ruby/array.c

3084 строки
68 KiB
C

/**********************************************************************
array.c -
$Author$
$Date$
created at: Fri Aug 6 09:46:12 JST 1993
Copyright (C) 1993-2003 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby.h"
#include "util.h"
#include "st.h"
VALUE rb_cArray, rb_cValues;
static ID id_cmp;
#define ARY_DEFAULT_SIZE 16
void
rb_mem_clear(mem, size)
register VALUE *mem;
register long size;
{
while (size--) {
*mem++ = Qnil;
}
}
static void
memfill(mem, size, val)
register VALUE *mem;
register long size;
register VALUE val;
{
while (size--) {
*mem++ = val;
}
}
#define ARY_TMPLOCK FL_USER1
static inline void
rb_ary_modify_check(ary)
VALUE ary;
{
if (OBJ_FROZEN(ary)) rb_error_frozen("array");
if (FL_TEST(ary, ARY_TMPLOCK))
rb_raise(rb_eTypeError, "can't modify array during iteration");
if (!OBJ_TAINTED(ary) && rb_safe_level() >= 4)
rb_raise(rb_eSecurityError, "Insecure: can't modify array");
}
static void
rb_ary_modify(ary)
VALUE ary;
{
VALUE *ptr;
rb_ary_modify_check(ary);
if (FL_TEST(ary, ELTS_SHARED)) {
ptr = ALLOC_N(VALUE, RARRAY(ary)->len);
FL_UNSET(ary, ELTS_SHARED);
RARRAY(ary)->aux.capa = RARRAY(ary)->len;
MEMCPY(ptr, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
RARRAY(ary)->ptr = ptr;
}
}
VALUE
rb_ary_freeze(ary)
VALUE ary;
{
return rb_obj_freeze(ary);
}
/*
* call-seq:
* array.frozen? => true or false
*
* Return <code>true</code> if this array is frozen (or temporarily frozen
* while being sorted).
*/
static VALUE
rb_ary_frozen_p(ary)
VALUE ary;
{
if (OBJ_FROZEN(ary)) return Qtrue;
if (FL_TEST(ary, ARY_TMPLOCK)) return Qtrue;
return Qfalse;
}
static VALUE ary_alloc _((VALUE));
static VALUE
ary_alloc(klass)
VALUE klass;
{
NEWOBJ(ary, struct RArray);
OBJSETUP(ary, klass, T_ARRAY);
ary->len = 0;
ary->ptr = 0;
ary->aux.capa = 0;
return (VALUE)ary;
}
static VALUE
ary_new(klass, len)
VALUE klass;
long len;
{
VALUE ary = ary_alloc(klass);
if (len < 0) {
rb_raise(rb_eArgError, "negative array size (or size too big)");
}
if (len > 0 && len * sizeof(VALUE) <= len) {
rb_raise(rb_eArgError, "array size too big");
}
if (len == 0) len++;
RARRAY(ary)->ptr = ALLOC_N(VALUE, len);
RARRAY(ary)->aux.capa = len;
return ary;
}
VALUE
rb_ary_new2(len)
long len;
{
return ary_new(rb_cArray, len);
}
VALUE
rb_ary_new()
{
return rb_ary_new2(ARY_DEFAULT_SIZE);
}
#ifdef HAVE_STDARG_PROTOTYPES
#include <stdarg.h>
#define va_init_list(a,b) va_start(a,b)
#else
#include <varargs.h>
#define va_init_list(a,b) va_start(a)
#endif
VALUE
#ifdef HAVE_STDARG_PROTOTYPES
rb_ary_new3(long n, ...)
#else
rb_ary_new3(n, va_alist)
long n;
va_dcl
#endif
{
va_list ar;
VALUE ary;
long i;
ary = rb_ary_new2(n);
va_init_list(ar, n);
for (i=0; i<n; i++) {
RARRAY(ary)->ptr[i] = va_arg(ar, VALUE);
}
va_end(ar);
RARRAY(ary)->len = n;
return ary;
}
VALUE
rb_ary_new4(n, elts)
long n;
const VALUE *elts;
{
VALUE ary;
ary = rb_ary_new2(n);
if (n > 0 && elts) {
MEMCPY(RARRAY(ary)->ptr, elts, VALUE, n);
}
RARRAY(ary)->len = n;
return ary;
}
VALUE
#ifdef HAVE_STDARG_PROTOTYPES
rb_values_new(long n, ...)
#else
rb_values_new(n, va_alist)
long n;
va_dcl
#endif
{
va_list ar;
VALUE val;
long i;
val = ary_new(rb_cValues, n);
va_init_list(ar, n);
for (i=0; i<n; i++) {
RARRAY(val)->ptr[i] = va_arg(ar, VALUE);
}
va_end(ar);
RARRAY(val)->len = n;
return val;
}
VALUE
rb_values_new2(n, elts)
long n;
const VALUE *elts;
{
VALUE val;
val = ary_new(rb_cValues, n);
if (n > 0 && elts) {
RARRAY(val)->len = n;
MEMCPY(RARRAY(val)->ptr, elts, VALUE, n);
}
return val;
}
static void
ary_make_shared(ary)
VALUE ary;
{
if (!FL_TEST(ary, ELTS_SHARED)) {
NEWOBJ(shared, struct RArray);
OBJSETUP(shared, rb_cArray, T_ARRAY);
shared->len = RARRAY(ary)->len;
shared->ptr = RARRAY(ary)->ptr;
shared->aux.capa = RARRAY(ary)->aux.capa;
RARRAY(ary)->aux.shared = (VALUE)shared;
FL_SET(ary, ELTS_SHARED);
}
}
static VALUE
ary_shared_array(klass, ary)
VALUE klass, ary;
{
VALUE val = ary_alloc(klass);
ary_make_shared(ary);
RARRAY(val)->ptr = RARRAY(ary)->ptr;
RARRAY(val)->len = RARRAY(ary)->len;
RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared;
FL_SET(val, ELTS_SHARED);
return val;
}
VALUE
rb_values_from_ary(ary)
VALUE ary;
{
return ary_shared_array(rb_cValues, ary);
}
VALUE
rb_ary_from_values(val)
VALUE val;
{
return ary_shared_array(rb_cArray, val);
}
VALUE
rb_assoc_new(car, cdr)
VALUE car, cdr;
{
return rb_values_new(2, car, cdr);
}
static VALUE
to_ary(ary)
VALUE ary;
{
return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
static VALUE
to_a(ary)
VALUE ary;
{
return rb_convert_type(ary, T_ARRAY, "Array", "to_a");
}
VALUE
rb_check_array_type(ary)
VALUE ary;
{
return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
static VALUE rb_ary_replace _((VALUE, VALUE));
/*
* call-seq:
* Array.new(size=0, obj=nil)
* Array.new(array)
* Array.new(size) {|i| ...}
* Returns a new array. In the first form, the new array is
* empty. In the second it is created with _size_ copies of _obj_
* (that is, _size_ references to the same
* _obj_). The third form creates a copy of the array
* passed as a parameter (the array is generated by calling
* to_ary on the parameter). In the last form, an array
* of the given size is created. Each element in this array is
* calculated by passing the element's index to the given block and
* storing the return value.
*
* Array.new
* Array.new(2)
* Array.new(5, "A")
*
* # only one copy of the object is created
* a = Array.new(2, Hash.new)
* a[0]['cat'] = 'feline'
* a
* a[1]['cat'] = 'Felix'
* a
*
* # here multiple copies are created
* a = Array.new(2) { Hash.new }
* a[0]['cat'] = 'feline'
* a
*
* squares = Array.new(5) {|i| i*i}
* squares
*
* copy = Array.new(squares)
*/
static VALUE
rb_ary_initialize(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long len;
VALUE size, val;
rb_ary_modify(ary);
if (rb_scan_args(argc, argv, "02", &size, &val) == 0) {
RARRAY(ary)->len = 0;
if (rb_block_given_p()) {
rb_warning("given block not used");
}
return ary;
}
if (argc == 1 && !FIXNUM_P(size)) {
val = rb_check_array_type(size);
if (!NIL_P(val)) {
rb_ary_replace(ary, val);
return ary;
}
}
len = NUM2LONG(size);
if (len < 0) {
rb_raise(rb_eArgError, "negative array size");
}
if (len > 0 && len * (long)sizeof(VALUE) <= len) {
rb_raise(rb_eArgError, "array size too big");
}
if (len > RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, len);
RARRAY(ary)->aux.capa = len;
}
if (rb_block_given_p()) {
long i;
if (argc == 2) {
rb_warn("block supersedes default value argument");
}
for (i=0; i<len; i++) {
RARRAY(ary)->ptr[i] = rb_yield(LONG2NUM(i));
RARRAY(ary)->len = i + 1;
}
}
else {
memfill(RARRAY(ary)->ptr, len, val);
RARRAY(ary)->len = len;
}
return ary;
}
/*
* Returns a new array populated with the given objects.
*
* Array.[]( 1, 'a', /^A/ )
* Array[ 1, 'a', /^A/ ]
* [ 1, 'a', /^A/ ]
*/
static VALUE
rb_ary_s_create(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
VALUE ary = ary_alloc(klass);
if (argc < 0) {
rb_raise(rb_eArgError, "negative number of arguments");
}
if (argc > 0) {
RARRAY(ary)->ptr = ALLOC_N(VALUE, argc);
MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
}
RARRAY(ary)->len = RARRAY(ary)->aux.capa = argc;
return ary;
}
void
rb_ary_store(ary, idx, val)
VALUE ary;
long idx;
VALUE val;
{
rb_ary_modify(ary);
if (idx < 0) {
idx += RARRAY(ary)->len;
if (idx < 0) {
rb_raise(rb_eIndexError, "index %ld out of array",
idx - RARRAY(ary)->len);
}
}
if (idx >= RARRAY(ary)->aux.capa) {
long new_capa = RARRAY(ary)->aux.capa / 2;
if (new_capa < ARY_DEFAULT_SIZE) {
new_capa = ARY_DEFAULT_SIZE;
}
new_capa += idx;
if (new_capa * (long)sizeof(VALUE) <= new_capa) {
rb_raise(rb_eArgError, "index too big");
}
REALLOC_N(RARRAY(ary)->ptr, VALUE, new_capa);
RARRAY(ary)->aux.capa = new_capa;
}
if (idx > RARRAY(ary)->len) {
rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len,
idx-RARRAY(ary)->len + 1);
}
if (idx >= RARRAY(ary)->len) {
RARRAY(ary)->len = idx + 1;
}
RARRAY(ary)->ptr[idx] = val;
}
/*
* call-seq:
* array << obj => array
*
* Append---Pushes the given object on to the end of this array. This
* expression returns the array itself, so several appends
* may be chained together.
*
* [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
* #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
*
*/
VALUE
rb_ary_push(ary, item)
VALUE ary;
VALUE item;
{
rb_ary_store(ary, RARRAY(ary)->len, item);
return ary;
}
/*
* call-seq:
* array.push(obj, ... ) => array
*
* Append---Pushes the given object(s) on to the end of this array. This
* expression returns the array itself, so several appends
* may be chained together.
*
* a = [ "a", "b", "c" ]
* a.push("d", "e", "f")
* #=> ["a", "b", "c", "d", "e", "f"]
*/
static VALUE
rb_ary_push_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
while (argc--) {
rb_ary_push(ary, *argv++);
}
return ary;
}
/*
* call-seq:
* array.pop => obj or nil
*
* Removes the last element from <i>self</i> and returns it, or
* <code>nil</code> if the array is empty.
*
* a = [ "a", "m", "z" ]
* a.pop #=> "z"
* a #=> ["a", "m"]
*/
VALUE
rb_ary_pop(ary)
VALUE ary;
{
rb_ary_modify_check(ary);
if (RARRAY(ary)->len == 0) return Qnil;
if (!FL_TEST(ary, ELTS_SHARED) &&
RARRAY(ary)->len * 2 < RARRAY(ary)->aux.capa &&
RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) {
RARRAY(ary)->aux.capa = RARRAY(ary)->len * 2;
REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa);
}
return RARRAY(ary)->ptr[--RARRAY(ary)->len];
}
/*
* call-seq:
* array.shift => obj or nil
*
* Returns the first element of <i>self</i> and removes it (shifting all
* other elements down by one). Returns <code>nil</code> if the array
* is empty.
*
* args = [ "-m", "-q", "filename" ]
* args.shift #=> "-m"
* args #=> ["-q", "filename"]
*/
VALUE
rb_ary_shift(ary)
VALUE ary;
{
VALUE top;
rb_ary_modify_check(ary);
if (RARRAY(ary)->len == 0) return Qnil;
top = RARRAY(ary)->ptr[0];
ary_make_shared(ary);
RARRAY(ary)->ptr++; /* shift ptr */
RARRAY(ary)->len--;
return top;
}
VALUE
rb_ary_unshift(ary, item)
VALUE ary, item;
{
rb_ary_modify(ary);
if (RARRAY(ary)->len == RARRAY(ary)->aux.capa) {
long capa_inc = RARRAY(ary)->aux.capa / 2;
if (capa_inc < ARY_DEFAULT_SIZE) {
capa_inc = ARY_DEFAULT_SIZE;
}
RARRAY(ary)->aux.capa += capa_inc;
REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa);
}
/* sliding items */
MEMMOVE(RARRAY(ary)->ptr + 1, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
RARRAY(ary)->len++;
RARRAY(ary)->ptr[0] = item;
return ary;
}
/*
* call-seq:
* array.unshift(obj, ...) => array
*
* Prepends objects to the front of <i>array</i>.
* other elements up one.
*
* a = [ "b", "c", "d" ]
* a.unshift("a") #=> ["a", "b", "c", "d"]
* a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
*/
static VALUE
rb_ary_unshift_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long len = RARRAY(ary)->len;
if (argc < 0) {
rb_raise(rb_eArgError, "negative number of arguments");
}
if (argc == 0) return ary;
/* make rooms by setting the last item */
rb_ary_store(ary, len + argc - 1, Qnil);
/* sliding items */
MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len);
MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
return ary;
}
VALUE
rb_ary_entry(ary, offset)
VALUE ary;
long offset;
{
if (RARRAY(ary)->len == 0) return Qnil;
if (offset < 0) {
offset += RARRAY(ary)->len;
}
if (offset < 0 || RARRAY(ary)->len <= offset) {
return Qnil;
}
return RARRAY(ary)->ptr[offset];
}
static VALUE
rb_ary_subseq(ary, beg, len)
VALUE ary;
long beg, len;
{
VALUE klass, ary2;
if (beg > RARRAY(ary)->len) return Qnil;
if (beg < 0 || len < 0) return Qnil;
if (beg + len > RARRAY(ary)->len) {
len = RARRAY(ary)->len - beg;
if (len < 0)
len = 0;
}
klass = rb_obj_class(ary);
if (len == 0) return ary_new(klass, 0);
ary_make_shared(ary);
ary2 = ary_alloc(klass);
RARRAY(ary2)->ptr = RARRAY(ary)->ptr + beg;
RARRAY(ary2)->len = len;
RARRAY(ary2)->aux.shared = RARRAY(ary)->aux.shared;
FL_SET(ary2, ELTS_SHARED);
return ary2;
}
/*
* call-seq:
* array[int] => obj or nil
* array[start, length] => an_array or nil
* array[range] => an_array or nil
* array.slice(int) => obj or nil
* array.slice(start, length) => an_array or nil
* array.slice(range) => an_array or nil
*
* Element Reference---Returns the element at index _int_,
* or returns a subarray starting at index _start_ and
* continuing for _length_ elements, or returns a subarray
* specified by _range_.
* Negative indices count backward from the end of the
* array (-1 is the last element). Returns nil if any indices
* are out of range unless the index equals the array size and a
* _length_ or _range_ parameter is given, in which case an
* empty array is returned.
*
* a = [ "a", "b", "c", "d", "e" ]
* a[2] + a[0] + a[1] #=> "cab"
* a[6] #=> nil
* a[1, 2] #=> [ "b", "c" ]
* a[1..3] #=> [ "b", "c", "d" ]
* a[4..7] #=> [ "e" ]
* a[6..10] #=> nil
* a[-3, 3] #=> [ "c", "d", "e" ]
* # special cases
* a[5] #=> nil
* a[5, 1] #=> []
* a[5..10] #=> []
*
*/
VALUE
rb_ary_aref(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE arg;
long beg, len;
if (argc == 2) {
if (SYMBOL_P(argv[0])) {
rb_raise(rb_eTypeError, "Symbol as array index");
}
beg = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
if (beg < 0) {
beg += RARRAY(ary)->len;
}
return rb_ary_subseq(ary, beg, len);
}
if (argc != 1) {
rb_scan_args(argc, argv, "11", 0, 0);
}
arg = argv[0];
/* special case - speeding up */
if (FIXNUM_P(arg)) {
return rb_ary_entry(ary, FIX2LONG(arg));
}
if (SYMBOL_P(arg)) {
rb_raise(rb_eTypeError, "Symbol as array index");
}
/* check if idx is Range */
switch (rb_range_beg_len(arg, &beg, &len, RARRAY(ary)->len, 0)) {
case Qfalse:
break;
case Qnil:
return Qnil;
default:
return rb_ary_subseq(ary, beg, len);
}
return rb_ary_entry(ary, NUM2LONG(arg));
}
/*
* call-seq:
* array.at(int) #=> obj or nil
*
* Returns the element at index int. A
* negative index counts from the end of _self_. Returns +nil+
* if the index is out of range. See also Array.[].
* (Array.at is slightly faster than Array.[], as it
* does not accept ranges and so on.)
*
* a = [ "a", "b", "c", "d", "e" ]
* a.at(0) #=> "a"
* a.at(-1) #=> "e"
*/
static VALUE
rb_ary_at(ary, pos)
VALUE ary, pos;
{
return rb_ary_entry(ary, NUM2LONG(pos));
}
/*
* call-seq:
* array.first => obj or nil
*
* Returns the first element of the array. If the array is empty,
* returns <code>nil</code>.
*
* a = [ "q", "r", "s", "t" ]
* a.first #=> "q"
*/
static VALUE
rb_ary_first(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
if (argc == 0) {
if (RARRAY(ary)->len == 0) return Qnil;
return RARRAY(ary)->ptr[0];
}
else {
VALUE nv, result;
long n, i;
rb_scan_args(argc, argv, "01", &nv);
n = NUM2LONG(nv);
if (n > RARRAY(ary)->len) n = RARRAY(ary)->len;
result = rb_ary_new2(n);
for (i=0; i<n; i++) {
rb_ary_push(result, RARRAY(ary)->ptr[i]);
}
return result;
}
}
/*
* call-seq:
* array.last => obj or nil
* array.last(n) => an_array
*
* Returns the last element(s) of <i>self</i>. If the array is empty,
* the first form returns <code>nil</code>.
*
* [ "w", "x", "y", "z" ].last #=> "z"
*/
static VALUE
rb_ary_last(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
if (argc == 0) {
if (RARRAY(ary)->len == 0) return Qnil;
return RARRAY(ary)->ptr[RARRAY(ary)->len-1];
}
else {
VALUE nv, result;
long n, i;
rb_scan_args(argc, argv, "01", &nv);
n = NUM2LONG(nv);
if (n > RARRAY(ary)->len) n = RARRAY(ary)->len;
result = rb_ary_new2(n);
for (i=RARRAY(ary)->len-n; n--; i++) {
rb_ary_push(result, RARRAY(ary)->ptr[i]);
}
return result;
}
}
/*
* call-seq:
* array.fetch(index) => obj
* array.fetch(index, default ) => obj
* array.fetch(index) {|i| block } => obj
*
* Tries to return the element at position <i>index</i>. If the index
* lies outside the array, the first form throws an
* <code>IndexError</code> exception, the second form returns
* <i>default</i>, and the third form returns the value of invoking
* the block, passing in the index. Negative values of <i>index</i>
* count from the end of the array.
*
* a = [ 11, 22, 33, 44 ]
* a.fetch(1) #=> 22
* a.fetch(-1) #=> 44
* a.fetch(4, 'cat') #=> "cat"
* a.fetch(4) { |i| i*i } #=> 16
*/
static VALUE
rb_ary_fetch(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE pos, ifnone;
long block_given;
long idx;
rb_scan_args(argc, argv, "11", &pos, &ifnone);
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
idx = NUM2LONG(pos);
if (idx < 0) {
idx += RARRAY(ary)->len;
}
if (idx < 0 || RARRAY(ary)->len <= idx) {
if (block_given) return rb_yield(pos);
if (argc == 1) {
rb_raise(rb_eIndexError, "index %ld out of array", idx);
}
return ifnone;
}
return RARRAY(ary)->ptr[idx];
}
/*
* call-seq:
* array.index(obj) => int or nil
*
* Returns the index of the first object in <i>self</i> such that is
* <code>==</code> to <i>obj</i>. Returns <code>nil</code> if
* no match is found.
*
* a = [ "a", "b", "c" ]
* a.index("b") #=> 1
* a.index("z") #=> nil
*/
static VALUE
rb_ary_index(ary, val)
VALUE ary;
VALUE val;
{
long i;
for (i=0; i<RARRAY(ary)->len; i++) {
if (rb_equal(RARRAY(ary)->ptr[i], val))
return LONG2NUM(i);
}
return Qnil;
}
/*
* call-seq:
* array.rindex(obj) => int or nil
*
* Returns the index of the last object in <i>arr</i>
* <code>==</code> to <i>obj</i>. Returns <code>nil</code> if
* no match is found.
*
* a = [ "a", "b", "b", "b", "c" ]
* a.rindex("b") #=> 3
* a.rindex("z") #=> nil
*/
static VALUE
rb_ary_rindex(ary, val)
VALUE ary;
VALUE val;
{
long i = RARRAY(ary)->len;
while (i--) {
if (rb_equal(RARRAY(ary)->ptr[i], val))
return LONG2NUM(i);
}
return Qnil;
}
/*
* call-seq:
* array.indexes( i1, i2, ... iN ) => an_array
* array.indices( i1, i2, ... iN ) => an_array
*
* Deprecated; use <code>Array#select</code>.
*/
static VALUE
rb_ary_indexes(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE new_ary;
long i;
new_ary = rb_ary_new2(argc);
for (i=0; i<argc; i++) {
rb_ary_push(new_ary, rb_ary_aref(1, argv+i, ary));
}
return new_ary;
}
VALUE
rb_ary_to_ary(obj)
VALUE obj;
{
if (TYPE(obj) == T_ARRAY) {
return obj;
}
if (rb_respond_to(obj, rb_intern("to_ary"))) {
return to_ary(obj);
}
return rb_ary_new3(1, obj);
}
static void
rb_ary_update(ary, beg, len, rpl)
VALUE ary;
long beg, len;
VALUE rpl;
{
long rlen;
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
if (beg < 0) {
beg += RARRAY(ary)->len;
if (beg < 0) {
beg -= RARRAY(ary)->len;
rb_raise(rb_eIndexError, "index %ld out of array", beg);
}
}
if (beg + len > RARRAY(ary)->len) {
len = RARRAY(ary)->len - beg;
}
rb_ary_modify(ary);
if (NIL_P(rpl)) {
rlen = 0;
}
else {
rpl = rb_ary_to_ary(rpl);
rlen = RARRAY(rpl)->len;
}
if (beg >= RARRAY(ary)->len) {
len = beg + rlen;
if (len >= RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, len);
RARRAY(ary)->aux.capa = len;
}
rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, beg - RARRAY(ary)->len);
if (rlen > 0) {
MEMCPY(RARRAY(ary)->ptr + beg, RARRAY(rpl)->ptr, VALUE, rlen);
}
RARRAY(ary)->len = len;
}
else {
long alen;
if (beg + len > RARRAY(ary)->len) {
len = RARRAY(ary)->len - beg;
}
alen = RARRAY(ary)->len + rlen - len;
if (alen >= RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, alen);
RARRAY(ary)->aux.capa = alen;
}
if (len != rlen) {
MEMMOVE(RARRAY(ary)->ptr + beg + rlen, RARRAY(ary)->ptr + beg + len,
VALUE, RARRAY(ary)->len - (beg + len));
RARRAY(ary)->len = alen;
}
if (rlen > 0) {
MEMMOVE(RARRAY(ary)->ptr + beg, RARRAY(rpl)->ptr, VALUE, rlen);
}
}
}
/*
* call-seq:
* array[int] = obj => obj
* array[start, length] = an_array => an_array
* array[range] = an_array => an_array
*
* Element Assignment---Sets the element at index _int_,
* or replaces a subarray starting at index _start_ and
* continuing for _length_ elements, or replaces a subarray
* specified by _range_. If _int_ is greater than
* the current capacity of the array, the array grows
* automatically. A negative _int_ will count backward
* from the end of the array. Inserts elements if _length_ is
* zero. If _an_array is +nil+, deletes elements from _self_.
* An +IndexError+ is raised if a
* negative index points past the beginning of the array. See also
* Array.push, and Array.unshift.
*
* a = Array.new
* a[4] = "4";
* a[0, 3] = [ 'a', 'b', 'c' ]
* a[1..2] = [ 1, 2 ];
* a[0, 2] = "?";
* a[0..2] = "A";
* a[-1] = "Z";
* a[1..-1] = nil;
*/
static VALUE
rb_ary_aset(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long offset, beg, len;
if (argc == 3) {
if (SYMBOL_P(argv[0])) {
rb_raise(rb_eTypeError, "Symbol as array index");
}
if (SYMBOL_P(argv[1])) {
rb_raise(rb_eTypeError, "Symbol as subarray length");
}
rb_ary_update(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]);
return argv[2];
}
if (argc != 2) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
}
if (FIXNUM_P(argv[0])) {
offset = FIX2LONG(argv[0]);
goto fixnum;
}
if (SYMBOL_P(argv[0])) {
rb_raise(rb_eTypeError, "Symbol as array index");
}
if (rb_range_beg_len(argv[0], &beg, &len, RARRAY(ary)->len, 1)) {
/* check if idx is Range */
rb_ary_update(ary, beg, len, argv[1]);
return argv[1];
}
offset = NUM2LONG(argv[0]);
fixnum:
rb_ary_store(ary, offset, argv[1]);
return argv[1];
}
/*
* call-seq:
* array.insert(index, obj...) => array
*
* Inserts the given values before the element with the given index
* (which may be negative).
*
* a = %w{ a b c d }
* a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
* a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
*/
static VALUE
rb_ary_insert(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
long pos;
if (argc < 1) {
rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
}
pos = NUM2LONG(argv[0]);
if (pos == -1) {
pos = RARRAY(ary)->len;
}
else if (pos < 0) {
pos++;
}
if (argc == 1) return ary;
rb_ary_update(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
return ary;
}
/*
* call-seq:
* array.each {|item| block } => array
*
* Calls <i>block</i> once for each element in <i>self</i>, passing that
* element as a parameter.
*
* a = [ "a", "b", "c" ]
* a.each {|x| print x, " -- " }
*
* produces:
*
* a -- b -- c --
*/
VALUE
rb_ary_each(ary)
VALUE ary;
{
long i;
for (i=0; i<RARRAY(ary)->len; i++) {
rb_yield(RARRAY(ary)->ptr[i]);
}
return ary;
}
/*
* call-seq:
* array.each_index {|index| block } => array
*
* Same as <code>Array#each</code>, but passes the index of the element
* instead of the element itself.
*
* a = [ "a", "b", "c" ]
* a.each_index {|x| print x, " -- " }
*
* produces:
*
* 0 -- 1 -- 2 --
*/
static VALUE
rb_ary_each_index(ary)
VALUE ary;
{
long i;
for (i=0; i<RARRAY(ary)->len; i++) {
rb_yield(LONG2NUM(i));
}
return ary;
}
/*
* call-seq:
* array.reverse_each {|item| block }
*
* Same as <code>Array#each</code>, but traverses <i>self</i> in reverse
* order.
*
* a = [ "a", "b", "c" ]
* a.reverse_each {|x| print x, " " }
*
* produces:
*
* c b a
*/
static VALUE
rb_ary_reverse_each(ary)
VALUE ary;
{
long len = RARRAY(ary)->len;
while (len--) {
rb_yield(RARRAY(ary)->ptr[len]);
if (RARRAY(ary)->len < len) {
len = RARRAY(ary)->len;
}
}
return ary;
}
/*
* call-seq:
* array.length -> int
*
* Returns the number of elements in <i>self</i>. May be zero.
*
* [ 1, 2, 3, 4, 5 ].length #=> 5
*/
static VALUE
rb_ary_length(ary)
VALUE ary;
{
return LONG2NUM(RARRAY(ary)->len);
}
/*
* call-seq:
* array.empty? => true or false
*
* Returns <code>true</code> if <i>self</i> array contains no elements.
*
* [].empty? #=> true
*/
static VALUE
rb_ary_empty_p(ary)
VALUE ary;
{
if (RARRAY(ary)->len == 0)
return Qtrue;
return Qfalse;
}
VALUE
rb_ary_dup(ary)
VALUE ary;
{
VALUE dup = rb_ary_new2(RARRAY(ary)->len);
DUPSETUP(dup, ary);
MEMCPY(RARRAY(dup)->ptr, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
RARRAY(dup)->len = RARRAY(ary)->len;
return dup;
}
extern VALUE rb_output_fs;
static VALUE
inspect_join(ary, arg)
VALUE ary;
VALUE *arg;
{
return rb_ary_join(arg[0], arg[1]);
}
VALUE
rb_ary_join(ary, sep)
VALUE ary, sep;
{
long len = 1, i;
int taint = Qfalse;
VALUE result, tmp;
if (RARRAY(ary)->len == 0) return rb_str_new(0, 0);
if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue;
for (i=0; i<RARRAY(ary)->len; i++) {
tmp = rb_check_string_type(RARRAY(ary)->ptr[i]);
len += NIL_P(tmp) ? 10 : RSTRING(tmp)->len;
}
if (!NIL_P(sep)) {
StringValue(sep);
len += RSTRING(sep)->len * (RARRAY(ary)->len - 1);
}
result = rb_str_buf_new(len);
for (i=0; i<RARRAY(ary)->len; i++) {
tmp = RARRAY(ary)->ptr[i];
switch (TYPE(tmp)) {
case T_STRING:
break;
case T_ARRAY:
if (rb_inspecting_p(tmp)) {
tmp = rb_str_new2("[...]");
}
else {
VALUE args[2];
args[0] = tmp;
args[1] = sep;
tmp = rb_protect_inspect(inspect_join, ary, (VALUE)args);
}
break;
default:
tmp = rb_obj_as_string(tmp);
}
if (i > 0 && !NIL_P(sep))
rb_str_buf_append(result, sep);
rb_str_buf_append(result, tmp);
if (OBJ_TAINTED(tmp)) taint = Qtrue;
}
if (taint) OBJ_TAINT(result);
return result;
}
/*
* call-seq:
* array.join(sep=$,) => str
*
* Returns a string created by converting each element of the array to
* a string, separated by <i>sep</i>.
*
* [ "a", "b", "c" ].join #=> "abc"
* [ "a", "b", "c" ].join("-") #=> "a-b-c"
*/
static VALUE
rb_ary_join_m(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE sep;
rb_scan_args(argc, argv, "01", &sep);
if (NIL_P(sep)) sep = rb_output_fs;
return rb_ary_join(ary, sep);
}
/*
* call-seq:
* array.to_s -> string
*
* Returns _self_<code>.join</code>.
*
* [ "a", "e", "i", "o" ].to_s #=> "aeio"
*
*/
VALUE
rb_ary_to_s(ary)
VALUE ary;
{
if (RARRAY(ary)->len == 0) return rb_str_new(0, 0);
return rb_ary_join(ary, rb_output_fs);
}
static ID inspect_key;
struct inspect_arg {
VALUE (*func)();
VALUE arg1, arg2;
};
static VALUE
inspect_call(arg)
struct inspect_arg *arg;
{
return (*arg->func)(arg->arg1, arg->arg2);
}
static VALUE
get_inspect_tbl(create)
int create;
{
VALUE inspect_tbl = rb_thread_local_aref(rb_thread_current(), inspect_key);
if (NIL_P(inspect_tbl)) {
if (create) {
tbl_init:
inspect_tbl = rb_ary_new();
rb_thread_local_aset(rb_thread_current(), inspect_key, inspect_tbl);
}
}
else if (TYPE(inspect_tbl) != T_ARRAY) {
rb_warn("invalid inspect_tbl value");
if (create) goto tbl_init;
rb_thread_local_aset(rb_thread_current(), inspect_key, Qnil);
return Qnil;
}
return inspect_tbl;
}
static VALUE
inspect_ensure(obj)
VALUE obj;
{
VALUE inspect_tbl;
inspect_tbl = get_inspect_tbl(Qfalse);
if (!NIL_P(inspect_tbl)) {
rb_ary_pop(inspect_tbl);
}
return 0;
}
VALUE
rb_protect_inspect(func, obj, arg)
VALUE (*func)(ANYARGS);
VALUE obj, arg;
{
struct inspect_arg iarg;
VALUE inspect_tbl;
VALUE id;
inspect_tbl = get_inspect_tbl(Qtrue);
id = rb_obj_id(obj);
if (rb_ary_includes(inspect_tbl, id)) {
return (*func)(obj, arg);
}
rb_ary_push(inspect_tbl, id);
iarg.func = func;
iarg.arg1 = obj;
iarg.arg2 = arg;
return rb_ensure(inspect_call, (VALUE)&iarg, inspect_ensure, obj);
}
VALUE
rb_inspecting_p(obj)
VALUE obj;
{
VALUE inspect_tbl;
inspect_tbl = get_inspect_tbl(Qfalse);
if (NIL_P(inspect_tbl)) return Qfalse;
return rb_ary_includes(inspect_tbl, rb_obj_id(obj));
}
static VALUE
inspect_ary(ary)
VALUE ary;
{
int tainted = OBJ_TAINTED(ary);
long i;
VALUE s, str;
str = rb_str_buf_new2("[");
for (i=0; i<RARRAY(ary)->len; i++) {
s = rb_inspect(RARRAY(ary)->ptr[i]);
if (OBJ_TAINTED(s)) tainted = Qtrue;
if (i > 0) rb_str_buf_cat2(str, ", ");
rb_str_buf_append(str, s);
}
rb_str_buf_cat2(str, "]");
if (tainted) OBJ_TAINT(str);
return str;
}
/*
* call-seq:
* array.inspect => string
*
* Create a printable version of <i>array</i>.
*/
static VALUE
rb_ary_inspect(ary)
VALUE ary;
{
if (RARRAY(ary)->len == 0) return rb_str_new2("[]");
if (rb_inspecting_p(ary)) return rb_str_new2("[...]");
return rb_protect_inspect(inspect_ary, ary, 0);
}
/*
* call-seq:
* array.to_a => array
*
* Returns _self_. If called on a subclass of Array, converts
* the receiver to an Array object.
*/
static VALUE
rb_ary_to_a(ary)
VALUE ary;
{
if (rb_obj_class(ary) != rb_cArray) {
VALUE dup = rb_ary_new2(RARRAY(ary)->len);
rb_ary_replace(dup, ary);
return dup;
}
return ary;
}
/*
* call-seq:
* array.to_ary -> array
*
* Returns _self_.
*/
static VALUE
rb_ary_to_ary_m(ary)
VALUE ary;
{
return ary;
}
VALUE
rb_ary_reverse(ary)
VALUE ary;
{
VALUE *p1, *p2;
VALUE tmp;
rb_ary_modify(ary);
if (RARRAY(ary)->len > 1) {
p1 = RARRAY(ary)->ptr;
p2 = p1 + RARRAY(ary)->len - 1; /* points last item */
while (p1 < p2) {
tmp = *p1;
*p1++ = *p2;
*p2-- = tmp;
}
}
return ary;
}
/*
* call-seq:
* array.reverse! => array
*
* Reverses _self_ in place.
*
* a = [ "a", "b", "c" ]
* a.reverse! #=> ["c", "b", "a"]
* a #=> ["c", "b", "a"]
*/
static VALUE
rb_ary_reverse_bang(ary)
VALUE ary;
{
return rb_ary_reverse(ary);
}
/*
* call-seq:
* array.reverse -> an_array
*
* Returns a new array containing <i>self</i>'s elements in reverse order.
*
* [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
* [ 1 ].reverse #=> [1]
*/
static VALUE
rb_ary_reverse_m(ary)
VALUE ary;
{
return rb_ary_reverse(rb_ary_dup(ary));
}
static int
sort_1(a, b)
VALUE *a, *b;
{
VALUE retval = rb_yield_values(2, *a, *b);
return rb_cmpint(retval, *a, *b);
}
static int
sort_2(ap, bp)
VALUE *ap, *bp;
{
VALUE retval;
long a = (long)*ap, b = (long)*bp;
if (FIXNUM_P(a) && FIXNUM_P(b)) {
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
if (TYPE(a) == T_STRING && TYPE(b) == T_STRING) {
return rb_str_cmp(a, b);
}
retval = rb_funcall(a, id_cmp, 1, b);
return rb_cmpint(retval, a, b);
}
static VALUE
sort_internal(ary)
VALUE ary;
{
qsort(RARRAY(ary)->ptr, RARRAY(ary)->len, sizeof(VALUE),
rb_block_given_p()?sort_1:sort_2);
return ary;
}
static VALUE
sort_unlock(ary)
VALUE ary;
{
FL_UNSET(ary, ARY_TMPLOCK);
return ary;
}
/*
* call-seq:
* array.sort! => array
* array.sort! {| a,b | block } => array
*
* Sorts _self_. Comparisons for
* the sort will be done using the <code><=></code> operator or using
* an optional code block. The block implements a comparison between
* <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
* <code>Enumerable#sort_by</code>.
*
* a = [ "d", "a", "e", "c", "b" ]
* a.sort #=> ["a", "b", "c", "d", "e"]
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
*/
VALUE
rb_ary_sort_bang(ary)
VALUE ary;
{
rb_ary_modify(ary);
if (RARRAY(ary)->len > 1) {
FL_SET(ary, ARY_TMPLOCK); /* prohibit modification during sort */
rb_ensure(sort_internal, ary, sort_unlock, ary);
}
return ary;
}
/*
* call-seq:
* array.sort => an_array
* array.sort {| a,b | block } => an_array
*
* Returns a new array created by sorting <i>self</i>. Comparisons for
* the sort will be done using the <code><=></code> operator or using
* an optional code block. The block implements a comparison between
* <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
* <code>Enumerable#sort_by</code>.
*
* a = [ "d", "a", "e", "c", "b" ]
* a.sort #=> ["a", "b", "c", "d", "e"]
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
*/
VALUE
rb_ary_sort(ary)
VALUE ary;
{
ary = rb_ary_dup(ary);
rb_ary_sort_bang(ary);
return ary;
}
/*
* call-seq:
* array.collect {|obj| block } -> an_array
* array.map {|obj| block } -> an_array
*
* Invokes <i>block</i> once for each element of <i>self</i>. Creates a
* new array containing the values returned by the block.
* See also <code>Enumerable#collect</code>.
*
* a = [ "a", "b", "c", "d" ]
* a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
* a #=> ["a", "b", "c", "d"]
*/
static VALUE
rb_ary_collect(ary)
VALUE ary;
{
long i;
VALUE collect;
if (!rb_block_given_p()) {
return rb_ary_new4(RARRAY(ary)->len, RARRAY(ary)->ptr);
}
collect = rb_ary_new2(RARRAY(ary)->len);
for (i = 0; i < RARRAY(ary)->len; i++) {
rb_ary_push(collect, rb_yield(RARRAY(ary)->ptr[i]));
}
return collect;
}
/*
* call-seq:
* array.collect! {|obj} ...} => array
* array.map! {|obj} ...} => array
*
* Invokes the block once for each element of _self_self, replacing the
* element with the value returned by _block_.
* See also Enumerable.collect.
*
* a = [ "a", "b", "c", "d" ]
* a.collect! {|x| x + "!" }
* a #=> [ "a!", "b!", "c!", "d!" ]
*/
static VALUE
rb_ary_collect_bang(ary)
VALUE ary;
{
long i;
rb_ary_modify(ary);
for (i = 0; i < RARRAY(ary)->len; i++) {
RARRAY(ary)->ptr[i] = rb_yield(RARRAY(ary)->ptr[i]);
}
return ary;
}
VALUE
rb_get_values_at(obj, olen, argc, argv, func)
VALUE obj;
long olen;
int argc;
VALUE *argv;
VALUE (*func) _((VALUE,long));
{
VALUE result = rb_ary_new2(argc);
long beg, len, i, j;
for (i=0; i<argc; i++) {
if (FIXNUM_P(argv[i])) {
rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
continue;
}
/* check if idx is Range */
switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
case Qfalse:
break;
case Qnil:
continue;
default:
for (j=0; j<len; j++) {
rb_ary_push(result, (*func)(obj, j+beg));
}
continue;
}
rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
}
return result;
}
/*
* call-seq:
* array.values_at(selector,... ) => an_array
* Returns an array containing the elements in
* _self_ corresponding to the given selector(s). The selectors
* may be either integer indices or ranges.
* See also <code>.select</code>.
*
* a = %w{ a b c d e f }
* a.values_at(1, 3, 5)
* a.values_at(1, 3, 5, 7)
* a.values_at(-1, -3, -5, -7)
* a.values_at(1..3, 2...5)
*/
static VALUE
rb_ary_values_at(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
return rb_get_values_at(ary, RARRAY(ary)->len, argc, argv, rb_ary_entry);
}
/*
* call-seq:
* array.select {|i| block } -> an_array
*
* Invokes the block passing in successive elements from <i>arr</i>,
* returning an array containing those elements for which the block
* returns a true value (equivalent to <code>Enumerable#select</code>).
*
* a = %w{ a b c d e f }
* a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
*/
static VALUE
rb_ary_select(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE result;
long i;
if (argc > 0) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc);
}
result = rb_ary_new2(RARRAY(ary)->len);
for (i = 0; i < RARRAY(ary)->len; i++) {
if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) {
rb_ary_push(result, RARRAY(ary)->ptr[i]);
}
}
return result;
}
/*
* call-seq:
* array.delete(obj) => obj or nil
* array.delete(obj) {| | block } => obj or nil
*
* Deletes items from <i>self</i> that are equal to <i>obj</i>. If
* the item is not found, returns <code>nil</code>. If the optional
* code block is given, returns the result of <i>block</i> if the item
* is not found.
*
* a = [ "a", "b", "b", "b", "c" ]
* a.delete("b") #=> "b"
* a #=> ["a", "c"]
* a.delete("z") #=> nil
* a.delete("z") { "not found" } #=> "not found"
*/
VALUE
rb_ary_delete(ary, item)
VALUE ary;
VALUE item;
{
long i1, i2;
rb_ary_modify(ary);
for (i1 = i2 = 0; i1 < RARRAY(ary)->len; i1++) {
if (rb_equal(RARRAY(ary)->ptr[i1], item)) continue;
if (i1 != i2) {
RARRAY(ary)->ptr[i2] = RARRAY(ary)->ptr[i1];
}
i2++;
}
if (RARRAY(ary)->len == i2) {
if (rb_block_given_p()) {
return rb_yield(item);
}
return Qnil;
}
RARRAY(ary)->len = i2;
if (i2 * 2 < RARRAY(ary)->aux.capa &&
RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, i2 * 2);
RARRAY(ary)->aux.capa = i2 * 2;
}
return item;
}
VALUE
rb_ary_delete_at(ary, pos)
VALUE ary;
long pos;
{
long i, len = RARRAY(ary)->len;
VALUE del;
rb_ary_modify(ary);
if (pos >= len) return Qnil;
if (pos < 0) {
pos += len;
if (pos < 0) return Qnil;
}
del = RARRAY(ary)->ptr[pos];
for (i = pos + 1; i < len; i++, pos++) {
RARRAY(ary)->ptr[pos] = RARRAY(ary)->ptr[i];
}
RARRAY(ary)->len = pos;
return del;
}
/*
* call-seq:
* array.delete_at(index) -> obj or nil
*
* Deletes the element at the specified index, returning that element,
* or <code>nil</code> if the index is out of range. See also
* <code>Array#slice!</code>.
*
* a = %w( ant bat cat dog )
* a.delete_at(2) #=> "cat"
* a #=> ["ant", "bat", "dog"]
* a.delete_at(99) #=> nil
*/
static VALUE
rb_ary_delete_at_m(ary, pos)
VALUE ary, pos;
{
return rb_ary_delete_at(ary, NUM2LONG(pos));
}
/*
* call-seq:
* array.slice!(int) => obj or nil
* array.slice!(start, length) => sub_array or nil
* array.slice!(range) => sub_array or nil
*
* Deletes the element(s) given by an index (optionally with a length)
* or by a range. Returns the deleted object, subarray, or
* <code>nil</code> if the index is out of range. Equivalent to:
*
* def slice!(*args)
* result = self[*args]
* self[*args] = nil
* result
* end
*
* a = [ "a", "b", "c" ]
* a.slice!(1) #=> "b"
* a #=> ["a", "c"]
* a.slice!(-1) #=> "c"
* a #=> ["a"]
* a.slice!(100) #=> nil
* a #=> ["a"]
*/
static VALUE
rb_ary_slice_bang(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE arg1, arg2;
long pos, len;
rb_ary_modify(ary);
if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) {
pos = NUM2LONG(arg1);
len = NUM2LONG(arg2);
delete_pos_len:
if (pos < 0) {
pos = RARRAY(ary)->len + pos;
}
arg2 = rb_ary_subseq(ary, pos, len);
rb_ary_update(ary, pos, len, Qnil); /* Qnil/rb_ary_new2(0) */
return arg2;
}
if (!FIXNUM_P(arg1) && rb_range_beg_len(arg1, &pos, &len, RARRAY(ary)->len, 1)) {
goto delete_pos_len;
}
return rb_ary_delete_at(ary, NUM2LONG(arg1));
}
/*
* call-seq:
* array.reject! {| | block } -> array or nil
*
* Equivalent to <code>Array#delete_if</code>, deleting elements from
* _self_ for which the block evaluates to true, but returns
* <code>nil</code> if no changes were made. Also see
* <code>Enumerable#reject</code>.
*/
static VALUE
rb_ary_reject_bang(ary)
VALUE ary;
{
long i1, i2;
rb_ary_modify(ary);
for (i1 = i2 = 0; i1 < RARRAY(ary)->len; i1++) {
if (RTEST(rb_yield(RARRAY(ary)->ptr[i1]))) continue;
if (i1 != i2) {
RARRAY(ary)->ptr[i2] = RARRAY(ary)->ptr[i1];
}
i2++;
}
if (RARRAY(ary)->len == i2) return Qnil;
RARRAY(ary)->len = i2;
return ary;
}
/*
* call-seq:
* arr.reject {|item| block } -> an_array
*
* Returns a new array containing the items in _self_
* for which the block is not true.
*/
static VALUE
rb_ary_reject(ary)
VALUE ary;
{
ary = rb_ary_dup(ary);
rb_ary_reject_bang(ary);
return ary;
}
/*
* call-seq:
* array.delete_if {|item| block } -> array
*
* Deletes every element of <i>self</i> for which <i>block</i> evaluates
* to <code>true</code>.
*
* a = [ "a", "b", "c" ]
* a.delete_if {|x| x >= "b" } #=> ["a"]
*/
static VALUE
rb_ary_delete_if(ary)
VALUE ary;
{
rb_ary_reject_bang(ary);
return ary;
}
/*
* call-seq:
* array.zip(arg, ...) -> an_array
* array.zip(arg, ...) {| arr | block } -> nil
*
* Converts any arguments to arrays, then merges elements of
* <i>self</i> with corresponding elements from each argument. This
* generates a sequence of <code>self#size</code> <em>n</em>-element
* arrays, where <em>n</em> is one more that the count of arguments. If
* the size of any argument is less than <code>enumObj#size</code>,
* <code>nil</code> values are supplied. If a block given, it is
* invoked for each output array, otherwise an array of arrays is
* returned.
*
* a = [ 4, 5, 6 ]
* b = [ 7, 8, 9 ]
*
* [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
* [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
* a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
*/
static VALUE
rb_ary_zip(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
int i, j;
long len;
VALUE result;
for (i=0; i<argc; i++) {
argv[i] = to_a(argv[i]);
}
if (rb_block_given_p()) {
for (i=0; i<RARRAY(ary)->len; i++) {
VALUE tmp = rb_ary_new2(argc+1);
rb_ary_push(tmp, rb_ary_entry(ary, i));
for (j=0; j<argc; j++) {
rb_ary_push(tmp, rb_ary_entry(argv[j], i));
}
rb_yield(tmp);
}
return Qnil;
}
len = RARRAY(ary)->len;
result = rb_ary_new2(len);
for (i=0; i<len; i++) {
VALUE tmp = rb_ary_new2(argc+1);
rb_ary_push(tmp, rb_ary_entry(ary, i));
for (j=0; j<argc; j++) {
rb_ary_push(tmp, rb_ary_entry(argv[j], i));
}
rb_ary_push(result, tmp);
}
return result;
}
/*
* call-seq:
* array.transpose -> an_array
*
* Assumes that <i>self</i> is an array of arrays and transposes the
* rows and columns.
*
* a = [[1,2], [3,4], [5,6]]
* a.transpose #=> [[1, 3, 5], [2, 4, 6]]
*/
static VALUE
rb_ary_transpose(ary)
VALUE ary;
{
long elen = -1, alen, i, j;
VALUE tmp, result = 0;
alen = RARRAY(ary)->len;
if (alen == 0) return rb_ary_dup(ary);
for (i=0; i<alen; i++) {
tmp = to_ary(RARRAY(ary)->ptr[i]);
if (elen < 0) { /* first element */
elen = RARRAY(tmp)->len;
result = rb_ary_new2(elen);
for (j=0; j<elen; j++) {
rb_ary_store(result, j, rb_ary_new2(alen));
}
}
else if (elen != RARRAY(tmp)->len) {
rb_raise(rb_eIndexError, "element size differ (%d should be %d)",
RARRAY(tmp)->len, elen);
}
for (j=0; j<elen; j++) {
rb_ary_store(RARRAY(result)->ptr[j], i, RARRAY(tmp)->ptr[j]);
}
}
return result;
}
/*
* call-seq:
* array.replace(other_array) => array
*
* Replaces the contents of <i>self</i> with the contents of
* <i>other_array</i>, truncating or expanding if necessary.
*
* a = [ "a", "b", "c", "d", "e" ]
* a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
* a #=> ["x", "y", "z"]
*/
static VALUE
rb_ary_replace(copy, orig)
VALUE copy, orig;
{
rb_ary_modify(copy);
orig = to_ary(orig);
if (copy == orig) return copy;
ary_make_shared(orig);
if (RARRAY(copy)->ptr && !FL_TEST(copy, ELTS_SHARED))
free(RARRAY(copy)->ptr);
RARRAY(copy)->ptr = RARRAY(orig)->ptr;
RARRAY(copy)->len = RARRAY(orig)->len;
RARRAY(copy)->aux.shared = RARRAY(orig)->aux.shared;
FL_SET(copy, ELTS_SHARED);
return copy;
}
/*
* call-seq:
* array.clear => array
* Removes all elements from _self_.
*
* a = [ "a", "b", "c", "d", "e" ]
* a.clear #=> [ ]
*/
VALUE
rb_ary_clear(ary)
VALUE ary;
{
rb_ary_modify(ary);
RARRAY(ary)->len = 0;
if (ARY_DEFAULT_SIZE * 2 < RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, ARY_DEFAULT_SIZE * 2);
RARRAY(ary)->aux.capa = ARY_DEFAULT_SIZE * 2;
}
return ary;
}
/*
* call-seq:
* array.fill(obj) -> array
* array.fill(obj, start [, length]) => array
* array.fill(obj, range ) => array
* array.fill {|i| block } => array
* array.fill(start [, length] ) {|i| block } => array
* array.fill(range) {|i| block } => array
*
* The first three forms set the selected elements of <i>self</i> (which
* may be the entire array) to <i>obj</i>. A <i>start</i> of
* <code>nil</code> is equivalent to zero. A <i>length</i> of
* <code>nil</code> is equivalent to <i>arr</i>.length. The last three
* forms fill the array with the value of the block. The block is
* passed the absolute index of each element to be filled.
*
* a = [ "a", "b", "c", "d" ]
* a.fill("x") #=> ["x", "x", "x", "x"]
* a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
* a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
* a.fill {|i| i*i} #=> [0, 1, 4, 9]
* a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
*/
static VALUE
rb_ary_fill(argc, argv, ary)
int argc;
VALUE *argv;
VALUE ary;
{
VALUE item, arg1, arg2;
long beg, end, len;
VALUE *p, *pend;
int block_p = Qfalse;
if (rb_block_given_p()) {
block_p = Qtrue;
rb_scan_args(argc, argv, "02", &arg1, &arg2);
argc += 1; /* hackish */
}
else {
rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
}
switch (argc) {
case 1:
beg = 0;
len = RARRAY(ary)->len;
break;
case 2:
if (rb_range_beg_len(arg1, &beg, &len, RARRAY(ary)->len, 1)) {
break;
}
/* fall through */
case 3:
beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
if (beg < 0) {
beg = RARRAY(ary)->len + beg;
if (beg < 0) beg = 0;
}
len = NIL_P(arg2) ? RARRAY(ary)->len - beg : NUM2LONG(arg2);
break;
}
rb_ary_modify(ary);
end = beg + len;
if (end > RARRAY(ary)->len) {
if (end >= RARRAY(ary)->aux.capa) {
REALLOC_N(RARRAY(ary)->ptr, VALUE, end);
RARRAY(ary)->aux.capa = end;
}
if (beg > RARRAY(ary)->len) {
rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, end - RARRAY(ary)->len);
}
RARRAY(ary)->len = end;
}
if (block_p) {
VALUE v;
long i;
for (i=beg; i<RARRAY(ary)->len; i++) {
v = rb_yield(LONG2NUM(i));
if (i>=RARRAY(ary)->len) break;
RARRAY(ary)->ptr[i] = v;
}
}
else {
p = RARRAY(ary)->ptr + beg;
pend = p + len;
while (p < pend) {
*p++ = item;
}
}
return ary;
}
/*
* call-seq:
* array + other_array => an_array
*
* Concatenation---Returns a new array built by concatenating the
* two arrays together to produce a third array.
*
* [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
*/
VALUE
rb_ary_plus(x, y)
VALUE x, y;
{
VALUE z;
long len;
y = to_ary(y);
len = RARRAY(x)->len + RARRAY(y)->len;
z = rb_ary_new2(len);
MEMCPY(RARRAY(z)->ptr, RARRAY(x)->ptr, VALUE, RARRAY(x)->len);
MEMCPY(RARRAY(z)->ptr + RARRAY(x)->len, RARRAY(y)->ptr, VALUE, RARRAY(y)->len);
RARRAY(z)->len = len;
return z;
}
/*
* call-seq:
* self.concat(other_array) => array
*
* Appends the elements in other_array to _self_.
*
* [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
*/
VALUE
rb_ary_concat(x, y)
VALUE x, y;
{
y = to_ary(y);
if (RARRAY(y)->len > 0) {
rb_ary_update(x, RARRAY(x)->len, 0, y);
}
return x;
}
/*
* call-seq:
* array * int => an_array
* array * str => a_string
*
* Repetition---With a String argument, equivalent to
* self.join(str). Otherwise, returns a new array
* built by concatenating the _int_ copies of _self_.
*
*
* [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
*
*/
static VALUE
rb_ary_times(ary, times)
VALUE ary, times;
{
VALUE ary2, tmp;
long i, len;
tmp = rb_check_string_type(times);
if (!NIL_P(tmp)) {
return rb_ary_join(ary, tmp);
}
len = NUM2LONG(times);
if (len == 0) return rb_ary_new2(0);
if (len < 0) {
rb_raise(rb_eArgError, "negative argument");
}
if (LONG_MAX/len < RARRAY(ary)->len) {
rb_raise(rb_eArgError, "argument too big");
}
len *= RARRAY(ary)->len;
ary2 = ary_new(rb_obj_class(ary), len);
RARRAY(ary2)->len = len;
for (i=0; i<len; i+=RARRAY(ary)->len) {
MEMCPY(RARRAY(ary2)->ptr+i, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
}
OBJ_INFECT(ary2, ary);
return ary2;
}
/*
* call-seq:
* array.assoc(obj) => an_array or nil
*
* Searches through an array whose elements are also arrays
* comparing _obj_ with the first element of each contained array
* using obj.==.
* Returns the first contained array that matches (that
* is, the first associated array),
* or +nil+ if no match is found.
* See also Array.rassoc.
*
* s1 = [ "colors", "red", "blue", "green" ]
* s2 = [ "letters", "a", "b", "c" ]
* s3 = "foo"
* a = [ s1, s2, s3 ]
* a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
* a.assoc("foo") #=> nil
*/
VALUE
rb_ary_assoc(ary, key)
VALUE ary, key;
{
VALUE *p, *pend;
p = RARRAY(ary)->ptr;
pend = p + RARRAY(ary)->len;
while (p < pend) {
if (TYPE(*p) == T_ARRAY &&
RARRAY(*p)->len > 0 &&
rb_equal(RARRAY(*p)->ptr[0], key))
return *p;
p++;
}
return Qnil;
}
/*
* call-seq:
* array.rassoc(key) -> an_array or nil
*
* Searches through the array whose elements are also arrays. Compares
* <em>key</em> with the second element of each contained array using
* <code>==</code>. Returns the first contained array that matches. See
* also <code>Array#assoc</code>.
*
* a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
* a.rassoc("two") #=> [2, "two"]
* a.rassoc("four") #=> nil
*/
VALUE
rb_ary_rassoc(ary, value)
VALUE ary, value;
{
VALUE *p, *pend;
p = RARRAY(ary)->ptr;
pend = p + RARRAY(ary)->len;
while (p < pend) {
if (TYPE(*p) == T_ARRAY
&& RARRAY(*p)->len > 1
&& rb_equal(RARRAY(*p)->ptr[1], value))
return *p;
p++;
}
return Qnil;
}
/*
* call-seq:
* array == other_array => bool
*
* Equality---Two arrays are equal if they contain the same number
* of elements and if each element is equal to (according to
* Object.==) the corresponding element in the other array.
*
* [ "a", "c" ] == [ "a", "c", 7 ] #=> false
* [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
* [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
*
*/
static VALUE
rb_ary_equal(ary1, ary2)
VALUE ary1, ary2;
{
long i;
if (ary1 == ary2) return Qtrue;
if (TYPE(ary2) != T_ARRAY) {
if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
return Qfalse;
}
return rb_equal(ary2, ary1);
}
if (RARRAY(ary1)->len != RARRAY(ary2)->len) return Qfalse;
for (i=0; i<RARRAY(ary1)->len; i++) {
if (!rb_equal(RARRAY(ary1)->ptr[i], RARRAY(ary2)->ptr[i]))
return Qfalse;
}
return Qtrue;
}
/*
* call-seq:
* array.eql?(other) => true or false
*
* Returns <code>true</code> if _array_ and _other_ are the same object,
* or are both arrays with the same content.
*/
static VALUE
rb_ary_eql(ary1, ary2)
VALUE ary1, ary2;
{
long i;
if (ary1 == ary2) return Qtrue;
if (TYPE(ary2) != T_ARRAY) return Qfalse;
if (RARRAY(ary1)->len != RARRAY(ary2)->len) return Qfalse;
for (i=0; i<RARRAY(ary1)->len; i++) {
if (!rb_eql(RARRAY(ary1)->ptr[i], RARRAY(ary2)->ptr[i]))
return Qfalse;
}
return Qtrue;
}
/*
* call-seq:
* array.hash => fixnum
*
* Compute a hash-code for this array. Two arrays with the same content
* will have the same hash code (and will compare using <code>eql?</code>).
*/
static VALUE
rb_ary_hash(ary)
VALUE ary;
{
long i, h;
VALUE n;
h = RARRAY(ary)->len;
for (i=0; i<RARRAY(ary)->len; i++) {
h = (h << 1) | (h<0 ? 1 : 0);
n = rb_hash(RARRAY(ary)->ptr[i]);
h ^= NUM2LONG(n);
}
return LONG2FIX(h);
}
/*
* call-seq:
* array.include?(obj) => true or false
*
* Returns <code>true</code> if the given object is present in
* <i>self</i> (that is, if any object <code>==</code> <i>anObject</i>),
* <code>false</code> otherwise.
*
* a = [ "a", "b", "c" ]
* a.include?("b") #=> true
* a.include?("z") #=> false
*/
VALUE
rb_ary_includes(ary, item)
VALUE ary;
VALUE item;
{
long i;
for (i=0; i<RARRAY(ary)->len; i++) {
if (rb_equal(RARRAY(ary)->ptr[i], item)) {
return Qtrue;
}
}
return Qfalse;
}
/*
* call-seq:
* array <=> other_array => -1, 0, +1
*
* Comparison---Returns an integer (-1, 0,
* or +1) if this array is less than, equal to, or greater than
* other_array. Each object in each array is compared
* (using <=>). If any value isn't
* equal, then that inequality is the return value. If all the
* values found are equal, then the return is based on a
* comparison of the array lengths. Thus, two arrays are
* ``equal'' according to Array.<=> if and only if they have
* the same length and the value of each element is equal to the
* value of the corresponding element in the other array.
*
* [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
* [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
*
*/
VALUE
rb_ary_cmp(ary1, ary2)
VALUE ary1, ary2;
{
long i, len;
ary2 = to_ary(ary2);
len = RARRAY(ary1)->len;
if (len > RARRAY(ary2)->len) {
len = RARRAY(ary2)->len;
}
for (i=0; i<len; i++) {
VALUE v = rb_funcall(RARRAY(ary1)->ptr[i], id_cmp, 1, RARRAY(ary2)->ptr[i]);
if (v != INT2FIX(0)) {
return v;
}
}
len = RARRAY(ary1)->len - RARRAY(ary2)->len;
if (len == 0) return INT2FIX(0);
if (len > 0) return INT2FIX(1);
return INT2FIX(-1);
}
static VALUE
ary_make_hash(ary1, ary2)
VALUE ary1, ary2;
{
VALUE hash = rb_hash_new();
long i;
for (i=0; i<RARRAY(ary1)->len; i++) {
rb_hash_aset(hash, RARRAY(ary1)->ptr[i], Qtrue);
}
if (ary2) {
for (i=0; i<RARRAY(ary2)->len; i++) {
rb_hash_aset(hash, RARRAY(ary2)->ptr[i], Qtrue);
}
}
return hash;
}
/*
* call-seq:
* array - other_array => an_array
*
* Array Difference---Returns a new array that is a copy of
* the original array, removing any items that also appear in
* other_array. (If you need set-like behavior, see the
* library class Set.)
*
* [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
*/
static VALUE
rb_ary_diff(ary1, ary2)
VALUE ary1, ary2;
{
VALUE ary3, hash;
long i;
hash = ary_make_hash(to_ary(ary2), 0);
ary3 = rb_ary_new();
for (i=0; i<RARRAY(ary1)->len; i++) {
if (st_lookup(RHASH(hash)->tbl, RARRAY(ary1)->ptr[i], 0)) continue;
rb_ary_push(ary3, RARRAY(ary1)->ptr[i]);
}
return ary3;
}
/*
* call-seq:
* array & other_array
*
* Set Intersection---Returns a new array
* containing elements common to the two arrays, with no duplicates.
*
* [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
*/
static VALUE
rb_ary_and(ary1, ary2)
VALUE ary1, ary2;
{
VALUE hash, ary3;
long i;
ary2 = to_ary(ary2);
ary3 = rb_ary_new2(RARRAY(ary1)->len < RARRAY(ary2)->len ?
RARRAY(ary1)->len : RARRAY(ary2)->len);
hash = ary_make_hash(ary2, 0);
for (i=0; i<RARRAY(ary1)->len; i++) {
VALUE v = RARRAY(ary1)->ptr[i];
if (st_delete(RHASH(hash)->tbl, (st_data_t*)&v, 0)) {
rb_ary_push(ary3, RARRAY(ary1)->ptr[i]);
}
}
return ary3;
}
/*
* call-seq:
* array | other_array => an_array
*
* Set Union---Returns a new array by joining this array with
* other_array, removing duplicates.
*
* [ "a", "b", "c" ] | [ "c", "d", "a" ]
* #=> [ "a", "b", "c", "d" ]
*/
static VALUE
rb_ary_or(ary1, ary2)
VALUE ary1, ary2;
{
VALUE hash, ary3;
VALUE v;
long i;
ary2 = to_ary(ary2);
ary3 = rb_ary_new2(RARRAY(ary1)->len+RARRAY(ary2)->len);
hash = ary_make_hash(ary1, ary2);
for (i=0; i<RARRAY(ary1)->len; i++) {
v = RARRAY(ary1)->ptr[i];
if (st_delete(RHASH(hash)->tbl, (st_data_t*)&v, 0)) {
rb_ary_push(ary3, RARRAY(ary1)->ptr[i]);
}
}
for (i=0; i<RARRAY(ary2)->len; i++) {
v = RARRAY(ary2)->ptr[i];
if (st_delete(RHASH(hash)->tbl, (st_data_t*)&v, 0)) {
rb_ary_push(ary3, RARRAY(ary2)->ptr[i]);
}
}
return ary3;
}
/*
* call-seq:
* array.uniq! => array or nil
*
* Removes duplicate elements from _self_.
* Returns <code>nil</code> if no changes are made (that is, no
* duplicates are found).
*
* a = [ "a", "a", "b", "b", "c" ]
* a.uniq! #=> ["a", "b", "c"]
* b = [ "a", "b", "c" ]
* b.uniq! #=> nil
*/
static VALUE
rb_ary_uniq_bang(ary)
VALUE ary;
{
VALUE hash;
VALUE *p, *q, *end;
rb_ary_modify(ary);
hash = ary_make_hash(ary, 0);
if (RARRAY(ary)->len == RHASH(hash)->tbl->num_entries) {
return Qnil;
}
p = q = RARRAY(ary)->ptr;
end = p + RARRAY(ary)->len;
while (p < end) {
VALUE v = *p;
if (st_delete(RHASH(hash)->tbl, (st_data_t*)&v, 0)) {
*q++ = *p;
}
p++;
}
RARRAY(ary)->len = (q - RARRAY(ary)->ptr);
return ary;
}
/*
* call-seq:
* array.uniq => an_array
*
* Returns a new array by removing duplicate values in <i>self</i>.
*
* a = [ "a", "a", "b", "b", "c" ]
* a.uniq #=> ["a", "b", "c"]
*/
static VALUE
rb_ary_uniq(ary)
VALUE ary;
{
ary = rb_ary_dup(ary);
rb_ary_uniq_bang(ary);
return ary;
}
/*
* call-seq:
* array.compact! => array or nil
*
* Removes +nil+ elements from array.
* Returns +niL+ if no changes were made.
* [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
* [ "a", "b", "c" ].compact! #=> nil
*/
static VALUE
rb_ary_compact_bang(ary)
VALUE ary;
{
VALUE *p, *t, *end;
rb_ary_modify(ary);
p = t = RARRAY(ary)->ptr;
end = p + RARRAY(ary)->len;
while (t < end) {
if (NIL_P(*t)) t++;
else *p++ = *t++;
}
if (RARRAY(ary)->len == (p - RARRAY(ary)->ptr)) {
return Qnil;
}
RARRAY(ary)->len = RARRAY(ary)->aux.capa = (p - RARRAY(ary)->ptr);
REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len);
return ary;
}
/*
* call-seq:
* array.compact => an_array
*
* Returns a copy of _self_ with all +nil+ elements removed.
*
* [ "a", nil, "b", nil, "c", nil ].compact
* #=> [ "a", "b", "c" ]
*/
static VALUE
rb_ary_compact(ary)
VALUE ary;
{
ary = rb_ary_dup(ary);
rb_ary_compact_bang(ary);
return ary;
}
/*
* call-seq:
* array.nitems -> int
*
* Returns the number of non-<code>nil</code> elements in _self_.
* May be zero.
*
* [ 1, nil, 3, nil, 5 ].nitems #=> 3
*/
static VALUE
rb_ary_nitems(ary)
VALUE ary;
{
long n = 0;
VALUE *p, *pend;
p = RARRAY(ary)->ptr;
pend = p + RARRAY(ary)->len;
while (p < pend) {
if (!NIL_P(*p)) n++;
p++;
}
return LONG2NUM(n);
}
static long
flatten(ary, idx, ary2, memo)
VALUE ary;
long idx;
VALUE ary2, memo;
{
VALUE id;
long i = idx;
long n, lim = idx + RARRAY(ary2)->len;
id = rb_obj_id(ary2);
if (rb_ary_includes(memo, id)) {
rb_raise(rb_eArgError, "tried to flatten recursive array");
}
rb_ary_push(memo, id);
rb_ary_update(ary, idx, 1, ary2);
while (i < lim) {
if (TYPE(RARRAY(ary)->ptr[i]) == T_ARRAY) {
n = flatten(ary, i, RARRAY(ary)->ptr[i], memo);
i += n; lim += n;
}
i++;
}
rb_ary_pop(memo);
return lim - idx - 1; /* returns number of increased items */
}
/*
* call-seq:
* arr.flatten! -> arr or nil
*
* Flattens _self_ in place.
* Returns <code>nil</code> if no modifications were made (i.e.,
* <i>arr</i> contains no subarrays.)
*
* a = [ 1, 2, [3, [4, 5] ] ]
* a.flatten! #=> [1, 2, 3, 4, 5]
* a.flatten! #=> nil
* a #=> [1, 2, 3, 4, 5]
*/
static VALUE
rb_ary_flatten_bang(ary)
VALUE ary;
{
long i = 0;
int mod = 0;
VALUE memo = Qnil;
rb_ary_modify(ary);
while (i<RARRAY(ary)->len) {
VALUE ary2 = RARRAY(ary)->ptr[i];
if (TYPE(ary2) == T_ARRAY) {
if (NIL_P(memo)) {
memo = rb_ary_new();
}
i += flatten(ary, i, ary2, memo);
mod = 1;
}
i++;
}
if (mod == 0) return Qnil;
return ary;
}
/*
* call-seq:
* array.flatten -> an_array
*
* Returns a new array that is a one-dimensional flattening of this
* array (recursively). That is, for every element that is an array,
* extract its elements into the new array.
*
* s = [ 1, 2, 3 ] #=> [1, 2, 3]
* t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
* a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
* a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10
*/
static VALUE
rb_ary_flatten(ary)
VALUE ary;
{
ary = rb_ary_dup(ary);
rb_ary_flatten_bang(ary);
return ary;
}
/* Arrays are ordered, integer-indexed collections of any object.
* Array indexing starts at 0, as in C or Java. A negative index is
* assumed to be relative to the end of the array---that is, an index of -1
* indicates the last element of the array, -2 is the next to last
* element in the array, and so on.
*/
void
Init_Array()
{
rb_cArray = rb_define_class("Array", rb_cObject);
rb_include_module(rb_cArray, rb_mEnumerable);
rb_define_alloc_func(rb_cArray, ary_alloc);
rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
rb_define_method(rb_cArray, "to_s", rb_ary_to_s, 0);
rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0);
rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
rb_define_method(rb_cArray, "at", rb_ary_at, 1);
rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
rb_define_method(rb_cArray, "first", rb_ary_first, -1);
rb_define_method(rb_cArray, "last", rb_ary_last, -1);
rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
rb_define_method(rb_cArray, "pop", rb_ary_pop, 0);
rb_define_method(rb_cArray, "shift", rb_ary_shift, 0);
rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
rb_define_method(rb_cArray, "each", rb_ary_each, 0);
rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
rb_define_method(rb_cArray, "length", rb_ary_length, 0);
rb_define_alias(rb_cArray, "size", "length");
rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
rb_define_method(rb_cArray, "index", rb_ary_index, 1);
rb_define_method(rb_cArray, "rindex", rb_ary_rindex, 1);
rb_define_method(rb_cArray, "indexes", rb_ary_indexes, -1);
rb_define_method(rb_cArray, "indices", rb_ary_indexes, -1);
rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
rb_define_method(rb_cArray, "select", rb_ary_select, -1);
rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
rb_define_method(rb_cArray, "*", rb_ary_times, 1);
rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
rb_define_method(rb_cArray, "&", rb_ary_and, 1);
rb_define_method(rb_cArray, "|", rb_ary_or, 1);
rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
rb_define_method(rb_cArray, "flatten", rb_ary_flatten, 0);
rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, 0);
rb_define_method(rb_cArray, "nitems", rb_ary_nitems, 0);
id_cmp = rb_intern("<=>");
inspect_key = rb_intern("__inspect_key__");
rb_cValues = rb_define_class("Values", rb_cArray);
}