ruby/win32/win32.c

3344 строки
68 KiB
C

/*
* Copyright (c) 1993, Intergraph Corporation
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the perl README file.
*
* Various Unix compatibility functions and NT specific functions.
*
* Some of this code was derived from the MSDOS port(s) and the OS/2 port.
*
*/
#include "ruby.h"
#include "rubysig.h"
#include "dln.h"
#include <fcntl.h>
#include <process.h>
#include <sys/stat.h>
/* #include <sys/wait.h> */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include <windows.h>
#include <winbase.h>
#include <wincon.h>
#ifdef __MINGW32__
#include <mswsock.h>
#endif
#include "win32.h"
#include "win32/dir.h"
#ifdef _WIN32_WCE
#include "wince.h"
#endif
#ifndef index
#define index(x, y) strchr((x), (y))
#endif
#define isdirsep(x) ((x) == '/' || (x) == '\\')
#undef stat
#undef fclose
#undef close
#undef setsockopt
#ifndef bool
#define bool int
#endif
#ifdef _M_IX86
# define WIN95 1
#else
# undef WIN95
#endif
#if defined __BORLANDC__ || defined _WIN32_WCE
# define _filbuf _fgetc
# define _flsbuf _fputc
# define enough_to_get(n) (--(n) >= 0)
# define enough_to_put(n) (++(n) < 0)
#else
# define enough_to_get(n) (--(n) >= 0)
# define enough_to_put(n) (--(n) >= 0)
#endif
#if HAVE_WSAWAITFORMULTIPLEEVENTS
# define USE_INTERRUPT_WINSOCK
#endif
#if USE_INTERRUPT_WINSOCK
# define WaitForMultipleEvents WSAWaitForMultipleEvents
# define CreateSignal() (HANDLE)WSACreateEvent()
# define SetSignal(ev) WSASetEvent(ev)
# define ResetSignal(ev) WSAResetEvent(ev)
#else /* USE_INTERRUPT_WINSOCK */
# define WaitForMultipleEvents WaitForMultipleObjectsEx
# define CreateSignal() CreateEvent(NULL, FALSE, FALSE, NULL);
# define SetSignal(ev) SetEvent(ev)
# define ResetSignal(ev) (void)0
#endif /* USE_INTERRUPT_WINSOCK */
#ifdef WIN32_DEBUG
#define Debug(something) something
#else
#define Debug(something) /* nothing */
#endif
#define TO_SOCKET(x) _get_osfhandle(x)
bool NtSyncProcess = TRUE;
static struct ChildRecord *CreateChild(const char *, const char *, SECURITY_ATTRIBUTES *, HANDLE, HANDLE, HANDLE);
static int make_cmdvector(const char *, char ***);
static bool has_redirection(const char *);
static void StartSockets ();
static DWORD wait_events(HANDLE event, DWORD timeout);
#if !defined(__BORLANDC__) && !defined(_WIN32_WCE)
static int rb_w32_open_osfhandle(long osfhandle, int flags);
#else
#define rb_w32_open_osfhandle(osfhandle, flags) _open_osfhandle(osfhandle, flags)
#endif
/* errno mapping */
static struct {
DWORD winerr;
int err;
} errmap[] = {
{ ERROR_INVALID_FUNCTION, EINVAL },
{ ERROR_FILE_NOT_FOUND, ENOENT },
{ ERROR_PATH_NOT_FOUND, ENOENT },
{ ERROR_TOO_MANY_OPEN_FILES, EMFILE },
{ ERROR_ACCESS_DENIED, EACCES },
{ ERROR_INVALID_HANDLE, EBADF },
{ ERROR_ARENA_TRASHED, ENOMEM },
{ ERROR_NOT_ENOUGH_MEMORY, ENOMEM },
{ ERROR_INVALID_BLOCK, ENOMEM },
{ ERROR_BAD_ENVIRONMENT, E2BIG },
{ ERROR_BAD_FORMAT, ENOEXEC },
{ ERROR_INVALID_ACCESS, EINVAL },
{ ERROR_INVALID_DATA, EINVAL },
{ ERROR_INVALID_DRIVE, ENOENT },
{ ERROR_CURRENT_DIRECTORY, EACCES },
{ ERROR_NOT_SAME_DEVICE, EXDEV },
{ ERROR_NO_MORE_FILES, ENOENT },
{ ERROR_WRITE_PROTECT, EROFS },
{ ERROR_BAD_UNIT, ENODEV },
{ ERROR_NOT_READY, ENXIO },
{ ERROR_BAD_COMMAND, EACCES },
{ ERROR_CRC, EACCES },
{ ERROR_BAD_LENGTH, EACCES },
{ ERROR_SEEK, EIO },
{ ERROR_NOT_DOS_DISK, EACCES },
{ ERROR_SECTOR_NOT_FOUND, EACCES },
{ ERROR_OUT_OF_PAPER, EACCES },
{ ERROR_WRITE_FAULT, EIO },
{ ERROR_READ_FAULT, EIO },
{ ERROR_GEN_FAILURE, EACCES },
{ ERROR_LOCK_VIOLATION, EACCES },
{ ERROR_SHARING_VIOLATION, EACCES },
{ ERROR_WRONG_DISK, EACCES },
{ ERROR_SHARING_BUFFER_EXCEEDED, EACCES },
{ ERROR_BAD_NETPATH, ENOENT },
{ ERROR_NETWORK_ACCESS_DENIED, EACCES },
{ ERROR_BAD_NET_NAME, ENOENT },
{ ERROR_FILE_EXISTS, EEXIST },
{ ERROR_CANNOT_MAKE, EACCES },
{ ERROR_FAIL_I24, EACCES },
{ ERROR_INVALID_PARAMETER, EINVAL },
{ ERROR_NO_PROC_SLOTS, EAGAIN },
{ ERROR_DRIVE_LOCKED, EACCES },
{ ERROR_BROKEN_PIPE, EPIPE },
{ ERROR_DISK_FULL, ENOSPC },
{ ERROR_INVALID_TARGET_HANDLE, EBADF },
{ ERROR_INVALID_HANDLE, EINVAL },
{ ERROR_WAIT_NO_CHILDREN, ECHILD },
{ ERROR_CHILD_NOT_COMPLETE, ECHILD },
{ ERROR_DIRECT_ACCESS_HANDLE, EBADF },
{ ERROR_NEGATIVE_SEEK, EINVAL },
{ ERROR_SEEK_ON_DEVICE, EACCES },
{ ERROR_DIR_NOT_EMPTY, ENOTEMPTY },
{ ERROR_NOT_LOCKED, EACCES },
{ ERROR_BAD_PATHNAME, ENOENT },
{ ERROR_MAX_THRDS_REACHED, EAGAIN },
{ ERROR_LOCK_FAILED, EACCES },
{ ERROR_ALREADY_EXISTS, EEXIST },
{ ERROR_INVALID_STARTING_CODESEG, ENOEXEC },
{ ERROR_INVALID_STACKSEG, ENOEXEC },
{ ERROR_INVALID_MODULETYPE, ENOEXEC },
{ ERROR_INVALID_EXE_SIGNATURE, ENOEXEC },
{ ERROR_EXE_MARKED_INVALID, ENOEXEC },
{ ERROR_BAD_EXE_FORMAT, ENOEXEC },
{ ERROR_ITERATED_DATA_EXCEEDS_64k,ENOEXEC },
{ ERROR_INVALID_MINALLOCSIZE, ENOEXEC },
{ ERROR_DYNLINK_FROM_INVALID_RING,ENOEXEC },
{ ERROR_IOPL_NOT_ENABLED, ENOEXEC },
{ ERROR_INVALID_SEGDPL, ENOEXEC },
{ ERROR_AUTODATASEG_EXCEEDS_64k, ENOEXEC },
{ ERROR_RING2SEG_MUST_BE_MOVABLE, ENOEXEC },
{ ERROR_RELOC_CHAIN_XEEDS_SEGLIM, ENOEXEC },
{ ERROR_INFLOOP_IN_RELOC_CHAIN, ENOEXEC },
{ ERROR_FILENAME_EXCED_RANGE, ENOENT },
{ ERROR_NESTING_NOT_ALLOWED, EAGAIN },
{ ERROR_NOT_ENOUGH_QUOTA, ENOMEM },
{ WSAENAMETOOLONG, ENAMETOOLONG },
{ WSAENOTEMPTY, ENOTEMPTY }
};
static int
map_errno(DWORD winerr)
{
int i;
if (winerr == 0) {
return 0;
}
for (i = 0; i < sizeof(errmap) / sizeof(*errmap); i++) {
if (errmap[i].winerr == winerr) {
return errmap[i].err;
}
}
if (winerr >= WSABASEERR) {
return winerr;
}
return EINVAL;
}
static char *NTLoginName;
#ifdef WIN95
DWORD Win32System = (DWORD)-1;
static DWORD
IdOS(void)
{
static OSVERSIONINFO osver;
if (osver.dwPlatformId != Win32System) {
memset(&osver, 0, sizeof(OSVERSIONINFO));
osver.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
GetVersionEx(&osver);
Win32System = osver.dwPlatformId;
}
return (Win32System);
}
static int
IsWin95(void) {
return (IdOS() == VER_PLATFORM_WIN32_WINDOWS);
}
static int
IsWinNT(void) {
return (IdOS() == VER_PLATFORM_WIN32_NT);
}
#else
# define IsWinNT() TRUE
# define IsWin95() FALSE
#endif
/* main thread constants */
static struct {
HANDLE handle;
DWORD id;
} main_thread;
/* interrupt stuff */
static HANDLE interrupted_event;
HANDLE GetCurrentThreadHandle(void)
{
static HANDLE current_process_handle = NULL;
HANDLE h;
if (!current_process_handle)
current_process_handle = GetCurrentProcess();
if (!DuplicateHandle(current_process_handle, GetCurrentThread(),
current_process_handle, &h,
0, FALSE, DUPLICATE_SAME_ACCESS))
return NULL;
return h;
}
/* simulate flock by locking a range on the file */
#define LK_ERR(f,i) ((f) ? (i = 0) : (errno = GetLastError() == ERROR_LOCK_VIOLATION ? EWOULDBLOCK : EACCES))
#define LK_LEN ULONG_MAX
static VALUE
flock_winnt(VALUE self, int argc, VALUE* argv)
{
OVERLAPPED o;
int i = -1;
const HANDLE fh = (HANDLE)self;
const int oper = argc;
memset(&o, 0, sizeof(o));
switch(oper) {
case LOCK_SH: /* shared lock */
LK_ERR(LockFileEx(fh, 0, 0, LK_LEN, LK_LEN, &o), i);
break;
case LOCK_EX: /* exclusive lock */
LK_ERR(LockFileEx(fh, LOCKFILE_EXCLUSIVE_LOCK, 0, LK_LEN, LK_LEN, &o), i);
break;
case LOCK_SH|LOCK_NB: /* non-blocking shared lock */
LK_ERR(LockFileEx(fh, LOCKFILE_FAIL_IMMEDIATELY, 0, LK_LEN, LK_LEN, &o), i);
break;
case LOCK_EX|LOCK_NB: /* non-blocking exclusive lock */
LK_ERR(LockFileEx(fh,
LOCKFILE_EXCLUSIVE_LOCK|LOCKFILE_FAIL_IMMEDIATELY,
0, LK_LEN, LK_LEN, &o), i);
break;
case LOCK_UN: /* unlock lock */
LK_ERR(UnlockFileEx(fh, 0, LK_LEN, LK_LEN, &o), i);
break;
default: /* unknown */
errno = EINVAL;
break;
}
return i;
}
#ifdef WIN95
static VALUE
flock_win95(VALUE self, int argc, VALUE* argv)
{
int i = -1;
const HANDLE fh = (HANDLE)self;
const int oper = argc;
switch(oper) {
case LOCK_EX:
do {
LK_ERR(LockFile(fh, 0, 0, LK_LEN, LK_LEN), i);
} while (i && errno == EWOULDBLOCK);
break;
case LOCK_EX|LOCK_NB:
LK_ERR(LockFile(fh, 0, 0, LK_LEN, LK_LEN), i);
break;
case LOCK_UN:
LK_ERR(UnlockFile(fh, 0, 0, LK_LEN, LK_LEN), i);
break;
default:
errno = EINVAL;
break;
}
return i;
}
#endif
#undef LK_ERR
int
flock(int fd, int oper)
{
#ifdef WIN95
static asynchronous_func_t locker = NULL;
if (!locker) {
if (IsWinNT())
locker = flock_winnt;
else
locker = flock_win95;
}
#else
const asynchronous_func_t locker = flock_winnt;
#endif
return rb_w32_asynchronize(locker,
(VALUE)_get_osfhandle(fd), oper, NULL,
(DWORD)-1);
}
//
// Initialization stuff
//
void
NtInitialize(int *argc, char ***argv)
{
WORD version;
int ret;
#ifdef __BORLANDC__
_controlfp(0x5, 0x5);
#endif
//
// subvert cmd.exe's feeble attempt at command line parsing
//
*argc = make_cmdvector(GetCommandLine(), argv);
//
// Now set up the correct time stuff
//
tzset();
// Initialize Winsock
StartSockets();
#ifdef _WIN32_WCE
// free commandline buffer
wce_FreeCommandLine();
#endif
}
char *getlogin()
{
char buffer[200];
DWORD len = 200;
extern char *NTLoginName;
if (NTLoginName == NULL) {
if (GetUserName(buffer, &len)) {
NTLoginName = ALLOC_N(char, len+1);
strncpy(NTLoginName, buffer, len);
NTLoginName[len] = '\0';
}
else {
NTLoginName = "<Unknown>";
}
}
return NTLoginName;
}
#define MAXCHILDNUM 256 /* max num of child processes */
static struct ChildRecord {
HANDLE hProcess; /* process handle */
pid_t pid; /* process id */
} ChildRecord[MAXCHILDNUM];
#define FOREACH_CHILD(v) do { \
struct ChildRecord* v; \
for (v = ChildRecord; v < ChildRecord + sizeof(ChildRecord) / sizeof(ChildRecord[0]); ++v)
#define END_FOREACH_CHILD } while (0)
static struct ChildRecord *
FindFirstChildSlot(void)
{
FOREACH_CHILD(child) {
if (child->pid) return child;
} END_FOREACH_CHILD;
return NULL;
}
static struct ChildRecord *
FindChildSlot(pid_t pid)
{
FOREACH_CHILD(child) {
if (child->pid == pid) {
return child;
}
} END_FOREACH_CHILD;
return NULL;
}
static void
CloseChildHandle(struct ChildRecord *child)
{
HANDLE h = child->hProcess;
child->hProcess = NULL;
child->pid = 0;
CloseHandle(h);
}
static struct ChildRecord *
FindFreeChildSlot(void)
{
FOREACH_CHILD(child) {
if (!child->pid) {
child->pid = -1; /* lock the slot */
child->hProcess = NULL;
return child;
}
} END_FOREACH_CHILD;
return NULL;
}
int SafeFree(char **vec, int vecc)
{
// vec
// |
// V ^---------------------V
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | | | .... | NULL | | ..... |\0 | | ..... |\0 |...
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// |- elements+1 -| ^ 1st element ^ 2nd element
char *p;
p = (char *)vec;
free(p);
return 0;
}
/*
ruby -lne 'BEGIN{$cmds = Hash.new(0); $mask = 1}'
-e '$cmds[$_.downcase] |= $mask' -e '$mask <<= 1 if ARGF.eof'
-e 'END{$cmds.sort.each{|n,f|puts " \"\\#{f.to_s(8)}\" #{n.dump} + 1,"}}'
98cmd ntcmd
*/
static char *szInternalCmds[] = {
"\2" "assoc" + 1,
"\3" "break" + 1,
"\3" "call" + 1,
"\3" "cd" + 1,
"\1" "chcp" + 1,
"\3" "chdir" + 1,
"\3" "cls" + 1,
"\2" "color" + 1,
"\3" "copy" + 1,
"\1" "ctty" + 1,
"\3" "date" + 1,
"\3" "del" + 1,
"\3" "dir" + 1,
"\3" "echo" + 1,
"\2" "endlocal" + 1,
"\3" "erase" + 1,
"\3" "exit" + 1,
"\3" "for" + 1,
"\2" "ftype" + 1,
"\3" "goto" + 1,
"\3" "if" + 1,
"\1" "lfnfor" + 1,
"\1" "lh" + 1,
"\1" "lock" + 1,
"\3" "md" + 1,
"\3" "mkdir" + 1,
"\2" "move" + 1,
"\3" "path" + 1,
"\3" "pause" + 1,
"\2" "popd" + 1,
"\3" "prompt" + 1,
"\2" "pushd" + 1,
"\3" "rd" + 1,
"\3" "rem" + 1,
"\3" "ren" + 1,
"\3" "rename" + 1,
"\3" "rmdir" + 1,
"\3" "set" + 1,
"\2" "setlocal" + 1,
"\3" "shift" + 1,
"\2" "start" + 1,
"\3" "time" + 1,
"\2" "title" + 1,
"\1" "truename" + 1,
"\3" "type" + 1,
"\1" "unlock" + 1,
"\3" "ver" + 1,
"\3" "verify" + 1,
"\3" "vol" + 1,
};
static int
internal_match(const void *key, const void *elem)
{
return strcmp(key, *(const char *const *)elem);
}
static int
isInternalCmd(const char *cmd, const char *interp)
{
int i, nt = 1;
char cmdname[9], *b = cmdname, c, **nm;
i = strlen(interp) - 11;
if ((i == 0 || i > 0 && isdirsep(interp[i-1])) &&
strcasecmp(interp+i, "command.com") == 0) {
nt = 0;
}
do {
if (!(c = *cmd++)) return 0;
} while (isspace(c));
while (isalpha(c)) {
*b++ = tolower(c);
if (b == cmdname + sizeof(cmdname)) return 0;
c = *cmd++;
}
if (c == '.') c = *cmd;
switch (c) {
case '<': case '>': case '|':
return 1;
case '\0': case ' ': case '\t': case '\n':
break;
default:
return 0;
}
*b = 0;
nm = bsearch(cmdname, szInternalCmds,
sizeof(szInternalCmds) / sizeof(*szInternalCmds),
sizeof(*szInternalCmds),
internal_match);
if (!nm || !(nm[0][-1] & (nt ? 2 : 1)))
return 0;
return 1;
}
SOCKET
rb_w32_get_osfhandle(int fh)
{
return _get_osfhandle(fh);
}
int
rb_w32_argv_size(char *const *argv)
{
const char *p;
char *const *t;
int len, n, bs, quote;
for (t = argv, len = 0; *t; t++) {
for (p = *t, n = quote = bs = 0; *p; ++p) {
switch (*p) {
case '\\':
++bs;
break;
case '"':
n += bs + 1; bs = 0;
quote = 1;
break;
case ' ': case '\t':
quote = 1;
default:
bs = 0;
p = CharNext(p) - 1;
break;
}
}
len += p - *t + n + 1;
if (quote) len += 2;
}
return len;
}
char *
rb_w32_join_argv(char *cmd, char *const *argv)
{
const char *p, *s;
char *q, *const *t;
int n, bs, quote;
for (t = argv, q = cmd; p = *t; t++) {
quote = 0;
s = p;
if (!*p || strpbrk(p, " \t\"")) {
quote = 1;
*q++ = '"';
}
for (bs = 0; *p; ++p) {
switch (*p) {
case '\\':
++bs;
break;
case '"':
memcpy(q, s, n = p - s); q += n; s = p;
memset(q, '\\', ++bs); q += bs; bs = 0;
break;
default:
bs = 0;
p = CharNext(p) - 1;
break;
}
}
memcpy(q, s, n = p - s);
q += n;
if (quote) *q++ = '"';
*q++ = ' ';
}
if (q > cmd) --q;
*q = '\0';
return cmd;
}
pid_t
rb_w32_pipe_exec(const char *cmd, const char *prog, int mode, FILE **fpr, FILE **fpw)
{
struct ChildRecord* child;
HANDLE hReadIn, hReadOut;
HANDLE hWriteIn, hWriteOut;
HANDLE hDupInFile, hDupOutFile;
HANDLE hCurProc;
SECURITY_ATTRIBUTES sa;
BOOL fRet;
BOOL reading, writing;
int fd;
int pipemode;
char modes[3];
int ret;
/* Figure out what we're doing... */
writing = (mode & (O_WRONLY | O_RDWR)) ? TRUE : FALSE;
reading = ((mode & O_RDWR) || !writing) ? TRUE : FALSE;
if (mode & O_BINARY) {
pipemode = O_BINARY;
modes[1] = 'b';
modes[2] = '\0';
}
else {
pipemode = O_TEXT;
modes[1] = '\0';
}
sa.nLength = sizeof (SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
ret = -1;
hWriteIn = hReadOut = NULL;
RUBY_CRITICAL(do {
/* create pipe */
hCurProc = GetCurrentProcess();
if (reading) {
fRet = CreatePipe(&hReadIn, &hReadOut, &sa, 2048L);
if (!fRet) {
errno = map_errno(GetLastError());
break;
}
if (!DuplicateHandle(hCurProc, hReadIn, hCurProc, &hDupInFile, 0,
FALSE, DUPLICATE_SAME_ACCESS)) {
errno = map_errno(GetLastError());
CloseHandle(hReadIn);
CloseHandle(hReadOut);
CloseHandle(hCurProc);
break;
}
CloseHandle(hReadIn);
}
if (writing) {
fRet = CreatePipe(&hWriteIn, &hWriteOut, &sa, 2048L);
if (!fRet) {
errno = map_errno(GetLastError());
write_pipe_failed:
if (reading) {
CloseHandle(hDupInFile);
CloseHandle(hReadOut);
}
break;
}
if (!DuplicateHandle(hCurProc, hWriteOut, hCurProc, &hDupOutFile, 0,
FALSE, DUPLICATE_SAME_ACCESS)) {
errno = map_errno(GetLastError());
CloseHandle(hWriteIn);
CloseHandle(hWriteOut);
CloseHandle(hCurProc);
goto write_pipe_failed;
}
CloseHandle(hWriteOut);
}
CloseHandle(hCurProc);
/* create child process */
child = CreateChild(cmd, prog, &sa, hWriteIn, hReadOut, NULL);
if (!child) {
if (reading) {
CloseHandle(hReadOut);
CloseHandle(hDupInFile);
}
if (writing) {
CloseHandle(hWriteIn);
CloseHandle(hDupOutFile);
}
break;
}
/* associate handle to fp */
if (reading) {
fd = rb_w32_open_osfhandle((long)hDupInFile,
(_O_RDONLY | pipemode));
CloseHandle(hReadOut);
if (fd == -1) {
CloseHandle(hDupInFile);
read_open_failed:
if (writing) {
CloseHandle(hWriteIn);
CloseHandle(hDupOutFile);
}
CloseChildHandle(child);
break;
}
modes[0] = 'r';
if ((*fpr = (FILE *)fdopen(fd, modes)) == NULL) {
_close(fd);
goto read_open_failed;
}
}
if (writing) {
fd = rb_w32_open_osfhandle((long)hDupOutFile,
(_O_WRONLY | pipemode));
CloseHandle(hWriteIn);
if (fd == -1) {
CloseHandle(hDupOutFile);
write_open_failed:
if (reading) {
fclose(*fpr);
}
CloseChildHandle(child);
break;
}
modes[0] = 'w';
if ((*fpw = (FILE *)fdopen(fd, modes)) == NULL) {
_close(fd);
goto write_open_failed;
}
}
ret = child->pid;
} while (0));
return ret;
}
extern VALUE rb_last_status;
int
rb_w32_spawn(int mode, const char *cmd, const char *prog)
{
struct ChildRecord *child;
DWORD exitcode;
switch (mode) {
case P_WAIT:
case P_NOWAIT:
case P_OVERLAY:
break;
default:
errno = EINVAL;
return -1;
}
child = CreateChild(cmd, prog, NULL, NULL, NULL, NULL);
if (!child) {
return -1;
}
switch (mode) {
case P_WAIT:
rb_syswait(child->pid);
return NUM2INT(rb_last_status);
case P_NOWAIT:
return child->pid;
case P_OVERLAY:
WaitForSingleObject(child->hProcess, INFINITE);
GetExitCodeProcess(child->hProcess, &exitcode);
CloseChildHandle(child);
_exit(exitcode);
default:
return -1; /* not reached */
}
}
int
rb_w32_aspawn(int mode, const char *prog, char *const *argv)
{
int len = rb_w32_argv_size(argv);
char *cmd = ALLOCA_N(char, len);
if (!prog) prog = argv[0];
return rb_w32_spawn(mode, rb_w32_join_argv(cmd, argv), prog);
}
static struct ChildRecord *
CreateChild(const char *cmd, const char *prog, SECURITY_ATTRIBUTES *psa, HANDLE hInput, HANDLE hOutput, HANDLE hError)
{
BOOL fRet;
DWORD dwCreationFlags;
STARTUPINFO aStartupInfo;
PROCESS_INFORMATION aProcessInformation;
SECURITY_ATTRIBUTES sa;
const char *shell;
struct ChildRecord *child;
char *p = NULL;
if (!cmd && !prog) {
errno = EFAULT;
return NULL;
}
child = FindFreeChildSlot();
if (!child) {
errno = EAGAIN;
return NULL;
}
if (!psa) {
sa.nLength = sizeof (SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
psa = &sa;
}
memset(&aStartupInfo, 0, sizeof (STARTUPINFO));
memset(&aProcessInformation, 0, sizeof (PROCESS_INFORMATION));
aStartupInfo.cb = sizeof (STARTUPINFO);
if (hInput || hOutput || hError) {
aStartupInfo.dwFlags = STARTF_USESTDHANDLES;
if (hInput) {
aStartupInfo.hStdInput = hInput;
}
else {
aStartupInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
}
if (hOutput) {
aStartupInfo.hStdOutput = hOutput;
}
else {
aStartupInfo.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
}
if (hError) {
aStartupInfo.hStdError = hError;
}
else {
aStartupInfo.hStdError = GetStdHandle(STD_ERROR_HANDLE);
}
}
dwCreationFlags = (NORMAL_PRIORITY_CLASS);
if (prog) {
if (!(p = dln_find_exe(prog, NULL))) {
shell = prog;
}
}
else {
int redir = -1;
if ((shell = getenv("RUBYSHELL")) && (redir = has_redirection(cmd))) {
char *tmp = ALLOCA_N(char, strlen(shell) + strlen(cmd) +
sizeof (" -c ") + 2);
sprintf(tmp, "%s -c \"%s\"", shell, cmd);
cmd = tmp;
}
else if ((shell = getenv("COMSPEC")) &&
((redir < 0 ? has_redirection(cmd) : redir) ||
isInternalCmd(cmd, shell))) {
char *tmp = ALLOCA_N(char, strlen(shell) + strlen(cmd) +
sizeof (" /c "));
sprintf(tmp, "%s /c %s", shell, cmd);
cmd = tmp;
}
else {
shell = NULL;
prog = cmd;
for (;;) {
if (!*prog) {
p = dln_find_exe(cmd, NULL);
break;
}
if (strchr(".:*?\"/\\", *prog)) break;
if (ISSPACE(*prog) || strchr("<>|", *prog)) {
int len = prog - cmd;
p = ALLOCA_N(char, len + 1);
memcpy(p, cmd, len);
p[len] = 0;
p = dln_find_exe(p, NULL);
break;
}
prog++;
}
}
}
if (p) {
shell = p;
while (*p) {
if ((unsigned char)*p == '/')
*p = '\\';
p = CharNext(p);
}
}
RUBY_CRITICAL({
fRet = CreateProcess(shell, (char *)cmd, psa, psa,
psa->bInheritHandle, dwCreationFlags, NULL, NULL,
&aStartupInfo, &aProcessInformation);
errno = map_errno(GetLastError());
});
if (!fRet) {
child->pid = 0; /* release the slot */
return NULL;
}
CloseHandle(aProcessInformation.hThread);
child->hProcess = aProcessInformation.hProcess;
child->pid = (pid_t)aProcessInformation.dwProcessId;
if (!IsWinNT()) {
/* On Win9x, make pid positive similarly to cygwin and perl */
child->pid = -child->pid;
}
return child;
}
typedef struct _NtCmdLineElement {
struct _NtCmdLineElement *next;
char *str;
int len;
int flags;
} NtCmdLineElement;
//
// Possible values for flags
//
#define NTGLOB 0x1 // element contains a wildcard
#define NTMALLOC 0x2 // string in element was malloc'ed
#define NTSTRING 0x4 // element contains a quoted string
static void
insert(const char *path, VALUE vinfo)
{
NtCmdLineElement *tmpcurr;
NtCmdLineElement ***tail = (NtCmdLineElement ***)vinfo;
tmpcurr = ALLOC(NtCmdLineElement);
MEMZERO(tmpcurr, NtCmdLineElement, 1);
tmpcurr->len = strlen(path);
tmpcurr->str = ALLOC_N(char, tmpcurr->len + 1);
tmpcurr->flags |= NTMALLOC;
strcpy(tmpcurr->str, path);
**tail = tmpcurr;
*tail = &tmpcurr->next;
}
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#else
# define MAXPATHLEN 512
#endif
static NtCmdLineElement **
cmdglob(NtCmdLineElement *patt, NtCmdLineElement **tail)
{
char buffer[MAXPATHLEN], *buf = buffer;
char *p;
NtCmdLineElement **last = tail;
if (patt->len >= MAXPATHLEN)
buf = ruby_xmalloc(patt->len + 1);
strncpy (buf, patt->str, patt->len);
buf[patt->len] = '\0';
for (p = buf; *p; p = CharNext(p))
if (*p == '\\')
*p = '/';
rb_glob(buf, insert, (VALUE)&tail);
if (buf != buffer)
free(buf);
if (last == tail) return 0;
if (patt->flags & NTMALLOC)
free(patt->str);
free(patt);
return tail;
}
//
// Check a command string to determine if it has I/O redirection
// characters that require it to be executed by a command interpreter
//
static bool
has_redirection(const char *cmd)
{
char quote = '\0';
const char *ptr;
//
// Scan the string, looking for redirection (< or >) or pipe
// characters (|) that are not in a quoted string
//
for (ptr = cmd; *ptr;) {
switch (*ptr) {
case '\'':
case '\"':
if (!quote)
quote = *ptr;
else if (quote == *ptr)
quote = '\0';
ptr++;
break;
case '>':
case '<':
case '|':
if (!quote)
return TRUE;
ptr++;
break;
case '\\':
ptr++;
default:
ptr = CharNext(ptr);
break;
}
}
return FALSE;
}
static inline char *
skipspace(char *ptr)
{
while (ISSPACE(*ptr))
ptr++;
return ptr;
}
static int
make_cmdvector(const char *cmd, char ***vec)
{
int cmdlen, globbing, len, i;
int elements, strsz, done;
int slashes, escape;
char *ptr, *base, *buffer, *cmdline;
char **vptr;
char quote;
NtCmdLineElement *curr, **tail;
NtCmdLineElement *cmdhead = NULL, **cmdtail = &cmdhead;
//
// just return if we don't have a command line
//
while (ISSPACE(*cmd))
cmd++;
if (!*cmd) {
*vec = NULL;
return 0;
}
ptr = cmdline = strdup(cmd);
//
// Ok, parse the command line, building a list of CmdLineElements.
// When we've finished, and it's an input command (meaning that it's
// the processes argv), we'll do globing and then build the argument
// vector.
// The outer loop does one interation for each element seen.
// The inner loop does one interation for each character in the element.
//
while (*(ptr = skipspace(ptr))) {
base = ptr;
quote = slashes = globbing = escape = 0;
for (done = 0; !done && *ptr; ) {
//
// Switch on the current character. We only care about the
// white-space characters, the wild-card characters, and the
// quote characters.
//
switch (*ptr) {
case '\\':
slashes++;
break;
case ' ':
case '\t':
case '\n':
//
// if we're not in a string, then we're finished with this
// element
//
if (!quote) {
*ptr = 0;
done = 1;
}
break;
case '*':
case '?':
case '[':
case '{':
//
// record the fact that this element has a wildcard character
// N.B. Don't glob if inside a single quoted string
//
if (quote != '\'')
globbing++;
slashes = 0;
break;
case '\'':
case '\"':
//
// if we're already in a string, see if this is the
// terminating close-quote. If it is, we're finished with
// the string, but not neccessarily with the element.
// If we're not already in a string, start one.
//
if (!(slashes & 1)) {
if (!quote)
quote = *ptr;
else if (quote == *ptr) {
if (quote == '"' && ptr[1] == '"') ptr++;
quote = '\0';
}
escape++;
}
slashes = 0;
break;
default:
ptr = CharNext(ptr);
slashes = 0;
continue;
}
ptr++;
}
//
// when we get here, we've got a pair of pointers to the element,
// base and ptr. Base points to the start of the element while ptr
// points to the character following the element.
//
len = ptr - base;
if (done) --len;
//
// if it's an input vector element and it's enclosed by quotes,
// we can remove them.
//
if (escape) {
char *p = base, c;
slashes = quote = 0;
while (p < base + len) {
switch (c = *p) {
case '\\':
p++;
slashes++;
break;
case '\'':
case '"':
if (!(slashes & 1)) {
if (!quote) {
quote = c;
c = '\0';
}
else if (quote == c) {
quote = '\0';
}
else {
p++;
slashes = 0;
break;
}
}
if (base + slashes == p) {
base += slashes >> 1;
len -= slashes >> 1;
slashes &= 1;
}
if (base == p) {
base = ++p;
--len;
}
else {
memcpy(p - ((slashes + 1) >> 1), p + (~slashes & 1), base + len - p);
slashes >>= 1;
p -= slashes;
len -= slashes + 1;
slashes = 0;
if (c == '"' && *p == c) p++;
}
break;
default:
p = CharNext(p);
slashes = 0;
break;
}
}
}
curr = ALLOC(NtCmdLineElement);
MEMZERO(curr, NtCmdLineElement, 1);
curr->str = base;
curr->len = len;
if (globbing && (tail = cmdglob(curr, cmdtail))) {
cmdtail = tail;
}
else {
*cmdtail = curr;
cmdtail = &curr->next;
}
}
//
// Almost done!
// Count up the elements, then allocate space for a vector of pointers
// (argv) and a string table for the elements.
//
for (elements = 0, strsz = 0, curr = cmdhead; curr; curr = curr->next) {
elements++;
strsz += (curr->len + 1);
}
len = (elements+1)*sizeof(char *) + strsz;
buffer = ALLOC_N(char, len);
//
// make vptr point to the start of the buffer
// and ptr point to the area we'll consider the string table.
//
// buffer (*vec)
// |
// V ^---------------------V
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | | | .... | NULL | | ..... |\0 | | ..... |\0 |...
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// |- elements+1 -| ^ 1st element ^ 2nd element
vptr = (char **) buffer;
ptr = buffer + (elements+1) * sizeof(char *);
while (curr = cmdhead) {
strncpy (ptr, curr->str, curr->len);
ptr[curr->len] = '\0';
*vptr++ = ptr;
ptr += curr->len + 1;
cmdhead = curr->next;
if (curr->flags & NTMALLOC) free(curr->str);
free(curr);
}
*vptr = 0;
*vec = (char **) buffer;
free(cmdline);
return elements;
}
//
// UNIX compatible directory access functions for NT
//
#define PATHLEN 1024
//
// The idea here is to read all the directory names into a string table
// (separated by nulls) and when one of the other dir functions is called
// return the pointer to the current file name.
//
#define GetBit(bits, i) ((bits)[(i) / 8] & (1 << (i) % 8))
#define SetBit(bits, i) ((bits)[(i) / 8] |= (1 << (i) % 8))
DIR *
rb_w32_opendir(const char *filename)
{
DIR *p;
long len;
long idx;
char scannamespc[PATHLEN];
char *scanname = scannamespc;
struct stat sbuf;
WIN32_FIND_DATA fd;
HANDLE fh;
//
// check to see if we've got a directory
//
if (rb_w32_stat(filename, &sbuf) < 0)
return NULL;
if (!(sbuf.st_mode & S_IFDIR) &&
(!ISALPHA(filename[0]) || filename[1] != ':' || filename[2] != '\0' ||
((1 << (filename[0] & 0x5f) - 'A') & GetLogicalDrives()) == 0)) {
errno = ENOTDIR;
return NULL;
}
//
// Get us a DIR structure
//
p = xcalloc(sizeof(DIR), 1);
if (p == NULL)
return NULL;
//
// Create the search pattern
//
strcpy(scanname, filename);
if (index("/\\:", *CharPrev(scanname, scanname + strlen(scanname))) == NULL)
strcat(scanname, "/*");
else
strcat(scanname, "*");
//
// do the FindFirstFile call
//
fh = FindFirstFile(scanname, &fd);
if (fh == INVALID_HANDLE_VALUE) {
return NULL;
}
//
// now allocate the first part of the string table for the
// filenames that we find.
//
idx = strlen(fd.cFileName)+1;
p->start = ALLOC_N(char, idx);
strcpy(p->start, fd.cFileName);
p->bits = ALLOC_N(char, 1);
p->bits[0] = 0;
if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
SetBit(p->bits, 0);
if (fd.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT)
SetBit(p->bits, 1);
p->nfiles++;
//
// loop finding all the files that match the wildcard
// (which should be all of them in this directory!).
// the variable idx should point one past the null terminator
// of the previous string found.
//
while (FindNextFile(fh, &fd)) {
len = strlen(fd.cFileName);
//
// bump the string table size by enough for the
// new name and it's null terminator
//
#define Renew(x, y, z) (x = (z *)realloc(x, y))
Renew (p->start, idx+len+1, char);
if (p->start == NULL) {
rb_fatal ("opendir: malloc failed!\n");
}
strcpy(&p->start[idx], fd.cFileName);
if (p->nfiles % 4 == 0) {
Renew (p->bits, p->nfiles / 4 + 1, char);
if (p->bits == NULL) {
rb_fatal ("opendir: malloc failed!\n");
}
p->bits[p->nfiles / 4] = 0;
}
if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
SetBit(p->bits, p->nfiles * 2);
if (fd.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT)
SetBit(p->bits, p->nfiles * 2 + 1);
p->nfiles++;
idx += len+1;
}
FindClose(fh);
p->size = idx;
p->curr = p->start;
return p;
}
//
// Readdir just returns the current string pointer and bumps the
// string pointer to the next entry.
//
struct direct *
rb_w32_readdir(DIR *dirp)
{
int len;
static int dummy = 0;
if (dirp->curr) {
//
// first set up the structure to return
//
len = strlen(dirp->curr);
strcpy(dirp->dirstr.d_name, dirp->curr);
dirp->dirstr.d_namlen = len;
//
// Fake inode
//
dirp->dirstr.d_ino = dummy++;
//
// Attributes
//
dirp->dirstr.d_isdir = GetBit(dirp->bits, dirp->bitpos);
dirp->bitpos++;
dirp->dirstr.d_isrep = GetBit(dirp->bits, dirp->bitpos);
dirp->bitpos++;
//
// Now set up for the next call to readdir
//
dirp->curr += len + 1;
if (dirp->curr >= (dirp->start + dirp->size)) {
dirp->curr = NULL;
}
return &(dirp->dirstr);
} else
return NULL;
}
//
// Telldir returns the current string pointer position
//
long
rb_w32_telldir(DIR *dirp)
{
return (long) dirp->curr; /* ouch! pointer to long cast */
}
//
// Seekdir moves the string pointer to a previously saved position
// (Saved by telldir).
void
rb_w32_seekdir(DIR *dirp, long loc)
{
dirp->curr = (char *) loc; /* ouch! long to pointer cast */
}
//
// Rewinddir resets the string pointer to the start
//
void
rb_w32_rewinddir(DIR *dirp)
{
dirp->curr = dirp->start;
dirp->bitpos = 0;
}
//
// This just free's the memory allocated by opendir
//
void
rb_w32_closedir(DIR *dirp)
{
free(dirp->start);
free(dirp->bits);
free(dirp);
}
EXTERN_C void __cdecl _lock_fhandle(int);
EXTERN_C void __cdecl _unlock_fhandle(int);
EXTERN_C void __cdecl _unlock(int);
#if (defined _MT || defined __MSVCRT__) && !defined __BORLANDC__
#define MSVCRT_THREADS
#endif
#ifdef MSVCRT_THREADS
# define MTHREAD_ONLY(x) x
# define STHREAD_ONLY(x)
#elif defined(__BORLANDC__)
# define MTHREAD_ONLY(x)
# define STHREAD_ONLY(x)
#else
# define MTHREAD_ONLY(x)
# define STHREAD_ONLY(x) x
#endif
typedef struct {
long osfhnd; /* underlying OS file HANDLE */
char osfile; /* attributes of file (e.g., open in text mode?) */
char pipech; /* one char buffer for handles opened on pipes */
#ifdef MSVCRT_THREADS
int lockinitflag;
CRITICAL_SECTION lock;
#endif
} ioinfo;
#if !defined _CRTIMP || defined __MINGW32__
#undef _CRTIMP
#define _CRTIMP __declspec(dllimport)
#endif
#if !defined(__BORLANDC__) && !defined(_WIN32_WCE)
EXTERN_C _CRTIMP ioinfo * __pioinfo[];
#define IOINFO_L2E 5
#define IOINFO_ARRAY_ELTS (1 << IOINFO_L2E)
#define _pioinfo(i) (__pioinfo[i >> IOINFO_L2E] + (i & (IOINFO_ARRAY_ELTS - 1)))
#define _osfhnd(i) (_pioinfo(i)->osfhnd)
#define _osfile(i) (_pioinfo(i)->osfile)
#define _pipech(i) (_pioinfo(i)->pipech)
#define _set_osfhnd(fh, osfh) (void)(_osfhnd(fh) = osfh)
#define _set_osflags(fh, flags) (_osfile(fh) = (flags))
#define FOPEN 0x01 /* file handle open */
#define FNOINHERIT 0x10 /* file handle opened O_NOINHERIT */
#define FAPPEND 0x20 /* file handle opened O_APPEND */
#define FDEV 0x40 /* file handle refers to device */
#define FTEXT 0x80 /* file handle is in text mode */
static int
rb_w32_open_osfhandle(long osfhandle, int flags)
{
int fh;
char fileflags; /* _osfile flags */
HANDLE hF;
/* copy relevant flags from second parameter */
fileflags = FDEV;
if (flags & O_APPEND)
fileflags |= FAPPEND;
if (flags & O_TEXT)
fileflags |= FTEXT;
if (flags & O_NOINHERIT)
fileflags |= FNOINHERIT;
/* attempt to allocate a C Runtime file handle */
hF = CreateFile("NUL", 0, 0, NULL, OPEN_ALWAYS, 0, NULL);
fh = _open_osfhandle((long)hF, 0);
CloseHandle(hF);
if (fh == -1) {
errno = EMFILE; /* too many open files */
_doserrno = 0L; /* not an OS error */
}
else {
MTHREAD_ONLY(EnterCriticalSection(&(_pioinfo(fh)->lock)));
/* the file is open. now, set the info in _osfhnd array */
_set_osfhnd(fh, osfhandle);
fileflags |= FOPEN; /* mark as open */
_set_osflags(fh, fileflags); /* set osfile entry */
MTHREAD_ONLY(LeaveCriticalSection(&_pioinfo(fh)->lock));
}
return fh; /* return handle */
}
#else
#define _set_osfhnd(fh, osfh) (void)((fh), (osfh))
#define _set_osflags(fh, flags) (void)((fh), (flags))
#endif
#undef getsockopt
static int
is_socket(SOCKET fd)
{
char sockbuf[80];
int optlen;
int retval;
int result = TRUE;
optlen = sizeof(sockbuf);
RUBY_CRITICAL({
retval = getsockopt(fd, SOL_SOCKET, SO_TYPE, sockbuf, &optlen);
if (retval == SOCKET_ERROR) {
int iRet;
iRet = WSAGetLastError();
if (iRet == WSAENOTSOCK || iRet == WSANOTINITIALISED)
result = FALSE;
}
});
//
// If we get here, then fd is actually a socket.
//
return result;
}
//
// Since the errors returned by the socket error function
// WSAGetLastError() are not known by the library routine strerror
// we have to roll our own.
//
#undef strerror
char *
rb_w32_strerror(int e)
{
static char buffer[512];
#if !defined __MINGW32__
extern int sys_nerr;
#endif
DWORD source = 0;
char *p;
if (e < 0 || e > sys_nerr) {
if (e < 0)
e = GetLastError();
if (FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, &source, e, 0,
buffer, 512, NULL) == 0) {
strcpy(buffer, "Unknown Error");
}
for (p = buffer + strlen(buffer) - 1; buffer <= p; p--) {
if (*p != '\r' && *p != '\n') break;
*p = 0;
}
return buffer;
}
return strerror(e);
}
//
// various stubs
//
// Ownership
//
// Just pretend that everyone is a superuser. NT will let us know if
// we don't really have permission to do something.
//
#define ROOT_UID 0
#define ROOT_GID 0
UIDTYPE
getuid(void)
{
return ROOT_UID;
}
UIDTYPE
geteuid(void)
{
return ROOT_UID;
}
GIDTYPE
getgid(void)
{
return ROOT_GID;
}
GIDTYPE
getegid(void)
{
return ROOT_GID;
}
int
setuid(int uid)
{
return (uid == ROOT_UID ? 0 : -1);
}
int
setgid(int gid)
{
return (gid == ROOT_GID ? 0 : -1);
}
//
// File system stuff
//
int
ioctl(int i, int u, ...)
{
return -1;
}
#undef FD_SET
void
rb_w32_fdset(int fd, fd_set *set)
{
unsigned int i;
SOCKET s = TO_SOCKET(fd);
for (i = 0; i < set->fd_count; i++) {
if (set->fd_array[i] == s) {
return;
}
}
if (i == set->fd_count) {
if (set->fd_count < FD_SETSIZE) {
set->fd_array[i] = s;
set->fd_count++;
}
}
}
#undef FD_CLR
void
rb_w32_fdclr(int fd, fd_set *set)
{
unsigned int i;
SOCKET s = TO_SOCKET(fd);
for (i = 0; i < set->fd_count; i++) {
if (set->fd_array[i] == s) {
while (i < set->fd_count - 1) {
set->fd_array[i] = set->fd_array[i + 1];
i++;
}
set->fd_count--;
break;
}
}
}
#undef FD_ISSET
int
rb_w32_fdisset(int fd, fd_set *set)
{
return __WSAFDIsSet(TO_SOCKET(fd), set);
}
//
// Networking trampolines
// These are used to avoid socket startup/shutdown overhead in case
// the socket routines aren't used.
//
#undef select
static int NtSocketsInitialized = 0;
static int
extract_file_fd(fd_set *set, fd_set *fileset)
{
int idx;
fileset->fd_count = 0;
if (!set)
return 0;
for (idx = 0; idx < set->fd_count; idx++) {
SOCKET fd = set->fd_array[idx];
if (!is_socket(fd)) {
int i;
for (i = 0; i < fileset->fd_count; i++) {
if (fileset->fd_array[i] == fd) {
break;
}
}
if (i == fileset->fd_count) {
if (fileset->fd_count < FD_SETSIZE) {
fileset->fd_array[i] = fd;
fileset->fd_count++;
}
}
}
}
return fileset->fd_count;
}
long
rb_w32_select (int nfds, fd_set *rd, fd_set *wr, fd_set *ex,
struct timeval *timeout)
{
long r;
fd_set file_rd;
fd_set file_wr;
#ifdef USE_INTERRUPT_WINSOCK
fd_set trap;
#endif /* USE_INTERRUPT_WINSOCK */
int file_nfds;
if (!NtSocketsInitialized) {
StartSockets();
}
r = 0;
if (rd && rd->fd_count > r) r = rd->fd_count;
if (wr && wr->fd_count > r) r = wr->fd_count;
if (ex && ex->fd_count > r) r = ex->fd_count;
if (nfds > r) nfds = r;
if (nfds == 0 && timeout) {
Sleep(timeout->tv_sec * 1000 + timeout->tv_usec / 1000);
return 0;
}
file_nfds = extract_file_fd(rd, &file_rd);
file_nfds += extract_file_fd(wr, &file_wr);
if (file_nfds)
{
// assume normal files are always readable/writable
// fake read/write fd_set and return value
if (rd) *rd = file_rd;
if (wr) *wr = file_wr;
return file_nfds;
}
#if USE_INTERRUPT_WINSOCK
if (ex)
trap = *ex;
else
trap.fd_count = 0;
if (trap.fd_count < FD_SETSIZE)
trap.fd_array[trap.fd_count++] = (SOCKET)interrupted_event;
// else unable to catch interrupt.
ex = &trap;
#endif /* USE_INTERRUPT_WINSOCK */
RUBY_CRITICAL({
r = select(nfds, rd, wr, ex, timeout);
if (r == SOCKET_ERROR) {
errno = map_errno(WSAGetLastError());
}
});
return r;
}
static void
StartSockets ()
{
WORD version;
WSADATA retdata;
int ret;
int iSockOpt;
//
// initalize the winsock interface and insure that it's
// cleaned up at exit.
//
version = MAKEWORD(1, 1);
if (ret = WSAStartup(version, &retdata))
rb_fatal ("Unable to locate winsock library!\n");
if (LOBYTE(retdata.wVersion) != 1)
rb_fatal("could not find version 1 of winsock dll\n");
if (HIBYTE(retdata.wVersion) != 1)
rb_fatal("could not find version 1 of winsock dll\n");
atexit((void (*)(void)) WSACleanup);
#ifndef SO_SYNCHRONOUS_NONALERT
#define SO_SYNCHRONOUS_NONALERT 0x20
#endif
iSockOpt = SO_SYNCHRONOUS_NONALERT;
/*
* Enable the use of sockets as filehandles
*/
#ifndef SO_OPENTYPE
#define SO_OPENTYPE 0x7008
#endif
setsockopt(INVALID_SOCKET, SOL_SOCKET, SO_OPENTYPE,
(char *)&iSockOpt, sizeof(iSockOpt));
main_thread.handle = GetCurrentThreadHandle();
main_thread.id = GetCurrentThreadId();
interrupted_event = CreateSignal();
if (!interrupted_event)
rb_fatal("Unable to create interrupt event!\n");
NtSocketsInitialized = 1;
}
#undef accept
int
rb_w32_accept(int s, struct sockaddr *addr, int *addrlen)
{
SOCKET r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = accept(TO_SOCKET(s), addr, addrlen);
if (r == INVALID_SOCKET) {
errno = map_errno(WSAGetLastError());
s = -1;
}
else {
s = rb_w32_open_osfhandle(r, O_RDWR|O_BINARY);
}
});
return s;
}
#undef bind
int
rb_w32_bind(int s, struct sockaddr *addr, int addrlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = bind(TO_SOCKET(s), addr, addrlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef connect
int
rb_w32_connect(int s, struct sockaddr *addr, int addrlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = connect(TO_SOCKET(s), addr, addrlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef getpeername
int
rb_w32_getpeername(int s, struct sockaddr *addr, int *addrlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getpeername(TO_SOCKET(s), addr, addrlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef getsockname
int
rb_w32_getsockname(int s, struct sockaddr *addr, int *addrlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getsockname(TO_SOCKET(s), addr, addrlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
int
rb_w32_getsockopt(int s, int level, int optname, char *optval, int *optlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getsockopt(TO_SOCKET(s), level, optname, optval, optlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef ioctlsocket
int
rb_w32_ioctlsocket(int s, long cmd, u_long *argp)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = ioctlsocket(TO_SOCKET(s), cmd, argp);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef listen
int
rb_w32_listen(int s, int backlog)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = listen(TO_SOCKET(s), backlog);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef recv
int
rb_w32_recv(int s, char *buf, int len, int flags)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = recv(TO_SOCKET(s), buf, len, flags);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef recvfrom
int
rb_w32_recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = recvfrom(TO_SOCKET(s), buf, len, flags, from, fromlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef send
int
rb_w32_send(int s, char *buf, int len, int flags)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = send(TO_SOCKET(s), buf, len, flags);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef sendto
int
rb_w32_sendto(int s, char *buf, int len, int flags,
struct sockaddr *to, int tolen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = sendto(TO_SOCKET(s), buf, len, flags, to, tolen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef setsockopt
int
rb_w32_setsockopt(int s, int level, int optname, char *optval, int optlen)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = setsockopt(TO_SOCKET(s), level, optname, optval, optlen);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef shutdown
int
rb_w32_shutdown(int s, int how)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = shutdown(TO_SOCKET(s), how);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef socket
int
rb_w32_socket(int af, int type, int protocol)
{
SOCKET s;
int fd;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
s = socket(af, type, protocol);
if (s == INVALID_SOCKET) {
errno = map_errno(WSAGetLastError());
fd = -1;
}
else {
fd = rb_w32_open_osfhandle(s, O_RDWR|O_BINARY);
}
});
return fd;
}
#undef gethostbyaddr
struct hostent *
rb_w32_gethostbyaddr (char *addr, int len, int type)
{
struct hostent *r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = gethostbyaddr(addr, len, type);
if (r == NULL)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef gethostbyname
struct hostent *
rb_w32_gethostbyname (char *name)
{
struct hostent *r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = gethostbyname(name);
if (r == NULL)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef gethostname
int
rb_w32_gethostname (char *name, int len)
{
int r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = gethostname(name, len);
if (r == SOCKET_ERROR)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef getprotobyname
struct protoent *
rb_w32_getprotobyname (char *name)
{
struct protoent *r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getprotobyname(name);
if (r == NULL)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef getprotobynumber
struct protoent *
rb_w32_getprotobynumber (int num)
{
struct protoent *r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getprotobynumber(num);
if (r == NULL)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef getservbyname
struct servent *
rb_w32_getservbyname (char *name, char *proto)
{
struct servent *r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getservbyname(name, proto);
if (r == NULL)
errno = map_errno(WSAGetLastError());
});
return r;
}
#undef getservbyport
struct servent *
rb_w32_getservbyport (int port, char *proto)
{
struct servent *r;
if (!NtSocketsInitialized) {
StartSockets();
}
RUBY_CRITICAL({
r = getservbyport(port, proto);
if (r == NULL)
errno = map_errno(WSAGetLastError());
});
return r;
}
//
// Networking stubs
//
void endhostent() {}
void endnetent() {}
void endprotoent() {}
void endservent() {}
struct netent *getnetent (void) {return (struct netent *) NULL;}
struct netent *getnetbyaddr(char *name) {return (struct netent *)NULL;}
struct netent *getnetbyname(long net, int type) {return (struct netent *)NULL;}
struct protoent *getprotoent (void) {return (struct protoent *) NULL;}
struct servent *getservent (void) {return (struct servent *) NULL;}
void sethostent (int stayopen) {}
void setnetent (int stayopen) {}
void setprotoent (int stayopen) {}
void setservent (int stayopen) {}
#ifndef WNOHANG
#define WNOHANG -1
#endif
static pid_t
poll_child_status(struct ChildRecord *child, int *stat_loc)
{
DWORD exitcode;
DWORD err;
if (!GetExitCodeProcess(child->hProcess, &exitcode)) {
/* If an error occured, return immediatly. */
err = GetLastError();
if (err == ERROR_INVALID_PARAMETER)
errno = ECHILD;
else
errno = map_errno(GetLastError());
CloseChildHandle(child);
return -1;
}
if (exitcode != STILL_ACTIVE) {
/* If already died, return immediatly. */
pid_t pid = child->pid;
CloseChildHandle(child);
if (stat_loc) *stat_loc = exitcode << 8;
return pid;
}
return 0;
}
pid_t
waitpid (pid_t pid, int *stat_loc, int options)
{
DWORD timeout;
if (options == WNOHANG) {
timeout = 0;
} else {
timeout = INFINITE;
}
if (pid == -1) {
int count = 0;
DWORD ret;
HANDLE events[MAXCHILDNUM + 1];
FOREACH_CHILD(child) {
if (!child->pid || child->pid < 0) continue;
if ((pid = poll_child_status(child, stat_loc))) return pid;
events[count++] = child->hProcess;
} END_FOREACH_CHILD;
if (!count) {
errno = ECHILD;
return -1;
}
events[count] = interrupted_event;
ret = WaitForMultipleEvents(count + 1, events, FALSE, timeout, TRUE);
if (ret == WAIT_TIMEOUT) return 0;
if ((ret -= WAIT_OBJECT_0) == count) {
ResetSignal(interrupted_event);
errno = EINTR;
return -1;
}
if (ret > count) {
errno = map_errno(GetLastError());
return -1;
}
return poll_child_status(ChildRecord + ret, stat_loc);
}
else {
struct ChildRecord* child = FindChildSlot(pid);
if (!child) {
errno = ECHILD;
return -1;
}
while (!(pid = poll_child_status(child, stat_loc))) {
/* wait... */
if (wait_events(child->hProcess, timeout) != WAIT_OBJECT_0) {
/* still active */
pid = 0;
break;
}
}
}
return pid;
}
#include <sys/timeb.h>
int _cdecl
gettimeofday(struct timeval *tv, struct timezone *tz)
{
SYSTEMTIME st;
time_t t;
struct tm tm;
GetLocalTime(&st);
tm.tm_sec = st.wSecond;
tm.tm_min = st.wMinute;
tm.tm_hour = st.wHour;
tm.tm_mday = st.wDay;
tm.tm_mon = st.wMonth - 1;
tm.tm_year = st.wYear - 1900;
tm.tm_isdst = -1;
t = mktime(&tm);
tv->tv_sec = t;
tv->tv_usec = st.wMilliseconds * 1000;
return 0;
}
char *
rb_w32_getcwd(buffer, size)
char *buffer;
int size;
{
int length;
char *bp;
#undef getcwd
#ifndef __BORLANDC__
#define getcwd _getcwd
#endif
if (getcwd(buffer, size) == NULL) {
return NULL;
}
length = strlen(buffer);
if (length >= size) {
return NULL;
}
for (bp = buffer; *bp != '\0'; bp = CharNext(bp)) {
if (*bp == '\\') {
*bp = '/';
}
}
return buffer;
}
int
chown(const char *path, int owner, int group)
{
return 0;
}
int
kill(int pid, int sig)
{
int ret = 0;
DWORD err;
if (pid <= 0) {
errno = EINVAL;
return -1;
}
if (IsWin95()) pid = -pid;
if ((unsigned int)pid == GetCurrentProcessId() &&
(sig != 0 && sig != SIGKILL)) {
if ((ret = raise(sig)) != 0) {
/* MSVCRT doesn't set errno... */
errno = EINVAL;
}
return ret;
}
switch (sig) {
case 0:
RUBY_CRITICAL({
HANDLE hProc =
OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, (DWORD)pid);
if (hProc == NULL || hProc == INVALID_HANDLE_VALUE) {
if (GetLastError() == ERROR_INVALID_PARAMETER) {
errno = ESRCH;
}
else {
errno = EPERM;
}
ret = -1;
}
else {
CloseHandle(hProc);
}
});
break;
case SIGINT:
RUBY_CRITICAL({
if (!GenerateConsoleCtrlEvent(CTRL_C_EVENT, (DWORD)pid)) {
if ((err = GetLastError()) == 0)
errno = EPERM;
else
errno = map_errno(GetLastError());
ret = -1;
}
});
break;
case SIGKILL:
RUBY_CRITICAL({
HANDLE hProc = OpenProcess(PROCESS_TERMINATE, FALSE, (DWORD)pid);
if (hProc == NULL || hProc == INVALID_HANDLE_VALUE) {
if (GetLastError() == ERROR_INVALID_PARAMETER) {
errno = ESRCH;
}
else {
errno = EPERM;
}
ret = -1;
}
else {
if (!TerminateProcess(hProc, 0)) {
errno = EPERM;
ret = -1;
}
CloseHandle(hProc);
}
});
break;
default:
errno = EINVAL;
ret = -1;
break;
}
return ret;
}
int
link(const char *from, const char *to)
{
static BOOL (WINAPI *pCreateHardLink)(LPCTSTR, LPCTSTR, LPSECURITY_ATTRIBUTES) = NULL;
static int myerrno = 0;
if (!pCreateHardLink && !myerrno) {
HANDLE hKernel;
hKernel = GetModuleHandle("kernel32.dll");
if (hKernel) {
pCreateHardLink = (BOOL (WINAPI *)(LPCTSTR, LPCTSTR, LPSECURITY_ATTRIBUTES))GetProcAddress(hKernel, "CreateHardLinkA");
if (!pCreateHardLink) {
rb_notimplement();
}
}
else {
myerrno = map_errno(GetLastError());
}
}
if (!pCreateHardLink) {
errno = myerrno;
return -1;
}
if (!pCreateHardLink(to, from, NULL)) {
errno = map_errno(GetLastError());
return -1;
}
return 0;
}
int
wait(int *status)
{
return waitpid(-1, status, 0);
}
char *
rb_w32_getenv(const char *name)
{
static char *curitem = NULL;
static DWORD curlen = 0;
DWORD needlen;
if (curitem == NULL || curlen == 0) {
curlen = 512;
curitem = ALLOC_N(char, curlen);
}
needlen = GetEnvironmentVariable(name, curitem, curlen);
if (needlen != 0) {
while (needlen > curlen) {
REALLOC_N(curitem, char, needlen);
curlen = needlen;
needlen = GetEnvironmentVariable(name, curitem, curlen);
}
}
else {
return NULL;
}
return curitem;
}
int
rb_w32_rename(const char *oldpath, const char *newpath)
{
int res = 0;
int oldatts;
int newatts;
oldatts = GetFileAttributes(oldpath);
newatts = GetFileAttributes(newpath);
if (oldatts == -1) {
errno = map_errno(GetLastError());
return -1;
}
RUBY_CRITICAL({
if (newatts != -1 && newatts & FILE_ATTRIBUTE_READONLY)
SetFileAttributesA(newpath, newatts & ~ FILE_ATTRIBUTE_READONLY);
if (!MoveFile(oldpath, newpath))
res = -1;
if (res) {
switch (GetLastError()) {
case ERROR_ALREADY_EXISTS:
case ERROR_FILE_EXISTS:
if (IsWinNT()) {
if (MoveFileEx(oldpath, newpath, MOVEFILE_REPLACE_EXISTING))
res = 0;
} else {
for (;;) {
if (!DeleteFile(newpath) && GetLastError() != ERROR_FILE_NOT_FOUND)
break;
else if (MoveFile(oldpath, newpath)) {
res = 0;
break;
}
}
}
}
}
if (res)
errno = map_errno(GetLastError());
else
SetFileAttributes(newpath, oldatts);
});
return res;
}
static int
isUNCRoot(const char *path)
{
if (path[0] == '\\' && path[1] == '\\') {
const char *p;
for (p = path + 3; *p; p = CharNext(p)) {
if (*p == '\\')
break;
}
if (p[0] && p[1]) {
for (p++; *p; p = CharNext(p)) {
if (*p == '\\')
break;
}
if (!p[0] || !p[1] || (p[0] == '\\' && p[1] == '.'))
return 1;
}
}
return 0;
}
#ifdef __BORLANDC__
#undef fstat
int
rb_w32_fstat(int fd, struct stat *st)
{
BY_HANDLE_FILE_INFORMATION info;
int ret = fstat(fd, st);
if (ret) return ret;
st->st_mode &= ~(S_IWGRP | S_IWOTH);
if (GetFileInformationByHandle((HANDLE)_get_osfhandle(fd), &info) &&
!(info.dwFileAttributes & FILE_ATTRIBUTE_READONLY)) {
st->st_mode |= S_IWUSR;
}
return ret;
}
#endif
int
rb_w32_stat(const char *path, struct stat *st)
{
const char *p;
char *buf1, *s, *end;
int len;
int ret;
if (!path || !st) {
errno = EFAULT;
return -1;
}
buf1 = ALLOCA_N(char, strlen(path) + 2);
for (p = path, s = buf1; *p; p++, s++) {
if (*p == '/')
*s = '\\';
else
*s = *p;
}
*s = '\0';
len = s - buf1;
if (!len || '\"' == *(--s)) {
errno = ENOENT;
return -1;
}
end = CharPrev(buf1, buf1 + len);
if (isUNCRoot(buf1)) {
if (*end == '.')
*end = '\0';
else if (*end != '\\')
strcat(buf1, "\\");
} else if (*end == '\\' || (buf1 + 1 == end && *end == ':'))
strcat(buf1, ".");
ret = stat(buf1, st);
if (ret == 0) {
st->st_mode &= ~(S_IWGRP | S_IWOTH);
}
return ret;
}
static long
filetime_to_clock(FILETIME *ft)
{
__int64 qw = ft->dwHighDateTime;
qw <<= 32;
qw |= ft->dwLowDateTime;
qw /= 10000; /* File time ticks at 0.1uS, clock at 1mS */
return (long) qw;
}
int
rb_w32_times(struct tms *tmbuf)
{
FILETIME create, exit, kernel, user;
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
tmbuf->tms_utime = filetime_to_clock(&user);
tmbuf->tms_stime = filetime_to_clock(&kernel);
tmbuf->tms_cutime = 0;
tmbuf->tms_cstime = 0;
}
else {
tmbuf->tms_utime = clock();
tmbuf->tms_stime = 0;
tmbuf->tms_cutime = 0;
tmbuf->tms_cstime = 0;
}
return 0;
}
#undef Sleep
#define yield_once() Sleep(0)
#define yield_until(condition) do yield_once(); while (!(condition))
static DWORD wait_events(HANDLE event, DWORD timeout)
{
HANDLE events[2];
int count = 0;
DWORD ret;
if (event) {
events[count++] = event;
}
events[count++] = interrupted_event;
ret = WaitForMultipleEvents(count, events, FALSE, timeout, TRUE);
if (ret == WAIT_OBJECT_0 + count - 1) {
ResetSignal(interrupted_event);
errno = EINTR;
}
return ret;
}
static CRITICAL_SECTION* system_state(void)
{
static int initialized = 0;
static CRITICAL_SECTION syssect;
if (!initialized) {
InitializeCriticalSection(&syssect);
initialized = 1;
}
return &syssect;
}
static LONG flag_interrupt = -1;
static volatile DWORD tlsi_interrupt = TLS_OUT_OF_INDEXES;
void rb_w32_enter_critical(void)
{
if (IsWinNT()) {
EnterCriticalSection(system_state());
return;
}
if (tlsi_interrupt == TLS_OUT_OF_INDEXES) {
tlsi_interrupt = TlsAlloc();
}
{
DWORD ti = (DWORD)TlsGetValue(tlsi_interrupt);
while (InterlockedIncrement(&flag_interrupt) > 0 && !ti) {
InterlockedDecrement(&flag_interrupt);
Sleep(1);
}
TlsSetValue(tlsi_interrupt, (PVOID)++ti);
}
}
void rb_w32_leave_critical(void)
{
if (IsWinNT()) {
LeaveCriticalSection(system_state());
return;
}
InterlockedDecrement(&flag_interrupt);
TlsSetValue(tlsi_interrupt, (PVOID)((DWORD)TlsGetValue(tlsi_interrupt) - 1));
}
struct handler_arg_t {
void (*handler)(int);
int arg;
int status;
int finished;
HANDLE handshake;
};
static void rb_w32_call_handler(struct handler_arg_t* h)
{
int status;
RUBY_CRITICAL(rb_protect((VALUE (*)(VALUE))h->handler, (VALUE)h->arg, &h->status);
status = h->status;
SetEvent(h->handshake));
if (status) {
rb_jump_tag(status);
}
h->finished = 1;
Sleep(INFINITE); /* safe on Win95? */
}
static struct handler_arg_t* setup_handler(struct handler_arg_t *harg,
int arg,
void (*handler)(int),
HANDLE handshake)
{
harg->handler = handler;
harg->arg = arg;
harg->status = 0;
harg->finished = 0;
harg->handshake = handshake;
return harg;
}
static void setup_call(CONTEXT* ctx, struct handler_arg_t *harg)
{
#ifdef _M_IX86
DWORD *esp = (DWORD *)ctx->Esp;
*--esp = (DWORD)harg;
*--esp = ctx->Eip;
ctx->Esp = (DWORD)esp;
ctx->Eip = (DWORD)rb_w32_call_handler;
#else
#ifndef _WIN32_WCE
#error unsupported processor
#endif
#endif
}
int rb_w32_main_context(int arg, void (*handler)(int))
{
static HANDLE interrupt_done = NULL;
struct handler_arg_t harg;
CONTEXT ctx_orig;
HANDLE current_thread = GetCurrentThread();
int old_priority = GetThreadPriority(current_thread);
if (GetCurrentThreadId() == main_thread.id) return FALSE;
SetSignal(interrupted_event);
RUBY_CRITICAL({ /* the main thread must be in user state */
CONTEXT ctx;
SuspendThread(main_thread.handle);
SetThreadPriority(current_thread, GetThreadPriority(main_thread.handle));
ZeroMemory(&ctx, sizeof(CONTEXT));
ctx.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT;
GetThreadContext(main_thread.handle, &ctx);
ctx_orig = ctx;
/* handler context setup */
if (!interrupt_done) {
interrupt_done = CreateEvent(NULL, FALSE, FALSE, NULL);
/* anonymous one-shot event */
}
else {
ResetEvent(interrupt_done);
}
setup_call(&ctx, setup_handler(&harg, arg, handler, interrupt_done));
ctx.ContextFlags = CONTEXT_CONTROL;
SetThreadContext(main_thread.handle, &ctx);
ResumeThread(main_thread.handle);
});
/* give a chance to the main thread */
yield_once();
WaitForSingleObject(interrupt_done, INFINITE); /* handshaking */
if (!harg.status) {
/* no exceptions raised, restore old context. */
RUBY_CRITICAL({
/* ensure the main thread is in user state. */
yield_until(harg.finished);
SuspendThread(main_thread.handle);
ctx_orig.ContextFlags = CONTEXT_FULL | CONTEXT_FLOATING_POINT;
SetThreadContext(main_thread.handle, &ctx_orig);
ResumeThread(main_thread.handle);
});
}
/* otherwise leave the main thread raised */
SetThreadPriority(current_thread, old_priority);
return TRUE;
}
int rb_w32_sleep(unsigned long msec)
{
DWORD ret;
RUBY_CRITICAL(ret = wait_events(NULL, msec));
yield_once();
CHECK_INTS;
return ret != WAIT_TIMEOUT;
}
static void catch_interrupt(void)
{
yield_once();
RUBY_CRITICAL(wait_events(NULL, 0));
CHECK_INTS;
}
#undef fgetc
int rb_w32_getc(FILE* stream)
{
int c, trap_immediate = rb_trap_immediate;
#ifndef _WIN32_WCE
if (enough_to_get(stream->FILE_COUNT)) {
c = (unsigned char)*stream->FILE_READPTR++;
rb_trap_immediate = trap_immediate;
}
else
#endif
{
c = _filbuf(stream);
#if defined __BORLANDC__ || defined _WIN32_WCE
if ((c == EOF) && (errno == EPIPE)) {
clearerr(stream);
}
#endif
rb_trap_immediate = trap_immediate;
catch_interrupt();
}
return c;
}
#undef fputc
int rb_w32_putc(int c, FILE* stream)
{
int trap_immediate = rb_trap_immediate;
#ifndef _WIN32_WCE
if (enough_to_put(stream->FILE_COUNT)) {
c = (unsigned char)(*stream->FILE_READPTR++ = (char)c);
rb_trap_immediate = trap_immediate;
}
else
#endif
{
c = _flsbuf(c, stream);
rb_trap_immediate = trap_immediate;
catch_interrupt();
}
return c;
}
struct asynchronous_arg_t {
/* output field */
void* stackaddr;
int errnum;
/* input field */
VALUE (*func)(VALUE self, int argc, VALUE* argv);
VALUE self;
int argc;
VALUE* argv;
};
static DWORD WINAPI
call_asynchronous(PVOID argp)
{
DWORD ret;
struct asynchronous_arg_t *arg = argp;
arg->stackaddr = &argp;
ret = (DWORD)arg->func(arg->self, arg->argc, arg->argv);
arg->errnum = errno;
return ret;
}
VALUE
rb_w32_asynchronize(asynchronous_func_t func, VALUE self,
int argc, VALUE* argv, VALUE intrval)
{
DWORD val;
BOOL interrupted = FALSE;
HANDLE thr;
RUBY_CRITICAL({
struct asynchronous_arg_t arg;
arg.stackaddr = NULL;
arg.errnum = 0;
arg.func = func;
arg.self = self;
arg.argc = argc;
arg.argv = argv;
thr = CreateThread(NULL, 0, call_asynchronous, &arg, 0, &val);
if (thr) {
yield_until(arg.stackaddr);
if (wait_events(thr, INFINITE) != WAIT_OBJECT_0) {
interrupted = TRUE;
if (TerminateThread(thr, intrval)) {
yield_once();
}
}
GetExitCodeThread(thr, &val);
CloseHandle(thr);
if (interrupted) {
/* must release stack of killed thread, why doesn't Windows? */
MEMORY_BASIC_INFORMATION m;
memset(&m, 0, sizeof(m));
if (!VirtualQuery(arg.stackaddr, &m, sizeof(m))) {
Debug(fprintf(stderr, "couldn't get stack base:%p:%d\n",
arg.stackaddr, GetLastError()));
}
else if (!VirtualFree(m.AllocationBase, 0, MEM_RELEASE)) {
Debug(fprintf(stderr, "couldn't release stack:%p:%d\n",
m.AllocationBase, GetLastError()));
}
errno = EINTR;
}
else {
errno = arg.errnum;
}
}
});
if (!thr) {
rb_fatal("failed to launch waiter thread:%d", GetLastError());
}
if (interrupted) {
CHECK_INTS;
}
return val;
}
char **rb_w32_get_environ(void)
{
char *envtop, *env;
char **myenvtop, **myenv;
int num;
/*
* We avoid values started with `='. If you want to deal those values,
* change this function, and some functions in hash.c which recognize
* `=' as delimiter or rb_w32_getenv() and ruby_setenv().
* CygWin deals these values by changing first `=' to '!'. But we don't
* use such trick and follow cmd.exe's way that just doesn't show these
* values.
* (U.N. 2001-11-15)
*/
envtop = GetEnvironmentStrings();
for (env = envtop, num = 0; *env; env += strlen(env) + 1)
if (*env != '=') num++;
myenvtop = ALLOC_N(char*, num + 1);
for (env = envtop, myenv = myenvtop; *env; env += strlen(env) + 1) {
if (*env != '=') {
*myenv = ALLOC_N(char, strlen(env) + 1);
strcpy(*myenv, env);
myenv++;
}
}
*myenv = NULL;
FreeEnvironmentStrings(envtop);
return myenvtop;
}
void rb_w32_free_environ(char **env)
{
char **t = env;
while (*t) free(*t++);
free(env);
}
pid_t rb_w32_getpid(void)
{
pid_t pid;
pid = _getpid();
if (IsWin95()) pid = -pid;
return pid;
}
int
rb_w32_fclose(FILE *fp)
{
int fd = fileno(fp);
SOCKET sock = TO_SOCKET(fd);
if (fflush(fp)) return -1;
if (!is_socket(sock)) {
UnlockFile((HANDLE)sock, 0, 0, LK_LEN, LK_LEN);
return fclose(fp);
}
_set_osfhnd(fd, (SOCKET)INVALID_HANDLE_VALUE);
fclose(fp);
if (closesocket(sock) == SOCKET_ERROR) {
errno = map_errno(WSAGetLastError());
return -1;
}
return 0;
}
int
rb_w32_close(int fd)
{
SOCKET sock = TO_SOCKET(fd);
if (!is_socket(sock)) {
UnlockFile((HANDLE)sock, 0, 0, LK_LEN, LK_LEN);
return _close(fd);
}
if (closesocket(sock) == SOCKET_ERROR) {
errno = map_errno(WSAGetLastError());
return -1;
}
return 0;
}
static int
unixtime_to_filetime(time_t time, FILETIME *ft)
{
struct tm *tm;
SYSTEMTIME st;
tm = gmtime(&time);
st.wYear = tm->tm_year + 1900;
st.wMonth = tm->tm_mon + 1;
st.wDayOfWeek = tm->tm_wday;
st.wDay = tm->tm_mday;
st.wHour = tm->tm_hour;
st.wMinute = tm->tm_min;
st.wSecond = tm->tm_sec;
st.wMilliseconds = 0;
if (!SystemTimeToFileTime(&st, ft)) {
errno = map_errno(GetLastError());
return -1;
}
return 0;
}
#undef utime
#ifdef __BORLANDC__
#define utime _utime
#endif
int
rb_w32_utime(const char *path, struct utimbuf *times)
{
HANDLE hFile;
SYSTEMTIME st;
FILETIME atime, mtime;
struct tm *tm;
struct stat stat;
int ret = 0;
if (rb_w32_stat(path, &stat)) {
return -1;
}
if (unixtime_to_filetime(times->actime, &atime)) {
return -1;
}
if (unixtime_to_filetime(times->modtime, &mtime)) {
return -1;
}
RUBY_CRITICAL({
hFile = CreateFile(path, GENERIC_WRITE, 0, 0, OPEN_EXISTING,
IsWin95() ? 0 : FILE_FLAG_BACKUP_SEMANTICS, 0);
if (hFile == INVALID_HANDLE_VALUE) {
errno = map_errno(GetLastError());
ret = -1;
}
else {
if (!SetFileTime(hFile, NULL, &atime, &mtime)) {
errno = map_errno(GetLastError());
ret = -1;
}
CloseHandle(hFile);
}
});
return ret;
}
int
rb_w32_vsnprintf(char *buf, size_t size, const char *format, va_list va)
{
int ret = _vsnprintf(buf, size, format, va);
if (size > 0) buf[size - 1] = 0;
return ret;
}
int
rb_w32_snprintf(char *buf, size_t size, const char *format, ...)
{
int ret;
va_list va;
va_start(va, format);
ret = vsnprintf(buf, size, format, va);
va_end(va);
return ret;
}