ruby/mjit_worker.c

1306 строки
46 KiB
C

/**********************************************************************
mjit_worker.c - Worker for MRI method JIT compiler
Copyright (C) 2017 Vladimir Makarov <vmakarov@redhat.com>.
**********************************************************************/
// NOTE: All functions in this file are executed on MJIT worker. So don't
// call Ruby methods (C functions that may call rb_funcall) or trigger
// GC (using ZALLOC, xmalloc, xfree, etc.) in this file.
/* However, note that calling `free` for resources `xmalloc`-ed in mjit.c,
which is currently done in some places, is sometimes problematic in the
following situations:
* malloc library could be different between interpreter and extensions
on Windows (perhaps not applicable to MJIT because CC is the same)
* xmalloc -> free leaks extra space used for USE_GC_MALLOC_OBJ_INFO_DETAILS
(not enabled by default)
...in short, it's usually not a problem in MJIT. But maybe it's worth
fixing for consistency or for USE_GC_MALLOC_OBJ_INFO_DETAILS support.
*/
/* We utilize widely used C compilers (GCC and LLVM Clang) to
implement MJIT. We feed them a C code generated from ISEQ. The
industrial C compilers are slower than regular JIT engines.
Generated code performance of the used C compilers has a higher
priority over the compilation speed.
So our major goal is to minimize the ISEQ compilation time when we
use widely optimization level (-O2). It is achieved by
o Using a precompiled version of the header
o Keeping all files in `/tmp`. On modern Linux `/tmp` is a file
system in memory. So it is pretty fast
o Implementing MJIT as a multi-threaded code because we want to
compile ISEQs in parallel with iseq execution to speed up Ruby
code execution. MJIT has one thread (*worker*) to do
parallel compilations:
o It prepares a precompiled code of the minimized header.
It starts at the MRI execution start
o It generates PIC object files of ISEQs
o It takes one JIT unit from a priority queue unless it is empty.
o It translates the JIT unit ISEQ into C-code using the precompiled
header, calls CC and load PIC code when it is ready
o Currently MJIT put ISEQ in the queue when ISEQ is called
o MJIT can reorder ISEQs in the queue if some ISEQ has been called
many times and its compilation did not start yet
o MRI reuses the machine code if it already exists for ISEQ
o The machine code we generate can stop and switch to the ISEQ
interpretation if some condition is not satisfied as the machine
code can be speculative or some exception raises
o Speculative machine code can be canceled.
Here is a diagram showing the MJIT organization:
_______
|header |
|_______|
| MRI building
--------------|----------------------------------------
| MRI execution
|
_____________|_____
| | |
| ___V__ | CC ____________________
| | |----------->| precompiled header |
| | | | |____________________|
| | | | |
| | MJIT | | |
| | | | |
| | | | ____V___ CC __________
| |______|----------->| C code |--->| .so file |
| | |________| |__________|
| | |
| | |
| MRI machine code |<-----------------------------
|___________________| loading
*/
#ifdef __sun
#define __EXTENSIONS__ 1
#endif
#include "vm_core.h"
#include "vm_callinfo.h"
#include "mjit.h"
#include "gc.h"
#include "ruby_assert.h"
#include "ruby/debug.h"
#include "ruby/thread.h"
#include "ruby/version.h"
#ifdef _WIN32
#include <winsock2.h>
#include <windows.h>
#else
#include <sys/wait.h>
#include <sys/time.h>
#include <dlfcn.h>
#endif
#include <errno.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#include "dln.h"
#include "ruby/util.h"
#undef strdup // ruby_strdup may trigger GC
#ifndef MAXPATHLEN
# define MAXPATHLEN 1024
#endif
#ifdef _WIN32
#define dlopen(name,flag) ((void*)LoadLibrary(name))
#define dlerror() strerror(rb_w32_map_errno(GetLastError()))
#define dlsym(handle,name) ((void*)GetProcAddress((handle),(name)))
#define dlclose(handle) (!FreeLibrary(handle))
#define RTLD_NOW -1
#define waitpid(pid,stat_loc,options) (WaitForSingleObject((HANDLE)(pid), INFINITE), GetExitCodeProcess((HANDLE)(pid), (LPDWORD)(stat_loc)), CloseHandle((HANDLE)pid), (pid))
#define WIFEXITED(S) ((S) != STILL_ACTIVE)
#define WEXITSTATUS(S) (S)
#define WIFSIGNALED(S) (0)
typedef intptr_t pid_t;
#endif
// Atomically set function pointer if possible.
#define MJIT_ATOMIC_SET(var, val) (void)ATOMIC_PTR_EXCHANGE(var, val)
#define MJIT_TMP_PREFIX "_ruby_mjit_"
// JIT compaction requires the header transformation because linking multiple .o files
// doesn't work without having `static` in the same function definitions. We currently
// don't support transforming the MJIT header on Windows.
#ifdef _WIN32
# define USE_JIT_COMPACTION 0
#else
# define USE_JIT_COMPACTION 1
#endif
// The unit structure that holds metadata of ISeq for MJIT.
struct rb_mjit_unit {
// Unique order number of unit.
int id;
// Dlopen handle of the loaded object file.
void *handle;
rb_iseq_t *iseq;
#if defined(_WIN32)
// DLL cannot be removed while loaded on Windows. If this is set, it'll be lazily deleted.
char *so_file;
#endif
// Only used by unload_units. Flag to check this unit is currently on stack or not.
bool used_code_p;
struct list_node unode;
// mjit_compile's optimization switches
struct rb_mjit_compile_info compile_info;
// captured CC values, they should be marked with iseq.
const struct rb_callcache **cc_entries;
unsigned int cc_entries_size; // iseq->body->ci_size + ones of inlined iseqs
};
// Linked list of struct rb_mjit_unit.
struct rb_mjit_unit_list {
struct list_head head;
int length; // the list length
};
extern void rb_native_mutex_lock(rb_nativethread_lock_t *lock);
extern void rb_native_mutex_unlock(rb_nativethread_lock_t *lock);
extern void rb_native_mutex_initialize(rb_nativethread_lock_t *lock);
extern void rb_native_mutex_destroy(rb_nativethread_lock_t *lock);
extern void rb_native_cond_initialize(rb_nativethread_cond_t *cond);
extern void rb_native_cond_destroy(rb_nativethread_cond_t *cond);
extern void rb_native_cond_signal(rb_nativethread_cond_t *cond);
extern void rb_native_cond_broadcast(rb_nativethread_cond_t *cond);
extern void rb_native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex);
// process.c
extern rb_pid_t ruby_waitpid_locked(rb_vm_t *, rb_pid_t, int *status, int options, rb_nativethread_cond_t *cond);
// A copy of MJIT portion of MRI options since MJIT initialization. We
// need them as MJIT threads still can work when the most MRI data were
// freed.
struct mjit_options mjit_opts;
// true if MJIT is enabled.
bool mjit_enabled = false;
// true if JIT-ed code should be called. When `ruby_vm_event_enabled_global_flags & ISEQ_TRACE_EVENTS`
// and `mjit_call_p == false`, any JIT-ed code execution is cancelled as soon as possible.
bool mjit_call_p = false;
// Priority queue of iseqs waiting for JIT compilation.
// This variable is a pointer to head unit of the queue.
static struct rb_mjit_unit_list unit_queue = { LIST_HEAD_INIT(unit_queue.head) };
// List of units which are successfully compiled.
static struct rb_mjit_unit_list active_units = { LIST_HEAD_INIT(active_units.head) };
// List of compacted so files which will be cleaned up by `free_list()` in `mjit_finish()`.
static struct rb_mjit_unit_list compact_units = { LIST_HEAD_INIT(compact_units.head) };
// List of units before recompilation and just waiting for dlclose().
static struct rb_mjit_unit_list stale_units = { LIST_HEAD_INIT(stale_units.head) };
// The number of so far processed ISEQs, used to generate unique id.
static int current_unit_num;
// A mutex for conitionals and critical sections.
static rb_nativethread_lock_t mjit_engine_mutex;
// A thread conditional to wake up `mjit_finish` at the end of PCH thread.
static rb_nativethread_cond_t mjit_pch_wakeup;
// A thread conditional to wake up the client if there is a change in
// executed unit status.
static rb_nativethread_cond_t mjit_client_wakeup;
// A thread conditional to wake up a worker if there we have something
// to add or we need to stop MJIT engine.
static rb_nativethread_cond_t mjit_worker_wakeup;
// A thread conditional to wake up workers if at the end of GC.
static rb_nativethread_cond_t mjit_gc_wakeup;
// Greater than 0 when GC is working.
static int in_gc = 0;
// True when JIT is working.
static bool in_jit = false;
// True when JIT compaction is running.
static bool in_compact = false;
// Set to true to stop worker.
static bool stop_worker_p;
// Set to true if worker is stopped.
static bool worker_stopped;
// Path of "/tmp", which can be changed to $TMP in MinGW.
static char *tmp_dir;
// Hash like { 1 => true, 2 => true, ... } whose keys are valid `class_serial`s.
// This is used to invalidate obsoleted CALL_CACHE.
static VALUE valid_class_serials;
// Used C compiler path.
static const char *cc_path;
// Used C compiler flags.
static const char **cc_common_args;
// Used C compiler flags added by --jit-debug=...
static char **cc_added_args;
// Name of the precompiled header file.
static char *pch_file;
// The process id which should delete the pch_file on mjit_finish.
static rb_pid_t pch_owner_pid;
// Status of the precompiled header creation. The status is
// shared by the workers and the pch thread.
static enum {PCH_NOT_READY, PCH_FAILED, PCH_SUCCESS} pch_status;
#ifndef _MSC_VER
// Name of the header file.
static char *header_file;
#endif
#ifdef _WIN32
// Linker option to enable libruby.
static char *libruby_pathflag;
#endif
#include "mjit_config.h"
#if defined(__GNUC__) && \
(!defined(__clang__) || \
(defined(__clang__) && (defined(__FreeBSD__) || defined(__GLIBC__))))
# define GCC_PIC_FLAGS "-Wfatal-errors", "-fPIC", "-shared", "-w", "-pipe",
# define MJIT_CFLAGS_PIPE 1
#else
# define GCC_PIC_FLAGS /* empty */
# define MJIT_CFLAGS_PIPE 0
#endif
// Use `-nodefaultlibs -nostdlib` for GCC where possible, which does not work on mingw, cygwin, AIX, and OpenBSD.
// This seems to improve MJIT performance on GCC.
#if defined __GNUC__ && !defined __clang__ && !defined(_WIN32) && !defined(__CYGWIN__) && !defined(_AIX) && !defined(__OpenBSD__)
# define GCC_NOSTDLIB_FLAGS "-nodefaultlibs", "-nostdlib",
#else
# define GCC_NOSTDLIB_FLAGS // empty
#endif
static const char *const CC_COMMON_ARGS[] = {
MJIT_CC_COMMON MJIT_CFLAGS GCC_PIC_FLAGS
NULL
};
static const char *const CC_DEBUG_ARGS[] = {MJIT_DEBUGFLAGS NULL};
static const char *const CC_OPTIMIZE_ARGS[] = {MJIT_OPTFLAGS NULL};
static const char *const CC_LDSHARED_ARGS[] = {MJIT_LDSHARED GCC_PIC_FLAGS NULL};
static const char *const CC_DLDFLAGS_ARGS[] = {MJIT_DLDFLAGS NULL};
// `CC_LINKER_ARGS` are linker flags which must be passed to `-c` as well.
static const char *const CC_LINKER_ARGS[] = {
#if defined __GNUC__ && !defined __clang__ && !defined(__OpenBSD__)
"-nostartfiles",
#endif
GCC_NOSTDLIB_FLAGS NULL
};
static const char *const CC_LIBS[] = {
#if defined(_WIN32) || defined(__CYGWIN__)
MJIT_LIBS // mswin, mingw, cygwin
#endif
#if defined __GNUC__ && !defined __clang__
# if defined(_WIN32)
"-lmsvcrt", // mingw
# endif
"-lgcc", // mingw, cygwin, and GCC platforms using `-nodefaultlibs -nostdlib`
#endif
#if defined __ANDROID__
"-lm", // to avoid 'cannot locate symbol "modf" referenced by .../_ruby_mjit_XXX.so"'
#endif
NULL
};
#define CC_CODEFLAG_ARGS (mjit_opts.debug ? CC_DEBUG_ARGS : CC_OPTIMIZE_ARGS)
// Print the arguments according to FORMAT to stderr only if MJIT
// verbose option value is more or equal to LEVEL.
PRINTF_ARGS(static void, 2, 3)
verbose(int level, const char *format, ...)
{
if (mjit_opts.verbose >= level) {
va_list args;
size_t len = strlen(format);
char *full_format = alloca(sizeof(char) * (len + 2));
// Creating `format + '\n'` to atomically print format and '\n'.
memcpy(full_format, format, len);
full_format[len] = '\n';
full_format[len+1] = '\0';
va_start(args, format);
vfprintf(stderr, full_format, args);
va_end(args);
}
}
PRINTF_ARGS(static void, 1, 2)
mjit_warning(const char *format, ...)
{
if (mjit_opts.warnings || mjit_opts.verbose) {
va_list args;
fprintf(stderr, "MJIT warning: ");
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
fprintf(stderr, "\n");
}
}
// Add unit node to the tail of doubly linked `list`. It should be not in
// the list before.
static void
add_to_list(struct rb_mjit_unit *unit, struct rb_mjit_unit_list *list)
{
(void)RB_DEBUG_COUNTER_INC_IF(mjit_length_unit_queue, list == &unit_queue);
(void)RB_DEBUG_COUNTER_INC_IF(mjit_length_active_units, list == &active_units);
(void)RB_DEBUG_COUNTER_INC_IF(mjit_length_compact_units, list == &compact_units);
(void)RB_DEBUG_COUNTER_INC_IF(mjit_length_stale_units, list == &stale_units);
list_add_tail(&list->head, &unit->unode);
list->length++;
}
static void
remove_from_list(struct rb_mjit_unit *unit, struct rb_mjit_unit_list *list)
{
#if USE_DEBUG_COUNTER
rb_debug_counter_add(RB_DEBUG_COUNTER_mjit_length_unit_queue, -1, list == &unit_queue);
rb_debug_counter_add(RB_DEBUG_COUNTER_mjit_length_active_units, -1, list == &active_units);
rb_debug_counter_add(RB_DEBUG_COUNTER_mjit_length_compact_units, -1, list == &compact_units);
rb_debug_counter_add(RB_DEBUG_COUNTER_mjit_length_stale_units, -1, list == &stale_units);
#endif
list_del(&unit->unode);
list->length--;
}
static void
remove_file(const char *filename)
{
if (remove(filename)) {
mjit_warning("failed to remove \"%s\": %s", filename, strerror(errno));
}
}
// Lazily delete .so files.
static void
clean_temp_files(struct rb_mjit_unit *unit)
{
#if defined(_WIN32)
if (unit->so_file) {
char *so_file = unit->so_file;
unit->so_file = NULL;
// unit->so_file is set only when mjit_opts.save_temps is false.
remove_file(so_file);
free(so_file);
}
#endif
}
// This is called in the following situations:
// 1) On dequeue or `unload_units()`, associated ISeq is already GCed.
// 2) The unit is not called often and unloaded by `unload_units()`.
// 3) Freeing lists on `mjit_finish()`.
//
// `jit_func` value does not matter for 1 and 3 since the unit won't be used anymore.
// For the situation 2, this sets the ISeq's JIT state to NOT_COMPILED_JIT_ISEQ_FUNC
// to prevent the situation that the same methods are continuously compiled.
static void
free_unit(struct rb_mjit_unit *unit)
{
if (unit->iseq) { // ISeq is not GCed
unit->iseq->body->jit_func = (mjit_func_t)NOT_COMPILED_JIT_ISEQ_FUNC;
unit->iseq->body->jit_unit = NULL;
}
if (unit->cc_entries) {
void *entries = (void *)unit->cc_entries;
free(entries);
}
if (unit->handle && dlclose(unit->handle)) { // handle is NULL if it's in queue
mjit_warning("failed to close handle for u%d: %s", unit->id, dlerror());
}
clean_temp_files(unit);
free(unit);
}
// Start a critical section. Use message `msg` to print debug info at `level`.
static inline void
CRITICAL_SECTION_START(int level, const char *msg)
{
verbose(level, "Locking %s", msg);
rb_native_mutex_lock(&mjit_engine_mutex);
verbose(level, "Locked %s", msg);
}
// Finish the current critical section. Use message `msg` to print
// debug info at `level`.
static inline void
CRITICAL_SECTION_FINISH(int level, const char *msg)
{
verbose(level, "Unlocked %s", msg);
rb_native_mutex_unlock(&mjit_engine_mutex);
}
static int
sprint_uniq_filename(char *str, size_t size, unsigned long id, const char *prefix, const char *suffix)
{
return snprintf(str, size, "%s/%sp%"PRI_PIDT_PREFIX"uu%lu%s", tmp_dir, prefix, getpid(), id, suffix);
}
// Return time in milliseconds as a double.
#ifdef __APPLE__
double ruby_real_ms_time(void);
# define real_ms_time() ruby_real_ms_time()
#else
static double
real_ms_time(void)
{
# ifdef HAVE_CLOCK_GETTIME
struct timespec tv;
# ifdef CLOCK_MONOTONIC
const clockid_t c = CLOCK_MONOTONIC;
# else
const clockid_t c = CLOCK_REALTIME;
# endif
clock_gettime(c, &tv);
return tv.tv_nsec / 1000000.0 + tv.tv_sec * 1000.0;
# else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec / 1000.0 + tv.tv_sec * 1000.0;
# endif
}
#endif
// Return true if class_serial is not obsoleted. This is used by mjit_compile.c.
bool
mjit_valid_class_serial_p(rb_serial_t class_serial)
{
CRITICAL_SECTION_START(3, "in valid_class_serial_p");
bool found_p = rb_hash_stlike_lookup(valid_class_serials, LONG2FIX(class_serial), NULL);
CRITICAL_SECTION_FINISH(3, "in valid_class_serial_p");
return found_p;
}
// Return the best unit from list. The best is the first
// high priority unit or the unit whose iseq has the biggest number
// of calls so far.
static struct rb_mjit_unit *
get_from_list(struct rb_mjit_unit_list *list)
{
struct rb_mjit_unit *unit = NULL, *next, *best = NULL;
// Find iseq with max total_calls
list_for_each_safe(&list->head, unit, next, unode) {
if (unit->iseq == NULL) { // ISeq is GCed.
remove_from_list(unit, list);
free_unit(unit);
continue;
}
if (best == NULL || best->iseq->body->total_calls < unit->iseq->body->total_calls) {
best = unit;
}
}
if (best) {
remove_from_list(best, list);
}
return best;
}
// Return length of NULL-terminated array `args` excluding the NULL marker.
static size_t
args_len(char *const *args)
{
size_t i;
for (i = 0; (args[i]) != NULL;i++)
;
return i;
}
// Concatenate `num` passed NULL-terminated arrays of strings, put the
// result (with NULL end marker) into the heap, and return the result.
static char **
form_args(int num, ...)
{
va_list argp;
size_t len, n;
int i;
char **args, **res, **tmp;
va_start(argp, num);
res = NULL;
for (i = len = 0; i < num; i++) {
args = va_arg(argp, char **);
n = args_len(args);
if ((tmp = (char **)realloc(res, sizeof(char *) * (len + n + 1))) == NULL) {
free(res);
res = NULL;
break;
}
res = tmp;
MEMCPY(res + len, args, char *, n + 1);
len += n;
}
va_end(argp);
return res;
}
COMPILER_WARNING_PUSH
#if __has_warning("-Wdeprecated-declarations") || RBIMPL_COMPILER_IS(GCC)
COMPILER_WARNING_IGNORED(-Wdeprecated-declarations)
#endif
// Start an OS process of absolute executable path with arguments `argv`.
// Return PID of the process.
static pid_t
start_process(const char *abspath, char *const *argv)
{
// Not calling non-async-signal-safe functions between vfork
// and execv for safety
int dev_null = rb_cloexec_open(ruby_null_device, O_WRONLY, 0);
if (dev_null < 0) {
verbose(1, "MJIT: Failed to open a null device: %s", strerror(errno));
return -1;
}
if (mjit_opts.verbose >= 2) {
const char *arg;
fprintf(stderr, "Starting process: %s", abspath);
for (int i = 0; (arg = argv[i]) != NULL; i++)
fprintf(stderr, " %s", arg);
fprintf(stderr, "\n");
}
pid_t pid;
#ifdef _WIN32
extern HANDLE rb_w32_start_process(const char *abspath, char *const *argv, int out_fd);
int out_fd = 0;
if (mjit_opts.verbose <= 1) {
// Discard cl.exe's outputs like:
// _ruby_mjit_p12u3.c
// Creating library C:.../_ruby_mjit_p12u3.lib and object C:.../_ruby_mjit_p12u3.exp
out_fd = dev_null;
}
pid = (pid_t)rb_w32_start_process(abspath, argv, out_fd);
if (pid == 0) {
verbose(1, "MJIT: Failed to create process: %s", dlerror());
return -1;
}
#else
if ((pid = vfork()) == 0) { /* TODO: reuse some function in process.c */
umask(0077);
if (mjit_opts.verbose == 0) {
// CC can be started in a thread using a file which has been
// already removed while MJIT is finishing. Discard the
// messages about missing files.
dup2(dev_null, STDERR_FILENO);
dup2(dev_null, STDOUT_FILENO);
}
(void)close(dev_null);
pid = execv(abspath, argv); // Pid will be negative on an error
// Even if we successfully found CC to compile PCH we still can
// fail with loading the CC in very rare cases for some reasons.
// Stop the forked process in this case.
verbose(1, "MJIT: Error in execv: %s", abspath);
_exit(1);
}
#endif
(void)close(dev_null);
return pid;
}
COMPILER_WARNING_POP
// Execute an OS process of executable PATH with arguments ARGV.
// Return -1 or -2 if failed to execute, otherwise exit code of the process.
// TODO: Use a similar function in process.c
static int
exec_process(const char *path, char *const argv[])
{
int stat, exit_code = -2;
rb_vm_t *vm = WAITPID_USE_SIGCHLD ? GET_VM() : 0;
rb_nativethread_cond_t cond;
if (vm) {
rb_native_cond_initialize(&cond);
rb_native_mutex_lock(&vm->waitpid_lock);
}
pid_t pid = start_process(path, argv);
for (;pid > 0;) {
pid_t r = vm ? ruby_waitpid_locked(vm, pid, &stat, 0, &cond)
: waitpid(pid, &stat, 0);
if (r == -1) {
if (errno == EINTR) continue;
fprintf(stderr, "[%"PRI_PIDT_PREFIX"d] waitpid(%lu): %s (SIGCHLD=%d,%u)\n",
getpid(), (unsigned long)pid, strerror(errno),
RUBY_SIGCHLD, SIGCHLD_LOSSY);
break;
}
else if (r == pid) {
if (WIFEXITED(stat)) {
exit_code = WEXITSTATUS(stat);
break;
}
else if (WIFSIGNALED(stat)) {
exit_code = -1;
break;
}
}
}
if (vm) {
rb_native_mutex_unlock(&vm->waitpid_lock);
rb_native_cond_destroy(&cond);
}
return exit_code;
}
static void
remove_so_file(const char *so_file, struct rb_mjit_unit *unit)
{
#if defined(_WIN32)
// Windows can't remove files while it's used.
unit->so_file = strdup(so_file); // lazily delete on `clean_temp_files()`
if (unit->so_file == NULL)
mjit_warning("failed to allocate memory to lazily remove '%s': %s", so_file, strerror(errno));
#else
remove_file(so_file);
#endif
}
// Print _mjitX, but make a human-readable funcname when --jit-debug is used
static void
sprint_funcname(char *funcname, const struct rb_mjit_unit *unit)
{
const rb_iseq_t *iseq = unit->iseq;
if (iseq == NULL || (!mjit_opts.debug && !mjit_opts.debug_flags)) {
sprintf(funcname, "_mjit%d", unit->id);
return;
}
// Generate a short path
const char *path = RSTRING_PTR(rb_iseq_path(iseq));
const char *lib = "/lib/";
const char *version = "/" STRINGIZE(RUBY_API_VERSION_MAJOR) "." STRINGIZE(RUBY_API_VERSION_MINOR) "." STRINGIZE(RUBY_API_VERSION_TEENY) "/";
while (strstr(path, lib)) // skip "/lib/"
path = strstr(path, lib) + strlen(lib);
while (strstr(path, version)) // skip "/x.y.z/"
path = strstr(path, version) + strlen(version);
// Annotate all-normalized method names
const char *method = RSTRING_PTR(iseq->body->location.label);
if (!strcmp(method, "[]")) method = "AREF";
if (!strcmp(method, "[]=")) method = "ASET";
// Print and normalize
sprintf(funcname, "_mjit%d_%s_%s", unit->id, path, method);
for (size_t i = 0; i < strlen(funcname); i++) {
char c = funcname[i];
if (!(('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || ('0' <= c && c <= '9') || c == '_')) {
funcname[i] = '_';
}
}
}
static const int c_file_access_mode =
#ifdef O_BINARY
O_BINARY|
#endif
O_WRONLY|O_EXCL|O_CREAT;
#define append_str2(p, str, len) ((char *)memcpy((p), str, (len))+(len))
#define append_str(p, str) append_str2(p, str, sizeof(str)-1)
#define append_lit(p, str) append_str2(p, str, rb_strlen_lit(str))
#ifdef _MSC_VER
// Compile C file to so. It returns true if it succeeds. (mswin)
static bool
compile_c_to_so(const char *c_file, const char *so_file)
{
const char *files[] = { NULL, NULL, NULL, NULL, NULL, NULL, "-link", libruby_pathflag, NULL };
char *p;
// files[0] = "-Fe*.dll"
files[0] = p = alloca(sizeof(char) * (rb_strlen_lit("-Fe") + strlen(so_file) + 1));
p = append_lit(p, "-Fe");
p = append_str2(p, so_file, strlen(so_file));
*p = '\0';
// files[1] = "-Fo*.obj"
// We don't need .obj file, but it's somehow created to cwd without -Fo and we want to control the output directory.
files[1] = p = alloca(sizeof(char) * (rb_strlen_lit("-Fo") + strlen(so_file) - rb_strlen_lit(DLEXT) + rb_strlen_lit(".obj") + 1));
char *obj_file = p = append_lit(p, "-Fo");
p = append_str2(p, so_file, strlen(so_file) - rb_strlen_lit(DLEXT));
p = append_lit(p, ".obj");
*p = '\0';
// files[2] = "-Yu*.pch"
files[2] = p = alloca(sizeof(char) * (rb_strlen_lit("-Yu") + strlen(pch_file) + 1));
p = append_lit(p, "-Yu");
p = append_str2(p, pch_file, strlen(pch_file));
*p = '\0';
// files[3] = "C:/.../rb_mjit_header-*.obj"
files[3] = p = alloca(sizeof(char) * (strlen(pch_file) + 1));
p = append_str2(p, pch_file, strlen(pch_file) - strlen(".pch"));
p = append_lit(p, ".obj");
*p = '\0';
// files[4] = "-Tc*.c"
files[4] = p = alloca(sizeof(char) * (rb_strlen_lit("-Tc") + strlen(c_file) + 1));
p = append_lit(p, "-Tc");
p = append_str2(p, c_file, strlen(c_file));
*p = '\0';
// files[5] = "-Fd*.pdb"
files[5] = p = alloca(sizeof(char) * (rb_strlen_lit("-Fd") + strlen(pch_file) + 1));
p = append_lit(p, "-Fd");
p = append_str2(p, pch_file, strlen(pch_file) - rb_strlen_lit(".pch"));
p = append_lit(p, ".pdb");
*p = '\0';
char **args = form_args(5, CC_LDSHARED_ARGS, CC_CODEFLAG_ARGS,
files, CC_LIBS, CC_DLDFLAGS_ARGS);
if (args == NULL)
return false;
int exit_code = exec_process(cc_path, args);
free(args);
if (exit_code == 0) {
// remove never-used files (.obj, .lib, .exp, .pdb). XXX: Is there any way not to generate this?
if (!mjit_opts.save_temps) {
char *before_dot;
remove_file(obj_file);
before_dot = obj_file + strlen(obj_file) - rb_strlen_lit(".obj");
append_lit(before_dot, ".lib"); remove_file(obj_file);
append_lit(before_dot, ".exp"); remove_file(obj_file);
append_lit(before_dot, ".pdb"); remove_file(obj_file);
}
}
else {
verbose(2, "compile_c_to_so: compile error: %d", exit_code);
}
return exit_code == 0;
}
#else // _MSC_VER
// The function producing the pre-compiled header.
static void
make_pch(void)
{
const char *rest_args[] = {
# ifdef __clang__
"-emit-pch",
# endif
// -nodefaultlibs is a linker flag, but it may affect cc1 behavior on Gentoo, which should NOT be changed on pch:
// https://gitweb.gentoo.org/proj/gcc-patches.git/tree/7.3.0/gentoo/13_all_default-ssp-fix.patch
GCC_NOSTDLIB_FLAGS
"-o", pch_file, header_file,
NULL,
};
verbose(2, "Creating precompiled header");
char **args = form_args(4, cc_common_args, CC_CODEFLAG_ARGS, cc_added_args, rest_args);
if (args == NULL) {
mjit_warning("making precompiled header failed on forming args");
CRITICAL_SECTION_START(3, "in make_pch");
pch_status = PCH_FAILED;
CRITICAL_SECTION_FINISH(3, "in make_pch");
return;
}
int exit_code = exec_process(cc_path, args);
free(args);
CRITICAL_SECTION_START(3, "in make_pch");
if (exit_code == 0) {
pch_status = PCH_SUCCESS;
}
else {
mjit_warning("Making precompiled header failed on compilation. Stopping MJIT worker...");
pch_status = PCH_FAILED;
}
/* wakeup `mjit_finish` */
rb_native_cond_broadcast(&mjit_pch_wakeup);
CRITICAL_SECTION_FINISH(3, "in make_pch");
}
// Compile .c file to .so file. It returns true if it succeeds. (non-mswin)
// Not compiling .c to .so directly because it fails on MinGW, and this helps
// to generate no .dSYM on macOS.
static bool
compile_c_to_so(const char *c_file, const char *so_file)
{
char* o_file = alloca(strlen(c_file) + 1);
strcpy(o_file, c_file);
o_file[strlen(c_file) - 1] = 'o';
const char *o_args[] = {
"-o", o_file, c_file,
# ifdef __clang__
"-include-pch", pch_file,
# endif
"-c", NULL
};
char **args = form_args(5, cc_common_args, CC_CODEFLAG_ARGS, cc_added_args, o_args, CC_LINKER_ARGS);
if (args == NULL) return false;
int exit_code = exec_process(cc_path, args);
free(args);
if (exit_code != 0) {
verbose(2, "compile_c_to_so: failed to compile .c to .o: %d", exit_code);
return false;
}
const char *so_args[] = {
"-o", so_file,
# ifdef _WIN32
libruby_pathflag,
# endif
o_file, NULL
};
args = form_args(6, CC_LDSHARED_ARGS, CC_CODEFLAG_ARGS, so_args, CC_LIBS, CC_DLDFLAGS_ARGS, CC_LINKER_ARGS);
if (args == NULL) return false;
exit_code = exec_process(cc_path, args);
free(args);
if (!mjit_opts.save_temps) remove_file(o_file);
if (exit_code != 0) {
verbose(2, "compile_c_to_so: failed to link .o to .so: %d", exit_code);
}
return exit_code == 0;
}
#endif // _MSC_VER
#if USE_JIT_COMPACTION
static void compile_prelude(FILE *f);
static bool
compile_compact_jit_code(char* c_file)
{
FILE *f;
int fd = rb_cloexec_open(c_file, c_file_access_mode, 0600);
if (fd < 0 || (f = fdopen(fd, "w")) == NULL) {
int e = errno;
if (fd >= 0) (void)close(fd);
verbose(1, "Failed to fopen '%s', giving up JIT for it (%s)", c_file, strerror(e));
return false;
}
compile_prelude(f);
// wait until mjit_gc_exit_hook is called
CRITICAL_SECTION_START(3, "before mjit_compile to wait GC finish");
while (in_gc) {
verbose(3, "Waiting wakeup from GC");
rb_native_cond_wait(&mjit_gc_wakeup, &mjit_engine_mutex);
}
// We need to check again here because we could've waited on GC above
bool iseq_gced = false;
struct rb_mjit_unit *child_unit = 0;
list_for_each(&active_units.head, child_unit, unode) {
if (child_unit->iseq == NULL) iseq_gced = true;
}
in_jit = !iseq_gced;
CRITICAL_SECTION_FINISH(3, "before mjit_compile to wait GC finish");
if (!in_jit) {
fclose(f);
if (!mjit_opts.save_temps)
remove_file(c_file);
return false;
}
// This entire loop lock GC so that we do not need to consider a case that
// ISeq is GC-ed in a middle of re-compilation. It takes 3~4ms with 100 methods
// on my machine. It's not too bad compared to compilation time of C (7200~8000ms),
// but it might be larger if we use a larger --jit-max-cache.
//
// TODO: Consider using a more granular lock after we implement inlining across
// compacted functions (not done yet).
bool success = true;
list_for_each(&active_units.head, child_unit, unode) {
char funcname[MAXPATHLEN];
sprint_funcname(funcname, child_unit);
long iseq_lineno = 0;
if (FIXNUM_P(child_unit->iseq->body->location.first_lineno))
// FIX2INT may fallback to rb_num2long(), which is a method call and dangerous in MJIT worker. So using only FIX2LONG.
iseq_lineno = FIX2LONG(child_unit->iseq->body->location.first_lineno);
const char *sep = "@";
const char *iseq_label = RSTRING_PTR(child_unit->iseq->body->location.label);
const char *iseq_path = RSTRING_PTR(rb_iseq_path(child_unit->iseq));
if (!iseq_label) iseq_label = sep = "";
fprintf(f, "\n/* %s%s%s:%ld */\n", iseq_label, sep, iseq_path, iseq_lineno);
success &= mjit_compile(f, child_unit->iseq, funcname, child_unit->id);
}
// release blocking mjit_gc_start_hook
CRITICAL_SECTION_START(3, "after mjit_compile to wakeup client for GC");
in_jit = false;
verbose(3, "Sending wakeup signal to client in a mjit-worker for GC");
rb_native_cond_signal(&mjit_client_wakeup);
CRITICAL_SECTION_FINISH(3, "in worker to wakeup client for GC");
fclose(f);
return success;
}
// Compile all cached .c files and build a single .so file. Reload all JIT func from it.
// This improves the code locality for better performance in terms of iTLB and iCache.
static void
compact_all_jit_code(void)
{
struct rb_mjit_unit *unit, *cur = 0;
static const char c_ext[] = ".c";
static const char so_ext[] = DLEXT;
char c_file[MAXPATHLEN], so_file[MAXPATHLEN];
// Abnormal use case of rb_mjit_unit that doesn't have ISeq
unit = calloc(1, sizeof(struct rb_mjit_unit)); // To prevent GC, don't use ZALLOC
if (unit == NULL) return;
unit->id = current_unit_num++;
sprint_uniq_filename(c_file, (int)sizeof(c_file), unit->id, MJIT_TMP_PREFIX, c_ext);
sprint_uniq_filename(so_file, (int)sizeof(so_file), unit->id, MJIT_TMP_PREFIX, so_ext);
CRITICAL_SECTION_START(3, "in compact_all_jit_code to guard .c files from unload_units");
in_compact = true;
CRITICAL_SECTION_FINISH(3, "in compact_all_jit_code to guard .c files from unload_units");
bool success = compile_compact_jit_code(c_file);
double start_time = real_ms_time();
if (success) {
success = compile_c_to_so(c_file, so_file);
if (!mjit_opts.save_temps)
remove_file(c_file);
}
double end_time = real_ms_time();
CRITICAL_SECTION_START(3, "in compact_all_jit_code to release .c files");
in_compact = false;
CRITICAL_SECTION_FINISH(3, "in compact_all_jit_code to release .c files");
if (success) {
void *handle = dlopen(so_file, RTLD_NOW);
if (handle == NULL) {
mjit_warning("failure in loading code from compacted '%s': %s", so_file, dlerror());
free(unit);
return;
}
unit->handle = handle;
// lazily dlclose handle (and .so file for win32) on `mjit_finish()`.
add_to_list(unit, &compact_units);
if (!mjit_opts.save_temps)
remove_so_file(so_file, unit);
CRITICAL_SECTION_START(3, "in compact_all_jit_code to read list");
list_for_each(&active_units.head, cur, unode) {
void *func;
char funcname[MAXPATHLEN];
sprint_funcname(funcname, cur);
if ((func = dlsym(handle, funcname)) == NULL) {
mjit_warning("skipping to reload '%s' from '%s': %s", funcname, so_file, dlerror());
continue;
}
if (cur->iseq) { // Check whether GCed or not
// Usage of jit_code might be not in a critical section.
MJIT_ATOMIC_SET(cur->iseq->body->jit_func, (mjit_func_t)func);
}
}
CRITICAL_SECTION_FINISH(3, "in compact_all_jit_code to read list");
verbose(1, "JIT compaction (%.1fms): Compacted %d methods %s -> %s", end_time - start_time, active_units.length, c_file, so_file);
}
else {
free(unit);
verbose(1, "JIT compaction failure (%.1fms): Failed to compact methods", end_time - start_time);
}
}
#endif // USE_JIT_COMPACTION
static void *
load_func_from_so(const char *so_file, const char *funcname, struct rb_mjit_unit *unit)
{
void *handle, *func;
handle = dlopen(so_file, RTLD_NOW);
if (handle == NULL) {
mjit_warning("failure in loading code from '%s': %s", so_file, dlerror());
return (void *)NOT_ADDED_JIT_ISEQ_FUNC;
}
func = dlsym(handle, funcname);
unit->handle = handle;
return func;
}
#ifndef __clang__
static const char *
header_name_end(const char *s)
{
const char *e = s + strlen(s);
# ifdef __GNUC__ // don't chomp .pch for mswin
static const char suffix[] = ".gch";
// chomp .gch suffix
if (e > s+sizeof(suffix)-1 && strcmp(e-sizeof(suffix)+1, suffix) == 0) {
e -= sizeof(suffix)-1;
}
# endif
return e;
}
#endif
// Print platform-specific prerequisites in generated code.
static void
compile_prelude(FILE *f)
{
#ifndef __clang__ // -include-pch is used for Clang
const char *s = pch_file;
const char *e = header_name_end(s);
fprintf(f, "#include \"");
// print pch_file except .gch for gcc, but keep .pch for mswin
for (; s < e; s++) {
switch(*s) {
case '\\': case '"':
fputc('\\', f);
}
fputc(*s, f);
}
fprintf(f, "\"\n");
#endif
#ifdef _WIN32
fprintf(f, "void _pei386_runtime_relocator(void){}\n");
fprintf(f, "int __stdcall DllMainCRTStartup(void* hinstDLL, unsigned int fdwReason, void* lpvReserved) { return 1; }\n");
#endif
}
// Compile ISeq in UNIT and return function pointer of JIT-ed code.
// It may return NOT_COMPILED_JIT_ISEQ_FUNC if something went wrong.
static mjit_func_t
convert_unit_to_func(struct rb_mjit_unit *unit)
{
static const char c_ext[] = ".c";
static const char so_ext[] = DLEXT;
char c_file[MAXPATHLEN], so_file[MAXPATHLEN], funcname[MAXPATHLEN];
sprint_uniq_filename(c_file, (int)sizeof(c_file), unit->id, MJIT_TMP_PREFIX, c_ext);
sprint_uniq_filename(so_file, (int)sizeof(so_file), unit->id, MJIT_TMP_PREFIX, so_ext);
sprint_funcname(funcname, unit);
FILE *f;
int fd = rb_cloexec_open(c_file, c_file_access_mode, 0600);
if (fd < 0 || (f = fdopen(fd, "w")) == NULL) {
int e = errno;
if (fd >= 0) (void)close(fd);
verbose(1, "Failed to fopen '%s', giving up JIT for it (%s)", c_file, strerror(e));
return (mjit_func_t)NOT_COMPILED_JIT_ISEQ_FUNC;
}
// print #include of MJIT header, etc.
compile_prelude(f);
// wait until mjit_gc_exit_hook is called
CRITICAL_SECTION_START(3, "before mjit_compile to wait GC finish");
while (in_gc) {
verbose(3, "Waiting wakeup from GC");
rb_native_cond_wait(&mjit_gc_wakeup, &mjit_engine_mutex);
}
// We need to check again here because we could've waited on GC above
in_jit = (unit->iseq != NULL);
CRITICAL_SECTION_FINISH(3, "before mjit_compile to wait GC finish");
if (!in_jit) {
fclose(f);
if (!mjit_opts.save_temps)
remove_file(c_file);
return (mjit_func_t)NOT_COMPILED_JIT_ISEQ_FUNC;
}
// To make MJIT worker thread-safe against GC.compact, copy ISeq values while `in_jit` is true.
long iseq_lineno = 0;
if (FIXNUM_P(unit->iseq->body->location.first_lineno))
// FIX2INT may fallback to rb_num2long(), which is a method call and dangerous in MJIT worker. So using only FIX2LONG.
iseq_lineno = FIX2LONG(unit->iseq->body->location.first_lineno);
char *iseq_label = alloca(RSTRING_LEN(unit->iseq->body->location.label) + 1);
char *iseq_path = alloca(RSTRING_LEN(rb_iseq_path(unit->iseq)) + 1);
strcpy(iseq_label, RSTRING_PTR(unit->iseq->body->location.label));
strcpy(iseq_path, RSTRING_PTR(rb_iseq_path(unit->iseq)));
verbose(2, "start compilation: %s@%s:%ld -> %s", iseq_label, iseq_path, iseq_lineno, c_file);
fprintf(f, "/* %s@%s:%ld */\n\n", iseq_label, iseq_path, iseq_lineno);
bool success = mjit_compile(f, unit->iseq, funcname, unit->id);
// release blocking mjit_gc_start_hook
CRITICAL_SECTION_START(3, "after mjit_compile to wakeup client for GC");
in_jit = false;
verbose(3, "Sending wakeup signal to client in a mjit-worker for GC");
rb_native_cond_signal(&mjit_client_wakeup);
CRITICAL_SECTION_FINISH(3, "in worker to wakeup client for GC");
fclose(f);
if (!success) {
if (!mjit_opts.save_temps)
remove_file(c_file);
verbose(1, "JIT failure: %s@%s:%ld -> %s", iseq_label, iseq_path, iseq_lineno, c_file);
return (mjit_func_t)NOT_COMPILED_JIT_ISEQ_FUNC;
}
double start_time = real_ms_time();
success = compile_c_to_so(c_file, so_file);
if (!mjit_opts.save_temps)
remove_file(c_file);
double end_time = real_ms_time();
if (!success) {
verbose(2, "Failed to generate so: %s", so_file);
return (mjit_func_t)NOT_COMPILED_JIT_ISEQ_FUNC;
}
void *func = load_func_from_so(so_file, funcname, unit);
if (!mjit_opts.save_temps)
remove_so_file(so_file, unit);
if ((uintptr_t)func > (uintptr_t)LAST_JIT_ISEQ_FUNC) {
verbose(1, "JIT success (%.1fms): %s@%s:%ld -> %s",
end_time - start_time, iseq_label, iseq_path, iseq_lineno, c_file);
}
return (mjit_func_t)func;
}
// To see cc_entries using index returned by `mjit_capture_cc_entries` in mjit_compile.c
const struct rb_callcache **
mjit_iseq_cc_entries(const struct rb_iseq_constant_body *const body)
{
return body->jit_unit->cc_entries;
}
// Capture cc entries of `captured_iseq` and append them to `compiled_iseq->jit_unit->cc_entries`.
// This is needed when `captured_iseq` is inlined by `compiled_iseq` and GC needs to mark inlined cc.
//
// Index to refer to `compiled_iseq->jit_unit->cc_entries` is returned instead of the address
// because old addresses may be invalidated by `realloc` later. -1 is returned on failure.
//
// This assumes that it's safe to reference cc without acquiring GVL.
int
mjit_capture_cc_entries(const struct rb_iseq_constant_body *compiled_iseq, const struct rb_iseq_constant_body *captured_iseq)
{
struct rb_mjit_unit *unit = compiled_iseq->jit_unit;
unsigned int new_entries_size = unit->cc_entries_size + captured_iseq->ci_size;
VM_ASSERT(captured_iseq->ci_size > 0);
// Allocate new cc_entries and append them to unit->cc_entries
const struct rb_callcache **cc_entries;
int cc_entries_index = unit->cc_entries_size;
if (unit->cc_entries_size == 0) {
VM_ASSERT(unit->cc_entries == NULL);
unit->cc_entries = cc_entries = malloc(sizeof(struct rb_callcache *) * new_entries_size);
if (cc_entries == NULL) return -1;
}
else {
void *cc_ptr = (void *)unit->cc_entries; // get rid of bogus warning by VC
cc_entries = realloc(cc_ptr, sizeof(struct rb_callcache *) * new_entries_size);
if (cc_entries == NULL) return -1;
unit->cc_entries = cc_entries;
cc_entries += cc_entries_index;
}
unit->cc_entries_size = new_entries_size;
// Capture cc to cc_enties
for (unsigned int i = 0; i < captured_iseq->ci_size; i++) {
cc_entries[i] = captured_iseq->call_data[i].cc;
}
return cc_entries_index;
}
// The function implementing a worker. It is executed in a separate
// thread by rb_thread_create_mjit_thread. It compiles precompiled header
// and then compiles requested ISeqs.
void
mjit_worker(void)
{
// Allow only `max_cache_size / 10` times (default: 10) of compaction.
// Note: GC of compacted code has not been implemented yet.
int max_compact_size = mjit_opts.max_cache_size / 10;
if (max_compact_size < 10) max_compact_size = 10;
#ifndef _MSC_VER
if (pch_status == PCH_NOT_READY) {
make_pch();
}
#endif
if (pch_status == PCH_FAILED) {
mjit_enabled = false;
CRITICAL_SECTION_START(3, "in worker to update worker_stopped");
worker_stopped = true;
verbose(3, "Sending wakeup signal to client in a mjit-worker");
rb_native_cond_signal(&mjit_client_wakeup);
CRITICAL_SECTION_FINISH(3, "in worker to update worker_stopped");
return; // TODO: do the same thing in the latter half of mjit_finish
}
// main worker loop
while (!stop_worker_p) {
struct rb_mjit_unit *unit;
// wait until unit is available
CRITICAL_SECTION_START(3, "in worker dequeue");
while ((list_empty(&unit_queue.head) || active_units.length >= mjit_opts.max_cache_size) && !stop_worker_p) {
rb_native_cond_wait(&mjit_worker_wakeup, &mjit_engine_mutex);
verbose(3, "Getting wakeup from client");
}
unit = get_from_list(&unit_queue);
CRITICAL_SECTION_FINISH(3, "in worker dequeue");
if (unit) {
// JIT compile
mjit_func_t func = convert_unit_to_func(unit);
(void)RB_DEBUG_COUNTER_INC_IF(mjit_compile_failures, func == (mjit_func_t)NOT_COMPILED_JIT_ISEQ_FUNC);
CRITICAL_SECTION_START(3, "in jit func replace");
while (in_gc) { // Make sure we're not GC-ing when touching ISeq
verbose(3, "Waiting wakeup from GC");
rb_native_cond_wait(&mjit_gc_wakeup, &mjit_engine_mutex);
}
if (unit->iseq) { // Check whether GCed or not
if ((uintptr_t)func > (uintptr_t)LAST_JIT_ISEQ_FUNC) {
add_to_list(unit, &active_units);
}
// Usage of jit_code might be not in a critical section.
MJIT_ATOMIC_SET(unit->iseq->body->jit_func, func);
}
else {
free_unit(unit);
}
CRITICAL_SECTION_FINISH(3, "in jit func replace");
#if USE_JIT_COMPACTION
// Combine .o files to one .so and reload all jit_func to improve memory locality.
if (compact_units.length < max_compact_size
&& ((!mjit_opts.wait && unit_queue.length == 0 && active_units.length > 1)
|| active_units.length == mjit_opts.max_cache_size)) {
compact_all_jit_code();
}
#endif
}
}
// To keep mutex unlocked when it is destroyed by mjit_finish, don't wrap CRITICAL_SECTION here.
worker_stopped = true;
}