ruby/test/matrix/test_matrix.rb

652 строки
21 KiB
Ruby

# frozen_string_literal: false
require 'test/unit'
require 'matrix'
class SubMatrix < Matrix
end
class TestMatrix < Test::Unit::TestCase
def setup
@m1 = Matrix[[1,2,3], [4,5,6]]
@m2 = Matrix[[1,2,3], [4,5,6]]
@m3 = @m1.clone
@m4 = Matrix[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
@n1 = Matrix[[2,3,4], [5,6,7]]
@c1 = Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
@e1 = Matrix.empty(2,0)
@e2 = Matrix.empty(0,3)
@a3 = Matrix[[4, 1, -3], [0, 3, 7], [11, -4, 2]]
@a5 = Matrix[[2, 0, 9, 3, 9], [8, 7, 0, 1, 9], [7, 5, 6, 6, 5], [0, 7, 8, 3, 0], [7, 8, 2, 3, 1]]
@b3 = Matrix[[-7, 7, -10], [9, -3, -2], [-1, 3, 9]]
end
def test_matrix
assert_equal(1, @m1[0, 0])
assert_equal(2, @m1[0, 1])
assert_equal(3, @m1[0, 2])
assert_equal(4, @m1[1, 0])
assert_equal(5, @m1[1, 1])
assert_equal(6, @m1[1, 2])
end
def test_identity
assert_same @m1, @m1
assert_not_same @m1, @m2
assert_not_same @m1, @m3
assert_not_same @m1, @m4
assert_not_same @m1, @n1
end
def test_equality
assert_equal @m1, @m1
assert_equal @m1, @m2
assert_equal @m1, @m3
assert_equal @m1, @m4
assert_not_equal @m1, @n1
end
def test_hash_equality
assert @m1.eql?(@m1)
assert @m1.eql?(@m2)
assert @m1.eql?(@m3)
assert !@m1.eql?(@m4)
assert !@m1.eql?(@n1)
hash = { @m1 => :value }
assert hash.key?(@m1)
assert hash.key?(@m2)
assert hash.key?(@m3)
assert !hash.key?(@m4)
assert !hash.key?(@n1)
end
def test_hash
assert_equal @m1.hash, @m1.hash
assert_equal @m1.hash, @m2.hash
assert_equal @m1.hash, @m3.hash
end
def test_uplus
assert_equal(@m1, +@m1)
end
def test_negate
assert_equal(Matrix[[-1, -2, -3], [-4, -5, -6]], -@m1)
assert_equal(@m1, -(-@m1))
end
def test_rank
[
[[0]],
[[0], [0]],
[[0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0]],
[[0, 0, 0]],
[[0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
].each do |rows|
assert_equal 0, Matrix[*rows].rank
end
[
[[1], [0]],
[[1, 0], [0, 0]],
[[1, 0], [1, 0]],
[[0, 0], [1, 0]],
[[1, 0], [0, 0], [0, 0]],
[[0, 0], [1, 0], [0, 0]],
[[0, 0], [0, 0], [1, 0]],
[[1, 0], [1, 0], [0, 0]],
[[0, 0], [1, 0], [1, 0]],
[[1, 0], [1, 0], [1, 0]],
[[1, 0, 0]],
[[1, 0, 0], [0, 0, 0]],
[[0, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [1, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [0, 0, 0]],
[[0, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [0, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[1, 0, 0], [1, 0, 0], [0, 0, 0], [0, 0, 0]],
[[1, 0, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]],
[[1, 0, 0], [0, 0, 0], [0, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 0, 0]],
[[1, 0, 0], [0, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [0, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1]],
[[1], [1]],
[[1, 1]],
[[1, 1], [1, 1]],
[[1, 1], [1, 1], [1, 1]],
[[1, 1, 1]],
[[1, 1, 1], [1, 1, 1]],
[[1, 1, 1], [1, 1, 1], [1, 1, 1]],
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]],
].each do |rows|
matrix = Matrix[*rows]
assert_equal 1, matrix.rank
assert_equal 1, matrix.transpose.rank
end
[
[[1, 0], [0, 1]],
[[1, 0], [0, 1], [0, 0]],
[[1, 0], [0, 1], [0, 1]],
[[1, 0], [0, 1], [1, 1]],
[[1, 0, 0], [0, 1, 0]],
[[1, 0, 0], [0, 0, 1]],
[[1, 0, 0], [0, 1, 0], [0, 0, 0]],
[[1, 0, 0], [0, 0, 1], [0, 0, 0]],
[[1, 0, 0], [0, 0, 0], [0, 1, 0]],
[[1, 0, 0], [0, 0, 0], [0, 0, 1]],
[[1, 0], [1, 1]],
[[1, 2], [1, 1]],
[[1, 2], [0, 1], [1, 1]],
].each do |rows|
m = Matrix[*rows]
assert_equal 2, m.rank
assert_equal 2, m.transpose.rank
end
[
[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
[[1, 1, 0], [0, 1, 1], [1, 0, 1]],
[[1, 1, 0], [0, 1, 1], [1, 0, 1]],
[[1, 1, 0], [0, 1, 1], [1, 0, 1], [0, 0, 0]],
[[1, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]],
[[1, 1, 1], [1, 1, 2], [1, 3, 1], [4, 1, 1]],
].each do |rows|
m = Matrix[*rows]
assert_equal 3, m.rank
assert_equal 3, m.transpose.rank
end
end
def test_inverse
assert_equal(Matrix.empty(0, 0), Matrix.empty.inverse)
assert_equal(Matrix[[-1, 1], [0, -1]], Matrix[[-1, -1], [0, -1]].inverse)
assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.inverse }
end
def test_determinant
assert_equal(0, Matrix[[0,0],[0,0]].determinant)
assert_equal(45, Matrix[[7,6], [3,9]].determinant)
assert_equal(-18, Matrix[[2,0,1],[0,-2,2],[1,2,3]].determinant)
assert_equal(-7, Matrix[[0,0,1],[0,7,6],[1,3,9]].determinant)
assert_equal(42, Matrix[[7,0,1,0,12],[8,1,1,9,1],[4,0,0,-7,17],[-1,0,0,-4,8],[10,1,1,8,6]].determinant)
end
def test_new_matrix
assert_raise(TypeError) { Matrix[Object.new] }
o = Object.new
def o.to_ary; [1,2,3]; end
assert_equal(@m1, Matrix[o, [4,5,6]])
end
def test_round
a = Matrix[[1.0111, 2.32320, 3.04343], [4.81, 5.0, 6.997]]
b = Matrix[[1.01, 2.32, 3.04], [4.81, 5.0, 7.0]]
assert_equal(a.round(2), b)
end
def test_rows
assert_equal(@m1, Matrix.rows([[1, 2, 3], [4, 5, 6]]))
end
def test_rows_copy
rows1 = [[1], [1]]
rows2 = [[1], [1]]
m1 = Matrix.rows(rows1, copy = false)
m2 = Matrix.rows(rows2, copy = true)
rows1.uniq!
rows2.uniq!
assert_equal([[1]], m1.to_a)
assert_equal([[1], [1]], m2.to_a)
end
def test_to_matrix
assert @m1.equal? @m1.to_matrix
end
def test_columns
assert_equal(@m1, Matrix.columns([[1, 4], [2, 5], [3, 6]]))
end
def test_diagonal
assert_equal(Matrix.empty(0, 0), Matrix.diagonal( ))
assert_equal(Matrix[[3,0,0],[0,2,0],[0,0,1]], Matrix.diagonal(3, 2, 1))
assert_equal(Matrix[[4,0,0,0],[0,3,0,0],[0,0,2,0],[0,0,0,1]], Matrix.diagonal(4, 3, 2, 1))
end
def test_scalar
assert_equal(Matrix.empty(0, 0), Matrix.scalar(0, 1))
assert_equal(Matrix[[2,0,0],[0,2,0],[0,0,2]], Matrix.scalar(3, 2))
assert_equal(Matrix[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]], Matrix.scalar(4, 2))
end
def test_identity2
assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.identity(3))
assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.unit(3))
assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.I(3))
assert_equal(Matrix[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], Matrix.identity(4))
end
def test_zero
assert_equal(Matrix[[0,0,0],[0,0,0],[0,0,0]], Matrix.zero(3))
assert_equal(Matrix[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]], Matrix.zero(4))
assert_equal(Matrix[[0]], Matrix.zero(1))
end
def test_row_vector
assert_equal(Matrix[[1,2,3,4]], Matrix.row_vector([1,2,3,4]))
end
def test_column_vector
assert_equal(Matrix[[1],[2],[3],[4]], Matrix.column_vector([1,2,3,4]))
end
def test_empty
m = Matrix.empty(2, 0)
assert_equal(Matrix[ [], [] ], m)
n = Matrix.empty(0, 3)
assert_equal(Matrix.columns([ [], [], [] ]), n)
assert_equal(Matrix[[0, 0, 0], [0, 0, 0]], m * n)
end
def test_row
assert_equal(Vector[1, 2, 3], @m1.row(0))
assert_equal(Vector[4, 5, 6], @m1.row(1))
a = []; @m1.row(0) {|x| a << x }
assert_equal([1, 2, 3], a)
end
def test_column
assert_equal(Vector[1, 4], @m1.column(0))
assert_equal(Vector[2, 5], @m1.column(1))
assert_equal(Vector[3, 6], @m1.column(2))
a = []; @m1.column(0) {|x| a << x }
assert_equal([1, 4], a)
end
def test_collect
assert_equal(Matrix[[1, 4, 9], [16, 25, 36]], @m1.collect {|x| x ** 2 })
end
def test_minor
assert_equal(Matrix[[1, 2], [4, 5]], @m1.minor(0..1, 0..1))
assert_equal(Matrix[[2], [5]], @m1.minor(0..1, 1..1))
assert_equal(Matrix[[4, 5]], @m1.minor(1..1, 0..1))
assert_equal(Matrix[[1, 2], [4, 5]], @m1.minor(0, 2, 0, 2))
assert_equal(Matrix[[4, 5]], @m1.minor(1, 1, 0, 2))
assert_equal(Matrix[[2], [5]], @m1.minor(0, 2, 1, 1))
assert_raise(ArgumentError) { @m1.minor(0) }
end
def test_first_minor
assert_equal(Matrix.empty(0, 0), Matrix[[1]].first_minor(0, 0))
assert_equal(Matrix.empty(0, 2), Matrix[[1, 4, 2]].first_minor(0, 1))
assert_equal(Matrix[[1, 3]], @m1.first_minor(1, 1))
assert_equal(Matrix[[4, 6]], @m1.first_minor(0, 1))
assert_equal(Matrix[[1, 2]], @m1.first_minor(1, 2))
assert_raise(RuntimeError) { Matrix.empty(0, 0).first_minor(0, 0) }
assert_raise(ArgumentError) { @m1.first_minor(4, 0) }
assert_raise(ArgumentError) { @m1.first_minor(0, -1) }
assert_raise(ArgumentError) { @m1.first_minor(-1, 4) }
end
def test_cofactor
assert_equal(1, Matrix[[1]].cofactor(0, 0))
assert_equal(9, Matrix[[7,6],[3,9]].cofactor(0, 0))
assert_equal(0, Matrix[[0,0],[0,0]].cofactor(0, 0))
assert_equal(3, Matrix[[0,0,1],[0,7,6],[1,3,9]].cofactor(1, 0))
assert_equal(-21, Matrix[[7,0,1,0,12],[8,1,1,9,1],[4,0,0,-7,17],[-1,0,0,-4,8],[10,1,1,8,6]].cofactor(2, 3))
assert_raise(RuntimeError) { Matrix.empty(0, 0).cofactor(0, 0) }
assert_raise(ArgumentError) { Matrix[[0,0],[0,0]].cofactor(-1, 4) }
assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { Matrix[[2,0,1],[0,-2,2]].cofactor(0, 0) }
end
def test_adjugate
assert_equal(Matrix.empty, Matrix.empty.adjugate)
assert_equal(Matrix[[1]], Matrix[[5]].adjugate)
assert_equal(Matrix[[9,-6],[-3,7]], Matrix[[7,6],[3,9]].adjugate)
assert_equal(Matrix[[45,3,-7],[6,-1,0],[-7,0,0]], Matrix[[0,0,1],[0,7,6],[1,3,9]].adjugate)
assert_equal(Matrix.identity(5), (@a5.adjugate * @a5) / @a5.det)
assert_equal(Matrix.I(3), Matrix.I(3).adjugate)
assert_equal((@a3 * @b3).adjugate, @b3.adjugate * @a3.adjugate)
assert_equal(4**(@a3.row_count-1) * @a3.adjugate, (4 * @a3).adjugate)
assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.adjugate }
end
def test_laplace_expansion
assert_equal(1, Matrix[[1]].laplace_expansion(row: 0))
assert_equal(45, Matrix[[7,6], [3,9]].laplace_expansion(row: 1))
assert_equal(0, Matrix[[0,0],[0,0]].laplace_expansion(column: 0))
assert_equal(-7, Matrix[[0,0,1],[0,7,6],[1,3,9]].laplace_expansion(column: 2))
assert_equal(Vector[3, -2], Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0))
assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.laplace_expansion(row: 1) }
assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion() }
assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(foo: 1) }
assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(row: 1, column: 1) }
assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(row: 2) }
assert_raise(ArgumentError) { Matrix[[0,0,1],[0,7,6],[1,3,9]].laplace_expansion(column: -1) }
assert_raise(RuntimeError) { Matrix.empty(0, 0).laplace_expansion(row: 0) }
end
def test_regular?
assert(Matrix[[1, 0], [0, 1]].regular?)
assert(Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].regular?)
assert(!Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].regular?)
end
def test_singular?
assert(!Matrix[[1, 0], [0, 1]].singular?)
assert(!Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].singular?)
assert(Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].singular?)
end
def test_square?
assert(Matrix[[1, 0], [0, 1]].square?)
assert(Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].square?)
assert(Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].square?)
assert(!Matrix[[1, 0, 0], [0, 1, 0]].square?)
end
def test_mul
assert_equal(Matrix[[2,4],[6,8]], Matrix[[2,4],[6,8]] * Matrix.I(2))
assert_equal(Matrix[[4,8],[12,16]], Matrix[[2,4],[6,8]] * 2)
assert_equal(Matrix[[4,8],[12,16]], 2 * Matrix[[2,4],[6,8]])
assert_equal(Matrix[[14,32],[32,77]], @m1 * @m1.transpose)
assert_equal(Matrix[[17,22,27],[22,29,36],[27,36,45]], @m1.transpose * @m1)
assert_equal(Vector[14,32], @m1 * Vector[1,2,3])
o = Object.new
def o.coerce(m)
[m, m.transpose]
end
assert_equal(Matrix[[14,32],[32,77]], @m1 * o)
end
def test_add
assert_equal(Matrix[[6,0],[-4,12]], Matrix.scalar(2,5) + Matrix[[1,0],[-4,7]])
assert_equal(Matrix[[3,5,7],[9,11,13]], @m1 + @n1)
assert_equal(Matrix[[3,5,7],[9,11,13]], @n1 + @m1)
assert_equal(Matrix[[2],[4],[6]], Matrix[[1],[2],[3]] + Vector[1,2,3])
assert_raise(Matrix::ErrOperationNotDefined) { @m1 + 1 }
o = Object.new
def o.coerce(m)
[m, m]
end
assert_equal(Matrix[[2,4,6],[8,10,12]], @m1 + o)
end
def test_sub
assert_equal(Matrix[[4,0],[4,-2]], Matrix.scalar(2,5) - Matrix[[1,0],[-4,7]])
assert_equal(Matrix[[-1,-1,-1],[-1,-1,-1]], @m1 - @n1)
assert_equal(Matrix[[1,1,1],[1,1,1]], @n1 - @m1)
assert_equal(Matrix[[0],[0],[0]], Matrix[[1],[2],[3]] - Vector[1,2,3])
assert_raise(Matrix::ErrOperationNotDefined) { @m1 - 1 }
o = Object.new
def o.coerce(m)
[m, m]
end
assert_equal(Matrix[[0,0,0],[0,0,0]], @m1 - o)
end
def test_div
assert_equal(Matrix[[0,1,1],[2,2,3]], @m1 / 2)
assert_equal(Matrix[[1,1],[1,1]], Matrix[[2,2],[2,2]] / Matrix.scalar(2,2))
o = Object.new
def o.coerce(m)
[m, Matrix.scalar(2,2)]
end
assert_equal(Matrix[[1,1],[1,1]], Matrix[[2,2],[2,2]] / o)
end
def test_hadamard_product
assert_equal(Matrix[[1,4], [9,16]], Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,4]]))
assert_equal(Matrix[[2, 6, 12], [20, 30, 42]], @m1.hadamard_product(@n1))
o = Object.new
def o.to_matrix
Matrix[[1, 2, 3], [-1, 0, 1]]
end
assert_equal(Matrix[[1, 4, 9], [-4, 0, 6]], @m1.hadamard_product(o))
e = Matrix.empty(3, 0)
assert_equal(e, e.hadamard_product(e))
e = Matrix.empty(0, 3)
assert_equal(e, e.hadamard_product(e))
end
def test_exp
assert_equal(Matrix[[67,96],[48,99]], Matrix[[7,6],[3,9]] ** 2)
assert_equal(Matrix.I(5), Matrix.I(5) ** -1)
assert_raise(Matrix::ErrOperationNotDefined) { Matrix.I(5) ** Object.new }
end
def test_det
assert_equal(Matrix.instance_method(:determinant), Matrix.instance_method(:det))
end
def test_rank2
assert_equal(2, Matrix[[7,6],[3,9]].rank)
assert_equal(0, Matrix[[0,0],[0,0]].rank)
assert_equal(3, Matrix[[0,0,1],[0,7,6],[1,3,9]].rank)
assert_equal(1, Matrix[[0,1],[0,1],[0,1]].rank)
assert_equal(2, @m1.rank)
end
def test_trace
assert_equal(1+5+9, Matrix[[1,2,3],[4,5,6],[7,8,9]].trace)
end
def test_transpose
assert_equal(Matrix[[1,4],[2,5],[3,6]], @m1.transpose)
end
def test_conjugate
assert_equal(Matrix[[Complex(1,-2), Complex(0,-1), 0], [1, 2, 3]], @c1.conjugate)
end
def test_eigensystem
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
assert(d.diagonal?)
assert_equal(v.inv, v_inv)
assert_equal((v * d * v_inv).round(5), m)
end
def test_imaginary
assert_equal(Matrix[[2, 1, 0], [0, 0, 0]], @c1.imaginary)
end
def test_lup
m = Matrix[[1, 2], [3, 4]]
l, u, p = m.lup
assert(l.lower_triangular?)
assert(u.upper_triangular?)
assert(p.permutation?)
assert(l * u == p * m)
assert_equal(m.lup.solve([2, 5]), Vector[1, Rational(1,2)])
end
def test_real
assert_equal(Matrix[[1, 0, 0], [1, 2, 3]], @c1.real)
end
def test_rect
assert_equal([Matrix[[1, 0, 0], [1, 2, 3]], Matrix[[2, 1, 0], [0, 0, 0]]], @c1.rect)
end
def test_row_vectors
assert_equal([Vector[1,2,3], Vector[4,5,6]], @m1.row_vectors)
end
def test_column_vectors
assert_equal([Vector[1,4], Vector[2,5], Vector[3,6]], @m1.column_vectors)
end
def test_to_s
assert_equal("Matrix[[1, 2, 3], [4, 5, 6]]", @m1.to_s)
assert_equal("Matrix.empty(0, 0)", Matrix[].to_s)
assert_equal("Matrix.empty(1, 0)", Matrix[[]].to_s)
end
def test_inspect
assert_equal("Matrix[[1, 2, 3], [4, 5, 6]]", @m1.inspect)
assert_equal("Matrix.empty(0, 0)", Matrix[].inspect)
assert_equal("Matrix.empty(1, 0)", Matrix[[]].inspect)
end
def test_scalar_add
s1 = @m1.coerce(1).first
assert_equal(Matrix[[1]], (s1 + 0) * Matrix[[1]])
assert_raise(Matrix::ErrOperationNotDefined) { s1 + Vector[0] }
assert_raise(Matrix::ErrOperationNotDefined) { s1 + Matrix[[0]] }
o = Object.new
def o.coerce(x)
[1, 1]
end
assert_equal(2, s1 + o)
end
def test_scalar_sub
s1 = @m1.coerce(1).first
assert_equal(Matrix[[1]], (s1 - 0) * Matrix[[1]])
assert_raise(Matrix::ErrOperationNotDefined) { s1 - Vector[0] }
assert_raise(Matrix::ErrOperationNotDefined) { s1 - Matrix[[0]] }
o = Object.new
def o.coerce(x)
[1, 1]
end
assert_equal(0, s1 - o)
end
def test_scalar_mul
s1 = @m1.coerce(1).first
assert_equal(Matrix[[1]], (s1 * 1) * Matrix[[1]])
assert_equal(Vector[2], s1 * Vector[2])
assert_equal(Matrix[[2]], s1 * Matrix[[2]])
o = Object.new
def o.coerce(x)
[1, 1]
end
assert_equal(1, s1 * o)
end
def test_scalar_div
s1 = @m1.coerce(1).first
assert_equal(Matrix[[1]], (s1 / 1) * Matrix[[1]])
assert_raise(Matrix::ErrOperationNotDefined) { s1 / Vector[0] }
assert_equal(Matrix[[Rational(1,2)]], s1 / Matrix[[2]])
o = Object.new
def o.coerce(x)
[1, 1]
end
assert_equal(1, s1 / o)
end
def test_scalar_pow
s1 = @m1.coerce(1).first
assert_equal(Matrix[[1]], (s1 ** 1) * Matrix[[1]])
assert_raise(Matrix::ErrOperationNotDefined) { s1 ** Vector[0] }
assert_raise(Matrix::ErrOperationNotImplemented) { s1 ** Matrix[[1]] }
o = Object.new
def o.coerce(x)
[1, 1]
end
assert_equal(1, s1 ** o)
end
def test_hstack
assert_equal Matrix[[1,2,3,2,3,4,1,2,3], [4,5,6,5,6,7,4,5,6]],
@m1.hstack(@n1, @m1)
# Error checking:
assert_raise(TypeError) { @m1.hstack(42) }
assert_raise(TypeError) { Matrix.hstack(42, @m1) }
assert_raise(Matrix::ErrDimensionMismatch) { @m1.hstack(Matrix.identity(3)) }
assert_raise(Matrix::ErrDimensionMismatch) { @e1.hstack(@e2) }
# Corner cases:
assert_equal @m1, @m1.hstack
assert_equal @e1, @e1.hstack(@e1)
assert_equal Matrix.empty(0,6), @e2.hstack(@e2)
assert_equal SubMatrix, SubMatrix.hstack(@e1).class
# From Vectors:
assert_equal Matrix[[1, 3],[2, 4]], Matrix.hstack(Vector[1,2], Vector[3, 4])
end
def test_vstack
assert_equal Matrix[[1,2,3], [4,5,6], [2,3,4], [5,6,7], [1,2,3], [4,5,6]],
@m1.vstack(@n1, @m1)
# Error checking:
assert_raise(TypeError) { @m1.vstack(42) }
assert_raise(TypeError) { Matrix.vstack(42, @m1) }
assert_raise(Matrix::ErrDimensionMismatch) { @m1.vstack(Matrix.identity(2)) }
assert_raise(Matrix::ErrDimensionMismatch) { @e1.vstack(@e2) }
# Corner cases:
assert_equal @m1, @m1.vstack
assert_equal Matrix.empty(4,0), @e1.vstack(@e1)
assert_equal @e2, @e2.vstack(@e2)
assert_equal SubMatrix, SubMatrix.vstack(@e1).class
# From Vectors:
assert_equal Matrix[[1],[2],[3]], Matrix.vstack(Vector[1,2], Vector[3])
end
def test_combine
x = Matrix[[6, 6], [4, 4]]
y = Matrix[[1, 2], [3, 4]]
assert_equal Matrix[[5, 4], [1, 0]], Matrix.combine(x, y) {|a, b| a - b}
assert_equal Matrix[[5, 4], [1, 0]], x.combine(y) {|a, b| a - b}
# Without block
assert_equal Matrix[[5, 4], [1, 0]], Matrix.combine(x, y).each {|a, b| a - b}
# With vectors
assert_equal Matrix[[111], [222]], Matrix.combine(Matrix[[1], [2]], Vector[10,20], Vector[100,200], &:sum)
# Basic checks
assert_raise(Matrix::ErrDimensionMismatch) { @m1.combine(x) { raise } }
# Edge cases
assert_equal Matrix.empty, Matrix.combine{ raise }
assert_equal Matrix.empty(3,0), Matrix.combine(Matrix.empty(3,0), Matrix.empty(3,0)) { raise }
assert_equal Matrix.empty(0,3), Matrix.combine(Matrix.empty(0,3), Matrix.empty(0,3)) { raise }
end
def test_eigenvalues_and_eigenvectors_symmetric
m = Matrix[
[8, 1],
[1, 8]
]
values = m.eigensystem.eigenvalues
assert_in_epsilon(7.0, values[0])
assert_in_epsilon(9.0, values[1])
vectors = m.eigensystem.eigenvectors
assert_in_epsilon(-vectors[0][0], vectors[0][1])
assert_in_epsilon(vectors[1][0], vectors[1][1])
end
def test_eigenvalues_and_eigenvectors_nonsymmetric
m = Matrix[
[8, 1],
[4, 5]
]
values = m.eigensystem.eigenvalues
assert_in_epsilon(9.0, values[0])
assert_in_epsilon(4.0, values[1])
vectors = m.eigensystem.eigenvectors
assert_in_epsilon(vectors[0][0], vectors[0][1])
assert_in_epsilon(-4 * vectors[1][0], vectors[1][1])
end
end