ruby/vm_eval.c

2215 строки
57 KiB
C

/**********************************************************************
vm_eval.c -
$Author$
created at: Sat May 24 16:02:32 JST 2008
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
struct local_var_list {
VALUE tbl;
};
static inline VALUE method_missing(VALUE obj, ID id, int argc, const VALUE *argv, enum method_missing_reason call_status);
static inline VALUE vm_yield_with_cref(rb_thread_t *th, int argc, const VALUE *argv, const rb_cref_t *cref);
static inline VALUE vm_yield(rb_thread_t *th, int argc, const VALUE *argv);
static inline VALUE vm_yield_with_block(rb_thread_t *th, int argc, const VALUE *argv, const rb_block_t *blockargptr);
static VALUE vm_exec(rb_thread_t *th);
static void vm_set_eval_stack(rb_thread_t * th, const rb_iseq_t *iseq, const rb_cref_t *cref, rb_block_t *base_block);
static int vm_collect_local_variables_in_heap(rb_thread_t *th, const VALUE *dfp, const struct local_var_list *vars);
static VALUE rb_eUncaughtThrow;
static ID id_result, id_tag, id_value;
#define id_mesg idMesg
/* vm_backtrace.c */
VALUE rb_vm_backtrace_str_ary(rb_thread_t *th, int lev, int n);
typedef enum call_type {
CALL_PUBLIC,
CALL_FCALL,
CALL_VCALL,
CALL_TYPE_MAX
} call_type;
static VALUE send_internal(int argc, const VALUE *argv, VALUE recv, call_type scope);
static VALUE vm_call0_body(rb_thread_t* th, struct rb_calling_info *calling, const struct rb_call_info *ci, struct rb_call_cache *cc, const VALUE *argv);
static VALUE
vm_call0(rb_thread_t* th, VALUE recv, ID id, int argc, const VALUE *argv, const rb_callable_method_entry_t *me)
{
struct rb_calling_info calling_entry, *calling;
struct rb_call_info ci_entry;
struct rb_call_cache cc_entry;
calling = &calling_entry;
ci_entry.flag = 0;
ci_entry.mid = id;
cc_entry.me = me;
calling->recv = recv;
calling->argc = argc;
return vm_call0_body(th, calling, &ci_entry, &cc_entry, argv);
}
#if OPT_CALL_CFUNC_WITHOUT_FRAME
static VALUE
vm_call0_cfunc(rb_thread_t* th, struct rb_calling_info *calling, const struct rb_call_info *ci, struct rb_call_cache *cc, const VALUE *argv)
{
VALUE val;
RUBY_DTRACE_CMETHOD_ENTRY_HOOK(th, cc->me->owner, ci->mid);
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_CALL, calling->recv, ci->mid, cc->me->owner, Qnil);
{
rb_control_frame_t *reg_cfp = th->cfp;
const rb_callable_method_entry_t *me = cc->me;
const rb_method_cfunc_t *cfunc = &me->def->body.cfunc;
int len = cfunc->argc;
VALUE recv = calling->recv;
int argc = calling->argc;
if (len >= 0) rb_check_arity(argc, len, len);
th->passed_ci = ci;
cc->aux.inc_sp = 0;
VM_PROFILE_UP(C2C_CALL);
val = (*cfunc->invoker)(cfunc->func, recv, argc, argv);
if (reg_cfp == th->cfp) {
if (UNLIKELY(th->passed_ci != ci)) {
rb_bug("vm_call0_cfunc: passed_ci error (ci: %p, passed_ci: %p)", ci, th->passed_ci);
}
th->passed_ci = 0;
}
else {
if (reg_cfp != th->cfp + 1) {
rb_bug("vm_call0_cfunc: cfp consistency error");
}
VM_PROFILE_UP(C2C_POPF);
vm_pop_frame(th);
}
}
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, calling->recv, ci->mid, callnig->cc->me->owner, val);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, cc->me->owner, ci->mid);
return val;
}
#else
static VALUE
vm_call0_cfunc_with_frame(rb_thread_t* th, struct rb_calling_info *calling, const struct rb_call_info *ci, struct rb_call_cache *cc, const VALUE *argv)
{
VALUE val;
const rb_callable_method_entry_t *me = cc->me;
const rb_method_cfunc_t *cfunc = &me->def->body.cfunc;
int len = cfunc->argc;
VALUE recv = calling->recv;
int argc = calling->argc;
ID mid = ci->mid;
rb_block_t *blockptr = calling->blockptr;
RUBY_DTRACE_CMETHOD_ENTRY_HOOK(th, me->owner, mid);
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_CALL, recv, mid, me->owner, Qnil);
{
rb_control_frame_t *reg_cfp = th->cfp;
vm_push_frame(th, 0, VM_FRAME_MAGIC_CFUNC, recv,
VM_ENVVAL_BLOCK_PTR(blockptr), (VALUE)me,
0, reg_cfp->sp, 1, 0);
if (len >= 0) rb_check_arity(argc, len, len);
VM_PROFILE_UP(C2C_CALL);
val = (*cfunc->invoker)(cfunc->func, recv, argc, argv);
if (UNLIKELY(reg_cfp != th->cfp + 1)) {
rb_bug("vm_call0_cfunc_with_frame: cfp consistency error");
}
VM_PROFILE_UP(C2C_POPF);
vm_pop_frame(th);
}
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, recv, mid, me->owner, val);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, me->owner, mid);
return val;
}
static VALUE
vm_call0_cfunc(rb_thread_t* th, struct rb_calling_info *calling, const struct rb_call_info *ci, struct rb_call_cache *cc, const VALUE *argv)
{
return vm_call0_cfunc_with_frame(th, calling, ci, cc, argv);
}
#endif
/* `ci' should point temporal value (on stack value) */
static VALUE
vm_call0_body(rb_thread_t* th, struct rb_calling_info *calling, const struct rb_call_info *ci, struct rb_call_cache *cc, const VALUE *argv)
{
VALUE ret;
if (th->passed_block) {
calling->blockptr = (rb_block_t *)th->passed_block;
th->passed_block = 0;
}
else {
calling->blockptr = 0;
}
again:
switch (cc->me->def->type) {
case VM_METHOD_TYPE_ISEQ:
{
rb_control_frame_t *reg_cfp = th->cfp;
int i;
CHECK_VM_STACK_OVERFLOW(reg_cfp, calling->argc + 1);
*reg_cfp->sp++ = calling->recv;
for (i = 0; i < calling->argc; i++) {
*reg_cfp->sp++ = argv[i];
}
vm_call_iseq_setup(th, reg_cfp, calling, ci, cc);
th->cfp->flag |= VM_FRAME_FLAG_FINISH;
return vm_exec(th); /* CHECK_INTS in this function */
}
case VM_METHOD_TYPE_NOTIMPLEMENTED:
case VM_METHOD_TYPE_CFUNC:
ret = vm_call0_cfunc(th, calling, ci, cc, argv);
goto success;
case VM_METHOD_TYPE_ATTRSET:
rb_check_arity(calling->argc, 1, 1);
ret = rb_ivar_set(calling->recv, cc->me->def->body.attr.id, argv[0]);
goto success;
case VM_METHOD_TYPE_IVAR:
rb_check_arity(calling->argc, 0, 0);
ret = rb_attr_get(calling->recv, cc->me->def->body.attr.id);
goto success;
case VM_METHOD_TYPE_BMETHOD:
ret = vm_call_bmethod_body(th, calling, ci, cc, argv);
goto success;
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_REFINED:
{
const rb_method_type_t type = cc->me->def->type;
VALUE super_class;
if (type == VM_METHOD_TYPE_REFINED && cc->me->def->body.refined.orig_me) {
cc->me = refined_method_callable_without_refinement(cc->me);
goto again;
}
super_class = RCLASS_SUPER(cc->me->defined_class);
if (!super_class || !(cc->me = rb_callable_method_entry(super_class, ci->mid))) {
enum method_missing_reason ex = (type == VM_METHOD_TYPE_ZSUPER) ? MISSING_SUPER : 0;
ret = method_missing(calling->recv, ci->mid, calling->argc, argv, ex);
goto success;
}
RUBY_VM_CHECK_INTS(th);
goto again;
}
case VM_METHOD_TYPE_ALIAS:
cc->me = aliased_callable_method_entry(cc->me);
goto again;
case VM_METHOD_TYPE_MISSING:
{
VALUE new_args = rb_ary_new4(calling->argc, argv);
rb_ary_unshift(new_args, ID2SYM(ci->mid));
th->passed_block = calling->blockptr;
ret = rb_funcall2(calling->recv, idMethodMissing, calling->argc+1,
RARRAY_CONST_PTR(new_args));
RB_GC_GUARD(new_args);
return ret;
}
case VM_METHOD_TYPE_OPTIMIZED:
switch (cc->me->def->body.optimize_type) {
case OPTIMIZED_METHOD_TYPE_SEND:
ret = send_internal(calling->argc, argv, calling->recv, CALL_FCALL);
goto success;
case OPTIMIZED_METHOD_TYPE_CALL:
{
rb_proc_t *proc;
GetProcPtr(calling->recv, proc);
ret = rb_vm_invoke_proc(th, proc, calling->argc, argv, calling->blockptr);
goto success;
}
default:
rb_bug("vm_call0: unsupported optimized method type (%d)", cc->me->def->body.optimize_type);
}
break;
case VM_METHOD_TYPE_UNDEF:
break;
}
rb_bug("vm_call0: unsupported method type (%d)", cc->me->def->type);
return Qundef;
success:
RUBY_VM_CHECK_INTS(th);
return ret;
}
VALUE
rb_vm_call(rb_thread_t *th, VALUE recv, VALUE id, int argc, const VALUE *argv, const rb_callable_method_entry_t *me)
{
return vm_call0(th, recv, id, argc, argv, me);
}
static inline VALUE
vm_call_super(rb_thread_t *th, int argc, const VALUE *argv)
{
VALUE recv = th->cfp->self;
VALUE klass;
ID id;
rb_control_frame_t *cfp = th->cfp;
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
rb_bug("vm_call_super: should not be reached");
}
klass = RCLASS_ORIGIN(me->defined_class);
klass = RCLASS_SUPER(klass);
id = me->def->original_id;
me = rb_callable_method_entry(klass, id);
if (!me) {
return method_missing(recv, id, argc, argv, MISSING_SUPER);
}
else {
return vm_call0(th, recv, id, argc, argv, me);
}
}
VALUE
rb_call_super(int argc, const VALUE *argv)
{
PASS_PASSED_BLOCK();
return vm_call_super(GET_THREAD(), argc, argv);
}
VALUE
rb_current_receiver(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp;
if (!th || !(cfp = th->cfp))
rb_raise(rb_eRuntimeError, "no self, no life");
return cfp->self;
}
static inline void
stack_check(void)
{
rb_thread_t *th = GET_THREAD();
if (!rb_thread_raised_p(th, RAISED_STACKOVERFLOW) && ruby_stack_check()) {
rb_thread_raised_set(th, RAISED_STACKOVERFLOW);
rb_exc_raise(sysstack_error);
}
}
static inline const rb_callable_method_entry_t *rb_search_method_entry(VALUE recv, ID mid);
static inline enum method_missing_reason rb_method_call_status(rb_thread_t *th, const rb_callable_method_entry_t *me, call_type scope, VALUE self);
/*!
* \internal
* calls the specified method.
*
* This function is called by functions in rb_call* family.
* \param recv receiver of the method
* \param mid an ID that represents the name of the method
* \param argc the number of method arguments
* \param argv a pointer to an array of method arguments
* \param scope
* \param self self in the caller. Qundef means no self is considered and
* protected methods cannot be called
*
* \note \a self is used in order to controlling access to protected methods.
*/
static inline VALUE
rb_call0(VALUE recv, ID mid, int argc, const VALUE *argv,
call_type scope, VALUE self)
{
const rb_callable_method_entry_t *me = rb_search_method_entry(recv, mid);
rb_thread_t *th = GET_THREAD();
enum method_missing_reason call_status = rb_method_call_status(th, me, scope, self);
if (call_status != MISSING_NONE) {
return method_missing(recv, mid, argc, argv, call_status);
}
stack_check();
return vm_call0(th, recv, mid, argc, argv, me);
}
struct rescue_funcall_args {
rb_thread_t *th;
VALUE defined_class;
VALUE recv;
ID mid;
const rb_method_entry_t *me;
unsigned int respond: 1;
unsigned int respond_to_missing: 1;
int argc;
const VALUE *argv;
};
static VALUE
check_funcall_exec(struct rescue_funcall_args *args)
{
return call_method_entry(args->th, args->defined_class,
args->recv, idMethodMissing,
args->me, args->argc, args->argv);
}
#define PRIV Qfalse /* TODO: for rubyspec now, should be Qtrue */
static VALUE
check_funcall_failed(struct rescue_funcall_args *args, VALUE e)
{
int ret = args->respond;
if (!ret) {
switch (rb_method_boundp(args->defined_class, args->mid,
BOUND_PRIVATE|BOUND_RESPONDS)) {
case 2:
ret = TRUE;
break;
case 0:
ret = args->respond_to_missing;
break;
default:
ret = FALSE;
break;
}
}
if (ret) {
rb_exc_raise(e);
}
return Qundef;
}
static int
check_funcall_respond_to(rb_thread_t *th, VALUE klass, VALUE recv, ID mid)
{
return vm_respond_to(th, klass, recv, mid, TRUE);
}
static int
check_funcall_callable(rb_thread_t *th, const rb_callable_method_entry_t *me)
{
return rb_method_call_status(th, me, CALL_FCALL, th->cfp->self) == MISSING_NONE;
}
static VALUE
check_funcall_missing(rb_thread_t *th, VALUE klass, VALUE recv, ID mid, int argc, const VALUE *argv, int respond, VALUE def)
{
struct rescue_funcall_args args;
const rb_method_entry_t *me;
VALUE ret = Qundef;
ret = basic_obj_respond_to_missing(th, klass, recv,
ID2SYM(mid), PRIV);
if (!RTEST(ret)) return def;
args.respond = respond > 0;
args.respond_to_missing = (ret != Qundef);
ret = def;
me = method_entry_get(klass, idMethodMissing, &args.defined_class);
if (me && !METHOD_ENTRY_BASIC(me)) {
VALUE argbuf, *new_args = ALLOCV_N(VALUE, argbuf, argc+1);
new_args[0] = ID2SYM(mid);
MEMCPY(new_args+1, argv, VALUE, argc);
th->method_missing_reason = MISSING_NOENTRY;
args.th = th;
args.recv = recv;
args.me = me;
args.mid = mid;
args.argc = argc + 1;
args.argv = new_args;
ret = rb_rescue2(check_funcall_exec, (VALUE)&args,
check_funcall_failed, (VALUE)&args,
rb_eNoMethodError, (VALUE)0);
ALLOCV_END(argbuf);
}
return ret;
}
VALUE
rb_check_funcall(VALUE recv, ID mid, int argc, const VALUE *argv)
{
return rb_check_funcall_default(recv, mid, argc, argv, Qundef);
}
VALUE
rb_check_funcall_default(VALUE recv, ID mid, int argc, const VALUE *argv, VALUE def)
{
VALUE klass = CLASS_OF(recv);
const rb_callable_method_entry_t *me;
rb_thread_t *th = GET_THREAD();
int respond = check_funcall_respond_to(th, klass, recv, mid);
if (!respond)
return def;
me = rb_search_method_entry(recv, mid);
if (!check_funcall_callable(th, me)) {
return check_funcall_missing(th, klass, recv, mid, argc, argv,
respond, def);
}
stack_check();
return vm_call0(th, recv, mid, argc, argv, me);
}
VALUE
rb_check_funcall_with_hook(VALUE recv, ID mid, int argc, const VALUE *argv,
rb_check_funcall_hook *hook, VALUE arg)
{
VALUE klass = CLASS_OF(recv);
const rb_callable_method_entry_t *me;
rb_thread_t *th = GET_THREAD();
int respond = check_funcall_respond_to(th, klass, recv, mid);
if (!respond) {
(*hook)(FALSE, recv, mid, argc, argv, arg);
return Qundef;
}
me = rb_search_method_entry(recv, mid);
if (!check_funcall_callable(th, me)) {
VALUE ret = check_funcall_missing(th, klass, recv, mid, argc, argv,
respond, Qundef);
(*hook)(ret != Qundef, recv, mid, argc, argv, arg);
return ret;
}
stack_check();
(*hook)(TRUE, recv, mid, argc, argv, arg);
return vm_call0(th, recv, mid, argc, argv, me);
}
static const char *
rb_type_str(enum ruby_value_type type)
{
#define type_case(t) case t: return #t;
switch (type) {
type_case(T_NONE)
type_case(T_OBJECT)
type_case(T_CLASS)
type_case(T_MODULE)
type_case(T_FLOAT)
type_case(T_STRING)
type_case(T_REGEXP)
type_case(T_ARRAY)
type_case(T_HASH)
type_case(T_STRUCT)
type_case(T_BIGNUM)
type_case(T_FILE)
type_case(T_DATA)
type_case(T_MATCH)
type_case(T_COMPLEX)
type_case(T_RATIONAL)
type_case(T_NIL)
type_case(T_TRUE)
type_case(T_FALSE)
type_case(T_SYMBOL)
type_case(T_FIXNUM)
type_case(T_IMEMO)
type_case(T_UNDEF)
type_case(T_NODE)
type_case(T_ICLASS)
type_case(T_ZOMBIE)
default: return NULL;
}
#undef type_case
}
static inline const rb_callable_method_entry_t *
rb_search_method_entry(VALUE recv, ID mid)
{
VALUE klass = CLASS_OF(recv);
if (!klass) {
VALUE flags;
if (SPECIAL_CONST_P(recv)) {
rb_raise(rb_eNotImpError,
"method `%"PRIsVALUE"' called on unexpected immediate object (%p)",
rb_id2str(mid), (void *)recv);
}
flags = RBASIC(recv)->flags;
if (flags == 0) {
rb_raise(rb_eNotImpError,
"method `%"PRIsVALUE"' called on terminated object"
" (%p flags=0x%"PRIxVALUE")",
rb_id2str(mid), (void *)recv, flags);
}
else {
int type = BUILTIN_TYPE(recv);
const char *typestr = rb_type_str(type);
if (typestr && T_OBJECT <= type && type < T_NIL)
rb_raise(rb_eNotImpError,
"method `%"PRIsVALUE"' called on hidden %s object"
" (%p flags=0x%"PRIxVALUE")",
rb_id2str(mid), typestr, (void *)recv, flags);
if (typestr)
rb_raise(rb_eNotImpError,
"method `%"PRIsVALUE"' called on unexpected %s object"
" (%p flags=0x%"PRIxVALUE")",
rb_id2str(mid), typestr, (void *)recv, flags);
else
rb_raise(rb_eNotImpError,
"method `%"PRIsVALUE"' called on broken T_???" "(0x%02x) object"
" (%p flags=0x%"PRIxVALUE")",
rb_id2str(mid), type, (void *)recv, flags);
}
}
return rb_callable_method_entry(klass, mid);
}
static inline enum method_missing_reason
rb_method_call_status(rb_thread_t *th, const rb_callable_method_entry_t *me, call_type scope, VALUE self)
{
VALUE klass;
ID oid;
rb_method_visibility_t visi;
if (UNDEFINED_METHOD_ENTRY_P(me)) {
undefined:
return scope == CALL_VCALL ? MISSING_VCALL : MISSING_NOENTRY;
}
if (me->def->type == VM_METHOD_TYPE_REFINED) {
me = rb_resolve_refined_method_callable(Qnil, me);
if (UNDEFINED_METHOD_ENTRY_P(me)) goto undefined;
}
klass = me->owner;
oid = me->def->original_id;
visi = METHOD_ENTRY_VISI(me);
if (oid != idMethodMissing) {
/* receiver specified form for private method */
if (UNLIKELY(visi != METHOD_VISI_PUBLIC)) {
if (visi == METHOD_VISI_PRIVATE && scope == CALL_PUBLIC) {
return MISSING_PRIVATE;
}
/* self must be kind of a specified form for protected method */
if (visi == METHOD_VISI_PROTECTED && scope == CALL_PUBLIC) {
VALUE defined_class = klass;
if (RB_TYPE_P(defined_class, T_ICLASS)) {
defined_class = RBASIC(defined_class)->klass;
}
if (self == Qundef || !rb_obj_is_kind_of(self, defined_class)) {
return MISSING_PROTECTED;
}
}
}
}
return MISSING_NONE;
}
/*!
* \internal
* calls the specified method.
*
* This function is called by functions in rb_call* family.
* \param recv receiver
* \param mid an ID that represents the name of the method
* \param argc the number of method arguments
* \param argv a pointer to an array of method arguments
* \param scope
*/
static inline VALUE
rb_call(VALUE recv, ID mid, int argc, const VALUE *argv, call_type scope)
{
rb_thread_t *th = GET_THREAD();
return rb_call0(recv, mid, argc, argv, scope, th->cfp->self);
}
NORETURN(static void raise_method_missing(rb_thread_t *th, int argc, const VALUE *argv,
VALUE obj, enum method_missing_reason call_status));
/*
* call-seq:
* obj.method_missing(symbol [, *args] ) -> result
*
* Invoked by Ruby when <i>obj</i> is sent a message it cannot handle.
* <i>symbol</i> is the symbol for the method called, and <i>args</i>
* are any arguments that were passed to it. By default, the interpreter
* raises an error when this method is called. However, it is possible
* to override the method to provide more dynamic behavior.
* If it is decided that a particular method should not be handled, then
* <i>super</i> should be called, so that ancestors can pick up the
* missing method.
* The example below creates
* a class <code>Roman</code>, which responds to methods with names
* consisting of roman numerals, returning the corresponding integer
* values.
*
* class Roman
* def roman_to_int(str)
* # ...
* end
* def method_missing(methId)
* str = methId.id2name
* roman_to_int(str)
* end
* end
*
* r = Roman.new
* r.iv #=> 4
* r.xxiii #=> 23
* r.mm #=> 2000
*/
static VALUE
rb_method_missing(int argc, const VALUE *argv, VALUE obj)
{
rb_thread_t *th = GET_THREAD();
raise_method_missing(th, argc, argv, obj, th->method_missing_reason);
UNREACHABLE;
}
static VALUE
make_no_method_exception(VALUE exc, VALUE format, VALUE obj, int argc, const VALUE *argv)
{
int n = 0;
enum {
arg_mesg,
arg_name,
arg_args,
args_size
};
VALUE args[args_size];
if (!format) {
format = rb_fstring_cstr("undefined method `%s' for %s%s%s");
}
args[n++] = rb_name_err_mesg_new(format, obj, argv[0]);
args[n++] = argv[0];
if (exc == rb_eNoMethodError) {
args[n++] = rb_ary_new4(argc - 1, argv + 1);
}
return rb_class_new_instance(n, args, exc);
}
static void
raise_method_missing(rb_thread_t *th, int argc, const VALUE *argv, VALUE obj,
enum method_missing_reason last_call_status)
{
VALUE exc = rb_eNoMethodError;
VALUE format = 0;
if (UNLIKELY(argc == 0)) {
rb_raise(rb_eArgError, "no method name given");
}
else if (UNLIKELY(!SYMBOL_P(argv[0]))) {
const VALUE e = rb_eArgError; /* TODO: TypeError? */
rb_raise(e, "method name must be a Symbol but %"PRIsVALUE" is given",
rb_obj_class(argv[0]));
}
stack_check();
if (last_call_status & MISSING_PRIVATE) {
format = rb_fstring_cstr("private method `%s' called for %s%s%s");
}
else if (last_call_status & MISSING_PROTECTED) {
format = rb_fstring_cstr("protected method `%s' called for %s%s%s");
}
else if (last_call_status & MISSING_VCALL) {
format = rb_fstring_cstr("undefined local variable or method `%s' for %s%s%s");
exc = rb_eNameError;
}
else if (last_call_status & MISSING_SUPER) {
format = rb_fstring_cstr("super: no superclass method `%s' for %s%s%s");
}
{
exc = make_no_method_exception(exc, format, obj, argc, argv);
if (!(last_call_status & MISSING_MISSING)) {
rb_vm_pop_cfunc_frame();
}
rb_exc_raise(exc);
}
}
static inline VALUE
method_missing(VALUE obj, ID id, int argc, const VALUE *argv, enum method_missing_reason call_status)
{
VALUE *nargv, result, work;
rb_thread_t *th = GET_THREAD();
const rb_block_t *blockptr = th->passed_block;
th->method_missing_reason = call_status;
th->passed_block = 0;
if (id == idMethodMissing) {
raise_method_missing(th, argc, argv, obj, call_status | MISSING_MISSING);
}
nargv = ALLOCV_N(VALUE, work, argc + 1);
nargv[0] = ID2SYM(id);
MEMCPY(nargv + 1, argv, VALUE, argc);
if (rb_method_basic_definition_p(CLASS_OF(obj) , idMethodMissing)) {
raise_method_missing(th, argc+1, nargv, obj, call_status | MISSING_MISSING);
}
th->passed_block = blockptr;
result = rb_funcall2(obj, idMethodMissing, argc + 1, nargv);
if (work) ALLOCV_END(work);
return result;
}
void
rb_raise_method_missing(rb_thread_t *th, int argc, const VALUE *argv,
VALUE obj, int call_status)
{
th->passed_block = 0;
raise_method_missing(th, argc, argv, obj, call_status | MISSING_MISSING);
}
/*!
* Calls a method
* \param recv receiver of the method
* \param mid an ID that represents the name of the method
* \param args an Array object which contains method arguments
*
* \pre \a args must refer an Array object.
*/
VALUE
rb_apply(VALUE recv, ID mid, VALUE args)
{
int argc;
VALUE *argv, ret;
argc = RARRAY_LENINT(args);
if (argc >= 0x100) {
args = rb_ary_subseq(args, 0, argc);
RBASIC_CLEAR_CLASS(args);
OBJ_FREEZE(args);
ret = rb_call(recv, mid, argc, RARRAY_CONST_PTR(args), CALL_FCALL);
RB_GC_GUARD(args);
return ret;
}
argv = ALLOCA_N(VALUE, argc);
MEMCPY(argv, RARRAY_CONST_PTR(args), VALUE, argc);
return rb_call(recv, mid, argc, argv, CALL_FCALL);
}
/*!
* Calls a method
* \param recv receiver of the method
* \param mid an ID that represents the name of the method
* \param n the number of arguments
* \param ... arbitrary number of method arguments
*
* \pre each of arguments after \a n must be a VALUE.
*/
VALUE
rb_funcall(VALUE recv, ID mid, int n, ...)
{
VALUE *argv;
va_list ar;
if (n > 0) {
long i;
va_init_list(ar, n);
argv = ALLOCA_N(VALUE, n);
for (i = 0; i < n; i++) {
argv[i] = va_arg(ar, VALUE);
}
va_end(ar);
}
else {
argv = 0;
}
return rb_call(recv, mid, n, argv, CALL_FCALL);
}
/*!
* Calls a method
* \param recv receiver of the method
* \param mid an ID that represents the name of the method
* \param argc the number of arguments
* \param argv pointer to an array of method arguments
*/
VALUE
rb_funcallv(VALUE recv, ID mid, int argc, const VALUE *argv)
{
return rb_call(recv, mid, argc, argv, CALL_FCALL);
}
/*!
* Calls a method.
*
* Same as rb_funcall2 but this function can call only public methods.
* \param recv receiver of the method
* \param mid an ID that represents the name of the method
* \param argc the number of arguments
* \param argv pointer to an array of method arguments
*/
VALUE
rb_funcallv_public(VALUE recv, ID mid, int argc, const VALUE *argv)
{
return rb_call(recv, mid, argc, argv, CALL_PUBLIC);
}
VALUE
rb_funcall_passing_block(VALUE recv, ID mid, int argc, const VALUE *argv)
{
PASS_PASSED_BLOCK();
return rb_call(recv, mid, argc, argv, CALL_PUBLIC);
}
VALUE
rb_funcall_with_block(VALUE recv, ID mid, int argc, const VALUE *argv, VALUE pass_procval)
{
if (!NIL_P(pass_procval)) {
rb_thread_t *th = GET_THREAD();
rb_block_t *block = 0;
rb_proc_t *pass_proc;
GetProcPtr(pass_procval, pass_proc);
block = &pass_proc->block;
th->passed_block = block;
}
return rb_call(recv, mid, argc, argv, CALL_PUBLIC);
}
static VALUE *
current_vm_stack_arg(rb_thread_t *th, const VALUE *argv)
{
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, prev_cfp)) return NULL;
if (prev_cfp->sp + 1 != argv) return NULL;
return prev_cfp->sp + 1;
}
static VALUE
send_internal(int argc, const VALUE *argv, VALUE recv, call_type scope)
{
ID id;
VALUE vid;
VALUE self;
VALUE ret, vargv = 0;
rb_thread_t *th = GET_THREAD();
if (scope == CALL_PUBLIC) {
self = Qundef;
}
else {
self = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp)->self;
}
if (argc == 0) {
rb_raise(rb_eArgError, "no method name given");
}
vid = *argv;
id = rb_check_id(&vid);
if (!id) {
if (rb_method_basic_definition_p(CLASS_OF(recv), idMethodMissing)) {
VALUE exc = make_no_method_exception(rb_eNoMethodError, 0,
recv, argc, argv);
rb_exc_raise(exc);
}
if (!SYMBOL_P(*argv)) {
VALUE *tmp_argv = current_vm_stack_arg(th, argv);
vid = rb_str_intern(vid);
if (tmp_argv) {
tmp_argv[0] = vid;
}
else if (argc > 1) {
tmp_argv = ALLOCV_N(VALUE, vargv, argc);
tmp_argv[0] = vid;
MEMCPY(tmp_argv+1, argv+1, VALUE, argc-1);
argv = tmp_argv;
}
else {
argv = &vid;
}
}
id = idMethodMissing;
th->method_missing_reason = MISSING_NOENTRY;
}
else {
argv++; argc--;
}
PASS_PASSED_BLOCK_TH(th);
ret = rb_call0(recv, id, argc, argv, scope, self);
ALLOCV_END(vargv);
return ret;
}
/*
* call-seq:
* foo.send(symbol [, args...]) -> obj
* foo.__send__(symbol [, args...]) -> obj
* foo.send(string [, args...]) -> obj
* foo.__send__(string [, args...]) -> obj
*
* Invokes the method identified by _symbol_, passing it any
* arguments specified. You can use <code>__send__</code> if the name
* +send+ clashes with an existing method in _obj_.
* When the method is identified by a string, the string is converted
* to a symbol.
*
* class Klass
* def hello(*args)
* "Hello " + args.join(' ')
* end
* end
* k = Klass.new
* k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
*/
VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal(argc, argv, recv, CALL_FCALL);
}
/*
* call-seq:
* obj.public_send(symbol [, args...]) -> obj
* obj.public_send(string [, args...]) -> obj
*
* Invokes the method identified by _symbol_, passing it any
* arguments specified. Unlike send, public_send calls public
* methods only.
* When the method is identified by a string, the string is converted
* to a symbol.
*
* 1.public_send(:puts, "hello") # causes NoMethodError
*/
VALUE
rb_f_public_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal(argc, argv, recv, CALL_PUBLIC);
}
/* yield */
static inline VALUE
rb_yield_0(int argc, const VALUE * argv)
{
return vm_yield(GET_THREAD(), argc, argv);
}
VALUE
rb_yield_1(VALUE val)
{
return rb_yield_0(1, &val);
}
VALUE
rb_yield(VALUE val)
{
if (val == Qundef) {
return rb_yield_0(0, 0);
}
else {
return rb_yield_1(val);
}
}
VALUE
rb_yield_values(int n, ...)
{
if (n == 0) {
return rb_yield_0(0, 0);
}
else {
int i;
VALUE *argv;
va_list args;
argv = ALLOCA_N(VALUE, n);
va_init_list(args, n);
for (i=0; i<n; i++) {
argv[i] = va_arg(args, VALUE);
}
va_end(args);
return rb_yield_0(n, argv);
}
}
VALUE
rb_yield_values2(int argc, const VALUE *argv)
{
return rb_yield_0(argc, argv);
}
VALUE
rb_yield_splat(VALUE values)
{
VALUE tmp = rb_check_array_type(values);
volatile VALUE v;
if (NIL_P(tmp)) {
rb_raise(rb_eArgError, "not an array");
}
v = rb_yield_0(RARRAY_LENINT(tmp), RARRAY_CONST_PTR(tmp));
RB_GC_GUARD(tmp);
return v;
}
VALUE
rb_yield_block(VALUE val, VALUE arg, int argc, const VALUE *argv, VALUE blockarg)
{
const rb_block_t *blockptr = NULL;
if (!NIL_P(blockarg)) {
rb_proc_t *blockproc;
GetProcPtr(blockarg, blockproc);
blockptr = &blockproc->block;
}
return vm_yield_with_block(GET_THREAD(), argc, argv, blockptr);
}
static VALUE
loop_i(void)
{
for (;;) {
rb_yield_0(0, 0);
}
return Qnil;
}
static VALUE
loop_stop(VALUE dummy, VALUE exc)
{
return rb_attr_get(exc, id_result);
}
static VALUE
rb_f_loop_size(VALUE self, VALUE args, VALUE eobj)
{
return DBL2NUM(INFINITY);
}
/*
* call-seq:
* loop { block }
* loop -> an_enumerator
*
* Repeatedly executes the block.
*
* If no block is given, an enumerator is returned instead.
*
* loop do
* print "Input: "
* line = gets
* break if !line or line =~ /^qQ/
* # ...
* end
*
* StopIteration raised in the block breaks the loop. In this case,
* loop returns the "result" value stored in the exception.
*
* enum = Enumerator.new { |y|
* y << "one"
* y << "two"
* :ok
* }
*
* result = loop {
* puts enum.next
* } #=> :ok
*/
static VALUE
rb_f_loop(VALUE self)
{
RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
return rb_rescue2(loop_i, (VALUE)0, loop_stop, (VALUE)0, rb_eStopIteration, (VALUE)0);
}
#if VMDEBUG
static const char *
vm_frametype_name(const rb_control_frame_t *cfp);
#endif
static VALUE
rb_iterate0(VALUE (* it_proc) (VALUE), VALUE data1,
const struct vm_ifunc *const ifunc,
rb_thread_t *const th)
{
int state;
volatile VALUE retval = Qnil;
rb_control_frame_t *const cfp = th->cfp;
TH_PUSH_TAG(th);
state = TH_EXEC_TAG();
if (state == 0) {
iter_retry:
{
rb_block_t *blockptr;
if (ifunc) {
blockptr = RUBY_VM_GET_BLOCK_PTR_IN_CFP(cfp);
blockptr->iseq = (void *)ifunc;
blockptr->proc = 0;
}
else {
blockptr = VM_CF_BLOCK_PTR(cfp);
}
th->passed_block = blockptr;
}
retval = (*it_proc) (data1);
}
else if (state == TAG_BREAK || state == TAG_RETRY) {
const struct vm_throw_data *const err = (struct vm_throw_data *)th->errinfo;
const rb_control_frame_t *const escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
rb_vm_rewind_cfp(th, cfp);
state = 0;
th->state = 0;
th->errinfo = Qnil;
if (state == TAG_RETRY) goto iter_retry;
retval = THROW_DATA_VAL(err);
}
else if (0) {
SDR(); fprintf(stderr, "%p, %p\n", cfp, escape_cfp);
}
}
TH_POP_TAG();
if (state) {
TH_JUMP_TAG(th, state);
}
return retval;
}
VALUE
rb_iterate(VALUE (* it_proc)(VALUE), VALUE data1,
VALUE (* bl_proc)(ANYARGS), VALUE data2)
{
return rb_iterate0(it_proc, data1,
bl_proc ? IFUNC_NEW(bl_proc, data2, rb_frame_this_func()) : 0,
GET_THREAD());
}
struct iter_method_arg {
VALUE obj;
ID mid;
int argc;
const VALUE *argv;
};
static VALUE
iterate_method(VALUE obj)
{
const struct iter_method_arg * arg =
(struct iter_method_arg *) obj;
return rb_call(arg->obj, arg->mid, arg->argc, arg->argv, CALL_FCALL);
}
VALUE
rb_block_call(VALUE obj, ID mid, int argc, const VALUE * argv,
VALUE (*bl_proc) (ANYARGS), VALUE data2)
{
struct iter_method_arg arg;
arg.obj = obj;
arg.mid = mid;
arg.argc = argc;
arg.argv = argv;
return rb_iterate(iterate_method, (VALUE)&arg, bl_proc, data2);
}
static VALUE
iterate_check_method(VALUE obj)
{
const struct iter_method_arg * arg =
(struct iter_method_arg *) obj;
return rb_check_funcall(arg->obj, arg->mid, arg->argc, arg->argv);
}
VALUE
rb_check_block_call(VALUE obj, ID mid, int argc, const VALUE *argv,
VALUE (*bl_proc) (ANYARGS), VALUE data2)
{
struct iter_method_arg arg;
arg.obj = obj;
arg.mid = mid;
arg.argc = argc;
arg.argv = argv;
return rb_iterate(iterate_check_method, (VALUE)&arg, bl_proc, data2);
}
VALUE
rb_each(VALUE obj)
{
return rb_call(obj, idEach, 0, 0, CALL_FCALL);
}
static VALUE
eval_string_with_cref(VALUE self, VALUE src, VALUE scope, rb_cref_t *const cref_arg,
VALUE filename, int lineno)
{
int state;
VALUE result = Qundef;
VALUE envval;
rb_thread_t *th = GET_THREAD();
rb_env_t *env = NULL;
rb_block_t block, *base_block;
volatile int parse_in_eval;
volatile int mild_compile_error;
volatile VALUE file;
volatile int line;
file = filename ? filename : rb_source_location(&lineno);
line = lineno;
parse_in_eval = th->parse_in_eval;
mild_compile_error = th->mild_compile_error;
TH_PUSH_TAG(th);
if ((state = TH_EXEC_TAG()) == 0) {
rb_cref_t *cref = cref_arg;
rb_binding_t *bind = 0;
const rb_iseq_t *iseq;
VALUE absolute_path = Qnil;
VALUE fname;
if (file != Qundef) {
absolute_path = file;
}
if (!NIL_P(scope)) {
bind = Check_TypedStruct(scope, &ruby_binding_data_type);
{
envval = bind->env;
if (NIL_P(absolute_path) && !NIL_P(bind->path)) {
file = bind->path;
line = bind->first_lineno;
absolute_path = rb_current_realfilepath();
}
}
GetEnvPtr(envval, env);
base_block = &env->block;
}
else {
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp != 0) {
block = *RUBY_VM_GET_BLOCK_PTR_IN_CFP(cfp);
base_block = &block;
base_block->self = self;
base_block->iseq = cfp->iseq; /* TODO */
}
else {
rb_raise(rb_eRuntimeError, "Can't eval on top of Fiber or Thread");
}
}
if ((fname = file) == Qundef) {
fname = rb_usascii_str_new_cstr("(eval)");
}
if (RTEST(fname))
fname = rb_fstring(fname);
if (RTEST(absolute_path))
absolute_path = rb_fstring(absolute_path);
/* make eval iseq */
th->parse_in_eval++;
th->mild_compile_error++;
iseq = rb_iseq_compile_with_option(src, fname, absolute_path, INT2FIX(line), base_block, Qnil);
th->mild_compile_error--;
th->parse_in_eval--;
if (!cref && base_block->iseq) {
if (NIL_P(scope)) {
rb_cref_t *orig_cref = rb_vm_get_cref(base_block->ep);
cref = vm_cref_dup(orig_cref);
}
else {
cref = NULL; /* use stacked CREF */
}
}
vm_set_eval_stack(th, iseq, cref, base_block);
if (0) { /* for debug */
VALUE disasm = rb_iseq_disasm(iseq);
printf("%s\n", StringValuePtr(disasm));
}
/* save new env */
if (bind && iseq->body->local_table_size > 0) {
bind->env = vm_make_env_object(th, th->cfp);
}
/* kick */
result = vm_exec(th);
}
TH_POP_TAG();
th->mild_compile_error = mild_compile_error;
th->parse_in_eval = parse_in_eval;
if (state) {
if (state == TAG_RAISE) {
VALUE errinfo = th->errinfo;
if (file == Qundef) {
VALUE mesg, errat, bt2;
errat = rb_get_backtrace(errinfo);
mesg = rb_attr_get(errinfo, id_mesg);
if (!NIL_P(errat) && RB_TYPE_P(errat, T_ARRAY) &&
(bt2 = rb_vm_backtrace_str_ary(th, 0, 0), RARRAY_LEN(bt2) > 0)) {
if (!NIL_P(mesg) && RB_TYPE_P(mesg, T_STRING) && !RSTRING_LEN(mesg)) {
if (OBJ_FROZEN(mesg)) {
VALUE m = rb_str_cat(rb_str_dup(RARRAY_AREF(errat, 0)), ": ", 2);
rb_ivar_set(errinfo, id_mesg, rb_str_append(m, mesg));
}
else {
rb_str_update(mesg, 0, 0, rb_str_new2(": "));
rb_str_update(mesg, 0, 0, RARRAY_AREF(errat, 0));
}
}
RARRAY_ASET(errat, 0, RARRAY_AREF(bt2, 0));
}
}
rb_exc_raise(errinfo);
}
JUMP_TAG(state);
}
return result;
}
static VALUE
eval_string(VALUE self, VALUE src, VALUE scope, VALUE file, int line)
{
return eval_string_with_cref(self, src, scope, 0, file, line);
}
/*
* call-seq:
* eval(string [, binding [, filename [,lineno]]]) -> obj
*
* Evaluates the Ruby expression(s) in <em>string</em>. If
* <em>binding</em> is given, which must be a <code>Binding</code>
* object, the evaluation is performed in its context. If the
* optional <em>filename</em> and <em>lineno</em> parameters are
* present, they will be used when reporting syntax errors.
*
* def get_binding(str)
* return binding
* end
* str = "hello"
* eval "str + ' Fred'" #=> "hello Fred"
* eval "str + ' Fred'", get_binding("bye") #=> "bye Fred"
*/
VALUE
rb_f_eval(int argc, const VALUE *argv, VALUE self)
{
VALUE src, scope, vfile, vline;
VALUE file = Qundef;
int line = 1;
rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline);
SafeStringValue(src);
if (argc >= 3) {
StringValue(vfile);
}
if (argc >= 4) {
line = NUM2INT(vline);
}
if (!NIL_P(vfile))
file = vfile;
return eval_string(self, src, scope, file, line);
}
/** @note This function name is not stable. */
VALUE
ruby_eval_string_from_file(const char *str, const char *filename)
{
VALUE file = filename ? rb_str_new_cstr(filename) : 0;
return eval_string(rb_vm_top_self(), rb_str_new2(str), Qnil, file, 1);
}
struct eval_string_from_file_arg {
VALUE str;
VALUE filename;
};
static VALUE
eval_string_from_file_helper(VALUE data)
{
const struct eval_string_from_file_arg *const arg = (struct eval_string_from_file_arg*)data;
return eval_string(rb_vm_top_self(), arg->str, Qnil, arg->filename, 1);
}
VALUE
ruby_eval_string_from_file_protect(const char *str, const char *filename, int *state)
{
struct eval_string_from_file_arg arg;
arg.str = rb_str_new_cstr(str);
arg.filename = filename ? rb_str_new_cstr(filename) : 0;
return rb_protect(eval_string_from_file_helper, (VALUE)&arg, state);
}
/**
* Evaluates the given string in an isolated binding.
*
* Here "isolated" means the binding does not inherit any other binding. This
* behaves same as the binding for required libraries.
*
* __FILE__ will be "(eval)", and __LINE__ starts from 1 in the evaluation.
*
* @param str Ruby code to evaluate.
* @return The evaluated result.
* @throw Exception Raises an exception on error.
*/
VALUE
rb_eval_string(const char *str)
{
return ruby_eval_string_from_file(str, "eval");
}
/**
* Evaluates the given string in an isolated binding.
*
* __FILE__ will be "(eval)", and __LINE__ starts from 1 in the evaluation.
*
* @sa rb_eval_string
* @param str Ruby code to evaluate.
* @param state Being set to zero if succeeded. Nonzero if an error occurred.
* @return The evaluated result if succeeded, an undefined value if otherwise.
*/
VALUE
rb_eval_string_protect(const char *str, int *state)
{
return rb_protect((VALUE (*)(VALUE))rb_eval_string, (VALUE)str, state);
}
/**
* Evaluates the given string under a module binding in an isolated binding.
* This is same as the binding for loaded libraries on "load('foo', true)".
*
* __FILE__ will be "(eval)", and __LINE__ starts from 1 in the evaluation.
*
* @sa rb_eval_string
* @param str Ruby code to evaluate.
* @param state Being set to zero if succeeded. Nonzero if an error occurred.
* @return The evaluated result if succeeded, an undefined value if otherwise.
*/
VALUE
rb_eval_string_wrap(const char *str, int *state)
{
int status;
rb_thread_t *th = GET_THREAD();
VALUE self = th->top_self;
VALUE wrapper = th->top_wrapper;
VALUE val;
th->top_wrapper = rb_module_new();
th->top_self = rb_obj_clone(rb_vm_top_self());
rb_extend_object(th->top_self, th->top_wrapper);
val = rb_eval_string_protect(str, &status);
th->top_self = self;
th->top_wrapper = wrapper;
if (state) {
*state = status;
}
else if (status) {
JUMP_TAG(status);
}
return val;
}
VALUE
rb_eval_cmd(VALUE cmd, VALUE arg, int level)
{
int state;
volatile VALUE val = Qnil; /* OK */
volatile int safe = rb_safe_level();
if (OBJ_TAINTED(cmd)) {
level = RUBY_SAFE_LEVEL_MAX;
}
if (!RB_TYPE_P(cmd, T_STRING)) {
PUSH_TAG();
rb_set_safe_level_force(level);
if ((state = EXEC_TAG()) == 0) {
val = rb_funcall2(cmd, idCall, RARRAY_LENINT(arg),
RARRAY_CONST_PTR(arg));
}
POP_TAG();
rb_set_safe_level_force(safe);
if (state)
JUMP_TAG(state);
return val;
}
PUSH_TAG();
if ((state = EXEC_TAG()) == 0) {
val = eval_string(rb_vm_top_self(), cmd, Qnil, 0, 0);
}
POP_TAG();
rb_set_safe_level_force(safe);
if (state) JUMP_TAG(state);
return val;
}
/* block eval under the class/module context */
static VALUE
yield_under(VALUE under, VALUE self, VALUE values)
{
rb_thread_t *th = GET_THREAD();
rb_block_t block, *blockptr;
rb_cref_t *cref;
if ((blockptr = VM_CF_BLOCK_PTR(th->cfp)) != 0) {
block = *blockptr;
block.self = self;
VM_CF_LEP(th->cfp)[0] = VM_ENVVAL_BLOCK_PTR(&block);
}
cref = vm_cref_push(th, under, blockptr, TRUE);
if (values == Qundef) {
return vm_yield_with_cref(th, 1, &self, cref);
}
else {
return vm_yield_with_cref(th, RARRAY_LENINT(values), RARRAY_CONST_PTR(values), cref);
}
}
VALUE
rb_yield_refine_block(VALUE refinement, VALUE refinements)
{
rb_thread_t *th = GET_THREAD();
rb_block_t block, *blockptr;
rb_cref_t *cref;
if ((blockptr = VM_CF_BLOCK_PTR(th->cfp)) != 0) {
block = *blockptr;
block.self = refinement;
VM_CF_LEP(th->cfp)[0] = VM_ENVVAL_BLOCK_PTR(&block);
}
cref = vm_cref_push(th, refinement, blockptr, TRUE);
CREF_REFINEMENTS_SET(cref, refinements);
return vm_yield_with_cref(th, 0, NULL, cref);
}
/* string eval under the class/module context */
static VALUE
eval_under(VALUE under, VALUE self, VALUE src, VALUE file, int line)
{
rb_cref_t *cref = vm_cref_push(GET_THREAD(), under, NULL, SPECIAL_CONST_P(self) && !NIL_P(under));
SafeStringValue(src);
return eval_string_with_cref(self, src, Qnil, cref, file, line);
}
static VALUE
specific_eval(int argc, const VALUE *argv, VALUE klass, VALUE self)
{
if (rb_block_given_p()) {
rb_check_arity(argc, 0, 0);
return yield_under(klass, self, Qundef);
}
else {
VALUE file = Qundef;
int line = 1;
VALUE code;
rb_check_arity(argc, 1, 3);
code = argv[0];
SafeStringValue(code);
if (argc > 2)
line = NUM2INT(argv[2]);
if (argc > 1) {
file = argv[1];
if (!NIL_P(file)) StringValue(file);
}
return eval_under(klass, self, code, file, line);
}
}
static VALUE
singleton_class_for_eval(VALUE self)
{
if (SPECIAL_CONST_P(self)) {
return rb_special_singleton_class(self);
}
switch (BUILTIN_TYPE(self)) {
case T_FLOAT: case T_BIGNUM: case T_SYMBOL:
return Qnil;
default:
return rb_singleton_class(self);
}
}
/*
* call-seq:
* obj.instance_eval(string [, filename [, lineno]] ) -> obj
* obj.instance_eval {|obj| block } -> obj
*
* Evaluates a string containing Ruby source code, or the given block,
* within the context of the receiver (_obj_). In order to set the
* context, the variable +self+ is set to _obj_ while
* the code is executing, giving the code access to _obj_'s
* instance variables and private methods.
*
* When <code>instance_eval</code> is given a block, _obj_ is also
* passed in as the block's only argument.
*
* When <code>instance_eval</code> is given a +String+, the optional
* second and third parameters supply a filename and starting line number
* that are used when reporting compilation errors.
*
* class KlassWithSecret
* def initialize
* @secret = 99
* end
* private
* def the_secret
* "Ssssh! The secret is #{@secret}."
* end
* end
* k = KlassWithSecret.new
* k.instance_eval { @secret } #=> 99
* k.instance_eval { the_secret } #=> "Ssssh! The secret is 99."
* k.instance_eval {|obj| obj == self } #=> true
*/
VALUE
rb_obj_instance_eval(int argc, const VALUE *argv, VALUE self)
{
VALUE klass = singleton_class_for_eval(self);
return specific_eval(argc, argv, klass, self);
}
/*
* call-seq:
* obj.instance_exec(arg...) {|var...| block } -> obj
*
* Executes the given block within the context of the receiver
* (_obj_). In order to set the context, the variable +self+ is set
* to _obj_ while the code is executing, giving the code access to
* _obj_'s instance variables. Arguments are passed as block parameters.
*
* class KlassWithSecret
* def initialize
* @secret = 99
* end
* end
* k = KlassWithSecret.new
* k.instance_exec(5) {|x| @secret+x } #=> 104
*/
VALUE
rb_obj_instance_exec(int argc, const VALUE *argv, VALUE self)
{
VALUE klass = singleton_class_for_eval(self);
return yield_under(klass, self, rb_ary_new4(argc, argv));
}
/*
* call-seq:
* mod.class_eval(string [, filename [, lineno]]) -> obj
* mod.class_eval {|mod| block } -> obj
* mod.module_eval(string [, filename [, lineno]]) -> obj
* mod.module_eval {|mod| block } -> obj
*
* Evaluates the string or block in the context of _mod_, except that when
* a block is given, constant/class variable lookup is not affected. This
* can be used to add methods to a class. <code>module_eval</code> returns
* the result of evaluating its argument. The optional _filename_ and
* _lineno_ parameters set the text for error messages.
*
* class Thing
* end
* a = %q{def hello() "Hello there!" end}
* Thing.module_eval(a)
* puts Thing.new.hello()
* Thing.module_eval("invalid code", "dummy", 123)
*
* <em>produces:</em>
*
* Hello there!
* dummy:123:in `module_eval': undefined local variable
* or method `code' for Thing:Class
*/
VALUE
rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
/*
* call-seq:
* mod.module_exec(arg...) {|var...| block } -> obj
* mod.class_exec(arg...) {|var...| block } -> obj
*
* Evaluates the given block in the context of the class/module.
* The method defined in the block will belong to the receiver.
* Any arguments passed to the method will be passed to the block.
* This can be used if the block needs to access instance variables.
*
* class Thing
* end
* Thing.class_exec{
* def hello() "Hello there!" end
* }
* puts Thing.new.hello()
*
* <em>produces:</em>
*
* Hello there!
*/
VALUE
rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
/*
* Document-class: UncaughtThrowError
*
* Raised when +throw+ is called with a _tag_ which does not have
* corresponding +catch+ block.
*
* throw "foo", "bar"
*
* <em>raises the exception:</em>
*
* UncaughtThrowError: uncaught throw "foo"
*/
static VALUE
uncaught_throw_init(int argc, const VALUE *argv, VALUE exc)
{
rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
rb_call_super(argc - 2, argv + 2);
rb_ivar_set(exc, id_tag, argv[0]);
rb_ivar_set(exc, id_value, argv[1]);
return exc;
}
/*
* call-seq:
* uncaught_throw.tag -> obj
*
* Return the tag object which was called for.
*/
static VALUE
uncaught_throw_tag(VALUE exc)
{
return rb_ivar_get(exc, id_tag);
}
/*
* call-seq:
* uncaught_throw.value -> obj
*
* Return the return value which was called for.
*/
static VALUE
uncaught_throw_value(VALUE exc)
{
return rb_ivar_get(exc, id_value);
}
/*
* call-seq:
* uncaught_throw.to_s -> string
*
* Returns formatted message with the inspected tag.
*/
static VALUE
uncaught_throw_to_s(VALUE exc)
{
VALUE mesg = rb_attr_get(exc, id_mesg);
VALUE tag = uncaught_throw_tag(exc);
return rb_str_format(1, &tag, mesg);
}
/*
* call-seq:
* throw(tag [, obj])
*
* Transfers control to the end of the active +catch+ block
* waiting for _tag_. Raises +UncaughtThrowError+ if there
* is no +catch+ block for the _tag_. The optional second
* parameter supplies a return value for the +catch+ block,
* which otherwise defaults to +nil+. For examples, see
* <code>Kernel::catch</code>.
*/
static VALUE
rb_f_throw(int argc, VALUE *argv)
{
VALUE tag, value;
rb_scan_args(argc, argv, "11", &tag, &value);
rb_throw_obj(tag, value);
UNREACHABLE;
}
void
rb_throw_obj(VALUE tag, VALUE value)
{
rb_thread_t *th = GET_THREAD();
struct rb_vm_tag *tt = th->tag;
while (tt) {
if (tt->tag == tag) {
tt->retval = value;
break;
}
tt = tt->prev;
}
if (!tt) {
VALUE desc[3];
desc[0] = tag;
desc[1] = value;
desc[2] = rb_str_new_cstr("uncaught throw %p");
rb_exc_raise(rb_class_new_instance(numberof(desc), desc, rb_eUncaughtThrow));
}
th->errinfo = (VALUE)THROW_DATA_NEW(tag, NULL, TAG_THROW);
JUMP_TAG(TAG_THROW);
}
void
rb_throw(const char *tag, VALUE val)
{
rb_throw_obj(rb_sym_intern_ascii_cstr(tag), val);
}
static VALUE
catch_i(VALUE tag, VALUE data)
{
return rb_yield_0(1, &tag);
}
/*
* call-seq:
* catch([tag]) {|tag| block } -> obj
*
* +catch+ executes its block. If +throw+ is not called, the block executes
* normally, and +catch+ returns the value of the last expression evaluated.
*
* catch(1) { 123 } # => 123
*
* If +throw(tag2, val)+ is called, Ruby searches up its stack for a +catch+
* block whose +tag+ has the same +object_id+ as _tag2_. When found, the block
* stops executing and returns _val_ (or +nil+ if no second argument was given
* to +throw+).
*
* catch(1) { throw(1, 456) } # => 456
* catch(1) { throw(1) } # => nil
*
* When +tag+ is passed as the first argument, +catch+ yields it as the
* parameter of the block.
*
* catch(1) {|x| x + 2 } # => 3
*
* When no +tag+ is given, +catch+ yields a new unique object (as from
* +Object.new+) as the block parameter. This object can then be used as the
* argument to +throw+, and will match the correct +catch+ block.
*
* catch do |obj_A|
* catch do |obj_B|
* throw(obj_B, 123)
* puts "This puts is not reached"
* end
*
* puts "This puts is displayed"
* 456
* end
*
* # => 456
*
* catch do |obj_A|
* catch do |obj_B|
* throw(obj_A, 123)
* puts "This puts is still not reached"
* end
*
* puts "Now this puts is also not reached"
* 456
* end
*
* # => 123
*/
static VALUE
rb_f_catch(int argc, VALUE *argv)
{
VALUE tag;
if (argc == 0) {
tag = rb_obj_alloc(rb_cObject);
}
else {
rb_scan_args(argc, argv, "01", &tag);
}
return rb_catch_obj(tag, catch_i, 0);
}
VALUE
rb_catch(const char *tag, VALUE (*func)(), VALUE data)
{
VALUE vtag = tag ? rb_sym_intern_ascii_cstr(tag) : rb_obj_alloc(rb_cObject);
return rb_catch_obj(vtag, func, data);
}
VALUE
rb_catch_obj(VALUE t, VALUE (*func)(), VALUE data)
{
int state;
VALUE val = rb_catch_protect(t, (rb_block_call_func *)func, data, &state);
if (state)
JUMP_TAG(state);
return val;
}
VALUE
rb_catch_protect(VALUE t, rb_block_call_func *func, VALUE data, int *stateptr)
{
int state;
volatile VALUE val = Qnil; /* OK */
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *saved_cfp = th->cfp;
volatile VALUE tag = t;
TH_PUSH_TAG(th);
_tag.tag = tag;
if ((state = TH_EXEC_TAG()) == 0) {
/* call with argc=1, argv = [tag], block = Qnil to insure compatibility */
val = (*func)(tag, data, 1, (const VALUE *)&tag, Qnil);
}
else if (state == TAG_THROW && THROW_DATA_VAL((struct vm_throw_data *)th->errinfo) == tag) {
rb_vm_rewind_cfp(th, saved_cfp);
val = th->tag->retval;
th->errinfo = Qnil;
state = 0;
}
TH_POP_TAG();
if (stateptr)
*stateptr = state;
return val;
}
static void
local_var_list_init(struct local_var_list *vars)
{
vars->tbl = rb_hash_new();
RHASH(vars->tbl)->ntbl = st_init_numtable(); /* compare_by_identity */
RBASIC_CLEAR_CLASS(vars->tbl);
}
static VALUE
local_var_list_finish(struct local_var_list *vars)
{
/* TODO: not to depend on the order of st_table */
VALUE ary = rb_hash_keys(vars->tbl);
rb_hash_clear(vars->tbl);
vars->tbl = 0;
return ary;
}
static int
local_var_list_update(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
if (existing) return ST_STOP;
*value = (st_data_t)Qtrue; /* INT2FIX(arg) */
return ST_CONTINUE;
}
static void
local_var_list_add(const struct local_var_list *vars, ID lid)
{
if (lid && rb_is_local_id(lid)) {
/* should skip temporary variable */
st_table *tbl = RHASH_TBL_RAW(vars->tbl);
st_data_t idx = 0; /* tbl->num_entries */
st_update(tbl, ID2SYM(lid), local_var_list_update, idx);
}
}
/*
* call-seq:
* local_variables -> array
*
* Returns the names of the current local variables.
*
* fred = 1
* for i in 1..10
* # ...
* end
* local_variables #=> [:fred, :i]
*/
static VALUE
rb_f_local_variables(void)
{
struct local_var_list vars;
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp =
vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp));
unsigned int i;
local_var_list_init(&vars);
while (cfp) {
if (cfp->iseq) {
for (i = 0; i < cfp->iseq->body->local_table_size; i++) {
local_var_list_add(&vars, cfp->iseq->body->local_table[i]);
}
}
if (!VM_EP_LEP_P(cfp->ep)) {
/* block */
VALUE *ep = VM_CF_PREV_EP(cfp);
if (vm_collect_local_variables_in_heap(th, ep, &vars)) {
break;
}
else {
while (cfp->ep != ep) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
}
else {
break;
}
}
return local_var_list_finish(&vars);
}
/*
* call-seq:
* block_given? -> true or false
* iterator? -> true or false
*
* Returns <code>true</code> if <code>yield</code> would execute a
* block in the current context. The <code>iterator?</code> form
* is mildly deprecated.
*
* def try
* if block_given?
* yield
* else
* "no block"
* end
* end
* try #=> "no block"
* try { "hello" } #=> "hello"
* try do "hello" end #=> "hello"
*/
VALUE
rb_f_block_given_p(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
return Qtrue;
}
else {
return Qfalse;
}
}
VALUE
rb_current_realfilepath(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
if (cfp != 0) return cfp->iseq->body->location.absolute_path;
return Qnil;
}
void
Init_vm_eval(void)
{
rb_define_global_function("eval", rb_f_eval, -1);
rb_define_global_function("local_variables", rb_f_local_variables, 0);
rb_define_global_function("iterator?", rb_f_block_given_p, 0);
rb_define_global_function("block_given?", rb_f_block_given_p, 0);
rb_define_global_function("catch", rb_f_catch, -1);
rb_define_global_function("throw", rb_f_throw, -1);
rb_define_global_function("loop", rb_f_loop, 0);
rb_define_method(rb_cBasicObject, "instance_eval", rb_obj_instance_eval, -1);
rb_define_method(rb_cBasicObject, "instance_exec", rb_obj_instance_exec, -1);
rb_define_private_method(rb_cBasicObject, "method_missing", rb_method_missing, -1);
#if 1
rb_add_method(rb_cBasicObject, rb_intern("__send__"),
VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_SEND, METHOD_VISI_PUBLIC);
rb_add_method(rb_mKernel, rb_intern("send"),
VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_SEND, METHOD_VISI_PUBLIC);
#else
rb_define_method(rb_cBasicObject, "__send__", rb_f_send, -1);
rb_define_method(rb_mKernel, "send", rb_f_send, -1);
#endif
rb_define_method(rb_mKernel, "public_send", rb_f_public_send, -1);
rb_define_method(rb_cModule, "module_exec", rb_mod_module_exec, -1);
rb_define_method(rb_cModule, "class_exec", rb_mod_module_exec, -1);
rb_define_method(rb_cModule, "module_eval", rb_mod_module_eval, -1);
rb_define_method(rb_cModule, "class_eval", rb_mod_module_eval, -1);
rb_eUncaughtThrow = rb_define_class("UncaughtThrowError", rb_eArgError);
rb_define_method(rb_eUncaughtThrow, "initialize", uncaught_throw_init, -1);
rb_define_method(rb_eUncaughtThrow, "tag", uncaught_throw_tag, 0);
rb_define_method(rb_eUncaughtThrow, "value", uncaught_throw_value, 0);
rb_define_method(rb_eUncaughtThrow, "to_s", uncaught_throw_to_s, 0);
id_result = rb_intern_const("result");
id_tag = rb_intern_const("tag");
id_value = rb_intern_const("value");
}