heap.aux.shared)) {
|
|
/* Embedded shared strings cannot be moved because this string
|
|
* points into the slot of the shared string. There may be code
|
|
* using the RSTRING_PTR on the stack, which would pin this
|
|
* string but not pin the shared string, causing it to move. */
|
|
gc_mark_and_pin(objspace, any->as.string.as.heap.aux.shared);
|
|
}
|
|
else {
|
|
gc_mark(objspace, any->as.string.as.heap.aux.shared);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_DATA:
|
|
{
|
|
void *const ptr = RTYPEDDATA_P(obj) ? RTYPEDDATA_GET_DATA(obj) : DATA_PTR(obj);
|
|
|
|
if (ptr) {
|
|
if (RTYPEDDATA_P(obj) && gc_declarative_marking_p(any->as.typeddata.type)) {
|
|
size_t *offset_list = (size_t *)RANY(obj)->as.typeddata.type->function.dmark;
|
|
|
|
for (size_t offset = *offset_list; offset != RUBY_REF_END; offset = *offset_list++) {
|
|
rb_gc_mark_movable(*(VALUE *)((char *)ptr + offset));
|
|
}
|
|
}
|
|
else {
|
|
RUBY_DATA_FUNC mark_func = RTYPEDDATA_P(obj) ?
|
|
any->as.typeddata.type->function.dmark :
|
|
any->as.data.dmark;
|
|
if (mark_func) (*mark_func)(ptr);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_OBJECT:
|
|
{
|
|
rb_shape_t *shape = rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj));
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
mark_tbl_no_pin(objspace, ROBJECT_IV_HASH(obj));
|
|
}
|
|
else {
|
|
const VALUE * const ptr = ROBJECT_IVPTR(obj);
|
|
|
|
uint32_t i, len = ROBJECT_IV_COUNT(obj);
|
|
for (i = 0; i < len; i++) {
|
|
gc_mark(objspace, ptr[i]);
|
|
}
|
|
}
|
|
if (shape) {
|
|
VALUE klass = RBASIC_CLASS(obj);
|
|
|
|
// Increment max_iv_count if applicable, used to determine size pool allocation
|
|
attr_index_t num_of_ivs = shape->next_iv_index;
|
|
if (RCLASS_EXT(klass)->max_iv_count < num_of_ivs) {
|
|
RCLASS_EXT(klass)->max_iv_count = num_of_ivs;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_FILE:
|
|
if (any->as.file.fptr) {
|
|
gc_mark(objspace, any->as.file.fptr->self);
|
|
gc_mark(objspace, any->as.file.fptr->pathv);
|
|
gc_mark(objspace, any->as.file.fptr->tied_io_for_writing);
|
|
gc_mark(objspace, any->as.file.fptr->writeconv_asciicompat);
|
|
gc_mark(objspace, any->as.file.fptr->writeconv_pre_ecopts);
|
|
gc_mark(objspace, any->as.file.fptr->encs.ecopts);
|
|
gc_mark(objspace, any->as.file.fptr->write_lock);
|
|
gc_mark(objspace, any->as.file.fptr->timeout);
|
|
}
|
|
break;
|
|
|
|
case T_REGEXP:
|
|
gc_mark(objspace, any->as.regexp.src);
|
|
break;
|
|
|
|
case T_MATCH:
|
|
gc_mark(objspace, any->as.match.regexp);
|
|
if (any->as.match.str) {
|
|
gc_mark(objspace, any->as.match.str);
|
|
}
|
|
break;
|
|
|
|
case T_RATIONAL:
|
|
gc_mark(objspace, any->as.rational.num);
|
|
gc_mark(objspace, any->as.rational.den);
|
|
break;
|
|
|
|
case T_COMPLEX:
|
|
gc_mark(objspace, any->as.complex.real);
|
|
gc_mark(objspace, any->as.complex.imag);
|
|
break;
|
|
|
|
case T_STRUCT:
|
|
{
|
|
long i;
|
|
const long len = RSTRUCT_LEN(obj);
|
|
const VALUE * const ptr = RSTRUCT_CONST_PTR(obj);
|
|
|
|
for (i=0; i<len; i++) {
|
|
gc_mark(objspace, ptr[i]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
#if GC_DEBUG
|
|
rb_gcdebug_print_obj_condition((VALUE)obj);
|
|
#endif
|
|
if (BUILTIN_TYPE(obj) == T_MOVED) rb_bug("rb_gc_mark(): %p is T_MOVED", (void *)obj);
|
|
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
|
|
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
|
|
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
|
|
BUILTIN_TYPE(obj), (void *)any,
|
|
is_pointer_to_heap(objspace, any) ? "corrupted object" : "non object");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* incremental: 0 -> not incremental (do all)
|
|
* incremental: n -> mark at most `n' objects
|
|
*/
|
|
static inline int
|
|
gc_mark_stacked_objects(rb_objspace_t *objspace, int incremental, size_t count)
|
|
{
|
|
mark_stack_t *mstack = &objspace->mark_stack;
|
|
VALUE obj;
|
|
size_t marked_slots_at_the_beginning = objspace->marked_slots;
|
|
size_t popped_count = 0;
|
|
|
|
while (pop_mark_stack(mstack, &obj)) {
|
|
if (UNDEF_P(obj)) continue; /* skip */
|
|
|
|
if (RGENGC_CHECK_MODE && !RVALUE_MARKED(obj)) {
|
|
rb_bug("gc_mark_stacked_objects: %s is not marked.", obj_info(obj));
|
|
}
|
|
gc_mark_children(objspace, obj);
|
|
|
|
if (incremental) {
|
|
if (RGENGC_CHECK_MODE && !RVALUE_MARKING(obj)) {
|
|
rb_bug("gc_mark_stacked_objects: incremental, but marking bit is 0");
|
|
}
|
|
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
|
|
popped_count++;
|
|
|
|
if (popped_count + (objspace->marked_slots - marked_slots_at_the_beginning) > count) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
/* just ignore marking bits */
|
|
}
|
|
}
|
|
|
|
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace);
|
|
|
|
if (is_mark_stack_empty(mstack)) {
|
|
shrink_stack_chunk_cache(mstack);
|
|
return TRUE;
|
|
}
|
|
else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
static int
|
|
gc_mark_stacked_objects_incremental(rb_objspace_t *objspace, size_t count)
|
|
{
|
|
return gc_mark_stacked_objects(objspace, TRUE, count);
|
|
}
|
|
|
|
static int
|
|
gc_mark_stacked_objects_all(rb_objspace_t *objspace)
|
|
{
|
|
return gc_mark_stacked_objects(objspace, FALSE, 0);
|
|
}
|
|
|
|
#if PRINT_ROOT_TICKS
|
|
#define MAX_TICKS 0x100
|
|
static tick_t mark_ticks[MAX_TICKS];
|
|
static const char *mark_ticks_categories[MAX_TICKS];
|
|
|
|
static void
|
|
show_mark_ticks(void)
|
|
{
|
|
int i;
|
|
fprintf(stderr, "mark ticks result:\n");
|
|
for (i=0; i<MAX_TICKS; i++) {
|
|
const char *category = mark_ticks_categories[i];
|
|
if (category) {
|
|
fprintf(stderr, "%s\t%8lu\n", category, (unsigned long)mark_ticks[i]);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* PRINT_ROOT_TICKS */
|
|
|
|
static void
|
|
gc_mark_roots(rb_objspace_t *objspace, const char **categoryp)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_vm_t *vm = rb_ec_vm_ptr(ec);
|
|
|
|
#if PRINT_ROOT_TICKS
|
|
tick_t start_tick = tick();
|
|
int tick_count = 0;
|
|
const char *prev_category = 0;
|
|
|
|
if (mark_ticks_categories[0] == 0) {
|
|
atexit(show_mark_ticks);
|
|
}
|
|
#endif
|
|
|
|
if (categoryp) *categoryp = "xxx";
|
|
|
|
objspace->rgengc.parent_object = Qfalse;
|
|
|
|
#if PRINT_ROOT_TICKS
|
|
#define MARK_CHECKPOINT_PRINT_TICK(category) do { \
|
|
if (prev_category) { \
|
|
tick_t t = tick(); \
|
|
mark_ticks[tick_count] = t - start_tick; \
|
|
mark_ticks_categories[tick_count] = prev_category; \
|
|
tick_count++; \
|
|
} \
|
|
prev_category = category; \
|
|
start_tick = tick(); \
|
|
} while (0)
|
|
#else /* PRINT_ROOT_TICKS */
|
|
#define MARK_CHECKPOINT_PRINT_TICK(category)
|
|
#endif
|
|
|
|
#define MARK_CHECKPOINT(category) do { \
|
|
if (categoryp) *categoryp = category; \
|
|
MARK_CHECKPOINT_PRINT_TICK(category); \
|
|
} while (0)
|
|
|
|
MARK_CHECKPOINT("vm");
|
|
SET_STACK_END;
|
|
rb_vm_mark(vm);
|
|
if (vm->self) gc_mark(objspace, vm->self);
|
|
|
|
MARK_CHECKPOINT("finalizers");
|
|
mark_finalizer_tbl(objspace, finalizer_table);
|
|
|
|
MARK_CHECKPOINT("machine_context");
|
|
mark_current_machine_context(objspace, ec);
|
|
|
|
/* mark protected global variables */
|
|
|
|
MARK_CHECKPOINT("end_proc");
|
|
rb_mark_end_proc();
|
|
|
|
MARK_CHECKPOINT("global_tbl");
|
|
rb_gc_mark_global_tbl();
|
|
|
|
MARK_CHECKPOINT("object_id");
|
|
mark_tbl_no_pin(objspace, objspace->obj_to_id_tbl); /* Only mark ids */
|
|
|
|
if (stress_to_class) rb_gc_mark(stress_to_class);
|
|
|
|
MARK_CHECKPOINT("finish");
|
|
#undef MARK_CHECKPOINT
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE >= 4
|
|
|
|
#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01)
|
|
#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01)
|
|
#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1))
|
|
|
|
struct reflist {
|
|
VALUE *list;
|
|
int pos;
|
|
int size;
|
|
};
|
|
|
|
static struct reflist *
|
|
reflist_create(VALUE obj)
|
|
{
|
|
struct reflist *refs = xmalloc(sizeof(struct reflist));
|
|
refs->size = 1;
|
|
refs->list = ALLOC_N(VALUE, refs->size);
|
|
refs->list[0] = obj;
|
|
refs->pos = 1;
|
|
return refs;
|
|
}
|
|
|
|
static void
|
|
reflist_destruct(struct reflist *refs)
|
|
{
|
|
xfree(refs->list);
|
|
xfree(refs);
|
|
}
|
|
|
|
static void
|
|
reflist_add(struct reflist *refs, VALUE obj)
|
|
{
|
|
if (refs->pos == refs->size) {
|
|
refs->size *= 2;
|
|
SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2);
|
|
}
|
|
|
|
refs->list[refs->pos++] = obj;
|
|
}
|
|
|
|
static void
|
|
reflist_dump(struct reflist *refs)
|
|
{
|
|
int i;
|
|
for (i=0; i<refs->pos; i++) {
|
|
VALUE obj = refs->list[i];
|
|
if (IS_ROOTSIG(obj)) { /* root */
|
|
fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj));
|
|
}
|
|
else {
|
|
fprintf(stderr, "<%s>", obj_info(obj));
|
|
}
|
|
if (i+1 < refs->pos) fprintf(stderr, ", ");
|
|
}
|
|
}
|
|
|
|
static int
|
|
reflist_referred_from_machine_context(struct reflist *refs)
|
|
{
|
|
int i;
|
|
for (i=0; i<refs->pos; i++) {
|
|
VALUE obj = refs->list[i];
|
|
if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct allrefs {
|
|
rb_objspace_t *objspace;
|
|
/* a -> obj1
|
|
* b -> obj1
|
|
* c -> obj1
|
|
* c -> obj2
|
|
* d -> obj3
|
|
* #=> {obj1 => [a, b, c], obj2 => [c, d]}
|
|
*/
|
|
struct st_table *references;
|
|
const char *category;
|
|
VALUE root_obj;
|
|
mark_stack_t mark_stack;
|
|
};
|
|
|
|
static int
|
|
allrefs_add(struct allrefs *data, VALUE obj)
|
|
{
|
|
struct reflist *refs;
|
|
st_data_t r;
|
|
|
|
if (st_lookup(data->references, obj, &r)) {
|
|
refs = (struct reflist *)r;
|
|
reflist_add(refs, data->root_obj);
|
|
return 0;
|
|
}
|
|
else {
|
|
refs = reflist_create(data->root_obj);
|
|
st_insert(data->references, obj, (st_data_t)refs);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
allrefs_i(VALUE obj, void *ptr)
|
|
{
|
|
struct allrefs *data = (struct allrefs *)ptr;
|
|
|
|
if (allrefs_add(data, obj)) {
|
|
push_mark_stack(&data->mark_stack, obj);
|
|
}
|
|
}
|
|
|
|
static void
|
|
allrefs_roots_i(VALUE obj, void *ptr)
|
|
{
|
|
struct allrefs *data = (struct allrefs *)ptr;
|
|
if (strlen(data->category) == 0) rb_bug("!!!");
|
|
data->root_obj = MAKE_ROOTSIG(data->category);
|
|
|
|
if (allrefs_add(data, obj)) {
|
|
push_mark_stack(&data->mark_stack, obj);
|
|
}
|
|
}
|
|
#define PUSH_MARK_FUNC_DATA(v) do { \
|
|
struct gc_mark_func_data_struct *prev_mark_func_data = GET_RACTOR()->mfd; \
|
|
GET_RACTOR()->mfd = (v);
|
|
|
|
#define POP_MARK_FUNC_DATA() GET_RACTOR()->mfd = prev_mark_func_data;} while (0)
|
|
|
|
static st_table *
|
|
objspace_allrefs(rb_objspace_t *objspace)
|
|
{
|
|
struct allrefs data;
|
|
struct gc_mark_func_data_struct mfd;
|
|
VALUE obj;
|
|
int prev_dont_gc = dont_gc_val();
|
|
dont_gc_on();
|
|
|
|
data.objspace = objspace;
|
|
data.references = st_init_numtable();
|
|
init_mark_stack(&data.mark_stack);
|
|
|
|
mfd.mark_func = allrefs_roots_i;
|
|
mfd.data = &data;
|
|
|
|
/* traverse root objects */
|
|
PUSH_MARK_FUNC_DATA(&mfd);
|
|
GET_RACTOR()->mfd = &mfd;
|
|
gc_mark_roots(objspace, &data.category);
|
|
POP_MARK_FUNC_DATA();
|
|
|
|
/* traverse rest objects reachable from root objects */
|
|
while (pop_mark_stack(&data.mark_stack, &obj)) {
|
|
rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data);
|
|
}
|
|
free_stack_chunks(&data.mark_stack);
|
|
|
|
dont_gc_set(prev_dont_gc);
|
|
return data.references;
|
|
}
|
|
|
|
static int
|
|
objspace_allrefs_destruct_i(st_data_t key, st_data_t value, st_data_t ptr)
|
|
{
|
|
struct reflist *refs = (struct reflist *)value;
|
|
reflist_destruct(refs);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
objspace_allrefs_destruct(struct st_table *refs)
|
|
{
|
|
st_foreach(refs, objspace_allrefs_destruct_i, 0);
|
|
st_free_table(refs);
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE >= 5
|
|
static int
|
|
allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr)
|
|
{
|
|
VALUE obj = (VALUE)k;
|
|
struct reflist *refs = (struct reflist *)v;
|
|
fprintf(stderr, "[allrefs_dump_i] %s <- ", obj_info(obj));
|
|
reflist_dump(refs);
|
|
fprintf(stderr, "\n");
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
allrefs_dump(rb_objspace_t *objspace)
|
|
{
|
|
VALUE size = objspace->rgengc.allrefs_table->num_entries;
|
|
fprintf(stderr, "[all refs] (size: %"PRIuVALUE")\n", size);
|
|
st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
gc_check_after_marks_i(st_data_t k, st_data_t v, st_data_t ptr)
|
|
{
|
|
VALUE obj = k;
|
|
struct reflist *refs = (struct reflist *)v;
|
|
rb_objspace_t *objspace = (rb_objspace_t *)ptr;
|
|
|
|
/* object should be marked or oldgen */
|
|
if (!RVALUE_MARKED(obj)) {
|
|
fprintf(stderr, "gc_check_after_marks_i: %s is not marked and not oldgen.\n", obj_info(obj));
|
|
fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj);
|
|
reflist_dump(refs);
|
|
|
|
if (reflist_referred_from_machine_context(refs)) {
|
|
fprintf(stderr, " (marked from machine stack).\n");
|
|
/* marked from machine context can be false positive */
|
|
}
|
|
else {
|
|
objspace->rgengc.error_count++;
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
gc_marks_check(rb_objspace_t *objspace, st_foreach_callback_func *checker_func, const char *checker_name)
|
|
{
|
|
size_t saved_malloc_increase = objspace->malloc_params.increase;
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase;
|
|
#endif
|
|
VALUE already_disabled = rb_objspace_gc_disable(objspace);
|
|
|
|
objspace->rgengc.allrefs_table = objspace_allrefs(objspace);
|
|
|
|
if (checker_func) {
|
|
st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace);
|
|
}
|
|
|
|
if (objspace->rgengc.error_count > 0) {
|
|
#if RGENGC_CHECK_MODE >= 5
|
|
allrefs_dump(objspace);
|
|
#endif
|
|
if (checker_name) rb_bug("%s: GC has problem.", checker_name);
|
|
}
|
|
|
|
objspace_allrefs_destruct(objspace->rgengc.allrefs_table);
|
|
objspace->rgengc.allrefs_table = 0;
|
|
|
|
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
|
|
objspace->malloc_params.increase = saved_malloc_increase;
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase;
|
|
#endif
|
|
}
|
|
#endif /* RGENGC_CHECK_MODE >= 4 */
|
|
|
|
struct verify_internal_consistency_struct {
|
|
rb_objspace_t *objspace;
|
|
int err_count;
|
|
size_t live_object_count;
|
|
size_t zombie_object_count;
|
|
|
|
VALUE parent;
|
|
size_t old_object_count;
|
|
size_t remembered_shady_count;
|
|
};
|
|
|
|
static void
|
|
check_generation_i(const VALUE child, void *ptr)
|
|
{
|
|
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
|
|
const VALUE parent = data->parent;
|
|
|
|
if (RGENGC_CHECK_MODE) GC_ASSERT(RVALUE_OLD_P(parent));
|
|
|
|
if (!RVALUE_OLD_P(child)) {
|
|
if (!RVALUE_REMEMBERED(parent) &&
|
|
!RVALUE_REMEMBERED(child) &&
|
|
!RVALUE_UNCOLLECTIBLE(child)) {
|
|
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (O->Y) %s -> %s\n", obj_info(parent), obj_info(child));
|
|
data->err_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_color_i(const VALUE child, void *ptr)
|
|
{
|
|
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
|
|
const VALUE parent = data->parent;
|
|
|
|
if (!RVALUE_WB_UNPROTECTED(parent) && RVALUE_WHITE_P(child)) {
|
|
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (B->W) - %s -> %s\n",
|
|
obj_info(parent), obj_info(child));
|
|
data->err_count++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_children_i(const VALUE child, void *ptr)
|
|
{
|
|
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
|
|
if (check_rvalue_consistency_force(child, FALSE) != 0) {
|
|
fprintf(stderr, "check_children_i: %s has error (referenced from %s)",
|
|
obj_info(child), obj_info(data->parent));
|
|
rb_print_backtrace(stderr); /* C backtrace will help to debug */
|
|
|
|
data->err_count++;
|
|
}
|
|
}
|
|
|
|
static int
|
|
verify_internal_consistency_i(void *page_start, void *page_end, size_t stride,
|
|
struct verify_internal_consistency_struct *data)
|
|
{
|
|
VALUE obj;
|
|
rb_objspace_t *objspace = data->objspace;
|
|
|
|
for (obj = (VALUE)page_start; obj != (VALUE)page_end; obj += stride) {
|
|
void *poisoned = asan_unpoison_object_temporary(obj);
|
|
|
|
if (is_live_object(objspace, obj)) {
|
|
/* count objects */
|
|
data->live_object_count++;
|
|
data->parent = obj;
|
|
|
|
/* Normally, we don't expect T_MOVED objects to be in the heap.
|
|
* But they can stay alive on the stack, */
|
|
if (!gc_object_moved_p(objspace, obj)) {
|
|
/* moved slots don't have children */
|
|
rb_objspace_reachable_objects_from(obj, check_children_i, (void *)data);
|
|
}
|
|
|
|
/* check health of children */
|
|
if (RVALUE_OLD_P(obj)) data->old_object_count++;
|
|
if (RVALUE_WB_UNPROTECTED(obj) && RVALUE_UNCOLLECTIBLE(obj)) data->remembered_shady_count++;
|
|
|
|
if (!is_marking(objspace) && RVALUE_OLD_P(obj)) {
|
|
/* reachable objects from an oldgen object should be old or (young with remember) */
|
|
data->parent = obj;
|
|
rb_objspace_reachable_objects_from(obj, check_generation_i, (void *)data);
|
|
}
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
if (RVALUE_BLACK_P(obj)) {
|
|
/* reachable objects from black objects should be black or grey objects */
|
|
data->parent = obj;
|
|
rb_objspace_reachable_objects_from(obj, check_color_i, (void *)data);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
|
|
data->zombie_object_count++;
|
|
|
|
if ((RBASIC(obj)->flags & ~ZOMBIE_OBJ_KEPT_FLAGS) != T_ZOMBIE) {
|
|
fprintf(stderr, "verify_internal_consistency_i: T_ZOMBIE has extra flags set: %s\n",
|
|
obj_info(obj));
|
|
data->err_count++;
|
|
}
|
|
|
|
if (!!FL_TEST(obj, FL_FINALIZE) != !!st_is_member(finalizer_table, obj)) {
|
|
fprintf(stderr, "verify_internal_consistency_i: FL_FINALIZE %s but %s finalizer_table: %s\n",
|
|
FL_TEST(obj, FL_FINALIZE) ? "set" : "not set", st_is_member(finalizer_table, obj) ? "in" : "not in",
|
|
obj_info(obj));
|
|
data->err_count++;
|
|
}
|
|
}
|
|
}
|
|
if (poisoned) {
|
|
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
|
|
asan_poison_object(obj);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
|
|
{
|
|
unsigned int has_remembered_shady = FALSE;
|
|
unsigned int has_remembered_old = FALSE;
|
|
int remembered_old_objects = 0;
|
|
int free_objects = 0;
|
|
int zombie_objects = 0;
|
|
|
|
short slot_size = page->slot_size;
|
|
uintptr_t start = (uintptr_t)page->start;
|
|
uintptr_t end = start + page->total_slots * slot_size;
|
|
|
|
for (uintptr_t ptr = start; ptr < end; ptr += slot_size) {
|
|
VALUE val = (VALUE)ptr;
|
|
void *poisoned = asan_unpoison_object_temporary(val);
|
|
enum ruby_value_type type = BUILTIN_TYPE(val);
|
|
|
|
if (type == T_NONE) free_objects++;
|
|
if (type == T_ZOMBIE) zombie_objects++;
|
|
if (RVALUE_PAGE_UNCOLLECTIBLE(page, val) && RVALUE_PAGE_WB_UNPROTECTED(page, val)) {
|
|
has_remembered_shady = TRUE;
|
|
}
|
|
if (RVALUE_PAGE_MARKING(page, val)) {
|
|
has_remembered_old = TRUE;
|
|
remembered_old_objects++;
|
|
}
|
|
|
|
if (poisoned) {
|
|
GC_ASSERT(BUILTIN_TYPE(val) == T_NONE);
|
|
asan_poison_object(val);
|
|
}
|
|
}
|
|
|
|
if (!is_incremental_marking(objspace) &&
|
|
page->flags.has_remembered_objects == FALSE && has_remembered_old == TRUE) {
|
|
|
|
for (uintptr_t ptr = start; ptr < end; ptr += slot_size) {
|
|
VALUE val = (VALUE)ptr;
|
|
if (RVALUE_PAGE_MARKING(page, val)) {
|
|
fprintf(stderr, "marking -> %s\n", obj_info(val));
|
|
}
|
|
}
|
|
rb_bug("page %p's has_remembered_objects should be false, but there are remembered old objects (%d). %s",
|
|
(void *)page, remembered_old_objects, obj ? obj_info(obj) : "");
|
|
}
|
|
|
|
if (page->flags.has_uncollectible_wb_unprotected_objects == FALSE && has_remembered_shady == TRUE) {
|
|
rb_bug("page %p's has_remembered_shady should be false, but there are remembered shady objects. %s",
|
|
(void *)page, obj ? obj_info(obj) : "");
|
|
}
|
|
|
|
if (0) {
|
|
/* free_slots may not equal to free_objects */
|
|
if (page->free_slots != free_objects) {
|
|
rb_bug("page %p's free_slots should be %d, but %d", (void *)page, page->free_slots, free_objects);
|
|
}
|
|
}
|
|
if (page->final_slots != zombie_objects) {
|
|
rb_bug("page %p's final_slots should be %d, but %d", (void *)page, page->final_slots, zombie_objects);
|
|
}
|
|
|
|
return remembered_old_objects;
|
|
}
|
|
|
|
static int
|
|
gc_verify_heap_pages_(rb_objspace_t *objspace, struct ccan_list_head *head)
|
|
{
|
|
int remembered_old_objects = 0;
|
|
struct heap_page *page = 0;
|
|
|
|
ccan_list_for_each(head, page, page_node) {
|
|
asan_unlock_freelist(page);
|
|
RVALUE *p = page->freelist;
|
|
while (p) {
|
|
VALUE vp = (VALUE)p;
|
|
VALUE prev = vp;
|
|
asan_unpoison_object(vp, false);
|
|
if (BUILTIN_TYPE(vp) != T_NONE) {
|
|
fprintf(stderr, "freelist slot expected to be T_NONE but was: %s\n", obj_info(vp));
|
|
}
|
|
p = p->as.free.next;
|
|
asan_poison_object(prev);
|
|
}
|
|
asan_lock_freelist(page);
|
|
|
|
if (page->flags.has_remembered_objects == FALSE) {
|
|
remembered_old_objects += gc_verify_heap_page(objspace, page, Qfalse);
|
|
}
|
|
}
|
|
|
|
return remembered_old_objects;
|
|
}
|
|
|
|
static int
|
|
gc_verify_heap_pages(rb_objspace_t *objspace)
|
|
{
|
|
int remembered_old_objects = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
remembered_old_objects += gc_verify_heap_pages_(objspace, &(SIZE_POOL_EDEN_HEAP(&size_pools[i])->pages));
|
|
remembered_old_objects += gc_verify_heap_pages_(objspace, &(SIZE_POOL_TOMB_HEAP(&size_pools[i])->pages));
|
|
}
|
|
return remembered_old_objects;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.verify_internal_consistency -> nil
|
|
*
|
|
* Verify internal consistency.
|
|
*
|
|
* This method is implementation specific.
|
|
* Now this method checks generational consistency
|
|
* if RGenGC is supported.
|
|
*/
|
|
static VALUE
|
|
gc_verify_internal_consistency_m(VALUE dummy)
|
|
{
|
|
gc_verify_internal_consistency(&rb_objspace);
|
|
return Qnil;
|
|
}
|
|
|
|
static void
|
|
gc_verify_internal_consistency_(rb_objspace_t *objspace)
|
|
{
|
|
struct verify_internal_consistency_struct data = {0};
|
|
|
|
data.objspace = objspace;
|
|
gc_report(5, objspace, "gc_verify_internal_consistency: start\n");
|
|
|
|
/* check relations */
|
|
for (size_t i = 0; i < heap_allocated_pages; i++) {
|
|
struct heap_page *page = heap_pages_sorted[i];
|
|
short slot_size = page->slot_size;
|
|
|
|
uintptr_t start = (uintptr_t)page->start;
|
|
uintptr_t end = start + page->total_slots * slot_size;
|
|
|
|
verify_internal_consistency_i((void *)start, (void *)end, slot_size, &data);
|
|
}
|
|
|
|
if (data.err_count != 0) {
|
|
#if RGENGC_CHECK_MODE >= 5
|
|
objspace->rgengc.error_count = data.err_count;
|
|
gc_marks_check(objspace, NULL, NULL);
|
|
allrefs_dump(objspace);
|
|
#endif
|
|
rb_bug("gc_verify_internal_consistency: found internal inconsistency.");
|
|
}
|
|
|
|
/* check heap_page status */
|
|
gc_verify_heap_pages(objspace);
|
|
|
|
/* check counters */
|
|
|
|
if (!is_lazy_sweeping(objspace) &&
|
|
!finalizing &&
|
|
ruby_single_main_ractor != NULL) {
|
|
if (objspace_live_slots(objspace) != data.live_object_count) {
|
|
fprintf(stderr, "heap_pages_final_slots: %"PRIdSIZE", total_freed_objects: %"PRIdSIZE"\n",
|
|
heap_pages_final_slots, total_freed_objects(objspace));
|
|
rb_bug("inconsistent live slot number: expect %"PRIuSIZE", but %"PRIuSIZE".",
|
|
objspace_live_slots(objspace), data.live_object_count);
|
|
}
|
|
}
|
|
|
|
if (!is_marking(objspace)) {
|
|
if (objspace->rgengc.old_objects != data.old_object_count) {
|
|
rb_bug("inconsistent old slot number: expect %"PRIuSIZE", but %"PRIuSIZE".",
|
|
objspace->rgengc.old_objects, data.old_object_count);
|
|
}
|
|
if (objspace->rgengc.uncollectible_wb_unprotected_objects != data.remembered_shady_count) {
|
|
rb_bug("inconsistent number of wb unprotected objects: expect %"PRIuSIZE", but %"PRIuSIZE".",
|
|
objspace->rgengc.uncollectible_wb_unprotected_objects, data.remembered_shady_count);
|
|
}
|
|
}
|
|
|
|
if (!finalizing) {
|
|
size_t list_count = 0;
|
|
|
|
{
|
|
VALUE z = heap_pages_deferred_final;
|
|
while (z) {
|
|
list_count++;
|
|
z = RZOMBIE(z)->next;
|
|
}
|
|
}
|
|
|
|
if (heap_pages_final_slots != data.zombie_object_count ||
|
|
heap_pages_final_slots != list_count) {
|
|
|
|
rb_bug("inconsistent finalizing object count:\n"
|
|
" expect %"PRIuSIZE"\n"
|
|
" but %"PRIuSIZE" zombies\n"
|
|
" heap_pages_deferred_final list has %"PRIuSIZE" items.",
|
|
heap_pages_final_slots,
|
|
data.zombie_object_count,
|
|
list_count);
|
|
}
|
|
}
|
|
|
|
gc_report(5, objspace, "gc_verify_internal_consistency: OK\n");
|
|
}
|
|
|
|
static void
|
|
gc_verify_internal_consistency(rb_objspace_t *objspace)
|
|
{
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
rb_vm_barrier(); // stop other ractors
|
|
|
|
unsigned int prev_during_gc = during_gc;
|
|
during_gc = FALSE; // stop gc here
|
|
{
|
|
gc_verify_internal_consistency_(objspace);
|
|
}
|
|
during_gc = prev_during_gc;
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
}
|
|
|
|
void
|
|
rb_gc_verify_internal_consistency(void)
|
|
{
|
|
gc_verify_internal_consistency(&rb_objspace);
|
|
}
|
|
|
|
static void
|
|
heap_move_pooled_pages_to_free_pages(rb_heap_t *heap)
|
|
{
|
|
if (heap->pooled_pages) {
|
|
if (heap->free_pages) {
|
|
struct heap_page *free_pages_tail = heap->free_pages;
|
|
while (free_pages_tail->free_next) {
|
|
free_pages_tail = free_pages_tail->free_next;
|
|
}
|
|
free_pages_tail->free_next = heap->pooled_pages;
|
|
}
|
|
else {
|
|
heap->free_pages = heap->pooled_pages;
|
|
}
|
|
|
|
heap->pooled_pages = NULL;
|
|
}
|
|
}
|
|
|
|
/* marks */
|
|
|
|
static void
|
|
gc_marks_start(rb_objspace_t *objspace, int full_mark)
|
|
{
|
|
/* start marking */
|
|
gc_report(1, objspace, "gc_marks_start: (%s)\n", full_mark ? "full" : "minor");
|
|
gc_mode_transition(objspace, gc_mode_marking);
|
|
|
|
if (full_mark) {
|
|
size_t incremental_marking_steps = (objspace->rincgc.pooled_slots / INCREMENTAL_MARK_STEP_ALLOCATIONS) + 1;
|
|
objspace->rincgc.step_slots = (objspace->marked_slots * 2) / incremental_marking_steps;
|
|
|
|
if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE", "
|
|
"objspace->rincgc.pooled_page_num: %"PRIdSIZE", "
|
|
"objspace->rincgc.step_slots: %"PRIdSIZE", \n",
|
|
objspace->marked_slots, objspace->rincgc.pooled_slots, objspace->rincgc.step_slots);
|
|
objspace->flags.during_minor_gc = FALSE;
|
|
if (ruby_enable_autocompact) {
|
|
objspace->flags.during_compacting |= TRUE;
|
|
}
|
|
objspace->profile.major_gc_count++;
|
|
objspace->rgengc.uncollectible_wb_unprotected_objects = 0;
|
|
objspace->rgengc.old_objects = 0;
|
|
objspace->rgengc.last_major_gc = objspace->profile.count;
|
|
objspace->marked_slots = 0;
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
rgengc_mark_and_rememberset_clear(objspace, heap);
|
|
heap_move_pooled_pages_to_free_pages(heap);
|
|
|
|
if (objspace->flags.during_compacting) {
|
|
struct heap_page *page = NULL;
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
page->pinned_slots = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
objspace->flags.during_minor_gc = TRUE;
|
|
objspace->marked_slots =
|
|
objspace->rgengc.old_objects + objspace->rgengc.uncollectible_wb_unprotected_objects; /* uncollectible objects are marked already */
|
|
objspace->profile.minor_gc_count++;
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rgengc_rememberset_mark(objspace, SIZE_POOL_EDEN_HEAP(&size_pools[i]));
|
|
}
|
|
}
|
|
|
|
gc_mark_roots(objspace, NULL);
|
|
|
|
gc_report(1, objspace, "gc_marks_start: (%s) end, stack in %"PRIdSIZE"\n",
|
|
full_mark ? "full" : "minor", mark_stack_size(&objspace->mark_stack));
|
|
}
|
|
|
|
static inline void
|
|
gc_marks_wb_unprotected_objects_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bits)
|
|
{
|
|
if (bits) {
|
|
do {
|
|
if (bits & 1) {
|
|
gc_report(2, objspace, "gc_marks_wb_unprotected_objects: marked shady: %s\n", obj_info((VALUE)p));
|
|
GC_ASSERT(RVALUE_WB_UNPROTECTED((VALUE)p));
|
|
GC_ASSERT(RVALUE_MARKED((VALUE)p));
|
|
gc_mark_children(objspace, (VALUE)p);
|
|
}
|
|
p += BASE_SLOT_SIZE;
|
|
bits >>= 1;
|
|
} while (bits);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_marks_wb_unprotected_objects(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page = 0;
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
bits_t *mark_bits = page->mark_bits;
|
|
bits_t *wbun_bits = page->wb_unprotected_bits;
|
|
uintptr_t p = page->start;
|
|
size_t j;
|
|
|
|
bits_t bits = mark_bits[0] & wbun_bits[0];
|
|
bits >>= NUM_IN_PAGE(p);
|
|
gc_marks_wb_unprotected_objects_plane(objspace, p, bits);
|
|
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
|
|
|
|
for (j=1; j<HEAP_PAGE_BITMAP_LIMIT; j++) {
|
|
bits_t bits = mark_bits[j] & wbun_bits[j];
|
|
|
|
gc_marks_wb_unprotected_objects_plane(objspace, p, bits);
|
|
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
|
|
}
|
|
}
|
|
|
|
gc_mark_stacked_objects_all(objspace);
|
|
}
|
|
|
|
static void
|
|
gc_update_weak_references(rb_objspace_t *objspace)
|
|
{
|
|
size_t retained_weak_references_count = 0;
|
|
VALUE **ptr_ptr;
|
|
rb_darray_foreach(objspace->weak_references, i, ptr_ptr) {
|
|
if (!*ptr_ptr) continue;
|
|
|
|
VALUE obj = **ptr_ptr;
|
|
|
|
if (RB_SPECIAL_CONST_P(obj)) continue;
|
|
|
|
if (!RVALUE_MARKED(obj)) {
|
|
**ptr_ptr = Qundef;
|
|
}
|
|
else {
|
|
retained_weak_references_count++;
|
|
}
|
|
}
|
|
|
|
objspace->profile.retained_weak_references_count = retained_weak_references_count;
|
|
|
|
rb_darray_clear(objspace->weak_references);
|
|
|
|
DURING_GC_COULD_MALLOC_REGION_START();
|
|
{
|
|
rb_darray_resize_capa(&objspace->weak_references, retained_weak_references_count);
|
|
}
|
|
DURING_GC_COULD_MALLOC_REGION_END();
|
|
}
|
|
|
|
static void
|
|
gc_marks_finish(rb_objspace_t *objspace)
|
|
{
|
|
/* finish incremental GC */
|
|
if (is_incremental_marking(objspace)) {
|
|
if (RGENGC_CHECK_MODE && is_mark_stack_empty(&objspace->mark_stack) == 0) {
|
|
rb_bug("gc_marks_finish: mark stack is not empty (%"PRIdSIZE").",
|
|
mark_stack_size(&objspace->mark_stack));
|
|
}
|
|
|
|
gc_mark_roots(objspace, 0);
|
|
while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == false);
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
if (gc_verify_heap_pages(objspace) != 0) {
|
|
rb_bug("gc_marks_finish (incremental): there are remembered old objects.");
|
|
}
|
|
#endif
|
|
|
|
objspace->flags.during_incremental_marking = FALSE;
|
|
/* check children of all marked wb-unprotected objects */
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
gc_marks_wb_unprotected_objects(objspace, SIZE_POOL_EDEN_HEAP(&size_pools[i]));
|
|
}
|
|
}
|
|
|
|
gc_update_weak_references(objspace);
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_verify_internal_consistency(objspace);
|
|
#endif
|
|
|
|
#if RGENGC_CHECK_MODE >= 4
|
|
during_gc = FALSE;
|
|
gc_marks_check(objspace, gc_check_after_marks_i, "after_marks");
|
|
during_gc = TRUE;
|
|
#endif
|
|
|
|
{
|
|
/* decide full GC is needed or not */
|
|
size_t total_slots = heap_allocatable_slots(objspace) + heap_eden_total_slots(objspace);
|
|
size_t sweep_slots = total_slots - objspace->marked_slots; /* will be swept slots */
|
|
size_t max_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_max_ratio);
|
|
size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio);
|
|
int full_marking = is_full_marking(objspace);
|
|
const int r_cnt = GET_VM()->ractor.cnt;
|
|
const int r_mul = r_cnt > 8 ? 8 : r_cnt; // upto 8
|
|
|
|
GC_ASSERT(heap_eden_total_slots(objspace) >= objspace->marked_slots);
|
|
|
|
/* Setup freeable slots. */
|
|
size_t total_init_slots = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
total_init_slots += gc_params.size_pool_init_slots[i] * r_mul;
|
|
}
|
|
|
|
if (max_free_slots < total_init_slots) {
|
|
max_free_slots = total_init_slots;
|
|
}
|
|
|
|
if (sweep_slots > max_free_slots) {
|
|
heap_pages_freeable_pages = (sweep_slots - max_free_slots) / HEAP_PAGE_OBJ_LIMIT;
|
|
}
|
|
else {
|
|
heap_pages_freeable_pages = 0;
|
|
}
|
|
|
|
/* check free_min */
|
|
if (min_free_slots < gc_params.heap_free_slots * r_mul) {
|
|
min_free_slots = gc_params.heap_free_slots * r_mul;
|
|
}
|
|
|
|
if (sweep_slots < min_free_slots) {
|
|
if (!full_marking) {
|
|
if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) {
|
|
full_marking = TRUE;
|
|
/* do not update last_major_gc, because full marking is not done. */
|
|
/* goto increment; */
|
|
}
|
|
else {
|
|
gc_report(1, objspace, "gc_marks_finish: next is full GC!!)\n");
|
|
gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_NOFREE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (full_marking) {
|
|
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */
|
|
const double r = gc_params.oldobject_limit_factor;
|
|
objspace->rgengc.uncollectible_wb_unprotected_objects_limit = MAX(
|
|
(size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r),
|
|
(size_t)(objspace->rgengc.old_objects * gc_params.uncollectible_wb_unprotected_objects_limit_ratio)
|
|
);
|
|
objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r);
|
|
}
|
|
|
|
if (objspace->rgengc.uncollectible_wb_unprotected_objects > objspace->rgengc.uncollectible_wb_unprotected_objects_limit) {
|
|
gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_SHADY;
|
|
}
|
|
if (objspace->rgengc.old_objects > objspace->rgengc.old_objects_limit) {
|
|
gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_OLDGEN;
|
|
}
|
|
if (RGENGC_FORCE_MAJOR_GC) {
|
|
gc_needs_major_flags = GPR_FLAG_MAJOR_BY_FORCE;
|
|
}
|
|
|
|
gc_report(1, objspace, "gc_marks_finish (marks %"PRIdSIZE" objects, "
|
|
"old %"PRIdSIZE" objects, total %"PRIdSIZE" slots, "
|
|
"sweep %"PRIdSIZE" slots, increment: %"PRIdSIZE", next GC: %s)\n",
|
|
objspace->marked_slots, objspace->rgengc.old_objects, heap_eden_total_slots(objspace), sweep_slots, heap_allocatable_pages(objspace),
|
|
gc_needs_major_flags ? "major" : "minor");
|
|
}
|
|
|
|
rb_ractor_finish_marking();
|
|
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0);
|
|
}
|
|
|
|
static bool
|
|
gc_compact_heap_cursors_met_p(rb_heap_t *heap)
|
|
{
|
|
return heap->sweeping_page == heap->compact_cursor;
|
|
}
|
|
|
|
static rb_size_pool_t *
|
|
gc_compact_destination_pool(rb_objspace_t *objspace, rb_size_pool_t *src_pool, VALUE src)
|
|
{
|
|
size_t obj_size;
|
|
size_t idx = 0;
|
|
|
|
switch (BUILTIN_TYPE(src)) {
|
|
case T_ARRAY:
|
|
obj_size = rb_ary_size_as_embedded(src);
|
|
break;
|
|
|
|
case T_OBJECT:
|
|
if (rb_shape_obj_too_complex(src)) {
|
|
return &size_pools[0];
|
|
}
|
|
else {
|
|
obj_size = rb_obj_embedded_size(ROBJECT_IV_CAPACITY(src));
|
|
}
|
|
break;
|
|
|
|
case T_STRING:
|
|
obj_size = rb_str_size_as_embedded(src);
|
|
break;
|
|
|
|
case T_HASH:
|
|
obj_size = sizeof(struct RHash) + (RHASH_ST_TABLE_P(src) ? sizeof(st_table) : sizeof(ar_table));
|
|
break;
|
|
|
|
default:
|
|
return src_pool;
|
|
}
|
|
|
|
if (rb_gc_size_allocatable_p(obj_size)){
|
|
idx = rb_gc_size_pool_id_for_size(obj_size);
|
|
}
|
|
return &size_pools[idx];
|
|
}
|
|
|
|
static bool
|
|
gc_compact_move(rb_objspace_t *objspace, rb_heap_t *heap, rb_size_pool_t *size_pool, VALUE src)
|
|
{
|
|
GC_ASSERT(BUILTIN_TYPE(src) != T_MOVED);
|
|
GC_ASSERT(gc_is_moveable_obj(objspace, src));
|
|
|
|
rb_size_pool_t *dest_pool = gc_compact_destination_pool(objspace, size_pool, src);
|
|
rb_heap_t *dheap = SIZE_POOL_EDEN_HEAP(dest_pool);
|
|
rb_shape_t *new_shape = NULL;
|
|
rb_shape_t *orig_shape = NULL;
|
|
|
|
if (gc_compact_heap_cursors_met_p(dheap)) {
|
|
return dheap != heap;
|
|
}
|
|
|
|
if (RB_TYPE_P(src, T_OBJECT)) {
|
|
orig_shape = rb_shape_get_shape(src);
|
|
if (dheap != heap && !rb_shape_obj_too_complex(src)) {
|
|
rb_shape_t *initial_shape = rb_shape_get_shape_by_id((shape_id_t)((dest_pool - size_pools) + FIRST_T_OBJECT_SHAPE_ID));
|
|
new_shape = rb_shape_traverse_from_new_root(initial_shape, orig_shape);
|
|
|
|
if (!new_shape) {
|
|
dest_pool = size_pool;
|
|
dheap = heap;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (!try_move(objspace, dheap, dheap->free_pages, src)) {
|
|
struct gc_sweep_context ctx = {
|
|
.page = dheap->sweeping_page,
|
|
.final_slots = 0,
|
|
.freed_slots = 0,
|
|
.empty_slots = 0,
|
|
};
|
|
|
|
/* The page of src could be partially compacted, so it may contain
|
|
* T_MOVED. Sweeping a page may read objects on this page, so we
|
|
* need to lock the page. */
|
|
lock_page_body(objspace, GET_PAGE_BODY(src));
|
|
gc_sweep_page(objspace, dheap, &ctx);
|
|
unlock_page_body(objspace, GET_PAGE_BODY(src));
|
|
|
|
if (dheap->sweeping_page->free_slots > 0) {
|
|
heap_add_freepage(dheap, dheap->sweeping_page);
|
|
}
|
|
|
|
dheap->sweeping_page = ccan_list_next(&dheap->pages, dheap->sweeping_page, page_node);
|
|
if (gc_compact_heap_cursors_met_p(dheap)) {
|
|
return dheap != heap;
|
|
}
|
|
}
|
|
|
|
if (orig_shape) {
|
|
if (new_shape) {
|
|
VALUE dest = rb_gc_location(src);
|
|
rb_shape_set_shape(dest, new_shape);
|
|
}
|
|
RMOVED(src)->original_shape_id = rb_shape_id(orig_shape);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gc_compact_plane(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct heap_page *page)
|
|
{
|
|
short slot_size = page->slot_size;
|
|
short slot_bits = slot_size / BASE_SLOT_SIZE;
|
|
GC_ASSERT(slot_bits > 0);
|
|
|
|
do {
|
|
VALUE vp = (VALUE)p;
|
|
GC_ASSERT(vp % BASE_SLOT_SIZE == 0);
|
|
|
|
if (bitset & 1) {
|
|
objspace->rcompactor.considered_count_table[BUILTIN_TYPE(vp)]++;
|
|
|
|
if (gc_is_moveable_obj(objspace, vp)) {
|
|
if (!gc_compact_move(objspace, heap, size_pool, vp)) {
|
|
//the cursors met. bubble up
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
p += slot_size;
|
|
bitset >>= slot_bits;
|
|
} while (bitset);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Iterate up all the objects in page, moving them to where they want to go
|
|
static bool
|
|
gc_compact_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
GC_ASSERT(page == heap->compact_cursor);
|
|
|
|
bits_t *mark_bits, *pin_bits;
|
|
bits_t bitset;
|
|
uintptr_t p = page->start;
|
|
|
|
mark_bits = page->mark_bits;
|
|
pin_bits = page->pinned_bits;
|
|
|
|
// objects that can be moved are marked and not pinned
|
|
bitset = (mark_bits[0] & ~pin_bits[0]);
|
|
bitset >>= NUM_IN_PAGE(p);
|
|
if (bitset) {
|
|
if (!gc_compact_plane(objspace, size_pool, heap, (uintptr_t)p, bitset, page))
|
|
return false;
|
|
}
|
|
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
|
|
|
|
for (int j = 1; j < HEAP_PAGE_BITMAP_LIMIT; j++) {
|
|
bitset = (mark_bits[j] & ~pin_bits[j]);
|
|
if (bitset) {
|
|
if (!gc_compact_plane(objspace, size_pool, heap, (uintptr_t)p, bitset, page))
|
|
return false;
|
|
}
|
|
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
gc_compact_all_compacted_p(rb_objspace_t *objspace)
|
|
{
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
if (heap->total_pages > 0 &&
|
|
!gc_compact_heap_cursors_met_p(heap)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gc_sweep_compact(rb_objspace_t *objspace)
|
|
{
|
|
gc_compact_start(objspace);
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_verify_internal_consistency(objspace);
|
|
#endif
|
|
|
|
while (!gc_compact_all_compacted_p(objspace)) {
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
if (gc_compact_heap_cursors_met_p(heap)) {
|
|
continue;
|
|
}
|
|
|
|
struct heap_page *start_page = heap->compact_cursor;
|
|
|
|
if (!gc_compact_page(objspace, size_pool, heap, start_page)) {
|
|
lock_page_body(objspace, GET_PAGE_BODY(start_page->start));
|
|
|
|
continue;
|
|
}
|
|
|
|
// If we get here, we've finished moving all objects on the compact_cursor page
|
|
// So we can lock it and move the cursor on to the next one.
|
|
lock_page_body(objspace, GET_PAGE_BODY(start_page->start));
|
|
heap->compact_cursor = ccan_list_prev(&heap->pages, heap->compact_cursor, page_node);
|
|
}
|
|
}
|
|
|
|
gc_compact_finish(objspace);
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_verify_internal_consistency(objspace);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
gc_marks_rest(rb_objspace_t *objspace)
|
|
{
|
|
gc_report(1, objspace, "gc_marks_rest\n");
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
SIZE_POOL_EDEN_HEAP(&size_pools[i])->pooled_pages = NULL;
|
|
}
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == FALSE);
|
|
}
|
|
else {
|
|
gc_mark_stacked_objects_all(objspace);
|
|
}
|
|
|
|
gc_marks_finish(objspace);
|
|
}
|
|
|
|
static bool
|
|
gc_marks_step(rb_objspace_t *objspace, size_t slots)
|
|
{
|
|
bool marking_finished = false;
|
|
|
|
GC_ASSERT(is_marking(objspace));
|
|
if (gc_mark_stacked_objects_incremental(objspace, slots)) {
|
|
gc_marks_finish(objspace);
|
|
|
|
marking_finished = true;
|
|
}
|
|
|
|
return marking_finished;
|
|
}
|
|
|
|
static bool
|
|
gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
GC_ASSERT(dont_gc_val() == FALSE);
|
|
bool marking_finished = true;
|
|
|
|
gc_marking_enter(objspace);
|
|
|
|
if (heap->free_pages) {
|
|
gc_report(2, objspace, "gc_marks_continue: has pooled pages");
|
|
|
|
marking_finished = gc_marks_step(objspace, objspace->rincgc.step_slots);
|
|
}
|
|
else {
|
|
gc_report(2, objspace, "gc_marks_continue: no more pooled pages (stack depth: %"PRIdSIZE").\n",
|
|
mark_stack_size(&objspace->mark_stack));
|
|
size_pool->force_incremental_marking_finish_count++;
|
|
gc_marks_rest(objspace);
|
|
}
|
|
|
|
gc_marking_exit(objspace);
|
|
|
|
return marking_finished;
|
|
}
|
|
|
|
static bool
|
|
gc_marks(rb_objspace_t *objspace, int full_mark)
|
|
{
|
|
gc_prof_mark_timer_start(objspace);
|
|
gc_marking_enter(objspace);
|
|
|
|
bool marking_finished = false;
|
|
|
|
/* setup marking */
|
|
|
|
gc_marks_start(objspace, full_mark);
|
|
if (!is_incremental_marking(objspace)) {
|
|
gc_marks_rest(objspace);
|
|
marking_finished = true;
|
|
}
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
if (gc_prof_record(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->old_objects = objspace->rgengc.old_objects;
|
|
}
|
|
#endif
|
|
|
|
gc_marking_exit(objspace);
|
|
gc_prof_mark_timer_stop(objspace);
|
|
|
|
return marking_finished;
|
|
}
|
|
|
|
/* RGENGC */
|
|
|
|
static void
|
|
gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
|
|
{
|
|
if (level <= RGENGC_DEBUG) {
|
|
char buf[1024];
|
|
FILE *out = stderr;
|
|
va_list args;
|
|
const char *status = " ";
|
|
|
|
if (during_gc) {
|
|
status = is_full_marking(objspace) ? "+" : "-";
|
|
}
|
|
else {
|
|
if (is_lazy_sweeping(objspace)) {
|
|
status = "S";
|
|
}
|
|
if (is_incremental_marking(objspace)) {
|
|
status = "M";
|
|
}
|
|
}
|
|
|
|
va_start(args, fmt);
|
|
vsnprintf(buf, 1024, fmt, args);
|
|
va_end(args);
|
|
|
|
fprintf(out, "%s|", status);
|
|
fputs(buf, out);
|
|
}
|
|
}
|
|
|
|
/* bit operations */
|
|
|
|
static int
|
|
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
struct heap_page *page = GET_HEAP_PAGE(obj);
|
|
bits_t *bits = &page->remembered_bits[0];
|
|
|
|
if (MARKED_IN_BITMAP(bits, obj)) {
|
|
return FALSE;
|
|
}
|
|
else {
|
|
page->flags.has_remembered_objects = TRUE;
|
|
MARK_IN_BITMAP(bits, obj);
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* wb, etc */
|
|
|
|
/* return FALSE if already remembered */
|
|
static int
|
|
rgengc_remember(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
gc_report(6, objspace, "rgengc_remember: %s %s\n", obj_info(obj),
|
|
RVALUE_REMEMBERED(obj) ? "was already remembered" : "is remembered now");
|
|
|
|
check_rvalue_consistency(obj);
|
|
|
|
if (RGENGC_CHECK_MODE) {
|
|
if (RVALUE_WB_UNPROTECTED(obj)) rb_bug("rgengc_remember: %s is not wb protected.", obj_info(obj));
|
|
}
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
if (!RVALUE_REMEMBERED(obj)) {
|
|
if (RVALUE_WB_UNPROTECTED(obj) == 0) {
|
|
objspace->profile.total_remembered_normal_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* RGENGC_PROFILE > 0 */
|
|
|
|
return rgengc_remembersetbits_set(objspace, obj);
|
|
}
|
|
|
|
#ifndef PROFILE_REMEMBERSET_MARK
|
|
#define PROFILE_REMEMBERSET_MARK 0
|
|
#endif
|
|
|
|
static inline void
|
|
rgengc_rememberset_mark_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bitset)
|
|
{
|
|
if (bitset) {
|
|
do {
|
|
if (bitset & 1) {
|
|
VALUE obj = (VALUE)p;
|
|
gc_report(2, objspace, "rgengc_rememberset_mark: mark %s\n", obj_info(obj));
|
|
GC_ASSERT(RVALUE_UNCOLLECTIBLE(obj));
|
|
GC_ASSERT(RVALUE_OLD_P(obj) || RVALUE_WB_UNPROTECTED(obj));
|
|
|
|
gc_mark_children(objspace, obj);
|
|
}
|
|
p += BASE_SLOT_SIZE;
|
|
bitset >>= 1;
|
|
} while (bitset);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
size_t j;
|
|
struct heap_page *page = 0;
|
|
#if PROFILE_REMEMBERSET_MARK
|
|
int has_old = 0, has_shady = 0, has_both = 0, skip = 0;
|
|
#endif
|
|
gc_report(1, objspace, "rgengc_rememberset_mark: start\n");
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
if (page->flags.has_remembered_objects | page->flags.has_uncollectible_wb_unprotected_objects) {
|
|
uintptr_t p = page->start;
|
|
bits_t bitset, bits[HEAP_PAGE_BITMAP_LIMIT];
|
|
bits_t *remembered_bits = page->remembered_bits;
|
|
bits_t *uncollectible_bits = page->uncollectible_bits;
|
|
bits_t *wb_unprotected_bits = page->wb_unprotected_bits;
|
|
#if PROFILE_REMEMBERSET_MARK
|
|
if (page->flags.has_remembered_objects && page->flags.has_uncollectible_wb_unprotected_objects) has_both++;
|
|
else if (page->flags.has_remembered_objects) has_old++;
|
|
else if (page->flags.has_uncollectible_wb_unprotected_objects) has_shady++;
|
|
#endif
|
|
for (j=0; j<HEAP_PAGE_BITMAP_LIMIT; j++) {
|
|
bits[j] = remembered_bits[j] | (uncollectible_bits[j] & wb_unprotected_bits[j]);
|
|
remembered_bits[j] = 0;
|
|
}
|
|
page->flags.has_remembered_objects = FALSE;
|
|
|
|
bitset = bits[0];
|
|
bitset >>= NUM_IN_PAGE(p);
|
|
rgengc_rememberset_mark_plane(objspace, p, bitset);
|
|
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
|
|
|
|
for (j=1; j < HEAP_PAGE_BITMAP_LIMIT; j++) {
|
|
bitset = bits[j];
|
|
rgengc_rememberset_mark_plane(objspace, p, bitset);
|
|
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
|
|
}
|
|
}
|
|
#if PROFILE_REMEMBERSET_MARK
|
|
else {
|
|
skip++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if PROFILE_REMEMBERSET_MARK
|
|
fprintf(stderr, "%d\t%d\t%d\t%d\n", has_both, has_old, has_shady, skip);
|
|
#endif
|
|
gc_report(1, objspace, "rgengc_rememberset_mark: finished\n");
|
|
}
|
|
|
|
static void
|
|
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page = 0;
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
memset(&page->mark_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
|
|
memset(&page->uncollectible_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
|
|
memset(&page->marking_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
|
|
memset(&page->remembered_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
|
|
memset(&page->pinned_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
|
|
page->flags.has_uncollectible_wb_unprotected_objects = FALSE;
|
|
page->flags.has_remembered_objects = FALSE;
|
|
}
|
|
}
|
|
|
|
/* RGENGC: APIs */
|
|
|
|
NOINLINE(static void gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace));
|
|
|
|
static void
|
|
gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace)
|
|
{
|
|
if (RGENGC_CHECK_MODE) {
|
|
if (!RVALUE_OLD_P(a)) rb_bug("gc_writebarrier_generational: %s is not an old object.", obj_info(a));
|
|
if ( RVALUE_OLD_P(b)) rb_bug("gc_writebarrier_generational: %s is an old object.", obj_info(b));
|
|
if (is_incremental_marking(objspace)) rb_bug("gc_writebarrier_generational: called while incremental marking: %s -> %s", obj_info(a), obj_info(b));
|
|
}
|
|
|
|
/* mark `a' and remember (default behavior) */
|
|
if (!RVALUE_REMEMBERED(a)) {
|
|
RB_VM_LOCK_ENTER_NO_BARRIER();
|
|
{
|
|
rgengc_remember(objspace, a);
|
|
}
|
|
RB_VM_LOCK_LEAVE_NO_BARRIER();
|
|
gc_report(1, objspace, "gc_writebarrier_generational: %s (remembered) -> %s\n", obj_info(a), obj_info(b));
|
|
}
|
|
|
|
check_rvalue_consistency(a);
|
|
check_rvalue_consistency(b);
|
|
}
|
|
|
|
static void
|
|
gc_mark_from(rb_objspace_t *objspace, VALUE obj, VALUE parent)
|
|
{
|
|
gc_mark_set_parent(objspace, parent);
|
|
rgengc_check_relation(objspace, obj);
|
|
if (gc_mark_set(objspace, obj) == FALSE) return;
|
|
gc_aging(objspace, obj);
|
|
gc_grey(objspace, obj);
|
|
}
|
|
|
|
NOINLINE(static void gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace));
|
|
|
|
static void
|
|
gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace)
|
|
{
|
|
gc_report(2, objspace, "gc_writebarrier_incremental: [LG] %p -> %s\n", (void *)a, obj_info(b));
|
|
|
|
if (RVALUE_BLACK_P(a)) {
|
|
if (RVALUE_WHITE_P(b)) {
|
|
if (!RVALUE_WB_UNPROTECTED(a)) {
|
|
gc_report(2, objspace, "gc_writebarrier_incremental: [IN] %p -> %s\n", (void *)a, obj_info(b));
|
|
gc_mark_from(objspace, b, a);
|
|
}
|
|
}
|
|
else if (RVALUE_OLD_P(a) && !RVALUE_OLD_P(b)) {
|
|
rgengc_remember(objspace, a);
|
|
}
|
|
|
|
if (UNLIKELY(objspace->flags.during_compacting)) {
|
|
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(b), b);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_writebarrier(VALUE a, VALUE b)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (RGENGC_CHECK_MODE) {
|
|
if (SPECIAL_CONST_P(a)) rb_bug("rb_gc_writebarrier: a is special const: %"PRIxVALUE, a);
|
|
if (SPECIAL_CONST_P(b)) rb_bug("rb_gc_writebarrier: b is special const: %"PRIxVALUE, b);
|
|
}
|
|
|
|
retry:
|
|
if (!is_incremental_marking(objspace)) {
|
|
if (!RVALUE_OLD_P(a) || RVALUE_OLD_P(b)) {
|
|
// do nothing
|
|
}
|
|
else {
|
|
gc_writebarrier_generational(a, b, objspace);
|
|
}
|
|
}
|
|
else {
|
|
bool retry = false;
|
|
/* slow path */
|
|
RB_VM_LOCK_ENTER_NO_BARRIER();
|
|
{
|
|
if (is_incremental_marking(objspace)) {
|
|
gc_writebarrier_incremental(a, b, objspace);
|
|
}
|
|
else {
|
|
retry = true;
|
|
}
|
|
}
|
|
RB_VM_LOCK_LEAVE_NO_BARRIER();
|
|
|
|
if (retry) goto retry;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void
|
|
rb_gc_writebarrier_unprotect(VALUE obj)
|
|
{
|
|
if (RVALUE_WB_UNPROTECTED(obj)) {
|
|
return;
|
|
}
|
|
else {
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
gc_report(2, objspace, "rb_gc_writebarrier_unprotect: %s %s\n", obj_info(obj),
|
|
RVALUE_REMEMBERED(obj) ? " (already remembered)" : "");
|
|
|
|
RB_VM_LOCK_ENTER_NO_BARRIER();
|
|
{
|
|
if (RVALUE_OLD_P(obj)) {
|
|
gc_report(1, objspace, "rb_gc_writebarrier_unprotect: %s\n", obj_info(obj));
|
|
RVALUE_DEMOTE(objspace, obj);
|
|
gc_mark_set(objspace, obj);
|
|
gc_remember_unprotected(objspace, obj);
|
|
|
|
#if RGENGC_PROFILE
|
|
objspace->profile.total_shade_operation_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif /* RGENGC_PROFILE >= 2 */
|
|
#endif /* RGENGC_PROFILE */
|
|
}
|
|
else {
|
|
RVALUE_AGE_RESET(obj);
|
|
}
|
|
|
|
RB_DEBUG_COUNTER_INC(obj_wb_unprotect);
|
|
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
|
|
}
|
|
RB_VM_LOCK_LEAVE_NO_BARRIER();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remember `obj' if needed.
|
|
*/
|
|
void
|
|
rb_gc_writebarrier_remember(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
gc_report(1, objspace, "rb_gc_writebarrier_remember: %s\n", obj_info(obj));
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
if (RVALUE_BLACK_P(obj)) {
|
|
gc_grey(objspace, obj);
|
|
}
|
|
}
|
|
else {
|
|
if (RVALUE_OLD_P(obj)) {
|
|
rgengc_remember(objspace, obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_copy_attributes(VALUE dest, VALUE obj)
|
|
{
|
|
if (RVALUE_WB_UNPROTECTED(obj)) {
|
|
rb_gc_writebarrier_unprotect(dest);
|
|
}
|
|
rb_gc_copy_finalizer(dest, obj);
|
|
}
|
|
|
|
size_t
|
|
rb_obj_gc_flags(VALUE obj, ID* flags, size_t max)
|
|
{
|
|
size_t n = 0;
|
|
static ID ID_marked;
|
|
static ID ID_wb_protected, ID_old, ID_marking, ID_uncollectible, ID_pinned;
|
|
|
|
if (!ID_marked) {
|
|
#define I(s) ID_##s = rb_intern(#s);
|
|
I(marked);
|
|
I(wb_protected);
|
|
I(old);
|
|
I(marking);
|
|
I(uncollectible);
|
|
I(pinned);
|
|
#undef I
|
|
}
|
|
|
|
if (RVALUE_WB_UNPROTECTED(obj) == 0 && n<max) flags[n++] = ID_wb_protected;
|
|
if (RVALUE_OLD_P(obj) && n<max) flags[n++] = ID_old;
|
|
if (RVALUE_UNCOLLECTIBLE(obj) && n<max) flags[n++] = ID_uncollectible;
|
|
if (RVALUE_MARKING(obj) && n<max) flags[n++] = ID_marking;
|
|
if (RVALUE_MARKED(obj) && n<max) flags[n++] = ID_marked;
|
|
if (RVALUE_PINNED(obj) && n<max) flags[n++] = ID_pinned;
|
|
return n;
|
|
}
|
|
|
|
/* GC */
|
|
|
|
void
|
|
rb_gc_ractor_newobj_cache_clear(rb_ractor_newobj_cache_t *newobj_cache)
|
|
{
|
|
newobj_cache->incremental_mark_step_allocated_slots = 0;
|
|
|
|
for (size_t size_pool_idx = 0; size_pool_idx < SIZE_POOL_COUNT; size_pool_idx++) {
|
|
rb_ractor_newobj_size_pool_cache_t *cache = &newobj_cache->size_pool_caches[size_pool_idx];
|
|
|
|
struct heap_page *page = cache->using_page;
|
|
RVALUE *freelist = cache->freelist;
|
|
RUBY_DEBUG_LOG("ractor using_page:%p freelist:%p", (void *)page, (void *)freelist);
|
|
|
|
heap_page_freelist_append(page, freelist);
|
|
|
|
cache->using_page = NULL;
|
|
cache->freelist = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_register_mark_object(VALUE obj)
|
|
{
|
|
if (!is_pointer_to_heap(&rb_objspace, (void *)obj))
|
|
return;
|
|
|
|
rb_vm_register_global_object(obj);
|
|
}
|
|
|
|
void
|
|
rb_gc_register_address(VALUE *addr)
|
|
{
|
|
rb_vm_t *vm = GET_VM();
|
|
|
|
VALUE obj = *addr;
|
|
|
|
struct global_object_list *tmp = ALLOC(struct global_object_list);
|
|
tmp->next = vm->global_object_list;
|
|
tmp->varptr = addr;
|
|
vm->global_object_list = tmp;
|
|
|
|
/*
|
|
* Because some C extensions have assignment-then-register bugs,
|
|
* we guard `obj` here so that it would not get swept defensively.
|
|
*/
|
|
RB_GC_GUARD(obj);
|
|
if (0 && !SPECIAL_CONST_P(obj)) {
|
|
rb_warn("Object is assigned to registering address already: %"PRIsVALUE,
|
|
rb_obj_class(obj));
|
|
rb_print_backtrace(stderr);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_unregister_address(VALUE *addr)
|
|
{
|
|
rb_vm_t *vm = GET_VM();
|
|
struct global_object_list *tmp = vm->global_object_list;
|
|
|
|
if (tmp->varptr == addr) {
|
|
vm->global_object_list = tmp->next;
|
|
xfree(tmp);
|
|
return;
|
|
}
|
|
while (tmp->next) {
|
|
if (tmp->next->varptr == addr) {
|
|
struct global_object_list *t = tmp->next;
|
|
|
|
tmp->next = tmp->next->next;
|
|
xfree(t);
|
|
break;
|
|
}
|
|
tmp = tmp->next;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_global_variable(VALUE *var)
|
|
{
|
|
rb_gc_register_address(var);
|
|
}
|
|
|
|
enum {
|
|
gc_stress_no_major,
|
|
gc_stress_no_immediate_sweep,
|
|
gc_stress_full_mark_after_malloc,
|
|
gc_stress_max
|
|
};
|
|
|
|
#define gc_stress_full_mark_after_malloc_p() \
|
|
(FIXNUM_P(ruby_gc_stress_mode) && (FIX2LONG(ruby_gc_stress_mode) & (1<<gc_stress_full_mark_after_malloc)))
|
|
|
|
static void
|
|
heap_ready_to_gc(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
|
|
{
|
|
if (!heap->free_pages) {
|
|
if (!heap_increment(objspace, size_pool, heap)) {
|
|
size_pool_allocatable_pages_set(objspace, size_pool, 1);
|
|
heap_increment(objspace, size_pool, heap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ready_to_gc(rb_objspace_t *objspace)
|
|
{
|
|
if (dont_gc_val() || during_gc || ruby_disable_gc) {
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
heap_ready_to_gc(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
|
|
}
|
|
return FALSE;
|
|
}
|
|
else {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_reset_malloc_info(rb_objspace_t *objspace, bool full_mark)
|
|
{
|
|
gc_prof_set_malloc_info(objspace);
|
|
{
|
|
size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
|
|
size_t old_limit = malloc_limit;
|
|
|
|
if (inc > malloc_limit) {
|
|
malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor);
|
|
if (malloc_limit > gc_params.malloc_limit_max) {
|
|
malloc_limit = gc_params.malloc_limit_max;
|
|
}
|
|
}
|
|
else {
|
|
malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */
|
|
if (malloc_limit < gc_params.malloc_limit_min) {
|
|
malloc_limit = gc_params.malloc_limit_min;
|
|
}
|
|
}
|
|
|
|
if (0) {
|
|
if (old_limit != malloc_limit) {
|
|
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n",
|
|
rb_gc_count(), old_limit, malloc_limit);
|
|
}
|
|
else {
|
|
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n",
|
|
rb_gc_count(), malloc_limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reset oldmalloc info */
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
if (!full_mark) {
|
|
if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) {
|
|
gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_OLDMALLOC;
|
|
objspace->rgengc.oldmalloc_increase_limit =
|
|
(size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor);
|
|
|
|
if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) {
|
|
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max;
|
|
}
|
|
}
|
|
|
|
if (0) fprintf(stderr, "%"PRIdSIZE"\t%d\t%"PRIuSIZE"\t%"PRIuSIZE"\t%"PRIdSIZE"\n",
|
|
rb_gc_count(),
|
|
gc_needs_major_flags,
|
|
objspace->rgengc.oldmalloc_increase,
|
|
objspace->rgengc.oldmalloc_increase_limit,
|
|
gc_params.oldmalloc_limit_max);
|
|
}
|
|
else {
|
|
/* major GC */
|
|
objspace->rgengc.oldmalloc_increase = 0;
|
|
|
|
if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) {
|
|
objspace->rgengc.oldmalloc_increase_limit =
|
|
(size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1));
|
|
if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) {
|
|
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
garbage_collect(rb_objspace_t *objspace, unsigned int reason)
|
|
{
|
|
int ret;
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
objspace->profile.prepare_time = getrusage_time();
|
|
#endif
|
|
|
|
gc_rest(objspace);
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
|
|
#endif
|
|
|
|
ret = gc_start(objspace, reason);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
gc_start(rb_objspace_t *objspace, unsigned int reason)
|
|
{
|
|
unsigned int do_full_mark = !!(reason & GPR_FLAG_FULL_MARK);
|
|
|
|
/* reason may be clobbered, later, so keep set immediate_sweep here */
|
|
objspace->flags.immediate_sweep = !!(reason & GPR_FLAG_IMMEDIATE_SWEEP);
|
|
|
|
if (!heap_allocated_pages) return TRUE; /* heap is not ready */
|
|
if (!(reason & GPR_FLAG_METHOD) && !ready_to_gc(objspace)) return TRUE; /* GC is not allowed */
|
|
|
|
GC_ASSERT(gc_mode(objspace) == gc_mode_none);
|
|
GC_ASSERT(!is_lazy_sweeping(objspace));
|
|
GC_ASSERT(!is_incremental_marking(objspace));
|
|
|
|
unsigned int lock_lev;
|
|
gc_enter(objspace, gc_enter_event_start, &lock_lev);
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_verify_internal_consistency(objspace);
|
|
#endif
|
|
|
|
if (ruby_gc_stressful) {
|
|
int flag = FIXNUM_P(ruby_gc_stress_mode) ? FIX2INT(ruby_gc_stress_mode) : 0;
|
|
|
|
if ((flag & (1<<gc_stress_no_major)) == 0) {
|
|
do_full_mark = TRUE;
|
|
}
|
|
|
|
objspace->flags.immediate_sweep = !(flag & (1<<gc_stress_no_immediate_sweep));
|
|
}
|
|
|
|
if (gc_needs_major_flags) {
|
|
reason |= gc_needs_major_flags;
|
|
do_full_mark = TRUE;
|
|
}
|
|
else if (RGENGC_FORCE_MAJOR_GC) {
|
|
reason = GPR_FLAG_MAJOR_BY_FORCE;
|
|
do_full_mark = TRUE;
|
|
}
|
|
|
|
gc_needs_major_flags = GPR_FLAG_NONE;
|
|
|
|
if (do_full_mark && (reason & GPR_FLAG_MAJOR_MASK) == 0) {
|
|
reason |= GPR_FLAG_MAJOR_BY_FORCE; /* GC by CAPI, METHOD, and so on. */
|
|
}
|
|
|
|
if (objspace->flags.dont_incremental ||
|
|
reason & GPR_FLAG_IMMEDIATE_MARK ||
|
|
ruby_gc_stressful) {
|
|
objspace->flags.during_incremental_marking = FALSE;
|
|
}
|
|
else {
|
|
objspace->flags.during_incremental_marking = do_full_mark;
|
|
}
|
|
|
|
/* Explicitly enable compaction (GC.compact) */
|
|
if (do_full_mark && ruby_enable_autocompact) {
|
|
objspace->flags.during_compacting = TRUE;
|
|
#if RGENGC_CHECK_MODE
|
|
objspace->rcompactor.compare_func = ruby_autocompact_compare_func;
|
|
#endif
|
|
}
|
|
else {
|
|
objspace->flags.during_compacting = !!(reason & GPR_FLAG_COMPACT);
|
|
}
|
|
|
|
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_incremental) {
|
|
objspace->flags.immediate_sweep = TRUE;
|
|
}
|
|
|
|
if (objspace->flags.immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP;
|
|
|
|
gc_report(1, objspace, "gc_start(reason: %x) => %u, %d, %d\n",
|
|
reason,
|
|
do_full_mark, !is_incremental_marking(objspace), objspace->flags.immediate_sweep);
|
|
|
|
#if USE_DEBUG_COUNTER
|
|
RB_DEBUG_COUNTER_INC(gc_count);
|
|
|
|
if (reason & GPR_FLAG_MAJOR_MASK) {
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_nofree, reason & GPR_FLAG_MAJOR_BY_NOFREE);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldgen, reason & GPR_FLAG_MAJOR_BY_OLDGEN);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_shady, reason & GPR_FLAG_MAJOR_BY_SHADY);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_force, reason & GPR_FLAG_MAJOR_BY_FORCE);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldmalloc, reason & GPR_FLAG_MAJOR_BY_OLDMALLOC);
|
|
#endif
|
|
}
|
|
else {
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_newobj, reason & GPR_FLAG_NEWOBJ);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_malloc, reason & GPR_FLAG_MALLOC);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_method, reason & GPR_FLAG_METHOD);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_capi, reason & GPR_FLAG_CAPI);
|
|
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_stress, reason & GPR_FLAG_STRESS);
|
|
}
|
|
#endif
|
|
|
|
objspace->profile.count++;
|
|
objspace->profile.latest_gc_info = reason;
|
|
objspace->profile.total_allocated_objects_at_gc_start = total_allocated_objects(objspace);
|
|
objspace->profile.heap_used_at_gc_start = heap_allocated_pages;
|
|
objspace->profile.weak_references_count = 0;
|
|
objspace->profile.retained_weak_references_count = 0;
|
|
gc_prof_setup_new_record(objspace, reason);
|
|
gc_reset_malloc_info(objspace, do_full_mark);
|
|
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */);
|
|
GC_ASSERT(during_gc);
|
|
|
|
gc_prof_timer_start(objspace);
|
|
{
|
|
if (gc_marks(objspace, do_full_mark)) {
|
|
gc_sweep(objspace);
|
|
}
|
|
}
|
|
gc_prof_timer_stop(objspace);
|
|
|
|
gc_exit(objspace, gc_enter_event_start, &lock_lev);
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
gc_rest(rb_objspace_t *objspace)
|
|
{
|
|
if (is_incremental_marking(objspace) || is_lazy_sweeping(objspace)) {
|
|
unsigned int lock_lev;
|
|
gc_enter(objspace, gc_enter_event_rest, &lock_lev);
|
|
|
|
if (RGENGC_CHECK_MODE >= 2) gc_verify_internal_consistency(objspace);
|
|
|
|
if (is_incremental_marking(objspace)) {
|
|
gc_marking_enter(objspace);
|
|
gc_marks_rest(objspace);
|
|
gc_marking_exit(objspace);
|
|
|
|
gc_sweep(objspace);
|
|
}
|
|
|
|
if (is_lazy_sweeping(objspace)) {
|
|
gc_sweeping_enter(objspace);
|
|
gc_sweep_rest(objspace);
|
|
gc_sweeping_exit(objspace);
|
|
}
|
|
|
|
gc_exit(objspace, gc_enter_event_rest, &lock_lev);
|
|
}
|
|
}
|
|
|
|
struct objspace_and_reason {
|
|
rb_objspace_t *objspace;
|
|
unsigned int reason;
|
|
};
|
|
|
|
static void
|
|
gc_current_status_fill(rb_objspace_t *objspace, char *buff)
|
|
{
|
|
int i = 0;
|
|
if (is_marking(objspace)) {
|
|
buff[i++] = 'M';
|
|
if (is_full_marking(objspace)) buff[i++] = 'F';
|
|
if (is_incremental_marking(objspace)) buff[i++] = 'I';
|
|
}
|
|
else if (is_sweeping(objspace)) {
|
|
buff[i++] = 'S';
|
|
if (is_lazy_sweeping(objspace)) buff[i++] = 'L';
|
|
}
|
|
else {
|
|
buff[i++] = 'N';
|
|
}
|
|
buff[i] = '\0';
|
|
}
|
|
|
|
static const char *
|
|
gc_current_status(rb_objspace_t *objspace)
|
|
{
|
|
static char buff[0x10];
|
|
gc_current_status_fill(objspace, buff);
|
|
return buff;
|
|
}
|
|
|
|
#if PRINT_ENTER_EXIT_TICK
|
|
|
|
static tick_t last_exit_tick;
|
|
static tick_t enter_tick;
|
|
static int enter_count = 0;
|
|
static char last_gc_status[0x10];
|
|
|
|
static inline void
|
|
gc_record(rb_objspace_t *objspace, int direction, const char *event)
|
|
{
|
|
if (direction == 0) { /* enter */
|
|
enter_count++;
|
|
enter_tick = tick();
|
|
gc_current_status_fill(objspace, last_gc_status);
|
|
}
|
|
else { /* exit */
|
|
tick_t exit_tick = tick();
|
|
char current_gc_status[0x10];
|
|
gc_current_status_fill(objspace, current_gc_status);
|
|
#if 1
|
|
/* [last mutator time] [gc time] [event] */
|
|
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
|
|
enter_tick - last_exit_tick,
|
|
exit_tick - enter_tick,
|
|
event,
|
|
last_gc_status, current_gc_status,
|
|
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
|
|
last_exit_tick = exit_tick;
|
|
#else
|
|
/* [enter_tick] [gc time] [event] */
|
|
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
|
|
enter_tick,
|
|
exit_tick - enter_tick,
|
|
event,
|
|
last_gc_status, current_gc_status,
|
|
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
|
|
#endif
|
|
}
|
|
}
|
|
#else /* PRINT_ENTER_EXIT_TICK */
|
|
static inline void
|
|
gc_record(rb_objspace_t *objspace, int direction, const char *event)
|
|
{
|
|
/* null */
|
|
}
|
|
#endif /* PRINT_ENTER_EXIT_TICK */
|
|
|
|
static const char *
|
|
gc_enter_event_cstr(enum gc_enter_event event)
|
|
{
|
|
switch (event) {
|
|
case gc_enter_event_start: return "start";
|
|
case gc_enter_event_continue: return "continue";
|
|
case gc_enter_event_rest: return "rest";
|
|
case gc_enter_event_finalizer: return "finalizer";
|
|
case gc_enter_event_rb_memerror: return "rb_memerror";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
gc_enter_count(enum gc_enter_event event)
|
|
{
|
|
switch (event) {
|
|
case gc_enter_event_start: RB_DEBUG_COUNTER_INC(gc_enter_start); break;
|
|
case gc_enter_event_continue: RB_DEBUG_COUNTER_INC(gc_enter_continue); break;
|
|
case gc_enter_event_rest: RB_DEBUG_COUNTER_INC(gc_enter_rest); break;
|
|
case gc_enter_event_finalizer: RB_DEBUG_COUNTER_INC(gc_enter_finalizer); break;
|
|
case gc_enter_event_rb_memerror: /* nothing */ break;
|
|
}
|
|
}
|
|
|
|
static bool current_process_time(struct timespec *ts);
|
|
|
|
static void
|
|
gc_clock_start(struct timespec *ts)
|
|
{
|
|
if (!current_process_time(ts)) {
|
|
ts->tv_sec = 0;
|
|
ts->tv_nsec = 0;
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
gc_clock_end(struct timespec *ts)
|
|
{
|
|
struct timespec end_time;
|
|
|
|
if ((ts->tv_sec > 0 || ts->tv_nsec > 0) &&
|
|
current_process_time(&end_time) &&
|
|
end_time.tv_sec >= ts->tv_sec) {
|
|
return (uint64_t)(end_time.tv_sec - ts->tv_sec) * (1000 * 1000 * 1000) +
|
|
(end_time.tv_nsec - ts->tv_nsec);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev)
|
|
{
|
|
RB_VM_LOCK_ENTER_LEV(lock_lev);
|
|
|
|
switch (event) {
|
|
case gc_enter_event_rest:
|
|
if (!is_marking(objspace)) break;
|
|
// fall through
|
|
case gc_enter_event_start:
|
|
case gc_enter_event_continue:
|
|
// stop other ractors
|
|
rb_vm_barrier();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
gc_enter_count(event);
|
|
if (UNLIKELY(during_gc != 0)) rb_bug("during_gc != 0");
|
|
if (RGENGC_CHECK_MODE >= 3 && (dont_gc_val() == 0)) gc_verify_internal_consistency(objspace);
|
|
|
|
during_gc = TRUE;
|
|
RUBY_DEBUG_LOG("%s (%s)",gc_enter_event_cstr(event), gc_current_status(objspace));
|
|
gc_report(1, objspace, "gc_enter: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace));
|
|
gc_record(objspace, 0, gc_enter_event_cstr(event));
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_ENTER, 0); /* TODO: which parameter should be passed? */
|
|
}
|
|
|
|
static inline void
|
|
gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev)
|
|
{
|
|
GC_ASSERT(during_gc != 0);
|
|
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_EXIT, 0); /* TODO: which parameter should be passed? */
|
|
gc_record(objspace, 1, gc_enter_event_cstr(event));
|
|
RUBY_DEBUG_LOG("%s (%s)", gc_enter_event_cstr(event), gc_current_status(objspace));
|
|
gc_report(1, objspace, "gc_exit: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace));
|
|
during_gc = FALSE;
|
|
|
|
RB_VM_LOCK_LEAVE_LEV(lock_lev);
|
|
}
|
|
|
|
#ifndef MEASURE_GC
|
|
#define MEASURE_GC (objspace->flags.measure_gc)
|
|
#endif
|
|
|
|
static void
|
|
gc_marking_enter(rb_objspace_t *objspace)
|
|
{
|
|
GC_ASSERT(during_gc != 0);
|
|
|
|
if (MEASURE_GC) {
|
|
gc_clock_start(&objspace->profile.marking_start_time);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_marking_exit(rb_objspace_t *objspace)
|
|
{
|
|
GC_ASSERT(during_gc != 0);
|
|
|
|
if (MEASURE_GC) {
|
|
objspace->profile.marking_time_ns += gc_clock_end(&objspace->profile.marking_start_time);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_sweeping_enter(rb_objspace_t *objspace)
|
|
{
|
|
GC_ASSERT(during_gc != 0);
|
|
|
|
if (MEASURE_GC) {
|
|
gc_clock_start(&objspace->profile.sweeping_start_time);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_sweeping_exit(rb_objspace_t *objspace)
|
|
{
|
|
GC_ASSERT(during_gc != 0);
|
|
|
|
if (MEASURE_GC) {
|
|
objspace->profile.sweeping_time_ns += gc_clock_end(&objspace->profile.sweeping_start_time);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
gc_with_gvl(void *ptr)
|
|
{
|
|
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
|
|
return (void *)(VALUE)garbage_collect(oar->objspace, oar->reason);
|
|
}
|
|
|
|
static int
|
|
garbage_collect_with_gvl(rb_objspace_t *objspace, unsigned int reason)
|
|
{
|
|
if (dont_gc_val()) return TRUE;
|
|
if (ruby_thread_has_gvl_p()) {
|
|
return garbage_collect(objspace, reason);
|
|
}
|
|
else {
|
|
if (ruby_native_thread_p()) {
|
|
struct objspace_and_reason oar;
|
|
oar.objspace = objspace;
|
|
oar.reason = reason;
|
|
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
|
|
}
|
|
else {
|
|
/* no ruby thread */
|
|
fprintf(stderr, "[FATAL] failed to allocate memory\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
gc_set_candidate_object_i(void *vstart, void *vend, size_t stride, void *data)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE v = (VALUE)vstart;
|
|
for (; v != (VALUE)vend; v += stride) {
|
|
asan_unpoisoning_object(v) {
|
|
switch (BUILTIN_TYPE(v)) {
|
|
case T_NONE:
|
|
case T_ZOMBIE:
|
|
break;
|
|
case T_STRING:
|
|
// precompute the string coderange. This both save time for when it will be
|
|
// eventually needed, and avoid mutating heap pages after a potential fork.
|
|
rb_enc_str_coderange(v);
|
|
// fall through
|
|
default:
|
|
if (!RVALUE_OLD_P(v) && !RVALUE_WB_UNPROTECTED(v)) {
|
|
RVALUE_AGE_SET_CANDIDATE(objspace, v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
gc_start_internal(rb_execution_context_t *ec, VALUE self, VALUE full_mark, VALUE immediate_mark, VALUE immediate_sweep, VALUE compact)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
unsigned int reason = (GPR_FLAG_FULL_MARK |
|
|
GPR_FLAG_IMMEDIATE_MARK |
|
|
GPR_FLAG_IMMEDIATE_SWEEP |
|
|
GPR_FLAG_METHOD);
|
|
|
|
/* For now, compact implies full mark / sweep, so ignore other flags */
|
|
if (RTEST(compact)) {
|
|
GC_ASSERT(GC_COMPACTION_SUPPORTED);
|
|
|
|
reason |= GPR_FLAG_COMPACT;
|
|
}
|
|
else {
|
|
if (!RTEST(full_mark)) reason &= ~GPR_FLAG_FULL_MARK;
|
|
if (!RTEST(immediate_mark)) reason &= ~GPR_FLAG_IMMEDIATE_MARK;
|
|
if (!RTEST(immediate_sweep)) reason &= ~GPR_FLAG_IMMEDIATE_SWEEP;
|
|
}
|
|
|
|
garbage_collect(objspace, reason);
|
|
gc_finalize_deferred(objspace);
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
static void
|
|
free_empty_pages(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
/* Move all empty pages to the tomb heap for freeing. */
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
rb_heap_t *tomb_heap = SIZE_POOL_TOMB_HEAP(size_pool);
|
|
|
|
size_t freed_pages = 0;
|
|
|
|
struct heap_page **next_page_ptr = &heap->free_pages;
|
|
struct heap_page *page = heap->free_pages;
|
|
while (page) {
|
|
/* All finalizers should have been ran in gc_start_internal, so there
|
|
* should be no objects that require finalization. */
|
|
GC_ASSERT(page->final_slots == 0);
|
|
|
|
struct heap_page *next_page = page->free_next;
|
|
|
|
if (page->free_slots == page->total_slots) {
|
|
heap_unlink_page(objspace, heap, page);
|
|
heap_add_page(objspace, size_pool, tomb_heap, page);
|
|
freed_pages++;
|
|
}
|
|
else {
|
|
*next_page_ptr = page;
|
|
next_page_ptr = &page->free_next;
|
|
}
|
|
|
|
page = next_page;
|
|
}
|
|
|
|
*next_page_ptr = NULL;
|
|
|
|
size_pool_allocatable_pages_set(objspace, size_pool, size_pool->allocatable_pages + freed_pages);
|
|
}
|
|
|
|
heap_pages_free_unused_pages(objspace);
|
|
}
|
|
|
|
void
|
|
rb_gc_prepare_heap(void)
|
|
{
|
|
rb_objspace_each_objects(gc_set_candidate_object_i, NULL);
|
|
gc_start_internal(NULL, Qtrue, Qtrue, Qtrue, Qtrue, Qtrue);
|
|
free_empty_pages();
|
|
|
|
#if defined(HAVE_MALLOC_TRIM) && !defined(RUBY_ALTERNATIVE_MALLOC_HEADER)
|
|
malloc_trim(0);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
GC_ASSERT(!SPECIAL_CONST_P(obj));
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_NONE:
|
|
case T_MOVED:
|
|
case T_ZOMBIE:
|
|
return FALSE;
|
|
case T_SYMBOL:
|
|
if (RSYMBOL(obj)->id & ~ID_SCOPE_MASK) {
|
|
return FALSE;
|
|
}
|
|
/* fall through */
|
|
case T_STRING:
|
|
case T_OBJECT:
|
|
case T_FLOAT:
|
|
case T_IMEMO:
|
|
case T_ARRAY:
|
|
case T_BIGNUM:
|
|
case T_ICLASS:
|
|
case T_MODULE:
|
|
case T_REGEXP:
|
|
case T_DATA:
|
|
case T_MATCH:
|
|
case T_STRUCT:
|
|
case T_HASH:
|
|
case T_FILE:
|
|
case T_COMPLEX:
|
|
case T_RATIONAL:
|
|
case T_NODE:
|
|
case T_CLASS:
|
|
if (FL_TEST(obj, FL_FINALIZE)) {
|
|
/* The finalizer table is a numtable. It looks up objects by address.
|
|
* We can't mark the keys in the finalizer table because that would
|
|
* prevent the objects from being collected. This check prevents
|
|
* objects that are keys in the finalizer table from being moved
|
|
* without directly pinning them. */
|
|
GC_ASSERT(st_is_member(finalizer_table, obj));
|
|
|
|
return FALSE;
|
|
}
|
|
GC_ASSERT(RVALUE_MARKED(obj));
|
|
GC_ASSERT(!RVALUE_PINNED(obj));
|
|
|
|
return TRUE;
|
|
|
|
default:
|
|
rb_bug("gc_is_moveable_obj: unreachable (%d)", (int)BUILTIN_TYPE(obj));
|
|
break;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static VALUE
|
|
gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size)
|
|
{
|
|
int marked;
|
|
int wb_unprotected;
|
|
int uncollectible;
|
|
int age;
|
|
RVALUE *dest = (RVALUE *)free;
|
|
RVALUE *src = (RVALUE *)scan;
|
|
|
|
gc_report(4, objspace, "Moving object: %p -> %p\n", (void*)scan, (void *)free);
|
|
|
|
GC_ASSERT(BUILTIN_TYPE(scan) != T_NONE);
|
|
GC_ASSERT(!RVALUE_MARKED(free));
|
|
|
|
GC_ASSERT(!RVALUE_MARKING((VALUE)src));
|
|
|
|
/* Save off bits for current object. */
|
|
marked = RVALUE_MARKED((VALUE)src);
|
|
wb_unprotected = RVALUE_WB_UNPROTECTED((VALUE)src);
|
|
uncollectible = RVALUE_UNCOLLECTIBLE((VALUE)src);
|
|
bool remembered = RVALUE_REMEMBERED((VALUE)src);
|
|
age = RVALUE_AGE_GET((VALUE)src);
|
|
|
|
/* Clear bits for eventual T_MOVED */
|
|
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)src), (VALUE)src);
|
|
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)src), (VALUE)src);
|
|
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)src), (VALUE)src);
|
|
CLEAR_IN_BITMAP(GET_HEAP_PAGE((VALUE)src)->remembered_bits, (VALUE)src);
|
|
|
|
if (FL_TEST((VALUE)src, FL_EXIVAR)) {
|
|
/* Resizing the st table could cause a malloc */
|
|
DURING_GC_COULD_MALLOC_REGION_START();
|
|
{
|
|
rb_mv_generic_ivar((VALUE)src, (VALUE)dest);
|
|
}
|
|
DURING_GC_COULD_MALLOC_REGION_END();
|
|
}
|
|
|
|
if (FL_TEST((VALUE)src, FL_SEEN_OBJ_ID)) {
|
|
/* If the source object's object_id has been seen, we need to update
|
|
* the object to object id mapping. */
|
|
st_data_t srcid = (st_data_t)src, id;
|
|
|
|
gc_report(4, objspace, "Moving object with seen id: %p -> %p\n", (void *)src, (void *)dest);
|
|
/* Resizing the st table could cause a malloc */
|
|
DURING_GC_COULD_MALLOC_REGION_START();
|
|
{
|
|
if (!st_delete(objspace->obj_to_id_tbl, &srcid, &id)) {
|
|
rb_bug("gc_move: object ID seen, but not in mapping table: %s", obj_info((VALUE)src));
|
|
}
|
|
|
|
st_insert(objspace->obj_to_id_tbl, (st_data_t)dest, id);
|
|
}
|
|
DURING_GC_COULD_MALLOC_REGION_END();
|
|
}
|
|
else {
|
|
GC_ASSERT(!st_lookup(objspace->obj_to_id_tbl, (st_data_t)src, NULL));
|
|
}
|
|
|
|
/* Move the object */
|
|
memcpy(dest, src, MIN(src_slot_size, slot_size));
|
|
|
|
if (RVALUE_OVERHEAD > 0) {
|
|
void *dest_overhead = (void *)(((uintptr_t)dest) + slot_size - RVALUE_OVERHEAD);
|
|
void *src_overhead = (void *)(((uintptr_t)src) + src_slot_size - RVALUE_OVERHEAD);
|
|
|
|
memcpy(dest_overhead, src_overhead, RVALUE_OVERHEAD);
|
|
}
|
|
|
|
memset(src, 0, src_slot_size);
|
|
RVALUE_AGE_RESET((VALUE)src);
|
|
|
|
/* Set bits for object in new location */
|
|
if (remembered) {
|
|
MARK_IN_BITMAP(GET_HEAP_PAGE(dest)->remembered_bits, (VALUE)dest);
|
|
}
|
|
else {
|
|
CLEAR_IN_BITMAP(GET_HEAP_PAGE(dest)->remembered_bits, (VALUE)dest);
|
|
}
|
|
|
|
if (marked) {
|
|
MARK_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest);
|
|
}
|
|
else {
|
|
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest);
|
|
}
|
|
|
|
if (wb_unprotected) {
|
|
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest);
|
|
}
|
|
else {
|
|
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest);
|
|
}
|
|
|
|
if (uncollectible) {
|
|
MARK_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest);
|
|
}
|
|
else {
|
|
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest);
|
|
}
|
|
|
|
RVALUE_AGE_SET((VALUE)dest, age);
|
|
/* Assign forwarding address */
|
|
src->as.moved.flags = T_MOVED;
|
|
src->as.moved.dummy = Qundef;
|
|
src->as.moved.destination = (VALUE)dest;
|
|
GC_ASSERT(BUILTIN_TYPE((VALUE)dest) != T_NONE);
|
|
|
|
return (VALUE)src;
|
|
}
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static int
|
|
compare_pinned_slots(const void *left, const void *right, void *dummy)
|
|
{
|
|
struct heap_page *left_page;
|
|
struct heap_page *right_page;
|
|
|
|
left_page = *(struct heap_page * const *)left;
|
|
right_page = *(struct heap_page * const *)right;
|
|
|
|
return left_page->pinned_slots - right_page->pinned_slots;
|
|
}
|
|
|
|
static int
|
|
compare_free_slots(const void *left, const void *right, void *dummy)
|
|
{
|
|
struct heap_page *left_page;
|
|
struct heap_page *right_page;
|
|
|
|
left_page = *(struct heap_page * const *)left;
|
|
right_page = *(struct heap_page * const *)right;
|
|
|
|
return left_page->free_slots - right_page->free_slots;
|
|
}
|
|
|
|
static void
|
|
gc_sort_heap_by_compare_func(rb_objspace_t *objspace, gc_compact_compare_func compare_func)
|
|
{
|
|
for (int j = 0; j < SIZE_POOL_COUNT; j++) {
|
|
rb_size_pool_t *size_pool = &size_pools[j];
|
|
|
|
size_t total_pages = SIZE_POOL_EDEN_HEAP(size_pool)->total_pages;
|
|
size_t size = size_mul_or_raise(total_pages, sizeof(struct heap_page *), rb_eRuntimeError);
|
|
struct heap_page *page = 0, **page_list = malloc(size);
|
|
size_t i = 0;
|
|
|
|
SIZE_POOL_EDEN_HEAP(size_pool)->free_pages = NULL;
|
|
ccan_list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) {
|
|
page_list[i++] = page;
|
|
GC_ASSERT(page);
|
|
}
|
|
|
|
GC_ASSERT((size_t)i == total_pages);
|
|
|
|
/* Sort the heap so "filled pages" are first. `heap_add_page` adds to the
|
|
* head of the list, so empty pages will end up at the start of the heap */
|
|
ruby_qsort(page_list, total_pages, sizeof(struct heap_page *), compare_func, NULL);
|
|
|
|
/* Reset the eden heap */
|
|
ccan_list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages);
|
|
|
|
for (i = 0; i < total_pages; i++) {
|
|
ccan_list_add(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, &page_list[i]->page_node);
|
|
if (page_list[i]->free_slots != 0) {
|
|
heap_add_freepage(SIZE_POOL_EDEN_HEAP(size_pool), page_list[i]);
|
|
}
|
|
}
|
|
|
|
free(page_list);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
gc_ref_update_array(rb_objspace_t * objspace, VALUE v)
|
|
{
|
|
if (ARY_SHARED_P(v)) {
|
|
VALUE old_root = RARRAY(v)->as.heap.aux.shared_root;
|
|
|
|
UPDATE_IF_MOVED(objspace, RARRAY(v)->as.heap.aux.shared_root);
|
|
|
|
VALUE new_root = RARRAY(v)->as.heap.aux.shared_root;
|
|
// If the root is embedded and its location has changed
|
|
if (ARY_EMBED_P(new_root) && new_root != old_root) {
|
|
size_t offset = (size_t)(RARRAY(v)->as.heap.ptr - RARRAY(old_root)->as.ary);
|
|
GC_ASSERT(RARRAY(v)->as.heap.ptr >= RARRAY(old_root)->as.ary);
|
|
RARRAY(v)->as.heap.ptr = RARRAY(new_root)->as.ary + offset;
|
|
}
|
|
}
|
|
else {
|
|
long len = RARRAY_LEN(v);
|
|
|
|
if (len > 0) {
|
|
VALUE *ptr = (VALUE *)RARRAY_CONST_PTR(v);
|
|
for (long i = 0; i < len; i++) {
|
|
UPDATE_IF_MOVED(objspace, ptr[i]);
|
|
}
|
|
}
|
|
|
|
if (rb_gc_obj_slot_size(v) >= rb_ary_size_as_embedded(v)) {
|
|
if (rb_ary_embeddable_p(v)) {
|
|
rb_ary_make_embedded(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gc_ref_update_table_values_only(rb_objspace_t *objspace, st_table *tbl);
|
|
|
|
static void
|
|
gc_ref_update_object(rb_objspace_t *objspace, VALUE v)
|
|
{
|
|
VALUE *ptr = ROBJECT_IVPTR(v);
|
|
|
|
if (rb_shape_obj_too_complex(v)) {
|
|
gc_ref_update_table_values_only(objspace, ROBJECT_IV_HASH(v));
|
|
return;
|
|
}
|
|
|
|
size_t slot_size = rb_gc_obj_slot_size(v);
|
|
size_t embed_size = rb_obj_embedded_size(ROBJECT_IV_CAPACITY(v));
|
|
if (slot_size >= embed_size && !RB_FL_TEST_RAW(v, ROBJECT_EMBED)) {
|
|
// Object can be re-embedded
|
|
memcpy(ROBJECT(v)->as.ary, ptr, sizeof(VALUE) * ROBJECT_IV_COUNT(v));
|
|
RB_FL_SET_RAW(v, ROBJECT_EMBED);
|
|
xfree(ptr);
|
|
ptr = ROBJECT(v)->as.ary;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < ROBJECT_IV_COUNT(v); i++) {
|
|
UPDATE_IF_MOVED(objspace, ptr[i]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
hash_replace_ref(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)argp;
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)*key)) {
|
|
*key = rb_gc_location((VALUE)*key);
|
|
}
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)*value)) {
|
|
*value = rb_gc_location((VALUE)*value);
|
|
}
|
|
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
hash_foreach_replace(st_data_t key, st_data_t value, st_data_t argp, int error)
|
|
{
|
|
rb_objspace_t *objspace;
|
|
|
|
objspace = (rb_objspace_t *)argp;
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)key)) {
|
|
return ST_REPLACE;
|
|
}
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)value)) {
|
|
return ST_REPLACE;
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
hash_replace_ref_value(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)argp;
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)*value)) {
|
|
*value = rb_gc_location((VALUE)*value);
|
|
}
|
|
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
hash_foreach_replace_value(st_data_t key, st_data_t value, st_data_t argp, int error)
|
|
{
|
|
rb_objspace_t *objspace;
|
|
|
|
objspace = (rb_objspace_t *)argp;
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)value)) {
|
|
return ST_REPLACE;
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
gc_ref_update_table_values_only(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
if (!tbl || tbl->num_entries == 0) return;
|
|
|
|
if (st_foreach_with_replace(tbl, hash_foreach_replace_value, hash_replace_ref_value, (st_data_t)objspace)) {
|
|
rb_raise(rb_eRuntimeError, "hash modified during iteration");
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_ref_update_table_values_only(st_table *tbl)
|
|
{
|
|
gc_ref_update_table_values_only(&rb_objspace, tbl);
|
|
}
|
|
|
|
static void
|
|
gc_update_table_refs(rb_objspace_t * objspace, st_table *tbl)
|
|
{
|
|
if (!tbl || tbl->num_entries == 0) return;
|
|
|
|
if (st_foreach_with_replace(tbl, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace)) {
|
|
rb_raise(rb_eRuntimeError, "hash modified during iteration");
|
|
}
|
|
}
|
|
|
|
/* Update MOVED references in a VALUE=>VALUE st_table */
|
|
void
|
|
rb_gc_update_tbl_refs(st_table *ptr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
gc_update_table_refs(objspace, ptr);
|
|
}
|
|
|
|
static void
|
|
gc_ref_update_hash(rb_objspace_t * objspace, VALUE v)
|
|
{
|
|
rb_hash_stlike_foreach_with_replace(v, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace);
|
|
}
|
|
|
|
static void
|
|
gc_update_values(rb_objspace_t *objspace, long n, VALUE *values)
|
|
{
|
|
long i;
|
|
|
|
for (i=0; i<n; i++) {
|
|
UPDATE_IF_MOVED(objspace, values[i]);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_update_values(long n, VALUE *values)
|
|
{
|
|
gc_update_values(&rb_objspace, n, values);
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
check_id_table_move(VALUE value, void *data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)value)) {
|
|
return ID_TABLE_REPLACE;
|
|
}
|
|
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
/* Returns the new location of an object, if it moved. Otherwise returns
|
|
* the existing location. */
|
|
VALUE
|
|
rb_gc_location(VALUE value)
|
|
{
|
|
|
|
VALUE destination;
|
|
|
|
if (!SPECIAL_CONST_P(value)) {
|
|
void *poisoned = asan_unpoison_object_temporary(value);
|
|
|
|
if (BUILTIN_TYPE(value) == T_MOVED) {
|
|
destination = (VALUE)RMOVED(value)->destination;
|
|
GC_ASSERT(BUILTIN_TYPE(destination) != T_NONE);
|
|
}
|
|
else {
|
|
destination = value;
|
|
}
|
|
|
|
/* Re-poison slot if it's not the one we want */
|
|
if (poisoned) {
|
|
GC_ASSERT(BUILTIN_TYPE(value) == T_NONE);
|
|
asan_poison_object(value);
|
|
}
|
|
}
|
|
else {
|
|
destination = value;
|
|
}
|
|
|
|
return destination;
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
update_id_table(VALUE *value, void *data, int existing)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)*value)) {
|
|
*value = rb_gc_location((VALUE)*value);
|
|
}
|
|
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
update_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
|
|
{
|
|
if (tbl) {
|
|
rb_id_table_foreach_values_with_replace(tbl, check_id_table_move, update_id_table, objspace);
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
update_cc_tbl_i(VALUE ccs_ptr, void *data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
|
|
VM_ASSERT(vm_ccs_p(ccs));
|
|
|
|
if (gc_object_moved_p(objspace, (VALUE)ccs->cme)) {
|
|
ccs->cme = (const rb_callable_method_entry_t *)rb_gc_location((VALUE)ccs->cme);
|
|
}
|
|
|
|
for (int i=0; i<ccs->len; i++) {
|
|
if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].cc)) {
|
|
ccs->entries[i].cc = (struct rb_callcache *)rb_gc_location((VALUE)ccs->entries[i].cc);
|
|
}
|
|
}
|
|
|
|
// do not replace
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
update_cc_tbl(rb_objspace_t *objspace, VALUE klass)
|
|
{
|
|
struct rb_id_table *tbl = RCLASS_CC_TBL(klass);
|
|
if (tbl) {
|
|
rb_id_table_foreach_values(tbl, update_cc_tbl_i, objspace);
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
update_cvc_tbl_i(VALUE cvc_entry, void *data)
|
|
{
|
|
struct rb_cvar_class_tbl_entry *entry;
|
|
rb_objspace_t * objspace = (rb_objspace_t *)data;
|
|
|
|
entry = (struct rb_cvar_class_tbl_entry *)cvc_entry;
|
|
|
|
if (entry->cref) {
|
|
TYPED_UPDATE_IF_MOVED(objspace, rb_cref_t *, entry->cref);
|
|
}
|
|
|
|
entry->class_value = rb_gc_location(entry->class_value);
|
|
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
update_cvc_tbl(rb_objspace_t *objspace, VALUE klass)
|
|
{
|
|
struct rb_id_table *tbl = RCLASS_CVC_TBL(klass);
|
|
if (tbl) {
|
|
rb_id_table_foreach_values(tbl, update_cvc_tbl_i, objspace);
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
mark_cvc_tbl_i(VALUE cvc_entry, void *data)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)data;
|
|
struct rb_cvar_class_tbl_entry *entry;
|
|
|
|
entry = (struct rb_cvar_class_tbl_entry *)cvc_entry;
|
|
|
|
RUBY_ASSERT(entry->cref == 0 || (BUILTIN_TYPE((VALUE)entry->cref) == T_IMEMO && IMEMO_TYPE_P(entry->cref, imemo_cref)));
|
|
gc_mark(objspace, (VALUE) entry->cref);
|
|
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_cvc_tbl(rb_objspace_t *objspace, VALUE klass)
|
|
{
|
|
struct rb_id_table *tbl = RCLASS_CVC_TBL(klass);
|
|
if (tbl) {
|
|
rb_id_table_foreach_values(tbl, mark_cvc_tbl_i, objspace);
|
|
}
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
update_const_table(VALUE value, void *data)
|
|
{
|
|
rb_const_entry_t *ce = (rb_const_entry_t *)value;
|
|
rb_objspace_t * objspace = (rb_objspace_t *)data;
|
|
|
|
if (gc_object_moved_p(objspace, ce->value)) {
|
|
ce->value = rb_gc_location(ce->value);
|
|
}
|
|
|
|
if (gc_object_moved_p(objspace, ce->file)) {
|
|
ce->file = rb_gc_location(ce->file);
|
|
}
|
|
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
update_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
|
|
{
|
|
if (!tbl) return;
|
|
rb_id_table_foreach_values(tbl, update_const_table, objspace);
|
|
}
|
|
|
|
static void
|
|
update_subclass_entries(rb_objspace_t *objspace, rb_subclass_entry_t *entry)
|
|
{
|
|
while (entry) {
|
|
UPDATE_IF_MOVED(objspace, entry->klass);
|
|
entry = entry->next;
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_class_ext(rb_objspace_t *objspace, rb_classext_t *ext)
|
|
{
|
|
UPDATE_IF_MOVED(objspace, ext->origin_);
|
|
UPDATE_IF_MOVED(objspace, ext->includer);
|
|
UPDATE_IF_MOVED(objspace, ext->refined_class);
|
|
update_subclass_entries(objspace, ext->subclasses);
|
|
}
|
|
|
|
static void
|
|
update_superclasses(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
|
|
for (size_t i = 0; i < RCLASS_SUPERCLASS_DEPTH(obj) + 1; i++) {
|
|
UPDATE_IF_MOVED(objspace, RCLASS_SUPERCLASSES(obj)[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_update_object_references(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
RVALUE *any = RANY(obj);
|
|
|
|
gc_report(4, objspace, "update-refs: %p ->\n", (void *)obj);
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
rb_ref_update_generic_ivar(obj);
|
|
}
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_CLASS:
|
|
if (FL_TEST(obj, FL_SINGLETON)) {
|
|
UPDATE_IF_MOVED(objspace, RCLASS_ATTACHED_OBJECT(obj));
|
|
}
|
|
// Continue to the shared T_CLASS/T_MODULE
|
|
case T_MODULE:
|
|
if (RCLASS_SUPER((VALUE)obj)) {
|
|
UPDATE_IF_MOVED(objspace, RCLASS(obj)->super);
|
|
}
|
|
update_m_tbl(objspace, RCLASS_M_TBL(obj));
|
|
update_cc_tbl(objspace, obj);
|
|
update_cvc_tbl(objspace, obj);
|
|
update_superclasses(objspace, obj);
|
|
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
gc_ref_update_table_values_only(objspace, RCLASS_IV_HASH(obj));
|
|
}
|
|
else {
|
|
for (attr_index_t i = 0; i < RCLASS_IV_COUNT(obj); i++) {
|
|
UPDATE_IF_MOVED(objspace, RCLASS_IVPTR(obj)[i]);
|
|
}
|
|
}
|
|
|
|
update_class_ext(objspace, RCLASS_EXT(obj));
|
|
update_const_tbl(objspace, RCLASS_CONST_TBL(obj));
|
|
|
|
UPDATE_IF_MOVED(objspace, RCLASS_EXT(obj)->classpath);
|
|
break;
|
|
|
|
case T_ICLASS:
|
|
if (RICLASS_OWNS_M_TBL_P(obj)) {
|
|
update_m_tbl(objspace, RCLASS_M_TBL(obj));
|
|
}
|
|
if (RCLASS_SUPER((VALUE)obj)) {
|
|
UPDATE_IF_MOVED(objspace, RCLASS(obj)->super);
|
|
}
|
|
update_class_ext(objspace, RCLASS_EXT(obj));
|
|
update_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
|
|
update_cc_tbl(objspace, obj);
|
|
break;
|
|
|
|
case T_IMEMO:
|
|
rb_imemo_mark_and_move(obj, true);
|
|
return;
|
|
|
|
case T_NIL:
|
|
case T_FIXNUM:
|
|
case T_NODE:
|
|
case T_MOVED:
|
|
case T_NONE:
|
|
/* These can't move */
|
|
return;
|
|
|
|
case T_ARRAY:
|
|
gc_ref_update_array(objspace, obj);
|
|
break;
|
|
|
|
case T_HASH:
|
|
gc_ref_update_hash(objspace, obj);
|
|
UPDATE_IF_MOVED(objspace, any->as.hash.ifnone);
|
|
break;
|
|
|
|
case T_STRING:
|
|
{
|
|
if (STR_SHARED_P(obj)) {
|
|
UPDATE_IF_MOVED(objspace, any->as.string.as.heap.aux.shared);
|
|
}
|
|
|
|
/* If, after move the string is not embedded, and can fit in the
|
|
* slot it's been placed in, then re-embed it. */
|
|
if (rb_gc_obj_slot_size(obj) >= rb_str_size_as_embedded(obj)) {
|
|
if (!STR_EMBED_P(obj) && rb_str_reembeddable_p(obj)) {
|
|
rb_str_make_embedded(obj);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case T_DATA:
|
|
/* Call the compaction callback, if it exists */
|
|
{
|
|
void *const ptr = RTYPEDDATA_P(obj) ? RTYPEDDATA_GET_DATA(obj) : DATA_PTR(obj);
|
|
if (ptr) {
|
|
if (RTYPEDDATA_P(obj) && gc_declarative_marking_p(any->as.typeddata.type)) {
|
|
size_t *offset_list = (size_t *)RANY(obj)->as.typeddata.type->function.dmark;
|
|
|
|
for (size_t offset = *offset_list; offset != RUBY_REF_END; offset = *offset_list++) {
|
|
VALUE *ref = (VALUE *)((char *)ptr + offset);
|
|
if (SPECIAL_CONST_P(*ref)) continue;
|
|
*ref = rb_gc_location(*ref);
|
|
}
|
|
}
|
|
else if (RTYPEDDATA_P(obj)) {
|
|
RUBY_DATA_FUNC compact_func = any->as.typeddata.type->function.dcompact;
|
|
if (compact_func) (*compact_func)(ptr);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_OBJECT:
|
|
gc_ref_update_object(objspace, obj);
|
|
break;
|
|
|
|
case T_FILE:
|
|
if (any->as.file.fptr) {
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->self);
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->pathv);
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->tied_io_for_writing);
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_asciicompat);
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_pre_ecopts);
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->encs.ecopts);
|
|
UPDATE_IF_MOVED(objspace, any->as.file.fptr->write_lock);
|
|
}
|
|
break;
|
|
case T_REGEXP:
|
|
UPDATE_IF_MOVED(objspace, any->as.regexp.src);
|
|
break;
|
|
|
|
case T_SYMBOL:
|
|
UPDATE_IF_MOVED(objspace, RSYMBOL(any)->fstr);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_MATCH:
|
|
UPDATE_IF_MOVED(objspace, any->as.match.regexp);
|
|
|
|
if (any->as.match.str) {
|
|
UPDATE_IF_MOVED(objspace, any->as.match.str);
|
|
}
|
|
break;
|
|
|
|
case T_RATIONAL:
|
|
UPDATE_IF_MOVED(objspace, any->as.rational.num);
|
|
UPDATE_IF_MOVED(objspace, any->as.rational.den);
|
|
break;
|
|
|
|
case T_COMPLEX:
|
|
UPDATE_IF_MOVED(objspace, any->as.complex.real);
|
|
UPDATE_IF_MOVED(objspace, any->as.complex.imag);
|
|
|
|
break;
|
|
|
|
case T_STRUCT:
|
|
{
|
|
long i, len = RSTRUCT_LEN(obj);
|
|
VALUE *ptr = (VALUE *)RSTRUCT_CONST_PTR(obj);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
UPDATE_IF_MOVED(objspace, ptr[i]);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
#if GC_DEBUG
|
|
rb_gcdebug_print_obj_condition((VALUE)obj);
|
|
rb_obj_info_dump(obj);
|
|
rb_bug("unreachable");
|
|
#endif
|
|
break;
|
|
|
|
}
|
|
|
|
UPDATE_IF_MOVED(objspace, RBASIC(obj)->klass);
|
|
|
|
gc_report(4, objspace, "update-refs: %p <-\n", (void *)obj);
|
|
}
|
|
|
|
static int
|
|
gc_ref_update(void *vstart, void *vend, size_t stride, rb_objspace_t * objspace, struct heap_page *page)
|
|
{
|
|
VALUE v = (VALUE)vstart;
|
|
asan_unlock_freelist(page);
|
|
asan_lock_freelist(page);
|
|
page->flags.has_uncollectible_wb_unprotected_objects = FALSE;
|
|
page->flags.has_remembered_objects = FALSE;
|
|
|
|
/* For each object on the page */
|
|
for (; v != (VALUE)vend; v += stride) {
|
|
void *poisoned = asan_unpoison_object_temporary(v);
|
|
|
|
switch (BUILTIN_TYPE(v)) {
|
|
case T_NONE:
|
|
case T_MOVED:
|
|
case T_ZOMBIE:
|
|
break;
|
|
default:
|
|
if (RVALUE_WB_UNPROTECTED(v)) {
|
|
page->flags.has_uncollectible_wb_unprotected_objects = TRUE;
|
|
}
|
|
if (RVALUE_REMEMBERED(v)) {
|
|
page->flags.has_remembered_objects = TRUE;
|
|
}
|
|
if (page->flags.before_sweep) {
|
|
if (RVALUE_MARKED(v)) {
|
|
gc_update_object_references(objspace, v);
|
|
}
|
|
}
|
|
else {
|
|
gc_update_object_references(objspace, v);
|
|
}
|
|
}
|
|
|
|
if (poisoned) {
|
|
asan_poison_object(v);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern rb_symbols_t ruby_global_symbols;
|
|
#define global_symbols ruby_global_symbols
|
|
|
|
static void
|
|
gc_update_references(rb_objspace_t *objspace)
|
|
{
|
|
objspace->flags.during_reference_updating = true;
|
|
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_vm_t *vm = rb_ec_vm_ptr(ec);
|
|
|
|
struct heap_page *page = NULL;
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
bool should_set_mark_bits = TRUE;
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
ccan_list_for_each(&heap->pages, page, page_node) {
|
|
uintptr_t start = (uintptr_t)page->start;
|
|
uintptr_t end = start + (page->total_slots * size_pool->slot_size);
|
|
|
|
gc_ref_update((void *)start, (void *)end, size_pool->slot_size, objspace, page);
|
|
if (page == heap->sweeping_page) {
|
|
should_set_mark_bits = FALSE;
|
|
}
|
|
if (should_set_mark_bits) {
|
|
gc_setup_mark_bits(page);
|
|
}
|
|
}
|
|
}
|
|
rb_vm_update_references(vm);
|
|
rb_gc_update_global_tbl();
|
|
global_symbols.ids = rb_gc_location(global_symbols.ids);
|
|
global_symbols.dsymbol_fstr_hash = rb_gc_location(global_symbols.dsymbol_fstr_hash);
|
|
gc_ref_update_table_values_only(objspace, objspace->obj_to_id_tbl);
|
|
gc_update_table_refs(objspace, objspace->id_to_obj_tbl);
|
|
gc_update_table_refs(objspace, global_symbols.str_sym);
|
|
gc_update_table_refs(objspace, finalizer_table);
|
|
|
|
objspace->flags.during_reference_updating = false;
|
|
}
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
/*
|
|
* call-seq:
|
|
* GC.latest_compact_info -> hash
|
|
*
|
|
* Returns information about object moved in the most recent \GC compaction.
|
|
*
|
|
* The returned +hash+ contains the following keys:
|
|
*
|
|
* [considered]
|
|
* Hash containing the type of the object as the key and the number of
|
|
* objects of that type that were considered for movement.
|
|
* [moved]
|
|
* Hash containing the type of the object as the key and the number of
|
|
* objects of that type that were actually moved.
|
|
* [moved_up]
|
|
* Hash containing the type of the object as the key and the number of
|
|
* objects of that type that were increased in size.
|
|
* [moved_down]
|
|
* Hash containing the type of the object as the key and the number of
|
|
* objects of that type that were decreased in size.
|
|
*
|
|
* Some objects can't be moved (due to pinning) so these numbers can be used to
|
|
* calculate compaction efficiency.
|
|
*/
|
|
static VALUE
|
|
gc_compact_stats(VALUE self)
|
|
{
|
|
size_t i;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE h = rb_hash_new();
|
|
VALUE considered = rb_hash_new();
|
|
VALUE moved = rb_hash_new();
|
|
VALUE moved_up = rb_hash_new();
|
|
VALUE moved_down = rb_hash_new();
|
|
|
|
for (i=0; i<T_MASK; i++) {
|
|
if (objspace->rcompactor.considered_count_table[i]) {
|
|
rb_hash_aset(considered, type_sym(i), SIZET2NUM(objspace->rcompactor.considered_count_table[i]));
|
|
}
|
|
|
|
if (objspace->rcompactor.moved_count_table[i]) {
|
|
rb_hash_aset(moved, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_count_table[i]));
|
|
}
|
|
|
|
if (objspace->rcompactor.moved_up_count_table[i]) {
|
|
rb_hash_aset(moved_up, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_up_count_table[i]));
|
|
}
|
|
|
|
if (objspace->rcompactor.moved_down_count_table[i]) {
|
|
rb_hash_aset(moved_down, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_down_count_table[i]));
|
|
}
|
|
}
|
|
|
|
rb_hash_aset(h, ID2SYM(rb_intern("considered")), considered);
|
|
rb_hash_aset(h, ID2SYM(rb_intern("moved")), moved);
|
|
rb_hash_aset(h, ID2SYM(rb_intern("moved_up")), moved_up);
|
|
rb_hash_aset(h, ID2SYM(rb_intern("moved_down")), moved_down);
|
|
|
|
return h;
|
|
}
|
|
#else
|
|
# define gc_compact_stats rb_f_notimplement
|
|
#endif
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
static void
|
|
root_obj_check_moved_i(const char *category, VALUE obj, void *data)
|
|
{
|
|
rb_objspace_t *objspace = data;
|
|
|
|
if (gc_object_moved_p(objspace, obj)) {
|
|
rb_bug("ROOT %s points to MOVED: %p -> %s", category, (void *)obj, obj_info(rb_gc_location(obj)));
|
|
}
|
|
}
|
|
|
|
static void
|
|
reachable_object_check_moved_i(VALUE ref, void *data)
|
|
{
|
|
VALUE parent = (VALUE)data;
|
|
if (gc_object_moved_p(&rb_objspace, ref)) {
|
|
rb_bug("Object %s points to MOVED: %p -> %s", obj_info(parent), (void *)ref, obj_info(rb_gc_location(ref)));
|
|
}
|
|
}
|
|
|
|
static int
|
|
heap_check_moved_i(void *vstart, void *vend, size_t stride, void *data)
|
|
{
|
|
rb_objspace_t *objspace = data;
|
|
|
|
VALUE v = (VALUE)vstart;
|
|
for (; v != (VALUE)vend; v += stride) {
|
|
if (gc_object_moved_p(objspace, v)) {
|
|
/* Moved object still on the heap, something may have a reference. */
|
|
}
|
|
else {
|
|
void *poisoned = asan_unpoison_object_temporary(v);
|
|
|
|
switch (BUILTIN_TYPE(v)) {
|
|
case T_NONE:
|
|
case T_ZOMBIE:
|
|
break;
|
|
default:
|
|
if (!rb_objspace_garbage_object_p(v)) {
|
|
rb_objspace_reachable_objects_from(v, reachable_object_check_moved_i, (void *)v);
|
|
}
|
|
}
|
|
|
|
if (poisoned) {
|
|
GC_ASSERT(BUILTIN_TYPE(v) == T_NONE);
|
|
asan_poison_object(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.compact -> hash
|
|
*
|
|
* This function compacts objects together in Ruby's heap. It eliminates
|
|
* unused space (or fragmentation) in the heap by moving objects in to that
|
|
* unused space.
|
|
*
|
|
* The returned +hash+ contains statistics about the objects that were moved;
|
|
* see GC.latest_compact_info.
|
|
*
|
|
* This method is only expected to work on CRuby.
|
|
*
|
|
* To test whether \GC compaction is supported, use the idiom:
|
|
*
|
|
* GC.respond_to?(:compact)
|
|
*/
|
|
static VALUE
|
|
gc_compact(VALUE self)
|
|
{
|
|
/* Run GC with compaction enabled */
|
|
gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue);
|
|
|
|
return gc_compact_stats(self);
|
|
}
|
|
#else
|
|
# define gc_compact rb_f_notimplement
|
|
#endif
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
|
|
struct desired_compaction_pages_i_data {
|
|
rb_objspace_t *objspace;
|
|
size_t required_slots[SIZE_POOL_COUNT];
|
|
};
|
|
|
|
static int
|
|
desired_compaction_pages_i(struct heap_page *page, void *data)
|
|
{
|
|
struct desired_compaction_pages_i_data *tdata = data;
|
|
rb_objspace_t *objspace = tdata->objspace;
|
|
VALUE vstart = (VALUE)page->start;
|
|
VALUE vend = vstart + (VALUE)(page->total_slots * page->size_pool->slot_size);
|
|
|
|
|
|
for (VALUE v = vstart; v != vend; v += page->size_pool->slot_size) {
|
|
/* skip T_NONEs; they won't be moved */
|
|
void *poisoned = asan_unpoison_object_temporary(v);
|
|
if (BUILTIN_TYPE(v) == T_NONE) {
|
|
if (poisoned) {
|
|
asan_poison_object(v);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
rb_size_pool_t *dest_pool = gc_compact_destination_pool(objspace, page->size_pool, v);
|
|
size_t dest_pool_idx = dest_pool - size_pools;
|
|
tdata->required_slots[dest_pool_idx]++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
gc_verify_compaction_references(rb_execution_context_t *ec, VALUE self, VALUE double_heap, VALUE expand_heap, VALUE toward_empty)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
/* Clear the heap. */
|
|
gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qfalse);
|
|
|
|
if (RTEST(double_heap)) {
|
|
rb_warn("double_heap is deprecated, please use expand_heap instead");
|
|
}
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
gc_rest(objspace);
|
|
|
|
/* if both double_heap and expand_heap are set, expand_heap takes precedence */
|
|
if (RTEST(expand_heap)) {
|
|
struct desired_compaction_pages_i_data desired_compaction = {
|
|
.objspace = objspace,
|
|
.required_slots = {0},
|
|
};
|
|
/* Work out how many objects want to be in each size pool, taking account of moves */
|
|
objspace_each_pages(objspace, desired_compaction_pages_i, &desired_compaction, TRUE);
|
|
|
|
/* Find out which pool has the most pages */
|
|
size_t max_existing_pages = 0;
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
max_existing_pages = MAX(max_existing_pages, heap->total_pages);
|
|
}
|
|
/* Add pages to each size pool so that compaction is guaranteed to move every object */
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
|
|
size_t pages_to_add = 0;
|
|
/*
|
|
* Step 1: Make sure every pool has the same number of pages, by adding empty pages
|
|
* to smaller pools. This is required to make sure the compact cursor can advance
|
|
* through all of the pools in `gc_sweep_compact` without hitting the "sweep &
|
|
* compact cursors met" condition on some pools before fully compacting others
|
|
*/
|
|
pages_to_add += max_existing_pages - heap->total_pages;
|
|
/*
|
|
* Step 2: Now add additional free pages to each size pool sufficient to hold all objects
|
|
* that want to be in that size pool, whether moved into it or moved within it
|
|
*/
|
|
pages_to_add += slots_to_pages_for_size_pool(objspace, size_pool, desired_compaction.required_slots[i]);
|
|
/*
|
|
* Step 3: Add two more pages so that the compact & sweep cursors will meet _after_ all objects
|
|
* have been moved, and not on the last iteration of the `gc_sweep_compact` loop
|
|
*/
|
|
pages_to_add += 2;
|
|
|
|
heap_add_pages(objspace, size_pool, heap, pages_to_add);
|
|
}
|
|
}
|
|
else if (RTEST(double_heap)) {
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
|
|
heap_add_pages(objspace, size_pool, heap, heap->total_pages);
|
|
}
|
|
|
|
}
|
|
|
|
if (RTEST(toward_empty)) {
|
|
objspace->rcompactor.compare_func = compare_free_slots;
|
|
}
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue);
|
|
|
|
objspace_reachable_objects_from_root(objspace, root_obj_check_moved_i, objspace);
|
|
objspace_each_objects(objspace, heap_check_moved_i, objspace, TRUE);
|
|
|
|
objspace->rcompactor.compare_func = NULL;
|
|
return gc_compact_stats(self);
|
|
}
|
|
#else
|
|
# define gc_verify_compaction_references (rb_builtin_arity3_function_type)rb_f_notimplement
|
|
#endif
|
|
|
|
VALUE
|
|
rb_gc_start(void)
|
|
{
|
|
rb_gc();
|
|
return Qnil;
|
|
}
|
|
|
|
void
|
|
rb_gc(void)
|
|
{
|
|
unless_objspace(objspace) { return; }
|
|
unsigned int reason = GPR_DEFAULT_REASON;
|
|
garbage_collect(objspace, reason);
|
|
}
|
|
|
|
int
|
|
rb_during_gc(void)
|
|
{
|
|
unless_objspace(objspace) { return FALSE; }
|
|
return during_gc;
|
|
}
|
|
|
|
#if RGENGC_PROFILE >= 2
|
|
|
|
static const char *type_name(int type, VALUE obj);
|
|
|
|
static void
|
|
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
|
|
{
|
|
VALUE result = rb_hash_new_with_size(T_MASK);
|
|
int i;
|
|
for (i=0; i<T_MASK; i++) {
|
|
const char *type = type_name(i, 0);
|
|
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
|
|
}
|
|
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
|
|
}
|
|
#endif
|
|
|
|
size_t
|
|
rb_gc_count(void)
|
|
{
|
|
return rb_objspace.profile.count;
|
|
}
|
|
|
|
static VALUE
|
|
gc_count(rb_execution_context_t *ec, VALUE self)
|
|
{
|
|
return SIZET2NUM(rb_gc_count());
|
|
}
|
|
|
|
static VALUE
|
|
gc_info_decode(rb_objspace_t *objspace, const VALUE hash_or_key, const unsigned int orig_flags)
|
|
{
|
|
static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer, sym_state, sym_need_major_by;
|
|
static VALUE sym_nofree, sym_oldgen, sym_shady, sym_force, sym_stress;
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
static VALUE sym_oldmalloc;
|
|
#endif
|
|
static VALUE sym_newobj, sym_malloc, sym_method, sym_capi;
|
|
static VALUE sym_none, sym_marking, sym_sweeping;
|
|
static VALUE sym_weak_references_count, sym_retained_weak_references_count;
|
|
VALUE hash = Qnil, key = Qnil;
|
|
VALUE major_by, need_major_by;
|
|
unsigned int flags = orig_flags ? orig_flags : objspace->profile.latest_gc_info;
|
|
|
|
if (SYMBOL_P(hash_or_key)) {
|
|
key = hash_or_key;
|
|
}
|
|
else if (RB_TYPE_P(hash_or_key, T_HASH)) {
|
|
hash = hash_or_key;
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "non-hash or symbol given");
|
|
}
|
|
|
|
if (NIL_P(sym_major_by)) {
|
|
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
|
|
S(major_by);
|
|
S(gc_by);
|
|
S(immediate_sweep);
|
|
S(have_finalizer);
|
|
S(state);
|
|
S(need_major_by);
|
|
|
|
S(stress);
|
|
S(nofree);
|
|
S(oldgen);
|
|
S(shady);
|
|
S(force);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
S(oldmalloc);
|
|
#endif
|
|
S(newobj);
|
|
S(malloc);
|
|
S(method);
|
|
S(capi);
|
|
|
|
S(none);
|
|
S(marking);
|
|
S(sweeping);
|
|
|
|
S(weak_references_count);
|
|
S(retained_weak_references_count);
|
|
#undef S
|
|
}
|
|
|
|
#define SET(name, attr) \
|
|
if (key == sym_##name) \
|
|
return (attr); \
|
|
else if (hash != Qnil) \
|
|
rb_hash_aset(hash, sym_##name, (attr));
|
|
|
|
major_by =
|
|
(flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
|
|
(flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
|
|
(flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
|
|
(flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force :
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
(flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
|
|
#endif
|
|
Qnil;
|
|
SET(major_by, major_by);
|
|
|
|
if (orig_flags == 0) { /* set need_major_by only if flags not set explicitly */
|
|
unsigned int need_major_flags = gc_needs_major_flags;
|
|
need_major_by =
|
|
(need_major_flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
|
|
(need_major_flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
|
|
(need_major_flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
|
|
(need_major_flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force :
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
(need_major_flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
|
|
#endif
|
|
Qnil;
|
|
SET(need_major_by, need_major_by);
|
|
}
|
|
|
|
SET(gc_by,
|
|
(flags & GPR_FLAG_NEWOBJ) ? sym_newobj :
|
|
(flags & GPR_FLAG_MALLOC) ? sym_malloc :
|
|
(flags & GPR_FLAG_METHOD) ? sym_method :
|
|
(flags & GPR_FLAG_CAPI) ? sym_capi :
|
|
(flags & GPR_FLAG_STRESS) ? sym_stress :
|
|
Qnil
|
|
);
|
|
|
|
SET(have_finalizer, RBOOL(flags & GPR_FLAG_HAVE_FINALIZE));
|
|
SET(immediate_sweep, RBOOL(flags & GPR_FLAG_IMMEDIATE_SWEEP));
|
|
|
|
if (orig_flags == 0) {
|
|
SET(state, gc_mode(objspace) == gc_mode_none ? sym_none :
|
|
gc_mode(objspace) == gc_mode_marking ? sym_marking : sym_sweeping);
|
|
}
|
|
|
|
SET(weak_references_count, LONG2FIX(objspace->profile.weak_references_count));
|
|
SET(retained_weak_references_count, LONG2FIX(objspace->profile.retained_weak_references_count));
|
|
#undef SET
|
|
|
|
if (!NIL_P(key)) {/* matched key should return above */
|
|
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
VALUE
|
|
rb_gc_latest_gc_info(VALUE key)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return gc_info_decode(objspace, key, 0);
|
|
}
|
|
|
|
static VALUE
|
|
gc_latest_gc_info(rb_execution_context_t *ec, VALUE self, VALUE arg)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (NIL_P(arg)) {
|
|
arg = rb_hash_new();
|
|
}
|
|
else if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) {
|
|
rb_raise(rb_eTypeError, "non-hash or symbol given");
|
|
}
|
|
|
|
return gc_info_decode(objspace, arg, 0);
|
|
}
|
|
|
|
enum gc_stat_sym {
|
|
gc_stat_sym_count,
|
|
gc_stat_sym_time,
|
|
gc_stat_sym_marking_time,
|
|
gc_stat_sym_sweeping_time,
|
|
gc_stat_sym_heap_allocated_pages,
|
|
gc_stat_sym_heap_sorted_length,
|
|
gc_stat_sym_heap_allocatable_pages,
|
|
gc_stat_sym_heap_available_slots,
|
|
gc_stat_sym_heap_live_slots,
|
|
gc_stat_sym_heap_free_slots,
|
|
gc_stat_sym_heap_final_slots,
|
|
gc_stat_sym_heap_marked_slots,
|
|
gc_stat_sym_heap_eden_pages,
|
|
gc_stat_sym_heap_tomb_pages,
|
|
gc_stat_sym_total_allocated_pages,
|
|
gc_stat_sym_total_freed_pages,
|
|
gc_stat_sym_total_allocated_objects,
|
|
gc_stat_sym_total_freed_objects,
|
|
gc_stat_sym_malloc_increase_bytes,
|
|
gc_stat_sym_malloc_increase_bytes_limit,
|
|
gc_stat_sym_minor_gc_count,
|
|
gc_stat_sym_major_gc_count,
|
|
gc_stat_sym_compact_count,
|
|
gc_stat_sym_read_barrier_faults,
|
|
gc_stat_sym_total_moved_objects,
|
|
gc_stat_sym_remembered_wb_unprotected_objects,
|
|
gc_stat_sym_remembered_wb_unprotected_objects_limit,
|
|
gc_stat_sym_old_objects,
|
|
gc_stat_sym_old_objects_limit,
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
gc_stat_sym_oldmalloc_increase_bytes,
|
|
gc_stat_sym_oldmalloc_increase_bytes_limit,
|
|
#endif
|
|
gc_stat_sym_weak_references_count,
|
|
#if RGENGC_PROFILE
|
|
gc_stat_sym_total_generated_normal_object_count,
|
|
gc_stat_sym_total_generated_shady_object_count,
|
|
gc_stat_sym_total_shade_operation_count,
|
|
gc_stat_sym_total_promoted_count,
|
|
gc_stat_sym_total_remembered_normal_object_count,
|
|
gc_stat_sym_total_remembered_shady_object_count,
|
|
#endif
|
|
gc_stat_sym_last
|
|
};
|
|
|
|
static VALUE gc_stat_symbols[gc_stat_sym_last];
|
|
|
|
static void
|
|
setup_gc_stat_symbols(void)
|
|
{
|
|
if (gc_stat_symbols[0] == 0) {
|
|
#define S(s) gc_stat_symbols[gc_stat_sym_##s] = ID2SYM(rb_intern_const(#s))
|
|
S(count);
|
|
S(time);
|
|
S(marking_time),
|
|
S(sweeping_time),
|
|
S(heap_allocated_pages);
|
|
S(heap_sorted_length);
|
|
S(heap_allocatable_pages);
|
|
S(heap_available_slots);
|
|
S(heap_live_slots);
|
|
S(heap_free_slots);
|
|
S(heap_final_slots);
|
|
S(heap_marked_slots);
|
|
S(heap_eden_pages);
|
|
S(heap_tomb_pages);
|
|
S(total_allocated_pages);
|
|
S(total_freed_pages);
|
|
S(total_allocated_objects);
|
|
S(total_freed_objects);
|
|
S(malloc_increase_bytes);
|
|
S(malloc_increase_bytes_limit);
|
|
S(minor_gc_count);
|
|
S(major_gc_count);
|
|
S(compact_count);
|
|
S(read_barrier_faults);
|
|
S(total_moved_objects);
|
|
S(remembered_wb_unprotected_objects);
|
|
S(remembered_wb_unprotected_objects_limit);
|
|
S(old_objects);
|
|
S(old_objects_limit);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
S(oldmalloc_increase_bytes);
|
|
S(oldmalloc_increase_bytes_limit);
|
|
#endif
|
|
S(weak_references_count);
|
|
#if RGENGC_PROFILE
|
|
S(total_generated_normal_object_count);
|
|
S(total_generated_shady_object_count);
|
|
S(total_shade_operation_count);
|
|
S(total_promoted_count);
|
|
S(total_remembered_normal_object_count);
|
|
S(total_remembered_shady_object_count);
|
|
#endif /* RGENGC_PROFILE */
|
|
#undef S
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
ns_to_ms(uint64_t ns)
|
|
{
|
|
return ns / (1000 * 1000);
|
|
}
|
|
|
|
static size_t
|
|
gc_stat_internal(VALUE hash_or_sym)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE hash = Qnil, key = Qnil;
|
|
|
|
setup_gc_stat_symbols();
|
|
|
|
if (RB_TYPE_P(hash_or_sym, T_HASH)) {
|
|
hash = hash_or_sym;
|
|
}
|
|
else if (SYMBOL_P(hash_or_sym)) {
|
|
key = hash_or_sym;
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "non-hash or symbol argument");
|
|
}
|
|
|
|
#define SET(name, attr) \
|
|
if (key == gc_stat_symbols[gc_stat_sym_##name]) \
|
|
return attr; \
|
|
else if (hash != Qnil) \
|
|
rb_hash_aset(hash, gc_stat_symbols[gc_stat_sym_##name], SIZET2NUM(attr));
|
|
|
|
SET(count, objspace->profile.count);
|
|
SET(time, (size_t)ns_to_ms(objspace->profile.marking_time_ns + objspace->profile.sweeping_time_ns)); // TODO: UINT64T2NUM
|
|
SET(marking_time, (size_t)ns_to_ms(objspace->profile.marking_time_ns));
|
|
SET(sweeping_time, (size_t)ns_to_ms(objspace->profile.sweeping_time_ns));
|
|
|
|
/* implementation dependent counters */
|
|
SET(heap_allocated_pages, heap_allocated_pages);
|
|
SET(heap_sorted_length, heap_pages_sorted_length);
|
|
SET(heap_allocatable_pages, heap_allocatable_pages(objspace));
|
|
SET(heap_available_slots, objspace_available_slots(objspace));
|
|
SET(heap_live_slots, objspace_live_slots(objspace));
|
|
SET(heap_free_slots, objspace_free_slots(objspace));
|
|
SET(heap_final_slots, heap_pages_final_slots);
|
|
SET(heap_marked_slots, objspace->marked_slots);
|
|
SET(heap_eden_pages, heap_eden_total_pages(objspace));
|
|
SET(heap_tomb_pages, heap_tomb_total_pages(objspace));
|
|
SET(total_allocated_pages, total_allocated_pages(objspace));
|
|
SET(total_freed_pages, total_freed_pages(objspace));
|
|
SET(total_allocated_objects, total_allocated_objects(objspace));
|
|
SET(total_freed_objects, total_freed_objects(objspace));
|
|
SET(malloc_increase_bytes, malloc_increase);
|
|
SET(malloc_increase_bytes_limit, malloc_limit);
|
|
SET(minor_gc_count, objspace->profile.minor_gc_count);
|
|
SET(major_gc_count, objspace->profile.major_gc_count);
|
|
SET(compact_count, objspace->profile.compact_count);
|
|
SET(read_barrier_faults, objspace->profile.read_barrier_faults);
|
|
SET(total_moved_objects, objspace->rcompactor.total_moved);
|
|
SET(remembered_wb_unprotected_objects, objspace->rgengc.uncollectible_wb_unprotected_objects);
|
|
SET(remembered_wb_unprotected_objects_limit, objspace->rgengc.uncollectible_wb_unprotected_objects_limit);
|
|
SET(old_objects, objspace->rgengc.old_objects);
|
|
SET(old_objects_limit, objspace->rgengc.old_objects_limit);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
SET(oldmalloc_increase_bytes, objspace->rgengc.oldmalloc_increase);
|
|
SET(oldmalloc_increase_bytes_limit, objspace->rgengc.oldmalloc_increase_limit);
|
|
#endif
|
|
|
|
#if RGENGC_PROFILE
|
|
SET(total_generated_normal_object_count, objspace->profile.total_generated_normal_object_count);
|
|
SET(total_generated_shady_object_count, objspace->profile.total_generated_shady_object_count);
|
|
SET(total_shade_operation_count, objspace->profile.total_shade_operation_count);
|
|
SET(total_promoted_count, objspace->profile.total_promoted_count);
|
|
SET(total_remembered_normal_object_count, objspace->profile.total_remembered_normal_object_count);
|
|
SET(total_remembered_shady_object_count, objspace->profile.total_remembered_shady_object_count);
|
|
#endif /* RGENGC_PROFILE */
|
|
#undef SET
|
|
|
|
if (!NIL_P(key)) { /* matched key should return above */
|
|
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
|
|
}
|
|
|
|
#if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2
|
|
if (hash != Qnil) {
|
|
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
|
|
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
|
|
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
|
|
gc_count_add_each_types(hash, "promoted_types", objspace->profile.promoted_types);
|
|
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
|
|
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
gc_stat(rb_execution_context_t *ec, VALUE self, VALUE arg) // arg is (nil || hash || symbol)
|
|
{
|
|
if (NIL_P(arg)) {
|
|
arg = rb_hash_new();
|
|
}
|
|
else if (SYMBOL_P(arg)) {
|
|
size_t value = gc_stat_internal(arg);
|
|
return SIZET2NUM(value);
|
|
}
|
|
else if (RB_TYPE_P(arg, T_HASH)) {
|
|
// ok
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "non-hash or symbol given");
|
|
}
|
|
|
|
gc_stat_internal(arg);
|
|
return arg;
|
|
}
|
|
|
|
size_t
|
|
rb_gc_stat(VALUE key)
|
|
{
|
|
if (SYMBOL_P(key)) {
|
|
size_t value = gc_stat_internal(key);
|
|
return value;
|
|
}
|
|
else {
|
|
gc_stat_internal(key);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
enum gc_stat_heap_sym {
|
|
gc_stat_heap_sym_slot_size,
|
|
gc_stat_heap_sym_heap_allocatable_pages,
|
|
gc_stat_heap_sym_heap_eden_pages,
|
|
gc_stat_heap_sym_heap_eden_slots,
|
|
gc_stat_heap_sym_heap_tomb_pages,
|
|
gc_stat_heap_sym_heap_tomb_slots,
|
|
gc_stat_heap_sym_total_allocated_pages,
|
|
gc_stat_heap_sym_total_freed_pages,
|
|
gc_stat_heap_sym_force_major_gc_count,
|
|
gc_stat_heap_sym_force_incremental_marking_finish_count,
|
|
gc_stat_heap_sym_total_allocated_objects,
|
|
gc_stat_heap_sym_total_freed_objects,
|
|
gc_stat_heap_sym_last
|
|
};
|
|
|
|
static VALUE gc_stat_heap_symbols[gc_stat_heap_sym_last];
|
|
|
|
static void
|
|
setup_gc_stat_heap_symbols(void)
|
|
{
|
|
if (gc_stat_heap_symbols[0] == 0) {
|
|
#define S(s) gc_stat_heap_symbols[gc_stat_heap_sym_##s] = ID2SYM(rb_intern_const(#s))
|
|
S(slot_size);
|
|
S(heap_allocatable_pages);
|
|
S(heap_eden_pages);
|
|
S(heap_eden_slots);
|
|
S(heap_tomb_pages);
|
|
S(heap_tomb_slots);
|
|
S(total_allocated_pages);
|
|
S(total_freed_pages);
|
|
S(force_major_gc_count);
|
|
S(force_incremental_marking_finish_count);
|
|
S(total_allocated_objects);
|
|
S(total_freed_objects);
|
|
#undef S
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
gc_stat_heap_internal(int size_pool_idx, VALUE hash_or_sym)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE hash = Qnil, key = Qnil;
|
|
|
|
setup_gc_stat_heap_symbols();
|
|
|
|
if (RB_TYPE_P(hash_or_sym, T_HASH)) {
|
|
hash = hash_or_sym;
|
|
}
|
|
else if (SYMBOL_P(hash_or_sym)) {
|
|
key = hash_or_sym;
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "non-hash or symbol argument");
|
|
}
|
|
|
|
if (size_pool_idx < 0 || size_pool_idx >= SIZE_POOL_COUNT) {
|
|
rb_raise(rb_eArgError, "size pool index out of range");
|
|
}
|
|
|
|
rb_size_pool_t *size_pool = &size_pools[size_pool_idx];
|
|
|
|
#define SET(name, attr) \
|
|
if (key == gc_stat_heap_symbols[gc_stat_heap_sym_##name]) \
|
|
return attr; \
|
|
else if (hash != Qnil) \
|
|
rb_hash_aset(hash, gc_stat_heap_symbols[gc_stat_heap_sym_##name], SIZET2NUM(attr));
|
|
|
|
SET(slot_size, size_pool->slot_size);
|
|
SET(heap_allocatable_pages, size_pool->allocatable_pages);
|
|
SET(heap_eden_pages, SIZE_POOL_EDEN_HEAP(size_pool)->total_pages);
|
|
SET(heap_eden_slots, SIZE_POOL_EDEN_HEAP(size_pool)->total_slots);
|
|
SET(heap_tomb_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages);
|
|
SET(heap_tomb_slots, SIZE_POOL_TOMB_HEAP(size_pool)->total_slots);
|
|
SET(total_allocated_pages, size_pool->total_allocated_pages);
|
|
SET(total_freed_pages, size_pool->total_freed_pages);
|
|
SET(force_major_gc_count, size_pool->force_major_gc_count);
|
|
SET(force_incremental_marking_finish_count, size_pool->force_incremental_marking_finish_count);
|
|
SET(total_allocated_objects, size_pool->total_allocated_objects);
|
|
SET(total_freed_objects, size_pool->total_freed_objects);
|
|
#undef SET
|
|
|
|
if (!NIL_P(key)) { /* matched key should return above */
|
|
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
gc_stat_heap(rb_execution_context_t *ec, VALUE self, VALUE heap_name, VALUE arg)
|
|
{
|
|
if (NIL_P(heap_name)) {
|
|
if (NIL_P(arg)) {
|
|
arg = rb_hash_new();
|
|
}
|
|
else if (RB_TYPE_P(arg, T_HASH)) {
|
|
// ok
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "non-hash given");
|
|
}
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
VALUE hash = rb_hash_aref(arg, INT2FIX(i));
|
|
if (NIL_P(hash)) {
|
|
hash = rb_hash_new();
|
|
rb_hash_aset(arg, INT2FIX(i), hash);
|
|
}
|
|
gc_stat_heap_internal(i, hash);
|
|
}
|
|
}
|
|
else if (FIXNUM_P(heap_name)) {
|
|
int size_pool_idx = FIX2INT(heap_name);
|
|
|
|
if (NIL_P(arg)) {
|
|
arg = rb_hash_new();
|
|
}
|
|
else if (SYMBOL_P(arg)) {
|
|
size_t value = gc_stat_heap_internal(size_pool_idx, arg);
|
|
return SIZET2NUM(value);
|
|
}
|
|
else if (RB_TYPE_P(arg, T_HASH)) {
|
|
// ok
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "non-hash or symbol given");
|
|
}
|
|
|
|
gc_stat_heap_internal(size_pool_idx, arg);
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "heap_name must be nil or an Integer");
|
|
}
|
|
|
|
return arg;
|
|
}
|
|
|
|
static VALUE
|
|
gc_stress_get(rb_execution_context_t *ec, VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return ruby_gc_stress_mode;
|
|
}
|
|
|
|
static VALUE
|
|
gc_stress_set_m(rb_execution_context_t *ec, VALUE self, VALUE flag)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
objspace->flags.gc_stressful = RTEST(flag);
|
|
objspace->gc_stress_mode = flag;
|
|
|
|
return flag;
|
|
}
|
|
|
|
VALUE
|
|
rb_gc_enable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return rb_objspace_gc_enable(objspace);
|
|
}
|
|
|
|
VALUE
|
|
rb_objspace_gc_enable(rb_objspace_t *objspace)
|
|
{
|
|
int old = dont_gc_val();
|
|
|
|
dont_gc_off();
|
|
return RBOOL(old);
|
|
}
|
|
|
|
static VALUE
|
|
gc_enable(rb_execution_context_t *ec, VALUE _)
|
|
{
|
|
return rb_gc_enable();
|
|
}
|
|
|
|
VALUE
|
|
rb_gc_disable_no_rest(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return gc_disable_no_rest(objspace);
|
|
}
|
|
|
|
static VALUE
|
|
gc_disable_no_rest(rb_objspace_t *objspace)
|
|
{
|
|
int old = dont_gc_val();
|
|
dont_gc_on();
|
|
return RBOOL(old);
|
|
}
|
|
|
|
VALUE
|
|
rb_gc_disable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return rb_objspace_gc_disable(objspace);
|
|
}
|
|
|
|
VALUE
|
|
rb_objspace_gc_disable(rb_objspace_t *objspace)
|
|
{
|
|
gc_rest(objspace);
|
|
return gc_disable_no_rest(objspace);
|
|
}
|
|
|
|
static VALUE
|
|
gc_disable(rb_execution_context_t *ec, VALUE _)
|
|
{
|
|
return rb_gc_disable();
|
|
}
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
/*
|
|
* call-seq:
|
|
* GC.auto_compact = flag
|
|
*
|
|
* Updates automatic compaction mode.
|
|
*
|
|
* When enabled, the compactor will execute on every major collection.
|
|
*
|
|
* Enabling compaction will degrade performance on major collections.
|
|
*/
|
|
static VALUE
|
|
gc_set_auto_compact(VALUE _, VALUE v)
|
|
{
|
|
GC_ASSERT(GC_COMPACTION_SUPPORTED);
|
|
|
|
ruby_enable_autocompact = RTEST(v);
|
|
|
|
#if RGENGC_CHECK_MODE
|
|
ruby_autocompact_compare_func = NULL;
|
|
|
|
if (SYMBOL_P(v)) {
|
|
ID id = RB_SYM2ID(v);
|
|
if (id == rb_intern("empty")) {
|
|
ruby_autocompact_compare_func = compare_free_slots;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return v;
|
|
}
|
|
#else
|
|
# define gc_set_auto_compact rb_f_notimplement
|
|
#endif
|
|
|
|
#if GC_CAN_COMPILE_COMPACTION
|
|
/*
|
|
* call-seq:
|
|
* GC.auto_compact -> true or false
|
|
*
|
|
* Returns whether or not automatic compaction has been enabled.
|
|
*/
|
|
static VALUE
|
|
gc_get_auto_compact(VALUE _)
|
|
{
|
|
return RBOOL(ruby_enable_autocompact);
|
|
}
|
|
#else
|
|
# define gc_get_auto_compact rb_f_notimplement
|
|
#endif
|
|
|
|
static int
|
|
get_envparam_size(const char *name, size_t *default_value, size_t lower_bound)
|
|
{
|
|
const char *ptr = getenv(name);
|
|
ssize_t val;
|
|
|
|
if (ptr != NULL && *ptr) {
|
|
size_t unit = 0;
|
|
char *end;
|
|
#if SIZEOF_SIZE_T == SIZEOF_LONG_LONG
|
|
val = strtoll(ptr, &end, 0);
|
|
#else
|
|
val = strtol(ptr, &end, 0);
|
|
#endif
|
|
switch (*end) {
|
|
case 'k': case 'K':
|
|
unit = 1024;
|
|
++end;
|
|
break;
|
|
case 'm': case 'M':
|
|
unit = 1024*1024;
|
|
++end;
|
|
break;
|
|
case 'g': case 'G':
|
|
unit = 1024*1024*1024;
|
|
++end;
|
|
break;
|
|
}
|
|
while (*end && isspace((unsigned char)*end)) end++;
|
|
if (*end) {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
|
|
return 0;
|
|
}
|
|
if (unit > 0) {
|
|
if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr);
|
|
return 0;
|
|
}
|
|
val *= unit;
|
|
}
|
|
if (val > 0 && (size_t)val > lower_bound) {
|
|
if (RTEST(ruby_verbose)) {
|
|
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE")\n", name, val, *default_value);
|
|
}
|
|
*default_value = (size_t)val;
|
|
return 1;
|
|
}
|
|
else {
|
|
if (RTEST(ruby_verbose)) {
|
|
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE") is ignored because it must be greater than %"PRIuSIZE".\n",
|
|
name, val, *default_value, lower_bound);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_envparam_double(const char *name, double *default_value, double lower_bound, double upper_bound, int accept_zero)
|
|
{
|
|
const char *ptr = getenv(name);
|
|
double val;
|
|
|
|
if (ptr != NULL && *ptr) {
|
|
char *end;
|
|
val = strtod(ptr, &end);
|
|
if (!*ptr || *end) {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
|
|
return 0;
|
|
}
|
|
|
|
if (accept_zero && val == 0.0) {
|
|
goto accept;
|
|
}
|
|
else if (val <= lower_bound) {
|
|
if (RTEST(ruby_verbose)) {
|
|
fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n",
|
|
name, val, *default_value, lower_bound);
|
|
}
|
|
}
|
|
else if (upper_bound != 0.0 && /* ignore upper_bound if it is 0.0 */
|
|
val > upper_bound) {
|
|
if (RTEST(ruby_verbose)) {
|
|
fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be lower than %f.\n",
|
|
name, val, *default_value, upper_bound);
|
|
}
|
|
}
|
|
else {
|
|
goto accept;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
accept:
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value);
|
|
*default_value = val;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
gc_set_initial_pages(rb_objspace_t *objspace)
|
|
{
|
|
gc_rest(objspace);
|
|
|
|
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
|
|
rb_size_pool_t *size_pool = &size_pools[i];
|
|
char env_key[sizeof("RUBY_GC_HEAP_" "_INIT_SLOTS") + DECIMAL_SIZE_OF_BITS(sizeof(int) * CHAR_BIT)];
|
|
snprintf(env_key, sizeof(env_key), "RUBY_GC_HEAP_%d_INIT_SLOTS", i);
|
|
|
|
size_t size_pool_init_slots = gc_params.size_pool_init_slots[i];
|
|
if (get_envparam_size(env_key, &size_pool_init_slots, 0)) {
|
|
gc_params.size_pool_init_slots[i] = size_pool_init_slots;
|
|
}
|
|
|
|
if (size_pool_init_slots > size_pool->eden_heap.total_slots) {
|
|
size_t slots = size_pool_init_slots - size_pool->eden_heap.total_slots;
|
|
size_pool->allocatable_pages = slots_to_pages_for_size_pool(objspace, size_pool, slots);
|
|
}
|
|
else {
|
|
/* We already have more slots than size_pool_init_slots allows, so
|
|
* prevent creating more pages. */
|
|
size_pool->allocatable_pages = 0;
|
|
}
|
|
}
|
|
heap_pages_expand_sorted(objspace);
|
|
}
|
|
|
|
/*
|
|
* GC tuning environment variables
|
|
*
|
|
* * RUBY_GC_HEAP_FREE_SLOTS
|
|
* - Prepare at least this amount of slots after GC.
|
|
* - Allocate slots if there are not enough slots.
|
|
* * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1)
|
|
* - Allocate slots by this factor.
|
|
* - (next slots number) = (current slots number) * (this factor)
|
|
* * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1)
|
|
* - Allocation rate is limited to this number of slots.
|
|
* * RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO (new from 2.4)
|
|
* - Allocate additional pages when the number of free slots is
|
|
* lower than the value (total_slots * (this ratio)).
|
|
* * RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO (new from 2.4)
|
|
* - Allocate slots to satisfy this formula:
|
|
* free_slots = total_slots * goal_ratio
|
|
* - In other words, prepare (total_slots * goal_ratio) free slots.
|
|
* - if this value is 0.0, then use RUBY_GC_HEAP_GROWTH_FACTOR directly.
|
|
* * RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO (new from 2.4)
|
|
* - Allow to free pages when the number of free slots is
|
|
* greater than the value (total_slots * (this ratio)).
|
|
* * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1)
|
|
* - Do full GC when the number of old objects is more than R * N
|
|
* where R is this factor and
|
|
* N is the number of old objects just after last full GC.
|
|
*
|
|
* * obsolete
|
|
* * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1)
|
|
* * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1)
|
|
*
|
|
* * RUBY_GC_MALLOC_LIMIT
|
|
* * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1)
|
|
* * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
|
|
*
|
|
* * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1)
|
|
* * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1)
|
|
* * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
|
|
*/
|
|
|
|
void
|
|
ruby_gc_set_params(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
/* RUBY_GC_HEAP_FREE_SLOTS */
|
|
if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) {
|
|
/* ok */
|
|
}
|
|
|
|
gc_set_initial_pages(objspace);
|
|
|
|
get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0, 0.0, FALSE);
|
|
get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0);
|
|
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO", &gc_params.heap_free_slots_min_ratio,
|
|
0.0, 1.0, FALSE);
|
|
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO", &gc_params.heap_free_slots_max_ratio,
|
|
gc_params.heap_free_slots_min_ratio, 1.0, FALSE);
|
|
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO", &gc_params.heap_free_slots_goal_ratio,
|
|
gc_params.heap_free_slots_min_ratio, gc_params.heap_free_slots_max_ratio, TRUE);
|
|
get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0, 0.0, TRUE);
|
|
get_envparam_double("RUBY_GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO", &gc_params.uncollectible_wb_unprotected_objects_limit_ratio, 0.0, 0.0, TRUE);
|
|
|
|
if (get_envparam_size("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0)) {
|
|
malloc_limit = gc_params.malloc_limit_min;
|
|
}
|
|
get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0);
|
|
if (!gc_params.malloc_limit_max) { /* ignore max-check if 0 */
|
|
gc_params.malloc_limit_max = SIZE_MAX;
|
|
}
|
|
get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0, 0.0, FALSE);
|
|
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) {
|
|
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
|
|
}
|
|
get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0);
|
|
get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0, 0.0, FALSE);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
reachable_objects_from_callback(VALUE obj)
|
|
{
|
|
rb_ractor_t *cr = GET_RACTOR();
|
|
cr->mfd->mark_func(obj, cr->mfd->data);
|
|
}
|
|
|
|
void
|
|
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
if (during_gc) rb_bug("rb_objspace_reachable_objects_from() is not supported while during_gc == true");
|
|
|
|
if (is_markable_object(obj)) {
|
|
rb_ractor_t *cr = GET_RACTOR();
|
|
struct gc_mark_func_data_struct mfd = {
|
|
.mark_func = func,
|
|
.data = data,
|
|
}, *prev_mfd = cr->mfd;
|
|
|
|
cr->mfd = &mfd;
|
|
gc_mark_children(objspace, obj);
|
|
cr->mfd = prev_mfd;
|
|
}
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
}
|
|
|
|
struct root_objects_data {
|
|
const char *category;
|
|
void (*func)(const char *category, VALUE, void *);
|
|
void *data;
|
|
};
|
|
|
|
static void
|
|
root_objects_from(VALUE obj, void *ptr)
|
|
{
|
|
const struct root_objects_data *data = (struct root_objects_data *)ptr;
|
|
(*data->func)(data->category, obj, data->data);
|
|
}
|
|
|
|
void
|
|
rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
objspace_reachable_objects_from_root(objspace, func, passing_data);
|
|
}
|
|
|
|
static void
|
|
objspace_reachable_objects_from_root(rb_objspace_t *objspace, void (func)(const char *category, VALUE, void *), void *passing_data)
|
|
{
|
|
if (during_gc) rb_bug("objspace_reachable_objects_from_root() is not supported while during_gc == true");
|
|
|
|
rb_ractor_t *cr = GET_RACTOR();
|
|
struct root_objects_data data = {
|
|
.func = func,
|
|
.data = passing_data,
|
|
};
|
|
struct gc_mark_func_data_struct mfd = {
|
|
.mark_func = root_objects_from,
|
|
.data = &data,
|
|
}, *prev_mfd = cr->mfd;
|
|
|
|
cr->mfd = &mfd;
|
|
gc_mark_roots(objspace, &data.category);
|
|
cr->mfd = prev_mfd;
|
|
}
|
|
|
|
/*
|
|
------------------------ Extended allocator ------------------------
|
|
*/
|
|
|
|
struct gc_raise_tag {
|
|
VALUE exc;
|
|
const char *fmt;
|
|
va_list *ap;
|
|
};
|
|
|
|
static void *
|
|
gc_vraise(void *ptr)
|
|
{
|
|
struct gc_raise_tag *argv = ptr;
|
|
rb_vraise(argv->exc, argv->fmt, *argv->ap);
|
|
UNREACHABLE_RETURN(NULL);
|
|
}
|
|
|
|
static void
|
|
gc_raise(VALUE exc, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
struct gc_raise_tag argv = {
|
|
exc, fmt, &ap,
|
|
};
|
|
|
|
if (ruby_thread_has_gvl_p()) {
|
|
gc_vraise(&argv);
|
|
UNREACHABLE;
|
|
}
|
|
else if (ruby_native_thread_p()) {
|
|
rb_thread_call_with_gvl(gc_vraise, &argv);
|
|
UNREACHABLE;
|
|
}
|
|
else {
|
|
/* Not in a ruby thread */
|
|
fprintf(stderr, "%s", "[FATAL] ");
|
|
vfprintf(stderr, fmt, ap);
|
|
}
|
|
|
|
va_end(ap);
|
|
abort();
|
|
}
|
|
|
|
static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size);
|
|
|
|
static void
|
|
negative_size_allocation_error(const char *msg)
|
|
{
|
|
gc_raise(rb_eNoMemError, "%s", msg);
|
|
}
|
|
|
|
static void *
|
|
ruby_memerror_body(void *dummy)
|
|
{
|
|
rb_memerror();
|
|
return 0;
|
|
}
|
|
|
|
NORETURN(static void ruby_memerror(void));
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static void
|
|
ruby_memerror(void)
|
|
{
|
|
if (ruby_thread_has_gvl_p()) {
|
|
rb_memerror();
|
|
}
|
|
else {
|
|
if (ruby_native_thread_p()) {
|
|
rb_thread_call_with_gvl(ruby_memerror_body, 0);
|
|
}
|
|
else {
|
|
/* no ruby thread */
|
|
fprintf(stderr, "[FATAL] failed to allocate memory\n");
|
|
}
|
|
}
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
void
|
|
rb_memerror(void)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_objspace_t *objspace = rb_objspace_of(rb_ec_vm_ptr(ec));
|
|
VALUE exc;
|
|
|
|
if (0) {
|
|
// Print out pid, sleep, so you can attach debugger to see what went wrong:
|
|
fprintf(stderr, "rb_memerror pid=%"PRI_PIDT_PREFIX"d\n", getpid());
|
|
sleep(60);
|
|
}
|
|
|
|
if (during_gc) {
|
|
// TODO: OMG!! How to implement it?
|
|
gc_exit(objspace, gc_enter_event_rb_memerror, NULL);
|
|
}
|
|
|
|
exc = nomem_error;
|
|
if (!exc ||
|
|
rb_ec_raised_p(ec, RAISED_NOMEMORY)) {
|
|
fprintf(stderr, "[FATAL] failed to allocate memory\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (rb_ec_raised_p(ec, RAISED_NOMEMORY)) {
|
|
rb_ec_raised_clear(ec);
|
|
}
|
|
else {
|
|
rb_ec_raised_set(ec, RAISED_NOMEMORY);
|
|
exc = ruby_vm_special_exception_copy(exc);
|
|
}
|
|
ec->errinfo = exc;
|
|
EC_JUMP_TAG(ec, TAG_RAISE);
|
|
}
|
|
|
|
static void
|
|
rb_aligned_free(void *ptr, size_t size)
|
|
{
|
|
#if defined __MINGW32__
|
|
__mingw_aligned_free(ptr);
|
|
#elif defined _WIN32
|
|
_aligned_free(ptr);
|
|
#elif defined(HAVE_POSIX_MEMALIGN) || defined(HAVE_MEMALIGN)
|
|
free(ptr);
|
|
#else
|
|
free(((void**)ptr)[-1]);
|
|
#endif
|
|
}
|
|
|
|
static inline size_t
|
|
objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint)
|
|
{
|
|
#ifdef HAVE_MALLOC_USABLE_SIZE
|
|
return malloc_usable_size(ptr);
|
|
#else
|
|
return hint;
|
|
#endif
|
|
}
|
|
|
|
enum memop_type {
|
|
MEMOP_TYPE_MALLOC = 0,
|
|
MEMOP_TYPE_FREE,
|
|
MEMOP_TYPE_REALLOC
|
|
};
|
|
|
|
static inline void
|
|
atomic_sub_nounderflow(size_t *var, size_t sub)
|
|
{
|
|
if (sub == 0) return;
|
|
|
|
while (1) {
|
|
size_t val = *var;
|
|
if (val < sub) sub = val;
|
|
if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
objspace_malloc_gc_stress(rb_objspace_t *objspace)
|
|
{
|
|
if (ruby_gc_stressful && ruby_native_thread_p()) {
|
|
unsigned int reason = (GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP |
|
|
GPR_FLAG_STRESS | GPR_FLAG_MALLOC);
|
|
|
|
if (gc_stress_full_mark_after_malloc_p()) {
|
|
reason |= GPR_FLAG_FULL_MARK;
|
|
}
|
|
garbage_collect_with_gvl(objspace, reason);
|
|
}
|
|
}
|
|
|
|
static inline bool
|
|
objspace_malloc_increase_report(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
|
|
{
|
|
if (0) fprintf(stderr, "increase - ptr: %p, type: %s, new_size: %"PRIdSIZE", old_size: %"PRIdSIZE"\n",
|
|
mem,
|
|
type == MEMOP_TYPE_MALLOC ? "malloc" :
|
|
type == MEMOP_TYPE_FREE ? "free " :
|
|
type == MEMOP_TYPE_REALLOC ? "realloc": "error",
|
|
new_size, old_size);
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
objspace_malloc_increase_body(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
|
|
{
|
|
if (new_size > old_size) {
|
|
ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size);
|
|
#endif
|
|
}
|
|
else {
|
|
atomic_sub_nounderflow(&malloc_increase, old_size - new_size);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size);
|
|
#endif
|
|
}
|
|
|
|
if (type == MEMOP_TYPE_MALLOC) {
|
|
retry:
|
|
if (malloc_increase > malloc_limit && ruby_native_thread_p() && !dont_gc_val()) {
|
|
if (ruby_thread_has_gvl_p() && is_lazy_sweeping(objspace)) {
|
|
gc_rest(objspace); /* gc_rest can reduce malloc_increase */
|
|
goto retry;
|
|
}
|
|
garbage_collect_with_gvl(objspace, GPR_FLAG_MALLOC);
|
|
}
|
|
}
|
|
|
|
#if MALLOC_ALLOCATED_SIZE
|
|
if (new_size >= old_size) {
|
|
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size);
|
|
}
|
|
else {
|
|
size_t dec_size = old_size - new_size;
|
|
size_t allocated_size = objspace->malloc_params.allocated_size;
|
|
|
|
#if MALLOC_ALLOCATED_SIZE_CHECK
|
|
if (allocated_size < dec_size) {
|
|
rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size.");
|
|
}
|
|
#endif
|
|
atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size);
|
|
}
|
|
|
|
switch (type) {
|
|
case MEMOP_TYPE_MALLOC:
|
|
ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
|
|
break;
|
|
case MEMOP_TYPE_FREE:
|
|
{
|
|
size_t allocations = objspace->malloc_params.allocations;
|
|
if (allocations > 0) {
|
|
atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1);
|
|
}
|
|
#if MALLOC_ALLOCATED_SIZE_CHECK
|
|
else {
|
|
GC_ASSERT(objspace->malloc_params.allocations > 0);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
case MEMOP_TYPE_REALLOC: /* ignore */ break;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
#define objspace_malloc_increase(...) \
|
|
for (bool malloc_increase_done = objspace_malloc_increase_report(__VA_ARGS__); \
|
|
!malloc_increase_done; \
|
|
malloc_increase_done = objspace_malloc_increase_body(__VA_ARGS__))
|
|
|
|
struct malloc_obj_info { /* 4 words */
|
|
size_t size;
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
size_t gen;
|
|
const char *file;
|
|
size_t line;
|
|
#endif
|
|
};
|
|
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
const char *ruby_malloc_info_file;
|
|
int ruby_malloc_info_line;
|
|
#endif
|
|
|
|
static inline size_t
|
|
objspace_malloc_prepare(rb_objspace_t *objspace, size_t size)
|
|
{
|
|
if (size == 0) size = 1;
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size += sizeof(struct malloc_obj_info);
|
|
#endif
|
|
|
|
return size;
|
|
}
|
|
|
|
static bool
|
|
malloc_during_gc_p(rb_objspace_t *objspace)
|
|
{
|
|
/* malloc is not allowed during GC when we're not using multiple ractors
|
|
* (since ractors can run while another thread is sweeping) and when we
|
|
* have the GVL (since if we don't have the GVL, we'll try to acquire the
|
|
* GVL which will block and ensure the other thread finishes GC). */
|
|
return during_gc && !dont_gc_val() && !rb_multi_ractor_p() && ruby_thread_has_gvl_p();
|
|
}
|
|
|
|
static inline void *
|
|
objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
|
|
{
|
|
size = objspace_malloc_size(objspace, mem, size);
|
|
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC) {}
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
{
|
|
struct malloc_obj_info *info = mem;
|
|
info->size = size;
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
info->gen = objspace->profile.count;
|
|
info->file = ruby_malloc_info_file;
|
|
info->line = info->file ? ruby_malloc_info_line : 0;
|
|
#endif
|
|
mem = info + 1;
|
|
}
|
|
#endif
|
|
|
|
return mem;
|
|
}
|
|
|
|
#if defined(__GNUC__) && RUBY_DEBUG
|
|
#define RB_BUG_INSTEAD_OF_RB_MEMERROR 1
|
|
#endif
|
|
|
|
#ifndef RB_BUG_INSTEAD_OF_RB_MEMERROR
|
|
# define RB_BUG_INSTEAD_OF_RB_MEMERROR 0
|
|
#endif
|
|
|
|
#define GC_MEMERROR(...) \
|
|
((RB_BUG_INSTEAD_OF_RB_MEMERROR+0) ? rb_bug("" __VA_ARGS__) : rb_memerror())
|
|
|
|
#define TRY_WITH_GC(siz, expr) do { \
|
|
const gc_profile_record_flag gpr = \
|
|
GPR_FLAG_FULL_MARK | \
|
|
GPR_FLAG_IMMEDIATE_MARK | \
|
|
GPR_FLAG_IMMEDIATE_SWEEP | \
|
|
GPR_FLAG_MALLOC; \
|
|
objspace_malloc_gc_stress(objspace); \
|
|
\
|
|
if (LIKELY((expr))) { \
|
|
/* Success on 1st try */ \
|
|
} \
|
|
else if (!garbage_collect_with_gvl(objspace, gpr)) { \
|
|
/* @shyouhei thinks this doesn't happen */ \
|
|
GC_MEMERROR("TRY_WITH_GC: could not GC"); \
|
|
} \
|
|
else if ((expr)) { \
|
|
/* Success on 2nd try */ \
|
|
} \
|
|
else { \
|
|
GC_MEMERROR("TRY_WITH_GC: could not allocate:" \
|
|
"%"PRIdSIZE" bytes for %s", \
|
|
siz, # expr); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void
|
|
check_malloc_not_in_gc(rb_objspace_t *objspace, const char *msg)
|
|
{
|
|
if (UNLIKELY(malloc_during_gc_p(objspace))) {
|
|
dont_gc_on();
|
|
during_gc = false;
|
|
rb_bug("Cannot %s during GC", msg);
|
|
}
|
|
}
|
|
|
|
/* these shouldn't be called directly.
|
|
* objspace_* functions do not check allocation size.
|
|
*/
|
|
static void *
|
|
objspace_xmalloc0(rb_objspace_t *objspace, size_t size)
|
|
{
|
|
check_malloc_not_in_gc(objspace, "malloc");
|
|
|
|
void *mem;
|
|
|
|
size = objspace_malloc_prepare(objspace, size);
|
|
TRY_WITH_GC(size, mem = malloc(size));
|
|
RB_DEBUG_COUNTER_INC(heap_xmalloc);
|
|
return objspace_malloc_fixup(objspace, mem, size);
|
|
}
|
|
|
|
static inline size_t
|
|
xmalloc2_size(const size_t count, const size_t elsize)
|
|
{
|
|
return size_mul_or_raise(count, elsize, rb_eArgError);
|
|
}
|
|
|
|
static void *
|
|
objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size)
|
|
{
|
|
check_malloc_not_in_gc(objspace, "realloc");
|
|
|
|
void *mem;
|
|
|
|
if (!ptr) return objspace_xmalloc0(objspace, new_size);
|
|
|
|
/*
|
|
* The behavior of realloc(ptr, 0) is implementation defined.
|
|
* Therefore we don't use realloc(ptr, 0) for portability reason.
|
|
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
|
|
*/
|
|
if (new_size == 0) {
|
|
if ((mem = objspace_xmalloc0(objspace, 0)) != NULL) {
|
|
/*
|
|
* - OpenBSD's malloc(3) man page says that when 0 is passed, it
|
|
* returns a non-NULL pointer to an access-protected memory page.
|
|
* The returned pointer cannot be read / written at all, but
|
|
* still be a valid argument of free().
|
|
*
|
|
* https://man.openbsd.org/malloc.3
|
|
*
|
|
* - Linux's malloc(3) man page says that it _might_ perhaps return
|
|
* a non-NULL pointer when its argument is 0. That return value
|
|
* is safe (and is expected) to be passed to free().
|
|
*
|
|
* https://man7.org/linux/man-pages/man3/malloc.3.html
|
|
*
|
|
* - As I read the implementation jemalloc's malloc() returns fully
|
|
* normal 16 bytes memory region when its argument is 0.
|
|
*
|
|
* - As I read the implementation musl libc's malloc() returns
|
|
* fully normal 32 bytes memory region when its argument is 0.
|
|
*
|
|
* - Other malloc implementations can also return non-NULL.
|
|
*/
|
|
objspace_xfree(objspace, ptr, old_size);
|
|
return mem;
|
|
}
|
|
else {
|
|
/*
|
|
* It is dangerous to return NULL here, because that could lead to
|
|
* RCE. Fallback to 1 byte instead of zero.
|
|
*
|
|
* https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932
|
|
*/
|
|
new_size = 1;
|
|
}
|
|
}
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
{
|
|
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
|
|
new_size += sizeof(struct malloc_obj_info);
|
|
ptr = info;
|
|
old_size = info->size;
|
|
}
|
|
#endif
|
|
|
|
old_size = objspace_malloc_size(objspace, ptr, old_size);
|
|
TRY_WITH_GC(new_size, mem = RB_GNUC_EXTENSION_BLOCK(realloc(ptr, new_size)));
|
|
new_size = objspace_malloc_size(objspace, mem, new_size);
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
{
|
|
struct malloc_obj_info *info = mem;
|
|
info->size = new_size;
|
|
mem = info + 1;
|
|
}
|
|
#endif
|
|
|
|
objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC);
|
|
|
|
RB_DEBUG_COUNTER_INC(heap_xrealloc);
|
|
return mem;
|
|
}
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE && USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
|
|
#define MALLOC_INFO_GEN_SIZE 100
|
|
#define MALLOC_INFO_SIZE_SIZE 10
|
|
static size_t malloc_info_gen_cnt[MALLOC_INFO_GEN_SIZE];
|
|
static size_t malloc_info_gen_size[MALLOC_INFO_GEN_SIZE];
|
|
static size_t malloc_info_size[MALLOC_INFO_SIZE_SIZE+1];
|
|
static st_table *malloc_info_file_table;
|
|
|
|
static int
|
|
mmalloc_info_file_i(st_data_t key, st_data_t val, st_data_t dmy)
|
|
{
|
|
const char *file = (void *)key;
|
|
const size_t *data = (void *)val;
|
|
|
|
fprintf(stderr, "%s\t%"PRIdSIZE"\t%"PRIdSIZE"\n", file, data[0], data[1]);
|
|
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
__attribute__((destructor))
|
|
void
|
|
rb_malloc_info_show_results(void)
|
|
{
|
|
int i;
|
|
|
|
fprintf(stderr, "* malloc_info gen statistics\n");
|
|
for (i=0; i<MALLOC_INFO_GEN_SIZE; i++) {
|
|
if (i == MALLOC_INFO_GEN_SIZE-1) {
|
|
fprintf(stderr, "more\t%"PRIdSIZE"\t%"PRIdSIZE"\n", malloc_info_gen_cnt[i], malloc_info_gen_size[i]);
|
|
}
|
|
else {
|
|
fprintf(stderr, "%d\t%"PRIdSIZE"\t%"PRIdSIZE"\n", i, malloc_info_gen_cnt[i], malloc_info_gen_size[i]);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "* malloc_info size statistics\n");
|
|
for (i=0; i<MALLOC_INFO_SIZE_SIZE; i++) {
|
|
int s = 16 << i;
|
|
fprintf(stderr, "%d\t%"PRIdSIZE"\n", s, malloc_info_size[i]);
|
|
}
|
|
fprintf(stderr, "more\t%"PRIdSIZE"\n", malloc_info_size[i]);
|
|
|
|
if (malloc_info_file_table) {
|
|
fprintf(stderr, "* malloc_info file statistics\n");
|
|
st_foreach(malloc_info_file_table, mmalloc_info_file_i, 0);
|
|
}
|
|
}
|
|
#else
|
|
void
|
|
rb_malloc_info_show_results(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size)
|
|
{
|
|
if (!ptr) {
|
|
/*
|
|
* ISO/IEC 9899 says "If ptr is a null pointer, no action occurs" since
|
|
* its first version. We would better follow.
|
|
*/
|
|
return;
|
|
}
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
|
|
ptr = info;
|
|
old_size = info->size;
|
|
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
{
|
|
int gen = (int)(objspace->profile.count - info->gen);
|
|
int gen_index = gen >= MALLOC_INFO_GEN_SIZE ? MALLOC_INFO_GEN_SIZE-1 : gen;
|
|
int i;
|
|
|
|
malloc_info_gen_cnt[gen_index]++;
|
|
malloc_info_gen_size[gen_index] += info->size;
|
|
|
|
for (i=0; i<MALLOC_INFO_SIZE_SIZE; i++) {
|
|
size_t s = 16 << i;
|
|
if (info->size <= s) {
|
|
malloc_info_size[i]++;
|
|
goto found;
|
|
}
|
|
}
|
|
malloc_info_size[i]++;
|
|
found:;
|
|
|
|
{
|
|
st_data_t key = (st_data_t)info->file, d;
|
|
size_t *data;
|
|
|
|
if (malloc_info_file_table == NULL) {
|
|
malloc_info_file_table = st_init_numtable_with_size(1024);
|
|
}
|
|
if (st_lookup(malloc_info_file_table, key, &d)) {
|
|
/* hit */
|
|
data = (size_t *)d;
|
|
}
|
|
else {
|
|
data = malloc(xmalloc2_size(2, sizeof(size_t)));
|
|
if (data == NULL) rb_bug("objspace_xfree: can not allocate memory");
|
|
data[0] = data[1] = 0;
|
|
st_insert(malloc_info_file_table, key, (st_data_t)data);
|
|
}
|
|
data[0] ++;
|
|
data[1] += info->size;
|
|
};
|
|
if (0 && gen >= 2) { /* verbose output */
|
|
if (info->file) {
|
|
fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d, pos: %s:%"PRIdSIZE"\n",
|
|
info->size, gen, info->file, info->line);
|
|
}
|
|
else {
|
|
fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d\n",
|
|
info->size, gen);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
old_size = objspace_malloc_size(objspace, ptr, old_size);
|
|
|
|
objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE) {
|
|
free(ptr);
|
|
ptr = NULL;
|
|
RB_DEBUG_COUNTER_INC(heap_xfree);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
ruby_xmalloc0(size_t size)
|
|
{
|
|
return objspace_xmalloc0(&rb_objspace, size);
|
|
}
|
|
|
|
void *
|
|
ruby_xmalloc_body(size_t size)
|
|
{
|
|
if ((ssize_t)size < 0) {
|
|
negative_size_allocation_error("too large allocation size");
|
|
}
|
|
return ruby_xmalloc0(size);
|
|
}
|
|
|
|
void
|
|
ruby_malloc_size_overflow(size_t count, size_t elsize)
|
|
{
|
|
rb_raise(rb_eArgError,
|
|
"malloc: possible integer overflow (%"PRIuSIZE"*%"PRIuSIZE")",
|
|
count, elsize);
|
|
}
|
|
|
|
void *
|
|
ruby_xmalloc2_body(size_t n, size_t size)
|
|
{
|
|
return objspace_xmalloc0(&rb_objspace, xmalloc2_size(n, size));
|
|
}
|
|
|
|
static void *
|
|
objspace_xcalloc(rb_objspace_t *objspace, size_t size)
|
|
{
|
|
if (UNLIKELY(malloc_during_gc_p(objspace))) {
|
|
rb_warn("calloc during GC detected, this could cause crashes if it triggers another GC");
|
|
#if RGENGC_CHECK_MODE || RUBY_DEBUG
|
|
rb_bug("Cannot calloc during GC");
|
|
#endif
|
|
}
|
|
|
|
void *mem;
|
|
|
|
size = objspace_malloc_prepare(objspace, size);
|
|
TRY_WITH_GC(size, mem = calloc1(size));
|
|
return objspace_malloc_fixup(objspace, mem, size);
|
|
}
|
|
|
|
void *
|
|
ruby_xcalloc_body(size_t n, size_t size)
|
|
{
|
|
return objspace_xcalloc(&rb_objspace, xmalloc2_size(n, size));
|
|
}
|
|
|
|
#ifdef ruby_sized_xrealloc
|
|
#undef ruby_sized_xrealloc
|
|
#endif
|
|
void *
|
|
ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size)
|
|
{
|
|
if ((ssize_t)new_size < 0) {
|
|
negative_size_allocation_error("too large allocation size");
|
|
}
|
|
|
|
return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size);
|
|
}
|
|
|
|
void *
|
|
ruby_xrealloc_body(void *ptr, size_t new_size)
|
|
{
|
|
return ruby_sized_xrealloc(ptr, new_size, 0);
|
|
}
|
|
|
|
#ifdef ruby_sized_xrealloc2
|
|
#undef ruby_sized_xrealloc2
|
|
#endif
|
|
void *
|
|
ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n)
|
|
{
|
|
size_t len = xmalloc2_size(n, size);
|
|
return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size);
|
|
}
|
|
|
|
void *
|
|
ruby_xrealloc2_body(void *ptr, size_t n, size_t size)
|
|
{
|
|
return ruby_sized_xrealloc2(ptr, n, size, 0);
|
|
}
|
|
|
|
#ifdef ruby_sized_xfree
|
|
#undef ruby_sized_xfree
|
|
#endif
|
|
void
|
|
ruby_sized_xfree(void *x, size_t size)
|
|
{
|
|
if (LIKELY(x)) {
|
|
/* It's possible for a C extension's pthread destructor function set by pthread_key_create
|
|
* to be called after ruby_vm_destruct and attempt to free memory. Fall back to mimfree in
|
|
* that case. */
|
|
if (LIKELY(GET_VM())) {
|
|
objspace_xfree(&rb_objspace, x, size);
|
|
}
|
|
else {
|
|
ruby_mimfree(x);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ruby_xfree(void *x)
|
|
{
|
|
ruby_sized_xfree(x, 0);
|
|
}
|
|
|
|
void *
|
|
rb_xmalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */
|
|
{
|
|
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
|
|
return ruby_xmalloc(w);
|
|
}
|
|
|
|
void *
|
|
rb_xcalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */
|
|
{
|
|
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
|
|
return ruby_xcalloc(w, 1);
|
|
}
|
|
|
|
void *
|
|
rb_xrealloc_mul_add(const void *p, size_t x, size_t y, size_t z) /* x * y + z */
|
|
{
|
|
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
|
|
return ruby_xrealloc((void *)p, w);
|
|
}
|
|
|
|
void *
|
|
rb_xmalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
|
|
{
|
|
size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError);
|
|
return ruby_xmalloc(u);
|
|
}
|
|
|
|
void *
|
|
rb_xcalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
|
|
{
|
|
size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError);
|
|
return ruby_xcalloc(u, 1);
|
|
}
|
|
|
|
/* Mimic ruby_xmalloc, but need not rb_objspace.
|
|
* should return pointer suitable for ruby_xfree
|
|
*/
|
|
void *
|
|
ruby_mimmalloc(size_t size)
|
|
{
|
|
void *mem;
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size += sizeof(struct malloc_obj_info);
|
|
#endif
|
|
mem = malloc(size);
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
if (!mem) {
|
|
return NULL;
|
|
}
|
|
else
|
|
/* set 0 for consistency of allocated_size/allocations */
|
|
{
|
|
struct malloc_obj_info *info = mem;
|
|
info->size = 0;
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
info->gen = 0;
|
|
info->file = NULL;
|
|
info->line = 0;
|
|
#endif
|
|
mem = info + 1;
|
|
}
|
|
#endif
|
|
return mem;
|
|
}
|
|
|
|
void *
|
|
ruby_mimcalloc(size_t num, size_t size)
|
|
{
|
|
void *mem;
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(num, size);
|
|
if (UNLIKELY(t.left)) {
|
|
return NULL;
|
|
}
|
|
size = t.right + sizeof(struct malloc_obj_info);
|
|
mem = calloc1(size);
|
|
if (!mem) {
|
|
return NULL;
|
|
}
|
|
else
|
|
/* set 0 for consistency of allocated_size/allocations */
|
|
{
|
|
struct malloc_obj_info *info = mem;
|
|
info->size = 0;
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
info->gen = 0;
|
|
info->file = NULL;
|
|
info->line = 0;
|
|
#endif
|
|
mem = info + 1;
|
|
}
|
|
#else
|
|
mem = calloc(num, size);
|
|
#endif
|
|
return mem;
|
|
}
|
|
|
|
void
|
|
ruby_mimfree(void *ptr)
|
|
{
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
|
|
ptr = info;
|
|
#endif
|
|
free(ptr);
|
|
}
|
|
|
|
#if MALLOC_ALLOCATED_SIZE
|
|
/*
|
|
* call-seq:
|
|
* GC.malloc_allocated_size -> Integer
|
|
*
|
|
* Returns the size of memory allocated by malloc().
|
|
*
|
|
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_malloc_allocated_size(VALUE self)
|
|
{
|
|
return UINT2NUM(rb_objspace.malloc_params.allocated_size);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.malloc_allocations -> Integer
|
|
*
|
|
* Returns the number of malloc() allocations.
|
|
*
|
|
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_malloc_allocations(VALUE self)
|
|
{
|
|
return UINT2NUM(rb_objspace.malloc_params.allocations);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
rb_gc_adjust_memory_usage(ssize_t diff)
|
|
{
|
|
unless_objspace(objspace) { return; }
|
|
|
|
if (diff > 0) {
|
|
objspace_malloc_increase(objspace, 0, diff, 0, MEMOP_TYPE_REALLOC);
|
|
}
|
|
else if (diff < 0) {
|
|
objspace_malloc_increase(objspace, 0, 0, -diff, MEMOP_TYPE_REALLOC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
------------------------------ GC profiler ------------------------------
|
|
*/
|
|
|
|
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
|
|
|
|
static bool
|
|
current_process_time(struct timespec *ts)
|
|
{
|
|
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
|
|
{
|
|
static int try_clock_gettime = 1;
|
|
if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, ts) == 0) {
|
|
return true;
|
|
}
|
|
else {
|
|
try_clock_gettime = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RUSAGE_SELF
|
|
{
|
|
struct rusage usage;
|
|
struct timeval time;
|
|
if (getrusage(RUSAGE_SELF, &usage) == 0) {
|
|
time = usage.ru_utime;
|
|
ts->tv_sec = time.tv_sec;
|
|
ts->tv_nsec = (int32_t)time.tv_usec * 1000;
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
{
|
|
FILETIME creation_time, exit_time, kernel_time, user_time;
|
|
ULARGE_INTEGER ui;
|
|
|
|
if (GetProcessTimes(GetCurrentProcess(),
|
|
&creation_time, &exit_time, &kernel_time, &user_time) != 0) {
|
|
memcpy(&ui, &user_time, sizeof(FILETIME));
|
|
#define PER100NSEC (uint64_t)(1000 * 1000 * 10)
|
|
ts->tv_nsec = (long)(ui.QuadPart % PER100NSEC);
|
|
ts->tv_sec = (time_t)(ui.QuadPart / PER100NSEC);
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
static double
|
|
getrusage_time(void)
|
|
{
|
|
struct timespec ts;
|
|
if (current_process_time(&ts)) {
|
|
return ts.tv_sec + ts.tv_nsec * 1e-9;
|
|
}
|
|
else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason)
|
|
{
|
|
if (objspace->profile.run) {
|
|
size_t index = objspace->profile.next_index;
|
|
gc_profile_record *record;
|
|
|
|
/* create new record */
|
|
objspace->profile.next_index++;
|
|
|
|
if (!objspace->profile.records) {
|
|
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
|
|
objspace->profile.records = malloc(xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size));
|
|
}
|
|
if (index >= objspace->profile.size) {
|
|
void *ptr;
|
|
objspace->profile.size += 1000;
|
|
ptr = realloc(objspace->profile.records, xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size));
|
|
if (!ptr) rb_memerror();
|
|
objspace->profile.records = ptr;
|
|
}
|
|
if (!objspace->profile.records) {
|
|
rb_bug("gc_profile malloc or realloc miss");
|
|
}
|
|
record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1];
|
|
MEMZERO(record, gc_profile_record, 1);
|
|
|
|
/* setup before-GC parameter */
|
|
record->flags = reason | (ruby_gc_stressful ? GPR_FLAG_STRESS : 0);
|
|
#if MALLOC_ALLOCATED_SIZE
|
|
record->allocated_size = malloc_allocated_size;
|
|
#endif
|
|
#if GC_PROFILE_MORE_DETAIL && GC_PROFILE_DETAIL_MEMORY
|
|
#ifdef RUSAGE_SELF
|
|
{
|
|
struct rusage usage;
|
|
if (getrusage(RUSAGE_SELF, &usage) == 0) {
|
|
record->maxrss = usage.ru_maxrss;
|
|
record->minflt = usage.ru_minflt;
|
|
record->majflt = usage.ru_majflt;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_timer_start(rb_objspace_t *objspace)
|
|
{
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
record->prepare_time = objspace->profile.prepare_time;
|
|
#endif
|
|
record->gc_time = 0;
|
|
record->gc_invoke_time = getrusage_time();
|
|
}
|
|
}
|
|
|
|
static double
|
|
elapsed_time_from(double time)
|
|
{
|
|
double now = getrusage_time();
|
|
if (now > time) {
|
|
return now - time;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_timer_stop(rb_objspace_t *objspace)
|
|
{
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->gc_time = elapsed_time_from(record->gc_invoke_time);
|
|
record->gc_invoke_time -= objspace->profile.invoke_time;
|
|
}
|
|
}
|
|
|
|
#define RUBY_DTRACE_GC_HOOK(name) \
|
|
do {if (RUBY_DTRACE_GC_##name##_ENABLED()) RUBY_DTRACE_GC_##name();} while (0)
|
|
static inline void
|
|
gc_prof_mark_timer_start(rb_objspace_t *objspace)
|
|
{
|
|
RUBY_DTRACE_GC_HOOK(MARK_BEGIN);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_prof_record(objspace)->gc_mark_time = getrusage_time();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
|
|
{
|
|
RUBY_DTRACE_GC_HOOK(MARK_END);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->gc_mark_time = elapsed_time_from(record->gc_mark_time);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
|
|
{
|
|
RUBY_DTRACE_GC_HOOK(SWEEP_BEGIN);
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
|
|
if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) {
|
|
objspace->profile.gc_sweep_start_time = getrusage_time();
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
|
|
{
|
|
RUBY_DTRACE_GC_HOOK(SWEEP_END);
|
|
|
|
if (gc_prof_enabled(objspace)) {
|
|
double sweep_time;
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
|
|
if (record->gc_time > 0) {
|
|
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
|
|
/* need to accumulate GC time for lazy sweep after gc() */
|
|
record->gc_time += sweep_time;
|
|
}
|
|
else if (GC_PROFILE_MORE_DETAIL) {
|
|
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
record->gc_sweep_time += sweep_time;
|
|
if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE;
|
|
#endif
|
|
if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_set_malloc_info(rb_objspace_t *objspace)
|
|
{
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->allocate_increase = malloc_increase;
|
|
record->allocate_limit = malloc_limit;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_set_heap_info(rb_objspace_t *objspace)
|
|
{
|
|
if (gc_prof_enabled(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
size_t live = objspace->profile.total_allocated_objects_at_gc_start - total_freed_objects(objspace);
|
|
size_t total = objspace->profile.heap_used_at_gc_start * HEAP_PAGE_OBJ_LIMIT;
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
record->heap_use_pages = objspace->profile.heap_used_at_gc_start;
|
|
record->heap_live_objects = live;
|
|
record->heap_free_objects = total - live;
|
|
#endif
|
|
|
|
record->heap_total_objects = total;
|
|
record->heap_use_size = live * sizeof(RVALUE);
|
|
record->heap_total_size = total * sizeof(RVALUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.clear -> nil
|
|
*
|
|
* Clears the \GC profiler data.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_clear(VALUE _)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
void *p = objspace->profile.records;
|
|
objspace->profile.records = NULL;
|
|
objspace->profile.size = 0;
|
|
objspace->profile.next_index = 0;
|
|
objspace->profile.current_record = 0;
|
|
free(p);
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.raw_data -> [Hash, ...]
|
|
*
|
|
* Returns an Array of individual raw profile data Hashes ordered
|
|
* from earliest to latest by +:GC_INVOKE_TIME+.
|
|
*
|
|
* For example:
|
|
*
|
|
* [
|
|
* {
|
|
* :GC_TIME=>1.3000000000000858e-05,
|
|
* :GC_INVOKE_TIME=>0.010634999999999999,
|
|
* :HEAP_USE_SIZE=>289640,
|
|
* :HEAP_TOTAL_SIZE=>588960,
|
|
* :HEAP_TOTAL_OBJECTS=>14724,
|
|
* :GC_IS_MARKED=>false
|
|
* },
|
|
* # ...
|
|
* ]
|
|
*
|
|
* The keys mean:
|
|
*
|
|
* +:GC_TIME+::
|
|
* Time elapsed in seconds for this GC run
|
|
* +:GC_INVOKE_TIME+::
|
|
* Time elapsed in seconds from startup to when the GC was invoked
|
|
* +:HEAP_USE_SIZE+::
|
|
* Total bytes of heap used
|
|
* +:HEAP_TOTAL_SIZE+::
|
|
* Total size of heap in bytes
|
|
* +:HEAP_TOTAL_OBJECTS+::
|
|
* Total number of objects
|
|
* +:GC_IS_MARKED+::
|
|
* Returns +true+ if the GC is in mark phase
|
|
*
|
|
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
|
|
* to the following hash keys:
|
|
*
|
|
* +:GC_MARK_TIME+::
|
|
* +:GC_SWEEP_TIME+::
|
|
* +:ALLOCATE_INCREASE+::
|
|
* +:ALLOCATE_LIMIT+::
|
|
* +:HEAP_USE_PAGES+::
|
|
* +:HEAP_LIVE_OBJECTS+::
|
|
* +:HEAP_FREE_OBJECTS+::
|
|
* +:HAVE_FINALIZE+::
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_record_get(VALUE _)
|
|
{
|
|
VALUE prof;
|
|
VALUE gc_profile = rb_ary_new();
|
|
size_t i;
|
|
rb_objspace_t *objspace = (&rb_objspace);
|
|
|
|
if (!objspace->profile.run) {
|
|
return Qnil;
|
|
}
|
|
|
|
for (i =0; i < objspace->profile.next_index; i++) {
|
|
gc_profile_record *record = &objspace->profile.records[i];
|
|
|
|
prof = rb_hash_new();
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(objspace, rb_hash_new(), record->flags));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("MOVED_OBJECTS")), SIZET2NUM(record->moved_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects));
|
|
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects));
|
|
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), RBOOL(record->flags & GPR_FLAG_HAVE_FINALIZE));
|
|
#endif
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects));
|
|
#endif
|
|
rb_ary_push(gc_profile, prof);
|
|
}
|
|
|
|
return gc_profile;
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
#define MAJOR_REASON_MAX 0x10
|
|
|
|
static char *
|
|
gc_profile_dump_major_reason(unsigned int flags, char *buff)
|
|
{
|
|
unsigned int reason = flags & GPR_FLAG_MAJOR_MASK;
|
|
int i = 0;
|
|
|
|
if (reason == GPR_FLAG_NONE) {
|
|
buff[0] = '-';
|
|
buff[1] = 0;
|
|
}
|
|
else {
|
|
#define C(x, s) \
|
|
if (reason & GPR_FLAG_MAJOR_BY_##x) { \
|
|
buff[i++] = #x[0]; \
|
|
if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \
|
|
buff[i] = 0; \
|
|
}
|
|
C(NOFREE, N);
|
|
C(OLDGEN, O);
|
|
C(SHADY, S);
|
|
#if RGENGC_ESTIMATE_OLDMALLOC
|
|
C(OLDMALLOC, M);
|
|
#endif
|
|
#undef C
|
|
}
|
|
return buff;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
size_t count = objspace->profile.next_index;
|
|
#ifdef MAJOR_REASON_MAX
|
|
char reason_str[MAJOR_REASON_MAX];
|
|
#endif
|
|
|
|
if (objspace->profile.run && count /* > 1 */) {
|
|
size_t i;
|
|
const gc_profile_record *record;
|
|
|
|
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count));
|
|
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
record = &objspace->profile.records[i];
|
|
append(out, rb_sprintf("%5"PRIuSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
|
|
i+1, record->gc_invoke_time, record->heap_use_size,
|
|
record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
const char *str = "\n\n" \
|
|
"More detail.\n" \
|
|
"Prepare Time = Previously GC's rest sweep time\n"
|
|
"Index Flags Allocate Inc. Allocate Limit"
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
" Allocated Size"
|
|
#endif
|
|
" Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj"
|
|
#if RGENGC_PROFILE
|
|
" OldgenObj RemNormObj RemShadObj"
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
" MaxRSS(KB) MinorFLT MajorFLT"
|
|
#endif
|
|
"\n";
|
|
append(out, rb_str_new_cstr(str));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
record = &objspace->profile.records[i];
|
|
append(out, rb_sprintf("%5"PRIuSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
" %15"PRIuSIZE
|
|
#endif
|
|
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
|
|
#if RGENGC_PROFILE
|
|
"%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
"%11ld %8ld %8ld"
|
|
#endif
|
|
|
|
"\n",
|
|
i+1,
|
|
gc_profile_dump_major_reason(record->flags, reason_str),
|
|
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
|
|
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
|
|
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
|
|
(record->flags & GPR_FLAG_METHOD) ? "METHOD" :
|
|
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
|
|
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
|
|
record->allocate_increase, record->allocate_limit,
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
record->allocated_size,
|
|
#endif
|
|
record->heap_use_pages,
|
|
record->gc_mark_time*1000,
|
|
record->gc_sweep_time*1000,
|
|
record->prepare_time*1000,
|
|
|
|
record->heap_live_objects,
|
|
record->heap_free_objects,
|
|
record->removing_objects,
|
|
record->empty_objects
|
|
#if RGENGC_PROFILE
|
|
,
|
|
record->old_objects,
|
|
record->remembered_normal_objects,
|
|
record->remembered_shady_objects
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
,
|
|
record->maxrss / 1024,
|
|
record->minflt,
|
|
record->majflt
|
|
#endif
|
|
|
|
));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.result -> String
|
|
*
|
|
* Returns a profile data report such as:
|
|
*
|
|
* GC 1 invokes.
|
|
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
|
|
* 1 0.012 159240 212940 10647 0.00000000000001530000
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_result(VALUE _)
|
|
{
|
|
VALUE str = rb_str_buf_new(0);
|
|
gc_profile_dump_on(str, rb_str_buf_append);
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.report
|
|
* GC::Profiler.report(io)
|
|
*
|
|
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_report(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE out;
|
|
|
|
out = (!rb_check_arity(argc, 0, 1) ? rb_stdout : argv[0]);
|
|
gc_profile_dump_on(out, rb_io_write);
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.total_time -> float
|
|
*
|
|
* The total time used for garbage collection in seconds
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_total_time(VALUE self)
|
|
{
|
|
double time = 0;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (objspace->profile.run && objspace->profile.next_index > 0) {
|
|
size_t i;
|
|
size_t count = objspace->profile.next_index;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
time += objspace->profile.records[i].gc_time;
|
|
}
|
|
}
|
|
return DBL2NUM(time);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.enabled? -> true or false
|
|
*
|
|
* The current status of \GC profile mode.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_enable_get(VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return RBOOL(objspace->profile.run);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.enable -> nil
|
|
*
|
|
* Starts the \GC profiler.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_enable(VALUE _)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
objspace->profile.run = TRUE;
|
|
objspace->profile.current_record = 0;
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.disable -> nil
|
|
*
|
|
* Stops the \GC profiler.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_disable(VALUE _)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
objspace->profile.run = FALSE;
|
|
objspace->profile.current_record = 0;
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
------------------------------ DEBUG ------------------------------
|
|
*/
|
|
|
|
static const char *
|
|
type_name(int type, VALUE obj)
|
|
{
|
|
switch (type) {
|
|
#define TYPE_NAME(t) case (t): return #t;
|
|
TYPE_NAME(T_NONE);
|
|
TYPE_NAME(T_OBJECT);
|
|
TYPE_NAME(T_CLASS);
|
|
TYPE_NAME(T_MODULE);
|
|
TYPE_NAME(T_FLOAT);
|
|
TYPE_NAME(T_STRING);
|
|
TYPE_NAME(T_REGEXP);
|
|
TYPE_NAME(T_ARRAY);
|
|
TYPE_NAME(T_HASH);
|
|
TYPE_NAME(T_STRUCT);
|
|
TYPE_NAME(T_BIGNUM);
|
|
TYPE_NAME(T_FILE);
|
|
TYPE_NAME(T_MATCH);
|
|
TYPE_NAME(T_COMPLEX);
|
|
TYPE_NAME(T_RATIONAL);
|
|
TYPE_NAME(T_NIL);
|
|
TYPE_NAME(T_TRUE);
|
|
TYPE_NAME(T_FALSE);
|
|
TYPE_NAME(T_SYMBOL);
|
|
TYPE_NAME(T_FIXNUM);
|
|
TYPE_NAME(T_UNDEF);
|
|
TYPE_NAME(T_IMEMO);
|
|
TYPE_NAME(T_ICLASS);
|
|
TYPE_NAME(T_MOVED);
|
|
TYPE_NAME(T_ZOMBIE);
|
|
case T_DATA:
|
|
if (obj && rb_objspace_data_type_name(obj)) {
|
|
return rb_objspace_data_type_name(obj);
|
|
}
|
|
return "T_DATA";
|
|
#undef TYPE_NAME
|
|
}
|
|
return "unknown";
|
|
}
|
|
|
|
static const char *
|
|
obj_type_name(VALUE obj)
|
|
{
|
|
return type_name(TYPE(obj), obj);
|
|
}
|
|
|
|
const char *
|
|
rb_method_type_name(rb_method_type_t type)
|
|
{
|
|
switch (type) {
|
|
case VM_METHOD_TYPE_ISEQ: return "iseq";
|
|
case VM_METHOD_TYPE_ATTRSET: return "attrest";
|
|
case VM_METHOD_TYPE_IVAR: return "ivar";
|
|
case VM_METHOD_TYPE_BMETHOD: return "bmethod";
|
|
case VM_METHOD_TYPE_ALIAS: return "alias";
|
|
case VM_METHOD_TYPE_REFINED: return "refined";
|
|
case VM_METHOD_TYPE_CFUNC: return "cfunc";
|
|
case VM_METHOD_TYPE_ZSUPER: return "zsuper";
|
|
case VM_METHOD_TYPE_MISSING: return "missing";
|
|
case VM_METHOD_TYPE_OPTIMIZED: return "optimized";
|
|
case VM_METHOD_TYPE_UNDEF: return "undef";
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED: return "notimplemented";
|
|
}
|
|
rb_bug("rb_method_type_name: unreachable (type: %d)", type);
|
|
}
|
|
|
|
static void
|
|
rb_raw_iseq_info(char *const buff, const size_t buff_size, const rb_iseq_t *iseq)
|
|
{
|
|
if (buff_size > 0 && ISEQ_BODY(iseq) && ISEQ_BODY(iseq)->location.label && !RB_TYPE_P(ISEQ_BODY(iseq)->location.pathobj, T_MOVED)) {
|
|
VALUE path = rb_iseq_path(iseq);
|
|
int n = ISEQ_BODY(iseq)->location.first_lineno;
|
|
snprintf(buff, buff_size, " %s@%s:%d",
|
|
RSTRING_PTR(ISEQ_BODY(iseq)->location.label),
|
|
RSTRING_PTR(path), n);
|
|
}
|
|
}
|
|
|
|
static int
|
|
str_len_no_raise(VALUE str)
|
|
{
|
|
long len = RSTRING_LEN(str);
|
|
if (len < 0) return 0;
|
|
if (len > INT_MAX) return INT_MAX;
|
|
return (int)len;
|
|
}
|
|
|
|
#define BUFF_ARGS buff + pos, buff_size - pos
|
|
#define APPEND_F(...) if ((pos += snprintf(BUFF_ARGS, "" __VA_ARGS__)) >= buff_size) goto end
|
|
#define APPEND_S(s) do { \
|
|
if ((pos + (int)rb_strlen_lit(s)) >= buff_size) { \
|
|
goto end; \
|
|
} \
|
|
else { \
|
|
memcpy(buff + pos, (s), rb_strlen_lit(s) + 1); \
|
|
} \
|
|
} while (0)
|
|
#define C(c, s) ((c) != 0 ? (s) : " ")
|
|
|
|
static size_t
|
|
rb_raw_obj_info_common(char *const buff, const size_t buff_size, const VALUE obj)
|
|
{
|
|
size_t pos = 0;
|
|
|
|
if (SPECIAL_CONST_P(obj)) {
|
|
APPEND_F("%s", obj_type_name(obj));
|
|
|
|
if (FIXNUM_P(obj)) {
|
|
APPEND_F(" %ld", FIX2LONG(obj));
|
|
}
|
|
else if (SYMBOL_P(obj)) {
|
|
APPEND_F(" %s", rb_id2name(SYM2ID(obj)));
|
|
}
|
|
}
|
|
else {
|
|
const int age = RVALUE_AGE_GET(obj);
|
|
|
|
if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
|
|
APPEND_F("%p [%d%s%s%s%s%s%s] %s ",
|
|
(void *)obj, age,
|
|
C(RVALUE_UNCOLLECTIBLE(obj), "L"),
|
|
C(RVALUE_MARKED(obj), "M"),
|
|
C(RVALUE_PINNED(obj), "P"),
|
|
C(RVALUE_MARKING(obj), "R"),
|
|
C(RVALUE_WB_UNPROTECTED(obj), "U"),
|
|
C(rb_objspace_garbage_object_p(obj), "G"),
|
|
obj_type_name(obj));
|
|
}
|
|
else {
|
|
/* fake */
|
|
APPEND_F("%p [%dXXXX] %s",
|
|
(void *)obj, age,
|
|
obj_type_name(obj));
|
|
}
|
|
|
|
if (internal_object_p(obj)) {
|
|
/* ignore */
|
|
}
|
|
else if (RBASIC(obj)->klass == 0) {
|
|
APPEND_S("(temporary internal)");
|
|
}
|
|
else if (RTEST(RBASIC(obj)->klass)) {
|
|
VALUE class_path = rb_class_path_cached(RBASIC(obj)->klass);
|
|
if (!NIL_P(class_path)) {
|
|
APPEND_F("(%s)", RSTRING_PTR(class_path));
|
|
}
|
|
}
|
|
|
|
#if GC_DEBUG
|
|
APPEND_F("@%s:%d", GET_RVALUE_OVERHEAD(obj)->file, GET_RVALUE_OVERHEAD(obj)->line);
|
|
#endif
|
|
}
|
|
end:
|
|
|
|
return pos;
|
|
}
|
|
|
|
static size_t
|
|
rb_raw_obj_info_buitin_type(char *const buff, const size_t buff_size, const VALUE obj, size_t pos)
|
|
{
|
|
if (LIKELY(pos < buff_size) && !SPECIAL_CONST_P(obj)) {
|
|
const enum ruby_value_type type = BUILTIN_TYPE(obj);
|
|
|
|
switch (type) {
|
|
case T_NODE:
|
|
UNEXPECTED_NODE(rb_raw_obj_info);
|
|
break;
|
|
case T_ARRAY:
|
|
if (ARY_SHARED_P(obj)) {
|
|
APPEND_S("shared -> ");
|
|
rb_raw_obj_info(BUFF_ARGS, ARY_SHARED_ROOT(obj));
|
|
}
|
|
else if (ARY_EMBED_P(obj)) {
|
|
APPEND_F("[%s%s] len: %ld (embed)",
|
|
C(ARY_EMBED_P(obj), "E"),
|
|
C(ARY_SHARED_P(obj), "S"),
|
|
RARRAY_LEN(obj));
|
|
}
|
|
else {
|
|
APPEND_F("[%s%s] len: %ld, capa:%ld ptr:%p",
|
|
C(ARY_EMBED_P(obj), "E"),
|
|
C(ARY_SHARED_P(obj), "S"),
|
|
RARRAY_LEN(obj),
|
|
ARY_EMBED_P(obj) ? -1L : RARRAY(obj)->as.heap.aux.capa,
|
|
(void *)RARRAY_CONST_PTR(obj));
|
|
}
|
|
break;
|
|
case T_STRING: {
|
|
if (STR_SHARED_P(obj)) {
|
|
APPEND_F(" [shared] len: %ld", RSTRING_LEN(obj));
|
|
}
|
|
else {
|
|
if (STR_EMBED_P(obj)) APPEND_S(" [embed]");
|
|
|
|
APPEND_F(" len: %ld, capa: %" PRIdSIZE, RSTRING_LEN(obj), rb_str_capacity(obj));
|
|
}
|
|
APPEND_F(" \"%.*s\"", str_len_no_raise(obj), RSTRING_PTR(obj));
|
|
break;
|
|
}
|
|
case T_SYMBOL: {
|
|
VALUE fstr = RSYMBOL(obj)->fstr;
|
|
ID id = RSYMBOL(obj)->id;
|
|
if (RB_TYPE_P(fstr, T_STRING)) {
|
|
APPEND_F(":%s id:%d", RSTRING_PTR(fstr), (unsigned int)id);
|
|
}
|
|
else {
|
|
APPEND_F("(%p) id:%d", (void *)fstr, (unsigned int)id);
|
|
}
|
|
break;
|
|
}
|
|
case T_MOVED: {
|
|
APPEND_F("-> %p", (void*)rb_gc_location(obj));
|
|
break;
|
|
}
|
|
case T_HASH: {
|
|
APPEND_F("[%c] %"PRIdSIZE,
|
|
RHASH_AR_TABLE_P(obj) ? 'A' : 'S',
|
|
RHASH_SIZE(obj));
|
|
break;
|
|
}
|
|
case T_CLASS:
|
|
case T_MODULE:
|
|
{
|
|
VALUE class_path = rb_class_path_cached(obj);
|
|
if (!NIL_P(class_path)) {
|
|
APPEND_F("%s", RSTRING_PTR(class_path));
|
|
}
|
|
else {
|
|
APPEND_S("(anon)");
|
|
}
|
|
break;
|
|
}
|
|
case T_ICLASS:
|
|
{
|
|
VALUE class_path = rb_class_path_cached(RBASIC_CLASS(obj));
|
|
if (!NIL_P(class_path)) {
|
|
APPEND_F("src:%s", RSTRING_PTR(class_path));
|
|
}
|
|
break;
|
|
}
|
|
case T_OBJECT:
|
|
{
|
|
if (rb_shape_obj_too_complex(obj)) {
|
|
size_t hash_len = rb_st_table_size(ROBJECT_IV_HASH(obj));
|
|
APPEND_F("(too_complex) len:%zu", hash_len);
|
|
}
|
|
else {
|
|
uint32_t len = ROBJECT_IV_CAPACITY(obj);
|
|
|
|
if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) {
|
|
APPEND_F("(embed) len:%d", len);
|
|
}
|
|
else {
|
|
VALUE *ptr = ROBJECT_IVPTR(obj);
|
|
APPEND_F("len:%d ptr:%p", len, (void *)ptr);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case T_DATA: {
|
|
const struct rb_block *block;
|
|
const rb_iseq_t *iseq;
|
|
if (rb_obj_is_proc(obj) &&
|
|
(block = vm_proc_block(obj)) != NULL &&
|
|
(vm_block_type(block) == block_type_iseq) &&
|
|
(iseq = vm_block_iseq(block)) != NULL) {
|
|
rb_raw_iseq_info(BUFF_ARGS, iseq);
|
|
}
|
|
else if (rb_ractor_p(obj)) {
|
|
rb_ractor_t *r = (void *)DATA_PTR(obj);
|
|
if (r) {
|
|
APPEND_F("r:%d", r->pub.id);
|
|
}
|
|
}
|
|
else {
|
|
const char * const type_name = rb_objspace_data_type_name(obj);
|
|
if (type_name) {
|
|
APPEND_F("%s", type_name);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case T_IMEMO: {
|
|
APPEND_F("<%s> ", rb_imemo_name(imemo_type(obj)));
|
|
|
|
switch (imemo_type(obj)) {
|
|
case imemo_ment:
|
|
{
|
|
const rb_method_entry_t *me = &RANY(obj)->as.imemo.ment;
|
|
|
|
APPEND_F(":%s (%s%s%s%s) type:%s aliased:%d owner:%p defined_class:%p",
|
|
rb_id2name(me->called_id),
|
|
METHOD_ENTRY_VISI(me) == METHOD_VISI_PUBLIC ? "pub" :
|
|
METHOD_ENTRY_VISI(me) == METHOD_VISI_PRIVATE ? "pri" : "pro",
|
|
METHOD_ENTRY_COMPLEMENTED(me) ? ",cmp" : "",
|
|
METHOD_ENTRY_CACHED(me) ? ",cc" : "",
|
|
METHOD_ENTRY_INVALIDATED(me) ? ",inv" : "",
|
|
me->def ? rb_method_type_name(me->def->type) : "NULL",
|
|
me->def ? me->def->aliased : -1,
|
|
(void *)me->owner, // obj_info(me->owner),
|
|
(void *)me->defined_class); //obj_info(me->defined_class)));
|
|
|
|
if (me->def) {
|
|
switch (me->def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
APPEND_S(" (iseq:");
|
|
rb_raw_obj_info(BUFF_ARGS, (VALUE)me->def->body.iseq.iseqptr);
|
|
APPEND_S(")");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case imemo_iseq: {
|
|
const rb_iseq_t *iseq = (const rb_iseq_t *)obj;
|
|
rb_raw_iseq_info(BUFF_ARGS, iseq);
|
|
break;
|
|
}
|
|
case imemo_callinfo:
|
|
{
|
|
const struct rb_callinfo *ci = (const struct rb_callinfo *)obj;
|
|
APPEND_F("(mid:%s, flag:%x argc:%d, kwarg:%s)",
|
|
rb_id2name(vm_ci_mid(ci)),
|
|
vm_ci_flag(ci),
|
|
vm_ci_argc(ci),
|
|
vm_ci_kwarg(ci) ? "available" : "NULL");
|
|
break;
|
|
}
|
|
case imemo_callcache:
|
|
{
|
|
const struct rb_callcache *cc = (const struct rb_callcache *)obj;
|
|
VALUE class_path = cc->klass ? rb_class_path_cached(cc->klass) : Qnil;
|
|
const rb_callable_method_entry_t *cme = vm_cc_cme(cc);
|
|
|
|
APPEND_F("(klass:%s cme:%s%s (%p) call:%p",
|
|
NIL_P(class_path) ? (cc->klass ? "??" : "<NULL>") : RSTRING_PTR(class_path),
|
|
cme ? rb_id2name(cme->called_id) : "<NULL>",
|
|
cme ? (METHOD_ENTRY_INVALIDATED(cme) ? " [inv]" : "") : "",
|
|
(void *)cme,
|
|
(void *)vm_cc_call(cc));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
end:
|
|
|
|
return pos;
|
|
}
|
|
|
|
#undef C
|
|
|
|
const char *
|
|
rb_raw_obj_info(char *const buff, const size_t buff_size, VALUE obj)
|
|
{
|
|
asan_unpoisoning_object(obj) {
|
|
size_t pos = rb_raw_obj_info_common(buff, buff_size, obj);
|
|
pos = rb_raw_obj_info_buitin_type(buff, buff_size, obj, pos);
|
|
if (pos >= buff_size) {} // truncated
|
|
}
|
|
|
|
return buff;
|
|
}
|
|
|
|
#undef APPEND_S
|
|
#undef APPEND_F
|
|
#undef BUFF_ARGS
|
|
|
|
#if RGENGC_OBJ_INFO
|
|
#define OBJ_INFO_BUFFERS_NUM 10
|
|
#define OBJ_INFO_BUFFERS_SIZE 0x100
|
|
static rb_atomic_t obj_info_buffers_index = 0;
|
|
static char obj_info_buffers[OBJ_INFO_BUFFERS_NUM][OBJ_INFO_BUFFERS_SIZE];
|
|
|
|
/* Increments *var atomically and resets *var to 0 when maxval is
|
|
* reached. Returns the wraparound old *var value (0...maxval). */
|
|
static rb_atomic_t
|
|
atomic_inc_wraparound(rb_atomic_t *var, const rb_atomic_t maxval)
|
|
{
|
|
rb_atomic_t oldval = RUBY_ATOMIC_FETCH_ADD(*var, 1);
|
|
if (UNLIKELY(oldval >= maxval - 1)) { // wraparound *var
|
|
const rb_atomic_t newval = oldval + 1;
|
|
RUBY_ATOMIC_CAS(*var, newval, newval % maxval);
|
|
oldval %= maxval;
|
|
}
|
|
return oldval;
|
|
}
|
|
|
|
static const char *
|
|
obj_info(VALUE obj)
|
|
{
|
|
rb_atomic_t index = atomic_inc_wraparound(&obj_info_buffers_index, OBJ_INFO_BUFFERS_NUM);
|
|
char *const buff = obj_info_buffers[index];
|
|
return rb_raw_obj_info(buff, OBJ_INFO_BUFFERS_SIZE, obj);
|
|
}
|
|
|
|
static const char *
|
|
obj_info_basic(VALUE obj)
|
|
{
|
|
rb_atomic_t index = atomic_inc_wraparound(&obj_info_buffers_index, OBJ_INFO_BUFFERS_NUM);
|
|
char *const buff = obj_info_buffers[index];
|
|
|
|
asan_unpoisoning_object(obj) {
|
|
rb_raw_obj_info_common(buff, OBJ_INFO_BUFFERS_SIZE, obj);
|
|
}
|
|
|
|
return buff;
|
|
}
|
|
#else
|
|
static const char *
|
|
obj_info(VALUE obj)
|
|
{
|
|
return obj_type_name(obj);
|
|
}
|
|
|
|
static const char *
|
|
obj_info_basic(VALUE obj)
|
|
{
|
|
return obj_type_name(obj);
|
|
}
|
|
|
|
#endif
|
|
|
|
const char *
|
|
rb_obj_info(VALUE obj)
|
|
{
|
|
return obj_info(obj);
|
|
}
|
|
|
|
void
|
|
rb_obj_info_dump(VALUE obj)
|
|
{
|
|
char buff[0x100];
|
|
fprintf(stderr, "rb_obj_info_dump: %s\n", rb_raw_obj_info(buff, 0x100, obj));
|
|
}
|
|
|
|
void
|
|
rb_obj_info_dump_loc(VALUE obj, const char *file, int line, const char *func)
|
|
{
|
|
char buff[0x100];
|
|
fprintf(stderr, "<OBJ_INFO:%s@%s:%d> %s\n", func, file, line, rb_raw_obj_info(buff, 0x100, obj));
|
|
}
|
|
|
|
#if GC_DEBUG
|
|
|
|
void
|
|
rb_gcdebug_print_obj_condition(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
fprintf(stderr, "created at: %s:%d\n", GET_RVALUE_OVERHEAD(obj)->file, GET_RVALUE_OVERHEAD(obj)->line);
|
|
|
|
if (BUILTIN_TYPE(obj) == T_MOVED) {
|
|
fprintf(stderr, "moved?: true\n");
|
|
}
|
|
else {
|
|
fprintf(stderr, "moved?: false\n");
|
|
}
|
|
if (is_pointer_to_heap(objspace, (void *)obj)) {
|
|
fprintf(stderr, "pointer to heap?: true\n");
|
|
}
|
|
else {
|
|
fprintf(stderr, "pointer to heap?: false\n");
|
|
return;
|
|
}
|
|
|
|
fprintf(stderr, "marked? : %s\n", RVALUE_MARKED(obj) ? "true" : "false");
|
|
fprintf(stderr, "pinned? : %s\n", RVALUE_PINNED(obj) ? "true" : "false");
|
|
fprintf(stderr, "age? : %d\n", RVALUE_AGE_GET(obj));
|
|
fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false");
|
|
fprintf(stderr, "WB-protected?: %s\n", RVALUE_WB_UNPROTECTED(obj) ? "false" : "true");
|
|
fprintf(stderr, "remembered? : %s\n", RVALUE_REMEMBERED(obj) ? "true" : "false");
|
|
|
|
if (is_lazy_sweeping(objspace)) {
|
|
fprintf(stderr, "lazy sweeping?: true\n");
|
|
fprintf(stderr, "page swept?: %s\n", GET_HEAP_PAGE(obj)->flags.before_sweep ? "false" : "true");
|
|
}
|
|
else {
|
|
fprintf(stderr, "lazy sweeping?: false\n");
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
gcdebug_sentinel(RB_BLOCK_CALL_FUNC_ARGLIST(obj, name))
|
|
{
|
|
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
|
|
return Qnil;
|
|
}
|
|
|
|
void
|
|
rb_gcdebug_sentinel(VALUE obj, const char *name)
|
|
{
|
|
rb_define_finalizer(obj, rb_proc_new(gcdebug_sentinel, (VALUE)name));
|
|
}
|
|
|
|
#endif /* GC_DEBUG */
|
|
|
|
/* :nodoc:
|
|
*
|
|
* call-seq:
|
|
* GC.add_stress_to_class(class[, ...])
|
|
*
|
|
* Raises NoMemoryError when allocating an instance of the given classes.
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (!stress_to_class) {
|
|
set_stress_to_class(rb_ary_hidden_new(argc));
|
|
}
|
|
rb_ary_cat(stress_to_class, argv, argc);
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc:
|
|
*
|
|
* call-seq:
|
|
* GC.remove_stress_to_class(class[, ...])
|
|
*
|
|
* No longer raises NoMemoryError when allocating an instance of the
|
|
* given classes.
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
int i;
|
|
|
|
if (stress_to_class) {
|
|
for (i = 0; i < argc; ++i) {
|
|
rb_ary_delete_same(stress_to_class, argv[i]);
|
|
}
|
|
if (RARRAY_LEN(stress_to_class) == 0) {
|
|
set_stress_to_class(0);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* Document-module: ObjectSpace
|
|
*
|
|
* The ObjectSpace module contains a number of routines
|
|
* that interact with the garbage collection facility and allow you to
|
|
* traverse all living objects with an iterator.
|
|
*
|
|
* ObjectSpace also provides support for object finalizers, procs that will be
|
|
* called after a specific object was destroyed by garbage collection. See
|
|
* the documentation for +ObjectSpace.define_finalizer+ for important
|
|
* information on how to use this method correctly.
|
|
*
|
|
* a = "A"
|
|
* b = "B"
|
|
*
|
|
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
|
|
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
|
|
*
|
|
* a = nil
|
|
* b = nil
|
|
*
|
|
* _produces:_
|
|
*
|
|
* Finalizer two on 537763470
|
|
* Finalizer one on 537763480
|
|
*/
|
|
|
|
/* Document-class: GC::Profiler
|
|
*
|
|
* The GC profiler provides access to information on GC runs including time,
|
|
* length and object space size.
|
|
*
|
|
* Example:
|
|
*
|
|
* GC::Profiler.enable
|
|
*
|
|
* require 'rdoc/rdoc'
|
|
*
|
|
* GC::Profiler.report
|
|
*
|
|
* GC::Profiler.disable
|
|
*
|
|
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
|
|
*/
|
|
|
|
#include "gc.rbinc"
|
|
|
|
void
|
|
Init_GC(void)
|
|
{
|
|
#if USE_SHARED_GC
|
|
if (getenv(RUBY_GC_LIBRARY_PATH) != NULL && !dln_supported_p()) {
|
|
rb_warn(RUBY_GC_LIBRARY_PATH " is ignored because this executable file can't load extension libraries");
|
|
}
|
|
#endif
|
|
|
|
#undef rb_intern
|
|
malloc_offset = gc_compute_malloc_offset();
|
|
|
|
VALUE rb_mObjSpace;
|
|
VALUE rb_mProfiler;
|
|
VALUE gc_constants;
|
|
|
|
rb_mGC = rb_define_module("GC");
|
|
|
|
gc_constants = rb_hash_new();
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("DEBUG")), RBOOL(GC_DEBUG));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("BASE_SLOT_SIZE")), SIZET2NUM(BASE_SLOT_SIZE - RVALUE_OVERHEAD));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_OVERHEAD")), SIZET2NUM(RVALUE_OVERHEAD));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(BASE_SLOT_SIZE));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_OBJ_LIMIT")), SIZET2NUM(HEAP_PAGE_OBJ_LIMIT));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_BITMAP_SIZE")), SIZET2NUM(HEAP_PAGE_BITMAP_SIZE));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_SIZE")), SIZET2NUM(HEAP_PAGE_SIZE));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("SIZE_POOL_COUNT")), LONG2FIX(SIZE_POOL_COUNT));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVARGC_MAX_ALLOCATE_SIZE")), LONG2FIX(size_pool_slot_size(SIZE_POOL_COUNT - 1)));
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_OLD_AGE")), LONG2FIX(RVALUE_OLD_AGE));
|
|
if (RB_BUG_INSTEAD_OF_RB_MEMERROR+0) {
|
|
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RB_BUG_INSTEAD_OF_RB_MEMERROR")), Qtrue);
|
|
}
|
|
OBJ_FREEZE(gc_constants);
|
|
/* Internal constants in the garbage collector. */
|
|
rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants);
|
|
|
|
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
|
|
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
|
|
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
|
|
|
|
rb_mObjSpace = rb_define_module("ObjectSpace");
|
|
|
|
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
|
|
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "_id2ref", os_id2ref, 1);
|
|
|
|
rb_vm_register_special_exception(ruby_error_nomemory, rb_eNoMemError, "failed to allocate memory");
|
|
|
|
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
|
|
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
|
|
|
|
/* internal methods */
|
|
rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency_m, 0);
|
|
#if MALLOC_ALLOCATED_SIZE
|
|
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
|
|
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
|
|
#endif
|
|
|
|
if (GC_COMPACTION_SUPPORTED) {
|
|
rb_define_singleton_method(rb_mGC, "compact", gc_compact, 0);
|
|
rb_define_singleton_method(rb_mGC, "auto_compact", gc_get_auto_compact, 0);
|
|
rb_define_singleton_method(rb_mGC, "auto_compact=", gc_set_auto_compact, 1);
|
|
rb_define_singleton_method(rb_mGC, "latest_compact_info", gc_compact_stats, 0);
|
|
}
|
|
else {
|
|
rb_define_singleton_method(rb_mGC, "compact", rb_f_notimplement, 0);
|
|
rb_define_singleton_method(rb_mGC, "auto_compact", rb_f_notimplement, 0);
|
|
rb_define_singleton_method(rb_mGC, "auto_compact=", rb_f_notimplement, 1);
|
|
rb_define_singleton_method(rb_mGC, "latest_compact_info", rb_f_notimplement, 0);
|
|
/* When !GC_COMPACTION_SUPPORTED, this method is not defined in gc.rb */
|
|
rb_define_singleton_method(rb_mGC, "verify_compaction_references", rb_f_notimplement, -1);
|
|
}
|
|
|
|
if (GC_DEBUG_STRESS_TO_CLASS) {
|
|
rb_define_singleton_method(rb_mGC, "add_stress_to_class", rb_gcdebug_add_stress_to_class, -1);
|
|
rb_define_singleton_method(rb_mGC, "remove_stress_to_class", rb_gcdebug_remove_stress_to_class, -1);
|
|
}
|
|
|
|
{
|
|
VALUE opts;
|
|
/* \GC build options */
|
|
rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new());
|
|
#define OPT(o) if (o) rb_ary_push(opts, rb_fstring_lit(#o))
|
|
OPT(GC_DEBUG);
|
|
OPT(USE_RGENGC);
|
|
OPT(RGENGC_DEBUG);
|
|
OPT(RGENGC_CHECK_MODE);
|
|
OPT(RGENGC_PROFILE);
|
|
OPT(RGENGC_ESTIMATE_OLDMALLOC);
|
|
OPT(GC_PROFILE_MORE_DETAIL);
|
|
OPT(GC_ENABLE_LAZY_SWEEP);
|
|
OPT(CALC_EXACT_MALLOC_SIZE);
|
|
OPT(MALLOC_ALLOCATED_SIZE);
|
|
OPT(MALLOC_ALLOCATED_SIZE_CHECK);
|
|
OPT(GC_PROFILE_DETAIL_MEMORY);
|
|
OPT(GC_COMPACTION_SUPPORTED);
|
|
#undef OPT
|
|
OBJ_FREEZE(opts);
|
|
}
|
|
}
|
|
|
|
#ifdef ruby_xmalloc
|
|
#undef ruby_xmalloc
|
|
#endif
|
|
#ifdef ruby_xmalloc2
|
|
#undef ruby_xmalloc2
|
|
#endif
|
|
#ifdef ruby_xcalloc
|
|
#undef ruby_xcalloc
|
|
#endif
|
|
#ifdef ruby_xrealloc
|
|
#undef ruby_xrealloc
|
|
#endif
|
|
#ifdef ruby_xrealloc2
|
|
#undef ruby_xrealloc2
|
|
#endif
|
|
|
|
void *
|
|
ruby_xmalloc(size_t size)
|
|
{
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
ruby_malloc_info_file = __FILE__;
|
|
ruby_malloc_info_line = __LINE__;
|
|
#endif
|
|
return ruby_xmalloc_body(size);
|
|
}
|
|
|
|
void *
|
|
ruby_xmalloc2(size_t n, size_t size)
|
|
{
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
ruby_malloc_info_file = __FILE__;
|
|
ruby_malloc_info_line = __LINE__;
|
|
#endif
|
|
return ruby_xmalloc2_body(n, size);
|
|
}
|
|
|
|
void *
|
|
ruby_xcalloc(size_t n, size_t size)
|
|
{
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
ruby_malloc_info_file = __FILE__;
|
|
ruby_malloc_info_line = __LINE__;
|
|
#endif
|
|
return ruby_xcalloc_body(n, size);
|
|
}
|
|
|
|
void *
|
|
ruby_xrealloc(void *ptr, size_t new_size)
|
|
{
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
ruby_malloc_info_file = __FILE__;
|
|
ruby_malloc_info_line = __LINE__;
|
|
#endif
|
|
return ruby_xrealloc_body(ptr, new_size);
|
|
}
|
|
|
|
void *
|
|
ruby_xrealloc2(void *ptr, size_t n, size_t new_size)
|
|
{
|
|
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
|
|
ruby_malloc_info_file = __FILE__;
|
|
ruby_malloc_info_line = __LINE__;
|
|
#endif
|
|
return ruby_xrealloc2_body(ptr, n, new_size);
|
|
}
|