зеркало из https://github.com/github/ruby.git
64 строки
1.8 KiB
Ruby
64 строки
1.8 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
module Bundler
|
|
class SimilarityDetector
|
|
SimilarityScore = Struct.new(:string, :distance)
|
|
|
|
# initialize with an array of words to be matched against
|
|
def initialize(corpus)
|
|
@corpus = corpus
|
|
end
|
|
|
|
# return an array of words similar to 'word' from the corpus
|
|
def similar_words(word, limit = 3)
|
|
words_by_similarity = @corpus.map {|w| SimilarityScore.new(w, levenshtein_distance(word, w)) }
|
|
words_by_similarity.select {|s| s.distance <= limit }.sort_by(&:distance).map(&:string)
|
|
end
|
|
|
|
# return the result of 'similar_words', concatenated into a list
|
|
# (eg "a, b, or c")
|
|
def similar_word_list(word, limit = 3)
|
|
words = similar_words(word, limit)
|
|
if words.length == 1
|
|
words[0]
|
|
elsif words.length > 1
|
|
[words[0..-2].join(", "), words[-1]].join(" or ")
|
|
end
|
|
end
|
|
|
|
protected
|
|
|
|
# https://www.informit.com/articles/article.aspx?p=683059&seqNum=36
|
|
def levenshtein_distance(this, that, ins = 2, del = 2, sub = 1)
|
|
# ins, del, sub are weighted costs
|
|
return nil if this.nil?
|
|
return nil if that.nil?
|
|
dm = [] # distance matrix
|
|
|
|
# Initialize first row values
|
|
dm[0] = (0..this.length).collect {|i| i * ins }
|
|
fill = [0] * (this.length - 1)
|
|
|
|
# Initialize first column values
|
|
(1..that.length).each do |i|
|
|
dm[i] = [i * del, fill.flatten]
|
|
end
|
|
|
|
# populate matrix
|
|
(1..that.length).each do |i|
|
|
(1..this.length).each do |j|
|
|
# critical comparison
|
|
dm[i][j] = [
|
|
dm[i - 1][j - 1] + (this[j - 1] == that[i - 1] ? 0 : sub),
|
|
dm[i][j - 1] + ins,
|
|
dm[i - 1][j] + del,
|
|
].min
|
|
end
|
|
end
|
|
|
|
# The last value in matrix is the Levenshtein distance between the strings
|
|
dm[that.length][this.length]
|
|
end
|
|
end
|
|
end
|