зеркало из https://github.com/github/ruby.git
3880 строки
80 KiB
C
3880 строки
80 KiB
C
/**********************************************************************
|
|
|
|
bignum.c -
|
|
|
|
$Author$
|
|
created at: Fri Jun 10 00:48:55 JST 1994
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
|
|
**********************************************************************/
|
|
|
|
#include "ruby/ruby.h"
|
|
#include "ruby/thread.h"
|
|
#include "ruby/util.h"
|
|
#include "internal.h"
|
|
|
|
#ifdef HAVE_STRINGS_H
|
|
#include <strings.h>
|
|
#endif
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <ctype.h>
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
VALUE rb_cBignum;
|
|
|
|
static VALUE big_three = Qnil;
|
|
|
|
#if defined __MINGW32__
|
|
#define USHORT _USHORT
|
|
#endif
|
|
|
|
#define BDIGITS(x) (RBIGNUM_DIGITS(x))
|
|
#define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
|
|
#define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
|
|
#define BIGRAD_HALF ((BDIGIT)(BIGRAD >> 1))
|
|
#define DIGSPERLONG (SIZEOF_LONG/SIZEOF_BDIGITS)
|
|
#if HAVE_LONG_LONG
|
|
# define DIGSPERLL (SIZEOF_LONG_LONG/SIZEOF_BDIGITS)
|
|
#endif
|
|
#define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG)
|
|
#define BIGDN(x) RSHIFT((x),BITSPERDIG)
|
|
#define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1)))
|
|
#define BDIGMAX ((BDIGIT)-1)
|
|
|
|
#define BIGZEROP(x) (RBIGNUM_LEN(x) == 0 || \
|
|
(BDIGITS(x)[0] == 0 && \
|
|
(RBIGNUM_LEN(x) == 1 || bigzero_p(x))))
|
|
|
|
#define BIGNUM_DEBUG 0
|
|
#if BIGNUM_DEBUG
|
|
#define ON_DEBUG(x) do { x; } while (0)
|
|
static void
|
|
dump_bignum(VALUE x)
|
|
{
|
|
long i;
|
|
printf("%c0x0", RBIGNUM_SIGN(x) ? '+' : '-');
|
|
for (i = RBIGNUM_LEN(x); i--; ) {
|
|
printf("_%08"PRIxBDIGIT, BDIGITS(x)[i]);
|
|
}
|
|
printf(", len=%lu", RBIGNUM_LEN(x));
|
|
puts("");
|
|
}
|
|
|
|
static VALUE
|
|
rb_big_dump(VALUE x)
|
|
{
|
|
dump_bignum(x);
|
|
return x;
|
|
}
|
|
#else
|
|
#define ON_DEBUG(x)
|
|
#endif
|
|
|
|
static int
|
|
bigzero_p(VALUE x)
|
|
{
|
|
long i;
|
|
BDIGIT *ds = BDIGITS(x);
|
|
|
|
for (i = RBIGNUM_LEN(x) - 1; 0 <= i; i--) {
|
|
if (ds[i]) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
rb_bigzero_p(VALUE x)
|
|
{
|
|
return BIGZEROP(x);
|
|
}
|
|
|
|
int
|
|
rb_cmpint(VALUE val, VALUE a, VALUE b)
|
|
{
|
|
if (NIL_P(val)) {
|
|
rb_cmperr(a, b);
|
|
}
|
|
if (FIXNUM_P(val)) {
|
|
long l = FIX2LONG(val);
|
|
if (l > 0) return 1;
|
|
if (l < 0) return -1;
|
|
return 0;
|
|
}
|
|
if (RB_TYPE_P(val, T_BIGNUM)) {
|
|
if (BIGZEROP(val)) return 0;
|
|
if (RBIGNUM_SIGN(val)) return 1;
|
|
return -1;
|
|
}
|
|
if (RTEST(rb_funcall(val, '>', 1, INT2FIX(0)))) return 1;
|
|
if (RTEST(rb_funcall(val, '<', 1, INT2FIX(0)))) return -1;
|
|
return 0;
|
|
}
|
|
|
|
#define RBIGNUM_SET_LEN(b,l) \
|
|
((RBASIC(b)->flags & RBIGNUM_EMBED_FLAG) ? \
|
|
(void)(RBASIC(b)->flags = \
|
|
(RBASIC(b)->flags & ~RBIGNUM_EMBED_LEN_MASK) | \
|
|
((l) << RBIGNUM_EMBED_LEN_SHIFT)) : \
|
|
(void)(RBIGNUM(b)->as.heap.len = (l)))
|
|
|
|
static void
|
|
rb_big_realloc(VALUE big, long len)
|
|
{
|
|
BDIGIT *ds;
|
|
if (RBASIC(big)->flags & RBIGNUM_EMBED_FLAG) {
|
|
if (RBIGNUM_EMBED_LEN_MAX < len) {
|
|
ds = ALLOC_N(BDIGIT, len);
|
|
MEMCPY(ds, RBIGNUM(big)->as.ary, BDIGIT, RBIGNUM_EMBED_LEN_MAX);
|
|
RBIGNUM(big)->as.heap.len = RBIGNUM_LEN(big);
|
|
RBIGNUM(big)->as.heap.digits = ds;
|
|
RBASIC(big)->flags &= ~RBIGNUM_EMBED_FLAG;
|
|
}
|
|
}
|
|
else {
|
|
if (len <= RBIGNUM_EMBED_LEN_MAX) {
|
|
ds = RBIGNUM(big)->as.heap.digits;
|
|
RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG;
|
|
RBIGNUM_SET_LEN(big, len);
|
|
if (ds) {
|
|
MEMCPY(RBIGNUM(big)->as.ary, ds, BDIGIT, len);
|
|
xfree(ds);
|
|
}
|
|
}
|
|
else {
|
|
if (RBIGNUM_LEN(big) == 0) {
|
|
RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
|
|
}
|
|
else {
|
|
REALLOC_N(RBIGNUM(big)->as.heap.digits, BDIGIT, len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_big_resize(VALUE big, long len)
|
|
{
|
|
rb_big_realloc(big, len);
|
|
RBIGNUM_SET_LEN(big, len);
|
|
}
|
|
|
|
static VALUE
|
|
bignew_1(VALUE klass, long len, int sign)
|
|
{
|
|
NEWOBJ_OF(big, struct RBignum, klass, T_BIGNUM);
|
|
RBIGNUM_SET_SIGN(big, sign?1:0);
|
|
if (len <= RBIGNUM_EMBED_LEN_MAX) {
|
|
RBASIC(big)->flags |= RBIGNUM_EMBED_FLAG;
|
|
RBIGNUM_SET_LEN(big, len);
|
|
}
|
|
else {
|
|
RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
|
|
RBIGNUM(big)->as.heap.len = len;
|
|
}
|
|
OBJ_FREEZE(big);
|
|
return (VALUE)big;
|
|
}
|
|
|
|
#define bignew(len,sign) bignew_1(rb_cBignum,(len),(sign))
|
|
|
|
VALUE
|
|
rb_big_new(long len, int sign)
|
|
{
|
|
return bignew(len, sign != 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_big_clone(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
VALUE z = bignew_1(CLASS_OF(x), len, RBIGNUM_SIGN(x));
|
|
|
|
MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, len);
|
|
return z;
|
|
}
|
|
|
|
/* modify a bignum by 2's complement */
|
|
static void
|
|
get2comp(VALUE x)
|
|
{
|
|
long i = RBIGNUM_LEN(x);
|
|
BDIGIT *ds = BDIGITS(x);
|
|
BDIGIT_DBL num;
|
|
|
|
if (!i) return;
|
|
while (i--) ds[i] = ~ds[i];
|
|
i = 0; num = 1;
|
|
do {
|
|
num += ds[i];
|
|
ds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
} while (i < RBIGNUM_LEN(x));
|
|
if (num != 0) {
|
|
rb_big_resize(x, RBIGNUM_LEN(x)+1);
|
|
ds = BDIGITS(x);
|
|
ds[RBIGNUM_LEN(x)-1] = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_big_2comp(VALUE x) /* get 2's complement */
|
|
{
|
|
get2comp(x);
|
|
}
|
|
|
|
static inline VALUE
|
|
bigtrunc(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT *ds = BDIGITS(x);
|
|
|
|
if (len == 0) return x;
|
|
while (--len && !ds[len]);
|
|
if (RBIGNUM_LEN(x) > len+1) {
|
|
rb_big_resize(x, len+1);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static inline VALUE
|
|
bigfixize(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT *ds = BDIGITS(x);
|
|
|
|
if (len == 0) return INT2FIX(0);
|
|
if ((size_t)(len*SIZEOF_BDIGITS) <= sizeof(long)) {
|
|
long num = 0;
|
|
#if 2*SIZEOF_BDIGITS > SIZEOF_LONG
|
|
num = (long)ds[0];
|
|
#else
|
|
while (len--) {
|
|
num = (long)(BIGUP(num) + ds[len]);
|
|
}
|
|
#endif
|
|
if (num >= 0) {
|
|
if (RBIGNUM_SIGN(x)) {
|
|
if (POSFIXABLE(num)) return LONG2FIX(num);
|
|
}
|
|
else {
|
|
if (NEGFIXABLE(-num)) return LONG2FIX(-num);
|
|
}
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static VALUE
|
|
bignorm(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_BIGNUM)) {
|
|
x = bigfixize(bigtrunc(x));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
VALUE
|
|
rb_big_norm(VALUE x)
|
|
{
|
|
return bignorm(x);
|
|
}
|
|
|
|
VALUE
|
|
rb_uint2big(VALUE n)
|
|
{
|
|
BDIGIT_DBL num = n;
|
|
long i = 0;
|
|
BDIGIT *digits;
|
|
VALUE big;
|
|
|
|
big = bignew(DIGSPERLONG, 1);
|
|
digits = BDIGITS(big);
|
|
while (i < DIGSPERLONG) {
|
|
digits[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
|
|
i = DIGSPERLONG;
|
|
while (--i && !digits[i]) ;
|
|
RBIGNUM_SET_LEN(big, i+1);
|
|
return big;
|
|
}
|
|
|
|
VALUE
|
|
rb_int2big(SIGNED_VALUE n)
|
|
{
|
|
long neg = 0;
|
|
VALUE big;
|
|
|
|
if (n < 0) {
|
|
n = -n;
|
|
neg = 1;
|
|
}
|
|
big = rb_uint2big(n);
|
|
if (neg) {
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return big;
|
|
}
|
|
|
|
VALUE
|
|
rb_uint2inum(VALUE n)
|
|
{
|
|
if (POSFIXABLE(n)) return LONG2FIX(n);
|
|
return rb_uint2big(n);
|
|
}
|
|
|
|
VALUE
|
|
rb_int2inum(SIGNED_VALUE n)
|
|
{
|
|
if (FIXABLE(n)) return LONG2FIX(n);
|
|
return rb_int2big(n);
|
|
}
|
|
|
|
#if SIZEOF_LONG % SIZEOF_BDIGITS != 0
|
|
# error unexpected SIZEOF_LONG : SIZEOF_BDIGITS ratio
|
|
#endif
|
|
|
|
/*
|
|
* buf is an array of long integers.
|
|
* buf is ordered from least significant word to most significant word.
|
|
* buf[0] is the least significant word and
|
|
* buf[num_longs-1] is the most significant word.
|
|
* This means words in buf is little endian.
|
|
* However each word in buf is native endian.
|
|
* (buf[i]&1) is the least significant bit and
|
|
* (buf[i]&(1<<(SIZEOF_LONG*CHAR_BIT-1))) is the most significant bit
|
|
* for each 0 <= i < num_longs.
|
|
* So buf is little endian at whole on a little endian machine.
|
|
* But buf is mixed endian on a big endian machine.
|
|
*
|
|
* The buf represents negative integers as two's complement.
|
|
* So, the most significant bit of the most significant word,
|
|
* (buf[num_longs-1]>>(SIZEOF_LONG*CHAR_BIT-1)),
|
|
* is the sign bit: 1 means negative and 0 means zero or positive.
|
|
*
|
|
* If given size of buf (num_longs) is not enough to represent val,
|
|
* higier words (including a sign bit) are ignored.
|
|
*/
|
|
void
|
|
rb_big_pack(VALUE val, unsigned long *buf, long num_longs)
|
|
{
|
|
val = rb_to_int(val);
|
|
if (num_longs == 0)
|
|
return;
|
|
if (FIXNUM_P(val)) {
|
|
long i;
|
|
long tmp = FIX2LONG(val);
|
|
buf[0] = (unsigned long)tmp;
|
|
tmp = tmp < 0 ? ~0L : 0;
|
|
for (i = 1; i < num_longs; i++)
|
|
buf[i] = (unsigned long)tmp;
|
|
return;
|
|
}
|
|
else {
|
|
long len = RBIGNUM_LEN(val);
|
|
BDIGIT *ds = BDIGITS(val), *dend = ds + len;
|
|
long i, j;
|
|
for (i = 0; i < num_longs && ds < dend; i++) {
|
|
unsigned long l = 0;
|
|
for (j = 0; j < DIGSPERLONG && ds < dend; j++, ds++) {
|
|
l |= ((unsigned long)*ds << (j * BITSPERDIG));
|
|
}
|
|
buf[i] = l;
|
|
}
|
|
for (; i < num_longs; i++)
|
|
buf[i] = 0;
|
|
if (RBIGNUM_NEGATIVE_P(val)) {
|
|
for (i = 0; i < num_longs; i++) {
|
|
buf[i] = ~buf[i];
|
|
}
|
|
for (i = 0; i < num_longs; i++) {
|
|
buf[i]++;
|
|
if (buf[i] != 0)
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See rb_big_pack comment for endianness and sign of buf. */
|
|
VALUE
|
|
rb_big_unpack(unsigned long *buf, long num_longs)
|
|
{
|
|
while (2 <= num_longs) {
|
|
if (buf[num_longs-1] == 0 && (long)buf[num_longs-2] >= 0)
|
|
num_longs--;
|
|
else if (buf[num_longs-1] == ~0UL && (long)buf[num_longs-2] < 0)
|
|
num_longs--;
|
|
else
|
|
break;
|
|
}
|
|
if (num_longs == 0)
|
|
return INT2FIX(0);
|
|
else if (num_longs == 1)
|
|
return LONG2NUM((long)buf[0]);
|
|
else {
|
|
VALUE big;
|
|
BDIGIT *ds;
|
|
long len = num_longs * DIGSPERLONG;
|
|
long i;
|
|
big = bignew(len, 1);
|
|
ds = BDIGITS(big);
|
|
for (i = 0; i < num_longs; i++) {
|
|
unsigned long d = buf[i];
|
|
#if SIZEOF_LONG == SIZEOF_BDIGITS
|
|
*ds++ = d;
|
|
#else
|
|
int j;
|
|
for (j = 0; j < DIGSPERLONG; j++) {
|
|
*ds++ = BIGLO(d);
|
|
d = BIGDN(d);
|
|
}
|
|
#endif
|
|
}
|
|
if ((long)buf[num_longs-1] < 0) {
|
|
get2comp(big);
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return bignorm(big);
|
|
}
|
|
}
|
|
|
|
#define QUAD_SIZE 8
|
|
|
|
#if SIZEOF_LONG_LONG == QUAD_SIZE && SIZEOF_BDIGITS*2 == SIZEOF_LONG_LONG
|
|
|
|
void
|
|
rb_quad_pack(char *buf, VALUE val)
|
|
{
|
|
LONG_LONG q;
|
|
|
|
val = rb_to_int(val);
|
|
if (FIXNUM_P(val)) {
|
|
q = FIX2LONG(val);
|
|
}
|
|
else {
|
|
long len = RBIGNUM_LEN(val);
|
|
BDIGIT *ds;
|
|
|
|
if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) {
|
|
len = SIZEOF_LONG_LONG/SIZEOF_BDIGITS;
|
|
}
|
|
ds = BDIGITS(val);
|
|
q = 0;
|
|
while (len--) {
|
|
q = BIGUP(q);
|
|
q += ds[len];
|
|
}
|
|
if (!RBIGNUM_SIGN(val)) q = -q;
|
|
}
|
|
memcpy(buf, (char*)&q, SIZEOF_LONG_LONG);
|
|
}
|
|
|
|
VALUE
|
|
rb_quad_unpack(const char *buf, int sign)
|
|
{
|
|
unsigned LONG_LONG q;
|
|
long neg = 0;
|
|
long i;
|
|
BDIGIT *digits;
|
|
VALUE big;
|
|
|
|
memcpy(&q, buf, SIZEOF_LONG_LONG);
|
|
if (sign) {
|
|
if (FIXABLE((LONG_LONG)q)) return LONG2FIX((LONG_LONG)q);
|
|
if ((LONG_LONG)q < 0) {
|
|
q = -(LONG_LONG)q;
|
|
neg = 1;
|
|
}
|
|
}
|
|
else {
|
|
if (POSFIXABLE(q)) return LONG2FIX(q);
|
|
}
|
|
|
|
i = 0;
|
|
big = bignew(DIGSPERLL, 1);
|
|
digits = BDIGITS(big);
|
|
while (i < DIGSPERLL) {
|
|
digits[i++] = BIGLO(q);
|
|
q = BIGDN(q);
|
|
}
|
|
|
|
i = DIGSPERLL;
|
|
while (i-- && !digits[i]) ;
|
|
RBIGNUM_SET_LEN(big, i+1);
|
|
|
|
if (neg) {
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return bignorm(big);
|
|
}
|
|
|
|
#else
|
|
|
|
static int
|
|
quad_buf_complement(char *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = ~buf[i];
|
|
for (i = 0; i < len; i++) {
|
|
buf[i]++;
|
|
if (buf[i] != 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
rb_quad_pack(char *buf, VALUE val)
|
|
{
|
|
long len;
|
|
|
|
memset(buf, 0, QUAD_SIZE);
|
|
val = rb_to_int(val);
|
|
if (FIXNUM_P(val)) {
|
|
val = rb_int2big(FIX2LONG(val));
|
|
}
|
|
len = RBIGNUM_LEN(val) * SIZEOF_BDIGITS;
|
|
if (len > QUAD_SIZE) {
|
|
len = QUAD_SIZE;
|
|
}
|
|
memcpy(buf, (char*)BDIGITS(val), len);
|
|
if (RBIGNUM_NEGATIVE_P(val)) {
|
|
quad_buf_complement(buf, QUAD_SIZE);
|
|
}
|
|
}
|
|
|
|
#define BNEG(b) (RSHIFT(((BDIGIT*)(b))[QUAD_SIZE/SIZEOF_BDIGITS-1],BITSPERDIG-1) != 0)
|
|
|
|
VALUE
|
|
rb_quad_unpack(const char *buf, int sign)
|
|
{
|
|
VALUE big = bignew(QUAD_SIZE/SIZEOF_BDIGITS, 1);
|
|
|
|
memcpy((char*)BDIGITS(big), buf, QUAD_SIZE);
|
|
if (sign && BNEG(buf)) {
|
|
char *tmp = (char*)BDIGITS(big);
|
|
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
quad_buf_complement(tmp, QUAD_SIZE);
|
|
}
|
|
|
|
return bignorm(big);
|
|
}
|
|
|
|
#endif
|
|
|
|
VALUE
|
|
rb_cstr_to_inum(const char *str, int base, int badcheck)
|
|
{
|
|
const char *s = str;
|
|
char *end;
|
|
char sign = 1, nondigit = 0;
|
|
int c;
|
|
BDIGIT_DBL num;
|
|
long len, blen = 1;
|
|
long i;
|
|
VALUE z;
|
|
BDIGIT *zds;
|
|
|
|
#undef ISDIGIT
|
|
#define ISDIGIT(c) ('0' <= (c) && (c) <= '9')
|
|
#define conv_digit(c) \
|
|
(!ISASCII(c) ? -1 : \
|
|
ISDIGIT(c) ? ((c) - '0') : \
|
|
ISLOWER(c) ? ((c) - 'a' + 10) : \
|
|
ISUPPER(c) ? ((c) - 'A' + 10) : \
|
|
-1)
|
|
|
|
if (!str) {
|
|
if (badcheck) goto bad;
|
|
return INT2FIX(0);
|
|
}
|
|
while (ISSPACE(*str)) str++;
|
|
|
|
if (str[0] == '+') {
|
|
str++;
|
|
}
|
|
else if (str[0] == '-') {
|
|
str++;
|
|
sign = 0;
|
|
}
|
|
if (str[0] == '+' || str[0] == '-') {
|
|
if (badcheck) goto bad;
|
|
return INT2FIX(0);
|
|
}
|
|
if (base <= 0) {
|
|
if (str[0] == '0') {
|
|
switch (str[1]) {
|
|
case 'x': case 'X':
|
|
base = 16;
|
|
break;
|
|
case 'b': case 'B':
|
|
base = 2;
|
|
break;
|
|
case 'o': case 'O':
|
|
base = 8;
|
|
break;
|
|
case 'd': case 'D':
|
|
base = 10;
|
|
break;
|
|
default:
|
|
base = 8;
|
|
}
|
|
}
|
|
else if (base < -1) {
|
|
base = -base;
|
|
}
|
|
else {
|
|
base = 10;
|
|
}
|
|
}
|
|
switch (base) {
|
|
case 2:
|
|
len = 1;
|
|
if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) {
|
|
str += 2;
|
|
}
|
|
break;
|
|
case 3:
|
|
len = 2;
|
|
break;
|
|
case 8:
|
|
if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) {
|
|
str += 2;
|
|
}
|
|
case 4: case 5: case 6: case 7:
|
|
len = 3;
|
|
break;
|
|
case 10:
|
|
if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) {
|
|
str += 2;
|
|
}
|
|
case 9: case 11: case 12: case 13: case 14: case 15:
|
|
len = 4;
|
|
break;
|
|
case 16:
|
|
len = 4;
|
|
if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) {
|
|
str += 2;
|
|
}
|
|
break;
|
|
default:
|
|
if (base < 2 || 36 < base) {
|
|
rb_raise(rb_eArgError, "invalid radix %d", base);
|
|
}
|
|
if (base <= 32) {
|
|
len = 5;
|
|
}
|
|
else {
|
|
len = 6;
|
|
}
|
|
break;
|
|
}
|
|
if (*str == '0') { /* squeeze preceding 0s */
|
|
int us = 0;
|
|
while ((c = *++str) == '0' || c == '_') {
|
|
if (c == '_') {
|
|
if (++us >= 2)
|
|
break;
|
|
} else
|
|
us = 0;
|
|
}
|
|
if (!(c = *str) || ISSPACE(c)) --str;
|
|
}
|
|
c = *str;
|
|
c = conv_digit(c);
|
|
if (c < 0 || c >= base) {
|
|
if (badcheck) goto bad;
|
|
return INT2FIX(0);
|
|
}
|
|
len *= strlen(str)*sizeof(char);
|
|
|
|
if ((size_t)len <= (sizeof(long)*CHAR_BIT)) {
|
|
unsigned long val = STRTOUL(str, &end, base);
|
|
|
|
if (str < end && *end == '_') goto bigparse;
|
|
if (badcheck) {
|
|
if (end == str) goto bad; /* no number */
|
|
while (*end && ISSPACE(*end)) end++;
|
|
if (*end) goto bad; /* trailing garbage */
|
|
}
|
|
|
|
if (POSFIXABLE(val)) {
|
|
if (sign) return LONG2FIX(val);
|
|
else {
|
|
long result = -(long)val;
|
|
return LONG2FIX(result);
|
|
}
|
|
}
|
|
else {
|
|
VALUE big = rb_uint2big(val);
|
|
RBIGNUM_SET_SIGN(big, sign);
|
|
return bignorm(big);
|
|
}
|
|
}
|
|
bigparse:
|
|
len = (len/BITSPERDIG)+1;
|
|
if (badcheck && *str == '_') goto bad;
|
|
|
|
z = bignew(len, sign);
|
|
zds = BDIGITS(z);
|
|
for (i=len;i--;) zds[i]=0;
|
|
while ((c = *str++) != 0) {
|
|
if (c == '_') {
|
|
if (nondigit) {
|
|
if (badcheck) goto bad;
|
|
break;
|
|
}
|
|
nondigit = (char) c;
|
|
continue;
|
|
}
|
|
else if ((c = conv_digit(c)) < 0) {
|
|
break;
|
|
}
|
|
if (c >= base) break;
|
|
nondigit = 0;
|
|
i = 0;
|
|
num = c;
|
|
for (;;) {
|
|
while (i<blen) {
|
|
num += (BDIGIT_DBL)zds[i]*base;
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
if (num) {
|
|
blen++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (badcheck) {
|
|
str--;
|
|
if (s+1 < str && str[-1] == '_') goto bad;
|
|
while (*str && ISSPACE(*str)) str++;
|
|
if (*str) {
|
|
bad:
|
|
rb_invalid_str(s, "Integer()");
|
|
}
|
|
}
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
VALUE
|
|
rb_str_to_inum(VALUE str, int base, int badcheck)
|
|
{
|
|
char *s;
|
|
long len;
|
|
VALUE v = 0;
|
|
VALUE ret;
|
|
|
|
StringValue(str);
|
|
rb_must_asciicompat(str);
|
|
if (badcheck) {
|
|
s = StringValueCStr(str);
|
|
}
|
|
else {
|
|
s = RSTRING_PTR(str);
|
|
}
|
|
if (s) {
|
|
len = RSTRING_LEN(str);
|
|
if (s[len]) { /* no sentinel somehow */
|
|
char *p = ALLOCV(v, len+1);
|
|
|
|
MEMCPY(p, s, char, len);
|
|
p[len] = '\0';
|
|
s = p;
|
|
}
|
|
}
|
|
ret = rb_cstr_to_inum(s, base, badcheck);
|
|
if (v)
|
|
ALLOCV_END(v);
|
|
return ret;
|
|
}
|
|
|
|
#if HAVE_LONG_LONG
|
|
|
|
static VALUE
|
|
rb_ull2big(unsigned LONG_LONG n)
|
|
{
|
|
BDIGIT_DBL num = n;
|
|
long i = 0;
|
|
BDIGIT *digits;
|
|
VALUE big;
|
|
|
|
big = bignew(DIGSPERLL, 1);
|
|
digits = BDIGITS(big);
|
|
while (i < DIGSPERLL) {
|
|
digits[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
|
|
i = DIGSPERLL;
|
|
while (i-- && !digits[i]) ;
|
|
RBIGNUM_SET_LEN(big, i+1);
|
|
return big;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ll2big(LONG_LONG n)
|
|
{
|
|
long neg = 0;
|
|
VALUE big;
|
|
|
|
if (n < 0) {
|
|
n = -n;
|
|
neg = 1;
|
|
}
|
|
big = rb_ull2big(n);
|
|
if (neg) {
|
|
RBIGNUM_SET_SIGN(big, 0);
|
|
}
|
|
return big;
|
|
}
|
|
|
|
VALUE
|
|
rb_ull2inum(unsigned LONG_LONG n)
|
|
{
|
|
if (POSFIXABLE(n)) return LONG2FIX(n);
|
|
return rb_ull2big(n);
|
|
}
|
|
|
|
VALUE
|
|
rb_ll2inum(LONG_LONG n)
|
|
{
|
|
if (FIXABLE(n)) return LONG2FIX(n);
|
|
return rb_ll2big(n);
|
|
}
|
|
|
|
#endif /* HAVE_LONG_LONG */
|
|
|
|
VALUE
|
|
rb_cstr2inum(const char *str, int base)
|
|
{
|
|
return rb_cstr_to_inum(str, base, base==0);
|
|
}
|
|
|
|
VALUE
|
|
rb_str2inum(VALUE str, int base)
|
|
{
|
|
return rb_str_to_inum(str, base, base==0);
|
|
}
|
|
|
|
const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
|
|
static VALUE bigsqr(VALUE x);
|
|
static void bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp);
|
|
|
|
#define POW2_P(x) (((x)&((x)-1))==0)
|
|
|
|
static inline int
|
|
ones(register unsigned long x)
|
|
{
|
|
#if SIZEOF_LONG == 8
|
|
# define MASK_55 0x5555555555555555UL
|
|
# define MASK_33 0x3333333333333333UL
|
|
# define MASK_0f 0x0f0f0f0f0f0f0f0fUL
|
|
#else
|
|
# define MASK_55 0x55555555UL
|
|
# define MASK_33 0x33333333UL
|
|
# define MASK_0f 0x0f0f0f0fUL
|
|
#endif
|
|
x -= (x >> 1) & MASK_55;
|
|
x = ((x >> 2) & MASK_33) + (x & MASK_33);
|
|
x = ((x >> 4) + x) & MASK_0f;
|
|
x += (x >> 8);
|
|
x += (x >> 16);
|
|
#if SIZEOF_LONG == 8
|
|
x += (x >> 32);
|
|
#endif
|
|
return (int)(x & 0x7f);
|
|
#undef MASK_0f
|
|
#undef MASK_33
|
|
#undef MASK_55
|
|
}
|
|
|
|
static inline unsigned long
|
|
next_pow2(register unsigned long x)
|
|
{
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
#if SIZEOF_LONG == 8
|
|
x |= x >> 32;
|
|
#endif
|
|
return x + 1;
|
|
}
|
|
|
|
static inline int
|
|
floor_log2(register unsigned long x)
|
|
{
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
#if SIZEOF_LONG == 8
|
|
x |= x >> 32;
|
|
#endif
|
|
return (int)ones(x) - 1;
|
|
}
|
|
|
|
static inline int
|
|
ceil_log2(register unsigned long x)
|
|
{
|
|
return floor_log2(x) + !POW2_P(x);
|
|
}
|
|
|
|
#define LOG2_KARATSUBA_DIGITS 7
|
|
#define KARATSUBA_DIGITS (1L<<LOG2_KARATSUBA_DIGITS)
|
|
#define MAX_BIG2STR_TABLE_ENTRIES 64
|
|
|
|
static VALUE big2str_power_cache[35][MAX_BIG2STR_TABLE_ENTRIES];
|
|
|
|
static void
|
|
power_cache_init(void)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < 35; ++i) {
|
|
for (j = 0; j < MAX_BIG2STR_TABLE_ENTRIES; ++j) {
|
|
big2str_power_cache[i][j] = Qnil;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline VALUE
|
|
power_cache_get_power0(int base, int i)
|
|
{
|
|
if (NIL_P(big2str_power_cache[base - 2][i])) {
|
|
big2str_power_cache[base - 2][i] =
|
|
i == 0 ? rb_big_pow(rb_int2big(base), INT2FIX(KARATSUBA_DIGITS))
|
|
: bigsqr(power_cache_get_power0(base, i - 1));
|
|
rb_gc_register_mark_object(big2str_power_cache[base - 2][i]);
|
|
}
|
|
return big2str_power_cache[base - 2][i];
|
|
}
|
|
|
|
static VALUE
|
|
power_cache_get_power(int base, long n1, long* m1)
|
|
{
|
|
int i, m;
|
|
long j;
|
|
VALUE t;
|
|
|
|
if (n1 <= KARATSUBA_DIGITS)
|
|
rb_bug("n1 > KARATSUBA_DIGITS");
|
|
|
|
m = ceil_log2(n1);
|
|
if (m1) *m1 = 1 << m;
|
|
i = m - LOG2_KARATSUBA_DIGITS;
|
|
if (i >= MAX_BIG2STR_TABLE_ENTRIES)
|
|
i = MAX_BIG2STR_TABLE_ENTRIES - 1;
|
|
t = power_cache_get_power0(base, i);
|
|
|
|
j = KARATSUBA_DIGITS*(1 << i);
|
|
while (n1 > j) {
|
|
t = bigsqr(t);
|
|
j *= 2;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* big2str_muraken_find_n1
|
|
*
|
|
* Let a natural number x is given by:
|
|
* x = 2^0 * x_0 + 2^1 * x_1 + ... + 2^(B*n_0 - 1) * x_{B*n_0 - 1},
|
|
* where B is BITSPERDIG (i.e. BDIGITS*CHAR_BIT) and n_0 is
|
|
* RBIGNUM_LEN(x).
|
|
*
|
|
* Now, we assume n_1 = min_n \{ n | 2^(B*n_0/2) <= b_1^(n_1) \}, so
|
|
* it is realized that 2^(B*n_0) <= {b_1}^{2*n_1}, where b_1 is a
|
|
* given radix number. And then, we have n_1 <= (B*n_0) /
|
|
* (2*log_2(b_1)), therefore n_1 is given by ceil((B*n_0) /
|
|
* (2*log_2(b_1))).
|
|
*/
|
|
static long
|
|
big2str_find_n1(VALUE x, int base)
|
|
{
|
|
static const double log_2[] = {
|
|
1.0, 1.58496250072116, 2.0,
|
|
2.32192809488736, 2.58496250072116, 2.8073549220576,
|
|
3.0, 3.16992500144231, 3.32192809488736,
|
|
3.4594316186373, 3.58496250072116, 3.70043971814109,
|
|
3.8073549220576, 3.90689059560852, 4.0,
|
|
4.08746284125034, 4.16992500144231, 4.24792751344359,
|
|
4.32192809488736, 4.39231742277876, 4.4594316186373,
|
|
4.52356195605701, 4.58496250072116, 4.64385618977472,
|
|
4.70043971814109, 4.75488750216347, 4.8073549220576,
|
|
4.85798099512757, 4.90689059560852, 4.95419631038688,
|
|
5.0, 5.04439411935845, 5.08746284125034,
|
|
5.12928301694497, 5.16992500144231
|
|
};
|
|
long bits;
|
|
|
|
if (base < 2 || 36 < base)
|
|
rb_bug("invalid radix %d", base);
|
|
|
|
if (FIXNUM_P(x)) {
|
|
bits = (SIZEOF_LONG*CHAR_BIT - 1)/2 + 1;
|
|
}
|
|
else if (BIGZEROP(x)) {
|
|
return 0;
|
|
}
|
|
else if (RBIGNUM_LEN(x) >= LONG_MAX/BITSPERDIG) {
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
|
|
}
|
|
else {
|
|
bits = BITSPERDIG*RBIGNUM_LEN(x);
|
|
}
|
|
|
|
/* @shyouhei note: vvvvvvvvvvvvv this cast is suspicious. But I believe it is OK, because if that cast loses data, this x value is too big, and should have raised RangeError. */
|
|
return (long)ceil(((double)bits)/log_2[base - 2]);
|
|
}
|
|
|
|
static long
|
|
big2str_orig(VALUE x, int base, char* ptr, long len, long hbase, int trim)
|
|
{
|
|
long i = RBIGNUM_LEN(x), j = len;
|
|
BDIGIT* ds = BDIGITS(x);
|
|
|
|
while (i && j > 0) {
|
|
long k = i;
|
|
BDIGIT_DBL num = 0;
|
|
|
|
while (k--) { /* x / hbase */
|
|
num = BIGUP(num) + ds[k];
|
|
ds[k] = (BDIGIT)(num / hbase);
|
|
num %= hbase;
|
|
}
|
|
if (trim && ds[i-1] == 0) i--;
|
|
k = SIZEOF_BDIGITS;
|
|
while (k--) {
|
|
ptr[--j] = ruby_digitmap[num % base];
|
|
num /= base;
|
|
if (j <= 0) break;
|
|
if (trim && i == 0 && num == 0) break;
|
|
}
|
|
}
|
|
if (trim) {
|
|
while (j < len && ptr[j] == '0') j++;
|
|
MEMMOVE(ptr, ptr + j, char, len - j);
|
|
len -= j;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static long
|
|
big2str_karatsuba(VALUE x, int base, char* ptr,
|
|
long n1, long len, long hbase, int trim)
|
|
{
|
|
long lh, ll, m1;
|
|
VALUE b, q, r;
|
|
|
|
if (BIGZEROP(x)) {
|
|
if (trim) return 0;
|
|
else {
|
|
memset(ptr, '0', len);
|
|
return len;
|
|
}
|
|
}
|
|
|
|
if (n1 <= KARATSUBA_DIGITS) {
|
|
return big2str_orig(x, base, ptr, len, hbase, trim);
|
|
}
|
|
|
|
b = power_cache_get_power(base, n1, &m1);
|
|
bigdivmod(x, b, &q, &r);
|
|
lh = big2str_karatsuba(q, base, ptr, (len - m1)/2,
|
|
len - m1, hbase, trim);
|
|
rb_big_resize(q, 0);
|
|
ll = big2str_karatsuba(r, base, ptr + lh, m1/2,
|
|
m1, hbase, !lh && trim);
|
|
rb_big_resize(r, 0);
|
|
|
|
return lh + ll;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2str0(VALUE x, int base, int trim)
|
|
{
|
|
int off;
|
|
VALUE ss, xx;
|
|
long n1, n2, len, hbase;
|
|
char* ptr;
|
|
|
|
if (FIXNUM_P(x)) {
|
|
return rb_fix2str(x, base);
|
|
}
|
|
if (BIGZEROP(x)) {
|
|
return rb_usascii_str_new2("0");
|
|
}
|
|
|
|
if (base < 2 || 36 < base)
|
|
rb_raise(rb_eArgError, "invalid radix %d", base);
|
|
|
|
n2 = big2str_find_n1(x, base);
|
|
n1 = (n2 + 1) / 2;
|
|
ss = rb_usascii_str_new(0, n2 + 1); /* plus one for sign */
|
|
ptr = RSTRING_PTR(ss);
|
|
ptr[0] = RBIGNUM_SIGN(x) ? '+' : '-';
|
|
|
|
hbase = base*base;
|
|
#if SIZEOF_BDIGITS > 2
|
|
hbase *= hbase;
|
|
#endif
|
|
off = !(trim && RBIGNUM_SIGN(x)); /* erase plus sign if trim */
|
|
xx = rb_big_clone(x);
|
|
RBIGNUM_SET_SIGN(xx, 1);
|
|
if (n1 <= KARATSUBA_DIGITS) {
|
|
len = off + big2str_orig(xx, base, ptr + off, n2, hbase, trim);
|
|
}
|
|
else {
|
|
len = off + big2str_karatsuba(xx, base, ptr + off, n1,
|
|
n2, hbase, trim);
|
|
}
|
|
rb_big_resize(xx, 0);
|
|
|
|
ptr[len] = '\0';
|
|
rb_str_resize(ss, len);
|
|
|
|
return ss;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2str(VALUE x, int base)
|
|
{
|
|
return rb_big2str0(x, base, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.to_s(base=10) -> string
|
|
*
|
|
* Returns a string containing the representation of <i>big</i> radix
|
|
* <i>base</i> (2 through 36).
|
|
*
|
|
* 12345654321.to_s #=> "12345654321"
|
|
* 12345654321.to_s(2) #=> "1011011111110110111011110000110001"
|
|
* 12345654321.to_s(8) #=> "133766736061"
|
|
* 12345654321.to_s(16) #=> "2dfdbbc31"
|
|
* 78546939656932.to_s(36) #=> "rubyrules"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_to_s(int argc, VALUE *argv, VALUE x)
|
|
{
|
|
int base;
|
|
|
|
if (argc == 0) base = 10;
|
|
else {
|
|
VALUE b;
|
|
|
|
rb_scan_args(argc, argv, "01", &b);
|
|
base = NUM2INT(b);
|
|
}
|
|
return rb_big2str(x, base);
|
|
}
|
|
|
|
static VALUE
|
|
big2ulong(VALUE x, const char *type, int check)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT_DBL num;
|
|
BDIGIT *ds;
|
|
|
|
if (len > DIGSPERLONG) {
|
|
if (check)
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
|
|
len = DIGSPERLONG;
|
|
}
|
|
ds = BDIGITS(x);
|
|
num = 0;
|
|
while (len--) {
|
|
num = BIGUP(num);
|
|
num += ds[len];
|
|
}
|
|
return (VALUE)num;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2ulong_pack(VALUE x)
|
|
{
|
|
VALUE num = big2ulong(x, "unsigned long", FALSE);
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
return (VALUE)(-(SIGNED_VALUE)num);
|
|
}
|
|
return num;
|
|
}
|
|
|
|
VALUE
|
|
rb_big2ulong(VALUE x)
|
|
{
|
|
VALUE num = big2ulong(x, "unsigned long", TRUE);
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
unsigned long v = (unsigned long)(-(long)num);
|
|
|
|
if (v <= LONG_MAX)
|
|
rb_raise(rb_eRangeError, "bignum out of range of unsigned long");
|
|
return (VALUE)v;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
SIGNED_VALUE
|
|
rb_big2long(VALUE x)
|
|
{
|
|
VALUE num = big2ulong(x, "long", TRUE);
|
|
|
|
if ((long)num < 0 &&
|
|
(RBIGNUM_SIGN(x) || (long)num != LONG_MIN)) {
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `long'");
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) return -(SIGNED_VALUE)num;
|
|
return num;
|
|
}
|
|
|
|
#if HAVE_LONG_LONG
|
|
|
|
static unsigned LONG_LONG
|
|
big2ull(VALUE x, const char *type)
|
|
{
|
|
long len = RBIGNUM_LEN(x);
|
|
BDIGIT_DBL num;
|
|
BDIGIT *ds;
|
|
|
|
if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS)
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
|
|
ds = BDIGITS(x);
|
|
num = 0;
|
|
while (len--) {
|
|
num = BIGUP(num);
|
|
num += ds[len];
|
|
}
|
|
return num;
|
|
}
|
|
|
|
unsigned LONG_LONG
|
|
rb_big2ull(VALUE x)
|
|
{
|
|
unsigned LONG_LONG num = big2ull(x, "unsigned long long");
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
LONG_LONG v = -(LONG_LONG)num;
|
|
|
|
/* FIXNUM_MIN-1 .. LLONG_MIN mapped into 0xbfffffffffffffff .. LONG_MAX+1 */
|
|
if ((unsigned LONG_LONG)v <= LLONG_MAX)
|
|
rb_raise(rb_eRangeError, "bignum out of range of unsigned long long");
|
|
return v;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
LONG_LONG
|
|
rb_big2ll(VALUE x)
|
|
{
|
|
unsigned LONG_LONG num = big2ull(x, "long long");
|
|
|
|
if ((LONG_LONG)num < 0 && (RBIGNUM_SIGN(x)
|
|
|| (LONG_LONG)num != LLONG_MIN)) {
|
|
rb_raise(rb_eRangeError, "bignum too big to convert into `long long'");
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) return -(LONG_LONG)num;
|
|
return num;
|
|
}
|
|
|
|
#endif /* HAVE_LONG_LONG */
|
|
|
|
static VALUE
|
|
dbl2big(double d)
|
|
{
|
|
long i = 0;
|
|
BDIGIT c;
|
|
BDIGIT *digits;
|
|
VALUE z;
|
|
double u = (d < 0)?-d:d;
|
|
|
|
if (isinf(d)) {
|
|
rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity");
|
|
}
|
|
if (isnan(d)) {
|
|
rb_raise(rb_eFloatDomainError, "NaN");
|
|
}
|
|
|
|
while (!POSFIXABLE(u) || 0 != (long)u) {
|
|
u /= (double)(BIGRAD);
|
|
i++;
|
|
}
|
|
z = bignew(i, d>=0);
|
|
digits = BDIGITS(z);
|
|
while (i--) {
|
|
u *= BIGRAD;
|
|
c = (BDIGIT)u;
|
|
u -= c;
|
|
digits[i] = c;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
|
|
VALUE
|
|
rb_dbl2big(double d)
|
|
{
|
|
return bignorm(dbl2big(d));
|
|
}
|
|
|
|
static int
|
|
nlz(BDIGIT x)
|
|
{
|
|
BDIGIT y;
|
|
int n = BITSPERDIG;
|
|
#if BITSPERDIG > 64
|
|
y = x >> 64; if (y) {n -= 64; x = y;}
|
|
#endif
|
|
#if BITSPERDIG > 32
|
|
y = x >> 32; if (y) {n -= 32; x = y;}
|
|
#endif
|
|
#if BITSPERDIG > 16
|
|
y = x >> 16; if (y) {n -= 16; x = y;}
|
|
#endif
|
|
y = x >> 8; if (y) {n -= 8; x = y;}
|
|
y = x >> 4; if (y) {n -= 4; x = y;}
|
|
y = x >> 2; if (y) {n -= 2; x = y;}
|
|
y = x >> 1; if (y) {return n - 2;}
|
|
return n - x;
|
|
}
|
|
|
|
static double
|
|
big2dbl(VALUE x)
|
|
{
|
|
double d = 0.0;
|
|
long i = (bigtrunc(x), RBIGNUM_LEN(x)), lo = 0, bits;
|
|
BDIGIT *ds = BDIGITS(x), dl;
|
|
|
|
if (i) {
|
|
bits = i * BITSPERDIG - nlz(ds[i-1]);
|
|
if (bits > DBL_MANT_DIG+DBL_MAX_EXP) {
|
|
d = HUGE_VAL;
|
|
}
|
|
else {
|
|
if (bits > DBL_MANT_DIG+1)
|
|
lo = (bits -= DBL_MANT_DIG+1) / BITSPERDIG;
|
|
else
|
|
bits = 0;
|
|
while (--i > lo) {
|
|
d = ds[i] + BIGRAD*d;
|
|
}
|
|
dl = ds[i];
|
|
if (bits && (dl & (1UL << (bits %= BITSPERDIG)))) {
|
|
int carry = dl & ~(~(BDIGIT)0 << bits);
|
|
if (!carry) {
|
|
while (i-- > 0) {
|
|
if ((carry = ds[i]) != 0) break;
|
|
}
|
|
}
|
|
if (carry) {
|
|
dl &= (BDIGIT)~0 << bits;
|
|
dl += (BDIGIT)1 << bits;
|
|
if (!dl) d += 1;
|
|
}
|
|
}
|
|
d = dl + BIGRAD*d;
|
|
if (lo) {
|
|
if (lo > INT_MAX / BITSPERDIG)
|
|
d = HUGE_VAL;
|
|
else if (lo < INT_MIN / BITSPERDIG)
|
|
d = 0.0;
|
|
else
|
|
d = ldexp(d, (int)(lo * BITSPERDIG));
|
|
}
|
|
}
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) d = -d;
|
|
return d;
|
|
}
|
|
|
|
double
|
|
rb_big2dbl(VALUE x)
|
|
{
|
|
double d = big2dbl(x);
|
|
|
|
if (isinf(d)) {
|
|
rb_warning("Bignum out of Float range");
|
|
if (d < 0.0)
|
|
d = -HUGE_VAL;
|
|
else
|
|
d = HUGE_VAL;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.to_f -> float
|
|
*
|
|
* Converts <i>big</i> to a <code>Float</code>. If <i>big</i> doesn't
|
|
* fit in a <code>Float</code>, the result is infinity.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_to_f(VALUE x)
|
|
{
|
|
return DBL2NUM(rb_big2dbl(x));
|
|
}
|
|
|
|
VALUE
|
|
rb_integer_float_cmp(VALUE x, VALUE y)
|
|
{
|
|
double yd = RFLOAT_VALUE(y);
|
|
double yi, yf;
|
|
VALUE rel;
|
|
|
|
if (isnan(yd))
|
|
return Qnil;
|
|
if (isinf(yd)) {
|
|
if (yd > 0.0) return INT2FIX(-1);
|
|
else return INT2FIX(1);
|
|
}
|
|
yf = modf(yd, &yi);
|
|
if (FIXNUM_P(x)) {
|
|
#if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
|
|
double xd = (double)FIX2LONG(x);
|
|
if (xd < yd)
|
|
return INT2FIX(-1);
|
|
if (xd > yd)
|
|
return INT2FIX(1);
|
|
return INT2FIX(0);
|
|
#else
|
|
long xl, yl;
|
|
if (yi < FIXNUM_MIN)
|
|
return INT2FIX(1);
|
|
if (FIXNUM_MAX+1 <= yi)
|
|
return INT2FIX(-1);
|
|
xl = FIX2LONG(x);
|
|
yl = (long)yi;
|
|
if (xl < yl)
|
|
return INT2FIX(-1);
|
|
if (xl > yl)
|
|
return INT2FIX(1);
|
|
if (yf < 0.0)
|
|
return INT2FIX(1);
|
|
if (0.0 < yf)
|
|
return INT2FIX(-1);
|
|
return INT2FIX(0);
|
|
#endif
|
|
}
|
|
y = rb_dbl2big(yi);
|
|
rel = rb_big_cmp(x, y);
|
|
if (yf == 0.0 || rel != INT2FIX(0))
|
|
return rel;
|
|
if (yf < 0.0)
|
|
return INT2FIX(1);
|
|
return INT2FIX(-1);
|
|
}
|
|
|
|
VALUE
|
|
rb_integer_float_eq(VALUE x, VALUE y)
|
|
{
|
|
double yd = RFLOAT_VALUE(y);
|
|
double yi, yf;
|
|
|
|
if (isnan(yd) || isinf(yd))
|
|
return Qfalse;
|
|
yf = modf(yd, &yi);
|
|
if (yf != 0)
|
|
return Qfalse;
|
|
if (FIXNUM_P(x)) {
|
|
#if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
|
|
double xd = (double)FIX2LONG(x);
|
|
if (xd != yd)
|
|
return Qfalse;
|
|
return Qtrue;
|
|
#else
|
|
long xl, yl;
|
|
if (yi < LONG_MIN || LONG_MAX < yi)
|
|
return Qfalse;
|
|
xl = FIX2LONG(x);
|
|
yl = (long)yi;
|
|
if (xl != yl)
|
|
return Qfalse;
|
|
return Qtrue;
|
|
#endif
|
|
}
|
|
y = rb_dbl2big(yi);
|
|
return rb_big_eq(x, y);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big <=> numeric -> -1, 0, +1 or nil
|
|
*
|
|
* Comparison---Returns -1, 0, or +1 depending on whether <i>big</i> is
|
|
* less than, equal to, or greater than <i>numeric</i>. This is the
|
|
* basis for the tests in <code>Comparable</code>.
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_cmp(VALUE x, VALUE y)
|
|
{
|
|
long xlen = RBIGNUM_LEN(x);
|
|
BDIGIT *xds, *yds;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
return rb_integer_float_cmp(x, y);
|
|
|
|
default:
|
|
return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
|
|
}
|
|
|
|
if (RBIGNUM_SIGN(x) > RBIGNUM_SIGN(y)) return INT2FIX(1);
|
|
if (RBIGNUM_SIGN(x) < RBIGNUM_SIGN(y)) return INT2FIX(-1);
|
|
if (xlen < RBIGNUM_LEN(y))
|
|
return (RBIGNUM_SIGN(x)) ? INT2FIX(-1) : INT2FIX(1);
|
|
if (xlen > RBIGNUM_LEN(y))
|
|
return (RBIGNUM_SIGN(x)) ? INT2FIX(1) : INT2FIX(-1);
|
|
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
|
|
while(xlen-- && (xds[xlen]==yds[xlen]));
|
|
if (-1 == xlen) return INT2FIX(0);
|
|
return (xds[xlen] > yds[xlen]) ?
|
|
(RBIGNUM_SIGN(x) ? INT2FIX(1) : INT2FIX(-1)) :
|
|
(RBIGNUM_SIGN(x) ? INT2FIX(-1) : INT2FIX(1));
|
|
}
|
|
|
|
enum big_op_t {
|
|
big_op_gt,
|
|
big_op_ge,
|
|
big_op_lt,
|
|
big_op_le
|
|
};
|
|
|
|
static VALUE
|
|
big_op(VALUE x, VALUE y, enum big_op_t op)
|
|
{
|
|
VALUE rel;
|
|
int n;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
rel = rb_big_cmp(x, y);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
rel = rb_integer_float_cmp(x, y);
|
|
break;
|
|
|
|
default:
|
|
{
|
|
ID id = 0;
|
|
switch (op) {
|
|
case big_op_gt: id = '>'; break;
|
|
case big_op_ge: id = rb_intern(">="); break;
|
|
case big_op_lt: id = '<'; break;
|
|
case big_op_le: id = rb_intern("<="); break;
|
|
}
|
|
return rb_num_coerce_relop(x, y, id);
|
|
}
|
|
}
|
|
|
|
if (NIL_P(rel)) return Qfalse;
|
|
n = FIX2INT(rel);
|
|
|
|
switch (op) {
|
|
case big_op_gt: return n > 0 ? Qtrue : Qfalse;
|
|
case big_op_ge: return n >= 0 ? Qtrue : Qfalse;
|
|
case big_op_lt: return n < 0 ? Qtrue : Qfalse;
|
|
case big_op_le: return n <= 0 ? Qtrue : Qfalse;
|
|
}
|
|
return Qundef;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big > real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* greater than that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_gt(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_gt);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big >= real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* greater than or equal to that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_ge(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_ge);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big < real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* less than that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_lt(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_lt);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big <= real -> true or false
|
|
*
|
|
* Returns <code>true</code> if the value of <code>big</code> is
|
|
* less than or equal to that of <code>real</code>.
|
|
*/
|
|
|
|
static VALUE
|
|
big_le(VALUE x, VALUE y)
|
|
{
|
|
return big_op(x, y, big_op_le);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big == obj -> true or false
|
|
*
|
|
* Returns <code>true</code> only if <i>obj</i> has the same value
|
|
* as <i>big</i>. Contrast this with <code>Bignum#eql?</code>, which
|
|
* requires <i>obj</i> to be a <code>Bignum</code>.
|
|
*
|
|
* 68719476736 == 68719476736.0 #=> true
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_eq(VALUE x, VALUE y)
|
|
{
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
case T_BIGNUM:
|
|
break;
|
|
case T_FLOAT:
|
|
return rb_integer_float_eq(x, y);
|
|
default:
|
|
return rb_equal(y, x);
|
|
}
|
|
if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
|
|
if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
|
|
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.eql?(obj) -> true or false
|
|
*
|
|
* Returns <code>true</code> only if <i>obj</i> is a
|
|
* <code>Bignum</code> with the same value as <i>big</i>. Contrast this
|
|
* with <code>Bignum#==</code>, which performs type conversions.
|
|
*
|
|
* 68719476736.eql?(68719476736.0) #=> false
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_eql(VALUE x, VALUE y)
|
|
{
|
|
if (!RB_TYPE_P(y, T_BIGNUM)) return Qfalse;
|
|
if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
|
|
if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
|
|
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* -big -> integer
|
|
*
|
|
* Unary minus (returns an integer whose value is 0-big)
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_uminus(VALUE x)
|
|
{
|
|
VALUE z = rb_big_clone(x);
|
|
|
|
RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x));
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ~big -> integer
|
|
*
|
|
* Inverts the bits in big. As Bignums are conceptually infinite
|
|
* length, the result acts as if it had an infinite number of one
|
|
* bits to the left. In hex representations, this is displayed
|
|
* as two periods to the left of the digits.
|
|
*
|
|
* sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_neg(VALUE x)
|
|
{
|
|
VALUE z = rb_big_clone(x);
|
|
BDIGIT *ds;
|
|
long i;
|
|
|
|
if (!RBIGNUM_SIGN(x)) get2comp(z);
|
|
ds = BDIGITS(z);
|
|
i = RBIGNUM_LEN(x);
|
|
if (!i) return INT2FIX(~(SIGNED_VALUE)0);
|
|
while (i--) {
|
|
ds[i] = ~ds[i];
|
|
}
|
|
RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(z));
|
|
if (RBIGNUM_SIGN(x)) get2comp(z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
static void
|
|
bigsub_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
|
|
{
|
|
BDIGIT_DBL_SIGNED num;
|
|
long i;
|
|
|
|
for (i = 0, num = 0; i < yn; i++) {
|
|
num += (BDIGIT_DBL_SIGNED)xds[i] - yds[i];
|
|
zds[i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (num && i < xn) {
|
|
num += xds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (i < xn) {
|
|
zds[i] = xds[i];
|
|
i++;
|
|
}
|
|
assert(i <= zn);
|
|
while (i < zn) {
|
|
zds[i++] = 0;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
bigsub(VALUE x, VALUE y)
|
|
{
|
|
VALUE z = 0;
|
|
long i = RBIGNUM_LEN(x);
|
|
BDIGIT *xds, *yds;
|
|
|
|
/* if x is smaller than y, swap */
|
|
if (RBIGNUM_LEN(x) < RBIGNUM_LEN(y)) {
|
|
z = x; x = y; y = z; /* swap x y */
|
|
}
|
|
else if (RBIGNUM_LEN(x) == RBIGNUM_LEN(y)) {
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
while (i > 0) {
|
|
i--;
|
|
if (xds[i] > yds[i]) {
|
|
break;
|
|
}
|
|
if (xds[i] < yds[i]) {
|
|
z = x; x = y; y = z; /* swap x y */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
z = bignew(RBIGNUM_LEN(x), z==0);
|
|
bigsub_core(BDIGITS(x), RBIGNUM_LEN(x),
|
|
BDIGITS(y), RBIGNUM_LEN(y),
|
|
BDIGITS(z), RBIGNUM_LEN(z));
|
|
|
|
return z;
|
|
}
|
|
|
|
static VALUE bigadd_int(VALUE x, long y);
|
|
|
|
static VALUE
|
|
bigsub_int(VALUE x, long y0)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn;
|
|
BDIGIT_DBL_SIGNED num;
|
|
long i, y;
|
|
|
|
y = y0;
|
|
xds = BDIGITS(x);
|
|
xn = RBIGNUM_LEN(x);
|
|
|
|
z = bignew(xn, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS == SIZEOF_LONG
|
|
num = (BDIGIT_DBL_SIGNED)xds[0] - y;
|
|
if (xn == 1 && num < 0) {
|
|
RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x));
|
|
zds[0] = (BDIGIT)-num;
|
|
RB_GC_GUARD(x);
|
|
return bignorm(z);
|
|
}
|
|
zds[0] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
i = 1;
|
|
#else
|
|
num = 0;
|
|
for (i=0; i<(int)(sizeof(y)/sizeof(BDIGIT)); i++) {
|
|
num += (BDIGIT_DBL_SIGNED)xds[i] - BIGLO(y);
|
|
zds[i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
y = BIGDN(y);
|
|
}
|
|
#endif
|
|
while (num && i < xn) {
|
|
num += xds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (i < xn) {
|
|
zds[i] = xds[i];
|
|
i++;
|
|
}
|
|
if (num < 0) {
|
|
z = bigsub(x, rb_int2big(y0));
|
|
}
|
|
RB_GC_GUARD(x);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
bigadd_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
BDIGIT_DBL num;
|
|
long i;
|
|
|
|
xds = BDIGITS(x);
|
|
xn = RBIGNUM_LEN(x);
|
|
|
|
if (xn < 2) {
|
|
zn = 3;
|
|
}
|
|
else {
|
|
zn = xn + 1;
|
|
}
|
|
z = bignew(zn, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS == SIZEOF_LONG
|
|
num = (BDIGIT_DBL)xds[0] + y;
|
|
zds[0] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
i = 1;
|
|
#else
|
|
num = 0;
|
|
for (i=0; i<(int)(sizeof(y)/sizeof(BDIGIT)); i++) {
|
|
num += (BDIGIT_DBL)xds[i] + BIGLO(y);
|
|
zds[i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
y = BIGDN(y);
|
|
}
|
|
#endif
|
|
while (num && i < xn) {
|
|
num += xds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
if (num) zds[i++] = (BDIGIT)num;
|
|
else while (i < xn) {
|
|
zds[i] = xds[i];
|
|
i++;
|
|
}
|
|
assert(i <= zn);
|
|
while (i < zn) {
|
|
zds[i++] = 0;
|
|
}
|
|
RB_GC_GUARD(x);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static void
|
|
bigadd_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
|
|
{
|
|
BDIGIT_DBL num = 0;
|
|
long i;
|
|
|
|
if (xn > yn) {
|
|
BDIGIT *tds;
|
|
tds = xds; xds = yds; yds = tds;
|
|
i = xn; xn = yn; yn = i;
|
|
}
|
|
|
|
i = 0;
|
|
while (i < xn) {
|
|
num += (BDIGIT_DBL)xds[i] + yds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (num && i < yn) {
|
|
num += yds[i];
|
|
zds[i++] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
while (i < yn) {
|
|
zds[i] = yds[i];
|
|
i++;
|
|
}
|
|
if (num) zds[i++] = (BDIGIT)num;
|
|
assert(i <= zn);
|
|
while (i < zn) {
|
|
zds[i++] = 0;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
bigadd(VALUE x, VALUE y, int sign)
|
|
{
|
|
VALUE z;
|
|
long len;
|
|
|
|
sign = (sign == RBIGNUM_SIGN(y));
|
|
if (RBIGNUM_SIGN(x) != sign) {
|
|
if (sign) return bigsub(y, x);
|
|
return bigsub(x, y);
|
|
}
|
|
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
len = RBIGNUM_LEN(x) + 1;
|
|
}
|
|
else {
|
|
len = RBIGNUM_LEN(y) + 1;
|
|
}
|
|
z = bignew(len, sign);
|
|
|
|
bigadd_core(BDIGITS(x), RBIGNUM_LEN(x),
|
|
BDIGITS(y), RBIGNUM_LEN(y),
|
|
BDIGITS(z), RBIGNUM_LEN(z));
|
|
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big + other -> Numeric
|
|
*
|
|
* Adds big and other, returning the result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_plus(VALUE x, VALUE y)
|
|
{
|
|
long n;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
n = FIX2LONG(y);
|
|
if ((n > 0) != RBIGNUM_SIGN(x)) {
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigsub_int(x, n);
|
|
}
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigadd_int(x, n);
|
|
|
|
case T_BIGNUM:
|
|
return bignorm(bigadd(x, y, 1));
|
|
|
|
case T_FLOAT:
|
|
return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '+');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big - other -> Numeric
|
|
*
|
|
* Subtracts other from big, returning the result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_minus(VALUE x, VALUE y)
|
|
{
|
|
long n;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
n = FIX2LONG(y);
|
|
if ((n > 0) != RBIGNUM_SIGN(x)) {
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigadd_int(x, n);
|
|
}
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
return bigsub_int(x, n);
|
|
|
|
case T_BIGNUM:
|
|
return bignorm(bigadd(x, y, 0));
|
|
|
|
case T_FLOAT:
|
|
return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '-');
|
|
}
|
|
}
|
|
|
|
static long
|
|
big_real_len(VALUE x)
|
|
{
|
|
long i = RBIGNUM_LEN(x);
|
|
BDIGIT *xds = BDIGITS(x);
|
|
while (--i && !xds[i]);
|
|
return i + 1;
|
|
}
|
|
|
|
static VALUE
|
|
bigmul1_single(VALUE x, VALUE y)
|
|
{
|
|
BDIGIT_DBL n;
|
|
VALUE z = bignew(2, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
BDIGIT *xds, *yds, *zds;
|
|
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
zds = BDIGITS(z);
|
|
|
|
n = (BDIGIT_DBL)xds[0] * yds[0];
|
|
zds[0] = BIGLO(n);
|
|
zds[1] = (BDIGIT)BIGDN(n);
|
|
|
|
return z;
|
|
}
|
|
|
|
static VALUE
|
|
bigmul1_normal(VALUE x, VALUE y)
|
|
{
|
|
long xl = RBIGNUM_LEN(x), yl = RBIGNUM_LEN(y), i, j = xl + yl + 1;
|
|
BDIGIT_DBL n = 0;
|
|
VALUE z = bignew(j, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
BDIGIT *xds, *yds, *zds;
|
|
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
zds = BDIGITS(z);
|
|
while (j--) zds[j] = 0;
|
|
for (i = 0; i < xl; i++) {
|
|
BDIGIT_DBL dd;
|
|
dd = xds[i];
|
|
if (dd == 0) continue;
|
|
n = 0;
|
|
for (j = 0; j < yl; j++) {
|
|
BDIGIT_DBL ee = n + (BDIGIT_DBL)dd * yds[j];
|
|
n = zds[i + j] + ee;
|
|
if (ee) zds[i + j] = BIGLO(n);
|
|
n = BIGDN(n);
|
|
}
|
|
if (n) {
|
|
zds[i + j] = (BDIGIT)n;
|
|
}
|
|
}
|
|
rb_thread_check_ints();
|
|
return z;
|
|
}
|
|
|
|
static VALUE bigmul0(VALUE x, VALUE y);
|
|
|
|
/* balancing multiplication by slicing larger argument */
|
|
static VALUE
|
|
bigmul1_balance(VALUE x, VALUE y)
|
|
{
|
|
VALUE z, t1, t2;
|
|
long i, xn, yn, r, n;
|
|
BDIGIT *yds, *zds, *t1ds;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
assert(2 * xn <= yn || 3 * xn <= 2*(yn+2));
|
|
|
|
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
t1 = bignew(xn, 1);
|
|
|
|
yds = BDIGITS(y);
|
|
zds = BDIGITS(z);
|
|
t1ds = BDIGITS(t1);
|
|
|
|
for (i = 0; i < xn + yn; i++) zds[i] = 0;
|
|
|
|
n = 0;
|
|
while (yn > 0) {
|
|
r = xn > yn ? yn : xn;
|
|
MEMCPY(t1ds, yds + n, BDIGIT, r);
|
|
RBIGNUM_SET_LEN(t1, r);
|
|
t2 = bigmul0(x, t1);
|
|
bigadd_core(zds + n, RBIGNUM_LEN(z) - n,
|
|
BDIGITS(t2), big_real_len(t2),
|
|
zds + n, RBIGNUM_LEN(z) - n);
|
|
yn -= r;
|
|
n += r;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
|
|
/* split a bignum into high and low bignums */
|
|
static void
|
|
big_split(VALUE v, long n, volatile VALUE *ph, volatile VALUE *pl)
|
|
{
|
|
long hn = 0, ln = RBIGNUM_LEN(v);
|
|
VALUE h, l;
|
|
BDIGIT *vds = BDIGITS(v);
|
|
|
|
if (ln > n) {
|
|
hn = ln - n;
|
|
ln = n;
|
|
}
|
|
|
|
if (!hn) {
|
|
h = rb_uint2big(0);
|
|
}
|
|
else {
|
|
while (--hn && !vds[hn + ln]);
|
|
h = bignew(hn += 2, 1);
|
|
MEMCPY(BDIGITS(h), vds + ln, BDIGIT, hn - 1);
|
|
BDIGITS(h)[hn - 1] = 0; /* margin for carry */
|
|
}
|
|
|
|
while (--ln && !vds[ln]);
|
|
l = bignew(ln += 2, 1);
|
|
MEMCPY(BDIGITS(l), vds, BDIGIT, ln - 1);
|
|
BDIGITS(l)[ln - 1] = 0; /* margin for carry */
|
|
|
|
*pl = l;
|
|
*ph = h;
|
|
}
|
|
|
|
/* multiplication by karatsuba method */
|
|
static VALUE
|
|
bigmul1_karatsuba(VALUE x, VALUE y)
|
|
{
|
|
long i, n, xn, yn, t1n, t2n;
|
|
VALUE xh, xl, yh, yl, z, t1, t2, t3;
|
|
BDIGIT *zds;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
n = yn / 2;
|
|
big_split(x, n, &xh, &xl);
|
|
if (x == y) {
|
|
yh = xh; yl = xl;
|
|
}
|
|
else big_split(y, n, &yh, &yl);
|
|
|
|
/* x = xh * b + xl
|
|
* y = yh * b + yl
|
|
*
|
|
* Karatsuba method:
|
|
* x * y = z2 * b^2 + z1 * b + z0
|
|
* where
|
|
* z2 = xh * yh
|
|
* z0 = xl * yl
|
|
* z1 = (xh + xl) * (yh + yl) - z2 - z0
|
|
*
|
|
* ref: http://en.wikipedia.org/wiki/Karatsuba_algorithm
|
|
*/
|
|
|
|
/* allocate a result bignum */
|
|
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
|
|
/* t1 <- xh * yh */
|
|
t1 = bigmul0(xh, yh);
|
|
t1n = big_real_len(t1);
|
|
|
|
/* copy t1 into high bytes of the result (z2) */
|
|
MEMCPY(zds + 2 * n, BDIGITS(t1), BDIGIT, t1n);
|
|
for (i = 2 * n + t1n; i < xn + yn; i++) zds[i] = 0;
|
|
|
|
if (!BIGZEROP(xl) && !BIGZEROP(yl)) {
|
|
/* t2 <- xl * yl */
|
|
t2 = bigmul0(xl, yl);
|
|
t2n = big_real_len(t2);
|
|
|
|
/* copy t2 into low bytes of the result (z0) */
|
|
MEMCPY(zds, BDIGITS(t2), BDIGIT, t2n);
|
|
for (i = t2n; i < 2 * n; i++) zds[i] = 0;
|
|
}
|
|
else {
|
|
t2 = Qundef;
|
|
t2n = 0;
|
|
|
|
/* copy 0 into low bytes of the result (z0) */
|
|
for (i = 0; i < 2 * n; i++) zds[i] = 0;
|
|
}
|
|
|
|
/* xh <- xh + xl */
|
|
if (RBIGNUM_LEN(xl) > RBIGNUM_LEN(xh)) {
|
|
t3 = xl; xl = xh; xh = t3;
|
|
}
|
|
/* xh has a margin for carry */
|
|
bigadd_core(BDIGITS(xh), RBIGNUM_LEN(xh),
|
|
BDIGITS(xl), RBIGNUM_LEN(xl),
|
|
BDIGITS(xh), RBIGNUM_LEN(xh));
|
|
|
|
/* yh <- yh + yl */
|
|
if (x != y) {
|
|
if (RBIGNUM_LEN(yl) > RBIGNUM_LEN(yh)) {
|
|
t3 = yl; yl = yh; yh = t3;
|
|
}
|
|
/* yh has a margin for carry */
|
|
bigadd_core(BDIGITS(yh), RBIGNUM_LEN(yh),
|
|
BDIGITS(yl), RBIGNUM_LEN(yl),
|
|
BDIGITS(yh), RBIGNUM_LEN(yh));
|
|
}
|
|
else yh = xh;
|
|
|
|
/* t3 <- xh * yh */
|
|
t3 = bigmul0(xh, yh);
|
|
|
|
i = xn + yn - n;
|
|
/* subtract t1 from t3 */
|
|
bigsub_core(BDIGITS(t3), big_real_len(t3), BDIGITS(t1), t1n, BDIGITS(t3), big_real_len(t3));
|
|
|
|
/* subtract t2 from t3; t3 is now the middle term of the product */
|
|
if (t2 != Qundef) bigsub_core(BDIGITS(t3), big_real_len(t3), BDIGITS(t2), t2n, BDIGITS(t3), big_real_len(t3));
|
|
|
|
/* add t3 to middle bytes of the result (z1) */
|
|
bigadd_core(zds + n, i, BDIGITS(t3), big_real_len(t3), zds + n, i);
|
|
|
|
return z;
|
|
}
|
|
|
|
static void
|
|
biglsh_bang(BDIGIT *xds, long xn, unsigned long shift)
|
|
{
|
|
long const s1 = shift/BITSPERDIG;
|
|
int const s2 = (int)(shift%BITSPERDIG);
|
|
int const s3 = BITSPERDIG-s2;
|
|
BDIGIT* zds;
|
|
BDIGIT num;
|
|
long i;
|
|
if (s1 >= xn) {
|
|
MEMZERO(xds, BDIGIT, xn);
|
|
return;
|
|
}
|
|
zds = xds + xn - 1;
|
|
xn -= s1 + 1;
|
|
num = xds[xn]<<s2;
|
|
do {
|
|
*zds-- = num | xds[--xn]>>s3;
|
|
num = xds[xn]<<s2;
|
|
}
|
|
while (xn > 0);
|
|
*zds = num;
|
|
for (i = s1; i > 0; --i)
|
|
*zds-- = 0;
|
|
}
|
|
|
|
static void
|
|
bigrsh_bang(BDIGIT* xds, long xn, unsigned long shift)
|
|
{
|
|
long s1 = shift/BITSPERDIG;
|
|
int s2 = (int)(shift%BITSPERDIG);
|
|
int s3 = BITSPERDIG - s2;
|
|
int i;
|
|
BDIGIT num;
|
|
BDIGIT* zds;
|
|
if (s1 >= xn) {
|
|
MEMZERO(xds, BDIGIT, xn);
|
|
return;
|
|
}
|
|
|
|
i = 0;
|
|
zds = xds + s1;
|
|
num = *zds++>>s2;
|
|
do {
|
|
xds[i++] = (BDIGIT)(*zds<<s3) | num;
|
|
num = *zds++>>s2;
|
|
}
|
|
while (i < xn - s1 - 1);
|
|
xds[i] = num;
|
|
MEMZERO(xds + xn - s1, BDIGIT, s1);
|
|
}
|
|
|
|
static void
|
|
big_split3(VALUE v, long n, volatile VALUE* p0, volatile VALUE* p1, volatile VALUE* p2)
|
|
{
|
|
VALUE v0, v12, v1, v2;
|
|
|
|
big_split(v, n, &v12, &v0);
|
|
big_split(v12, n, &v2, &v1);
|
|
|
|
*p0 = bigtrunc(v0);
|
|
*p1 = bigtrunc(v1);
|
|
*p2 = bigtrunc(v2);
|
|
}
|
|
|
|
static VALUE big_lshift(VALUE, unsigned long);
|
|
static VALUE big_rshift(VALUE, unsigned long);
|
|
static VALUE bigdivrem(VALUE, VALUE, volatile VALUE*, volatile VALUE*);
|
|
|
|
static VALUE
|
|
bigmul1_toom3(VALUE x, VALUE y)
|
|
{
|
|
long n, xn, yn, zn;
|
|
VALUE x0, x1, x2, y0, y1, y2;
|
|
VALUE u0, u1, u2, u3, u4, v1, v2, v3;
|
|
VALUE z0, z1, z2, z3, z4, z, t;
|
|
BDIGIT* zds;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
assert(xn <= yn); /* assume y >= x */
|
|
|
|
n = (yn + 2) / 3;
|
|
big_split3(x, n, &x0, &x1, &x2);
|
|
if (x == y) {
|
|
y0 = x0; y1 = x1; y2 = x2;
|
|
}
|
|
else big_split3(y, n, &y0, &y1, &y2);
|
|
|
|
/*
|
|
* ref. http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
|
|
*
|
|
* x(b) = x0 * b^0 + x1 * b^1 + x2 * b^2
|
|
* y(b) = y0 * b^0 + y1 * b^1 + y2 * b^2
|
|
*
|
|
* z(b) = x(b) * y(b)
|
|
* z(b) = z0 * b^0 + z1 * b^1 + z2 * b^2 + z3 * b^3 + z4 * b^4
|
|
* where:
|
|
* z0 = x0 * y0
|
|
* z1 = x0 * y1 + x1 * y0
|
|
* z2 = x0 * y2 + x1 * y1 + x2 * y0
|
|
* z3 = x1 * y2 + x2 * y1
|
|
* z4 = x2 * y2
|
|
*
|
|
* Toom3 method (a.k.a. Toom-Cook method):
|
|
* (Step1) calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4),
|
|
* where:
|
|
* b0 = 0, b1 = 1, b2 = -1, b3 = -2, b4 = inf,
|
|
* z(0) = x(0) * y(0) = x0 * y0
|
|
* z(1) = x(1) * y(1) = (x0 + x1 + x2) * (y0 + y1 + y2)
|
|
* z(-1) = x(-1) * y(-1) = (x0 - x1 + x2) * (y0 - y1 + y2)
|
|
* z(-2) = x(-2) * y(-2) = (x0 - 2 * (x1 - 2 * x2)) * (y0 - 2 * (y1 - 2 * y2))
|
|
* z(inf) = x(inf) * y(inf) = x2 * y2
|
|
*
|
|
* (Step2) interpolating z0, z1, z2, z3, z4, and z5.
|
|
*
|
|
* (Step3) Substituting base value into b of the polynomial z(b),
|
|
*/
|
|
|
|
/*
|
|
* [Step1] calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4)
|
|
*/
|
|
|
|
/* u1 <- x0 + x2 */
|
|
u1 = bigtrunc(bigadd(x0, x2, 1));
|
|
|
|
/* x(-1) : u2 <- u1 - x1 = x0 - x1 + x2 */
|
|
u2 = bigtrunc(bigsub(u1, x1));
|
|
|
|
/* x(1) : u1 <- u1 + x1 = x0 + x1 + x2 */
|
|
u1 = bigtrunc(bigadd(u1, x1, 1));
|
|
|
|
/* x(-2) : u3 <- 2 * (u2 + x2) - x0 = x0 - 2 * (x1 - 2 * x2) */
|
|
u3 = bigadd(u2, x2, 1);
|
|
if (BDIGITS(u3)[RBIGNUM_LEN(u3)-1] & BIGRAD_HALF) {
|
|
rb_big_resize(u3, RBIGNUM_LEN(u3) + 1);
|
|
BDIGITS(u3)[RBIGNUM_LEN(u3)-1] = 0;
|
|
}
|
|
biglsh_bang(BDIGITS(u3), RBIGNUM_LEN(u3), 1);
|
|
u3 = bigtrunc(bigadd(bigtrunc(u3), x0, 0));
|
|
|
|
if (x == y) {
|
|
v1 = u1; v2 = u2; v3 = u3;
|
|
}
|
|
else {
|
|
/* v1 <- y0 + y2 */
|
|
v1 = bigtrunc(bigadd(y0, y2, 1));
|
|
|
|
/* y(-1) : v2 <- v1 - y1 = y0 - y1 + y2 */
|
|
v2 = bigtrunc(bigsub(v1, y1));
|
|
|
|
/* y(1) : v1 <- v1 + y1 = y0 + y1 + y2 */
|
|
v1 = bigtrunc(bigadd(v1, y1, 1));
|
|
|
|
/* y(-2) : v3 <- 2 * (v2 + y2) - y0 = y0 - 2 * (y1 - 2 * y2) */
|
|
v3 = bigadd(v2, y2, 1);
|
|
if (BDIGITS(v3)[RBIGNUM_LEN(v3)-1] & BIGRAD_HALF) {
|
|
rb_big_resize(v3, RBIGNUM_LEN(v3) + 1);
|
|
BDIGITS(v3)[RBIGNUM_LEN(v3)-1] = 0;
|
|
}
|
|
biglsh_bang(BDIGITS(v3), RBIGNUM_LEN(v3), 1);
|
|
v3 = bigtrunc(bigadd(bigtrunc(v3), y0, 0));
|
|
}
|
|
|
|
/* z(0) : u0 <- x0 * y0 */
|
|
u0 = bigtrunc(bigmul0(x0, y0));
|
|
|
|
/* z(1) : u1 <- u1 * v1 */
|
|
u1 = bigtrunc(bigmul0(u1, v1));
|
|
|
|
/* z(-1) : u2 <- u2 * v2 */
|
|
u2 = bigtrunc(bigmul0(u2, v2));
|
|
|
|
/* z(-2) : u3 <- u3 * v3 */
|
|
u3 = bigtrunc(bigmul0(u3, v3));
|
|
|
|
/* z(inf) : u4 <- x2 * y2 */
|
|
u4 = bigtrunc(bigmul0(x2, y2));
|
|
|
|
/* for GC */
|
|
v1 = v2 = v3 = Qnil;
|
|
|
|
/*
|
|
* [Step2] interpolating z0, z1, z2, z3, z4, and z5.
|
|
*/
|
|
|
|
/* z0 <- z(0) == u0 */
|
|
z0 = u0;
|
|
|
|
/* z4 <- z(inf) == u4 */
|
|
z4 = u4;
|
|
|
|
/* z3 <- (z(-2) - z(1)) / 3 == (u3 - u1) / 3 */
|
|
z3 = bigadd(u3, u1, 0);
|
|
bigdivrem(z3, big_three, &z3, NULL); /* TODO: optimize */
|
|
bigtrunc(z3);
|
|
|
|
/* z1 <- (z(1) - z(-1)) / 2 == (u1 - u2) / 2 */
|
|
z1 = bigtrunc(bigadd(u1, u2, 0));
|
|
bigrsh_bang(BDIGITS(z1), RBIGNUM_LEN(z1), 1);
|
|
|
|
/* z2 <- z(-1) - z(0) == u2 - u0 */
|
|
z2 = bigtrunc(bigadd(u2, u0, 0));
|
|
|
|
/* z3 <- (z2 - z3) / 2 + 2 * z(inf) == (z2 - z3) / 2 + 2 * u4 */
|
|
z3 = bigtrunc(bigadd(z2, z3, 0));
|
|
bigrsh_bang(BDIGITS(z3), RBIGNUM_LEN(z3), 1);
|
|
t = big_lshift(u4, 1); /* TODO: combining with next addition */
|
|
z3 = bigtrunc(bigadd(z3, t, 1));
|
|
|
|
/* z2 <- z2 + z1 - z(inf) == z2 + z1 - u4 */
|
|
z2 = bigtrunc(bigadd(z2, z1, 1));
|
|
z2 = bigtrunc(bigadd(z2, u4, 0));
|
|
|
|
/* z1 <- z1 - z3 */
|
|
z1 = bigtrunc(bigadd(z1, z3, 0));
|
|
|
|
/*
|
|
* [Step3] Substituting base value into b of the polynomial z(b),
|
|
*/
|
|
|
|
zn = 6*n + 1;
|
|
z = bignew(zn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
MEMCPY(zds, BDIGITS(z0), BDIGIT, RBIGNUM_LEN(z0));
|
|
MEMZERO(zds + RBIGNUM_LEN(z0), BDIGIT, zn - RBIGNUM_LEN(z0));
|
|
bigadd_core(zds + n, zn - n, BDIGITS(z1), big_real_len(z1), zds + n, zn - n);
|
|
bigadd_core(zds + 2*n, zn - 2*n, BDIGITS(z2), big_real_len(z2), zds + 2*n, zn - 2*n);
|
|
bigadd_core(zds + 3*n, zn - 3*n, BDIGITS(z3), big_real_len(z3), zds + 3*n, zn - 3*n);
|
|
bigadd_core(zds + 4*n, zn - 4*n, BDIGITS(z4), big_real_len(z4), zds + 4*n, zn - 4*n);
|
|
z = bignorm(z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/* efficient squaring (2 times faster than normal multiplication)
|
|
* ref: Handbook of Applied Cryptography, Algorithm 14.16
|
|
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
|
*/
|
|
static VALUE
|
|
bigsqr_fast(VALUE x)
|
|
{
|
|
long len = RBIGNUM_LEN(x), i, j;
|
|
VALUE z = bignew(2 * len + 1, 1);
|
|
BDIGIT *xds = BDIGITS(x), *zds = BDIGITS(z);
|
|
BDIGIT_DBL c, v, w;
|
|
|
|
for (i = 2 * len + 1; i--; ) zds[i] = 0;
|
|
for (i = 0; i < len; i++) {
|
|
v = (BDIGIT_DBL)xds[i];
|
|
if (!v) continue;
|
|
c = (BDIGIT_DBL)zds[i + i] + v * v;
|
|
zds[i + i] = BIGLO(c);
|
|
c = BIGDN(c);
|
|
v *= 2;
|
|
for (j = i + 1; j < len; j++) {
|
|
w = (BDIGIT_DBL)xds[j];
|
|
c += (BDIGIT_DBL)zds[i + j] + BIGLO(v) * w;
|
|
zds[i + j] = BIGLO(c);
|
|
c = BIGDN(c);
|
|
if (BIGDN(v)) c += w;
|
|
}
|
|
if (c) {
|
|
c += (BDIGIT_DBL)zds[i + len];
|
|
zds[i + len] = BIGLO(c);
|
|
c = BIGDN(c);
|
|
}
|
|
if (c) zds[i + len + 1] += (BDIGIT)c;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
#define KARATSUBA_MUL_DIGITS 70
|
|
#define TOOM3_MUL_DIGITS 150
|
|
|
|
|
|
/* determine whether a bignum is sparse or not by random sampling */
|
|
static inline VALUE
|
|
big_sparse_p(VALUE x)
|
|
{
|
|
long c = 0, n = RBIGNUM_LEN(x);
|
|
|
|
if ( BDIGITS(x)[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
|
|
if (c <= 1 && BDIGITS(x)[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
|
|
if (c <= 1 && BDIGITS(x)[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
|
|
|
|
return (c <= 1) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
bigmul0(VALUE x, VALUE y)
|
|
{
|
|
long xn, yn;
|
|
|
|
xn = RBIGNUM_LEN(x);
|
|
yn = RBIGNUM_LEN(y);
|
|
|
|
/* make sure that y is longer than x */
|
|
if (xn > yn) {
|
|
VALUE t;
|
|
long tn;
|
|
t = x; x = y; y = t;
|
|
tn = xn; xn = yn; yn = tn;
|
|
}
|
|
assert(xn <= yn);
|
|
|
|
/* normal multiplication when x is small */
|
|
if (xn < KARATSUBA_MUL_DIGITS) {
|
|
normal:
|
|
if (x == y) return bigsqr_fast(x);
|
|
if (xn == 1 && yn == 1) return bigmul1_single(x, y);
|
|
return bigmul1_normal(x, y);
|
|
}
|
|
|
|
/* normal multiplication when x or y is a sparse bignum */
|
|
if (big_sparse_p(x)) goto normal;
|
|
if (big_sparse_p(y)) return bigmul1_normal(y, x);
|
|
|
|
/* balance multiplication by slicing y when x is much smaller than y */
|
|
if (2 * xn <= yn) return bigmul1_balance(x, y);
|
|
|
|
if (xn < TOOM3_MUL_DIGITS) {
|
|
/* multiplication by karatsuba method */
|
|
return bigmul1_karatsuba(x, y);
|
|
}
|
|
else if (3*xn <= 2*(yn + 2))
|
|
return bigmul1_balance(x, y);
|
|
return bigmul1_toom3(x, y);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big * other -> Numeric
|
|
*
|
|
* Multiplies big and other, returning the result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_mul(VALUE x, VALUE y)
|
|
{
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '*');
|
|
}
|
|
|
|
return bignorm(bigmul0(x, y));
|
|
}
|
|
|
|
struct big_div_struct {
|
|
long nx, ny;
|
|
BDIGIT *yds, *zds;
|
|
VALUE stop;
|
|
};
|
|
|
|
static void *
|
|
bigdivrem1(void *ptr)
|
|
{
|
|
struct big_div_struct *bds = (struct big_div_struct*)ptr;
|
|
long nx = bds->nx, ny = bds->ny;
|
|
long i, j, nyzero;
|
|
BDIGIT *yds = bds->yds, *zds = bds->zds;
|
|
BDIGIT_DBL t2;
|
|
BDIGIT_DBL_SIGNED num;
|
|
BDIGIT q;
|
|
|
|
j = nx==ny?nx+1:nx;
|
|
for (nyzero = 0; !yds[nyzero]; nyzero++);
|
|
do {
|
|
if (bds->stop) return 0;
|
|
if (zds[j] == yds[ny-1]) q = (BDIGIT)BIGRAD-1;
|
|
else q = (BDIGIT)((BIGUP(zds[j]) + zds[j-1])/yds[ny-1]);
|
|
if (q) {
|
|
i = nyzero; num = 0; t2 = 0;
|
|
do { /* multiply and subtract */
|
|
BDIGIT_DBL ee;
|
|
t2 += (BDIGIT_DBL)yds[i] * q;
|
|
ee = num - BIGLO(t2);
|
|
num = (BDIGIT_DBL)zds[j - ny + i] + ee;
|
|
if (ee) zds[j - ny + i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
t2 = BIGDN(t2);
|
|
} while (++i < ny);
|
|
num += zds[j - ny + i] - t2;/* borrow from high digit; don't update */
|
|
while (num) { /* "add back" required */
|
|
i = 0; num = 0; q--;
|
|
do {
|
|
BDIGIT_DBL ee = num + yds[i];
|
|
num = (BDIGIT_DBL)zds[j - ny + i] + ee;
|
|
if (ee) zds[j - ny + i] = BIGLO(num);
|
|
num = BIGDN(num);
|
|
} while (++i < ny);
|
|
num--;
|
|
}
|
|
}
|
|
zds[j] = q;
|
|
} while (--j >= ny);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rb_big_stop(void *ptr)
|
|
{
|
|
VALUE *stop = (VALUE*)ptr;
|
|
*stop = Qtrue;
|
|
}
|
|
|
|
static VALUE
|
|
bigdivrem(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
|
|
{
|
|
struct big_div_struct bds;
|
|
long nx = RBIGNUM_LEN(x), ny = RBIGNUM_LEN(y);
|
|
long i, j;
|
|
VALUE z, yy, zz;
|
|
BDIGIT *xds, *yds, *zds, *tds;
|
|
BDIGIT_DBL t2;
|
|
BDIGIT dd, q;
|
|
|
|
if (BIGZEROP(y)) rb_num_zerodiv();
|
|
xds = BDIGITS(x);
|
|
yds = BDIGITS(y);
|
|
if (nx < ny || (nx == ny && xds[nx - 1] < yds[ny - 1])) {
|
|
if (divp) *divp = rb_int2big(0);
|
|
if (modp) *modp = x;
|
|
return Qnil;
|
|
}
|
|
if (ny == 1) {
|
|
dd = yds[0];
|
|
z = rb_big_clone(x);
|
|
zds = BDIGITS(z);
|
|
t2 = 0; i = nx;
|
|
while (i--) {
|
|
t2 = BIGUP(t2) + zds[i];
|
|
zds[i] = (BDIGIT)(t2 / dd);
|
|
t2 %= dd;
|
|
}
|
|
RBIGNUM_SET_SIGN(z, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
if (modp) {
|
|
*modp = rb_uint2big((VALUE)t2);
|
|
RBIGNUM_SET_SIGN(*modp, RBIGNUM_SIGN(x));
|
|
}
|
|
if (divp) *divp = z;
|
|
return Qnil;
|
|
}
|
|
|
|
z = bignew(nx==ny?nx+2:nx+1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
if (nx==ny) zds[nx+1] = 0;
|
|
while (!yds[ny-1]) ny--;
|
|
|
|
dd = 0;
|
|
q = yds[ny-1];
|
|
while ((q & (BDIGIT)(1UL<<(BITSPERDIG-1))) == 0) {
|
|
q <<= 1UL;
|
|
dd++;
|
|
}
|
|
if (dd) {
|
|
yy = rb_big_clone(y);
|
|
tds = BDIGITS(yy);
|
|
j = 0;
|
|
t2 = 0;
|
|
while (j<ny) {
|
|
t2 += (BDIGIT_DBL)yds[j]<<dd;
|
|
tds[j++] = BIGLO(t2);
|
|
t2 = BIGDN(t2);
|
|
}
|
|
yds = tds;
|
|
RB_GC_GUARD(y) = yy;
|
|
j = 0;
|
|
t2 = 0;
|
|
while (j<nx) {
|
|
t2 += (BDIGIT_DBL)xds[j]<<dd;
|
|
zds[j++] = BIGLO(t2);
|
|
t2 = BIGDN(t2);
|
|
}
|
|
zds[j] = (BDIGIT)t2;
|
|
}
|
|
else {
|
|
zds[nx] = 0;
|
|
j = nx;
|
|
while (j--) zds[j] = xds[j];
|
|
}
|
|
|
|
bds.nx = nx;
|
|
bds.ny = ny;
|
|
bds.zds = zds;
|
|
bds.yds = yds;
|
|
bds.stop = Qfalse;
|
|
if (nx > 10000 || ny > 10000) {
|
|
rb_thread_call_without_gvl(bigdivrem1, &bds, rb_big_stop, &bds.stop);
|
|
}
|
|
else {
|
|
bigdivrem1(&bds);
|
|
}
|
|
|
|
if (divp) { /* move quotient down in z */
|
|
*divp = zz = rb_big_clone(z);
|
|
zds = BDIGITS(zz);
|
|
j = (nx==ny ? nx+2 : nx+1) - ny;
|
|
for (i = 0;i < j;i++) zds[i] = zds[i+ny];
|
|
if (!zds[i-1]) i--;
|
|
RBIGNUM_SET_LEN(zz, i);
|
|
}
|
|
if (modp) { /* normalize remainder */
|
|
*modp = zz = rb_big_clone(z);
|
|
zds = BDIGITS(zz);
|
|
while (ny > 1 && !zds[ny-1]) --ny;
|
|
if (dd) {
|
|
t2 = 0; i = ny;
|
|
while(i--) {
|
|
t2 = (t2 | zds[i]) >> dd;
|
|
q = zds[i];
|
|
zds[i] = BIGLO(t2);
|
|
t2 = BIGUP(q);
|
|
}
|
|
}
|
|
if (!zds[ny-1]) ny--;
|
|
RBIGNUM_SET_LEN(zz, ny);
|
|
RBIGNUM_SET_SIGN(zz, RBIGNUM_SIGN(x));
|
|
}
|
|
return z;
|
|
}
|
|
|
|
static void
|
|
bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
|
|
{
|
|
VALUE mod;
|
|
|
|
bigdivrem(x, y, divp, &mod);
|
|
if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y) && !BIGZEROP(mod)) {
|
|
if (divp) *divp = bigadd(*divp, rb_int2big(1), 0);
|
|
if (modp) *modp = bigadd(mod, y, 1);
|
|
}
|
|
else if (modp) {
|
|
*modp = mod;
|
|
}
|
|
}
|
|
|
|
|
|
static VALUE
|
|
rb_big_divide(VALUE x, VALUE y, ID op)
|
|
{
|
|
VALUE z;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
{
|
|
if (op == '/') {
|
|
return DBL2NUM(rb_big2dbl(x) / RFLOAT_VALUE(y));
|
|
}
|
|
else {
|
|
double dy = RFLOAT_VALUE(y);
|
|
if (dy == 0.0) rb_num_zerodiv();
|
|
return rb_dbl2big(rb_big2dbl(x) / dy);
|
|
}
|
|
}
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, op);
|
|
}
|
|
bigdivmod(x, y, &z, 0);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big / other -> Numeric
|
|
*
|
|
* Performs division: the class of the resulting object depends on
|
|
* the class of <code>numeric</code> and on the magnitude of the
|
|
* result.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_div(VALUE x, VALUE y)
|
|
{
|
|
return rb_big_divide(x, y, '/');
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.div(other) -> integer
|
|
*
|
|
* Performs integer division: returns integer value.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_idiv(VALUE x, VALUE y)
|
|
{
|
|
return rb_big_divide(x, y, rb_intern("div"));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big % other -> Numeric
|
|
* big.modulo(other) -> Numeric
|
|
*
|
|
* Returns big modulo other. See Numeric.divmod for more
|
|
* information.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_modulo(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, '%');
|
|
}
|
|
bigdivmod(x, y, 0, &z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.remainder(numeric) -> number
|
|
*
|
|
* Returns the remainder after dividing <i>big</i> by <i>numeric</i>.
|
|
*
|
|
* -1234567890987654321.remainder(13731) #=> -6966
|
|
* -1234567890987654321.remainder(13731.24) #=> -9906.22531493148
|
|
*/
|
|
static VALUE
|
|
rb_big_remainder(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("remainder"));
|
|
}
|
|
bigdivrem(x, y, 0, &z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.divmod(numeric) -> array
|
|
*
|
|
* See <code>Numeric#divmod</code>.
|
|
*
|
|
*/
|
|
VALUE
|
|
rb_big_divmod(VALUE x, VALUE y)
|
|
{
|
|
VALUE div, mod;
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("divmod"));
|
|
}
|
|
bigdivmod(x, y, &div, &mod);
|
|
|
|
return rb_assoc_new(bignorm(div), bignorm(mod));
|
|
}
|
|
|
|
static int
|
|
bdigbitsize(BDIGIT x)
|
|
{
|
|
int size = 1;
|
|
int nb = BITSPERDIG / 2;
|
|
BDIGIT bits = (~0 << nb);
|
|
|
|
if (!x) return 0;
|
|
while (x > 1) {
|
|
if (x & bits) {
|
|
size += nb;
|
|
x >>= nb;
|
|
}
|
|
x &= ~bits;
|
|
nb /= 2;
|
|
bits >>= nb;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static VALUE big_lshift(VALUE, unsigned long);
|
|
static VALUE big_rshift(VALUE, unsigned long);
|
|
|
|
static VALUE
|
|
big_shift(VALUE x, long n)
|
|
{
|
|
if (n < 0)
|
|
return big_lshift(x, (unsigned long)-n);
|
|
else if (n > 0)
|
|
return big_rshift(x, (unsigned long)n);
|
|
return x;
|
|
}
|
|
|
|
static VALUE
|
|
big_fdiv(VALUE x, VALUE y)
|
|
{
|
|
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
|
|
VALUE z;
|
|
long l, ex, ey;
|
|
int i;
|
|
|
|
bigtrunc(x);
|
|
l = RBIGNUM_LEN(x) - 1;
|
|
ex = l * BITSPERDIG;
|
|
ex += bdigbitsize(BDIGITS(x)[l]);
|
|
ex -= 2 * DBL_BIGDIG * BITSPERDIG;
|
|
if (ex) x = big_shift(x, ex);
|
|
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
y = rb_int2big(FIX2LONG(y));
|
|
case T_BIGNUM:
|
|
bigtrunc(y);
|
|
l = RBIGNUM_LEN(y) - 1;
|
|
ey = l * BITSPERDIG;
|
|
ey += bdigbitsize(BDIGITS(y)[l]);
|
|
ey -= DBL_BIGDIG * BITSPERDIG;
|
|
if (ey) y = big_shift(y, ey);
|
|
break;
|
|
case T_FLOAT:
|
|
y = dbl2big(ldexp(frexp(RFLOAT_VALUE(y), &i), DBL_MANT_DIG));
|
|
ey = i - DBL_MANT_DIG;
|
|
break;
|
|
default:
|
|
rb_bug("big_fdiv");
|
|
}
|
|
bigdivrem(x, y, &z, 0);
|
|
l = ex - ey;
|
|
#if SIZEOF_LONG > SIZEOF_INT
|
|
{
|
|
/* Visual C++ can't be here */
|
|
if (l > INT_MAX) return DBL2NUM(INFINITY);
|
|
if (l < INT_MIN) return DBL2NUM(0.0);
|
|
}
|
|
#endif
|
|
return DBL2NUM(ldexp(big2dbl(z), (int)l));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.fdiv(numeric) -> float
|
|
*
|
|
* Returns the floating point result of dividing <i>big</i> by
|
|
* <i>numeric</i>.
|
|
*
|
|
* -1234567890987654321.fdiv(13731) #=> -89910996357705.5
|
|
* -1234567890987654321.fdiv(13731.24) #=> -89909424858035.7
|
|
*
|
|
*/
|
|
|
|
|
|
VALUE
|
|
rb_big_fdiv(VALUE x, VALUE y)
|
|
{
|
|
double dx, dy;
|
|
|
|
dx = big2dbl(x);
|
|
switch (TYPE(y)) {
|
|
case T_FIXNUM:
|
|
dy = (double)FIX2LONG(y);
|
|
if (isinf(dx))
|
|
return big_fdiv(x, y);
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
dy = rb_big2dbl(y);
|
|
if (isinf(dx) || isinf(dy))
|
|
return big_fdiv(x, y);
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
dy = RFLOAT_VALUE(y);
|
|
if (isnan(dy))
|
|
return y;
|
|
if (isinf(dx))
|
|
return big_fdiv(x, y);
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
|
|
}
|
|
return DBL2NUM(dx / dy);
|
|
}
|
|
|
|
static VALUE
|
|
bigsqr(VALUE x)
|
|
{
|
|
return bigtrunc(bigmul0(x, x));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big ** exponent -> numeric
|
|
*
|
|
* Raises _big_ to the _exponent_ power (which may be an integer, float,
|
|
* or anything that will coerce to a number). The result may be
|
|
* a Fixnum, Bignum, or Float
|
|
*
|
|
* 123456789 ** 2 #=> 15241578750190521
|
|
* 123456789 ** 1.2 #=> 5126464716.09932
|
|
* 123456789 ** -2 #=> 6.5610001194102e-17
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_pow(VALUE x, VALUE y)
|
|
{
|
|
double d;
|
|
SIGNED_VALUE yy;
|
|
|
|
if (y == INT2FIX(0)) return INT2FIX(1);
|
|
switch (TYPE(y)) {
|
|
case T_FLOAT:
|
|
d = RFLOAT_VALUE(y);
|
|
if ((!RBIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d))
|
|
return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
rb_warn("in a**b, b may be too big");
|
|
d = rb_big2dbl(y);
|
|
break;
|
|
|
|
case T_FIXNUM:
|
|
yy = FIX2LONG(y);
|
|
|
|
if (yy < 0)
|
|
return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
|
|
else {
|
|
VALUE z = 0;
|
|
SIGNED_VALUE mask;
|
|
const long xlen = RBIGNUM_LEN(x) - 1;
|
|
const long xbits = ffs(RBIGNUM_DIGITS(x)[xlen]) + SIZEOF_BDIGITS*BITSPERDIG*xlen;
|
|
const long BIGLEN_LIMIT = BITSPERDIG*1024*1024;
|
|
|
|
if ((xbits > BIGLEN_LIMIT) || (xbits * yy > BIGLEN_LIMIT)) {
|
|
rb_warn("in a**b, b may be too big");
|
|
d = (double)yy;
|
|
break;
|
|
}
|
|
for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
|
|
if (z) z = bigsqr(z);
|
|
if (yy & mask) {
|
|
z = z ? bigtrunc(bigmul0(z, x)) : x;
|
|
}
|
|
}
|
|
return bignorm(z);
|
|
}
|
|
/* NOTREACHED */
|
|
break;
|
|
|
|
default:
|
|
return rb_num_coerce_bin(x, y, rb_intern("**"));
|
|
}
|
|
return DBL2NUM(pow(rb_big2dbl(x), d));
|
|
}
|
|
|
|
static inline VALUE
|
|
bit_coerce(VALUE x)
|
|
{
|
|
while (!FIXNUM_P(x) && !RB_TYPE_P(x, T_BIGNUM)) {
|
|
rb_raise(rb_eTypeError,
|
|
"can't convert %s into Integer for bitwise arithmetic",
|
|
rb_obj_classname(x));
|
|
x = rb_to_int(x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static VALUE
|
|
bigand_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
long i;
|
|
char sign;
|
|
|
|
if (y == 0) return INT2FIX(0);
|
|
sign = (y > 0);
|
|
xds = BDIGITS(x);
|
|
zn = xn = RBIGNUM_LEN(x);
|
|
#if SIZEOF_BDIGITS == SIZEOF_LONG
|
|
if (sign) {
|
|
y &= xds[0];
|
|
return LONG2NUM(y);
|
|
}
|
|
#endif
|
|
|
|
z = bignew(zn, RBIGNUM_SIGN(x) || sign);
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS == SIZEOF_LONG
|
|
i = 1;
|
|
zds[0] = xds[0] & y;
|
|
#else
|
|
{
|
|
BDIGIT_DBL num = y;
|
|
|
|
for (i=0; i<(int)(sizeof(y)/sizeof(BDIGIT)); i++) {
|
|
zds[i] = xds[i] & BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
#endif
|
|
while (i < xn) {
|
|
zds[i] = sign?0:xds[i];
|
|
i++;
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big & numeric -> integer
|
|
*
|
|
* Performs bitwise +and+ between _big_ and _numeric_.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_and(VALUE xx, VALUE yy)
|
|
{
|
|
volatile VALUE x, y, z;
|
|
BDIGIT *ds1, *ds2, *zds;
|
|
long i, l1, l2;
|
|
char sign;
|
|
|
|
x = xx;
|
|
y = bit_coerce(yy);
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
if (FIXNUM_P(y)) {
|
|
return bigand_int(x, FIX2LONG(y));
|
|
}
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
y = rb_big_clone(y);
|
|
get2comp(y);
|
|
}
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
l1 = RBIGNUM_LEN(y);
|
|
l2 = RBIGNUM_LEN(x);
|
|
ds1 = BDIGITS(y);
|
|
ds2 = BDIGITS(x);
|
|
sign = RBIGNUM_SIGN(y);
|
|
}
|
|
else {
|
|
l1 = RBIGNUM_LEN(x);
|
|
l2 = RBIGNUM_LEN(y);
|
|
ds1 = BDIGITS(x);
|
|
ds2 = BDIGITS(y);
|
|
sign = RBIGNUM_SIGN(x);
|
|
}
|
|
z = bignew(l2, RBIGNUM_SIGN(x) || RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
|
|
for (i=0; i<l1; i++) {
|
|
zds[i] = ds1[i] & ds2[i];
|
|
}
|
|
for (; i<l2; i++) {
|
|
zds[i] = sign?0:ds2[i];
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
bigor_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
long i;
|
|
char sign;
|
|
|
|
sign = (y >= 0);
|
|
xds = BDIGITS(x);
|
|
zn = xn = RBIGNUM_LEN(x);
|
|
z = bignew(zn, RBIGNUM_SIGN(x) && sign);
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS == SIZEOF_LONG
|
|
i = 1;
|
|
zds[0] = xds[0] | y;
|
|
#else
|
|
{
|
|
BDIGIT_DBL num = y;
|
|
|
|
for (i=0; i<(int)(sizeof(y)/sizeof(BDIGIT)); i++) {
|
|
zds[i] = xds[i] | BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
#endif
|
|
while (i < xn) {
|
|
zds[i] = sign?xds[i]:(BDIGIT)(BIGRAD-1);
|
|
i++;
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big | numeric -> integer
|
|
*
|
|
* Performs bitwise +or+ between _big_ and _numeric_.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_or(VALUE xx, VALUE yy)
|
|
{
|
|
volatile VALUE x, y, z;
|
|
BDIGIT *ds1, *ds2, *zds;
|
|
long i, l1, l2;
|
|
char sign;
|
|
|
|
x = xx;
|
|
y = bit_coerce(yy);
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
if (FIXNUM_P(y)) {
|
|
return bigor_int(x, FIX2LONG(y));
|
|
}
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
y = rb_big_clone(y);
|
|
get2comp(y);
|
|
}
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
l1 = RBIGNUM_LEN(y);
|
|
l2 = RBIGNUM_LEN(x);
|
|
ds1 = BDIGITS(y);
|
|
ds2 = BDIGITS(x);
|
|
sign = RBIGNUM_SIGN(y);
|
|
}
|
|
else {
|
|
l1 = RBIGNUM_LEN(x);
|
|
l2 = RBIGNUM_LEN(y);
|
|
ds1 = BDIGITS(x);
|
|
ds2 = BDIGITS(y);
|
|
sign = RBIGNUM_SIGN(x);
|
|
}
|
|
z = bignew(l2, RBIGNUM_SIGN(x) && RBIGNUM_SIGN(y));
|
|
zds = BDIGITS(z);
|
|
|
|
for (i=0; i<l1; i++) {
|
|
zds[i] = ds1[i] | ds2[i];
|
|
}
|
|
for (; i<l2; i++) {
|
|
zds[i] = sign?ds2[i]:(BDIGIT)(BIGRAD-1);
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
bigxor_int(VALUE x, long y)
|
|
{
|
|
VALUE z;
|
|
BDIGIT *xds, *zds;
|
|
long xn, zn;
|
|
long i;
|
|
char sign;
|
|
|
|
sign = (y >= 0) ? 1 : 0;
|
|
xds = BDIGITS(x);
|
|
zn = xn = RBIGNUM_LEN(x);
|
|
z = bignew(zn, !(RBIGNUM_SIGN(x) ^ sign));
|
|
zds = BDIGITS(z);
|
|
|
|
#if SIZEOF_BDIGITS == SIZEOF_LONG
|
|
i = 1;
|
|
zds[0] = xds[0] ^ y;
|
|
#else
|
|
{
|
|
BDIGIT_DBL num = y;
|
|
|
|
for (i=0; i<(int)(sizeof(y)/sizeof(BDIGIT)); i++) {
|
|
zds[i] = xds[i] ^ BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
#endif
|
|
while (i < xn) {
|
|
zds[i] = sign?xds[i]:~xds[i];
|
|
i++;
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
return bignorm(z);
|
|
}
|
|
/*
|
|
* call-seq:
|
|
* big ^ numeric -> integer
|
|
*
|
|
* Performs bitwise +exclusive or+ between _big_ and _numeric_.
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_xor(VALUE xx, VALUE yy)
|
|
{
|
|
volatile VALUE x, y;
|
|
VALUE z;
|
|
BDIGIT *ds1, *ds2, *zds;
|
|
long i, l1, l2;
|
|
char sign;
|
|
|
|
x = xx;
|
|
y = bit_coerce(yy);
|
|
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
if (FIXNUM_P(y)) {
|
|
return bigxor_int(x, FIX2LONG(y));
|
|
}
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
y = rb_big_clone(y);
|
|
get2comp(y);
|
|
}
|
|
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
|
l1 = RBIGNUM_LEN(y);
|
|
l2 = RBIGNUM_LEN(x);
|
|
ds1 = BDIGITS(y);
|
|
ds2 = BDIGITS(x);
|
|
sign = RBIGNUM_SIGN(y);
|
|
}
|
|
else {
|
|
l1 = RBIGNUM_LEN(x);
|
|
l2 = RBIGNUM_LEN(y);
|
|
ds1 = BDIGITS(x);
|
|
ds2 = BDIGITS(y);
|
|
sign = RBIGNUM_SIGN(x);
|
|
}
|
|
RBIGNUM_SET_SIGN(x, RBIGNUM_SIGN(x)?1:0);
|
|
RBIGNUM_SET_SIGN(y, RBIGNUM_SIGN(y)?1:0);
|
|
z = bignew(l2, !(RBIGNUM_SIGN(x) ^ RBIGNUM_SIGN(y)));
|
|
zds = BDIGITS(z);
|
|
|
|
for (i=0; i<l1; i++) {
|
|
zds[i] = ds1[i] ^ ds2[i];
|
|
}
|
|
for (; i<l2; i++) {
|
|
zds[i] = sign?ds2[i]:~ds2[i];
|
|
}
|
|
if (!RBIGNUM_SIGN(z)) get2comp(z);
|
|
|
|
return bignorm(z);
|
|
}
|
|
|
|
static VALUE
|
|
check_shiftdown(VALUE y, VALUE x)
|
|
{
|
|
if (!RBIGNUM_LEN(x)) return INT2FIX(0);
|
|
if (RBIGNUM_LEN(y) > SIZEOF_LONG / SIZEOF_BDIGITS) {
|
|
return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(-1);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big << numeric -> integer
|
|
*
|
|
* Shifts big left _numeric_ positions (right if _numeric_ is negative).
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_lshift(VALUE x, VALUE y)
|
|
{
|
|
long shift;
|
|
int neg = 0;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(y)) {
|
|
shift = FIX2LONG(y);
|
|
if (shift < 0) {
|
|
neg = 1;
|
|
shift = -shift;
|
|
}
|
|
break;
|
|
}
|
|
else if (RB_TYPE_P(y, T_BIGNUM)) {
|
|
if (!RBIGNUM_SIGN(y)) {
|
|
VALUE t = check_shiftdown(y, x);
|
|
if (!NIL_P(t)) return t;
|
|
neg = 1;
|
|
}
|
|
shift = big2ulong(y, "long", TRUE);
|
|
break;
|
|
}
|
|
y = rb_to_int(y);
|
|
}
|
|
|
|
x = neg ? big_rshift(x, shift) : big_lshift(x, shift);
|
|
return bignorm(x);
|
|
}
|
|
|
|
static VALUE
|
|
big_lshift(VALUE x, unsigned long shift)
|
|
{
|
|
BDIGIT *xds, *zds;
|
|
long s1 = shift/BITSPERDIG;
|
|
int s2 = (int)(shift%BITSPERDIG);
|
|
VALUE z;
|
|
BDIGIT_DBL num = 0;
|
|
long len, i;
|
|
|
|
len = RBIGNUM_LEN(x);
|
|
z = bignew(len+s1+1, RBIGNUM_SIGN(x));
|
|
zds = BDIGITS(z);
|
|
for (i=0; i<s1; i++) {
|
|
*zds++ = 0;
|
|
}
|
|
xds = BDIGITS(x);
|
|
for (i=0; i<len; i++) {
|
|
num = num | (BDIGIT_DBL)*xds++<<s2;
|
|
*zds++ = BIGLO(num);
|
|
num = BIGDN(num);
|
|
}
|
|
*zds = BIGLO(num);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big >> numeric -> integer
|
|
*
|
|
* Shifts big right _numeric_ positions (left if _numeric_ is negative).
|
|
*/
|
|
|
|
VALUE
|
|
rb_big_rshift(VALUE x, VALUE y)
|
|
{
|
|
long shift;
|
|
int neg = 0;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(y)) {
|
|
shift = FIX2LONG(y);
|
|
if (shift < 0) {
|
|
neg = 1;
|
|
shift = -shift;
|
|
}
|
|
break;
|
|
}
|
|
else if (RB_TYPE_P(y, T_BIGNUM)) {
|
|
if (RBIGNUM_SIGN(y)) {
|
|
VALUE t = check_shiftdown(y, x);
|
|
if (!NIL_P(t)) return t;
|
|
}
|
|
else {
|
|
neg = 1;
|
|
}
|
|
shift = big2ulong(y, "long", TRUE);
|
|
break;
|
|
}
|
|
y = rb_to_int(y);
|
|
}
|
|
|
|
x = neg ? big_lshift(x, shift) : big_rshift(x, shift);
|
|
return bignorm(x);
|
|
}
|
|
|
|
static VALUE
|
|
big_rshift(VALUE x, unsigned long shift)
|
|
{
|
|
BDIGIT *xds, *zds;
|
|
long s1 = shift/BITSPERDIG;
|
|
int s2 = (int)(shift%BITSPERDIG);
|
|
VALUE z;
|
|
BDIGIT_DBL num = 0;
|
|
long i, j;
|
|
volatile VALUE save_x;
|
|
|
|
if (s1 > RBIGNUM_LEN(x)) {
|
|
if (RBIGNUM_SIGN(x))
|
|
return INT2FIX(0);
|
|
else
|
|
return INT2FIX(-1);
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
get2comp(x);
|
|
}
|
|
save_x = x;
|
|
xds = BDIGITS(x);
|
|
i = RBIGNUM_LEN(x); j = i - s1;
|
|
if (j == 0) {
|
|
if (RBIGNUM_SIGN(x)) return INT2FIX(0);
|
|
else return INT2FIX(-1);
|
|
}
|
|
z = bignew(j, RBIGNUM_SIGN(x));
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
num = ((BDIGIT_DBL)~0) << BITSPERDIG;
|
|
}
|
|
zds = BDIGITS(z);
|
|
while (i--, j--) {
|
|
num = (num | xds[i]) >> s2;
|
|
zds[j] = BIGLO(num);
|
|
num = BIGUP(xds[i]);
|
|
}
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
get2comp(z);
|
|
}
|
|
RB_GC_GUARD(save_x);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big[n] -> 0, 1
|
|
*
|
|
* Bit Reference---Returns the <em>n</em>th bit in the (assumed) binary
|
|
* representation of <i>big</i>, where <i>big</i>[0] is the least
|
|
* significant bit.
|
|
*
|
|
* a = 9**15
|
|
* 50.downto(0) do |n|
|
|
* print a[n]
|
|
* end
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* 000101110110100000111000011110010100111100010111001
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_aref(VALUE x, VALUE y)
|
|
{
|
|
BDIGIT *xds;
|
|
BDIGIT_DBL num;
|
|
VALUE shift;
|
|
long i, s1, s2;
|
|
|
|
if (RB_TYPE_P(y, T_BIGNUM)) {
|
|
if (!RBIGNUM_SIGN(y))
|
|
return INT2FIX(0);
|
|
bigtrunc(y);
|
|
if (RBIGNUM_LEN(y) > DIGSPERLONG) {
|
|
out_of_range:
|
|
return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
|
|
}
|
|
shift = big2ulong(y, "long", FALSE);
|
|
}
|
|
else {
|
|
i = NUM2LONG(y);
|
|
if (i < 0) return INT2FIX(0);
|
|
shift = (VALUE)i;
|
|
}
|
|
s1 = shift/BITSPERDIG;
|
|
s2 = shift%BITSPERDIG;
|
|
|
|
if (s1 >= RBIGNUM_LEN(x)) goto out_of_range;
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
xds = BDIGITS(x);
|
|
i = 0; num = 1;
|
|
while (num += ~xds[i], ++i <= s1) {
|
|
num = BIGDN(num);
|
|
}
|
|
}
|
|
else {
|
|
num = BDIGITS(x)[s1];
|
|
}
|
|
if (num & ((BDIGIT_DBL)1<<s2))
|
|
return INT2FIX(1);
|
|
return INT2FIX(0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.hash -> fixnum
|
|
*
|
|
* Compute a hash based on the value of _big_.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_hash(VALUE x)
|
|
{
|
|
st_index_t hash;
|
|
|
|
hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*RBIGNUM_LEN(x)) ^ RBIGNUM_SIGN(x);
|
|
return INT2FIX(hash);
|
|
}
|
|
|
|
/*
|
|
* MISSING: documentation
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_coerce(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y)) {
|
|
y = rb_int2big(FIX2LONG(y));
|
|
}
|
|
else if (!RB_TYPE_P(y, T_BIGNUM)) {
|
|
rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
|
|
rb_obj_classname(y));
|
|
}
|
|
return rb_assoc_new(y, x);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.abs -> aBignum
|
|
*
|
|
* Returns the absolute value of <i>big</i>.
|
|
*
|
|
* -1234567890987654321.abs #=> 1234567890987654321
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_abs(VALUE x)
|
|
{
|
|
if (!RBIGNUM_SIGN(x)) {
|
|
x = rb_big_clone(x);
|
|
RBIGNUM_SET_SIGN(x, 1);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.size -> integer
|
|
*
|
|
* Returns the number of bytes in the machine representation of
|
|
* <i>big</i>.
|
|
*
|
|
* (256**10 - 1).size #=> 12
|
|
* (256**20 - 1).size #=> 20
|
|
* (256**40 - 1).size #=> 40
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_size(VALUE big)
|
|
{
|
|
return LONG2FIX(RBIGNUM_LEN(big)*SIZEOF_BDIGITS);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.odd? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>big</i> is an odd number.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_odd_p(VALUE num)
|
|
{
|
|
if (BDIGITS(num)[0] & 1) {
|
|
return Qtrue;
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* big.even? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>big</i> is an even number.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_big_even_p(VALUE num)
|
|
{
|
|
if (BDIGITS(num)[0] & 1) {
|
|
return Qfalse;
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* Bignum objects hold integers outside the range of
|
|
* Fixnum. Bignum objects are created
|
|
* automatically when integer calculations would otherwise overflow a
|
|
* Fixnum. When a calculation involving
|
|
* Bignum objects returns a result that will fit in a
|
|
* Fixnum, the result is automatically converted.
|
|
*
|
|
* For the purposes of the bitwise operations and <code>[]</code>, a
|
|
* Bignum is treated as if it were an infinite-length
|
|
* bitstring with 2's complement representation.
|
|
*
|
|
* While Fixnum values are immediate, Bignum
|
|
* objects are not---assignment and parameter passing work with
|
|
* references to objects, not the objects themselves.
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Bignum(void)
|
|
{
|
|
rb_cBignum = rb_define_class("Bignum", rb_cInteger);
|
|
|
|
rb_define_method(rb_cBignum, "to_s", rb_big_to_s, -1);
|
|
rb_define_alias(rb_cBignum, "inspect", "to_s");
|
|
rb_define_method(rb_cBignum, "coerce", rb_big_coerce, 1);
|
|
rb_define_method(rb_cBignum, "-@", rb_big_uminus, 0);
|
|
rb_define_method(rb_cBignum, "+", rb_big_plus, 1);
|
|
rb_define_method(rb_cBignum, "-", rb_big_minus, 1);
|
|
rb_define_method(rb_cBignum, "*", rb_big_mul, 1);
|
|
rb_define_method(rb_cBignum, "/", rb_big_div, 1);
|
|
rb_define_method(rb_cBignum, "%", rb_big_modulo, 1);
|
|
rb_define_method(rb_cBignum, "div", rb_big_idiv, 1);
|
|
rb_define_method(rb_cBignum, "divmod", rb_big_divmod, 1);
|
|
rb_define_method(rb_cBignum, "modulo", rb_big_modulo, 1);
|
|
rb_define_method(rb_cBignum, "remainder", rb_big_remainder, 1);
|
|
rb_define_method(rb_cBignum, "fdiv", rb_big_fdiv, 1);
|
|
rb_define_method(rb_cBignum, "**", rb_big_pow, 1);
|
|
rb_define_method(rb_cBignum, "&", rb_big_and, 1);
|
|
rb_define_method(rb_cBignum, "|", rb_big_or, 1);
|
|
rb_define_method(rb_cBignum, "^", rb_big_xor, 1);
|
|
rb_define_method(rb_cBignum, "~", rb_big_neg, 0);
|
|
rb_define_method(rb_cBignum, "<<", rb_big_lshift, 1);
|
|
rb_define_method(rb_cBignum, ">>", rb_big_rshift, 1);
|
|
rb_define_method(rb_cBignum, "[]", rb_big_aref, 1);
|
|
|
|
rb_define_method(rb_cBignum, "<=>", rb_big_cmp, 1);
|
|
rb_define_method(rb_cBignum, "==", rb_big_eq, 1);
|
|
rb_define_method(rb_cBignum, ">", big_gt, 1);
|
|
rb_define_method(rb_cBignum, ">=", big_ge, 1);
|
|
rb_define_method(rb_cBignum, "<", big_lt, 1);
|
|
rb_define_method(rb_cBignum, "<=", big_le, 1);
|
|
rb_define_method(rb_cBignum, "===", rb_big_eq, 1);
|
|
rb_define_method(rb_cBignum, "eql?", rb_big_eql, 1);
|
|
rb_define_method(rb_cBignum, "hash", rb_big_hash, 0);
|
|
rb_define_method(rb_cBignum, "to_f", rb_big_to_f, 0);
|
|
rb_define_method(rb_cBignum, "abs", rb_big_abs, 0);
|
|
rb_define_method(rb_cBignum, "magnitude", rb_big_abs, 0);
|
|
rb_define_method(rb_cBignum, "size", rb_big_size, 0);
|
|
rb_define_method(rb_cBignum, "odd?", rb_big_odd_p, 0);
|
|
rb_define_method(rb_cBignum, "even?", rb_big_even_p, 0);
|
|
|
|
power_cache_init();
|
|
|
|
big_three = rb_uint2big(3);
|
|
rb_gc_register_mark_object(big_three);
|
|
}
|