ruby/hash.c

7465 строки
199 KiB
C

/**********************************************************************
hash.c -
$Author$
created at: Mon Nov 22 18:51:18 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/internal/config.h"
#include <errno.h>
#ifdef __APPLE__
# ifdef HAVE_CRT_EXTERNS_H
# include <crt_externs.h>
# else
# include "missing/crt_externs.h"
# endif
#endif
#include "debug_counter.h"
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/bignum.h"
#include "internal/basic_operators.h"
#include "internal/class.h"
#include "internal/cont.h"
#include "internal/error.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/proc.h"
#include "internal/symbol.h"
#include "internal/thread.h"
#include "internal/time.h"
#include "internal/vm.h"
#include "probes.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include "ruby_assert.h"
#include "symbol.h"
#include "transient_heap.h"
#include "ruby/thread_native.h"
#include "ruby/ractor.h"
#include "vm_sync.h"
#ifndef HASH_DEBUG
#define HASH_DEBUG 0
#endif
#if HASH_DEBUG
#include "internal/gc.h"
#endif
#define SET_DEFAULT(hash, ifnone) ( \
FL_UNSET_RAW(hash, RHASH_PROC_DEFAULT), \
RHASH_SET_IFNONE(hash, ifnone))
#define SET_PROC_DEFAULT(hash, proc) set_proc_default(hash, proc)
#define COPY_DEFAULT(hash, hash2) copy_default(RHASH(hash), RHASH(hash2))
static inline void
copy_default(struct RHash *hash, const struct RHash *hash2)
{
hash->basic.flags &= ~RHASH_PROC_DEFAULT;
hash->basic.flags |= hash2->basic.flags & RHASH_PROC_DEFAULT;
RHASH_SET_IFNONE(hash, RHASH_IFNONE((VALUE)hash2));
}
static VALUE rb_hash_s_try_convert(VALUE, VALUE);
/*
* Hash WB strategy:
* 1. Check mutate st_* functions
* * st_insert()
* * st_insert2()
* * st_update()
* * st_add_direct()
* 2. Insert WBs
*/
VALUE
rb_hash_freeze(VALUE hash)
{
return rb_obj_freeze(hash);
}
VALUE rb_cHash;
static VALUE envtbl;
static ID id_hash, id_flatten_bang;
static ID id_hash_iter_lev;
#define id_default idDefault
VALUE
rb_hash_set_ifnone(VALUE hash, VALUE ifnone)
{
RB_OBJ_WRITE(hash, (&RHASH(hash)->ifnone), ifnone);
return hash;
}
static int
rb_any_cmp(VALUE a, VALUE b)
{
if (a == b) return 0;
if (RB_TYPE_P(a, T_STRING) && RBASIC(a)->klass == rb_cString &&
RB_TYPE_P(b, T_STRING) && RBASIC(b)->klass == rb_cString) {
return rb_str_hash_cmp(a, b);
}
if (UNDEF_P(a) || UNDEF_P(b)) return -1;
if (SYMBOL_P(a) && SYMBOL_P(b)) {
return a != b;
}
return !rb_eql(a, b);
}
static VALUE
hash_recursive(VALUE obj, VALUE arg, int recurse)
{
if (recurse) return INT2FIX(0);
return rb_funcallv(obj, id_hash, 0, 0);
}
static long rb_objid_hash(st_index_t index);
static st_index_t
dbl_to_index(double d)
{
union {double d; st_index_t i;} u;
u.d = d;
return u.i;
}
long
rb_dbl_long_hash(double d)
{
/* normalize -0.0 to 0.0 */
if (d == 0.0) d = 0.0;
#if SIZEOF_INT == SIZEOF_VOIDP
return rb_memhash(&d, sizeof(d));
#else
return rb_objid_hash(dbl_to_index(d));
#endif
}
static inline long
any_hash(VALUE a, st_index_t (*other_func)(VALUE))
{
VALUE hval;
st_index_t hnum;
switch (TYPE(a)) {
case T_SYMBOL:
if (STATIC_SYM_P(a)) {
hnum = a >> (RUBY_SPECIAL_SHIFT + ID_SCOPE_SHIFT);
hnum = rb_hash_start(hnum);
}
else {
hnum = RSYMBOL(a)->hashval;
}
break;
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
case T_NIL:
hnum = rb_objid_hash((st_index_t)a);
break;
case T_STRING:
hnum = rb_str_hash(a);
break;
case T_BIGNUM:
hval = rb_big_hash(a);
hnum = FIX2LONG(hval);
break;
case T_FLOAT: /* prevent pathological behavior: [Bug #10761] */
hnum = rb_dbl_long_hash(rb_float_value(a));
break;
default:
hnum = other_func(a);
}
if ((SIGNED_VALUE)hnum > 0)
hnum &= FIXNUM_MAX;
else
hnum |= FIXNUM_MIN;
return (long)hnum;
}
static st_index_t
obj_any_hash(VALUE obj)
{
VALUE hval = rb_check_funcall_basic_kw(obj, id_hash, rb_mKernel, 0, 0, 0);
if (UNDEF_P(hval)) {
hval = rb_exec_recursive_outer_mid(hash_recursive, obj, 0, id_hash);
}
while (!FIXNUM_P(hval)) {
if (RB_TYPE_P(hval, T_BIGNUM)) {
int sign;
unsigned long ul;
sign = rb_integer_pack(hval, &ul, 1, sizeof(ul), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
if (sign < 0) {
hval = LONG2FIX(ul | FIXNUM_MIN);
}
else {
hval = LONG2FIX(ul & FIXNUM_MAX);
}
}
hval = rb_to_int(hval);
}
return FIX2LONG(hval);
}
static st_index_t
rb_any_hash(VALUE a)
{
return any_hash(a, obj_any_hash);
}
VALUE
rb_hash(VALUE obj)
{
return LONG2FIX(any_hash(obj, obj_any_hash));
}
/* Here is a hash function for 64-bit key. It is about 5 times faster
(2 times faster when uint128 type is absent) on Haswell than
tailored Spooky or City hash function can be. */
/* Here we two primes with random bit generation. */
static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5;
static const uint32_t prime2 = 0x830fcab9;
static inline uint64_t
mult_and_mix(uint64_t m1, uint64_t m2)
{
#if defined HAVE_UINT128_T
uint128_t r = (uint128_t) m1 * (uint128_t) m2;
return (uint64_t) (r >> 64) ^ (uint64_t) r;
#else
uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32;
uint64_t lm1 = m1, lm2 = m2;
uint64_t v64_128 = hm1 * hm2;
uint64_t v32_96 = hm1 * lm2 + lm1 * hm2;
uint64_t v1_32 = lm1 * lm2;
return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32);
#endif
}
static inline uint64_t
key64_hash(uint64_t key, uint32_t seed)
{
return mult_and_mix(key + seed, prime1);
}
/* Should cast down the result for each purpose */
#define st_index_hash(index) key64_hash(rb_hash_start(index), prime2)
static long
rb_objid_hash(st_index_t index)
{
return (long)st_index_hash(index);
}
static st_index_t
objid_hash(VALUE obj)
{
VALUE object_id = rb_obj_id(obj);
if (!FIXNUM_P(object_id))
object_id = rb_big_hash(object_id);
#if SIZEOF_LONG == SIZEOF_VOIDP
return (st_index_t)st_index_hash((st_index_t)NUM2LONG(object_id));
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
return (st_index_t)st_index_hash((st_index_t)NUM2LL(object_id));
#endif
}
/**
* call-seq:
* obj.hash -> integer
*
* Generates an Integer hash value for this object. This function must have the
* property that <code>a.eql?(b)</code> implies <code>a.hash == b.hash</code>.
*
* The hash value is used along with #eql? by the Hash class to determine if
* two objects reference the same hash key. Any hash value that exceeds the
* capacity of an Integer will be truncated before being used.
*
* The hash value for an object may not be identical across invocations or
* implementations of Ruby. If you need a stable identifier across Ruby
* invocations and implementations you will need to generate one with a custom
* method.
*
* Certain core classes such as Integer use built-in hash calculations and
* do not call the #hash method when used as a hash key.
*
* When implementing your own #hash based on multiple values, the best
* practice is to combine the class and any values using the hash code of an
* array:
*
* For example:
*
* def hash
* [self.class, a, b, c].hash
* end
*
* The reason for this is that the Array#hash method already has logic for
* safely and efficiently combining multiple hash values.
*--
* \private
*++
*/
VALUE
rb_obj_hash(VALUE obj)
{
long hnum = any_hash(obj, objid_hash);
return ST2FIX(hnum);
}
static const struct st_hash_type objhash = {
rb_any_cmp,
rb_any_hash,
};
#define rb_ident_cmp st_numcmp
static st_index_t
rb_ident_hash(st_data_t n)
{
#ifdef USE_FLONUM /* RUBY */
/*
* - flonum (on 64-bit) is pathologically bad, mix the actual
* float value in, but do not use the float value as-is since
* many integers get interpreted as 2.0 or -2.0 [Bug #10761]
*/
if (FLONUM_P(n)) {
n ^= dbl_to_index(rb_float_value(n));
}
#endif
return (st_index_t)st_index_hash((st_index_t)n);
}
#define identhash rb_hashtype_ident
const struct st_hash_type rb_hashtype_ident = {
rb_ident_cmp,
rb_ident_hash,
};
typedef st_index_t st_hash_t;
/*
* RHASH_AR_TABLE_P(h):
* * as.ar == NULL or
* as.ar points ar_table.
* * as.ar is allocated by transient heap or xmalloc.
*
* !RHASH_AR_TABLE_P(h):
* * as.st points st_table.
*/
#define RHASH_AR_TABLE_MAX_BOUND RHASH_AR_TABLE_MAX_SIZE
#define RHASH_AR_TABLE_REF(hash, n) (&RHASH_AR_TABLE(hash)->pairs[n])
#define RHASH_AR_CLEARED_HINT 0xff
typedef struct ar_table_pair_struct {
VALUE key;
VALUE val;
} ar_table_pair;
typedef struct ar_table_struct {
/* 64bit CPU: 8B * 2 * 8 = 128B */
ar_table_pair pairs[RHASH_AR_TABLE_MAX_SIZE];
} ar_table;
size_t
rb_hash_ar_table_size(void)
{
return sizeof(ar_table);
}
static inline st_hash_t
ar_do_hash(st_data_t key)
{
return (st_hash_t)rb_any_hash(key);
}
static inline ar_hint_t
ar_do_hash_hint(st_hash_t hash_value)
{
return (ar_hint_t)hash_value;
}
static inline ar_hint_t
ar_hint(VALUE hash, unsigned int index)
{
return RHASH(hash)->ar_hint.ary[index];
}
static inline void
ar_hint_set_hint(VALUE hash, unsigned int index, ar_hint_t hint)
{
RHASH(hash)->ar_hint.ary[index] = hint;
}
static inline void
ar_hint_set(VALUE hash, unsigned int index, st_hash_t hash_value)
{
ar_hint_set_hint(hash, index, ar_do_hash_hint(hash_value));
}
static inline void
ar_clear_entry(VALUE hash, unsigned int index)
{
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index);
pair->key = Qundef;
ar_hint_set_hint(hash, index, RHASH_AR_CLEARED_HINT);
}
static inline int
ar_cleared_entry(VALUE hash, unsigned int index)
{
if (ar_hint(hash, index) == RHASH_AR_CLEARED_HINT) {
/* RHASH_AR_CLEARED_HINT is only a hint, not mean cleared entry,
* so you need to check key == Qundef
*/
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index);
return UNDEF_P(pair->key);
}
else {
return FALSE;
}
}
static inline void
ar_set_entry(VALUE hash, unsigned int index, st_data_t key, st_data_t val, st_hash_t hash_value)
{
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index);
pair->key = key;
pair->val = val;
ar_hint_set(hash, index, hash_value);
}
#define RHASH_AR_TABLE_SIZE(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \
RHASH_AR_TABLE_SIZE_RAW(h))
#define RHASH_AR_TABLE_BOUND_RAW(h) \
((unsigned int)((RBASIC(h)->flags >> RHASH_AR_TABLE_BOUND_SHIFT) & \
(RHASH_AR_TABLE_BOUND_MASK >> RHASH_AR_TABLE_BOUND_SHIFT)))
#define RHASH_AR_TABLE_BOUND(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \
RHASH_AR_TABLE_BOUND_RAW(h))
#define RHASH_ST_TABLE_SET(h, s) rb_hash_st_table_set(h, s)
#define RHASH_TYPE(hash) (RHASH_AR_TABLE_P(hash) ? &objhash : RHASH_ST_TABLE(hash)->type)
#define HASH_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(HASH_DEBUG, expr, #expr)
#if HASH_DEBUG
#define hash_verify(hash) hash_verify_(hash, __FILE__, __LINE__)
void
rb_hash_dump(VALUE hash)
{
rb_obj_info_dump(hash);
if (RHASH_AR_TABLE_P(hash)) {
unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash);
fprintf(stderr, " size:%u bound:%u\n",
RHASH_AR_TABLE_SIZE(hash), RHASH_AR_TABLE_BOUND(hash));
for (i=0; i<bound; i++) {
st_data_t k, v;
if (!ar_cleared_entry(hash, i)) {
char b1[0x100], b2[0x100];
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
k = pair->key;
v = pair->val;
fprintf(stderr, " %d key:%s val:%s hint:%02x\n", i,
rb_raw_obj_info(b1, 0x100, k),
rb_raw_obj_info(b2, 0x100, v),
ar_hint(hash, i));
n++;
}
else {
fprintf(stderr, " %d empty\n", i);
}
}
}
}
static VALUE
hash_verify_(VALUE hash, const char *file, int line)
{
HASH_ASSERT(RB_TYPE_P(hash, T_HASH));
if (RHASH_AR_TABLE_P(hash)) {
unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash);
for (i=0; i<bound; i++) {
st_data_t k, v;
if (!ar_cleared_entry(hash, i)) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
k = pair->key;
v = pair->val;
HASH_ASSERT(!UNDEF_P(k));
HASH_ASSERT(!UNDEF_P(v));
n++;
}
}
if (n != RHASH_AR_TABLE_SIZE(hash)) {
rb_bug("n:%u, RHASH_AR_TABLE_SIZE:%u", n, RHASH_AR_TABLE_SIZE(hash));
}
}
else {
HASH_ASSERT(RHASH_ST_TABLE(hash) != NULL);
HASH_ASSERT(RHASH_AR_TABLE_SIZE_RAW(hash) == 0);
HASH_ASSERT(RHASH_AR_TABLE_BOUND_RAW(hash) == 0);
}
#if USE_TRANSIENT_HEAP
if (RHASH_TRANSIENT_P(hash)) {
volatile st_data_t MAYBE_UNUSED(key) = RHASH_AR_TABLE_REF(hash, 0)->key; /* read */
HASH_ASSERT(RHASH_AR_TABLE(hash) != NULL);
HASH_ASSERT(rb_transient_heap_managed_ptr_p(RHASH_AR_TABLE(hash)));
}
#endif
return hash;
}
#else
#define hash_verify(h) ((void)0)
#endif
static inline int
RHASH_TABLE_NULL_P(VALUE hash)
{
if (RHASH(hash)->as.ar == NULL) {
HASH_ASSERT(RHASH_AR_TABLE_P(hash));
return TRUE;
}
else {
return FALSE;
}
}
static inline int
RHASH_TABLE_EMPTY_P(VALUE hash)
{
return RHASH_SIZE(hash) == 0;
}
void
rb_hash_st_table_set(VALUE hash, st_table *st)
{
HASH_ASSERT(st != NULL);
FL_SET_RAW((hash), RHASH_ST_TABLE_FLAG);
RHASH(hash)->as.st = st;
}
static void
hash_ar_table_set(VALUE hash, ar_table *ar)
{
HASH_ASSERT(RHASH_AR_TABLE_P(hash));
HASH_ASSERT((RHASH_TRANSIENT_P(hash) && ar == NULL) ? FALSE : TRUE);
RHASH(hash)->as.ar = ar;
hash_verify(hash);
}
#define RHASH_SET_ST_FLAG(h) FL_SET_RAW(h, RHASH_ST_TABLE_FLAG)
#define RHASH_UNSET_ST_FLAG(h) FL_UNSET_RAW(h, RHASH_ST_TABLE_FLAG)
static inline void
RHASH_AR_TABLE_BOUND_SET(VALUE h, st_index_t n)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_BOUND);
RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK;
RBASIC(h)->flags |= n << RHASH_AR_TABLE_BOUND_SHIFT;
}
static inline void
RHASH_AR_TABLE_SIZE_SET(VALUE h, st_index_t n)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_SIZE);
RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK;
RBASIC(h)->flags |= n << RHASH_AR_TABLE_SIZE_SHIFT;
}
static inline void
HASH_AR_TABLE_SIZE_ADD(VALUE h, st_index_t n)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
RHASH_AR_TABLE_SIZE_SET(h, RHASH_AR_TABLE_SIZE(h) + n);
hash_verify(h);
}
#define RHASH_AR_TABLE_SIZE_INC(h) HASH_AR_TABLE_SIZE_ADD(h, 1)
static inline void
RHASH_AR_TABLE_SIZE_DEC(VALUE h)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
int new_size = RHASH_AR_TABLE_SIZE(h) - 1;
if (new_size != 0) {
RHASH_AR_TABLE_SIZE_SET(h, new_size);
}
else {
RHASH_AR_TABLE_SIZE_SET(h, 0);
RHASH_AR_TABLE_BOUND_SET(h, 0);
}
hash_verify(h);
}
static inline void
RHASH_AR_TABLE_CLEAR(VALUE h)
{
RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK;
RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK;
hash_ar_table_set(h, NULL);
}
static ar_table*
ar_alloc_table(VALUE hash)
{
ar_table *tab = (ar_table*)rb_transient_heap_alloc(hash, sizeof(ar_table));
if (tab != NULL) {
RHASH_SET_TRANSIENT_FLAG(hash);
}
else {
RHASH_UNSET_TRANSIENT_FLAG(hash);
tab = (ar_table*)ruby_xmalloc(sizeof(ar_table));
}
RHASH_AR_TABLE_SIZE_SET(hash, 0);
RHASH_AR_TABLE_BOUND_SET(hash, 0);
hash_ar_table_set(hash, tab);
return tab;
}
NOINLINE(static int ar_equal(VALUE x, VALUE y));
static int
ar_equal(VALUE x, VALUE y)
{
return rb_any_cmp(x, y) == 0;
}
static unsigned
ar_find_entry_hint(VALUE hash, ar_hint_t hint, st_data_t key)
{
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
const ar_hint_t *hints = RHASH(hash)->ar_hint.ary;
/* if table is NULL, then bound also should be 0 */
for (i = 0; i < bound; i++) {
if (hints[i] == hint) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
if (ar_equal(key, pair->key)) {
RB_DEBUG_COUNTER_INC(artable_hint_hit);
return i;
}
else {
#if 0
static int pid;
static char fname[256];
static FILE *fp;
if (pid != getpid()) {
snprintf(fname, sizeof(fname), "/tmp/ruby-armiss.%d", pid = getpid());
if ((fp = fopen(fname, "w")) == NULL) rb_bug("fopen");
}
st_hash_t h1 = ar_do_hash(key);
st_hash_t h2 = ar_do_hash(pair->key);
fprintf(fp, "miss: hash_eq:%d hints[%d]:%02x hint:%02x\n"
" key :%016lx %s\n"
" pair->key:%016lx %s\n",
h1 == h2, i, hints[i], hint,
h1, rb_obj_info(key), h2, rb_obj_info(pair->key));
#endif
RB_DEBUG_COUNTER_INC(artable_hint_miss);
}
}
}
RB_DEBUG_COUNTER_INC(artable_hint_notfound);
return RHASH_AR_TABLE_MAX_BOUND;
}
static unsigned
ar_find_entry(VALUE hash, st_hash_t hash_value, st_data_t key)
{
ar_hint_t hint = ar_do_hash_hint(hash_value);
return ar_find_entry_hint(hash, hint, key);
}
static inline void
ar_free_and_clear_table(VALUE hash)
{
ar_table *tab = RHASH_AR_TABLE(hash);
if (tab) {
if (RHASH_TRANSIENT_P(hash)) {
RHASH_UNSET_TRANSIENT_FLAG(hash);
}
else {
ruby_xfree(RHASH_AR_TABLE(hash));
}
RHASH_AR_TABLE_CLEAR(hash);
}
HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0);
HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0);
HASH_ASSERT(RHASH_TRANSIENT_P(hash) == 0);
}
static void
ar_try_convert_table(VALUE hash)
{
if (!RHASH_AR_TABLE_P(hash)) return;
const unsigned size = RHASH_AR_TABLE_SIZE(hash);
st_table *new_tab;
st_index_t i;
if (size < RHASH_AR_TABLE_MAX_SIZE) {
return;
}
new_tab = st_init_table_with_size(&objhash, size * 2);
for (i = 0; i < RHASH_AR_TABLE_MAX_BOUND; i++) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
st_add_direct(new_tab, pair->key, pair->val);
}
ar_free_and_clear_table(hash);
RHASH_ST_TABLE_SET(hash, new_tab);
return;
}
static st_table *
ar_force_convert_table(VALUE hash, const char *file, int line)
{
st_table *new_tab;
if (RHASH_ST_TABLE_P(hash)) {
return RHASH_ST_TABLE(hash);
}
if (RHASH_AR_TABLE(hash)) {
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
#if defined(RHASH_CONVERT_TABLE_DEBUG) && RHASH_CONVERT_TABLE_DEBUG
rb_obj_info_dump(hash);
fprintf(stderr, "force_convert: %s:%d\n", file, line);
RB_DEBUG_COUNTER_INC(obj_hash_force_convert);
#endif
new_tab = st_init_table_with_size(&objhash, RHASH_AR_TABLE_SIZE(hash));
for (i = 0; i < bound; i++) {
if (ar_cleared_entry(hash, i)) continue;
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
st_add_direct(new_tab, pair->key, pair->val);
}
ar_free_and_clear_table(hash);
}
else {
new_tab = st_init_table(&objhash);
}
RHASH_ST_TABLE_SET(hash, new_tab);
return new_tab;
}
static ar_table *
hash_ar_table(VALUE hash)
{
if (RHASH_TABLE_NULL_P(hash)) {
ar_alloc_table(hash);
}
return RHASH_AR_TABLE(hash);
}
static int
ar_compact_table(VALUE hash)
{
const unsigned bound = RHASH_AR_TABLE_BOUND(hash);
const unsigned size = RHASH_AR_TABLE_SIZE(hash);
if (size == bound) {
return size;
}
else {
unsigned i, j=0;
ar_table_pair *pairs = RHASH_AR_TABLE(hash)->pairs;
for (i=0; i<bound; i++) {
if (ar_cleared_entry(hash, i)) {
if (j <= i) j = i+1;
for (; j<bound; j++) {
if (!ar_cleared_entry(hash, j)) {
pairs[i] = pairs[j];
ar_hint_set_hint(hash, i, (st_hash_t)ar_hint(hash, j));
ar_clear_entry(hash, j);
j++;
goto found;
}
}
/* non-empty is not found */
goto done;
found:;
}
}
done:
HASH_ASSERT(i<=bound);
RHASH_AR_TABLE_BOUND_SET(hash, size);
hash_verify(hash);
return size;
}
}
static int
ar_add_direct_with_hash(VALUE hash, st_data_t key, st_data_t val, st_hash_t hash_value)
{
unsigned bin = RHASH_AR_TABLE_BOUND(hash);
if (RHASH_AR_TABLE_SIZE(hash) >= RHASH_AR_TABLE_MAX_SIZE) {
return 1;
}
else {
if (UNLIKELY(bin >= RHASH_AR_TABLE_MAX_BOUND)) {
bin = ar_compact_table(hash);
hash_ar_table(hash);
}
HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND);
ar_set_entry(hash, bin, key, val, hash_value);
RHASH_AR_TABLE_BOUND_SET(hash, bin+1);
RHASH_AR_TABLE_SIZE_INC(hash);
return 0;
}
}
static int
ar_general_foreach(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
for (i = 0; i < bound; i++) {
if (ar_cleared_entry(hash, i)) continue;
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
enum st_retval retval = (*func)(pair->key, pair->val, arg, 0);
/* pair may be not valid here because of theap */
switch (retval) {
case ST_CONTINUE:
break;
case ST_CHECK:
case ST_STOP:
return 0;
case ST_REPLACE:
if (replace) {
VALUE key = pair->key;
VALUE val = pair->val;
retval = (*replace)(&key, &val, arg, TRUE);
// TODO: pair should be same as pair before.
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
pair->key = key;
pair->val = val;
}
break;
case ST_DELETE:
ar_clear_entry(hash, i);
RHASH_AR_TABLE_SIZE_DEC(hash);
break;
}
}
}
return 0;
}
static int
ar_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
return ar_general_foreach(hash, func, replace, arg);
}
struct functor {
st_foreach_callback_func *func;
st_data_t arg;
};
static int
apply_functor(st_data_t k, st_data_t v, st_data_t d, int _)
{
const struct functor *f = (void *)d;
return f->func(k, v, f->arg);
}
static int
ar_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg)
{
const struct functor f = { func, arg };
return ar_general_foreach(hash, apply_functor, NULL, (st_data_t)&f);
}
static int
ar_foreach_check(VALUE hash, st_foreach_check_callback_func *func, st_data_t arg,
st_data_t never)
{
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
unsigned i, ret = 0, bound = RHASH_AR_TABLE_BOUND(hash);
enum st_retval retval;
st_data_t key;
ar_table_pair *pair;
ar_hint_t hint;
for (i = 0; i < bound; i++) {
if (ar_cleared_entry(hash, i)) continue;
pair = RHASH_AR_TABLE_REF(hash, i);
key = pair->key;
hint = ar_hint(hash, i);
retval = (*func)(key, pair->val, arg, 0);
hash_verify(hash);
switch (retval) {
case ST_CHECK: {
pair = RHASH_AR_TABLE_REF(hash, i);
if (pair->key == never) break;
ret = ar_find_entry_hint(hash, hint, key);
if (ret == RHASH_AR_TABLE_MAX_BOUND) {
retval = (*func)(0, 0, arg, 1);
return 2;
}
}
case ST_CONTINUE:
break;
case ST_STOP:
case ST_REPLACE:
return 0;
case ST_DELETE: {
if (!ar_cleared_entry(hash, i)) {
ar_clear_entry(hash, i);
RHASH_AR_TABLE_SIZE_DEC(hash);
}
break;
}
}
}
}
return 0;
}
static int
ar_update(VALUE hash, st_data_t key,
st_update_callback_func *func, st_data_t arg)
{
int retval, existing;
unsigned bin = RHASH_AR_TABLE_MAX_BOUND;
st_data_t value = 0, old_key;
st_hash_t hash_value = ar_do_hash(key);
if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) {
// `#hash` changes ar_table -> st_table
return -1;
}
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
bin = ar_find_entry(hash, hash_value, key);
existing = (bin != RHASH_AR_TABLE_MAX_BOUND) ? TRUE : FALSE;
}
else {
hash_ar_table(hash); /* allocate ltbl if needed */
existing = FALSE;
}
if (existing) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin);
key = pair->key;
value = pair->val;
}
old_key = key;
retval = (*func)(&key, &value, arg, existing);
/* pair can be invalid here because of theap */
switch (retval) {
case ST_CONTINUE:
if (!existing) {
if (ar_add_direct_with_hash(hash, key, value, hash_value)) {
return -1;
}
}
else {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin);
if (old_key != key) {
pair->key = key;
}
pair->val = value;
}
break;
case ST_DELETE:
if (existing) {
ar_clear_entry(hash, bin);
RHASH_AR_TABLE_SIZE_DEC(hash);
}
break;
}
return existing;
}
static int
ar_insert(VALUE hash, st_data_t key, st_data_t value)
{
unsigned bin = RHASH_AR_TABLE_BOUND(hash);
st_hash_t hash_value = ar_do_hash(key);
if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) {
// `#hash` changes ar_table -> st_table
return -1;
}
hash_ar_table(hash); /* prepare ltbl */
bin = ar_find_entry(hash, hash_value, key);
if (bin == RHASH_AR_TABLE_MAX_BOUND) {
if (RHASH_AR_TABLE_SIZE(hash) >= RHASH_AR_TABLE_MAX_SIZE) {
return -1;
}
else if (bin >= RHASH_AR_TABLE_MAX_BOUND) {
bin = ar_compact_table(hash);
hash_ar_table(hash);
}
HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND);
ar_set_entry(hash, bin, key, value, hash_value);
RHASH_AR_TABLE_BOUND_SET(hash, bin+1);
RHASH_AR_TABLE_SIZE_INC(hash);
return 0;
}
else {
RHASH_AR_TABLE_REF(hash, bin)->val = value;
return 1;
}
}
static int
ar_lookup(VALUE hash, st_data_t key, st_data_t *value)
{
if (RHASH_AR_TABLE_SIZE(hash) == 0) {
return 0;
}
else {
st_hash_t hash_value = ar_do_hash(key);
if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) {
// `#hash` changes ar_table -> st_table
return st_lookup(RHASH_ST_TABLE(hash), key, value);
}
unsigned bin = ar_find_entry(hash, hash_value, key);
if (bin == RHASH_AR_TABLE_MAX_BOUND) {
return 0;
}
else {
HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND);
if (value != NULL) {
*value = RHASH_AR_TABLE_REF(hash, bin)->val;
}
return 1;
}
}
}
static int
ar_delete(VALUE hash, st_data_t *key, st_data_t *value)
{
unsigned bin;
st_hash_t hash_value = ar_do_hash(*key);
if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) {
// `#hash` changes ar_table -> st_table
return st_delete(RHASH_ST_TABLE(hash), key, value);
}
bin = ar_find_entry(hash, hash_value, *key);
if (bin == RHASH_AR_TABLE_MAX_BOUND) {
if (value != 0) *value = 0;
return 0;
}
else {
if (value != 0) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin);
*value = pair->val;
}
ar_clear_entry(hash, bin);
RHASH_AR_TABLE_SIZE_DEC(hash);
return 1;
}
}
static int
ar_shift(VALUE hash, st_data_t *key, st_data_t *value)
{
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
for (i = 0; i < bound; i++) {
if (!ar_cleared_entry(hash, i)) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
if (value != 0) *value = pair->val;
*key = pair->key;
ar_clear_entry(hash, i);
RHASH_AR_TABLE_SIZE_DEC(hash);
return 1;
}
}
}
if (value != NULL) *value = 0;
return 0;
}
static long
ar_keys(VALUE hash, st_data_t *keys, st_index_t size)
{
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
st_data_t *keys_start = keys, *keys_end = keys + size;
for (i = 0; i < bound; i++) {
if (keys == keys_end) {
break;
}
else {
if (!ar_cleared_entry(hash, i)) {
*keys++ = RHASH_AR_TABLE_REF(hash, i)->key;
}
}
}
return keys - keys_start;
}
static long
ar_values(VALUE hash, st_data_t *values, st_index_t size)
{
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
st_data_t *values_start = values, *values_end = values + size;
for (i = 0; i < bound; i++) {
if (values == values_end) {
break;
}
else {
if (!ar_cleared_entry(hash, i)) {
*values++ = RHASH_AR_TABLE_REF(hash, i)->val;
}
}
}
return values - values_start;
}
static ar_table*
ar_copy(VALUE hash1, VALUE hash2)
{
ar_table *old_tab = RHASH_AR_TABLE(hash2);
ar_table *new_tab = RHASH_AR_TABLE(hash1);
if (new_tab == NULL) {
new_tab = (ar_table*) rb_transient_heap_alloc(hash1, sizeof(ar_table));
if (new_tab != NULL) {
RHASH_SET_TRANSIENT_FLAG(hash1);
}
else {
RHASH_UNSET_TRANSIENT_FLAG(hash1);
new_tab = (ar_table*)ruby_xmalloc(sizeof(ar_table));
}
}
*new_tab = *old_tab;
RHASH(hash1)->ar_hint.word = RHASH(hash2)->ar_hint.word;
RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2));
RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2));
hash_ar_table_set(hash1, new_tab);
rb_gc_writebarrier_remember(hash1);
return new_tab;
}
static void
ar_clear(VALUE hash)
{
if (RHASH_AR_TABLE(hash) != NULL) {
RHASH_AR_TABLE_SIZE_SET(hash, 0);
RHASH_AR_TABLE_BOUND_SET(hash, 0);
}
else {
HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0);
HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0);
}
}
#if USE_TRANSIENT_HEAP
void
rb_hash_transient_heap_evacuate(VALUE hash, int promote)
{
if (RHASH_TRANSIENT_P(hash)) {
ar_table *new_tab;
ar_table *old_tab = RHASH_AR_TABLE(hash);
if (UNLIKELY(old_tab == NULL)) {
return;
}
HASH_ASSERT(old_tab != NULL);
if (! promote) {
new_tab = rb_transient_heap_alloc(hash, sizeof(ar_table));
if (new_tab == NULL) promote = true;
}
if (promote) {
new_tab = ruby_xmalloc(sizeof(ar_table));
RHASH_UNSET_TRANSIENT_FLAG(hash);
}
*new_tab = *old_tab;
hash_ar_table_set(hash, new_tab);
}
hash_verify(hash);
}
#endif
typedef int st_foreach_func(st_data_t, st_data_t, st_data_t);
struct foreach_safe_arg {
st_table *tbl;
st_foreach_func *func;
st_data_t arg;
};
static int
foreach_safe_i(st_data_t key, st_data_t value, st_data_t args, int error)
{
int status;
struct foreach_safe_arg *arg = (void *)args;
if (error) return ST_STOP;
status = (*arg->func)(key, value, arg->arg);
if (status == ST_CONTINUE) {
return ST_CHECK;
}
return status;
}
void
st_foreach_safe(st_table *table, st_foreach_func *func, st_data_t a)
{
struct foreach_safe_arg arg;
arg.tbl = table;
arg.func = (st_foreach_func *)func;
arg.arg = a;
if (st_foreach_check(table, foreach_safe_i, (st_data_t)&arg, 0)) {
rb_raise(rb_eRuntimeError, "hash modified during iteration");
}
}
typedef int rb_foreach_func(VALUE, VALUE, VALUE);
struct hash_foreach_arg {
VALUE hash;
rb_foreach_func *func;
VALUE arg;
};
static int
hash_iter_status_check(int status)
{
switch (status) {
case ST_DELETE:
return ST_DELETE;
case ST_CONTINUE:
break;
case ST_STOP:
return ST_STOP;
}
return ST_CHECK;
}
static int
hash_ar_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error)
{
struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp;
if (error) return ST_STOP;
int status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg);
/* TODO: rehash check? rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); */
return hash_iter_status_check(status);
}
static int
hash_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error)
{
struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp;
if (error) return ST_STOP;
st_table *tbl = RHASH_ST_TABLE(arg->hash);
int status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg);
if (RHASH_ST_TABLE(arg->hash) != tbl) {
rb_raise(rb_eRuntimeError, "rehash occurred during iteration");
}
return hash_iter_status_check(status);
}
static int
iter_lev_in_ivar(VALUE hash)
{
VALUE levval = rb_ivar_get(hash, id_hash_iter_lev);
HASH_ASSERT(FIXNUM_P(levval));
return FIX2INT(levval);
}
void rb_ivar_set_internal(VALUE obj, ID id, VALUE val);
static void
iter_lev_in_ivar_set(VALUE hash, int lev)
{
rb_ivar_set_internal(hash, id_hash_iter_lev, INT2FIX(lev));
}
static int
iter_lev_in_flags(VALUE hash)
{
unsigned int u = (unsigned int)((RBASIC(hash)->flags >> RHASH_LEV_SHIFT) & RHASH_LEV_MAX);
return (int)u;
}
static int
RHASH_ITER_LEV(VALUE hash)
{
int lev = iter_lev_in_flags(hash);
if (lev == RHASH_LEV_MAX) {
return iter_lev_in_ivar(hash);
}
else {
return lev;
}
}
static void
hash_iter_lev_inc(VALUE hash)
{
int lev = iter_lev_in_flags(hash);
if (lev == RHASH_LEV_MAX) {
lev = iter_lev_in_ivar(hash);
iter_lev_in_ivar_set(hash, lev+1);
}
else {
lev += 1;
RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((VALUE)lev << RHASH_LEV_SHIFT));
if (lev == RHASH_LEV_MAX) {
iter_lev_in_ivar_set(hash, lev);
}
}
}
static void
hash_iter_lev_dec(VALUE hash)
{
int lev = iter_lev_in_flags(hash);
if (lev == RHASH_LEV_MAX) {
lev = iter_lev_in_ivar(hash);
HASH_ASSERT(lev > 0);
iter_lev_in_ivar_set(hash, lev-1);
}
else {
HASH_ASSERT(lev > 0);
RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((lev-1) << RHASH_LEV_SHIFT));
}
}
static VALUE
hash_foreach_ensure_rollback(VALUE hash)
{
hash_iter_lev_inc(hash);
return 0;
}
static VALUE
hash_foreach_ensure(VALUE hash)
{
hash_iter_lev_dec(hash);
return 0;
}
int
rb_hash_stlike_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg)
{
if (RHASH_AR_TABLE_P(hash)) {
return ar_foreach(hash, func, arg);
}
else {
return st_foreach(RHASH_ST_TABLE(hash), func, arg);
}
}
int
rb_hash_stlike_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
if (RHASH_AR_TABLE_P(hash)) {
return ar_foreach_with_replace(hash, func, replace, arg);
}
else {
return st_foreach_with_replace(RHASH_ST_TABLE(hash), func, replace, arg);
}
}
static VALUE
hash_foreach_call(VALUE arg)
{
VALUE hash = ((struct hash_foreach_arg *)arg)->hash;
int ret = 0;
if (RHASH_AR_TABLE_P(hash)) {
ret = ar_foreach_check(hash, hash_ar_foreach_iter,
(st_data_t)arg, (st_data_t)Qundef);
}
else if (RHASH_ST_TABLE_P(hash)) {
ret = st_foreach_check(RHASH_ST_TABLE(hash), hash_foreach_iter,
(st_data_t)arg, (st_data_t)Qundef);
}
if (ret) {
rb_raise(rb_eRuntimeError, "ret: %d, hash modified during iteration", ret);
}
return Qnil;
}
void
rb_hash_foreach(VALUE hash, rb_foreach_func *func, VALUE farg)
{
struct hash_foreach_arg arg;
if (RHASH_TABLE_EMPTY_P(hash))
return;
arg.hash = hash;
arg.func = (rb_foreach_func *)func;
arg.arg = farg;
if (RB_OBJ_FROZEN(hash)) {
hash_foreach_call((VALUE)&arg);
}
else {
hash_iter_lev_inc(hash);
rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash);
}
hash_verify(hash);
}
static VALUE
hash_alloc_flags(VALUE klass, VALUE flags, VALUE ifnone)
{
const VALUE wb = (RGENGC_WB_PROTECTED_HASH ? FL_WB_PROTECTED : 0);
NEWOBJ_OF(hash, struct RHash, klass, T_HASH | wb | flags);
RHASH_SET_IFNONE((VALUE)hash, ifnone);
return (VALUE)hash;
}
static VALUE
hash_alloc(VALUE klass)
{
return hash_alloc_flags(klass, 0, Qnil);
}
static VALUE
empty_hash_alloc(VALUE klass)
{
RUBY_DTRACE_CREATE_HOOK(HASH, 0);
return hash_alloc(klass);
}
VALUE
rb_hash_new(void)
{
return hash_alloc(rb_cHash);
}
static VALUE
copy_compare_by_id(VALUE hash, VALUE basis)
{
if (rb_hash_compare_by_id_p(basis)) {
return rb_hash_compare_by_id(hash);
}
return hash;
}
MJIT_FUNC_EXPORTED VALUE
rb_hash_new_with_size(st_index_t size)
{
VALUE ret = rb_hash_new();
if (size == 0) {
/* do nothing */
}
else if (size <= RHASH_AR_TABLE_MAX_SIZE) {
ar_alloc_table(ret);
}
else {
RHASH_ST_TABLE_SET(ret, st_init_table_with_size(&objhash, size));
}
return ret;
}
VALUE
rb_hash_new_capa(long capa)
{
return rb_hash_new_with_size((st_index_t)capa);
}
static VALUE
hash_copy(VALUE ret, VALUE hash)
{
if (!RHASH_EMPTY_P(hash)) {
if (RHASH_AR_TABLE_P(hash)) {
ar_copy(ret, hash);
}
else {
RHASH_ST_TABLE_SET(ret, st_copy(RHASH_ST_TABLE(hash)));
}
}
return ret;
}
static VALUE
hash_dup_with_compare_by_id(VALUE hash)
{
return hash_copy(copy_compare_by_id(rb_hash_new(), hash), hash);
}
static VALUE
hash_dup(VALUE hash, VALUE klass, VALUE flags)
{
return hash_copy(hash_alloc_flags(klass, flags, RHASH_IFNONE(hash)),
hash);
}
VALUE
rb_hash_dup(VALUE hash)
{
const VALUE flags = RBASIC(hash)->flags;
VALUE ret = hash_dup(hash, rb_obj_class(hash),
flags & (FL_EXIVAR|RHASH_PROC_DEFAULT));
if (flags & FL_EXIVAR)
rb_copy_generic_ivar(ret, hash);
return ret;
}
MJIT_FUNC_EXPORTED VALUE
rb_hash_resurrect(VALUE hash)
{
VALUE ret = hash_dup(hash, rb_cHash, 0);
return ret;
}
static void
rb_hash_modify_check(VALUE hash)
{
rb_check_frozen(hash);
}
MJIT_FUNC_EXPORTED struct st_table *
rb_hash_tbl_raw(VALUE hash, const char *file, int line)
{
return ar_force_convert_table(hash, file, line);
}
struct st_table *
rb_hash_tbl(VALUE hash, const char *file, int line)
{
OBJ_WB_UNPROTECT(hash);
return rb_hash_tbl_raw(hash, file, line);
}
static void
rb_hash_modify(VALUE hash)
{
rb_hash_modify_check(hash);
}
NORETURN(static void no_new_key(void));
static void
no_new_key(void)
{
rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration");
}
struct update_callback_arg {
VALUE hash;
st_data_t arg;
};
#define NOINSERT_UPDATE_CALLBACK(func) \
static int \
func##_noinsert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \
{ \
if (!existing) no_new_key(); \
return func(key, val, (struct update_arg *)arg, existing); \
} \
\
static int \
func##_insert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \
{ \
return func(key, val, (struct update_arg *)arg, existing); \
}
struct update_arg {
st_data_t arg;
st_update_callback_func *func;
VALUE hash;
VALUE key;
VALUE value;
};
typedef int (*tbl_update_func)(st_data_t *, st_data_t *, st_data_t, int);
int
rb_hash_stlike_update(VALUE hash, st_data_t key, st_update_callback_func *func, st_data_t arg)
{
if (RHASH_AR_TABLE_P(hash)) {
int result = ar_update(hash, key, func, arg);
if (result == -1) {
ar_try_convert_table(hash);
}
else {
return result;
}
}
return st_update(RHASH_ST_TABLE(hash), key, func, arg);
}
static int
tbl_update_modify(st_data_t *key, st_data_t *val, st_data_t arg, int existing)
{
struct update_arg *p = (struct update_arg *)arg;
st_data_t old_key = *key;
st_data_t old_value = *val;
VALUE hash = p->hash;
int ret = (p->func)(key, val, arg, existing);
switch (ret) {
default:
break;
case ST_CONTINUE:
if (!existing || *key != old_key || *val != old_value) {
rb_hash_modify(hash);
p->key = *key;
p->value = *val;
}
break;
case ST_DELETE:
if (existing)
rb_hash_modify(hash);
break;
}
return ret;
}
static int
tbl_update(VALUE hash, VALUE key, tbl_update_func func, st_data_t optional_arg)
{
struct update_arg arg = {
.arg = optional_arg,
.func = func,
.hash = hash,
.key = key,
.value = (VALUE)optional_arg,
};
int ret = rb_hash_stlike_update(hash, key, tbl_update_modify, (st_data_t)&arg);
/* write barrier */
RB_OBJ_WRITTEN(hash, Qundef, arg.key);
RB_OBJ_WRITTEN(hash, Qundef, arg.value);
return ret;
}
#define UPDATE_CALLBACK(iter_lev, func) ((iter_lev) > 0 ? func##_noinsert : func##_insert)
#define RHASH_UPDATE_ITER(h, iter_lev, key, func, a) do { \
tbl_update((h), (key), UPDATE_CALLBACK((iter_lev), func), (st_data_t)(a)); \
} while (0)
#define RHASH_UPDATE(hash, key, func, arg) \
RHASH_UPDATE_ITER(hash, RHASH_ITER_LEV(hash), key, func, arg)
static void
set_proc_default(VALUE hash, VALUE proc)
{
if (rb_proc_lambda_p(proc)) {
int n = rb_proc_arity(proc);
if (n != 2 && (n >= 0 || n < -3)) {
if (n < 0) n = -n-1;
rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n);
}
}
FL_SET_RAW(hash, RHASH_PROC_DEFAULT);
RHASH_SET_IFNONE(hash, proc);
}
/*
* call-seq:
* Hash.new(default_value = nil) -> new_hash
* Hash.new {|hash, key| ... } -> new_hash
*
* Returns a new empty \Hash object.
*
* The initial default value and initial default proc for the new hash
* depend on which form above was used. See {Default Values}[rdoc-ref:Hash@Default+Values].
*
* If neither an argument nor a block given,
* initializes both the default value and the default proc to <tt>nil</tt>:
* h = Hash.new
* h.default # => nil
* h.default_proc # => nil
*
* If argument <tt>default_value</tt> given but no block given,
* initializes the default value to the given <tt>default_value</tt>
* and the default proc to <tt>nil</tt>:
* h = Hash.new(false)
* h.default # => false
* h.default_proc # => nil
*
* If a block given but no argument, stores the block as the default proc
* and sets the default value to <tt>nil</tt>:
* h = Hash.new {|hash, key| "Default value for #{key}" }
* h.default # => nil
* h.default_proc.class # => Proc
* h[:nosuch] # => "Default value for nosuch"
*/
static VALUE
rb_hash_initialize(int argc, VALUE *argv, VALUE hash)
{
VALUE ifnone;
rb_hash_modify(hash);
if (rb_block_given_p()) {
rb_check_arity(argc, 0, 0);
ifnone = rb_block_proc();
SET_PROC_DEFAULT(hash, ifnone);
}
else {
rb_check_arity(argc, 0, 1);
ifnone = argc == 0 ? Qnil : argv[0];
RHASH_SET_IFNONE(hash, ifnone);
}
return hash;
}
/*
* call-seq:
* Hash[] -> new_empty_hash
* Hash[hash] -> new_hash
* Hash[ [*2_element_arrays] ] -> new_hash
* Hash[*objects] -> new_hash
*
* Returns a new \Hash object populated with the given objects, if any.
* See Hash::new.
*
* With no argument, returns a new empty \Hash.
*
* When the single given argument is a \Hash, returns a new \Hash
* populated with the entries from the given \Hash, excluding the
* default value or proc.
*
* h = {foo: 0, bar: 1, baz: 2}
* Hash[h] # => {:foo=>0, :bar=>1, :baz=>2}
*
* When the single given argument is an \Array of 2-element Arrays,
* returns a new \Hash object wherein each 2-element array forms a
* key-value entry:
*
* Hash[ [ [:foo, 0], [:bar, 1] ] ] # => {:foo=>0, :bar=>1}
*
* When the argument count is an even number;
* returns a new \Hash object wherein each successive pair of arguments
* has become a key-value entry:
*
* Hash[:foo, 0, :bar, 1] # => {:foo=>0, :bar=>1}
*
* Raises an exception if the argument list does not conform to any
* of the above.
*/
static VALUE
rb_hash_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE hash, tmp;
if (argc == 1) {
tmp = rb_hash_s_try_convert(Qnil, argv[0]);
if (!NIL_P(tmp)) {
hash = hash_alloc(klass);
hash_copy(hash, tmp);
return hash;
}
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
long i;
hash = hash_alloc(klass);
for (i = 0; i < RARRAY_LEN(tmp); ++i) {
VALUE e = RARRAY_AREF(tmp, i);
VALUE v = rb_check_array_type(e);
VALUE key, val = Qnil;
if (NIL_P(v)) {
rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)",
rb_builtin_class_name(e), i);
}
switch (RARRAY_LEN(v)) {
default:
rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)",
RARRAY_LEN(v));
case 2:
val = RARRAY_AREF(v, 1);
case 1:
key = RARRAY_AREF(v, 0);
rb_hash_aset(hash, key, val);
}
}
return hash;
}
}
if (argc % 2 != 0) {
rb_raise(rb_eArgError, "odd number of arguments for Hash");
}
hash = hash_alloc(klass);
rb_hash_bulk_insert(argc, argv, hash);
hash_verify(hash);
return hash;
}
MJIT_FUNC_EXPORTED VALUE
rb_to_hash_type(VALUE hash)
{
return rb_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash);
}
#define to_hash rb_to_hash_type
VALUE
rb_check_hash_type(VALUE hash)
{
return rb_check_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash);
}
/*
* call-seq:
* Hash.try_convert(obj) -> obj, new_hash, or nil
*
* If +obj+ is a \Hash object, returns +obj+.
*
* Otherwise if +obj+ responds to <tt>:to_hash</tt>,
* calls <tt>obj.to_hash</tt> and returns the result.
*
* Returns +nil+ if +obj+ does not respond to <tt>:to_hash</tt>
*
* Raises an exception unless <tt>obj.to_hash</tt> returns a \Hash object.
*/
static VALUE
rb_hash_s_try_convert(VALUE dummy, VALUE hash)
{
return rb_check_hash_type(hash);
}
/*
* call-seq:
* Hash.ruby2_keywords_hash?(hash) -> true or false
*
* Checks if a given hash is flagged by Module#ruby2_keywords (or
* Proc#ruby2_keywords).
* This method is not for casual use; debugging, researching, and
* some truly necessary cases like serialization of arguments.
*
* ruby2_keywords def foo(*args)
* Hash.ruby2_keywords_hash?(args.last)
* end
* foo(k: 1) #=> true
* foo({k: 1}) #=> false
*/
static VALUE
rb_hash_s_ruby2_keywords_hash_p(VALUE dummy, VALUE hash)
{
Check_Type(hash, T_HASH);
return RBOOL(RHASH(hash)->basic.flags & RHASH_PASS_AS_KEYWORDS);
}
/*
* call-seq:
* Hash.ruby2_keywords_hash(hash) -> hash
*
* Duplicates a given hash and adds a ruby2_keywords flag.
* This method is not for casual use; debugging, researching, and
* some truly necessary cases like deserialization of arguments.
*
* h = {k: 1}
* h = Hash.ruby2_keywords_hash(h)
* def foo(k: 42)
* k
* end
* foo(*[h]) #=> 1 with neither a warning or an error
*/
static VALUE
rb_hash_s_ruby2_keywords_hash(VALUE dummy, VALUE hash)
{
Check_Type(hash, T_HASH);
hash = rb_hash_dup(hash);
RHASH(hash)->basic.flags |= RHASH_PASS_AS_KEYWORDS;
return hash;
}
struct rehash_arg {
VALUE hash;
st_table *tbl;
};
static int
rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg)
{
if (RHASH_AR_TABLE_P(arg)) {
ar_insert(arg, (st_data_t)key, (st_data_t)value);
}
else {
st_insert(RHASH_ST_TABLE(arg), (st_data_t)key, (st_data_t)value);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.rehash -> self
*
* Rebuilds the hash table by recomputing the hash index for each key;
* returns <tt>self</tt>.
*
* The hash table becomes invalid if the hash value of a key
* has changed after the entry was created.
* See {Modifying an Active Hash Key}[rdoc-ref:Hash@Modifying+an+Active+Hash+Key].
*/
VALUE
rb_hash_rehash(VALUE hash)
{
VALUE tmp;
st_table *tbl;
if (RHASH_ITER_LEV(hash) > 0) {
rb_raise(rb_eRuntimeError, "rehash during iteration");
}
rb_hash_modify_check(hash);
if (RHASH_AR_TABLE_P(hash)) {
tmp = hash_alloc(0);
ar_alloc_table(tmp);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp);
ar_free_and_clear_table(hash);
ar_copy(hash, tmp);
ar_free_and_clear_table(tmp);
}
else if (RHASH_ST_TABLE_P(hash)) {
st_table *old_tab = RHASH_ST_TABLE(hash);
tmp = hash_alloc(0);
tbl = st_init_table_with_size(old_tab->type, old_tab->num_entries);
RHASH_ST_TABLE_SET(tmp, tbl);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp);
st_free_table(old_tab);
RHASH_ST_TABLE_SET(hash, tbl);
RHASH_ST_CLEAR(tmp);
}
hash_verify(hash);
return hash;
}
static VALUE
call_default_proc(VALUE proc, VALUE hash, VALUE key)
{
VALUE args[2] = {hash, key};
return rb_proc_call_with_block(proc, 2, args, Qnil);
}
static bool
rb_hash_default_unredefined(VALUE hash)
{
VALUE klass = RBASIC_CLASS(hash);
if (LIKELY(klass == rb_cHash)) {
return !!BASIC_OP_UNREDEFINED_P(BOP_DEFAULT, HASH_REDEFINED_OP_FLAG);
}
else {
return LIKELY(rb_method_basic_definition_p(klass, id_default));
}
}
VALUE
rb_hash_default_value(VALUE hash, VALUE key)
{
RUBY_ASSERT(RB_TYPE_P(hash, T_HASH));
if (LIKELY(rb_hash_default_unredefined(hash))) {
VALUE ifnone = RHASH_IFNONE(hash);
if (LIKELY(!FL_TEST_RAW(hash, RHASH_PROC_DEFAULT))) return ifnone;
if (UNDEF_P(key)) return Qnil;
return call_default_proc(ifnone, hash, key);
}
else {
return rb_funcall(hash, id_default, 1, key);
}
}
static inline int
hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval)
{
hash_verify(hash);
if (RHASH_AR_TABLE_P(hash)) {
return ar_lookup(hash, key, pval);
}
else {
extern st_index_t rb_iseq_cdhash_hash(VALUE);
RUBY_ASSERT(RHASH_ST_TABLE(hash)->type->hash == rb_any_hash ||
RHASH_ST_TABLE(hash)->type->hash == rb_ident_hash ||
RHASH_ST_TABLE(hash)->type->hash == rb_iseq_cdhash_hash);
return st_lookup(RHASH_ST_TABLE(hash), key, pval);
}
}
MJIT_FUNC_EXPORTED int
rb_hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval)
{
return hash_stlike_lookup(hash, key, pval);
}
/*
* call-seq:
* hash[key] -> value
*
* Returns the value associated with the given +key+, if found:
* h = {foo: 0, bar: 1, baz: 2}
* h[:foo] # => 0
*
* If +key+ is not found, returns a default value
* (see {Default Values}[rdoc-ref:Hash@Default+Values]):
* h = {foo: 0, bar: 1, baz: 2}
* h[:nosuch] # => nil
*/
VALUE
rb_hash_aref(VALUE hash, VALUE key)
{
st_data_t val;
if (hash_stlike_lookup(hash, key, &val)) {
return (VALUE)val;
}
else {
return rb_hash_default_value(hash, key);
}
}
VALUE
rb_hash_lookup2(VALUE hash, VALUE key, VALUE def)
{
st_data_t val;
if (hash_stlike_lookup(hash, key, &val)) {
return (VALUE)val;
}
else {
return def; /* without Hash#default */
}
}
VALUE
rb_hash_lookup(VALUE hash, VALUE key)
{
return rb_hash_lookup2(hash, key, Qnil);
}
/*
* call-seq:
* hash.fetch(key) -> object
* hash.fetch(key, default_value) -> object
* hash.fetch(key) {|key| ... } -> object
*
* Returns the value for the given +key+, if found.
* h = {foo: 0, bar: 1, baz: 2}
* h.fetch(:bar) # => 1
*
* If +key+ is not found and no block was given,
* returns +default_value+:
* {}.fetch(:nosuch, :default) # => :default
*
* If +key+ is not found and a block was given,
* yields +key+ to the block and returns the block's return value:
* {}.fetch(:nosuch) {|key| "No key #{key}"} # => "No key nosuch"
*
* Raises KeyError if neither +default_value+ nor a block was given.
*
* Note that this method does not use the values of either #default or #default_proc.
*/
static VALUE
rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash)
{
VALUE key;
st_data_t val;
long block_given;
rb_check_arity(argc, 1, 2);
key = argv[0];
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
if (hash_stlike_lookup(hash, key, &val)) {
return (VALUE)val;
}
else {
if (block_given) {
return rb_yield(key);
}
else if (argc == 1) {
VALUE desc = rb_protect(rb_inspect, key, 0);
if (NIL_P(desc)) {
desc = rb_any_to_s(key);
}
desc = rb_str_ellipsize(desc, 65);
rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key);
}
else {
return argv[1];
}
}
}
VALUE
rb_hash_fetch(VALUE hash, VALUE key)
{
return rb_hash_fetch_m(1, &key, hash);
}
/*
* call-seq:
* hash.default -> object
* hash.default(key) -> object
*
* Returns the default value for the given +key+.
* The returned value will be determined either by the default proc or by the default value.
* See {Default Values}[rdoc-ref:Hash@Default+Values].
*
* With no argument, returns the current default value:
* h = {}
* h.default # => nil
*
* If +key+ is given, returns the default value for +key+,
* regardless of whether that key exists:
* h = Hash.new { |hash, key| hash[key] = "No key #{key}"}
* h[:foo] = "Hello"
* h.default(:foo) # => "No key foo"
*/
static VALUE
rb_hash_default(int argc, VALUE *argv, VALUE hash)
{
VALUE ifnone;
rb_check_arity(argc, 0, 1);
ifnone = RHASH_IFNONE(hash);
if (FL_TEST(hash, RHASH_PROC_DEFAULT)) {
if (argc == 0) return Qnil;
return call_default_proc(ifnone, hash, argv[0]);
}
return ifnone;
}
/*
* call-seq:
* hash.default = value -> object
*
* Sets the default value to +value+; returns +value+:
* h = {}
* h.default # => nil
* h.default = false # => false
* h.default # => false
*
* See {Default Values}[rdoc-ref:Hash@Default+Values].
*/
static VALUE
rb_hash_set_default(VALUE hash, VALUE ifnone)
{
rb_hash_modify_check(hash);
SET_DEFAULT(hash, ifnone);
return ifnone;
}
/*
* call-seq:
* hash.default_proc -> proc or nil
*
* Returns the default proc for +self+
* (see {Default Values}[rdoc-ref:Hash@Default+Values]):
* h = {}
* h.default_proc # => nil
* h.default_proc = proc {|hash, key| "Default value for #{key}" }
* h.default_proc.class # => Proc
*/
static VALUE
rb_hash_default_proc(VALUE hash)
{
if (FL_TEST(hash, RHASH_PROC_DEFAULT)) {
return RHASH_IFNONE(hash);
}
return Qnil;
}
/*
* call-seq:
* hash.default_proc = proc -> proc
*
* Sets the default proc for +self+ to +proc+:
* (see {Default Values}[rdoc-ref:Hash@Default+Values]):
* h = {}
* h.default_proc # => nil
* h.default_proc = proc { |hash, key| "Default value for #{key}" }
* h.default_proc.class # => Proc
* h.default_proc = nil
* h.default_proc # => nil
*/
VALUE
rb_hash_set_default_proc(VALUE hash, VALUE proc)
{
VALUE b;
rb_hash_modify_check(hash);
if (NIL_P(proc)) {
SET_DEFAULT(hash, proc);
return proc;
}
b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc);
if (NIL_P(b) || !rb_obj_is_proc(b)) {
rb_raise(rb_eTypeError,
"wrong default_proc type %s (expected Proc)",
rb_obj_classname(proc));
}
proc = b;
SET_PROC_DEFAULT(hash, proc);
return proc;
}
static int
key_i(VALUE key, VALUE value, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (rb_equal(value, args[0])) {
args[1] = key;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.key(value) -> key or nil
*
* Returns the key for the first-found entry with the given +value+
* (see {Entry Order}[rdoc-ref:Hash@Entry+Order]):
* h = {foo: 0, bar: 2, baz: 2}
* h.key(0) # => :foo
* h.key(2) # => :bar
*
* Returns +nil+ if so such value is found.
*/
static VALUE
rb_hash_key(VALUE hash, VALUE value)
{
VALUE args[2];
args[0] = value;
args[1] = Qnil;
rb_hash_foreach(hash, key_i, (VALUE)args);
return args[1];
}
int
rb_hash_stlike_delete(VALUE hash, st_data_t *pkey, st_data_t *pval)
{
if (RHASH_AR_TABLE_P(hash)) {
return ar_delete(hash, pkey, pval);
}
else {
return st_delete(RHASH_ST_TABLE(hash), pkey, pval);
}
}
/*
* delete a specified entry by a given key.
* if there is the corresponding entry, return a value of the entry.
* if there is no corresponding entry, return Qundef.
*/
VALUE
rb_hash_delete_entry(VALUE hash, VALUE key)
{
st_data_t ktmp = (st_data_t)key, val;
if (rb_hash_stlike_delete(hash, &ktmp, &val)) {
return (VALUE)val;
}
else {
return Qundef;
}
}
/*
* delete a specified entry by a given key.
* if there is the corresponding entry, return a value of the entry.
* if there is no corresponding entry, return Qnil.
*/
VALUE
rb_hash_delete(VALUE hash, VALUE key)
{
VALUE deleted_value = rb_hash_delete_entry(hash, key);
if (!UNDEF_P(deleted_value)) { /* likely pass */
return deleted_value;
}
else {
return Qnil;
}
}
/*
* call-seq:
* hash.delete(key) -> value or nil
* hash.delete(key) {|key| ... } -> object
*
* Deletes the entry for the given +key+ and returns its associated value.
*
* If no block is given and +key+ is found, deletes the entry and returns the associated value:
* h = {foo: 0, bar: 1, baz: 2}
* h.delete(:bar) # => 1
* h # => {:foo=>0, :baz=>2}
*
* If no block given and +key+ is not found, returns +nil+.
*
* If a block is given and +key+ is found, ignores the block,
* deletes the entry, and returns the associated value:
* h = {foo: 0, bar: 1, baz: 2}
* h.delete(:baz) { |key| raise 'Will never happen'} # => 2
* h # => {:foo=>0, :bar=>1}
*
* If a block is given and +key+ is not found,
* calls the block and returns the block's return value:
* h = {foo: 0, bar: 1, baz: 2}
* h.delete(:nosuch) { |key| "Key #{key} not found" } # => "Key nosuch not found"
* h # => {:foo=>0, :bar=>1, :baz=>2}
*/
static VALUE
rb_hash_delete_m(VALUE hash, VALUE key)
{
VALUE val;
rb_hash_modify_check(hash);
val = rb_hash_delete_entry(hash, key);
if (!UNDEF_P(val)) {
return val;
}
else {
if (rb_block_given_p()) {
return rb_yield(key);
}
else {
return Qnil;
}
}
}
struct shift_var {
VALUE key;
VALUE val;
};
static int
shift_i_safe(VALUE key, VALUE value, VALUE arg)
{
struct shift_var *var = (struct shift_var *)arg;
var->key = key;
var->val = value;
return ST_STOP;
}
/*
* call-seq:
* hash.shift -> [key, value] or nil
*
* Removes the first hash entry
* (see {Entry Order}[rdoc-ref:Hash@Entry+Order]);
* returns a 2-element \Array containing the removed key and value:
* h = {foo: 0, bar: 1, baz: 2}
* h.shift # => [:foo, 0]
* h # => {:bar=>1, :baz=>2}
*
* Returns nil if the hash is empty.
*/
static VALUE
rb_hash_shift(VALUE hash)
{
struct shift_var var;
rb_hash_modify_check(hash);
if (RHASH_AR_TABLE_P(hash)) {
var.key = Qundef;
if (RHASH_ITER_LEV(hash) == 0) {
if (ar_shift(hash, &var.key, &var.val)) {
return rb_assoc_new(var.key, var.val);
}
}
else {
rb_hash_foreach(hash, shift_i_safe, (VALUE)&var);
if (!UNDEF_P(var.key)) {
rb_hash_delete_entry(hash, var.key);
return rb_assoc_new(var.key, var.val);
}
}
}
if (RHASH_ST_TABLE_P(hash)) {
var.key = Qundef;
if (RHASH_ITER_LEV(hash) == 0) {
if (st_shift(RHASH_ST_TABLE(hash), &var.key, &var.val)) {
return rb_assoc_new(var.key, var.val);
}
}
else {
rb_hash_foreach(hash, shift_i_safe, (VALUE)&var);
if (!UNDEF_P(var.key)) {
rb_hash_delete_entry(hash, var.key);
return rb_assoc_new(var.key, var.val);
}
}
}
return Qnil;
}
static int
delete_if_i(VALUE key, VALUE value, VALUE hash)
{
if (RTEST(rb_yield_values(2, key, value))) {
rb_hash_modify(hash);
return ST_DELETE;
}
return ST_CONTINUE;
}
static VALUE
hash_enum_size(VALUE hash, VALUE args, VALUE eobj)
{
return rb_hash_size(hash);
}
/*
* call-seq:
* hash.delete_if {|key, value| ... } -> self
* hash.delete_if -> new_enumerator
*
* If a block given, calls the block with each key-value pair;
* deletes each entry for which the block returns a truthy value;
* returns +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.delete_if {|key, value| value > 0 } # => {:foo=>0}
*
* If no block given, returns a new \Enumerator:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.delete_if # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:delete_if>
* e.each { |key, value| value > 0 } # => {:foo=>0}
*/
VALUE
rb_hash_delete_if(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
rb_hash_foreach(hash, delete_if_i, hash);
}
return hash;
}
/*
* call-seq:
* hash.reject! {|key, value| ... } -> self or nil
* hash.reject! -> new_enumerator
*
* Returns +self+, whose remaining entries are those
* for which the block returns +false+ or +nil+:
* h = {foo: 0, bar: 1, baz: 2}
* h.reject! {|key, value| value < 2 } # => {:baz=>2}
*
* Returns +nil+ if no entries are removed.
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.reject! # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:reject!>
* e.each {|key, value| key.start_with?('b') } # => {:foo=>0}
*/
static VALUE
rb_hash_reject_bang(VALUE hash)
{
st_index_t n;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify(hash);
n = RHASH_SIZE(hash);
if (!n) return Qnil;
rb_hash_foreach(hash, delete_if_i, hash);
if (n == RHASH_SIZE(hash)) return Qnil;
return hash;
}
/*
* call-seq:
* hash.reject {|key, value| ... } -> new_hash
* hash.reject -> new_enumerator
*
* Returns a new \Hash object whose entries are all those
* from +self+ for which the block returns +false+ or +nil+:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = h.reject {|key, value| key.start_with?('b') }
* h1 # => {:foo=>0}
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.reject # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:reject>
* h1 = e.each {|key, value| key.start_with?('b') }
* h1 # => {:foo=>0}
*/
static VALUE
rb_hash_reject(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
result = hash_dup_with_compare_by_id(hash);
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(result, delete_if_i, result);
}
return result;
}
/*
* call-seq:
* hash.slice(*keys) -> new_hash
*
* Returns a new \Hash object containing the entries for the given +keys+:
* h = {foo: 0, bar: 1, baz: 2}
* h.slice(:baz, :foo) # => {:baz=>2, :foo=>0}
*
* Any given +keys+ that are not found are ignored.
*/
static VALUE
rb_hash_slice(int argc, VALUE *argv, VALUE hash)
{
int i;
VALUE key, value, result;
if (argc == 0 || RHASH_EMPTY_P(hash)) {
return copy_compare_by_id(rb_hash_new(), hash);
}
result = copy_compare_by_id(rb_hash_new_with_size(argc), hash);
for (i = 0; i < argc; i++) {
key = argv[i];
value = rb_hash_lookup2(hash, key, Qundef);
if (!UNDEF_P(value))
rb_hash_aset(result, key, value);
}
return result;
}
/*
* call-seq:
* hsh.except(*keys) -> a_hash
*
* Returns a new \Hash excluding entries for the given +keys+:
* h = { a: 100, b: 200, c: 300 }
* h.except(:a) #=> {:b=>200, :c=>300}
*
* Any given +keys+ that are not found are ignored.
*/
static VALUE
rb_hash_except(int argc, VALUE *argv, VALUE hash)
{
int i;
VALUE key, result;
result = hash_dup_with_compare_by_id(hash);
for (i = 0; i < argc; i++) {
key = argv[i];
rb_hash_delete(result, key);
}
return result;
}
/*
* call-seq:
* hash.values_at(*keys) -> new_array
*
* Returns a new \Array containing values for the given +keys+:
* h = {foo: 0, bar: 1, baz: 2}
* h.values_at(:baz, :foo) # => [2, 0]
*
* The {default values}[rdoc-ref:Hash@Default+Values] are returned
* for any keys that are not found:
* h.values_at(:hello, :foo) # => [nil, 0]
*/
static VALUE
rb_hash_values_at(int argc, VALUE *argv, VALUE hash)
{
VALUE result = rb_ary_new2(argc);
long i;
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_hash_aref(hash, argv[i]));
}
return result;
}
/*
* call-seq:
* hash.fetch_values(*keys) -> new_array
* hash.fetch_values(*keys) {|key| ... } -> new_array
*
* Returns a new \Array containing the values associated with the given keys *keys:
* h = {foo: 0, bar: 1, baz: 2}
* h.fetch_values(:baz, :foo) # => [2, 0]
*
* Returns a new empty \Array if no arguments given.
*
* When a block is given, calls the block with each missing key,
* treating the block's return value as the value for that key:
* h = {foo: 0, bar: 1, baz: 2}
* values = h.fetch_values(:bar, :foo, :bad, :bam) {|key| key.to_s}
* values # => [1, 0, "bad", "bam"]
*
* When no block is given, raises an exception if any given key is not found.
*/
static VALUE
rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash)
{
VALUE result = rb_ary_new2(argc);
long i;
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_hash_fetch(hash, argv[i]));
}
return result;
}
static int
keep_if_i(VALUE key, VALUE value, VALUE hash)
{
if (!RTEST(rb_yield_values(2, key, value))) {
rb_hash_modify(hash);
return ST_DELETE;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.select {|key, value| ... } -> new_hash
* hash.select -> new_enumerator
*
* Returns a new \Hash object whose entries are those for which the block returns a truthy value:
* h = {foo: 0, bar: 1, baz: 2}
* h.select {|key, value| value < 2 } # => {:foo=>0, :bar=>1}
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.select # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:select>
* e.each {|key, value| value < 2 } # => {:foo=>0, :bar=>1}
*/
static VALUE
rb_hash_select(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
result = hash_dup_with_compare_by_id(hash);
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(result, keep_if_i, result);
}
return result;
}
/*
* call-seq:
* hash.select! {|key, value| ... } -> self or nil
* hash.select! -> new_enumerator
*
* Returns +self+, whose entries are those for which the block returns a truthy value:
* h = {foo: 0, bar: 1, baz: 2}
* h.select! {|key, value| value < 2 } => {:foo=>0, :bar=>1}
*
* Returns +nil+ if no entries were removed.
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.select! # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:select!>
* e.each { |key, value| value < 2 } # => {:foo=>0, :bar=>1}
*/
static VALUE
rb_hash_select_bang(VALUE hash)
{
st_index_t n;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
n = RHASH_SIZE(hash);
if (!n) return Qnil;
rb_hash_foreach(hash, keep_if_i, hash);
if (n == RHASH_SIZE(hash)) return Qnil;
return hash;
}
/*
* call-seq:
* hash.keep_if {|key, value| ... } -> self
* hash.keep_if -> new_enumerator
*
* Calls the block for each key-value pair;
* retains the entry if the block returns a truthy value;
* otherwise deletes the entry; returns +self+.
* h = {foo: 0, bar: 1, baz: 2}
* h.keep_if { |key, value| key.start_with?('b') } # => {:bar=>1, :baz=>2}
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.keep_if # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:keep_if>
* e.each { |key, value| key.start_with?('b') } # => {:bar=>1, :baz=>2}
*/
static VALUE
rb_hash_keep_if(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
rb_hash_foreach(hash, keep_if_i, hash);
}
return hash;
}
static int
clear_i(VALUE key, VALUE value, VALUE dummy)
{
return ST_DELETE;
}
/*
* call-seq:
* hash.clear -> self
*
* Removes all hash entries; returns +self+.
*/
VALUE
rb_hash_clear(VALUE hash)
{
rb_hash_modify_check(hash);
if (RHASH_ITER_LEV(hash) > 0) {
rb_hash_foreach(hash, clear_i, 0);
}
else if (RHASH_AR_TABLE_P(hash)) {
ar_clear(hash);
}
else {
st_clear(RHASH_ST_TABLE(hash));
}
return hash;
}
static int
hash_aset(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing)
{
*val = arg->arg;
return ST_CONTINUE;
}
VALUE
rb_hash_key_str(VALUE key)
{
if (!RB_FL_ANY_RAW(key, FL_EXIVAR) && RBASIC_CLASS(key) == rb_cString) {
return rb_fstring(key);
}
else {
return rb_str_new_frozen(key);
}
}
static int
hash_aset_str(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing)
{
if (!existing && !RB_OBJ_FROZEN(*key)) {
*key = rb_hash_key_str(*key);
}
return hash_aset(key, val, arg, existing);
}
NOINSERT_UPDATE_CALLBACK(hash_aset)
NOINSERT_UPDATE_CALLBACK(hash_aset_str)
/*
* call-seq:
* hash[key] = value -> value
* hash.store(key, value)
*
* Associates the given +value+ with the given +key+; returns +value+.
*
* If the given +key+ exists, replaces its value with the given +value+;
* the ordering is not affected
* (see {Entry Order}[rdoc-ref:Hash@Entry+Order]):
* h = {foo: 0, bar: 1}
* h[:foo] = 2 # => 2
* h.store(:bar, 3) # => 3
* h # => {:foo=>2, :bar=>3}
*
* If +key+ does not exist, adds the +key+ and +value+;
* the new entry is last in the order
* (see {Entry Order}[rdoc-ref:Hash@Entry+Order]):
* h = {foo: 0, bar: 1}
* h[:baz] = 2 # => 2
* h.store(:bat, 3) # => 3
* h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
*/
VALUE
rb_hash_aset(VALUE hash, VALUE key, VALUE val)
{
int iter_lev = RHASH_ITER_LEV(hash);
rb_hash_modify(hash);
if (RHASH_TABLE_NULL_P(hash)) {
if (iter_lev > 0) no_new_key();
ar_alloc_table(hash);
}
if (RHASH_TYPE(hash) == &identhash || rb_obj_class(key) != rb_cString) {
RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset, val);
}
else {
RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset_str, val);
}
return val;
}
/*
* call-seq:
* hash.replace(other_hash) -> self
*
* Replaces the entire contents of +self+ with the contents of +other_hash+;
* returns +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.replace({bat: 3, bam: 4}) # => {:bat=>3, :bam=>4}
*/
static VALUE
rb_hash_replace(VALUE hash, VALUE hash2)
{
rb_hash_modify_check(hash);
if (hash == hash2) return hash;
if (RHASH_ITER_LEV(hash) > 0) {
rb_raise(rb_eRuntimeError, "can't replace hash during iteration");
}
hash2 = to_hash(hash2);
COPY_DEFAULT(hash, hash2);
if (RHASH_AR_TABLE_P(hash)) {
ar_free_and_clear_table(hash);
}
else {
st_free_table(RHASH_ST_TABLE(hash));
RHASH_ST_CLEAR(hash);
}
hash_copy(hash, hash2);
if (RHASH_EMPTY_P(hash2) && RHASH_ST_TABLE_P(hash2)) {
/* ident hash */
RHASH_ST_TABLE_SET(hash, st_init_table_with_size(RHASH_TYPE(hash2), 0));
}
rb_gc_writebarrier_remember(hash);
return hash;
}
/*
* call-seq:
* hash.length -> integer
* hash.size -> integer
*
* Returns the count of entries in +self+:
*
* {foo: 0, bar: 1, baz: 2}.length # => 3
*
*/
VALUE
rb_hash_size(VALUE hash)
{
return INT2FIX(RHASH_SIZE(hash));
}
size_t
rb_hash_size_num(VALUE hash)
{
return (long)RHASH_SIZE(hash);
}
/*
* call-seq:
* hash.empty? -> true or false
*
* Returns +true+ if there are no hash entries, +false+ otherwise:
* {}.empty? # => true
* {foo: 0, bar: 1, baz: 2}.empty? # => false
*/
static VALUE
rb_hash_empty_p(VALUE hash)
{
return RBOOL(RHASH_EMPTY_P(hash));
}
static int
each_value_i(VALUE key, VALUE value, VALUE _)
{
rb_yield(value);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.each_value {|value| ... } -> self
* hash.each_value -> new_enumerator
*
* Calls the given block with each value; returns +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.each_value {|value| puts value } # => {:foo=>0, :bar=>1, :baz=>2}
* Output:
* 0
* 1
* 2
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.each_value # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_value>
* h1 = e.each {|value| puts value }
* h1 # => {:foo=>0, :bar=>1, :baz=>2}
* Output:
* 0
* 1
* 2
*/
static VALUE
rb_hash_each_value(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_foreach(hash, each_value_i, 0);
return hash;
}
static int
each_key_i(VALUE key, VALUE value, VALUE _)
{
rb_yield(key);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.each_key {|key| ... } -> self
* hash.each_key -> new_enumerator
*
* Calls the given block with each key; returns +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.each_key {|key| puts key } # => {:foo=>0, :bar=>1, :baz=>2}
* Output:
* foo
* bar
* baz
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.each_key # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_key>
* h1 = e.each {|key| puts key }
* h1 # => {:foo=>0, :bar=>1, :baz=>2}
* Output:
* foo
* bar
* baz
*/
static VALUE
rb_hash_each_key(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_foreach(hash, each_key_i, 0);
return hash;
}
static int
each_pair_i(VALUE key, VALUE value, VALUE _)
{
rb_yield(rb_assoc_new(key, value));
return ST_CONTINUE;
}
static int
each_pair_i_fast(VALUE key, VALUE value, VALUE _)
{
VALUE argv[2];
argv[0] = key;
argv[1] = value;
rb_yield_values2(2, argv);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.each {|key, value| ... } -> self
* hash.each_pair {|key, value| ... } -> self
* hash.each -> new_enumerator
* hash.each_pair -> new_enumerator
*
* Calls the given block with each key-value pair; returns +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.each_pair {|key, value| puts "#{key}: #{value}"} # => {:foo=>0, :bar=>1, :baz=>2}
* Output:
* foo: 0
* bar: 1
* baz: 2
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.each_pair # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_pair>
* h1 = e.each {|key, value| puts "#{key}: #{value}"}
* h1 # => {:foo=>0, :bar=>1, :baz=>2}
* Output:
* foo: 0
* bar: 1
* baz: 2
*/
static VALUE
rb_hash_each_pair(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
if (rb_block_pair_yield_optimizable())
rb_hash_foreach(hash, each_pair_i_fast, 0);
else
rb_hash_foreach(hash, each_pair_i, 0);
return hash;
}
struct transform_keys_args{
VALUE trans;
VALUE result;
int block_given;
};
static int
transform_keys_hash_i(VALUE key, VALUE value, VALUE transarg)
{
struct transform_keys_args *p = (void *)transarg;
VALUE trans = p->trans, result = p->result;
VALUE new_key = rb_hash_lookup2(trans, key, Qundef);
if (UNDEF_P(new_key)) {
if (p->block_given)
new_key = rb_yield(key);
else
new_key = key;
}
rb_hash_aset(result, new_key, value);
return ST_CONTINUE;
}
static int
transform_keys_i(VALUE key, VALUE value, VALUE result)
{
VALUE new_key = rb_yield(key);
rb_hash_aset(result, new_key, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.transform_keys {|key| ... } -> new_hash
* hash.transform_keys(hash2) -> new_hash
* hash.transform_keys(hash2) {|other_key| ...} -> new_hash
* hash.transform_keys -> new_enumerator
*
* Returns a new \Hash object; each entry has:
* * A key provided by the block.
* * The value from +self+.
*
* An optional hash argument can be provided to map keys to new keys.
* Any key not given will be mapped using the provided block,
* or remain the same if no block is given.
*
* Transform keys:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = h.transform_keys {|key| key.to_s }
* h1 # => {"foo"=>0, "bar"=>1, "baz"=>2}
*
* h.transform_keys(foo: :bar, bar: :foo)
* #=> {bar: 0, foo: 1, baz: 2}
*
* h.transform_keys(foo: :hello, &:to_s)
* #=> {:hello=>0, "bar"=>1, "baz"=>2}
*
* Overwrites values for duplicate keys:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = h.transform_keys {|key| :bat }
* h1 # => {:bat=>2}
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.transform_keys # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:transform_keys>
* h1 = e.each { |key| key.to_s }
* h1 # => {"foo"=>0, "bar"=>1, "baz"=>2}
*/
static VALUE
rb_hash_transform_keys(int argc, VALUE *argv, VALUE hash)
{
VALUE result;
struct transform_keys_args transarg = {0};
argc = rb_check_arity(argc, 0, 1);
if (argc > 0) {
transarg.trans = to_hash(argv[0]);
transarg.block_given = rb_block_given_p();
}
else {
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
}
result = rb_hash_new();
if (!RHASH_EMPTY_P(hash)) {
if (transarg.trans) {
transarg.result = result;
rb_hash_foreach(hash, transform_keys_hash_i, (VALUE)&transarg);
}
else {
rb_hash_foreach(hash, transform_keys_i, result);
}
}
return result;
}
static int flatten_i(VALUE key, VALUE val, VALUE ary);
/*
* call-seq:
* hash.transform_keys! {|key| ... } -> self
* hash.transform_keys!(hash2) -> self
* hash.transform_keys!(hash2) {|other_key| ...} -> self
* hash.transform_keys! -> new_enumerator
*
* Same as Hash#transform_keys but modifies the receiver in place
* instead of returning a new hash.
*/
static VALUE
rb_hash_transform_keys_bang(int argc, VALUE *argv, VALUE hash)
{
VALUE trans = 0;
int block_given = 0;
argc = rb_check_arity(argc, 0, 1);
if (argc > 0) {
trans = to_hash(argv[0]);
block_given = rb_block_given_p();
}
else {
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
}
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
long i;
VALUE new_keys = hash_alloc(0);
VALUE pairs = rb_ary_hidden_new(RHASH_SIZE(hash) * 2);
rb_hash_foreach(hash, flatten_i, pairs);
for (i = 0; i < RARRAY_LEN(pairs); i += 2) {
VALUE key = RARRAY_AREF(pairs, i), new_key, val;
if (!trans) {
new_key = rb_yield(key);
}
else if (!UNDEF_P(new_key = rb_hash_lookup2(trans, key, Qundef))) {
/* use the transformed key */
}
else if (block_given) {
new_key = rb_yield(key);
}
else {
new_key = key;
}
val = RARRAY_AREF(pairs, i+1);
if (!hash_stlike_lookup(new_keys, key, NULL)) {
rb_hash_stlike_delete(hash, &key, NULL);
}
rb_hash_aset(hash, new_key, val);
rb_hash_aset(new_keys, new_key, Qnil);
}
rb_ary_clear(pairs);
rb_hash_clear(new_keys);
}
return hash;
}
static int
transform_values_foreach_func(st_data_t key, st_data_t value, st_data_t argp, int error)
{
return ST_REPLACE;
}
static int
transform_values_foreach_replace(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
{
VALUE new_value = rb_yield((VALUE)*value);
VALUE hash = (VALUE)argp;
rb_hash_modify(hash);
RB_OBJ_WRITE(hash, value, new_value);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.transform_values {|value| ... } -> new_hash
* hash.transform_values -> new_enumerator
*
* Returns a new \Hash object; each entry has:
* * A key from +self+.
* * A value provided by the block.
*
* Transform values:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = h.transform_values {|value| value * 100}
* h1 # => {:foo=>0, :bar=>100, :baz=>200}
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.transform_values # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:transform_values>
* h1 = e.each { |value| value * 100}
* h1 # => {:foo=>0, :bar=>100, :baz=>200}
*/
static VALUE
rb_hash_transform_values(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
result = hash_dup_with_compare_by_id(hash);
SET_DEFAULT(result, Qnil);
if (!RHASH_EMPTY_P(hash)) {
rb_hash_stlike_foreach_with_replace(result, transform_values_foreach_func, transform_values_foreach_replace, result);
}
return result;
}
/*
* call-seq:
* hash.transform_values! {|value| ... } -> self
* hash.transform_values! -> new_enumerator
*
* Returns +self+, whose keys are unchanged, and whose values are determined by the given block.
* h = {foo: 0, bar: 1, baz: 2}
* h.transform_values! {|value| value * 100} # => {:foo=>0, :bar=>100, :baz=>200}
*
* Returns a new \Enumerator if no block given:
* h = {foo: 0, bar: 1, baz: 2}
* e = h.transform_values! # => #<Enumerator: {:foo=>0, :bar=>100, :baz=>200}:transform_values!>
* h1 = e.each {|value| value * 100}
* h1 # => {:foo=>0, :bar=>100, :baz=>200}
*/
static VALUE
rb_hash_transform_values_bang(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
rb_hash_stlike_foreach_with_replace(hash, transform_values_foreach_func, transform_values_foreach_replace, hash);
}
return hash;
}
static int
to_a_i(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, rb_assoc_new(key, value));
return ST_CONTINUE;
}
/*
* call-seq:
* hash.to_a -> new_array
*
* Returns a new \Array of 2-element \Array objects;
* each nested \Array contains a key-value pair from +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.to_a # => [[:foo, 0], [:bar, 1], [:baz, 2]]
*/
static VALUE
rb_hash_to_a(VALUE hash)
{
VALUE ary;
ary = rb_ary_new_capa(RHASH_SIZE(hash));
rb_hash_foreach(hash, to_a_i, ary);
return ary;
}
static int
inspect_i(VALUE key, VALUE value, VALUE str)
{
VALUE str2;
str2 = rb_inspect(key);
if (RSTRING_LEN(str) > 1) {
rb_str_buf_cat_ascii(str, ", ");
}
else {
rb_enc_copy(str, str2);
}
rb_str_buf_append(str, str2);
rb_str_buf_cat_ascii(str, "=>");
str2 = rb_inspect(value);
rb_str_buf_append(str, str2);
return ST_CONTINUE;
}
static VALUE
inspect_hash(VALUE hash, VALUE dummy, int recur)
{
VALUE str;
if (recur) return rb_usascii_str_new2("{...}");
str = rb_str_buf_new2("{");
rb_hash_foreach(hash, inspect_i, str);
rb_str_buf_cat2(str, "}");
return str;
}
/*
* call-seq:
* hash.inspect -> new_string
*
* Returns a new \String containing the hash entries:
* h = {foo: 0, bar: 1, baz: 2}
* h.inspect # => "{:foo=>0, :bar=>1, :baz=>2}"
*
*/
static VALUE
rb_hash_inspect(VALUE hash)
{
if (RHASH_EMPTY_P(hash))
return rb_usascii_str_new2("{}");
return rb_exec_recursive(inspect_hash, hash, 0);
}
/*
* call-seq:
* hash.to_hash -> self
*
* Returns +self+.
*/
static VALUE
rb_hash_to_hash(VALUE hash)
{
return hash;
}
VALUE
rb_hash_set_pair(VALUE hash, VALUE arg)
{
VALUE pair;
pair = rb_check_array_type(arg);
if (NIL_P(pair)) {
rb_raise(rb_eTypeError, "wrong element type %s (expected array)",
rb_builtin_class_name(arg));
}
if (RARRAY_LEN(pair) != 2) {
rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)",
RARRAY_LEN(pair));
}
rb_hash_aset(hash, RARRAY_AREF(pair, 0), RARRAY_AREF(pair, 1));
return hash;
}
static int
to_h_i(VALUE key, VALUE value, VALUE hash)
{
rb_hash_set_pair(hash, rb_yield_values(2, key, value));
return ST_CONTINUE;
}
static VALUE
rb_hash_to_h_block(VALUE hash)
{
VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash));
rb_hash_foreach(hash, to_h_i, h);
return h;
}
/*
* call-seq:
* hash.to_h -> self or new_hash
* hash.to_h {|key, value| ... } -> new_hash
*
* For an instance of \Hash, returns +self+.
*
* For a subclass of \Hash, returns a new \Hash
* containing the content of +self+.
*
* When a block is given, returns a new \Hash object
* whose content is based on the block;
* the block should return a 2-element \Array object
* specifying the key-value pair to be included in the returned \Array:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = h.to_h {|key, value| [value, key] }
* h1 # => {0=>:foo, 1=>:bar, 2=>:baz}
*/
static VALUE
rb_hash_to_h(VALUE hash)
{
if (rb_block_given_p()) {
return rb_hash_to_h_block(hash);
}
if (rb_obj_class(hash) != rb_cHash) {
const VALUE flags = RBASIC(hash)->flags;
hash = hash_dup(hash, rb_cHash, flags & RHASH_PROC_DEFAULT);
}
return hash;
}
static int
keys_i(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, key);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.keys -> new_array
*
* Returns a new \Array containing all keys in +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.keys # => [:foo, :bar, :baz]
*/
MJIT_FUNC_EXPORTED VALUE
rb_hash_keys(VALUE hash)
{
st_index_t size = RHASH_SIZE(hash);
VALUE keys = rb_ary_new_capa(size);
if (size == 0) return keys;
if (ST_DATA_COMPATIBLE_P(VALUE)) {
RARRAY_PTR_USE_TRANSIENT(keys, ptr, {
if (RHASH_AR_TABLE_P(hash)) {
size = ar_keys(hash, ptr, size);
}
else {
st_table *table = RHASH_ST_TABLE(hash);
size = st_keys(table, ptr, size);
}
});
rb_gc_writebarrier_remember(keys);
rb_ary_set_len(keys, size);
}
else {
rb_hash_foreach(hash, keys_i, keys);
}
return keys;
}
static int
values_i(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.values -> new_array
*
* Returns a new \Array containing all values in +self+:
* h = {foo: 0, bar: 1, baz: 2}
* h.values # => [0, 1, 2]
*/
VALUE
rb_hash_values(VALUE hash)
{
VALUE values;
st_index_t size = RHASH_SIZE(hash);
values = rb_ary_new_capa(size);
if (size == 0) return values;
if (ST_DATA_COMPATIBLE_P(VALUE)) {
if (RHASH_AR_TABLE_P(hash)) {
rb_gc_writebarrier_remember(values);
RARRAY_PTR_USE_TRANSIENT(values, ptr, {
size = ar_values(hash, ptr, size);
});
}
else if (RHASH_ST_TABLE_P(hash)) {
st_table *table = RHASH_ST_TABLE(hash);
rb_gc_writebarrier_remember(values);
RARRAY_PTR_USE_TRANSIENT(values, ptr, {
size = st_values(table, ptr, size);
});
}
rb_ary_set_len(values, size);
}
else {
rb_hash_foreach(hash, values_i, values);
}
return values;
}
/*
* call-seq:
* hash.include?(key) -> true or false
* hash.has_key?(key) -> true or false
* hash.key?(key) -> true or false
* hash.member?(key) -> true or false
*
* Returns +true+ if +key+ is a key in +self+, otherwise +false+.
*/
MJIT_FUNC_EXPORTED VALUE
rb_hash_has_key(VALUE hash, VALUE key)
{
return RBOOL(hash_stlike_lookup(hash, key, NULL));
}
static int
rb_hash_search_value(VALUE key, VALUE value, VALUE arg)
{
VALUE *data = (VALUE *)arg;
if (rb_equal(value, data[1])) {
data[0] = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.has_value?(value) -> true or false
* hash.value?(value) -> true or false
*
* Returns +true+ if +value+ is a value in +self+, otherwise +false+.
*/
static VALUE
rb_hash_has_value(VALUE hash, VALUE val)
{
VALUE data[2];
data[0] = Qfalse;
data[1] = val;
rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data);
return data[0];
}
struct equal_data {
VALUE result;
VALUE hash;
int eql;
};
static int
eql_i(VALUE key, VALUE val1, VALUE arg)
{
struct equal_data *data = (struct equal_data *)arg;
st_data_t val2;
if (!hash_stlike_lookup(data->hash, key, &val2)) {
data->result = Qfalse;
return ST_STOP;
}
else {
if (!(data->eql ? rb_eql(val1, (VALUE)val2) : (int)rb_equal(val1, (VALUE)val2))) {
data->result = Qfalse;
return ST_STOP;
}
return ST_CONTINUE;
}
}
static VALUE
recursive_eql(VALUE hash, VALUE dt, int recur)
{
struct equal_data *data;
if (recur) return Qtrue; /* Subtle! */
data = (struct equal_data*)dt;
data->result = Qtrue;
rb_hash_foreach(hash, eql_i, dt);
return data->result;
}
static VALUE
hash_equal(VALUE hash1, VALUE hash2, int eql)
{
struct equal_data data;
if (hash1 == hash2) return Qtrue;
if (!RB_TYPE_P(hash2, T_HASH)) {
if (!rb_respond_to(hash2, idTo_hash)) {
return Qfalse;
}
if (eql) {
if (rb_eql(hash2, hash1)) {
return Qtrue;
}
else {
return Qfalse;
}
}
else {
return rb_equal(hash2, hash1);
}
}
if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2))
return Qfalse;
if (!RHASH_TABLE_EMPTY_P(hash1) && !RHASH_TABLE_EMPTY_P(hash2)) {
if (RHASH_TYPE(hash1) != RHASH_TYPE(hash2)) {
return Qfalse;
}
else {
data.hash = hash2;
data.eql = eql;
return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data);
}
}
#if 0
if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) &&
FL_TEST(hash1, RHASH_PROC_DEFAULT) == FL_TEST(hash2, RHASH_PROC_DEFAULT)))
return Qfalse;
#endif
return Qtrue;
}
/*
* call-seq:
* hash == object -> true or false
*
* Returns +true+ if all of the following are true:
* * +object+ is a \Hash object.
* * +hash+ and +object+ have the same keys (regardless of order).
* * For each key +key+, <tt>hash[key] == object[key]</tt>.
*
* Otherwise, returns +false+.
*
* Equal:
* h1 = {foo: 0, bar: 1, baz: 2}
* h2 = {foo: 0, bar: 1, baz: 2}
* h1 == h2 # => true
* h3 = {baz: 2, bar: 1, foo: 0}
* h1 == h3 # => true
*/
static VALUE
rb_hash_equal(VALUE hash1, VALUE hash2)
{
return hash_equal(hash1, hash2, FALSE);
}
/*
* call-seq:
* hash.eql? object -> true or false
*
* Returns +true+ if all of the following are true:
* * +object+ is a \Hash object.
* * +hash+ and +object+ have the same keys (regardless of order).
* * For each key +key+, <tt>h[key] eql? object[key]</tt>.
*
* Otherwise, returns +false+.
*
* Equal:
* h1 = {foo: 0, bar: 1, baz: 2}
* h2 = {foo: 0, bar: 1, baz: 2}
* h1.eql? h2 # => true
* h3 = {baz: 2, bar: 1, foo: 0}
* h1.eql? h3 # => true
*/
static VALUE
rb_hash_eql(VALUE hash1, VALUE hash2)
{
return hash_equal(hash1, hash2, TRUE);
}
static int
hash_i(VALUE key, VALUE val, VALUE arg)
{
st_index_t *hval = (st_index_t *)arg;
st_index_t hdata[2];
hdata[0] = rb_hash(key);
hdata[1] = rb_hash(val);
*hval ^= st_hash(hdata, sizeof(hdata), 0);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.hash -> an_integer
*
* Returns the \Integer hash-code for the hash.
*
* Two \Hash objects have the same hash-code if their content is the same
* (regardless or order):
* h1 = {foo: 0, bar: 1, baz: 2}
* h2 = {baz: 2, bar: 1, foo: 0}
* h2.hash == h1.hash # => true
* h2.eql? h1 # => true
*/
static VALUE
rb_hash_hash(VALUE hash)
{
st_index_t size = RHASH_SIZE(hash);
st_index_t hval = rb_hash_start(size);
hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash);
if (size) {
rb_hash_foreach(hash, hash_i, (VALUE)&hval);
}
hval = rb_hash_end(hval);
return ST2FIX(hval);
}
static int
rb_hash_invert_i(VALUE key, VALUE value, VALUE hash)
{
rb_hash_aset(hash, value, key);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.invert -> new_hash
*
* Returns a new \Hash object with the each key-value pair inverted:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = h.invert
* h1 # => {0=>:foo, 1=>:bar, 2=>:baz}
*
* Overwrites any repeated new keys:
* (see {Entry Order}[rdoc-ref:Hash@Entry+Order]):
* h = {foo: 0, bar: 0, baz: 0}
* h.invert # => {0=>:baz}
*/
static VALUE
rb_hash_invert(VALUE hash)
{
VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash));
rb_hash_foreach(hash, rb_hash_invert_i, h);
return h;
}
static int
rb_hash_update_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing)
{
*value = arg->arg;
return ST_CONTINUE;
}
NOINSERT_UPDATE_CALLBACK(rb_hash_update_callback)
static int
rb_hash_update_i(VALUE key, VALUE value, VALUE hash)
{
RHASH_UPDATE(hash, key, rb_hash_update_callback, value);
return ST_CONTINUE;
}
static int
rb_hash_update_block_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing)
{
st_data_t newvalue = arg->arg;
if (existing) {
newvalue = (st_data_t)rb_yield_values(3, (VALUE)*key, (VALUE)*value, (VALUE)newvalue);
}
*value = newvalue;
return ST_CONTINUE;
}
NOINSERT_UPDATE_CALLBACK(rb_hash_update_block_callback)
static int
rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash)
{
RHASH_UPDATE(hash, key, rb_hash_update_block_callback, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.merge! -> self
* hash.merge!(*other_hashes) -> self
* hash.merge!(*other_hashes) { |key, old_value, new_value| ... } -> self
*
* Merges each of +other_hashes+ into +self+; returns +self+.
*
* Each argument in +other_hashes+ must be a \Hash.
*
* With arguments and no block:
* * Returns +self+, after the given hashes are merged into it.
* * The given hashes are merged left to right.
* * Each new entry is added at the end.
* * Each duplicate-key entry's value overwrites the previous value.
*
* Example:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = {bat: 3, bar: 4}
* h2 = {bam: 5, bat:6}
* h.merge!(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5}
*
* With arguments and a block:
* * Returns +self+, after the given hashes are merged.
* * The given hashes are merged left to right.
* * Each new-key entry is added at the end.
* * For each duplicate key:
* * Calls the block with the key and the old and new values.
* * The block's return value becomes the new value for the entry.
*
* Example:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = {bat: 3, bar: 4}
* h2 = {bam: 5, bat:6}
* h3 = h.merge!(h1, h2) { |key, old_value, new_value| old_value + new_value }
* h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5}
*
* With no arguments:
* * Returns +self+, unmodified.
* * The block, if given, is ignored.
*
* Example:
* h = {foo: 0, bar: 1, baz: 2}
* h.merge # => {:foo=>0, :bar=>1, :baz=>2}
* h1 = h.merge! { |key, old_value, new_value| raise 'Cannot happen' }
* h1 # => {:foo=>0, :bar=>1, :baz=>2}
*/
static VALUE
rb_hash_update(int argc, VALUE *argv, VALUE self)
{
int i;
bool block_given = rb_block_given_p();
rb_hash_modify(self);
for (i = 0; i < argc; i++){
VALUE hash = to_hash(argv[i]);
if (block_given) {
rb_hash_foreach(hash, rb_hash_update_block_i, self);
}
else {
rb_hash_foreach(hash, rb_hash_update_i, self);
}
}
return self;
}
struct update_func_arg {
VALUE hash;
VALUE value;
rb_hash_update_func *func;
};
static int
rb_hash_update_func_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing)
{
struct update_func_arg *uf_arg = (struct update_func_arg *)arg->arg;
VALUE newvalue = uf_arg->value;
if (existing) {
newvalue = (*uf_arg->func)((VALUE)*key, (VALUE)*value, newvalue);
}
*value = newvalue;
return ST_CONTINUE;
}
NOINSERT_UPDATE_CALLBACK(rb_hash_update_func_callback)
static int
rb_hash_update_func_i(VALUE key, VALUE value, VALUE arg0)
{
struct update_func_arg *arg = (struct update_func_arg *)arg0;
VALUE hash = arg->hash;
arg->value = value;
RHASH_UPDATE(hash, key, rb_hash_update_func_callback, (VALUE)arg);
return ST_CONTINUE;
}
VALUE
rb_hash_update_by(VALUE hash1, VALUE hash2, rb_hash_update_func *func)
{
rb_hash_modify(hash1);
hash2 = to_hash(hash2);
if (func) {
struct update_func_arg arg;
arg.hash = hash1;
arg.func = func;
rb_hash_foreach(hash2, rb_hash_update_func_i, (VALUE)&arg);
}
else {
rb_hash_foreach(hash2, rb_hash_update_i, hash1);
}
return hash1;
}
/*
* call-seq:
* hash.merge -> copy_of_self
* hash.merge(*other_hashes) -> new_hash
* hash.merge(*other_hashes) { |key, old_value, new_value| ... } -> new_hash
*
* Returns the new \Hash formed by merging each of +other_hashes+
* into a copy of +self+.
*
* Each argument in +other_hashes+ must be a \Hash.
*
* ---
*
* With arguments and no block:
* * Returns the new \Hash object formed by merging each successive
* \Hash in +other_hashes+ into +self+.
* * Each new-key entry is added at the end.
* * Each duplicate-key entry's value overwrites the previous value.
*
* Example:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = {bat: 3, bar: 4}
* h2 = {bam: 5, bat:6}
* h.merge(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5}
*
* With arguments and a block:
* * Returns a new \Hash object that is the merge of +self+ and each given hash.
* * The given hashes are merged left to right.
* * Each new-key entry is added at the end.
* * For each duplicate key:
* * Calls the block with the key and the old and new values.
* * The block's return value becomes the new value for the entry.
*
* Example:
* h = {foo: 0, bar: 1, baz: 2}
* h1 = {bat: 3, bar: 4}
* h2 = {bam: 5, bat:6}
* h3 = h.merge(h1, h2) { |key, old_value, new_value| old_value + new_value }
* h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5}
*
* With no arguments:
* * Returns a copy of +self+.
* * The block, if given, is ignored.
*
* Example:
* h = {foo: 0, bar: 1, baz: 2}
* h.merge # => {:foo=>0, :bar=>1, :baz=>2}
* h1 = h.merge { |key, old_value, new_value| raise 'Cannot happen' }
* h1 # => {:foo=>0, :bar=>1, :baz=>2}
*/
static VALUE
rb_hash_merge(int argc, VALUE *argv, VALUE self)
{
return rb_hash_update(argc, argv, copy_compare_by_id(rb_hash_dup(self), self));
}
static int
assoc_cmp(VALUE a, VALUE b)
{
return !RTEST(rb_equal(a, b));
}
static VALUE
lookup2_call(VALUE arg)
{
VALUE *args = (VALUE *)arg;
return rb_hash_lookup2(args[0], args[1], Qundef);
}
struct reset_hash_type_arg {
VALUE hash;
const struct st_hash_type *orighash;
};
static VALUE
reset_hash_type(VALUE arg)
{
struct reset_hash_type_arg *p = (struct reset_hash_type_arg *)arg;
HASH_ASSERT(RHASH_ST_TABLE_P(p->hash));
RHASH_ST_TABLE(p->hash)->type = p->orighash;
return Qundef;
}
static int
assoc_i(VALUE key, VALUE val, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (RTEST(rb_equal(args[0], key))) {
args[1] = rb_assoc_new(key, val);
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.assoc(key) -> new_array or nil
*
* If the given +key+ is found, returns a 2-element \Array containing that key and its value:
* h = {foo: 0, bar: 1, baz: 2}
* h.assoc(:bar) # => [:bar, 1]
*
* Returns +nil+ if key +key+ is not found.
*/
static VALUE
rb_hash_assoc(VALUE hash, VALUE key)
{
st_table *table;
const struct st_hash_type *orighash;
VALUE args[2];
if (RHASH_EMPTY_P(hash)) return Qnil;
ar_force_convert_table(hash, __FILE__, __LINE__);
HASH_ASSERT(RHASH_ST_TABLE_P(hash));
table = RHASH_ST_TABLE(hash);
orighash = table->type;
if (orighash != &identhash) {
VALUE value;
struct reset_hash_type_arg ensure_arg;
struct st_hash_type assochash;
assochash.compare = assoc_cmp;
assochash.hash = orighash->hash;
table->type = &assochash;
args[0] = hash;
args[1] = key;
ensure_arg.hash = hash;
ensure_arg.orighash = orighash;
value = rb_ensure(lookup2_call, (VALUE)&args, reset_hash_type, (VALUE)&ensure_arg);
if (!UNDEF_P(value)) return rb_assoc_new(key, value);
}
args[0] = key;
args[1] = Qnil;
rb_hash_foreach(hash, assoc_i, (VALUE)args);
return args[1];
}
static int
rassoc_i(VALUE key, VALUE val, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (RTEST(rb_equal(args[0], val))) {
args[1] = rb_assoc_new(key, val);
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.rassoc(value) -> new_array or nil
*
* Returns a new 2-element \Array consisting of the key and value
* of the first-found entry whose value is <tt>==</tt> to value
* (see {Entry Order}[rdoc-ref:Hash@Entry+Order]):
* h = {foo: 0, bar: 1, baz: 1}
* h.rassoc(1) # => [:bar, 1]
*
* Returns +nil+ if no such value found.
*/
static VALUE
rb_hash_rassoc(VALUE hash, VALUE obj)
{
VALUE args[2];
args[0] = obj;
args[1] = Qnil;
rb_hash_foreach(hash, rassoc_i, (VALUE)args);
return args[1];
}
static int
flatten_i(VALUE key, VALUE val, VALUE ary)
{
VALUE pair[2];
pair[0] = key;
pair[1] = val;
rb_ary_cat(ary, pair, 2);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.flatten -> new_array
* hash.flatten(level) -> new_array
*
* Returns a new \Array object that is a 1-dimensional flattening of +self+.
*
* ---
*
* By default, nested Arrays are not flattened:
* h = {foo: 0, bar: [:bat, 3], baz: 2}
* h.flatten # => [:foo, 0, :bar, [:bat, 3], :baz, 2]
*
* Takes the depth of recursive flattening from \Integer argument +level+:
* h = {foo: 0, bar: [:bat, [:baz, [:bat, ]]]}
* h.flatten(1) # => [:foo, 0, :bar, [:bat, [:baz, [:bat]]]]
* h.flatten(2) # => [:foo, 0, :bar, :bat, [:baz, [:bat]]]
* h.flatten(3) # => [:foo, 0, :bar, :bat, :baz, [:bat]]
* h.flatten(4) # => [:foo, 0, :bar, :bat, :baz, :bat]
*
* When +level+ is negative, flattens all nested Arrays:
* h = {foo: 0, bar: [:bat, [:baz, [:bat, ]]]}
* h.flatten(-1) # => [:foo, 0, :bar, :bat, :baz, :bat]
* h.flatten(-2) # => [:foo, 0, :bar, :bat, :baz, :bat]
*
* When +level+ is zero, returns the equivalent of #to_a :
* h = {foo: 0, bar: [:bat, 3], baz: 2}
* h.flatten(0) # => [[:foo, 0], [:bar, [:bat, 3]], [:baz, 2]]
* h.flatten(0) == h.to_a # => true
*/
static VALUE
rb_hash_flatten(int argc, VALUE *argv, VALUE hash)
{
VALUE ary;
rb_check_arity(argc, 0, 1);
if (argc) {
int level = NUM2INT(argv[0]);
if (level == 0) return rb_hash_to_a(hash);
ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2);
rb_hash_foreach(hash, flatten_i, ary);
level--;
if (level > 0) {
VALUE ary_flatten_level = INT2FIX(level);
rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level);
}
else if (level < 0) {
/* flatten recursively */
rb_funcallv(ary, id_flatten_bang, 0, 0);
}
}
else {
ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2);
rb_hash_foreach(hash, flatten_i, ary);
}
return ary;
}
static int
delete_if_nil(VALUE key, VALUE value, VALUE hash)
{
if (NIL_P(value)) {
return ST_DELETE;
}
return ST_CONTINUE;
}
static int
set_if_not_nil(VALUE key, VALUE value, VALUE hash)
{
if (!NIL_P(value)) {
rb_hash_aset(hash, key, value);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.compact -> new_hash
*
* Returns a copy of +self+ with all +nil+-valued entries removed:
* h = {foo: 0, bar: nil, baz: 2, bat: nil}
* h1 = h.compact
* h1 # => {:foo=>0, :baz=>2}
*/
static VALUE
rb_hash_compact(VALUE hash)
{
VALUE result = rb_hash_new();
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(hash, set_if_not_nil, result);
}
return result;
}
/*
* call-seq:
* hash.compact! -> self or nil
*
* Returns +self+ with all its +nil+-valued entries removed (in place):
* h = {foo: 0, bar: nil, baz: 2, bat: nil}
* h.compact! # => {:foo=>0, :baz=>2}
*
* Returns +nil+ if no entries were removed.
*/
static VALUE
rb_hash_compact_bang(VALUE hash)
{
st_index_t n;
rb_hash_modify_check(hash);
n = RHASH_SIZE(hash);
if (n) {
rb_hash_foreach(hash, delete_if_nil, hash);
if (n != RHASH_SIZE(hash))
return hash;
}
return Qnil;
}
static st_table *rb_init_identtable_with_size(st_index_t size);
/*
* call-seq:
* hash.compare_by_identity -> self
*
* Sets +self+ to consider only identity in comparing keys;
* two keys are considered the same only if they are the same object;
* returns +self+.
*
* By default, these two object are considered to be the same key,
* so +s1+ will overwrite +s0+:
* s0 = 'x'
* s1 = 'x'
* h = {}
* h.compare_by_identity? # => false
* h[s0] = 0
* h[s1] = 1
* h # => {"x"=>1}
*
* After calling \#compare_by_identity, the keys are considered to be different,
* and therefore do not overwrite each other:
* h = {}
* h.compare_by_identity # => {}
* h.compare_by_identity? # => true
* h[s0] = 0
* h[s1] = 1
* h # => {"x"=>0, "x"=>1}
*/
VALUE
rb_hash_compare_by_id(VALUE hash)
{
VALUE tmp;
st_table *identtable;
if (rb_hash_compare_by_id_p(hash)) return hash;
rb_hash_modify_check(hash);
ar_force_convert_table(hash, __FILE__, __LINE__);
HASH_ASSERT(RHASH_ST_TABLE_P(hash));
tmp = hash_alloc(0);
identtable = rb_init_identtable_with_size(RHASH_SIZE(hash));
RHASH_ST_TABLE_SET(tmp, identtable);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp);
st_free_table(RHASH_ST_TABLE(hash));
RHASH_ST_TABLE_SET(hash, identtable);
RHASH_ST_CLEAR(tmp);
return hash;
}
/*
* call-seq:
* hash.compare_by_identity? -> true or false
*
* Returns +true+ if #compare_by_identity has been called, +false+ otherwise.
*/
MJIT_FUNC_EXPORTED VALUE
rb_hash_compare_by_id_p(VALUE hash)
{
return RBOOL(RHASH_ST_TABLE_P(hash) && RHASH_ST_TABLE(hash)->type == &identhash);
}
VALUE
rb_ident_hash_new(void)
{
VALUE hash = rb_hash_new();
RHASH_ST_TABLE_SET(hash, st_init_table(&identhash));
return hash;
}
VALUE
rb_ident_hash_new_with_size(st_index_t size)
{
VALUE hash = rb_hash_new();
RHASH_ST_TABLE_SET(hash, st_init_table_with_size(&identhash, size));
return hash;
}
st_table *
rb_init_identtable(void)
{
return st_init_table(&identhash);
}
static st_table *
rb_init_identtable_with_size(st_index_t size)
{
return st_init_table_with_size(&identhash, size);
}
static int
any_p_i(VALUE key, VALUE value, VALUE arg)
{
VALUE ret = rb_yield(rb_assoc_new(key, value));
if (RTEST(ret)) {
*(VALUE *)arg = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
static int
any_p_i_fast(VALUE key, VALUE value, VALUE arg)
{
VALUE ret = rb_yield_values(2, key, value);
if (RTEST(ret)) {
*(VALUE *)arg = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
static int
any_p_i_pattern(VALUE key, VALUE value, VALUE arg)
{
VALUE ret = rb_funcall(((VALUE *)arg)[1], idEqq, 1, rb_assoc_new(key, value));
if (RTEST(ret)) {
*(VALUE *)arg = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.any? -> true or false
* hash.any?(object) -> true or false
* hash.any? {|key, value| ... } -> true or false
*
* Returns +true+ if any element satisfies a given criterion;
* +false+ otherwise.
*
* With no argument and no block,
* returns +true+ if +self+ is non-empty; +false+ if empty.
*
* With argument +object+ and no block,
* returns +true+ if for any key +key+
* <tt>h.assoc(key) == object</tt>:
* h = {foo: 0, bar: 1, baz: 2}
* h.any?([:bar, 1]) # => true
* h.any?([:bar, 0]) # => false
* h.any?([:baz, 1]) # => false
*
* With no argument and a block,
* calls the block with each key-value pair;
* returns +true+ if the block returns any truthy value,
* +false+ otherwise:
* h = {foo: 0, bar: 1, baz: 2}
* h.any? {|key, value| value < 3 } # => true
* h.any? {|key, value| value > 3 } # => false
*/
static VALUE
rb_hash_any_p(int argc, VALUE *argv, VALUE hash)
{
VALUE args[2];
args[0] = Qfalse;
rb_check_arity(argc, 0, 1);
if (RHASH_EMPTY_P(hash)) return Qfalse;
if (argc) {
if (rb_block_given_p()) {
rb_warn("given block not used");
}
args[1] = argv[0];
rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args);
}
else {
if (!rb_block_given_p()) {
/* yields pairs, never false */
return Qtrue;
}
if (rb_block_pair_yield_optimizable())
rb_hash_foreach(hash, any_p_i_fast, (VALUE)args);
else
rb_hash_foreach(hash, any_p_i, (VALUE)args);
}
return args[0];
}
/*
* call-seq:
* hash.dig(key, *identifiers) -> object
*
* Finds and returns the object in nested objects
* that is specified by +key+ and +identifiers+.
* The nested objects may be instances of various classes.
* See {Dig Methods}[rdoc-ref:dig_methods.rdoc].
*
* Nested Hashes:
* h = {foo: {bar: {baz: 2}}}
* h.dig(:foo) # => {:bar=>{:baz=>2}}
* h.dig(:foo, :bar) # => {:baz=>2}
* h.dig(:foo, :bar, :baz) # => 2
* h.dig(:foo, :bar, :BAZ) # => nil
*
* Nested Hashes and Arrays:
* h = {foo: {bar: [:a, :b, :c]}}
* h.dig(:foo, :bar, 2) # => :c
*
* This method will use the {default values}[rdoc-ref:Hash@Default+Values]
* for keys that are not present:
* h = {foo: {bar: [:a, :b, :c]}}
* h.dig(:hello) # => nil
* h.default_proc = -> (hash, _key) { hash }
* h.dig(:hello, :world) # => h
* h.dig(:hello, :world, :foo, :bar, 2) # => :c
*/
static VALUE
rb_hash_dig(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
self = rb_hash_aref(self, *argv);
if (!--argc) return self;
++argv;
return rb_obj_dig(argc, argv, self, Qnil);
}
static int
hash_le_i(VALUE key, VALUE value, VALUE arg)
{
VALUE *args = (VALUE *)arg;
VALUE v = rb_hash_lookup2(args[0], key, Qundef);
if (!UNDEF_P(v) && rb_equal(value, v)) return ST_CONTINUE;
args[1] = Qfalse;
return ST_STOP;
}
static VALUE
hash_le(VALUE hash1, VALUE hash2)
{
VALUE args[2];
args[0] = hash2;
args[1] = Qtrue;
rb_hash_foreach(hash1, hash_le_i, (VALUE)args);
return args[1];
}
/*
* call-seq:
* hash <= other_hash -> true or false
*
* Returns +true+ if +hash+ is a subset of +other_hash+, +false+ otherwise:
* h1 = {foo: 0, bar: 1}
* h2 = {foo: 0, bar: 1, baz: 2}
* h1 <= h2 # => true
* h2 <= h1 # => false
* h1 <= h1 # => true
*/
static VALUE
rb_hash_le(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse;
return hash_le(hash, other);
}
/*
* call-seq:
* hash < other_hash -> true or false
*
* Returns +true+ if +hash+ is a proper subset of +other_hash+, +false+ otherwise:
* h1 = {foo: 0, bar: 1}
* h2 = {foo: 0, bar: 1, baz: 2}
* h1 < h2 # => true
* h2 < h1 # => false
* h1 < h1 # => false
*/
static VALUE
rb_hash_lt(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse;
return hash_le(hash, other);
}
/*
* call-seq:
* hash >= other_hash -> true or false
*
* Returns +true+ if +hash+ is a superset of +other_hash+, +false+ otherwise:
* h1 = {foo: 0, bar: 1, baz: 2}
* h2 = {foo: 0, bar: 1}
* h1 >= h2 # => true
* h2 >= h1 # => false
* h1 >= h1 # => true
*/
static VALUE
rb_hash_ge(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse;
return hash_le(other, hash);
}
/*
* call-seq:
* hash > other_hash -> true or false
*
* Returns +true+ if +hash+ is a proper superset of +other_hash+, +false+ otherwise:
* h1 = {foo: 0, bar: 1, baz: 2}
* h2 = {foo: 0, bar: 1}
* h1 > h2 # => true
* h2 > h1 # => false
* h1 > h1 # => false
*/
static VALUE
rb_hash_gt(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse;
return hash_le(other, hash);
}
static VALUE
hash_proc_call(RB_BLOCK_CALL_FUNC_ARGLIST(key, hash))
{
rb_check_arity(argc, 1, 1);
return rb_hash_aref(hash, *argv);
}
/*
* call-seq:
* hash.to_proc -> proc
*
* Returns a \Proc object that maps a key to its value:
* h = {foo: 0, bar: 1, baz: 2}
* proc = h.to_proc
* proc.class # => Proc
* proc.call(:foo) # => 0
* proc.call(:bar) # => 1
* proc.call(:nosuch) # => nil
*/
static VALUE
rb_hash_to_proc(VALUE hash)
{
return rb_func_lambda_new(hash_proc_call, hash, 1, 1);
}
static VALUE
rb_hash_deconstruct_keys(VALUE hash, VALUE keys)
{
return hash;
}
static int
add_new_i(st_data_t *key, st_data_t *val, st_data_t arg, int existing)
{
VALUE *args = (VALUE *)arg;
if (existing) return ST_STOP;
RB_OBJ_WRITTEN(args[0], Qundef, (VALUE)*key);
RB_OBJ_WRITE(args[0], (VALUE *)val, args[1]);
return ST_CONTINUE;
}
/*
* add +key+ to +val+ pair if +hash+ does not contain +key+.
* returns non-zero if +key+ was contained.
*/
int
rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val)
{
st_table *tbl;
int ret = 0;
VALUE args[2];
args[0] = hash;
args[1] = val;
if (RHASH_AR_TABLE_P(hash)) {
hash_ar_table(hash);
ret = ar_update(hash, (st_data_t)key, add_new_i, (st_data_t)args);
if (ret != -1) {
return ret;
}
ar_try_convert_table(hash);
}
tbl = RHASH_TBL_RAW(hash);
return st_update(tbl, (st_data_t)key, add_new_i, (st_data_t)args);
}
static st_data_t
key_stringify(VALUE key)
{
return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ?
rb_hash_key_str(key) : key;
}
static void
ar_bulk_insert(VALUE hash, long argc, const VALUE *argv)
{
long i;
for (i = 0; i < argc; ) {
st_data_t k = key_stringify(argv[i++]);
st_data_t v = argv[i++];
ar_insert(hash, k, v);
RB_OBJ_WRITTEN(hash, Qundef, k);
RB_OBJ_WRITTEN(hash, Qundef, v);
}
}
void
rb_hash_bulk_insert(long argc, const VALUE *argv, VALUE hash)
{
HASH_ASSERT(argc % 2 == 0);
if (argc > 0) {
st_index_t size = argc / 2;
if (RHASH_TABLE_NULL_P(hash)) {
if (size <= RHASH_AR_TABLE_MAX_SIZE) {
hash_ar_table(hash);
}
else {
RHASH_TBL_RAW(hash);
}
}
if (RHASH_AR_TABLE_P(hash) &&
(RHASH_AR_TABLE_SIZE(hash) + size <= RHASH_AR_TABLE_MAX_SIZE)) {
ar_bulk_insert(hash, argc, argv);
}
else {
rb_hash_bulk_insert_into_st_table(argc, argv, hash);
}
}
}
static char **origenviron;
#ifdef _WIN32
#define GET_ENVIRON(e) ((e) = rb_w32_get_environ())
#define FREE_ENVIRON(e) rb_w32_free_environ(e)
static char **my_environ;
#undef environ
#define environ my_environ
#undef getenv
#define getenv(n) rb_w32_ugetenv(n)
#elif defined(__APPLE__)
#undef environ
#define environ (*_NSGetEnviron())
#define GET_ENVIRON(e) (e)
#define FREE_ENVIRON(e)
#else
extern char **environ;
#define GET_ENVIRON(e) (e)
#define FREE_ENVIRON(e)
#endif
#ifdef ENV_IGNORECASE
#define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0)
#define ENVNMATCH(s1, s2, n) (STRNCASECMP((s1), (s2), (n)) == 0)
#else
#define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0)
#define ENVNMATCH(s1, s2, n) (memcmp((s1), (s2), (n)) == 0)
#endif
#define ENV_LOCK() RB_VM_LOCK_ENTER()
#define ENV_UNLOCK() RB_VM_LOCK_LEAVE()
static inline rb_encoding *
env_encoding(void)
{
#ifdef _WIN32
return rb_utf8_encoding();
#else
return rb_locale_encoding();
#endif
}
static VALUE
env_enc_str_new(const char *ptr, long len, rb_encoding *enc)
{
VALUE str = rb_external_str_new_with_enc(ptr, len, enc);
rb_obj_freeze(str);
return str;
}
static VALUE
env_str_new(const char *ptr, long len)
{
return env_enc_str_new(ptr, len, env_encoding());
}
static VALUE
env_str_new2(const char *ptr)
{
if (!ptr) return Qnil;
return env_str_new(ptr, strlen(ptr));
}
static VALUE
getenv_with_lock(const char *name)
{
VALUE ret;
ENV_LOCK();
{
const char *val = getenv(name);
ret = env_str_new2(val);
}
ENV_UNLOCK();
return ret;
}
static bool
has_env_with_lock(const char *name)
{
const char *val;
ENV_LOCK();
{
val = getenv(name);
}
ENV_UNLOCK();
return val ? true : false;
}
static const char TZ_ENV[] = "TZ";
static void *
get_env_cstr(
VALUE str,
const char *name)
{
char *var;
rb_encoding *enc = rb_enc_get(str);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "bad environment variable %s: ASCII incompatible encoding: %s",
name, rb_enc_name(enc));
}
var = RSTRING_PTR(str);
if (memchr(var, '\0', RSTRING_LEN(str))) {
rb_raise(rb_eArgError, "bad environment variable %s: contains null byte", name);
}
return rb_str_fill_terminator(str, 1); /* ASCII compatible */
}
#define get_env_ptr(var, val) \
(var = get_env_cstr(val, #var))
static inline const char *
env_name(volatile VALUE *s)
{
const char *name;
SafeStringValue(*s);
get_env_ptr(name, *s);
return name;
}
#define env_name(s) env_name(&(s))
static VALUE env_aset(VALUE nm, VALUE val);
static void
reset_by_modified_env(const char *nam)
{
/*
* ENV['TZ'] = nil has a special meaning.
* TZ is no longer considered up-to-date and ruby call tzset() as needed.
* It could be useful if sysadmin change /etc/localtime.
* This hack might works only on Linux glibc.
*/
if (ENVMATCH(nam, TZ_ENV)) {
ruby_reset_timezone();
}
}
static VALUE
env_delete(VALUE name)
{
const char *nam = env_name(name);
reset_by_modified_env(nam);
VALUE val = getenv_with_lock(nam);
if (!NIL_P(val)) {
ruby_setenv(nam, 0);
}
return val;
}
/*
* call-seq:
* ENV.delete(name) -> value
* ENV.delete(name) { |name| block } -> value
* ENV.delete(missing_name) -> nil
* ENV.delete(missing_name) { |name| block } -> block_value
*
* Deletes the environment variable with +name+ if it exists and returns its value:
* ENV['foo'] = '0'
* ENV.delete('foo') # => '0'
*
* If a block is not given and the named environment variable does not exist, returns +nil+.
*
* If a block given and the environment variable does not exist,
* yields +name+ to the block and returns the value of the block:
* ENV.delete('foo') { |name| name * 2 } # => "foofoo"
*
* If a block given and the environment variable exists,
* deletes the environment variable and returns its value (ignoring the block):
* ENV['foo'] = '0'
* ENV.delete('foo') { |name| raise 'ignored' } # => "0"
*
* Raises an exception if +name+ is invalid.
* See {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values].
*/
static VALUE
env_delete_m(VALUE obj, VALUE name)
{
VALUE val;
val = env_delete(name);
if (NIL_P(val) && rb_block_given_p()) val = rb_yield(name);
return val;
}
/*
* call-seq:
* ENV[name] -> value
*
* Returns the value for the environment variable +name+ if it exists:
* ENV['foo'] = '0'
* ENV['foo'] # => "0"
* Returns +nil+ if the named variable does not exist.
*
* Raises an exception if +name+ is invalid.
* See {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values].
*/
static VALUE
rb_f_getenv(VALUE obj, VALUE name)
{
const char *nam = env_name(name);
VALUE env = getenv_with_lock(nam);
return env;
}
/*
* call-seq:
* ENV.fetch(name) -> value
* ENV.fetch(name, default) -> value
* ENV.fetch(name) { |name| block } -> value
*
* If +name+ is the name of an environment variable, returns its value:
* ENV['foo'] = '0'
* ENV.fetch('foo') # => '0'
* Otherwise if a block is given (but not a default value),
* yields +name+ to the block and returns the block's return value:
* ENV.fetch('foo') { |name| :need_not_return_a_string } # => :need_not_return_a_string
* Otherwise if a default value is given (but not a block), returns the default value:
* ENV.delete('foo')
* ENV.fetch('foo', :default_need_not_be_a_string) # => :default_need_not_be_a_string
* If the environment variable does not exist and both default and block are given,
* issues a warning ("warning: block supersedes default value argument"),
* yields +name+ to the block, and returns the block's return value:
* ENV.fetch('foo', :default) { |name| :block_return } # => :block_return
* Raises KeyError if +name+ is valid, but not found,
* and neither default value nor block is given:
* ENV.fetch('foo') # Raises KeyError (key not found: "foo")
* Raises an exception if +name+ is invalid.
* See {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values].
*/
static VALUE
env_fetch(int argc, VALUE *argv, VALUE _)
{
VALUE key;
long block_given;
const char *nam;
VALUE env;
rb_check_arity(argc, 1, 2);
key = argv[0];
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
nam = env_name(key);
env = getenv_with_lock(nam);
if (NIL_P(env)) {
if (block_given) return rb_yield(key);
if (argc == 1) {
rb_key_err_raise(rb_sprintf("key not found: \"%"PRIsVALUE"\"", key), envtbl, key);
}
return argv[1];
}
return env;
}
#if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV))
#elif defined __sun
static int
in_origenv(const char *str)
{
char **env;
for (env = origenviron; *env; ++env) {
if (*env == str) return 1;
}
return 0;
}
#else
static int
envix(const char *nam)
{
// should be locked
register int i, len = strlen(nam);
char **env;
env = GET_ENVIRON(environ);
for (i = 0; env[i]; i++) {
if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=')
break; /* memcmp must come first to avoid */
} /* potential SEGV's */
FREE_ENVIRON(environ);
return i;
}
#endif
#if defined(_WIN32)
static size_t
getenvsize(const WCHAR* p)
{
const WCHAR* porg = p;
while (*p++) p += lstrlenW(p) + 1;
return p - porg + 1;
}
static size_t
getenvblocksize(void)
{
#ifdef _MAX_ENV
return _MAX_ENV;
#else
return 32767;
#endif
}
static int
check_envsize(size_t n)
{
if (_WIN32_WINNT < 0x0600 && rb_w32_osver() < 6) {
/* https://msdn.microsoft.com/en-us/library/windows/desktop/ms682653(v=vs.85).aspx */
/* Windows Server 2003 and Windows XP: The maximum size of the
* environment block for the process is 32,767 characters. */
WCHAR* p = GetEnvironmentStringsW();
if (!p) return -1; /* never happen */
n += getenvsize(p);
FreeEnvironmentStringsW(p);
if (n >= getenvblocksize()) {
return -1;
}
}
return 0;
}
#endif
#if defined(_WIN32) || \
(defined(__sun) && !(defined(HAVE_SETENV) && defined(HAVE_UNSETENV)))
NORETURN(static void invalid_envname(const char *name));
static void
invalid_envname(const char *name)
{
rb_syserr_fail_str(EINVAL, rb_sprintf("ruby_setenv(%s)", name));
}
static const char *
check_envname(const char *name)
{
if (strchr(name, '=')) {
invalid_envname(name);
}
return name;
}
#endif
void
ruby_setenv(const char *name, const char *value)
{
#if defined(_WIN32)
# if defined(MINGW_HAS_SECURE_API) || RUBY_MSVCRT_VERSION >= 80
# define HAVE__WPUTENV_S 1
# endif
VALUE buf;
WCHAR *wname;
WCHAR *wvalue = 0;
int failed = 0;
int len;
check_envname(name);
len = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0);
if (value) {
int len2;
len2 = MultiByteToWideChar(CP_UTF8, 0, value, -1, NULL, 0);
if (check_envsize((size_t)len + len2)) { /* len and len2 include '\0' */
goto fail; /* 2 for '=' & '\0' */
}
wname = ALLOCV_N(WCHAR, buf, len + len2);
wvalue = wname + len;
MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len);
MultiByteToWideChar(CP_UTF8, 0, value, -1, wvalue, len2);
#ifndef HAVE__WPUTENV_S
wname[len-1] = L'=';
#endif
}
else {
wname = ALLOCV_N(WCHAR, buf, len + 1);
MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len);
wvalue = wname + len;
*wvalue = L'\0';
#ifndef HAVE__WPUTENV_S
wname[len-1] = L'=';
#endif
}
ENV_LOCK();
{
#ifndef HAVE__WPUTENV_S
failed = _wputenv(wname);
#else
failed = _wputenv_s(wname, wvalue);
#endif
}
ENV_UNLOCK();
ALLOCV_END(buf);
/* even if putenv() failed, clean up and try to delete the
* variable from the system area. */
if (!value || !*value) {
/* putenv() doesn't handle empty value */
if (!SetEnvironmentVariable(name, value) &&
GetLastError() != ERROR_ENVVAR_NOT_FOUND) goto fail;
}
if (failed) {
fail:
invalid_envname(name);
}
#elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV)
if (value) {
int ret;
ENV_LOCK();
{
ret = setenv(name, value, 1);
}
ENV_UNLOCK();
if (ret) rb_sys_fail_str(rb_sprintf("setenv(%s)", name));
}
else {
#ifdef VOID_UNSETENV
ENV_LOCK();
{
unsetenv(name);
}
ENV_UNLOCK();
#else
int ret;
ENV_LOCK();
{
ret = unsetenv(name);
}
ENV_UNLOCK();
if (ret) rb_sys_fail_str(rb_sprintf("unsetenv(%s)", name));
#endif
}
#elif defined __sun
/* Solaris 9 (or earlier) does not have setenv(3C) and unsetenv(3C). */
/* The below code was tested on Solaris 10 by:
% ./configure ac_cv_func_setenv=no ac_cv_func_unsetenv=no
*/
size_t len, mem_size;
char **env_ptr, *str, *mem_ptr;
check_envname(name);
len = strlen(name);
if (value) {
mem_size = len + strlen(value) + 2;
mem_ptr = malloc(mem_size);
if (mem_ptr == NULL)
rb_sys_fail_str(rb_sprintf("malloc(%"PRIuSIZE")", mem_size));
snprintf(mem_ptr, mem_size, "%s=%s", name, value);
}
ENV_LOCK();
{
for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) {
if (!strncmp(str, name, len) && str[len] == '=') {
if (!in_origenv(str)) free(str);
while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++;
break;
}
}
}
ENV_UNLOCK();
if (value) {
int ret;
ENV_LOCK();
{
ret = putenv(mem_ptr);
}
ENV_UNLOCK();
if (ret) {
free(mem_ptr);
rb_sys_fail_str(rb_sprintf("putenv(%s)", name));
}
}
#else /* WIN32 */
size_t len;
int i;
ENV_LOCK();
{
i = envix(name); /* where does it go? */
if (environ == origenviron) { /* need we copy environment? */
int j;
int max;
char **tmpenv;
for (max = i; environ[max]; max++) ;
tmpenv = ALLOC_N(char*, max+2);
for (j=0; j<max; j++) /* copy environment */
tmpenv[j] = ruby_strdup(environ[j]);
tmpenv[max] = 0;
environ = tmpenv; /* tell exec where it is now */
}
if (environ[i]) {
char **envp = origenviron;
while (*envp && *envp != environ[i]) envp++;
if (!*envp)
xfree(environ[i]);
if (!value) {
while (environ[i]) {
environ[i] = environ[i+1];
i++;
}
goto finish;
}
}
else { /* does not exist yet */
if (!value) goto finish;
REALLOC_N(environ, char*, i+2); /* just expand it a bit */
environ[i+1] = 0; /* make sure it's null terminated */
}
len = strlen(name) + strlen(value) + 2;
environ[i] = ALLOC_N(char, len);
snprintf(environ[i],len,"%s=%s",name,value); /* all that work just for this */
finish:;
}
ENV_UNLOCK();
#endif /* WIN32 */
}
void
ruby_unsetenv(const char *name)
{
ruby_setenv(name, 0);
}
/*
* call-seq:
* ENV[name] = value -> value
* ENV.store(name, value) -> value
*
* Creates, updates, or deletes the named environment variable, returning the value.
* Both +name+ and +value+ may be instances of String.
* See {Valid Names and Values}[rdoc-ref:ENV@Valid+Names+and+Values].
*
* - If the named environment variable does not exist:
* - If +value+ is +nil+, does nothing.
* ENV.clear
* ENV['foo'] = nil # => nil
* ENV.include?('foo') # => false
* ENV.store('bar', nil) # => nil
* ENV.include?('bar') # => false
* - If +value+ is not +nil+, creates the environment variable with +name+ and +value+:
* # Create 'foo' using ENV.[]=.
* ENV['foo'] = '0' # => '0'
* ENV['foo'] # => '0'
* # Create 'bar' using ENV.store.
* ENV.store('bar', '1') # => '1'
* ENV['bar'] # => '1'
* - If the named environment variable exists:
* - If +value+ is not +nil+, updates the environment variable with value +value+:
* # Update 'foo' using ENV.[]=.
* ENV['foo'] = '2' # => '2'
* ENV['foo'] # => '2'
* # Update 'bar' using ENV.store.
* ENV.store('bar', '3') # => '3'
* ENV['bar'] # => '3'
* - If +value+ is +nil+, deletes the environment variable:
* # Delete 'foo' using ENV.[]=.
* ENV['foo'] = nil # => nil
* ENV.include?('foo') # => false
* # Delete 'bar' using ENV.store.
* ENV.store('bar', nil) # => nil
* ENV.include?('bar') # => false
*
* Raises an exception if +name+ or +value+ is invalid.
* See {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values].
*/
static VALUE
env_aset_m(VALUE obj, VALUE nm, VALUE val)
{
return env_aset(nm, val);
}
static VALUE
env_aset(VALUE nm, VALUE val)
{
char *name, *value;
if (NIL_P(val)) {
env_delete(nm);
return Qnil;
}
SafeStringValue(nm);
SafeStringValue(val);
/* nm can be modified in `val.to_str`, don't get `name` before
* check for `val` */
get_env_ptr(name, nm);
get_env_ptr(value, val);
ruby_setenv(name, value);
reset_by_modified_env(name);
return val;
}
static VALUE
env_keys(int raw)
{
rb_encoding *enc = raw ? 0 : rb_locale_encoding();
VALUE ary = rb_ary_new();
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
const char *p = *env;
size_t l = s - p;
VALUE e = raw ? rb_utf8_str_new(p, l) : env_enc_str_new(p, l, enc);
rb_ary_push(ary, e);
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return ary;
}
/*
* call-seq:
* ENV.keys -> array of names
*
* Returns all variable names in an Array:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.keys # => ['bar', 'foo']
* The order of the names is OS-dependent.
* See {About Ordering}[rdoc-ref:ENV@About+Ordering].
*
* Returns the empty Array if ENV is empty.
*/
static VALUE
env_f_keys(VALUE _)
{
return env_keys(FALSE);
}
static VALUE
rb_env_size(VALUE ehash, VALUE args, VALUE eobj)
{
char **env;
long cnt = 0;
ENV_LOCK();
{
env = GET_ENVIRON(environ);
for (; *env ; ++env) {
if (strchr(*env, '=')) {
cnt++;
}
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return LONG2FIX(cnt);
}
/*
* call-seq:
* ENV.each_key { |name| block } -> ENV
* ENV.each_key -> an_enumerator
*
* Yields each environment variable name:
* ENV.replace('foo' => '0', 'bar' => '1') # => ENV
* names = []
* ENV.each_key { |name| names.push(name) } # => ENV
* names # => ["bar", "foo"]
*
* Returns an Enumerator if no block given:
* e = ENV.each_key # => #<Enumerator: {"bar"=>"1", "foo"=>"0"}:each_key>
* names = []
* e.each { |name| names.push(name) } # => ENV
* names # => ["bar", "foo"]
*/
static VALUE
env_each_key(VALUE ehash)
{
VALUE keys;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
keys = env_keys(FALSE);
for (i=0; i<RARRAY_LEN(keys); i++) {
rb_yield(RARRAY_AREF(keys, i));
}
return ehash;
}
static VALUE
env_values(void)
{
VALUE ary = rb_ary_new();
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return ary;
}
/*
* call-seq:
* ENV.values -> array of values
*
* Returns all environment variable values in an Array:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.values # => ['1', '0']
* The order of the values is OS-dependent.
* See {About Ordering}[rdoc-ref:ENV@About+Ordering].
*
* Returns the empty Array if ENV is empty.
*/
static VALUE
env_f_values(VALUE _)
{
return env_values();
}
/*
* call-seq:
* ENV.each_value { |value| block } -> ENV
* ENV.each_value -> an_enumerator
*
* Yields each environment variable value:
* ENV.replace('foo' => '0', 'bar' => '1') # => ENV
* values = []
* ENV.each_value { |value| values.push(value) } # => ENV
* values # => ["1", "0"]
*
* Returns an Enumerator if no block given:
* e = ENV.each_value # => #<Enumerator: {"bar"=>"1", "foo"=>"0"}:each_value>
* values = []
* e.each { |value| values.push(value) } # => ENV
* values # => ["1", "0"]
*/
static VALUE
env_each_value(VALUE ehash)
{
VALUE values;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
values = env_values();
for (i=0; i<RARRAY_LEN(values); i++) {
rb_yield(RARRAY_AREF(values, i));
}
return ehash;
}
/*
* call-seq:
* ENV.each { |name, value| block } -> ENV
* ENV.each -> an_enumerator
* ENV.each_pair { |name, value| block } -> ENV
* ENV.each_pair -> an_enumerator
*
* Yields each environment variable name and its value as a 2-element \Array:
* h = {}
* ENV.each_pair { |name, value| h[name] = value } # => ENV
* h # => {"bar"=>"1", "foo"=>"0"}
*
* Returns an Enumerator if no block given:
* h = {}
* e = ENV.each_pair # => #<Enumerator: {"bar"=>"1", "foo"=>"0"}:each_pair>
* e.each { |name, value| h[name] = value } # => ENV
* h # => {"bar"=>"1", "foo"=>"0"}
*/
static VALUE
env_each_pair(VALUE ehash)
{
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
VALUE ary = rb_ary_new();
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new(*env, s-*env));
rb_ary_push(ary, env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
if (rb_block_pair_yield_optimizable()) {
for (i=0; i<RARRAY_LEN(ary); i+=2) {
rb_yield_values(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, i+1));
}
}
else {
for (i=0; i<RARRAY_LEN(ary); i+=2) {
rb_yield(rb_assoc_new(RARRAY_AREF(ary, i), RARRAY_AREF(ary, i+1)));
}
}
return ehash;
}
/*
* call-seq:
* ENV.reject! { |name, value| block } -> ENV or nil
* ENV.reject! -> an_enumerator
*
* Similar to ENV.delete_if, but returns +nil+ if no changes were made.
*
* Yields each environment variable name and its value as a 2-element Array,
* deleting each environment variable for which the block returns a truthy value,
* and returning ENV (if any deletions) or +nil+ (if not):
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.reject! { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"foo"=>"0"}
* ENV.reject! { |name, value| name.start_with?('b') } # => nil
*
* Returns an Enumerator if no block given:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* e = ENV.reject! # => #<Enumerator: {"bar"=>"1", "baz"=>"2", "foo"=>"0"}:reject!>
* e.each { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"foo"=>"0"}
* e.each { |name, value| name.start_with?('b') } # => nil
*/
static VALUE
env_reject_bang(VALUE ehash)
{
VALUE keys;
long i;
int del = 0;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
keys = env_keys(FALSE);
RBASIC_CLEAR_CLASS(keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_AREF(keys, i));
if (!NIL_P(val)) {
if (RTEST(rb_yield_values(2, RARRAY_AREF(keys, i), val))) {
env_delete(RARRAY_AREF(keys, i));
del++;
}
}
}
RB_GC_GUARD(keys);
if (del == 0) return Qnil;
return envtbl;
}
/*
* call-seq:
* ENV.delete_if { |name, value| block } -> ENV
* ENV.delete_if -> an_enumerator
*
* Yields each environment variable name and its value as a 2-element Array,
* deleting each environment variable for which the block returns a truthy value,
* and returning ENV (regardless of whether any deletions):
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.delete_if { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"foo"=>"0"}
* ENV.delete_if { |name, value| name.start_with?('b') } # => ENV
*
* Returns an Enumerator if no block given:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* e = ENV.delete_if # => #<Enumerator: {"bar"=>"1", "baz"=>"2", "foo"=>"0"}:delete_if!>
* e.each { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"foo"=>"0"}
* e.each { |name, value| name.start_with?('b') } # => ENV
*/
static VALUE
env_delete_if(VALUE ehash)
{
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
env_reject_bang(ehash);
return envtbl;
}
/*
* call-seq:
* ENV.values_at(*names) -> array of values
*
* Returns an Array containing the environment variable values associated with
* the given names:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.values_at('foo', 'baz') # => ["0", "2"]
*
* Returns +nil+ in the Array for each name that is not an ENV name:
* ENV.values_at('foo', 'bat', 'bar', 'bam') # => ["0", nil, "1", nil]
*
* Returns an empty \Array if no names given.
*
* Raises an exception if any name is invalid.
* See {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values].
*/
static VALUE
env_values_at(int argc, VALUE *argv, VALUE _)
{
VALUE result;
long i;
result = rb_ary_new();
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_f_getenv(Qnil, argv[i]));
}
return result;
}
/*
* call-seq:
* ENV.select { |name, value| block } -> hash of name/value pairs
* ENV.select -> an_enumerator
* ENV.filter { |name, value| block } -> hash of name/value pairs
* ENV.filter -> an_enumerator
*
* Yields each environment variable name and its value as a 2-element Array,
* returning a Hash of the names and values for which the block returns a truthy value:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.select { |name, value| name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"}
* ENV.filter { |name, value| name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"}
*
* Returns an Enumerator if no block given:
* e = ENV.select # => #<Enumerator: {"bar"=>"1", "baz"=>"2", "foo"=>"0"}:select>
* e.each { |name, value | name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"}
* e = ENV.filter # => #<Enumerator: {"bar"=>"1", "baz"=>"2", "foo"=>"0"}:filter>
* e.each { |name, value | name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"}
*/
static VALUE
env_select(VALUE ehash)
{
VALUE result;
VALUE keys;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
result = rb_hash_new();
keys = env_keys(FALSE);
for (i = 0; i < RARRAY_LEN(keys); ++i) {
VALUE key = RARRAY_AREF(keys, i);
VALUE val = rb_f_getenv(Qnil, key);
if (!NIL_P(val)) {
if (RTEST(rb_yield_values(2, key, val))) {
rb_hash_aset(result, key, val);
}
}
}
RB_GC_GUARD(keys);
return result;
}
/*
* call-seq:
* ENV.select! { |name, value| block } -> ENV or nil
* ENV.select! -> an_enumerator
* ENV.filter! { |name, value| block } -> ENV or nil
* ENV.filter! -> an_enumerator
*
* Yields each environment variable name and its value as a 2-element Array,
* deleting each entry for which the block returns +false+ or +nil+,
* and returning ENV if any deletions made, or +nil+ otherwise:
*
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.select! { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"bar"=>"1", "baz"=>"2"}
* ENV.select! { |name, value| true } # => nil
*
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.filter! { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"bar"=>"1", "baz"=>"2"}
* ENV.filter! { |name, value| true } # => nil
*
* Returns an Enumerator if no block given:
*
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* e = ENV.select! # => #<Enumerator: {"bar"=>"1", "baz"=>"2"}:select!>
* e.each { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"bar"=>"1", "baz"=>"2"}
* e.each { |name, value| true } # => nil
*
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* e = ENV.filter! # => #<Enumerator: {"bar"=>"1", "baz"=>"2"}:filter!>
* e.each { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"bar"=>"1", "baz"=>"2"}
* e.each { |name, value| true } # => nil
*/
static VALUE
env_select_bang(VALUE ehash)
{
VALUE keys;
long i;
int del = 0;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
keys = env_keys(FALSE);
RBASIC_CLEAR_CLASS(keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_AREF(keys, i));
if (!NIL_P(val)) {
if (!RTEST(rb_yield_values(2, RARRAY_AREF(keys, i), val))) {
env_delete(RARRAY_AREF(keys, i));
del++;
}
}
}
RB_GC_GUARD(keys);
if (del == 0) return Qnil;
return envtbl;
}
/*
* call-seq:
* ENV.keep_if { |name, value| block } -> ENV
* ENV.keep_if -> an_enumerator
*
* Yields each environment variable name and its value as a 2-element Array,
* deleting each environment variable for which the block returns +false+ or +nil+,
* and returning ENV:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.keep_if { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"bar"=>"1", "baz"=>"2"}
*
* Returns an Enumerator if no block given:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* e = ENV.keep_if # => #<Enumerator: {"bar"=>"1", "baz"=>"2", "foo"=>"0"}:keep_if>
* e.each { |name, value| name.start_with?('b') } # => ENV
* ENV # => {"bar"=>"1", "baz"=>"2"}
*/
static VALUE
env_keep_if(VALUE ehash)
{
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
env_select_bang(ehash);
return envtbl;
}
/*
* call-seq:
* ENV.slice(*names) -> hash of name/value pairs
*
* Returns a Hash of the given ENV names and their corresponding values:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2', 'bat' => '3')
* ENV.slice('foo', 'baz') # => {"foo"=>"0", "baz"=>"2"}
* ENV.slice('baz', 'foo') # => {"baz"=>"2", "foo"=>"0"}
* Raises an exception if any of the +names+ is invalid
* (see {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values]):
* ENV.slice('foo', 'bar', :bat) # Raises TypeError (no implicit conversion of Symbol into String)
*/
static VALUE
env_slice(int argc, VALUE *argv, VALUE _)
{
int i;
VALUE key, value, result;
if (argc == 0) {
return rb_hash_new();
}
result = rb_hash_new_with_size(argc);
for (i = 0; i < argc; i++) {
key = argv[i];
value = rb_f_getenv(Qnil, key);
if (value != Qnil)
rb_hash_aset(result, key, value);
}
return result;
}
VALUE
rb_env_clear(void)
{
VALUE keys;
long i;
keys = env_keys(TRUE);
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE key = RARRAY_AREF(keys, i);
const char *nam = RSTRING_PTR(key);
ruby_setenv(nam, 0);
}
RB_GC_GUARD(keys);
return envtbl;
}
/*
* call-seq:
* ENV.clear -> ENV
*
* Removes every environment variable; returns ENV:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.size # => 2
* ENV.clear # => ENV
* ENV.size # => 0
*/
static VALUE
env_clear(VALUE _)
{
return rb_env_clear();
}
/*
* call-seq:
* ENV.to_s -> "ENV"
*
* Returns String 'ENV':
* ENV.to_s # => "ENV"
*/
static VALUE
env_to_s(VALUE _)
{
return rb_usascii_str_new2("ENV");
}
/*
* call-seq:
* ENV.inspect -> a_string
*
* Returns the contents of the environment as a String:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.inspect # => "{\"bar\"=>\"1\", \"foo\"=>\"0\"}"
*/
static VALUE
env_inspect(VALUE _)
{
VALUE i;
VALUE str = rb_str_buf_new2("{");
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (env != environ) {
rb_str_buf_cat2(str, ", ");
}
if (s) {
rb_str_buf_cat2(str, "\"");
rb_str_buf_cat(str, *env, s-*env);
rb_str_buf_cat2(str, "\"=>");
i = rb_inspect(rb_str_new2(s+1));
rb_str_buf_append(str, i);
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
rb_str_buf_cat2(str, "}");
return str;
}
/*
* call-seq:
* ENV.to_a -> array of 2-element arrays
*
* Returns the contents of ENV as an Array of 2-element Arrays,
* each of which is a name/value pair:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.to_a # => [["bar", "1"], ["foo", "0"]]
*/
static VALUE
env_to_a(VALUE _)
{
VALUE ary = rb_ary_new();
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env),
env_str_new2(s+1)));
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return ary;
}
/*
* call-seq:
* ENV.rehash -> nil
*
* (Provided for compatibility with Hash.)
*
* Does not modify ENV; returns +nil+.
*/
static VALUE
env_none(VALUE _)
{
return Qnil;
}
static int
env_size_with_lock(void)
{
int i = 0;
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (env[i]) i++;
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return i;
}
/*
* call-seq:
* ENV.length -> an_integer
* ENV.size -> an_integer
*
* Returns the count of environment variables:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.length # => 2
* ENV.size # => 2
*/
static VALUE
env_size(VALUE _)
{
return INT2FIX(env_size_with_lock());
}
/*
* call-seq:
* ENV.empty? -> true or false
*
* Returns +true+ when there are no environment variables, +false+ otherwise:
* ENV.clear
* ENV.empty? # => true
* ENV['foo'] = '0'
* ENV.empty? # => false
*/
static VALUE
env_empty_p(VALUE _)
{
bool empty = true;
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
if (env[0] != 0) {
empty = false;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return RBOOL(empty);
}
/*
* call-seq:
* ENV.include?(name) -> true or false
* ENV.has_key?(name) -> true or false
* ENV.member?(name) -> true or false
* ENV.key?(name) -> true or false
*
* Returns +true+ if there is an environment variable with the given +name+:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.include?('foo') # => true
* Returns +false+ if +name+ is a valid String and there is no such environment variable:
* ENV.include?('baz') # => false
* Returns +false+ if +name+ is the empty String or is a String containing character <code>'='</code>:
* ENV.include?('') # => false
* ENV.include?('=') # => false
* Raises an exception if +name+ is a String containing the NUL character <code>"\0"</code>:
* ENV.include?("\0") # Raises ArgumentError (bad environment variable name: contains null byte)
* Raises an exception if +name+ has an encoding that is not ASCII-compatible:
* ENV.include?("\xa1\xa1".force_encoding(Encoding::UTF_16LE))
* # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: UTF-16LE)
* Raises an exception if +name+ is not a String:
* ENV.include?(Object.new) # TypeError (no implicit conversion of Object into String)
*/
static VALUE
env_has_key(VALUE env, VALUE key)
{
const char *s = env_name(key);
return RBOOL(has_env_with_lock(s));
}
/*
* call-seq:
* ENV.assoc(name) -> [name, value] or nil
*
* Returns a 2-element Array containing the name and value of the environment variable
* for +name+ if it exists:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.assoc('foo') # => ['foo', '0']
* Returns +nil+ if +name+ is a valid String and there is no such environment variable.
*
* Returns +nil+ if +name+ is the empty String or is a String containing character <code>'='</code>.
*
* Raises an exception if +name+ is a String containing the NUL character <code>"\0"</code>:
* ENV.assoc("\0") # Raises ArgumentError (bad environment variable name: contains null byte)
* Raises an exception if +name+ has an encoding that is not ASCII-compatible:
* ENV.assoc("\xa1\xa1".force_encoding(Encoding::UTF_16LE))
* # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: UTF-16LE)
* Raises an exception if +name+ is not a String:
* ENV.assoc(Object.new) # TypeError (no implicit conversion of Object into String)
*/
static VALUE
env_assoc(VALUE env, VALUE key)
{
const char *s = env_name(key);
VALUE e = getenv_with_lock(s);
if (!NIL_P(e)) {
return rb_assoc_new(key, e);
}
else {
return Qnil;
}
}
/*
* call-seq:
* ENV.value?(value) -> true or false
* ENV.has_value?(value) -> true or false
*
* Returns +true+ if +value+ is the value for some environment variable name, +false+ otherwise:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.value?('0') # => true
* ENV.has_value?('0') # => true
* ENV.value?('2') # => false
* ENV.has_value?('2') # => false
*/
static VALUE
env_has_value(VALUE dmy, VALUE obj)
{
obj = rb_check_string_type(obj);
if (NIL_P(obj)) return Qnil;
VALUE ret = Qfalse;
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) {
ret = Qtrue;
break;
}
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return ret;
}
/*
* call-seq:
* ENV.rassoc(value) -> [name, value] or nil
*
* Returns a 2-element Array containing the name and value of the
* *first* *found* environment variable that has value +value+, if one
* exists:
* ENV.replace('foo' => '0', 'bar' => '0')
* ENV.rassoc('0') # => ["bar", "0"]
* The order in which environment variables are examined is OS-dependent.
* See {About Ordering}[rdoc-ref:ENV@About+Ordering].
*
* Returns +nil+ if there is no such environment variable.
*/
static VALUE
env_rassoc(VALUE dmy, VALUE obj)
{
obj = rb_check_string_type(obj);
if (NIL_P(obj)) return Qnil;
VALUE result = Qnil;
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
const char *p = *env;
char *s = strchr(p, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) {
result = rb_assoc_new(rb_str_new(p, s-p-1), obj);
break;
}
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return result;
}
/*
* call-seq:
* ENV.key(value) -> name or nil
*
* Returns the name of the first environment variable with +value+, if it exists:
* ENV.replace('foo' => '0', 'bar' => '0')
* ENV.key('0') # => "foo"
* The order in which environment variables are examined is OS-dependent.
* See {About Ordering}[rdoc-ref:ENV@About+Ordering].
*
* Returns +nil+ if there is no such value.
*
* Raises an exception if +value+ is invalid:
* ENV.key(Object.new) # raises TypeError (no implicit conversion of Object into String)
* See {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values].
*/
static VALUE
env_key(VALUE dmy, VALUE value)
{
SafeStringValue(value);
VALUE str = Qnil;
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) {
str = env_str_new(*env, s-*env-1);
break;
}
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return str;
}
static VALUE
env_to_hash(void)
{
VALUE hash = rb_hash_new();
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_hash_aset(hash, env_str_new(*env, s-*env),
env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
return hash;
}
VALUE
rb_envtbl(void)
{
return envtbl;
}
VALUE
rb_env_to_hash(void)
{
return env_to_hash();
}
/*
* call-seq:
* ENV.to_hash -> hash of name/value pairs
*
* Returns a Hash containing all name/value pairs from ENV:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.to_hash # => {"bar"=>"1", "foo"=>"0"}
*/
static VALUE
env_f_to_hash(VALUE _)
{
return env_to_hash();
}
/*
* call-seq:
* ENV.to_h -> hash of name/value pairs
* ENV.to_h {|name, value| block } -> hash of name/value pairs
*
* With no block, returns a Hash containing all name/value pairs from ENV:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.to_h # => {"bar"=>"1", "foo"=>"0"}
* With a block, returns a Hash whose items are determined by the block.
* Each name/value pair in ENV is yielded to the block.
* The block must return a 2-element Array (name/value pair)
* that is added to the return Hash as a key and value:
* ENV.to_h { |name, value| [name.to_sym, value.to_i] } # => {:bar=>1, :foo=>0}
* Raises an exception if the block does not return an Array:
* ENV.to_h { |name, value| name } # Raises TypeError (wrong element type String (expected array))
* Raises an exception if the block returns an Array of the wrong size:
* ENV.to_h { |name, value| [name] } # Raises ArgumentError (element has wrong array length (expected 2, was 1))
*/
static VALUE
env_to_h(VALUE _)
{
VALUE hash = env_to_hash();
if (rb_block_given_p()) {
hash = rb_hash_to_h_block(hash);
}
return hash;
}
/*
* call-seq:
* ENV.except(*keys) -> a_hash
*
* Returns a hash except the given keys from ENV and their values.
*
* ENV #=> {"LANG"=>"en_US.UTF-8", "TERM"=>"xterm-256color", "HOME"=>"/Users/rhc"}
* ENV.except("TERM","HOME") #=> {"LANG"=>"en_US.UTF-8"}
*/
static VALUE
env_except(int argc, VALUE *argv, VALUE _)
{
int i;
VALUE key, hash = env_to_hash();
for (i = 0; i < argc; i++) {
key = argv[i];
rb_hash_delete(hash, key);
}
return hash;
}
/*
* call-seq:
* ENV.reject { |name, value| block } -> hash of name/value pairs
* ENV.reject -> an_enumerator
*
* Yields each environment variable name and its value as a 2-element Array.
* Returns a Hash whose items are determined by the block.
* When the block returns a truthy value, the name/value pair is added to the return Hash;
* otherwise the pair is ignored:
* ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2')
* ENV.reject { |name, value| name.start_with?('b') } # => {"foo"=>"0"}
* Returns an Enumerator if no block given:
* e = ENV.reject
* e.each { |name, value| name.start_with?('b') } # => {"foo"=>"0"}
*/
static VALUE
env_reject(VALUE _)
{
return rb_hash_delete_if(env_to_hash());
}
NORETURN(static VALUE env_freeze(VALUE self));
/*
* call-seq:
* ENV.freeze
*
* Raises an exception:
* ENV.freeze # Raises TypeError (cannot freeze ENV)
*/
static VALUE
env_freeze(VALUE self)
{
rb_raise(rb_eTypeError, "cannot freeze ENV");
UNREACHABLE_RETURN(self);
}
/*
* call-seq:
* ENV.shift -> [name, value] or nil
*
* Removes the first environment variable from ENV and returns
* a 2-element Array containing its name and value:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.to_hash # => {'bar' => '1', 'foo' => '0'}
* ENV.shift # => ['bar', '1']
* ENV.to_hash # => {'foo' => '0'}
* Exactly which environment variable is "first" is OS-dependent.
* See {About Ordering}[rdoc-ref:ENV@About+Ordering].
*
* Returns +nil+ if the environment is empty.
*/
static VALUE
env_shift(VALUE _)
{
VALUE result = Qnil;
VALUE key = Qnil;
ENV_LOCK();
{
char **env = GET_ENVIRON(environ);
if (*env) {
const char *p = *env;
char *s = strchr(p, '=');
if (s) {
key = env_str_new(p, s-p);
VALUE val = env_str_new2(getenv(RSTRING_PTR(key)));
result = rb_assoc_new(key, val);
}
}
FREE_ENVIRON(environ);
}
ENV_UNLOCK();
if (!NIL_P(key)) {
env_delete(key);
}
return result;
}
/*
* call-seq:
* ENV.invert -> hash of value/name pairs
*
* Returns a Hash whose keys are the ENV values,
* and whose values are the corresponding ENV names:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.invert # => {"1"=>"bar", "0"=>"foo"}
* For a duplicate ENV value, overwrites the hash entry:
* ENV.replace('foo' => '0', 'bar' => '0')
* ENV.invert # => {"0"=>"foo"}
* Note that the order of the ENV processing is OS-dependent,
* which means that the order of overwriting is also OS-dependent.
* See {About Ordering}[rdoc-ref:ENV@About+Ordering].
*/
static VALUE
env_invert(VALUE _)
{
return rb_hash_invert(env_to_hash());
}
static void
keylist_delete(VALUE keys, VALUE key)
{
long keylen, elen;
const char *keyptr, *eptr;
RSTRING_GETMEM(key, keyptr, keylen);
/* Don't stop at first key, as it is possible to have
multiple environment values with the same key.
*/
for (long i=0; i<RARRAY_LEN(keys); i++) {
VALUE e = RARRAY_AREF(keys, i);
RSTRING_GETMEM(e, eptr, elen);
if (elen != keylen) continue;
if (!ENVNMATCH(keyptr, eptr, elen)) continue;
rb_ary_delete_at(keys, i);
i--;
}
}
static int
env_replace_i(VALUE key, VALUE val, VALUE keys)
{
env_name(key);
env_aset(key, val);
keylist_delete(keys, key);
return ST_CONTINUE;
}
/*
* call-seq:
* ENV.replace(hash) -> ENV
*
* Replaces the entire content of the environment variables
* with the name/value pairs in the given +hash+;
* returns ENV.
*
* Replaces the content of ENV with the given pairs:
* ENV.replace('foo' => '0', 'bar' => '1') # => ENV
* ENV.to_hash # => {"bar"=>"1", "foo"=>"0"}
*
* Raises an exception if a name or value is invalid
* (see {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values]):
* ENV.replace('foo' => '0', :bar => '1') # Raises TypeError (no implicit conversion of Symbol into String)
* ENV.replace('foo' => '0', 'bar' => 1) # Raises TypeError (no implicit conversion of Integer into String)
* ENV.to_hash # => {"bar"=>"1", "foo"=>"0"}
*/
static VALUE
env_replace(VALUE env, VALUE hash)
{
VALUE keys;
long i;
keys = env_keys(TRUE);
if (env == hash) return env;
hash = to_hash(hash);
rb_hash_foreach(hash, env_replace_i, keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
env_delete(RARRAY_AREF(keys, i));
}
RB_GC_GUARD(keys);
return env;
}
static int
env_update_i(VALUE key, VALUE val, VALUE _)
{
env_aset(key, val);
return ST_CONTINUE;
}
static int
env_update_block_i(VALUE key, VALUE val, VALUE _)
{
VALUE oldval = rb_f_getenv(Qnil, key);
if (!NIL_P(oldval)) {
val = rb_yield_values(3, key, oldval, val);
}
env_aset(key, val);
return ST_CONTINUE;
}
/*
* call-seq:
* ENV.update -> ENV
* ENV.update(*hashes) -> ENV
* ENV.update(*hashes) { |name, env_val, hash_val| block } -> ENV
* ENV.merge! -> ENV
* ENV.merge!(*hashes) -> ENV
* ENV.merge!(*hashes) { |name, env_val, hash_val| block } -> ENV
*
* Adds to ENV each key/value pair in the given +hash+; returns ENV:
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.merge!('baz' => '2', 'bat' => '3') # => {"bar"=>"1", "bat"=>"3", "baz"=>"2", "foo"=>"0"}
* Deletes the ENV entry for a hash value that is +nil+:
* ENV.merge!('baz' => nil, 'bat' => nil) # => {"bar"=>"1", "foo"=>"0"}
* For an already-existing name, if no block given, overwrites the ENV value:
* ENV.merge!('foo' => '4') # => {"bar"=>"1", "foo"=>"4"}
* For an already-existing name, if block given,
* yields the name, its ENV value, and its hash value;
* the block's return value becomes the new name:
* ENV.merge!('foo' => '5') { |name, env_val, hash_val | env_val + hash_val } # => {"bar"=>"1", "foo"=>"45"}
* Raises an exception if a name or value is invalid
* (see {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values]);
* ENV.replace('foo' => '0', 'bar' => '1')
* ENV.merge!('foo' => '6', :bar => '7', 'baz' => '9') # Raises TypeError (no implicit conversion of Symbol into String)
* ENV # => {"bar"=>"1", "foo"=>"6"}
* ENV.merge!('foo' => '7', 'bar' => 8, 'baz' => '9') # Raises TypeError (no implicit conversion of Integer into String)
* ENV # => {"bar"=>"1", "foo"=>"7"}
* Raises an exception if the block returns an invalid name:
* (see {Invalid Names and Values}[rdoc-ref:ENV@Invalid+Names+and+Values]):
* ENV.merge!('bat' => '8', 'foo' => '9') { |name, env_val, hash_val | 10 } # Raises TypeError (no implicit conversion of Integer into String)
* ENV # => {"bar"=>"1", "bat"=>"8", "foo"=>"7"}
*
* Note that for the exceptions above,
* hash pairs preceding an invalid name or value are processed normally;
* those following are ignored.
*/
static VALUE
env_update(int argc, VALUE *argv, VALUE env)
{
rb_foreach_func *func = rb_block_given_p() ?
env_update_block_i : env_update_i;
for (int i = 0; i < argc; ++i) {
VALUE hash = argv[i];
if (env == hash) continue;
hash = to_hash(hash);
rb_hash_foreach(hash, func, 0);
}
return env;
}
NORETURN(static VALUE env_clone(int, VALUE *, VALUE));
/*
* call-seq:
* ENV.clone(freeze: nil) # raises TypeError
*
* Raises TypeError, because ENV is a wrapper for the process-wide
* environment variables and a clone is useless.
* Use #to_h to get a copy of ENV data as a hash.
*/
static VALUE
env_clone(int argc, VALUE *argv, VALUE obj)
{
if (argc) {
VALUE opt;
if (rb_scan_args(argc, argv, "0:", &opt) < argc) {
rb_get_freeze_opt(1, &opt);
}
}
rb_raise(rb_eTypeError, "Cannot clone ENV, use ENV.to_h to get a copy of ENV as a hash");
}
NORETURN(static VALUE env_dup(VALUE));
/*
* call-seq:
* ENV.dup # raises TypeError
*
* Raises TypeError, because ENV is a singleton object.
* Use #to_h to get a copy of ENV data as a hash.
*/
static VALUE
env_dup(VALUE obj)
{
rb_raise(rb_eTypeError, "Cannot dup ENV, use ENV.to_h to get a copy of ENV as a hash");
}
static const rb_data_type_t env_data_type = {
"ENV",
{
NULL,
NULL,
NULL,
NULL,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED,
};
/*
* A \Hash maps each of its unique keys to a specific value.
*
* A \Hash has certain similarities to an \Array, but:
* - An \Array index is always an \Integer.
* - A \Hash key can be (almost) any object.
*
* === \Hash \Data Syntax
*
* The older syntax for \Hash data uses the "hash rocket," <tt>=></tt>:
*
* h = {:foo => 0, :bar => 1, :baz => 2}
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
* Alternatively, but only for a \Hash key that's a \Symbol,
* you can use a newer JSON-style syntax,
* where each bareword becomes a \Symbol:
*
* h = {foo: 0, bar: 1, baz: 2}
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
* You can also use a \String in place of a bareword:
*
* h = {'foo': 0, 'bar': 1, 'baz': 2}
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
* And you can mix the styles:
*
* h = {foo: 0, :bar => 1, 'baz': 2}
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
* But it's an error to try the JSON-style syntax
* for a key that's not a bareword or a String:
*
* # Raises SyntaxError (syntax error, unexpected ':', expecting =>):
* h = {0: 'zero'}
*
* Hash value can be omitted, meaning that value will be fetched from the context
* by the name of the key:
*
* x = 0
* y = 100
* h = {x:, y:}
* h # => {:x=>0, :y=>100}
*
* === Common Uses
*
* You can use a \Hash to give names to objects:
*
* person = {name: 'Matz', language: 'Ruby'}
* person # => {:name=>"Matz", :language=>"Ruby"}
*
* You can use a \Hash to give names to method arguments:
*
* def some_method(hash)
* p hash
* end
* some_method({foo: 0, bar: 1, baz: 2}) # => {:foo=>0, :bar=>1, :baz=>2}
*
* Note: when the last argument in a method call is a \Hash,
* the curly braces may be omitted:
*
* some_method(foo: 0, bar: 1, baz: 2) # => {:foo=>0, :bar=>1, :baz=>2}
*
* You can use a \Hash to initialize an object:
*
* class Dev
* attr_accessor :name, :language
* def initialize(hash)
* self.name = hash[:name]
* self.language = hash[:language]
* end
* end
* matz = Dev.new(name: 'Matz', language: 'Ruby')
* matz # => #<Dev: @name="Matz", @language="Ruby">
*
* === Creating a \Hash
*
* You can create a \Hash object explicitly with:
*
* - A {hash literal}[rdoc-ref:syntax/literals.rdoc@Hash+Literals].
*
* You can convert certain objects to Hashes with:
*
* - \Method #Hash.
*
* You can create a \Hash by calling method Hash.new.
*
* Create an empty Hash:
*
* h = Hash.new
* h # => {}
* h.class # => Hash
*
* You can create a \Hash by calling method Hash.[].
*
* Create an empty Hash:
*
* h = Hash[]
* h # => {}
*
* Create a \Hash with initial entries:
*
* h = Hash[foo: 0, bar: 1, baz: 2]
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
* You can create a \Hash by using its literal form (curly braces).
*
* Create an empty \Hash:
*
* h = {}
* h # => {}
*
* Create a \Hash with initial entries:
*
* h = {foo: 0, bar: 1, baz: 2}
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
*
* === \Hash Value Basics
*
* The simplest way to retrieve a \Hash value (instance method #[]):
*
* h = {foo: 0, bar: 1, baz: 2}
* h[:foo] # => 0
*
* The simplest way to create or update a \Hash value (instance method #[]=):
*
* h = {foo: 0, bar: 1, baz: 2}
* h[:bat] = 3 # => 3
* h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
* h[:foo] = 4 # => 4
* h # => {:foo=>4, :bar=>1, :baz=>2, :bat=>3}
*
* The simplest way to delete a \Hash entry (instance method #delete):
*
* h = {foo: 0, bar: 1, baz: 2}
* h.delete(:bar) # => 1
* h # => {:foo=>0, :baz=>2}
*
* === Entry Order
*
* A \Hash object presents its entries in the order of their creation. This is seen in:
*
* - Iterative methods such as <tt>each</tt>, <tt>each_key</tt>, <tt>each_pair</tt>, <tt>each_value</tt>.
* - Other order-sensitive methods such as <tt>shift</tt>, <tt>keys</tt>, <tt>values</tt>.
* - The \String returned by method <tt>inspect</tt>.
*
* A new \Hash has its initial ordering per the given entries:
*
* h = Hash[foo: 0, bar: 1]
* h # => {:foo=>0, :bar=>1}
*
* New entries are added at the end:
*
* h[:baz] = 2
* h # => {:foo=>0, :bar=>1, :baz=>2}
*
* Updating a value does not affect the order:
*
* h[:baz] = 3
* h # => {:foo=>0, :bar=>1, :baz=>3}
*
* But re-creating a deleted entry can affect the order:
*
* h.delete(:foo)
* h[:foo] = 5
* h # => {:bar=>1, :baz=>3, :foo=>5}
*
* === \Hash Keys
*
* ==== \Hash Key Equivalence
*
* Two objects are treated as the same \hash key when their <code>hash</code> value
* is identical and the two objects are <code>eql?</code> to each other.
*
* ==== Modifying an Active \Hash Key
*
* Modifying a \Hash key while it is in use damages the hash's index.
*
* This \Hash has keys that are Arrays:
*
* a0 = [ :foo, :bar ]
* a1 = [ :baz, :bat ]
* h = {a0 => 0, a1 => 1}
* h.include?(a0) # => true
* h[a0] # => 0
* a0.hash # => 110002110
*
* Modifying array element <tt>a0[0]</tt> changes its hash value:
*
* a0[0] = :bam
* a0.hash # => 1069447059
*
* And damages the \Hash index:
*
* h.include?(a0) # => false
* h[a0] # => nil
*
* You can repair the hash index using method +rehash+:
*
* h.rehash # => {[:bam, :bar]=>0, [:baz, :bat]=>1}
* h.include?(a0) # => true
* h[a0] # => 0
*
* A \String key is always safe.
* That's because an unfrozen \String
* passed as a key will be replaced by a duplicated and frozen \String:
*
* s = 'foo'
* s.frozen? # => false
* h = {s => 0}
* first_key = h.keys.first
* first_key.frozen? # => true
*
* ==== User-Defined \Hash Keys
*
* To be useable as a \Hash key, objects must implement the methods <code>hash</code> and <code>eql?</code>.
* Note: this requirement does not apply if the \Hash uses #compare_by_identity since comparison will then
* rely on the keys' object id instead of <code>hash</code> and <code>eql?</code>.
*
* \Object defines basic implementation for <code>hash</code> and <code>eq?</code> that makes each object
* a distinct key. Typically, user-defined classes will want to override these methods to provide meaningful
* behavior, or for example inherit \Struct that has useful definitions for these.
*
* A typical implementation of <code>hash</code> is based on the
* object's data while <code>eql?</code> is usually aliased to the overridden
* <code>==</code> method:
*
* class Book
* attr_reader :author, :title
*
* def initialize(author, title)
* @author = author
* @title = title
* end
*
* def ==(other)
* self.class === other &&
* other.author == @author &&
* other.title == @title
* end
*
* alias eql? ==
*
* def hash
* @author.hash ^ @title.hash # XOR
* end
* end
*
* book1 = Book.new 'matz', 'Ruby in a Nutshell'
* book2 = Book.new 'matz', 'Ruby in a Nutshell'
*
* reviews = {}
*
* reviews[book1] = 'Great reference!'
* reviews[book2] = 'Nice and compact!'
*
* reviews.length #=> 1
*
* === Default Values
*
* The methods #[], #values_at and #dig need to return the value associated to a certain key.
* When that key is not found, that value will be determined by its default proc (if any)
* or else its default (initially `nil`).
*
* You can retrieve the default value with method #default:
*
* h = Hash.new
* h.default # => nil
*
* You can set the default value by passing an argument to method Hash.new or
* with method #default=
*
* h = Hash.new(-1)
* h.default # => -1
* h.default = 0
* h.default # => 0
*
* This default value is returned for #[], #values_at and #dig when a key is
* not found:
*
* counts = {foo: 42}
* counts.default # => nil (default)
* counts[:foo] = 42
* counts[:bar] # => nil
* counts.default = 0
* counts[:bar] # => 0
* counts.values_at(:foo, :bar, :baz) # => [42, 0, 0]
* counts.dig(:bar) # => 0
*
* Note that the default value is used without being duplicated. It is not advised to set
* the default value to a mutable object:
*
* synonyms = Hash.new([])
* synonyms[:hello] # => []
* synonyms[:hello] << :hi # => [:hi], but this mutates the default!
* synonyms.default # => [:hi]
* synonyms[:world] << :universe
* synonyms[:world] # => [:hi, :universe], oops
* synonyms.keys # => [], oops
*
* To use a mutable object as default, it is recommended to use a default proc
*
* ==== Default \Proc
*
* When the default proc for a \Hash is set (i.e., not +nil+),
* the default value returned by method #[] is determined by the default proc alone.
*
* You can retrieve the default proc with method #default_proc:
*
* h = Hash.new
* h.default_proc # => nil
*
* You can set the default proc by calling Hash.new with a block or
* calling the method #default_proc=
*
* h = Hash.new { |hash, key| "Default value for #{key}" }
* h.default_proc.class # => Proc
* h.default_proc = proc { |hash, key| "Default value for #{key.inspect}" }
* h.default_proc.class # => Proc
*
* When the default proc is set (i.e., not +nil+)
* and method #[] is called with with a non-existent key,
* #[] calls the default proc with both the \Hash object itself and the missing key,
* then returns the proc's return value:
*
* h = Hash.new { |hash, key| "Default value for #{key}" }
* h[:nosuch] # => "Default value for nosuch"
*
* Note that in the example above no entry for key +:nosuch+ is created:
*
* h.include?(:nosuch) # => false
*
* However, the proc itself can add a new entry:
*
* synonyms = Hash.new { |hash, key| hash[key] = [] }
* synonyms.include?(:hello) # => false
* synonyms[:hello] << :hi # => [:hi]
* synonyms[:world] << :universe # => [:universe]
* synonyms.keys # => [:hello, :world]
*
* Note that setting the default proc will clear the default value and vice versa.
*
* Be aware that a default proc that modifies the hash is not thread-safe in the
* sense that multiple threads can call into the default proc concurrently for the
* same key.
*
* === What's Here
*
* First, what's elsewhere. \Class \Hash:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
* which provides dozens of additional methods.
*
* Here, class \Hash provides methods that are useful for:
*
* - {Creating a Hash}[rdoc-ref:Hash@Methods+for+Creating+a+Hash]
* - {Setting Hash State}[rdoc-ref:Hash@Methods+for+Setting+Hash+State]
* - {Querying}[rdoc-ref:Hash@Methods+for+Querying]
* - {Comparing}[rdoc-ref:Hash@Methods+for+Comparing]
* - {Fetching}[rdoc-ref:Hash@Methods+for+Fetching]
* - {Assigning}[rdoc-ref:Hash@Methods+for+Assigning]
* - {Deleting}[rdoc-ref:Hash@Methods+for+Deleting]
* - {Iterating}[rdoc-ref:Hash@Methods+for+Iterating]
* - {Converting}[rdoc-ref:Hash@Methods+for+Converting]
* - {Transforming Keys and Values}[rdoc-ref:Hash@Methods+for+Transforming+Keys+and+Values]
* - {And more....}[rdoc-ref:Hash@Other+Methods]
*
* \Class \Hash also includes methods from module Enumerable.
*
* ==== Methods for Creating a \Hash
*
* - ::[]: Returns a new hash populated with given objects.
* - ::new: Returns a new empty hash.
* - ::try_convert: Returns a new hash created from a given object.
*
* ==== Methods for Setting \Hash State
*
* - #compare_by_identity: Sets +self+ to consider only identity in comparing keys.
* - #default=: Sets the default to a given value.
* - #default_proc=: Sets the default proc to a given proc.
* - #rehash: Rebuilds the hash table by recomputing the hash index for each key.
*
* ==== Methods for Querying
*
* - #any?: Returns whether any element satisfies a given criterion.
* - #compare_by_identity?: Returns whether the hash considers only identity when comparing keys.
* - #default: Returns the default value, or the default value for a given key.
* - #default_proc: Returns the default proc.
* - #empty?: Returns whether there are no entries.
* - #eql?: Returns whether a given object is equal to +self+.
* - #hash: Returns the integer hash code.
* - #has_value?: Returns whether a given object is a value in +self+.
* - #include?, #has_key?, #member?, #key?: Returns whether a given object is a key in +self+.
* - #length, #size: Returns the count of entries.
* - #value?: Returns whether a given object is a value in +self+.
*
* ==== Methods for Comparing
*
* - #<: Returns whether +self+ is a proper subset of a given object.
* - #<=: Returns whether +self+ is a subset of a given object.
* - #==: Returns whether a given object is equal to +self+.
* - #>: Returns whether +self+ is a proper superset of a given object
* - #>=: Returns whether +self+ is a proper superset of a given object.
*
* ==== Methods for Fetching
*
* - #[]: Returns the value associated with a given key.
* - #assoc: Returns a 2-element array containing a given key and its value.
* - #dig: Returns the object in nested objects that is specified
* by a given key and additional arguments.
* - #fetch: Returns the value for a given key.
* - #fetch_values: Returns array containing the values associated with given keys.
* - #key: Returns the key for the first-found entry with a given value.
* - #keys: Returns an array containing all keys in +self+.
* - #rassoc: Returns a 2-element array consisting of the key and value
of the first-found entry having a given value.
* - #values: Returns an array containing all values in +self+/
* - #values_at: Returns an array containing values for given keys.
*
* ==== Methods for Assigning
*
* - #[]=, #store: Associates a given key with a given value.
* - #merge: Returns the hash formed by merging each given hash into a copy of +self+.
* - #merge!, #update: Merges each given hash into +self+.
* - #replace: Replaces the entire contents of +self+ with the contents of a given hash.
*
* ==== Methods for Deleting
*
* These methods remove entries from +self+:
*
* - #clear: Removes all entries from +self+.
* - #compact!: Removes all +nil+-valued entries from +self+.
* - #delete: Removes the entry for a given key.
* - #delete_if: Removes entries selected by a given block.
* - #filter!, #select!: Keep only those entries selected by a given block.
* - #keep_if: Keep only those entries selected by a given block.
* - #reject!: Removes entries selected by a given block.
* - #shift: Removes and returns the first entry.
*
* These methods return a copy of +self+ with some entries removed:
*
* - #compact: Returns a copy of +self+ with all +nil+-valued entries removed.
* - #except: Returns a copy of +self+ with entries removed for specified keys.
* - #filter, #select: Returns a copy of +self+ with only those entries selected by a given block.
* - #reject: Returns a copy of +self+ with entries removed as specified by a given block.
* - #slice: Returns a hash containing the entries for given keys.
*
* ==== Methods for Iterating
* - #each, #each_pair: Calls a given block with each key-value pair.
* - #each_key: Calls a given block with each key.
* - #each_value: Calls a given block with each value.
*
* ==== Methods for Converting
*
* - #inspect, #to_s: Returns a new String containing the hash entries.
* - #to_a: Returns a new array of 2-element arrays;
* each nested array contains a key-value pair from +self+.
* - #to_h: Returns +self+ if a \Hash;
* if a subclass of \Hash, returns a \Hash containing the entries from +self+.
* - #to_hash: Returns +self+.
* - #to_proc: Returns a proc that maps a given key to its value.
*
* ==== Methods for Transforming Keys and Values
*
* - #transform_keys: Returns a copy of +self+ with modified keys.
* - #transform_keys!: Modifies keys in +self+
* - #transform_values: Returns a copy of +self+ with modified values.
* - #transform_values!: Modifies values in +self+.
*
* ==== Other Methods
* - #flatten: Returns an array that is a 1-dimensional flattening of +self+.
* - #invert: Returns a hash with the each key-value pair inverted.
*
*/
void
Init_Hash(void)
{
id_hash = rb_intern_const("hash");
id_flatten_bang = rb_intern_const("flatten!");
id_hash_iter_lev = rb_make_internal_id();
rb_cHash = rb_define_class("Hash", rb_cObject);
rb_include_module(rb_cHash, rb_mEnumerable);
rb_define_alloc_func(rb_cHash, empty_hash_alloc);
rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1);
rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1);
rb_define_method(rb_cHash, "initialize", rb_hash_initialize, -1);
rb_define_method(rb_cHash, "initialize_copy", rb_hash_replace, 1);
rb_define_method(rb_cHash, "rehash", rb_hash_rehash, 0);
rb_define_method(rb_cHash, "to_hash", rb_hash_to_hash, 0);
rb_define_method(rb_cHash, "to_h", rb_hash_to_h, 0);
rb_define_method(rb_cHash, "to_a", rb_hash_to_a, 0);
rb_define_method(rb_cHash, "inspect", rb_hash_inspect, 0);
rb_define_alias(rb_cHash, "to_s", "inspect");
rb_define_method(rb_cHash, "to_proc", rb_hash_to_proc, 0);
rb_define_method(rb_cHash, "==", rb_hash_equal, 1);
rb_define_method(rb_cHash, "[]", rb_hash_aref, 1);
rb_define_method(rb_cHash, "hash", rb_hash_hash, 0);
rb_define_method(rb_cHash, "eql?", rb_hash_eql, 1);
rb_define_method(rb_cHash, "fetch", rb_hash_fetch_m, -1);
rb_define_method(rb_cHash, "[]=", rb_hash_aset, 2);
rb_define_method(rb_cHash, "store", rb_hash_aset, 2);
rb_define_method(rb_cHash, "default", rb_hash_default, -1);
rb_define_method(rb_cHash, "default=", rb_hash_set_default, 1);
rb_define_method(rb_cHash, "default_proc", rb_hash_default_proc, 0);
rb_define_method(rb_cHash, "default_proc=", rb_hash_set_default_proc, 1);
rb_define_method(rb_cHash, "key", rb_hash_key, 1);
rb_define_method(rb_cHash, "size", rb_hash_size, 0);
rb_define_method(rb_cHash, "length", rb_hash_size, 0);
rb_define_method(rb_cHash, "empty?", rb_hash_empty_p, 0);
rb_define_method(rb_cHash, "each_value", rb_hash_each_value, 0);
rb_define_method(rb_cHash, "each_key", rb_hash_each_key, 0);
rb_define_method(rb_cHash, "each_pair", rb_hash_each_pair, 0);
rb_define_method(rb_cHash, "each", rb_hash_each_pair, 0);
rb_define_method(rb_cHash, "transform_keys", rb_hash_transform_keys, -1);
rb_define_method(rb_cHash, "transform_keys!", rb_hash_transform_keys_bang, -1);
rb_define_method(rb_cHash, "transform_values", rb_hash_transform_values, 0);
rb_define_method(rb_cHash, "transform_values!", rb_hash_transform_values_bang, 0);
rb_define_method(rb_cHash, "keys", rb_hash_keys, 0);
rb_define_method(rb_cHash, "values", rb_hash_values, 0);
rb_define_method(rb_cHash, "values_at", rb_hash_values_at, -1);
rb_define_method(rb_cHash, "fetch_values", rb_hash_fetch_values, -1);
rb_define_method(rb_cHash, "shift", rb_hash_shift, 0);
rb_define_method(rb_cHash, "delete", rb_hash_delete_m, 1);
rb_define_method(rb_cHash, "delete_if", rb_hash_delete_if, 0);
rb_define_method(rb_cHash, "keep_if", rb_hash_keep_if, 0);
rb_define_method(rb_cHash, "select", rb_hash_select, 0);
rb_define_method(rb_cHash, "select!", rb_hash_select_bang, 0);
rb_define_method(rb_cHash, "filter", rb_hash_select, 0);
rb_define_method(rb_cHash, "filter!", rb_hash_select_bang, 0);
rb_define_method(rb_cHash, "reject", rb_hash_reject, 0);
rb_define_method(rb_cHash, "reject!", rb_hash_reject_bang, 0);
rb_define_method(rb_cHash, "slice", rb_hash_slice, -1);
rb_define_method(rb_cHash, "except", rb_hash_except, -1);
rb_define_method(rb_cHash, "clear", rb_hash_clear, 0);
rb_define_method(rb_cHash, "invert", rb_hash_invert, 0);
rb_define_method(rb_cHash, "update", rb_hash_update, -1);
rb_define_method(rb_cHash, "replace", rb_hash_replace, 1);
rb_define_method(rb_cHash, "merge!", rb_hash_update, -1);
rb_define_method(rb_cHash, "merge", rb_hash_merge, -1);
rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1);
rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1);
rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1);
rb_define_method(rb_cHash, "compact", rb_hash_compact, 0);
rb_define_method(rb_cHash, "compact!", rb_hash_compact_bang, 0);
rb_define_method(rb_cHash, "include?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "member?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "has_key?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "has_value?", rb_hash_has_value, 1);
rb_define_method(rb_cHash, "key?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "value?", rb_hash_has_value, 1);
rb_define_method(rb_cHash, "compare_by_identity", rb_hash_compare_by_id, 0);
rb_define_method(rb_cHash, "compare_by_identity?", rb_hash_compare_by_id_p, 0);
rb_define_method(rb_cHash, "any?", rb_hash_any_p, -1);
rb_define_method(rb_cHash, "dig", rb_hash_dig, -1);
rb_define_method(rb_cHash, "<=", rb_hash_le, 1);
rb_define_method(rb_cHash, "<", rb_hash_lt, 1);
rb_define_method(rb_cHash, ">=", rb_hash_ge, 1);
rb_define_method(rb_cHash, ">", rb_hash_gt, 1);
rb_define_method(rb_cHash, "deconstruct_keys", rb_hash_deconstruct_keys, 1);
rb_define_singleton_method(rb_cHash, "ruby2_keywords_hash?", rb_hash_s_ruby2_keywords_hash_p, 1);
rb_define_singleton_method(rb_cHash, "ruby2_keywords_hash", rb_hash_s_ruby2_keywords_hash, 1);
/* Document-class: ENV
*
* ENV is a hash-like accessor for environment variables.
*
* === Interaction with the Operating System
*
* The ENV object interacts with the operating system's environment variables:
*
* - When you get the value for a name in ENV, the value is retrieved from among the current environment variables.
* - When you create or set a name-value pair in ENV, the name and value are immediately set in the environment variables.
* - When you delete a name-value pair in ENV, it is immediately deleted from the environment variables.
*
* === Names and Values
*
* Generally, a name or value is a String.
*
* ==== Valid Names and Values
*
* Each name or value must be one of the following:
*
* - A String.
* - An object that responds to \#to_str by returning a String, in which case that String will be used as the name or value.
*
* ==== Invalid Names and Values
*
* A new name:
*
* - May not be the empty string:
* ENV[''] = '0'
* # Raises Errno::EINVAL (Invalid argument - ruby_setenv())
*
* - May not contain character <code>"="</code>:
* ENV['='] = '0'
* # Raises Errno::EINVAL (Invalid argument - ruby_setenv(=))
*
* A new name or value:
*
* - May not be a non-String that does not respond to \#to_str:
*
* ENV['foo'] = Object.new
* # Raises TypeError (no implicit conversion of Object into String)
* ENV[Object.new] = '0'
* # Raises TypeError (no implicit conversion of Object into String)
*
* - May not contain the NUL character <code>"\0"</code>:
*
* ENV['foo'] = "\0"
* # Raises ArgumentError (bad environment variable value: contains null byte)
* ENV["\0"] == '0'
* # Raises ArgumentError (bad environment variable name: contains null byte)
*
* - May not have an ASCII-incompatible encoding such as UTF-16LE or ISO-2022-JP:
*
* ENV['foo'] = '0'.force_encoding(Encoding::ISO_2022_JP)
* # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: ISO-2022-JP)
* ENV["foo".force_encoding(Encoding::ISO_2022_JP)] = '0'
* # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: ISO-2022-JP)
*
* === About Ordering
*
* ENV enumerates its name/value pairs in the order found
* in the operating system's environment variables.
* Therefore the ordering of ENV content is OS-dependent, and may be indeterminate.
*
* This will be seen in:
* - A Hash returned by an ENV method.
* - An Enumerator returned by an ENV method.
* - An Array returned by ENV.keys, ENV.values, or ENV.to_a.
* - The String returned by ENV.inspect.
* - The Array returned by ENV.shift.
* - The name returned by ENV.key.
*
* === About the Examples
* Some methods in ENV return ENV itself. Typically, there are many environment variables.
* It's not useful to display a large ENV in the examples here,
* so most example snippets begin by resetting the contents of ENV:
* - ENV.replace replaces ENV with a new collection of entries.
* - ENV.clear empties ENV.
*
* == What's Here
*
* First, what's elsewhere. \Class \ENV:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Extends {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
*
* Here, class \ENV provides methods that are useful for:
*
* - {Querying}[rdoc-ref:ENV@Methods+for+Querying]
* - {Assigning}[rdoc-ref:ENV@Methods+for+Assigning]
* - {Deleting}[rdoc-ref:ENV@Methods+for+Deleting]
* - {Iterating}[rdoc-ref:ENV@Methods+for+Iterating]
* - {Converting}[rdoc-ref:ENV@Methods+for+Converting]
* - {And more ....}[rdoc-ref:ENV@More+Methods]
*
* === Methods for Querying
*
* - ::[]: Returns the value for the given environment variable name if it exists:
* - ::empty?: Returns whether \ENV is empty.
* - ::has_value?, ::value?: Returns whether the given value is in \ENV.
* - ::include?, ::has_key?, ::key?, ::member?: Returns whether the given name
is in \ENV.
* - ::key: Returns the name of the first entry with the given value.
* - ::size, ::length: Returns the number of entries.
* - ::value?: Returns whether any entry has the given value.
*
* === Methods for Assigning
*
* - ::[]=, ::store: Creates, updates, or deletes the named environment variable.
* - ::clear: Removes every environment variable; returns \ENV:
* - ::update, ::merge!: Adds to \ENV each key/value pair in the given hash.
* - ::replace: Replaces the entire content of the \ENV
* with the name/value pairs in the given hash.
*
* === Methods for Deleting
*
* - ::delete: Deletes the named environment variable name if it exists.
* - ::delete_if: Deletes entries selected by the block.
* - ::keep_if: Deletes entries not selected by the block.
* - ::reject!: Similar to #delete_if, but returns +nil+ if no change was made.
* - ::select!, ::filter!: Deletes entries selected by the block.
* - ::shift: Removes and returns the first entry.
*
* === Methods for Iterating
*
* - ::each, ::each_pair: Calls the block with each name/value pair.
* - ::each_key: Calls the block with each name.
* - ::each_value: Calls the block with each value.
*
* === Methods for Converting
*
* - ::assoc: Returns a 2-element array containing the name and value
* of the named environment variable if it exists:
* - ::clone: Returns \ENV (and issues a warning).
* - ::except: Returns a hash of all name/value pairs except those given.
* - ::fetch: Returns the value for the given name.
* - ::inspect: Returns the contents of \ENV as a string.
* - ::invert: Returns a hash whose keys are the ENV values,
and whose values are the corresponding ENV names.
* - ::keys: Returns an array of all names.
* - ::rassoc: Returns the name and value of the first found entry
* that has the given value.
* - ::reject: Returns a hash of those entries not rejected by the block.
* - ::select, ::filter: Returns a hash of name/value pairs selected by the block.
* - ::slice: Returns a hash of the given names and their corresponding values.
* - ::to_a: Returns the entries as an array of 2-element Arrays.
* - ::to_h: Returns a hash of entries selected by the block.
* - ::to_hash: Returns a hash of all entries.
* - ::to_s: Returns the string <tt>'ENV'</tt>.
* - ::values: Returns all values as an array.
* - ::values_at: Returns an array of the values for the given name.
*
* === More Methods
*
* - ::dup: Raises an exception.
* - ::freeze: Raises an exception.
* - ::rehash: Returns +nil+, without modifying \ENV.
*
*/
/*
* Hack to get RDoc to regard ENV as a class:
* envtbl = rb_define_class("ENV", rb_cObject);
*/
origenviron = environ;
envtbl = TypedData_Wrap_Struct(rb_cObject, &env_data_type, NULL);
rb_extend_object(envtbl, rb_mEnumerable);
FL_SET_RAW(envtbl, RUBY_FL_SHAREABLE);
rb_define_singleton_method(envtbl, "[]", rb_f_getenv, 1);
rb_define_singleton_method(envtbl, "fetch", env_fetch, -1);
rb_define_singleton_method(envtbl, "[]=", env_aset_m, 2);
rb_define_singleton_method(envtbl, "store", env_aset_m, 2);
rb_define_singleton_method(envtbl, "each", env_each_pair, 0);
rb_define_singleton_method(envtbl, "each_pair", env_each_pair, 0);
rb_define_singleton_method(envtbl, "each_key", env_each_key, 0);
rb_define_singleton_method(envtbl, "each_value", env_each_value, 0);
rb_define_singleton_method(envtbl, "delete", env_delete_m, 1);
rb_define_singleton_method(envtbl, "delete_if", env_delete_if, 0);
rb_define_singleton_method(envtbl, "keep_if", env_keep_if, 0);
rb_define_singleton_method(envtbl, "slice", env_slice, -1);
rb_define_singleton_method(envtbl, "except", env_except, -1);
rb_define_singleton_method(envtbl, "clear", env_clear, 0);
rb_define_singleton_method(envtbl, "reject", env_reject, 0);
rb_define_singleton_method(envtbl, "reject!", env_reject_bang, 0);
rb_define_singleton_method(envtbl, "select", env_select, 0);
rb_define_singleton_method(envtbl, "select!", env_select_bang, 0);
rb_define_singleton_method(envtbl, "filter", env_select, 0);
rb_define_singleton_method(envtbl, "filter!", env_select_bang, 0);
rb_define_singleton_method(envtbl, "shift", env_shift, 0);
rb_define_singleton_method(envtbl, "freeze", env_freeze, 0);
rb_define_singleton_method(envtbl, "invert", env_invert, 0);
rb_define_singleton_method(envtbl, "replace", env_replace, 1);
rb_define_singleton_method(envtbl, "update", env_update, -1);
rb_define_singleton_method(envtbl, "merge!", env_update, -1);
rb_define_singleton_method(envtbl, "inspect", env_inspect, 0);
rb_define_singleton_method(envtbl, "rehash", env_none, 0);
rb_define_singleton_method(envtbl, "to_a", env_to_a, 0);
rb_define_singleton_method(envtbl, "to_s", env_to_s, 0);
rb_define_singleton_method(envtbl, "key", env_key, 1);
rb_define_singleton_method(envtbl, "size", env_size, 0);
rb_define_singleton_method(envtbl, "length", env_size, 0);
rb_define_singleton_method(envtbl, "empty?", env_empty_p, 0);
rb_define_singleton_method(envtbl, "keys", env_f_keys, 0);
rb_define_singleton_method(envtbl, "values", env_f_values, 0);
rb_define_singleton_method(envtbl, "values_at", env_values_at, -1);
rb_define_singleton_method(envtbl, "include?", env_has_key, 1);
rb_define_singleton_method(envtbl, "member?", env_has_key, 1);
rb_define_singleton_method(envtbl, "has_key?", env_has_key, 1);
rb_define_singleton_method(envtbl, "has_value?", env_has_value, 1);
rb_define_singleton_method(envtbl, "key?", env_has_key, 1);
rb_define_singleton_method(envtbl, "value?", env_has_value, 1);
rb_define_singleton_method(envtbl, "to_hash", env_f_to_hash, 0);
rb_define_singleton_method(envtbl, "to_h", env_to_h, 0);
rb_define_singleton_method(envtbl, "assoc", env_assoc, 1);
rb_define_singleton_method(envtbl, "rassoc", env_rassoc, 1);
rb_define_singleton_method(envtbl, "clone", env_clone, -1);
rb_define_singleton_method(envtbl, "dup", env_dup, 0);
VALUE envtbl_class = rb_singleton_class(envtbl);
rb_undef_method(envtbl_class, "initialize");
rb_undef_method(envtbl_class, "initialize_clone");
rb_undef_method(envtbl_class, "initialize_copy");
rb_undef_method(envtbl_class, "initialize_dup");
/*
* ENV is a Hash-like accessor for environment variables.
*
* See ENV (the class) for more details.
*/
rb_define_global_const("ENV", envtbl);
/* for callcc */
ruby_register_rollback_func_for_ensure(hash_foreach_ensure, hash_foreach_ensure_rollback);
HASH_ASSERT(sizeof(ar_hint_t) * RHASH_AR_TABLE_MAX_SIZE == sizeof(VALUE));
}