ruby/win32/win32.c

2821 строка
56 KiB
C

/*
* Copyright (c) 1993, Intergraph Corporation
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the perl README file.
*
* Various Unix compatibility functions and NT specific functions.
*
* Some of this code was derived from the MSDOS port(s) and the OS/2 port.
*
*/
#include "ruby.h"
#include "rubysig.h"
#include <fcntl.h>
#include <process.h>
#include <sys/stat.h>
/* #include <sys/wait.h> */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include <windows.h>
#include <winbase.h>
#include <wincon.h>
#include "win32.h"
#include "win32/dir.h"
#ifndef index
#define index(x, y) strchr((x), (y))
#endif
#define isdirsep(x) ((x) == '/' || (x) == '\\')
#undef stat
#ifndef bool
#define bool int
#endif
#ifdef _M_IX86
# define WIN95 1
#else
# undef WIN95
#endif
#if HAVE_WSAWAITFORMULTIPLEEVENTS
# define USE_INTERRUPT_WINSOCK
#endif
#if USE_INTERRUPT_WINSOCK
# define WaitForMultipleEvents WSAWaitForMultipleEvents
# define CreateSignal() (HANDLE)WSACreateEvent()
# define SetSignal(ev) WSASetEvent(ev)
# define ResetSignal(ev) WSAResetEvent(ev)
#else /* USE_INTERRUPT_WINSOCK */
# define WaitForMultipleEvents WaitForMultipleObjectsEx
# define CreateSignal() CreateEvent(NULL, FALSE, FALSE, NULL);
# define SetSignal(ev) SetEvent(ev)
# define ResetSignal(ev) (void)0
#endif /* USE_INTERRUPT_WINSOCK */
#ifdef WIN32_DEBUG
#define Debug(something) something
#else
#define Debug(something) /* nothing */
#endif
#define TO_SOCKET(x) _get_osfhandle(x)
bool NtSyncProcess = TRUE;
static struct ChildRecord *CreateChild(char *, SECURITY_ATTRIBUTES *, HANDLE, HANDLE, HANDLE);
static bool NtHasRedirection (char *);
static int valid_filename(char *s);
static void StartSockets ();
static char *str_grow(struct RString *str, size_t new_size);
static DWORD wait_events(HANDLE event, DWORD timeout);
char *NTLoginName;
#ifdef WIN95
DWORD Win32System = (DWORD)-1;
static DWORD
IdOS(void)
{
static OSVERSIONINFO osver;
if (osver.dwPlatformId != Win32System) {
memset(&osver, 0, sizeof(OSVERSIONINFO));
osver.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
GetVersionEx(&osver);
Win32System = osver.dwPlatformId;
}
return (Win32System);
}
static int
IsWin95(void) {
return (IdOS() == VER_PLATFORM_WIN32_WINDOWS);
}
static int
IsWinNT(void) {
return (IdOS() == VER_PLATFORM_WIN32_NT);
}
#else
# define IsWinNT() TRUE
# define IsWin95() FALSE
#endif
/* main thread constants */
static struct {
HANDLE handle;
DWORD id;
} main_thread;
/* interrupt stuff */
static HANDLE interrupted_event;
HANDLE GetCurrentThreadHandle(void)
{
static HANDLE current_process_handle = NULL;
HANDLE h;
if (!current_process_handle)
current_process_handle = GetCurrentProcess();
if (!DuplicateHandle(current_process_handle, GetCurrentThread(),
current_process_handle, &h,
0, FALSE, DUPLICATE_SAME_ACCESS))
return NULL;
return h;
}
/* simulate flock by locking a range on the file */
#define LK_ERR(f,i) ((f) ? (i = 0) : (errno = GetLastError()))
#define LK_LEN 0xffff0000
static VALUE
flock_winnt(VALUE self, int argc, VALUE* argv)
{
OVERLAPPED o;
int i = -1;
const HANDLE fh = (HANDLE)self;
const int oper = argc;
memset(&o, 0, sizeof(o));
switch(oper) {
case LOCK_SH: /* shared lock */
LK_ERR(LockFileEx(fh, 0, 0, LK_LEN, 0, &o), i);
break;
case LOCK_EX: /* exclusive lock */
LK_ERR(LockFileEx(fh, LOCKFILE_EXCLUSIVE_LOCK, 0, LK_LEN, 0, &o), i);
break;
case LOCK_SH|LOCK_NB: /* non-blocking shared lock */
LK_ERR(LockFileEx(fh, LOCKFILE_FAIL_IMMEDIATELY, 0, LK_LEN, 0, &o), i);
break;
case LOCK_EX|LOCK_NB: /* non-blocking exclusive lock */
LK_ERR(LockFileEx(fh,
LOCKFILE_EXCLUSIVE_LOCK|LOCKFILE_FAIL_IMMEDIATELY,
0, LK_LEN, 0, &o), i);
if (errno == EDOM)
errno = EWOULDBLOCK;
break;
case LOCK_UN: /* unlock lock */
if (UnlockFileEx(fh, 0, LK_LEN, 0, &o)) {
i = 0;
if (errno == EDOM)
errno = EWOULDBLOCK;
}
else {
/* GetLastError() must returns `ERROR_NOT_LOCKED' */
errno = EWOULDBLOCK;
}
break;
default: /* unknown */
errno = EINVAL;
break;
}
return i;
}
#ifdef WIN95
static VALUE
flock_win95(VALUE self, int argc, VALUE* argv)
{
int i = -1;
const HANDLE fh = (HANDLE)self;
const int oper = argc;
switch(oper) {
case LOCK_EX:
while(i == -1) {
LK_ERR(LockFile(fh, 0, 0, LK_LEN, 0), i);
if (errno != EDOM && i == -1) break;
}
break;
case LOCK_EX | LOCK_NB:
LK_ERR(LockFile(fh, 0, 0, LK_LEN, 0), i);
if (errno == EDOM)
errno = EWOULDBLOCK;
break;
case LOCK_UN:
LK_ERR(UnlockFile(fh, 0, 0, LK_LEN, 0), i);
if (errno == EDOM)
errno = EWOULDBLOCK;
break;
default:
errno = EINVAL;
break;
}
return i;
}
#endif
#undef LK_ERR
#undef LK_LEN
int
flock(int fd, int oper)
{
#ifdef WIN95
static asynchronous_func_t locker = NULL;
if (!locker) {
if (IsWinNT())
locker = flock_winnt;
else
locker = flock_win95;
}
#else
const asynchronous_func_t locker = flock_winnt;
#endif
return win32_asynchronize(locker,
(VALUE)_get_osfhandle(fd), oper, NULL,
(DWORD)-1);
}
//#undef const
//FILE *fdopen(int, const char *);
//
// Initialization stuff
//
void
NtInitialize(int *argc, char ***argv)
{
WORD version;
int ret;
//
// subvert cmd.exe's feeble attempt at command line parsing
//
*argc = NtMakeCmdVector((char *)GetCommandLine(), argv, TRUE);
//
// Now set up the correct time stuff
//
tzset();
// Initialize Winsock
StartSockets();
}
char *getlogin()
{
char buffer[200];
DWORD len = 200;
extern char *NTLoginName;
if (NTLoginName == NULL) {
if (GetUserName(buffer, &len)) {
NTLoginName = ALLOC_N(char, len+1);
strncpy(NTLoginName, buffer, len);
NTLoginName[len] = '\0';
}
else {
NTLoginName = "<Unknown>";
}
}
return NTLoginName;
}
#define MAXCHILDNUM 256 /* max num of child processes */
struct ChildRecord {
HANDLE hProcess; /* process handle */
pid_t pid; /* process id */
FILE* pipe; /* pipe */
} ChildRecord[MAXCHILDNUM];
#define FOREACH_CHILD(v) do { \
struct ChildRecord* v; \
for (v = ChildRecord; v < ChildRecord + sizeof(ChildRecord) / sizeof(ChildRecord[0]); ++v)
#define END_FOREACH_CHILD } while (0)
static struct ChildRecord *
FindFirstChildSlot(void)
{
FOREACH_CHILD(child) {
if (child->pid) return child;
} END_FOREACH_CHILD;
return NULL;
}
static struct ChildRecord *
FindChildSlot(pid_t pid)
{
FOREACH_CHILD(child) {
if (child->pid == pid) {
return child;
}
} END_FOREACH_CHILD;
return NULL;
}
static struct ChildRecord *
FindPipedChildSlot(FILE *fp)
{
FOREACH_CHILD(child) {
if (child->pid && child->pipe == fp) {
return child;
}
} END_FOREACH_CHILD;
return NULL;
}
static void
CloseChildHandle(struct ChildRecord *child)
{
HANDLE h = child->hProcess;
child->hProcess = NULL;
child->pid = 0;
CloseHandle(h);
}
static struct ChildRecord *
FindFreeChildSlot(void)
{
FOREACH_CHILD(child) {
if (!child->pid) {
child->pid = -1; /* lock the slot */
child->hProcess = NULL;
child->pipe = NULL;
return child;
}
} END_FOREACH_CHILD;
return NULL;
}
int SafeFree(char **vec, int vecc)
{
// vec
// |
// V ^---------------------V
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | | | .... | NULL | | ..... |\0 | | ..... |\0 |...
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// |- elements+1 -| ^ 1st element ^ 2nd element
char *p;
p = (char *)vec;
free(p);
return 0;
}
static char *szInternalCmds[] = {
"append",
"break",
"call",
"cd",
"chdir",
"cls",
"copy",
"date",
"del",
"dir",
"echo",
"erase",
"label",
"md",
"mkdir",
"path",
"pause",
"rd",
"rem",
"ren",
"rename",
"rmdir",
"set",
"start",
"time",
"type",
"ver",
"vol",
NULL
};
int
isInternalCmd(char *cmd)
{
int i, fRet=0;
char **vec;
int vecc = NtMakeCmdVector(cmd, &vec, FALSE);
if (vecc == 0)
return 0;
for( i = 0; szInternalCmds[i] ; i++){
if(!strcasecmp(szInternalCmds[i], vec[0])){
fRet = 1;
break;
}
}
SafeFree(vec, vecc);
return fRet;
}
SOCKET
myget_osfhandle(int fh)
{
return _get_osfhandle(fh);
}
FILE *
mypopen (char *cmd, char *mode)
{
FILE *fp;
int reading;
int pipemode;
struct ChildRecord* child;
BOOL fRet;
HANDLE hInFile, hOutFile, hSavedStdIo, hDupFile;
HANDLE hCurProc;
SECURITY_ATTRIBUTES sa;
int fd;
//
// Figure out what we're doing...
//
reading = (*mode == 'r') ? TRUE : FALSE;
pipemode = (*(mode+1) == 'b') ? O_BINARY : O_TEXT;
//
// Now get a pipe
//
sa.nLength = sizeof (SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
fRet = CreatePipe(&hInFile, &hOutFile, &sa, 2048L);
if (!fRet) {
errno = GetLastError();
return NULL;
}
/* save parent's STDIO and redirect for child */
hCurProc = GetCurrentProcess();
if (reading) {
hSavedStdIo = GetStdHandle(STD_OUTPUT_HANDLE);
if (!SetStdHandle(STD_OUTPUT_HANDLE, hOutFile) ||
!DuplicateHandle(hCurProc, hInFile, hCurProc, &hDupFile, 0, FALSE,
DUPLICATE_SAME_ACCESS)) {
errno = GetLastError();
CloseHandle(hInFile);
CloseHandle(hOutFile);
CloseHandle(hCurProc);
return NULL;
}
CloseHandle(hInFile);
}
else {
hSavedStdIo = GetStdHandle(STD_INPUT_HANDLE);
if (!SetStdHandle(STD_INPUT_HANDLE, hInFile) ||
!DuplicateHandle(hCurProc, hOutFile, hCurProc, &hDupFile, 0, FALSE,
DUPLICATE_SAME_ACCESS)) {
errno = GetLastError();
CloseHandle(hInFile);
CloseHandle(hOutFile);
CloseHandle(hCurProc);
return NULL;
}
CloseHandle(hOutFile);
}
CloseHandle(hCurProc);
/* create child process */
child = CreateChild(cmd, &sa, NULL, NULL, NULL);
if (!child) {
CloseHandle(reading ? hOutFile : hInFile);
CloseHandle(hDupFile);
return NULL;
}
/* restore STDIO */
if (reading) {
if (!SetStdHandle(STD_OUTPUT_HANDLE, hSavedStdIo)) {
errno = GetLastError();
CloseChildHandle(child);
CloseHandle(hDupFile);
CloseHandle(hOutFile);
return NULL;
}
}
else {
if (!SetStdHandle(STD_INPUT_HANDLE, hSavedStdIo)) {
errno = GetLastError();
CloseChildHandle(child);
CloseHandle(hInFile);
CloseHandle(hDupFile);
return NULL;
}
}
if (reading) {
fd = _open_osfhandle((long)hDupFile, (_O_RDONLY | pipemode));
CloseHandle(hOutFile);
}
else {
fd = _open_osfhandle((long)hDupFile, (_O_WRONLY | pipemode));
CloseHandle(hInFile);
}
if (fd == -1) {
CloseHandle(hDupFile);
CloseChildHandle(child);
return NULL;
}
if ((fp = (FILE *) fdopen(fd, mode)) == NULL) {
_close(fd);
CloseChildHandle(child);
return NULL;
}
child->pipe = fp;
return fp;
}
extern VALUE rb_last_status;
int
mypclose(FILE *fp)
{
struct ChildRecord *child = FindPipedChildSlot(fp);
if (!child) {
return -1; /* may closed in waitpid() */
}
//
// close the pipe
//
child->pipe = NULL;
fflush(fp);
fclose(fp);
//
// get the return status of the process
//
rb_syswait(child->pid);
return NUM2INT(rb_last_status);
}
int
do_spawn(cmd)
char *cmd;
{
struct ChildRecord *child = CreateChild(cmd, NULL, NULL, NULL, NULL);
if (!child) {
return -1;
}
rb_syswait(child->pid);
return NUM2INT(rb_last_status);
}
static struct ChildRecord *
CreateChild(char *cmd, SECURITY_ATTRIBUTES *psa, HANDLE hInput, HANDLE hOutput, HANDLE hError)
{
BOOL fRet;
DWORD dwCreationFlags;
STARTUPINFO aStartupInfo;
PROCESS_INFORMATION aProcessInformation;
SECURITY_ATTRIBUTES sa;
char *shell;
struct ChildRecord *child;
child = FindFreeChildSlot();
if (!child) {
errno = EAGAIN;
return NULL;
}
if (!psa) {
sa.nLength = sizeof (SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
psa = &sa;
}
memset(&aStartupInfo, 0, sizeof (STARTUPINFO));
memset(&aProcessInformation, 0, sizeof (PROCESS_INFORMATION));
aStartupInfo.cb = sizeof (STARTUPINFO);
if (hInput || hOutput || hError) {
aStartupInfo.dwFlags = STARTF_USESTDHANDLES;
if (hInput) {
aStartupInfo.hStdInput = hInput;
}
else {
aStartupInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
}
if (hOutput) {
aStartupInfo.hStdOutput = hOutput;
}
else {
aStartupInfo.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
}
if (hError) {
aStartupInfo.hStdError = hError;
}
else {
aStartupInfo.hStdError = GetStdHandle(STD_ERROR_HANDLE);
}
}
dwCreationFlags = (NORMAL_PRIORITY_CLASS);
if ((shell = getenv("RUBYSHELL")) && NtHasRedirection(cmd)) {
char *tmp = ALLOCA_N(char, strlen(shell) + strlen(cmd) + sizeof (" -c "));
sprintf(tmp, "%s -c %s", shell, cmd);
cmd = tmp;
}
else if ((shell = getenv("COMSPEC")) &&
(NtHasRedirection(cmd) || isInternalCmd(cmd))) {
char *tmp = ALLOCA_N(char, strlen(shell) + strlen(cmd) + sizeof (" /c "));
sprintf(tmp, "%s /c %s", shell, cmd);
cmd = tmp;
}
else {
shell = NULL;
}
RUBY_CRITICAL({
fRet = CreateProcess(shell, cmd, psa, psa,
psa->bInheritHandle, dwCreationFlags, NULL, NULL,
&aStartupInfo, &aProcessInformation);
errno = GetLastError();
});
if (!fRet) {
child->pid = 0; /* release the slot */
return NULL;
}
CloseHandle(aProcessInformation.hThread);
child->hProcess = aProcessInformation.hProcess;
child->pid = (pid_t)aProcessInformation.dwProcessId;
if (!IsWinNT()) {
/* On Win9x, make pid positive similarly to cygwin and perl */
child->pid = -child->pid;
}
return child;
}
typedef struct _NtCmdLineElement {
struct _NtCmdLineElement *next, *prev;
char *str;
int len;
int flags;
} NtCmdLineElement;
//
// Possible values for flags
//
#define NTGLOB 0x1 // element contains a wildcard
#define NTMALLOC 0x2 // string in element was malloc'ed
#define NTSTRING 0x4 // element contains a quoted string
NtCmdLineElement *NtCmdHead = NULL, *NtCmdTail = NULL;
void
NtFreeCmdLine(void)
{
NtCmdLineElement *ptr;
while(NtCmdHead) {
ptr = NtCmdHead;
NtCmdHead = NtCmdHead->next;
free(ptr);
}
NtCmdHead = NtCmdTail = NULL;
}
//
// This function expands wild card characters that were spotted
// during the parse phase. The idea here is to call FindFirstFile and
// FindNextFile with the wildcard pattern specified, and splice in the
// resulting list of new names. If the wildcard pattern doesn't match
// any existing files, just leave it in the list.
//
typedef struct {
NtCmdLineElement *head;
NtCmdLineElement *tail;
} ListInfo;
static void
insert(char *path, ListInfo *listinfo)
{
NtCmdLineElement *tmpcurr;
tmpcurr = ALLOC(NtCmdLineElement);
MEMZERO(tmpcurr, NtCmdLineElement, 1);
tmpcurr->len = strlen(path);
tmpcurr->str = ALLOC_N(char, tmpcurr->len + 1);
tmpcurr->flags |= NTMALLOC;
strcpy(tmpcurr->str, path);
if (listinfo->tail) {
listinfo->tail->next = tmpcurr;
tmpcurr->prev = listinfo->tail;
listinfo->tail = tmpcurr;
}
else {
listinfo->tail = listinfo->head = tmpcurr;
}
}
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#else
# define MAXPATHLEN 512
#endif
void
NtCmdGlob (NtCmdLineElement *patt)
{
ListInfo listinfo;
char buffer[MAXPATHLEN], *buf = buffer;
char *p;
listinfo.head = listinfo.tail = 0;
if (patt->len >= MAXPATHLEN)
buf = ruby_xmalloc(patt->len + 1);
strncpy (buf, patt->str, patt->len);
buf[patt->len] = '\0';
for (p = buf; *p; p = CharNext(p))
if (*p == '\\')
*p = '/';
rb_globi(buf, (void (*) _((const char*, VALUE)))insert, (VALUE)&listinfo);
if (buf != buffer)
free(buf);
if (listinfo.head && listinfo.tail) {
listinfo.head->prev = patt->prev;
listinfo.tail->next = patt->next;
if (listinfo.head->prev)
listinfo.head->prev->next = listinfo.head;
if (listinfo.tail->next)
listinfo.tail->next->prev = listinfo.tail;
}
if (patt->flags & NTMALLOC)
free(patt->str);
// free(patt); //TODO: memory leak occures here. we have to fix it.
}
//
// Check a command string to determine if it has I/O redirection
// characters that require it to be executed by a command interpreter
//
static bool
NtHasRedirection (char *cmd)
{
int inquote = 0;
char quote = '\0';
char *ptr ;
//
// Scan the string, looking for redirection (< or >) or pipe
// characters (|) that are not in a quoted string
//
for (ptr = cmd; *ptr; ptr++) {
switch (*ptr) {
case '\'':
case '\"':
if (inquote) {
if (quote == *ptr) {
inquote = 0;
quote = '\0';
}
}
else {
quote = *ptr;
inquote++;
}
break;
case '>':
case '<':
case '|':
if (!inquote)
return TRUE;
}
}
return FALSE;
}
int
NtMakeCmdVector (char *cmdline, char ***vec, int InputCmd)
{
int cmdlen = strlen(cmdline);
int done, instring, globbing, quoted, len;
int newline, need_free = 0, i;
int elements, strsz;
int slashes = 0;
char *ptr, *base, *buffer;
char **vptr;
char quote;
NtCmdLineElement *curr;
//
// just return if we don't have a command line
//
if (cmdlen == 0) {
*vec = NULL;
return 0;
}
cmdline = strdup(cmdline);
//
// strip trailing white space
//
ptr = cmdline+(cmdlen - 1);
while(ptr >= cmdline && ISSPACE(*ptr))
--ptr;
*++ptr = '\0';
//
// Ok, parse the command line, building a list of CmdLineElements.
// When we've finished, and it's an input command (meaning that it's
// the processes argv), we'll do globing and then build the argument
// vector.
// The outer loop does one interation for each element seen.
// The inner loop does one interation for each character in the element.
//
for (done = 0, ptr = cmdline; *ptr;) {
//
// zap any leading whitespace
//
while(ISSPACE(*ptr))
ptr++;
base = ptr;
for (done = newline = globbing = instring = quoted = 0;
*ptr && !done; ptr++) {
//
// Switch on the current character. We only care about the
// white-space characters, the wild-card characters, and the
// quote characters.
//
switch (*ptr) {
case '\\':
if (ptr[1] == '"') ptr++;
break;
case ' ':
case '\t':
#if 0
case '/': // have to do this for NT/DOS option strings
//
// check to see if we're parsing an option switch
//
if (*ptr == '/' && base == ptr)
continue;
#endif
//
// if we're not in a string, then we're finished with this
// element
//
if (!instring)
done++;
break;
case '*':
case '?':
//
// record the fact that this element has a wildcard character
// N.B. Don't glob if inside a single quoted string
//
if (!(instring && quote == '\''))
globbing++;
break;
case '\n':
//
// If this string contains a newline, mark it as such so
// we can replace it with the two character sequence "\n"
// (cmd.exe doesn't like raw newlines in strings...sigh).
//
newline++;
break;
case '\'':
case '\"':
//
// if we're already in a string, see if this is the
// terminating close-quote. If it is, we're finished with
// the string, but not neccessarily with the element.
// If we're not already in a string, start one.
//
if (instring) {
if (quote == *ptr) {
instring = 0;
quote = '\0';
}
}
else {
instring++;
quote = *ptr;
quoted++;
}
break;
}
}
//
// need to back up ptr by one due to last increment of for loop
// (if we got out by seeing white space)
//
if (*ptr)
ptr--;
//
// when we get here, we've got a pair of pointers to the element,
// base and ptr. Base points to the start of the element while ptr
// points to the character following the element.
//
curr = ALLOC(NtCmdLineElement);
memset (curr, 0, sizeof(*curr));
len = ptr - base;
//
// if it's an input vector element and it's enclosed by quotes,
// we can remove them.
//
if (InputCmd && (base[0] == '\"' && base[len-1] == '\"')) {
char *p;
base++;
len -= 2;
base[len] = 0;
for (p = base; p < base + len; p++) {
if ((p[0] == '\\' || p[0] == '\"') && p[1] == '"') {
strcpy(p, p + 1);
len--;
}
}
}
else if (InputCmd && (base[0] == '\'' && base[len-1] == '\'')) {
base++;
len -= 2;
}
curr->str = base;
curr->len = len;
curr->flags |= (globbing ? NTGLOB : 0);
//
// Now put it in the list of elements
//
if (NtCmdTail) {
NtCmdTail->next = curr;
curr->prev = NtCmdTail;
NtCmdTail = curr;
}
else {
NtCmdHead = NtCmdTail = curr;
}
}
if (InputCmd) {
//
// When we get here we've finished parsing the command line. Now
// we need to run the list, expanding any globbing patterns.
//
for(curr = NtCmdHead; curr; curr = curr->next) {
if (curr->flags & NTGLOB) {
NtCmdGlob(curr);
}
}
}
//
// Almost done!
// Count up the elements, then allocate space for a vector of pointers
// (argv) and a string table for the elements.
//
for (elements = 0, strsz = 0, curr = NtCmdHead; curr; curr = curr->next) {
elements++;
strsz += (curr->len + 1);
}
len = (elements+1)*sizeof(char *) + strsz;
buffer = ALLOC_N(char, len);
memset (buffer, 0, len);
//
// make vptr point to the start of the buffer
// and ptr point to the area we'll consider the string table.
//
// buffer (*vec)
// |
// V ^---------------------V
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | | | .... | NULL | | ..... |\0 | | ..... |\0 |...
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// |- elements+1 -| ^ 1st element ^ 2nd element
vptr = (char **) buffer;
ptr = buffer + (elements+1) * sizeof(char *);
for (curr = NtCmdHead; curr; curr = curr->next) {
strncpy (ptr, curr->str, curr->len);
ptr[curr->len] = '\0';
*vptr++ = ptr;
ptr += curr->len + 1;
}
NtFreeCmdLine();
*vec = (char **) buffer;
free(cmdline);
return elements;
}
//
// UNIX compatible directory access functions for NT
//
#define PATHLEN 1024
//
// The idea here is to read all the directory names into a string table
// (separated by nulls) and when one of the other dir functions is called
// return the pointer to the current file name.
//
DIR *
opendir(const char *filename)
{
DIR *p;
long len;
long idx;
char scannamespc[PATHLEN];
char *scanname = scannamespc;
struct stat sbuf;
WIN32_FIND_DATA FindData;
HANDLE fh;
//
// check to see if we've got a directory
//
if ((win32_stat (filename, &sbuf) < 0 ||
sbuf.st_mode & _S_IFDIR == 0) &&
(!ISALPHA(filename[0]) || filename[1] != ':' || filename[2] != '\0' ||
((1 << (filename[0] & 0x5f) - 'A') & GetLogicalDrives()) == 0)) {
return NULL;
}
//
// Get us a DIR structure
//
p = xcalloc(sizeof(DIR), 1);
if (p == NULL)
return NULL;
//
// Create the search pattern
//
strcpy(scanname, filename);
if (index("/\\:", *CharPrev(scanname, scanname + strlen(scanname))) == NULL)
strcat(scanname, "/*");
else
strcat(scanname, "*");
//
// do the FindFirstFile call
//
fh = FindFirstFile (scanname, &FindData);
if (fh == INVALID_HANDLE_VALUE) {
return NULL;
}
//
// now allocate the first part of the string table for the
// filenames that we find.
//
idx = strlen(FindData.cFileName)+1;
p->start = ALLOC_N(char, idx);
strcpy (p->start, FindData.cFileName);
p->nfiles++;
//
// loop finding all the files that match the wildcard
// (which should be all of them in this directory!).
// the variable idx should point one past the null terminator
// of the previous string found.
//
while (FindNextFile(fh, &FindData)) {
len = strlen (FindData.cFileName);
//
// bump the string table size by enough for the
// new name and it's null terminator
//
#define Renew(x, y, z) (x = (z *)realloc(x, y))
Renew (p->start, idx+len+1, char);
if (p->start == NULL) {
rb_fatal ("opendir: malloc failed!\n");
}
strcpy(&p->start[idx], FindData.cFileName);
p->nfiles++;
idx += len+1;
}
FindClose(fh);
p->size = idx;
p->curr = p->start;
return p;
}
//
// Readdir just returns the current string pointer and bumps the
// string pointer to the next entry.
//
struct direct *
readdir(DIR *dirp)
{
int len;
static int dummy = 0;
if (dirp->curr) {
//
// first set up the structure to return
//
len = strlen(dirp->curr);
strcpy(dirp->dirstr.d_name, dirp->curr);
dirp->dirstr.d_namlen = len;
//
// Fake inode
//
dirp->dirstr.d_ino = dummy++;
//
// Now set up for the next call to readdir
//
dirp->curr += len + 1;
if (dirp->curr >= (dirp->start + dirp->size)) {
dirp->curr = NULL;
}
return &(dirp->dirstr);
} else
return NULL;
}
//
// Telldir returns the current string pointer position
//
long
telldir(DIR *dirp)
{
return (long) dirp->curr; /* ouch! pointer to long cast */
}
//
// Seekdir moves the string pointer to a previously saved position
// (Saved by telldir).
void
seekdir(DIR *dirp, long loc)
{
dirp->curr = (char *) loc; /* ouch! long to pointer cast */
}
//
// Rewinddir resets the string pointer to the start
//
void
rewinddir(DIR *dirp)
{
dirp->curr = dirp->start;
}
//
// This just free's the memory allocated by opendir
//
void
closedir(DIR *dirp)
{
free(dirp->start);
free(dirp);
}
static int
valid_filename(char *s)
{
int fd;
//
// if the file exists, then it's a valid filename!
//
if (_access(s, 0) == 0) {
return 1;
}
//
// It doesn't exist, so see if we can open it.
//
if ((fd = _open(s, _O_CREAT, 0666)) >= 0) {
close(fd);
_unlink (s); // don't leave it laying around
return 1;
}
return 0;
}
//
// This is a clone of fdopen so that we can handle the
// brain damaged version of sockets that NT gets to use.
//
// The problem is that sockets are not real file handles and
// cannot be fdopen'ed. This causes problems in the do_socket
// routine in doio.c, since it tries to create two file pointers
// for the socket just created. We'll fake out an fdopen and see
// if we can prevent perl from trying to do stdio on sockets.
//
//EXTERN_C int __cdecl _alloc_osfhnd(void);
//EXTERN_C int __cdecl _set_osfhnd(int fh, long value);
EXTERN_C void __cdecl _lock_fhandle(int);
EXTERN_C void __cdecl _unlock_fhandle(int);
EXTERN_C void __cdecl _unlock(int);
#if defined _MT || defined __MSVCRT__
#define MSVCRT_THREADS
#endif
#ifdef MSVCRT_THREADS
# define MTHREAD_ONLY(x) x
# define STHREAD_ONLY(x)
#else
# define MTHREAD_ONLY(x)
# define STHREAD_ONLY(x) x
#endif
typedef struct {
long osfhnd; /* underlying OS file HANDLE */
char osfile; /* attributes of file (e.g., open in text mode?) */
char pipech; /* one char buffer for handles opened on pipes */
#ifdef MSVCRT_THREADS
int lockinitflag;
CRITICAL_SECTION lock;
#endif
} ioinfo;
#if !defined _CRTIMP
#define _CRTIMP __declspec(dllimport)
#endif
EXTERN_C _CRTIMP ioinfo * __pioinfo[];
#define IOINFO_L2E 5
#define IOINFO_ARRAY_ELTS (1 << IOINFO_L2E)
#define _pioinfo(i) (__pioinfo[i >> IOINFO_L2E] + (i & (IOINFO_ARRAY_ELTS - 1)))
#define _osfhnd(i) (_pioinfo(i)->osfhnd)
#define _osfile(i) (_pioinfo(i)->osfile)
#define _pipech(i) (_pioinfo(i)->pipech)
#define FOPEN 0x01 /* file handle open */
#define FNOINHERIT 0x10 /* file handle opened O_NOINHERIT */
#define FAPPEND 0x20 /* file handle opened O_APPEND */
#define FDEV 0x40 /* file handle refers to device */
#define FTEXT 0x80 /* file handle is in text mode */
#define _set_osfhnd(fh, osfh) (void)(_osfhnd(fh) = osfh)
static int
my_open_osfhandle(long osfhandle, int flags)
{
int fh;
char fileflags; /* _osfile flags */
/* copy relevant flags from second parameter */
fileflags = FDEV;
if (flags & O_APPEND)
fileflags |= FAPPEND;
if (flags & O_TEXT)
fileflags |= FTEXT;
if (flags & O_NOINHERIT)
fileflags |= FNOINHERIT;
RUBY_CRITICAL({
/* attempt to allocate a C Runtime file handle */
HANDLE hF = CreateFile("NUL", 0, 0, NULL, OPEN_ALWAYS, 0, NULL);
fh = _open_osfhandle((long)hF, 0);
CloseHandle(hF);
if (fh == -1) {
errno = EMFILE; /* too many open files */
_doserrno = 0L; /* not an OS error */
}
else {
MTHREAD_ONLY(EnterCriticalSection(&(_pioinfo(fh)->lock)));
/* the file is open. now, set the info in _osfhnd array */
_set_osfhnd(fh, osfhandle);
fileflags |= FOPEN; /* mark as open */
_osfile(fh) = fileflags; /* set osfile entry */
MTHREAD_ONLY(LeaveCriticalSection(&_pioinfo(fh)->lock));
}
});
return fh; /* return handle */
}
#undef getsockopt
static int
is_socket(SOCKET fd)
{
char sockbuf[80];
int optlen;
int retval;
optlen = sizeof(sockbuf);
retval = getsockopt(fd, SOL_SOCKET, SO_TYPE, sockbuf, &optlen);
if (retval == SOCKET_ERROR) {
int iRet;
iRet = WSAGetLastError();
if (iRet == WSAENOTSOCK || iRet == WSANOTINITIALISED)
return FALSE;
}
//
// If we get here, then fd is actually a socket.
//
return TRUE;
}
int
myfddup (int fd)
{
SOCKET s = TO_SOCKET(fd);
if (s == -1)
return -1;
return my_open_osfhandle(s, O_RDWR|O_BINARY);
}
void
myfdclose(FILE *fp)
{
RUBY_CRITICAL({
STHREAD_ONLY(_free_osfhnd(fileno(fp)));
fclose(fp);
});
}
//
// Since the errors returned by the socket error function
// WSAGetLastError() are not known by the library routine strerror
// we have to roll our own.
//
#undef strerror
char *
mystrerror(int e)
{
static char buffer[512];
#if !defined __MINGW32__
extern int sys_nerr;
#endif
DWORD source = 0;
char *p;
if (e < 0 || e > sys_nerr) {
if (e < 0)
e = GetLastError();
if (FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, &source, e, 0,
buffer, 512, NULL) == 0) {
strcpy(buffer, "Unknown Error");
}
for (p = buffer + strlen(buffer) - 1; buffer <= p; p--) {
if (*p != '\r' && *p != '\n') break;
*p = 0;
}
return buffer;
}
return strerror(e);
}
//
// various stubs
//
// Ownership
//
// Just pretend that everyone is a superuser. NT will let us know if
// we don't really have permission to do something.
//
#define ROOT_UID 0
#define ROOT_GID 0
UIDTYPE
getuid(void)
{
return ROOT_UID;
}
UIDTYPE
geteuid(void)
{
return ROOT_UID;
}
GIDTYPE
getgid(void)
{
return ROOT_GID;
}
GIDTYPE
getegid(void)
{
return ROOT_GID;
}
int
setuid(int uid)
{
return (uid == ROOT_UID ? 0 : -1);
}
int
setgid(int gid)
{
return (gid == ROOT_GID ? 0 : -1);
}
//
// File system stuff
//
int
/* ioctl(int i, unsigned int u, char *data) */
ioctl(int i, unsigned int u, long data)
{
return -1;
}
#undef FD_SET
void
myfdset(int fd, fd_set *set)
{
unsigned int i;
SOCKET s = TO_SOCKET(fd);
for (i = 0; i < set->fd_count; i++) {
if (set->fd_array[i] == s) {
return;
}
}
if (i == set->fd_count) {
if (set->fd_count < FD_SETSIZE) {
set->fd_array[i] = s;
set->fd_count++;
}
}
}
#undef FD_CLR
void
myfdclr(int fd, fd_set *set)
{
unsigned int i;
SOCKET s = TO_SOCKET(fd);
for (i = 0; i < set->fd_count; i++) {
if (set->fd_array[i] == s) {
while (i < set->fd_count - 1) {
set->fd_array[i] = set->fd_array[i + 1];
i++;
}
set->fd_count--;
break;
}
}
}
#undef FD_ISSET
int
myfdisset(int fd, fd_set *set)
{
return __WSAFDIsSet(TO_SOCKET(fd), set);
}
//
// Networking trampolines
// These are used to avoid socket startup/shutdown overhead in case
// the socket routines aren't used.
//
#undef select
static int NtSocketsInitialized = 0;
static int
extract_file_fd(fd_set *set, fd_set *fileset)
{
int idx;
fileset->fd_count = 0;
if (!set)
return 0;
for (idx = 0; idx < set->fd_count; idx++) {
SOCKET fd = set->fd_array[idx];
if (!is_socket(fd)) {
int i;
for (i = 0; i < fileset->fd_count; i++) {
if (fileset->fd_array[i] == fd) {
break;
}
}
if (i == fileset->fd_count) {
if (fileset->fd_count < FD_SETSIZE) {
fileset->fd_array[i] = fd;
fileset->fd_count++;
}
}
}
}
return fileset->fd_count;
}
long
myselect (int nfds, fd_set *rd, fd_set *wr, fd_set *ex,
struct timeval *timeout)
{
long r;
fd_set file_rd;
fd_set file_wr;
#ifdef USE_INTERRUPT_WINSOCK
fd_set trap;
#endif /* USE_INTERRUPT_WINSOCK */
int file_nfds;
if (!NtSocketsInitialized++) {
StartSockets();
}
r = 0;
if (rd && rd->fd_count > r) r = rd->fd_count;
if (wr && wr->fd_count > r) r = wr->fd_count;
if (ex && ex->fd_count > r) r = ex->fd_count;
if (nfds > r) nfds = r;
if (nfds == 0 && timeout) {
Sleep(timeout->tv_sec * 1000 + timeout->tv_usec / 1000);
return 0;
}
file_nfds = extract_file_fd(rd, &file_rd);
file_nfds += extract_file_fd(wr, &file_wr);
if (file_nfds)
{
// assume normal files are always readable/writable
// fake read/write fd_set and return value
if (rd) *rd = file_rd;
if (wr) *wr = file_wr;
return file_nfds;
}
#if USE_INTERRUPT_WINSOCK
if (ex)
trap = *ex;
else
trap.fd_count = 0;
if (trap.fd_count < FD_SETSIZE)
trap.fd_array[trap.fd_count++] = (SOCKET)interrupted_event;
// else unable to catch interrupt.
ex = &trap;
#endif /* USE_INTERRUPT_WINSOCK */
RUBY_CRITICAL(r = select (nfds, rd, wr, ex, timeout));
if (r == SOCKET_ERROR) {
errno = WSAGetLastError();
switch (errno) {
case WSAEINTR:
errno = EINTR;
break;
}
}
return r;
}
static void
StartSockets ()
{
WORD version;
WSADATA retdata;
int ret;
int iSockOpt;
//
// initalize the winsock interface and insure that it's
// cleaned up at exit.
//
version = MAKEWORD(1, 1);
if (ret = WSAStartup(version, &retdata))
rb_fatal ("Unable to locate winsock library!\n");
if (LOBYTE(retdata.wVersion) != 1)
rb_fatal("could not find version 1 of winsock dll\n");
if (HIBYTE(retdata.wVersion) != 1)
rb_fatal("could not find version 1 of winsock dll\n");
atexit((void (*)(void)) WSACleanup);
iSockOpt = SO_SYNCHRONOUS_NONALERT;
/*
* Enable the use of sockets as filehandles
*/
setsockopt(INVALID_SOCKET, SOL_SOCKET, SO_OPENTYPE,
(char *)&iSockOpt, sizeof(iSockOpt));
main_thread.handle = GetCurrentThreadHandle();
main_thread.id = GetCurrentThreadId();
interrupted_event = CreateSignal();
if (!interrupted_event)
rb_fatal("Unable to create interrupt event!\n");
interrupted_event = CreateSignal();
if (!interrupted_event)
rb_fatal("Unable to create interrupt event!\n");
}
#undef accept
SOCKET
myaccept (SOCKET s, struct sockaddr *addr, int *addrlen)
{
SOCKET r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = accept (TO_SOCKET(s), addr, addrlen));
if (r == INVALID_SOCKET)
errno = WSAGetLastError();
return my_open_osfhandle(r, O_RDWR|O_BINARY);
}
#undef bind
int
mybind (SOCKET s, struct sockaddr *addr, int addrlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = bind (TO_SOCKET(s), addr, addrlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef connect
int
myconnect (SOCKET s, struct sockaddr *addr, int addrlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = connect (TO_SOCKET(s), addr, addrlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef getpeername
int
mygetpeername (SOCKET s, struct sockaddr *addr, int *addrlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getpeername (TO_SOCKET(s), addr, addrlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef getsockname
int
mygetsockname (SOCKET s, struct sockaddr *addr, int *addrlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getsockname (TO_SOCKET(s), addr, addrlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
int
mygetsockopt (SOCKET s, int level, int optname, char *optval, int *optlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getsockopt (TO_SOCKET(s), level, optname, optval, optlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef ioctlsocket
int
myioctlsocket (SOCKET s, long cmd, u_long *argp)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = ioctlsocket (TO_SOCKET(s), cmd, argp));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef listen
int
mylisten (SOCKET s, int backlog)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = listen (TO_SOCKET(s), backlog));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef recv
int
myrecv (SOCKET s, char *buf, int len, int flags)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = recv (TO_SOCKET(s), buf, len, flags));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef recvfrom
int
myrecvfrom (SOCKET s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = recvfrom (TO_SOCKET(s), buf, len, flags, from, fromlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef send
int
mysend (SOCKET s, char *buf, int len, int flags)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = send (TO_SOCKET(s), buf, len, flags));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef sendto
int
mysendto (SOCKET s, char *buf, int len, int flags,
struct sockaddr *to, int tolen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = sendto (TO_SOCKET(s), buf, len, flags, to, tolen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef setsockopt
int
mysetsockopt (SOCKET s, int level, int optname, char *optval, int optlen)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = setsockopt (TO_SOCKET(s), level, optname, optval, optlen));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef shutdown
int
myshutdown (SOCKET s, int how)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = shutdown (TO_SOCKET(s), how));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef socket
SOCKET
mysocket (int af, int type, int protocol)
{
SOCKET s;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(s = socket (af, type, protocol));
if (s == INVALID_SOCKET) {
errno = WSAGetLastError();
//fprintf(stderr, "socket fail (%d)", WSAGetLastError());
}
return my_open_osfhandle(s, O_RDWR|O_BINARY);
}
#undef gethostbyaddr
struct hostent *
mygethostbyaddr (char *addr, int len, int type)
{
struct hostent *r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = gethostbyaddr (addr, len, type));
if (r == NULL)
errno = WSAGetLastError();
return r;
}
#undef gethostbyname
struct hostent *
mygethostbyname (char *name)
{
struct hostent *r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = gethostbyname (name));
if (r == NULL)
errno = WSAGetLastError();
return r;
}
#undef gethostname
int
mygethostname (char *name, int len)
{
int r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = gethostname (name, len));
if (r == SOCKET_ERROR)
errno = WSAGetLastError();
return r;
}
#undef getprotobyname
struct protoent *
mygetprotobyname (char *name)
{
struct protoent *r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getprotobyname (name));
if (r == NULL)
errno = WSAGetLastError();
return r;
}
#undef getprotobynumber
struct protoent *
mygetprotobynumber (int num)
{
struct protoent *r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getprotobynumber (num));
if (r == NULL)
errno = WSAGetLastError();
return r;
}
#undef getservbyname
struct servent *
mygetservbyname (char *name, char *proto)
{
struct servent *r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getservbyname (name, proto));
if (r == NULL)
errno = WSAGetLastError();
return r;
}
#undef getservbyport
struct servent *
mygetservbyport (int port, char *proto)
{
struct servent *r;
if (!NtSocketsInitialized++) {
StartSockets();
}
RUBY_CRITICAL(r = getservbyport (port, proto));
if (r == NULL)
errno = WSAGetLastError();
return r;
}
//
// Networking stubs
//
void endhostent() {}
void endnetent() {}
void endprotoent() {}
void endservent() {}
struct netent *getnetent (void) {return (struct netent *) NULL;}
struct netent *getnetbyaddr(char *name) {return (struct netent *)NULL;}
struct netent *getnetbyname(long net, int type) {return (struct netent *)NULL;}
struct protoent *getprotoent (void) {return (struct protoent *) NULL;}
struct servent *getservent (void) {return (struct servent *) NULL;}
void sethostent (int stayopen) {}
void setnetent (int stayopen) {}
void setprotoent (int stayopen) {}
void setservent (int stayopen) {}
#ifndef WNOHANG
#define WNOHANG -1
#endif
static pid_t
poll_child_status(struct ChildRecord *child, int *stat_loc)
{
DWORD exitcode;
if (!GetExitCodeProcess(child->hProcess, &exitcode)) {
/* If an error occured, return immediatly. */
errno = GetLastError();
if (errno == ERROR_INVALID_PARAMETER) {
errno = ECHILD;
}
CloseChildHandle(child);
return -1;
}
if (exitcode != STILL_ACTIVE) {
/* If already died, return immediatly. */
pid_t pid = child->pid;
CloseChildHandle(child);
if (stat_loc) *stat_loc = exitcode << 8;
return pid;
}
return 0;
}
pid_t
waitpid (pid_t pid, int *stat_loc, int options)
{
DWORD timeout;
if (options == WNOHANG) {
timeout = 0;
} else {
timeout = INFINITE;
}
if (pid == -1) {
int count = 0;
DWORD ret;
HANDLE events[MAXCHILDNUM + 1];
FOREACH_CHILD(child) {
if (!child->pid || child->pid < 0) continue;
if ((pid = poll_child_status(child, stat_loc))) return pid;
events[count++] = child->hProcess;
} END_FOREACH_CHILD;
if (!count) {
errno = ECHILD;
return -1;
}
events[count] = interrupted_event;
ret = WaitForMultipleEvents(count + 1, events, FALSE, timeout, TRUE);
if (ret == WAIT_TIMEOUT) return 0;
if ((ret -= WAIT_OBJECT_0) == count) {
ResetSignal(interrupted_event);
errno = EINTR;
return -1;
}
if (ret > count) {
errno = GetLastError();
return -1;
}
return poll_child_status(ChildRecord + ret, stat_loc);
}
else {
struct ChildRecord* child = FindChildSlot(pid);
if (!child) {
errno = ECHILD;
return -1;
}
while (!(pid = poll_child_status(child, stat_loc))) {
/* wait... */
if (wait_events(child->hProcess, timeout) != WAIT_OBJECT_0) {
/* still active */
pid = 0;
break;
}
}
}
return pid;
}
#include <sys/timeb.h>
int _cdecl
gettimeofday(struct timeval *tv, struct timezone *tz)
{
SYSTEMTIME st;
time_t t;
struct tm tm;
GetLocalTime(&st);
tm.tm_sec = st.wSecond;
tm.tm_min = st.wMinute;
tm.tm_hour = st.wHour;
tm.tm_mday = st.wDay;
tm.tm_mon = st.wMonth - 1;
tm.tm_year = st.wYear - 1900;
tm.tm_isdst = -1;
t = mktime(&tm);
tv->tv_sec = t;
tv->tv_usec = st.wMilliseconds * 1000;
return 0;
}
char *
win32_getcwd(buffer, size)
char *buffer;
int size;
{
int length;
char *bp;
if (_getcwd(buffer, size) == NULL) {
return NULL;
}
length = strlen(buffer);
if (length >= size) {
return NULL;
}
for (bp = buffer; *bp != '\0'; bp = CharNext(bp)) {
if (*bp == '\\') {
*bp = '/';
}
}
return buffer;
}
static char *
str_grow(struct RString *str, size_t new_size)
{
char *p;
p = realloc(str->ptr, new_size);
if (p == NULL)
rb_fatal("cannot grow string\n");
str->len = new_size;
str->ptr = p;
return p;
}
int
chown(const char *path, int owner, int group)
{
return 0;
}
#include <signal.h>
#ifndef SIGINT
#define SIGINT 2
#endif
#ifndef SIGKILL
#define SIGKILL 9
#endif
int
kill(int pid, int sig)
{
int ret = 0;
if ((unsigned int)pid == GetCurrentProcessId() && sig != SIGKILL)
return raise(sig);
if (sig == SIGINT && pid > 0) {
RUBY_CRITICAL({
if (!GenerateConsoleCtrlEvent(CTRL_C_EVENT, (DWORD)pid)) {
errno = GetLastError();
ret = -1;
}
});
}
else if (sig == SIGKILL && pid > 0) {
HANDLE hProc;
RUBY_CRITICAL({
hProc = OpenProcess(PROCESS_TERMINATE, FALSE,
IsWin95() ? -pid : pid);
if (hProc == NULL || hProc == INVALID_HANDLE_VALUE) {
if (GetLastError() == ERROR_INVALID_PARAMETER) {
errno = ESRCH;
}
else {
errno = EPERM;
}
ret = -1;
}
else if (!TerminateProcess(hProc, 0)) {
errno = EPERM;
ret = -1;
}
CloseHandle(hProc);
});
}
else {
errno = EINVAL;
ret = -1;
}
return ret;
}
int
link(char *from, char *to)
{
return -1;
}
int
wait()
{
return 0;
}
char *
win32_getenv(const char *name)
{
static char *curitem = NULL;
static DWORD curlen = 0;
DWORD needlen;
if (curitem == NULL || curlen == 0) {
curlen = 512;
curitem = ALLOC_N(char, curlen);
}
needlen = GetEnvironmentVariable(name, curitem, curlen);
if (needlen != 0) {
while (needlen > curlen) {
REALLOC_N(curitem, char, needlen);
curlen = needlen;
needlen = GetEnvironmentVariable(name, curitem, curlen);
}
}
else {
return NULL;
}
return curitem;
}
int
myrename(const char *oldpath, const char *newpath)
{
int res = 0;
int oldatts;
int newatts;
oldatts = GetFileAttributes(oldpath);
newatts = GetFileAttributes(newpath);
if (oldatts == -1) {
errno = GetLastError();
return -1;
}
RUBY_CRITICAL({
if (newatts != -1 && newatts & FILE_ATTRIBUTE_READONLY)
SetFileAttributesA(newpath, newatts & ~ FILE_ATTRIBUTE_READONLY);
if (!MoveFile(oldpath, newpath))
res = -1;
if (res) {
switch (GetLastError()) {
case ERROR_ALREADY_EXISTS:
case ERROR_FILE_EXISTS:
if (IsWinNT()) {
if (MoveFileEx(oldpath, newpath, MOVEFILE_REPLACE_EXISTING))
res = 0;
} else {
for (;;) {
if (!DeleteFile(newpath) && GetLastError() != ERROR_FILE_NOT_FOUND)
break;
else if (MoveFile(oldpath, newpath)) {
res = 0;
break;
}
}
}
}
}
if (res)
errno = GetLastError();
else
SetFileAttributes(newpath, oldatts);
});
return res;
}
static int
isUNCRoot(const char *path)
{
if (path[0] == '\\' && path[1] == '\\') {
const char *p;
for (p = path + 3; *p; p = CharNext(p)) {
if (*p == '\\')
break;
}
if (p[0] && p[1]) {
for (p++; *p; p = CharNext(p)) {
if (*p == '\\')
break;
}
if (!p[0] || !p[1])
return 1;
}
}
return 0;
}
int
win32_stat(const char *path, struct stat *st)
{
const char *p;
char *buf1 = ALLOCA_N(char, strlen(path) + 1);
char *buf2 = ALLOCA_N(char, MAXPATHLEN);
char *s;
int len;
for (p = path, s = buf1; *p; p++, s++) {
if (*p == '/')
*s = '\\';
else
*s = *p;
}
*s = '\0';
len = strlen(buf1);
p = CharPrev(buf1, buf1 + len);
if (isUNCRoot(buf1)) {
if (*p != '\\')
strcat(buf1, "\\");
} else if (*p == '\\' || *p == ':')
strcat(buf1, ".");
if (_fullpath(buf2, buf1, MAXPATHLEN))
return stat(buf2, st);
else
return -1;
}
static long
filetime_to_clock(FILETIME *ft)
{
__int64 qw = ft->dwHighDateTime;
qw <<= 32;
qw |= ft->dwLowDateTime;
qw /= 10000; /* File time ticks at 0.1uS, clock at 1mS */
return (long) qw;
}
int
mytimes(struct tms *tmbuf)
{
FILETIME create, exit, kernel, user;
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
tmbuf->tms_utime = filetime_to_clock(&user);
tmbuf->tms_stime = filetime_to_clock(&kernel);
tmbuf->tms_cutime = 0;
tmbuf->tms_cstime = 0;
}
else {
tmbuf->tms_utime = clock();
tmbuf->tms_stime = 0;
tmbuf->tms_cutime = 0;
tmbuf->tms_cstime = 0;
}
return 0;
}
#undef Sleep
#define yield_once() Sleep(0)
#define yield_until(condition) do yield_once(); while (!(condition))
static DWORD wait_events(HANDLE event, DWORD timeout)
{
HANDLE events[2];
int count = 0;
DWORD ret;
if (event) {
events[count++] = event;
}
events[count++] = interrupted_event;
ret = WaitForMultipleEvents(count, events, FALSE, timeout, TRUE);
if (ret == WAIT_OBJECT_0 + count - 1) {
ResetSignal(interrupted_event);
errno = EINTR;
}
return ret;
}
static CRITICAL_SECTION* system_state(void)
{
static int initialized = 0;
static CRITICAL_SECTION syssect;
if (!initialized) {
InitializeCriticalSection(&syssect);
initialized = 1;
}
return &syssect;
}
static LONG flag_interrupt = -1;
static volatile DWORD tlsi_interrupt = TLS_OUT_OF_INDEXES;
void win32_enter_critical(void)
{
if (IsWinNT()) {
EnterCriticalSection(system_state());
return;
}
if (tlsi_interrupt == TLS_OUT_OF_INDEXES) {
tlsi_interrupt = TlsAlloc();
}
{
DWORD ti = (DWORD)TlsGetValue(tlsi_interrupt);
while (InterlockedIncrement(&flag_interrupt) > 0 && !ti) {
InterlockedDecrement(&flag_interrupt);
Sleep(1);
}
TlsSetValue(tlsi_interrupt, (PVOID)++ti);
}
}
void win32_leave_critical(void)
{
if (IsWinNT()) {
LeaveCriticalSection(system_state());
return;
}
InterlockedDecrement(&flag_interrupt);
TlsSetValue(tlsi_interrupt, (PVOID)((DWORD)TlsGetValue(tlsi_interrupt) - 1));
}
struct handler_arg_t {
void (*handler)(int);
int arg;
int status;
int finished;
HANDLE handshake;
};
static void win32_call_handler(struct handler_arg_t* h)
{
int status;
RUBY_CRITICAL(rb_protect((VALUE (*)(VALUE))h->handler, (VALUE)h->arg, &h->status);
status = h->status;
SetEvent(h->handshake));
if (status) {
rb_jump_tag(status);
}
h->finished = 1;
Sleep(INFINITE); /* safe on Win95? */
}
static struct handler_arg_t* setup_handler(struct handler_arg_t *harg,
int arg,
void (*handler)(int),
HANDLE handshake)
{
harg->handler = handler;
harg->arg = arg;
harg->status = 0;
harg->finished = 0;
harg->handshake = handshake;
return harg;
}
static void setup_call(CONTEXT* ctx, struct handler_arg_t *harg)
{
#ifdef _M_IX86
DWORD *esp = (DWORD *)ctx->Esp;
*--esp = (DWORD)harg;
*--esp = ctx->Eip;
ctx->Esp = (DWORD)esp;
ctx->Eip = (DWORD)win32_call_handler;
#else
#error unsupported processor
#endif
}
int win32_main_context(int arg, void (*handler)(int))
{
static HANDLE interrupt_done = NULL;
struct handler_arg_t harg;
CONTEXT ctx_orig;
HANDLE current_thread = GetCurrentThread();
int old_priority = GetThreadPriority(current_thread);
if (GetCurrentThreadId() == main_thread.id) return FALSE;
SetSignal(interrupted_event);
RUBY_CRITICAL({ /* the main thread must be in user state */
CONTEXT ctx;
SuspendThread(main_thread.handle);
SetThreadPriority(current_thread, GetThreadPriority(main_thread.handle));
ZeroMemory(&ctx, sizeof(CONTEXT));
ctx.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT;
GetThreadContext(main_thread.handle, &ctx);
ctx_orig = ctx;
/* handler context setup */
if (!interrupt_done) {
interrupt_done = CreateEvent(NULL, FALSE, FALSE, NULL);
/* anonymous one-shot event */
}
else {
ResetEvent(interrupt_done);
}
setup_call(&ctx, setup_handler(&harg, arg, handler, interrupt_done));
ctx.ContextFlags = CONTEXT_CONTROL;
SetThreadContext(main_thread.handle, &ctx);
ResumeThread(main_thread.handle);
});
/* give a chance to the main thread */
yield_once();
WaitForSingleObject(interrupt_done, INFINITE); /* handshaking */
if (!harg.status) {
/* no exceptions raised, restore old context. */
RUBY_CRITICAL({
/* ensure the main thread is in user state. */
yield_until(harg.finished);
SuspendThread(main_thread.handle);
ctx_orig.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT;
SetThreadContext(main_thread.handle, &ctx_orig);
ResumeThread(main_thread.handle);
});
}
/* otherwise leave the main thread raised */
SetThreadPriority(current_thread, old_priority);
return TRUE;
}
int win32_sleep(unsigned long msec)
{
DWORD ret;
RUBY_CRITICAL(ret = wait_events(NULL, msec));
yield_once();
CHECK_INTS;
return ret != WAIT_TIMEOUT;
}
static void catch_interrupt(void)
{
yield_once();
RUBY_CRITICAL(wait_events(NULL, 0));
CHECK_INTS;
}
#undef fgetc
int win32_getc(FILE* stream)
{
int c, trap_immediate = rb_trap_immediate;
if (--stream->_cnt >= 0) {
c = (unsigned char)*stream->_ptr++;
rb_trap_immediate = trap_immediate;
}
else {
c = _filbuf(stream);
rb_trap_immediate = trap_immediate;
catch_interrupt();
}
return c;
}
#undef fputc
int win32_putc(int c, FILE* stream)
{
int trap_immediate = rb_trap_immediate;
if (--stream->_cnt >= 0) {
c = (unsigned char)(*stream->_ptr++ = (char)c);
rb_trap_immediate = trap_immediate;
}
else {
c = _flsbuf(c, stream);
rb_trap_immediate = trap_immediate;
catch_interrupt();
}
return c;
}
struct asynchronous_arg_t {
/* output field */
void* stackaddr;
/* input field */
VALUE (*func)(VALUE self, int argc, VALUE* argv);
VALUE self;
int argc;
VALUE* argv;
};
static DWORD WINAPI
call_asynchronous(PVOID argp)
{
struct asynchronous_arg_t *arg = argp;
arg->stackaddr = &argp;
return (DWORD)arg->func(arg->self, arg->argc, arg->argv);
}
VALUE win32_asynchronize(asynchronous_func_t func,
VALUE self, int argc, VALUE* argv, VALUE intrval)
{
DWORD val;
BOOL interrupted = FALSE;
HANDLE thr;
RUBY_CRITICAL({
struct asynchronous_arg_t arg;
arg.stackaddr = NULL;
arg.func = func;
arg.self = self;
arg.argc = argc;
arg.argv = argv;
thr = CreateThread(NULL, 0, call_asynchronous, &arg, 0, &val);
if (thr) {
yield_until(arg.stackaddr);
if (wait_events(thr, INFINITE) != WAIT_OBJECT_0) {
interrupted = TRUE;
if (TerminateThread(thr, intrval)) {
yield_once();
}
}
GetExitCodeThread(thr, &val);
CloseHandle(thr);
if (interrupted) {
/* must release stack of killed thread, why doesn't Windows? */
MEMORY_BASIC_INFORMATION m;
memset(&m, 0, sizeof(m));
if (!VirtualQuery(arg.stackaddr, &m, sizeof(m))) {
Debug(fprintf(stderr, "couldn't get stack base:%p:%d\n",
arg.stackaddr, GetLastError()));
}
else if (!VirtualFree(m.AllocationBase, 0, MEM_RELEASE)) {
Debug(fprintf(stderr, "couldn't release stack:%p:%d\n",
m.AllocationBase, GetLastError()));
}
}
}
});
if (!thr) {
rb_fatal("failed to launch waiter thread:%d", GetLastError());
}
if (interrupted) {
errno = EINTR;
CHECK_INTS;
}
return val;
}
char **win32_get_environ(void)
{
char *envtop, *env;
char **myenvtop, **myenv;
int num;
/*
* We avoid values started with `='. If you want to deal those values,
* change this function, and some functions in hash.c which recognize
* `=' as delimiter or win32_getenv() and ruby_setenv().
* CygWin deals these values by changing first `=' to '!'. But we don't
* use such trick and follow cmd.exe's way that just doesn't show these
* values.
* (U.N. 2001-11-15)
*/
envtop = GetEnvironmentStrings();
for (env = envtop, num = 0; *env; env += strlen(env) + 1)
if (*env != '=') num++;
myenvtop = ALLOC_N(char*, num + 1);
for (env = envtop, myenv = myenvtop; *env; env += strlen(env) + 1) {
if (*env != '=') {
*myenv = ALLOC_N(char, strlen(env) + 1);
strcpy(*myenv, env);
myenv++;
}
}
*myenv = NULL;
FreeEnvironmentStrings(envtop);
return myenvtop;
}
void win32_free_environ(char **env)
{
char **t = env;
while (*t) free(*t++);
free(env);
}