ruby/thread_pthread.c

867 строки
21 KiB
C

/* -*-c-*- */
/**********************************************************************
thread_pthread.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
#include "gc.h"
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
static void native_mutex_lock(pthread_mutex_t *lock);
static void native_mutex_unlock(pthread_mutex_t *lock);
static int native_mutex_trylock(pthread_mutex_t *lock);
static void native_mutex_initialize(pthread_mutex_t *lock);
static void native_mutex_destroy(pthread_mutex_t *lock);
static void native_cond_signal(pthread_cond_t *cond);
static void native_cond_broadcast(pthread_cond_t *cond);
static void native_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
static void native_cond_initialize(pthread_cond_t *cond);
static void native_cond_destroy(pthread_cond_t *cond);
static void
native_mutex_lock(pthread_mutex_t *lock)
{
int r;
if ((r = pthread_mutex_lock(lock)) != 0) {
rb_bug("pthread_mutex_lock: %d", r);
}
}
static void
native_mutex_unlock(pthread_mutex_t *lock)
{
int r;
if ((r = pthread_mutex_unlock(lock)) != 0) {
rb_bug("native_mutex_unlock return non-zero: %d", r);
}
}
static inline int
native_mutex_trylock(pthread_mutex_t *lock)
{
int r;
if ((r = pthread_mutex_trylock(lock)) != 0) {
if (r == EBUSY) {
return EBUSY;
}
else {
rb_bug("native_mutex_trylock return non-zero: %d", r);
}
}
return 0;
}
static void
native_mutex_initialize(pthread_mutex_t *lock)
{
int r = pthread_mutex_init(lock, 0);
if (r != 0) {
rb_bug("native_mutex_initialize return non-zero: %d", r);
}
}
static void
native_mutex_destroy(pthread_mutex_t *lock)
{
int r = pthread_mutex_destroy(lock);
if (r != 0) {
rb_bug("native_mutex_destroy return non-zero: %d", r);
}
}
static void
native_cond_initialize(pthread_cond_t *cond)
{
int r = pthread_cond_init(cond, 0);
if (r != 0) {
rb_bug("native_cond_initialize return non-zero: %d", r);
}
}
static void
native_cond_destroy(pthread_cond_t *cond)
{
int r = pthread_cond_destroy(cond);
if (r != 0) {
rb_bug("native_cond_destroy return non-zero: %d", r);
}
}
static void
native_cond_signal(pthread_cond_t *cond)
{
pthread_cond_signal(cond);
}
static void
native_cond_broadcast(pthread_cond_t *cond)
{
pthread_cond_broadcast(cond);
}
static void
native_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
pthread_cond_wait(cond, mutex);
}
static int
native_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, struct timespec *ts)
{
return pthread_cond_timedwait(cond, mutex, ts);
}
#define native_cleanup_push pthread_cleanup_push
#define native_cleanup_pop pthread_cleanup_pop
#ifdef HAVE_SCHED_YIELD
#define native_thread_yield() (void)sched_yield()
#else
#define native_thread_yield() ((void)0)
#endif
#ifndef __CYGWIN__
static void add_signal_thread_list(rb_thread_t *th);
#endif
static void remove_signal_thread_list(rb_thread_t *th);
static rb_thread_lock_t signal_thread_list_lock;
static pthread_key_t ruby_native_thread_key;
static void
null_func(int i)
{
/* null */
}
static rb_thread_t *
ruby_thread_from_native(void)
{
return pthread_getspecific(ruby_native_thread_key);
}
static int
ruby_thread_set_native(rb_thread_t *th)
{
return pthread_setspecific(ruby_native_thread_key, th) == 0;
}
static void
Init_native_thread(void)
{
rb_thread_t *th = GET_THREAD();
pthread_key_create(&ruby_native_thread_key, NULL);
th->thread_id = pthread_self();
native_cond_initialize(&th->native_thread_data.sleep_cond);
ruby_thread_set_native(th);
native_mutex_initialize(&signal_thread_list_lock);
posix_signal(SIGVTALRM, null_func);
}
static void
native_thread_destroy(rb_thread_t *th)
{
pthread_mutex_destroy(&th->interrupt_lock);
pthread_cond_destroy(&th->native_thread_data.sleep_cond);
}
#define USE_THREAD_CACHE 0
#if STACK_GROW_DIRECTION
#define STACK_GROW_DIR_DETECTION
#define STACK_DIR_UPPER(a,b) STACK_UPPER(0, a, b)
#else
#define STACK_GROW_DIR_DETECTION VALUE stack_grow_dir_detection
#define STACK_DIR_UPPER(a,b) STACK_UPPER(&stack_grow_dir_detection, a, b)
#endif
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
#define STACKADDR_AVAILABLE 1
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
#define STACKADDR_AVAILABLE 1
#endif
#ifdef STACKADDR_AVAILABLE
static int
get_stack(void **addr, size_t *size)
{
#define CHECK_ERR(expr) \
{int err = (expr); if (err) return err;}
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
pthread_attr_t attr;
size_t guard = 0;
# ifdef HAVE_PTHREAD_GETATTR_NP
CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
# else
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
if (pthread_attr_getguardsize(&attr, &guard) == 0) {
STACK_GROW_DIR_DETECTION;
STACK_DIR_UPPER((void)0, *addr = (char *)*addr + guard);
*size -= guard;
}
# else
CHECK_ERR(pthread_attr_init(&attr));
CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
CHECK_ERR(pthread_attr_getstacksize(&attr, size));
# endif
CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
# ifndef HAVE_PTHREAD_GETATTR_NP
pthread_attr_destroy(&attr);
# endif
size -= guard;
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
pthread_t th = pthread_self();
*addr = pthread_get_stackaddr_np(th);
*size = pthread_get_stacksize_np(th);
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
stack_t stk;
# if defined HAVE_THR_STKSEGMENT
CHECK_ERR(thr_stksegment(&stk));
# else
CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
# endif
*addr = stk.ss_sp;
*size = stk.ss_size;
#endif
return 0;
#undef CHECK_ERR
}
#endif
static struct {
rb_thread_id_t id;
size_t stack_maxsize;
VALUE *stack_start;
#ifdef __ia64
VALUE *register_stack_start;
#endif
} native_main_thread;
#ifdef STACK_END_ADDRESS
extern void *STACK_END_ADDRESS;
#endif
#undef ruby_init_stack
void
ruby_init_stack(volatile VALUE *addr
#ifdef __ia64
, void *bsp
#endif
)
{
native_main_thread.id = pthread_self();
#ifdef STACK_END_ADDRESS
native_main_thread.stack_start = STACK_END_ADDRESS;
#else
if (!native_main_thread.stack_start ||
STACK_UPPER((VALUE *)(void *)&addr,
native_main_thread.stack_start > addr,
native_main_thread.stack_start < addr)) {
native_main_thread.stack_start = (VALUE *)addr;
}
#endif
#ifdef __ia64
if (!native_main_thread.register_stack_start ||
(VALUE*)bsp < native_main_thread.register_stack_start) {
native_main_thread.register_stack_start = (VALUE*)bsp;
}
#endif
#ifdef HAVE_GETRLIMIT
{
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
size_t space = (size_t)(rlim.rlim_cur/5);
if (space > 1024*1024) space = 1024*1024;
native_main_thread.stack_maxsize = (size_t)rlim.rlim_cur - space;
}
}
#endif
}
#define CHECK_ERR(expr) \
{int err = (expr); if (err) {rb_bug("err: %d - %s", err, #expr);}}
static int
native_thread_init_stack(rb_thread_t *th)
{
rb_thread_id_t curr = pthread_self();
if (pthread_equal(curr, native_main_thread.id)) {
th->machine_stack_start = native_main_thread.stack_start;
th->machine_stack_maxsize = native_main_thread.stack_maxsize;
}
else {
#ifdef HAVE_PTHREAD_GETATTR_NP
pthread_attr_t attr;
void *start;
CHECK_ERR(pthread_getattr_np(curr, &attr));
# if defined HAVE_PTHREAD_ATTR_GETSTACK
CHECK_ERR(pthread_attr_getstack(&attr, &start, &th->machine_stack_maxsize));
# elif defined HAVE_PTHREAD_ATTR_GETSTACKSIZE && defined HAVE_PTHREAD_ATTR_GETSTACKADDR
CHECK_ERR(pthread_attr_getstackaddr(&attr, &start));
CHECK_ERR(pthread_attr_getstacksize(&attr, &th->machine_stack_maxsize));
# endif
th->machine_stack_start = start;
#else
rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
#endif
}
#ifdef __ia64
th->machine_register_stack_start = native_main_thread.register_stack_start;
th->machine_stack_maxsize /= 2;
th->machine_register_stack_maxsize = th->machine_stack_maxsize;
#endif
return 0;
}
static void *
thread_start_func_1(void *th_ptr)
{
#if USE_THREAD_CACHE
thread_start:
#endif
{
rb_thread_t *th = th_ptr;
VALUE stack_start;
/* run */
thread_start_func_2(th, &stack_start, rb_ia64_bsp());
}
#if USE_THREAD_CACHE
if (1) {
/* cache thread */
rb_thread_t *th;
static rb_thread_t *register_cached_thread_and_wait(void);
if ((th = register_cached_thread_and_wait()) != 0) {
th_ptr = (void *)th;
th->thread_id = pthread_self();
goto thread_start;
}
}
#endif
return 0;
}
void rb_thread_create_control_thread(void);
struct cached_thread_entry {
volatile rb_thread_t **th_area;
pthread_cond_t *cond;
struct cached_thread_entry *next;
};
#if USE_THREAD_CACHE
static pthread_mutex_t thread_cache_lock = PTHREAD_MUTEX_INITIALIZER;
struct cached_thread_entry *cached_thread_root;
static rb_thread_t *
register_cached_thread_and_wait(void)
{
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
volatile rb_thread_t *th_area = 0;
struct cached_thread_entry *entry =
(struct cached_thread_entry *)malloc(sizeof(struct cached_thread_entry));
struct timeval tv;
struct timespec ts;
gettimeofday(&tv, 0);
ts.tv_sec = tv.tv_sec + 60;
ts.tv_nsec = tv.tv_usec * 1000;
pthread_mutex_lock(&thread_cache_lock);
{
entry->th_area = &th_area;
entry->cond = &cond;
entry->next = cached_thread_root;
cached_thread_root = entry;
pthread_cond_timedwait(&cond, &thread_cache_lock, &ts);
{
struct cached_thread_entry *e = cached_thread_root;
struct cached_thread_entry *prev = cached_thread_root;
while (e) {
if (e == entry) {
if (prev == cached_thread_root) {
cached_thread_root = e->next;
}
else {
prev->next = e->next;
}
break;
}
prev = e;
e = e->next;
}
}
free(entry); /* ok */
pthread_cond_destroy(&cond);
}
pthread_mutex_unlock(&thread_cache_lock);
return (rb_thread_t *)th_area;
}
#endif
static int
use_cached_thread(rb_thread_t *th)
{
int result = 0;
#if USE_THREAD_CACHE
struct cached_thread_entry *entry;
if (cached_thread_root) {
pthread_mutex_lock(&thread_cache_lock);
entry = cached_thread_root;
{
if (cached_thread_root) {
cached_thread_root = entry->next;
*entry->th_area = th;
result = 1;
}
}
if (result) {
pthread_cond_signal(entry->cond);
}
pthread_mutex_unlock(&thread_cache_lock);
}
#endif
return result;
}
enum {
#ifdef __SYMBIAN32__
RUBY_STACK_MIN_LIMIT = 64 * 1024, /* 64KB: Let's be slightly more frugal on mobile platform */
#else
RUBY_STACK_MIN_LIMIT = 512 * 1024, /* 512KB */
#endif
RUBY_STACK_MIN = (
#ifdef PTHREAD_STACK_MIN
(RUBY_STACK_MIN_LIMIT < PTHREAD_STACK_MIN) ? PTHREAD_STACK_MIN * 2 :
#endif
RUBY_STACK_MIN_LIMIT),
RUBY_STACK_SPACE_LIMIT = 1024 * 1024,
RUBY_STACK_SPACE = (RUBY_STACK_MIN/5 > RUBY_STACK_SPACE_LIMIT ?
RUBY_STACK_SPACE_LIMIT : RUBY_STACK_MIN/5)
};
static int
native_thread_create(rb_thread_t *th)
{
int err = 0;
if (use_cached_thread(th)) {
thread_debug("create (use cached thread): %p\n", (void *)th);
}
else {
pthread_attr_t attr;
const size_t stack_size = RUBY_STACK_MIN;
const size_t space = RUBY_STACK_SPACE;
th->machine_stack_maxsize = stack_size - space;
#ifdef __ia64
th->machine_stack_maxsize /= 2;
th->machine_register_stack_maxsize = th->machine_stack_maxsize;
#endif
CHECK_ERR(pthread_attr_init(&attr));
#ifdef PTHREAD_STACK_MIN
thread_debug("create - stack size: %lu\n", (unsigned long)stack_size);
CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
#endif
#ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
#endif
CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th);
thread_debug("create: %p (%d)", (void *)th, err);
CHECK_ERR(pthread_attr_destroy(&attr));
if (!err) {
pthread_cond_init(&th->native_thread_data.sleep_cond, 0);
}
}
return err;
}
static void
native_thread_join(pthread_t th)
{
int err = pthread_join(th, 0);
if (err) {
rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
}
}
#if USE_NATIVE_THREAD_PRIORITY
static void
native_thread_apply_priority(rb_thread_t *th)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
struct sched_param sp;
int policy;
int priority = 0 - th->priority;
int max, min;
pthread_getschedparam(th->thread_id, &policy, &sp);
max = sched_get_priority_max(policy);
min = sched_get_priority_min(policy);
if (min > priority) {
priority = min;
}
else if (max < priority) {
priority = max;
}
sp.sched_priority = priority;
pthread_setschedparam(th->thread_id, policy, &sp);
#else
/* not touched */
#endif
}
#endif /* USE_NATIVE_THREAD_PRIORITY */
static void
ubf_pthread_cond_signal(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
pthread_cond_signal(&th->native_thread_data.sleep_cond);
}
#if !defined(__CYGWIN__) && !defined(__SYMBIAN32__)
static void
ubf_select_each(rb_thread_t *th)
{
thread_debug("ubf_select_each (%p)\n", (void *)th->thread_id);
if (th) {
pthread_kill(th->thread_id, SIGVTALRM);
}
}
static void
ubf_select(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
add_signal_thread_list(th);
ubf_select_each(th);
}
#else
#define ubf_select 0
#endif
#define PER_NANO 1000000000
static void
native_sleep(rb_thread_t *th, struct timeval *tv)
{
struct timespec ts;
struct timeval tvn;
if (tv) {
gettimeofday(&tvn, NULL);
ts.tv_sec = tvn.tv_sec + tv->tv_sec;
ts.tv_nsec = (tvn.tv_usec + tv->tv_usec) * 1000;
if (ts.tv_nsec >= PER_NANO){
ts.tv_sec += 1;
ts.tv_nsec -= PER_NANO;
}
}
thread_debug("native_sleep %ld\n", tv ? tv->tv_sec : -1);
GVL_UNLOCK_BEGIN();
{
pthread_mutex_lock(&th->interrupt_lock);
th->unblock.func = ubf_pthread_cond_signal;
th->unblock.arg = th;
if (RUBY_VM_INTERRUPTED(th)) {
/* interrupted. return immediate */
thread_debug("native_sleep: interrupted before sleep\n");
}
else {
if (tv == 0 || ts.tv_sec < tvn.tv_sec /* overflow */ ) {
int r;
thread_debug("native_sleep: pthread_cond_wait start\n");
r = pthread_cond_wait(&th->native_thread_data.sleep_cond,
&th->interrupt_lock);
if (r) rb_bug("pthread_cond_wait: %d", r);
thread_debug("native_sleep: pthread_cond_wait end\n");
}
else {
int r;
thread_debug("native_sleep: pthread_cond_timedwait start (%ld, %ld)\n",
(unsigned long)ts.tv_sec, ts.tv_nsec);
r = pthread_cond_timedwait(&th->native_thread_data.sleep_cond,
&th->interrupt_lock, &ts);
if (r && r != ETIMEDOUT) rb_bug("pthread_cond_timedwait: %d", r);
thread_debug("native_sleep: pthread_cond_timedwait end (%d)\n", r);
}
}
th->unblock.func = 0;
th->unblock.arg = 0;
pthread_mutex_unlock(&th->interrupt_lock);
}
GVL_UNLOCK_END();
thread_debug("native_sleep done\n");
}
struct signal_thread_list {
rb_thread_t *th;
struct signal_thread_list *prev;
struct signal_thread_list *next;
};
#ifndef __CYGWIN__
static struct signal_thread_list signal_thread_list_anchor = {
0, 0, 0,
};
#endif
#define FGLOCK(lock, body) do { \
native_mutex_lock(lock); \
{ \
body; \
} \
native_mutex_unlock(lock); \
} while (0)
#if 0 /* for debug */
static void
print_signal_list(char *str)
{
struct signal_thread_list *list =
signal_thread_list_anchor.next;
thread_debug("list (%s)> ", str);
while(list){
thread_debug("%p (%p), ", list->th, list->th->thread_id);
list = list->next;
}
thread_debug("\n");
}
#endif
#ifndef __CYGWIN__
static void
add_signal_thread_list(rb_thread_t *th)
{
if (!th->native_thread_data.signal_thread_list) {
FGLOCK(&signal_thread_list_lock, {
struct signal_thread_list *list =
malloc(sizeof(struct signal_thread_list));
if (list == 0) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(1);
}
list->th = th;
list->prev = &signal_thread_list_anchor;
list->next = signal_thread_list_anchor.next;
if (list->next) {
list->next->prev = list;
}
signal_thread_list_anchor.next = list;
th->native_thread_data.signal_thread_list = list;
});
}
}
#endif
static void
remove_signal_thread_list(rb_thread_t *th)
{
if (th->native_thread_data.signal_thread_list) {
FGLOCK(&signal_thread_list_lock, {
struct signal_thread_list *list =
(struct signal_thread_list *)
th->native_thread_data.signal_thread_list;
list->prev->next = list->next;
if (list->next) {
list->next->prev = list->prev;
}
th->native_thread_data.signal_thread_list = 0;
list->th = 0;
free(list); /* ok */
});
}
else {
/* */
}
}
static pthread_t timer_thread_id;
static pthread_cond_t timer_thread_cond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t timer_thread_lock = PTHREAD_MUTEX_INITIALIZER;
static struct timespec *
get_ts(struct timespec *ts, unsigned long nsec)
{
struct timeval tv;
gettimeofday(&tv, 0);
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000 + nsec;
if (ts->tv_nsec >= PER_NANO) {
ts->tv_sec++;
ts->tv_nsec -= PER_NANO;
}
return ts;
}
static void *
thread_timer(void *dummy)
{
struct timespec ts;
native_mutex_lock(&timer_thread_lock);
native_cond_broadcast(&timer_thread_cond);
#define WAIT_FOR_10MS() native_cond_timedwait(&timer_thread_cond, &timer_thread_lock, get_ts(&ts, PER_NANO/100))
while (system_working > 0) {
int err = WAIT_FOR_10MS();
if (err == ETIMEDOUT);
else if (err == 0 || err == EINTR) {
if (rb_signal_buff_size() == 0) break;
}
else rb_bug("thread_timer/timedwait: %d", err);
#if !defined(__CYGWIN__) && !defined(__SYMBIAN32__)
if (signal_thread_list_anchor.next) {
FGLOCK(&signal_thread_list_lock, {
struct signal_thread_list *list;
list = signal_thread_list_anchor.next;
while (list) {
ubf_select_each(list->th);
list = list->next;
}
});
}
#endif
timer_thread_function(dummy);
}
native_mutex_unlock(&timer_thread_lock);
return NULL;
}
static void
rb_thread_create_timer_thread(void)
{
rb_enable_interrupt();
if (!timer_thread_id) {
pthread_attr_t attr;
int err;
pthread_attr_init(&attr);
#ifdef PTHREAD_STACK_MIN
pthread_attr_setstacksize(&attr,
PTHREAD_STACK_MIN + (THREAD_DEBUG ? BUFSIZ : 0));
#endif
native_mutex_lock(&timer_thread_lock);
err = pthread_create(&timer_thread_id, &attr, thread_timer, 0);
if (err != 0) {
native_mutex_unlock(&timer_thread_lock);
fprintf(stderr, "[FATAL] Failed to create timer thread (errno: %d)\n", err);
exit(EXIT_FAILURE);
}
native_cond_wait(&timer_thread_cond, &timer_thread_lock);
native_mutex_unlock(&timer_thread_lock);
}
rb_disable_interrupt(); /* only timer thread recieve signal */
}
static int
native_stop_timer_thread(void)
{
int stopped;
native_mutex_lock(&timer_thread_lock);
stopped = --system_working <= 0;
if (stopped) {
native_cond_signal(&timer_thread_cond);
}
native_mutex_unlock(&timer_thread_lock);
if (stopped) {
native_thread_join(timer_thread_id);
}
return stopped;
}
static void
native_reset_timer_thread(void)
{
timer_thread_id = 0;
}
#ifdef HAVE_SIGALTSTACK
int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
void *base;
size_t size;
const size_t water_mark = 1024 * 1024;
STACK_GROW_DIR_DETECTION;
if (th) {
size = th->machine_stack_maxsize;
base = (char *)th->machine_stack_start - STACK_DIR_UPPER(0, size);
}
#ifdef STACKADDR_AVAILABLE
else if (get_stack(&base, &size) == 0) {
STACK_DIR_UPPER(base = (char *)base + size, (void)0);
}
#endif
else {
return 0;
}
size /= 5;
if (size > water_mark) size = water_mark;
if (STACK_DIR_UPPER(1, 0)) {
if (size > ~(size_t)base+1) size = ~(size_t)base+1;
if (addr > base && addr <= (void *)((char *)base + size)) return 1;
}
else {
if (size > (size_t)base) size = (size_t)base;
if (addr > (void *)((char *)base - size) && addr <= base) return 1;
}
return 0;
}
#endif
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */