зеркало из https://github.com/github/ruby.git
2098 строки
51 KiB
C
2098 строки
51 KiB
C
/**********************************************************************
|
|
|
|
proc.c - Proc, Binding, Env
|
|
|
|
$Author$
|
|
created at: Wed Jan 17 12:13:14 2007
|
|
|
|
Copyright (C) 2004-2007 Koichi Sasada
|
|
|
|
**********************************************************************/
|
|
|
|
#include "eval_intern.h"
|
|
#include "gc.h"
|
|
|
|
struct METHOD {
|
|
VALUE recv;
|
|
VALUE rclass;
|
|
ID id;
|
|
rb_method_entry_t me;
|
|
};
|
|
|
|
VALUE rb_cUnboundMethod;
|
|
VALUE rb_cMethod;
|
|
VALUE rb_cBinding;
|
|
VALUE rb_cProc;
|
|
|
|
VALUE rb_iseq_parameters(const rb_iseq_t *iseq, int is_proc);
|
|
|
|
static VALUE bmcall(VALUE, VALUE);
|
|
static int method_arity(VALUE);
|
|
static int rb_obj_is_method(VALUE m);
|
|
rb_iseq_t *rb_method_get_iseq(VALUE method);
|
|
|
|
/* Proc */
|
|
|
|
static void
|
|
proc_free(void *ptr)
|
|
{
|
|
RUBY_FREE_ENTER("proc");
|
|
if (ptr) {
|
|
ruby_xfree(ptr);
|
|
}
|
|
RUBY_FREE_LEAVE("proc");
|
|
}
|
|
|
|
static void
|
|
proc_mark(void *ptr)
|
|
{
|
|
rb_proc_t *proc;
|
|
RUBY_MARK_ENTER("proc");
|
|
if (ptr) {
|
|
proc = ptr;
|
|
RUBY_MARK_UNLESS_NULL(proc->envval);
|
|
RUBY_MARK_UNLESS_NULL(proc->blockprocval);
|
|
RUBY_MARK_UNLESS_NULL(proc->block.proc);
|
|
RUBY_MARK_UNLESS_NULL(proc->block.self);
|
|
if (proc->block.iseq && RUBY_VM_IFUNC_P(proc->block.iseq)) {
|
|
RUBY_MARK_UNLESS_NULL((VALUE)(proc->block.iseq));
|
|
}
|
|
}
|
|
RUBY_MARK_LEAVE("proc");
|
|
}
|
|
|
|
static size_t
|
|
proc_memsize(void *ptr)
|
|
{
|
|
return ptr ? sizeof(rb_proc_t) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t proc_data_type = {
|
|
"proc",
|
|
proc_mark,
|
|
proc_free,
|
|
proc_memsize,
|
|
};
|
|
|
|
VALUE
|
|
rb_proc_alloc(VALUE klass)
|
|
{
|
|
rb_proc_t *proc;
|
|
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_is_proc(VALUE proc)
|
|
{
|
|
if (rb_typeddata_is_kind_of(proc, &proc_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
proc_dup(VALUE self)
|
|
{
|
|
VALUE procval = rb_proc_alloc(rb_cProc);
|
|
rb_proc_t *src, *dst;
|
|
GetProcPtr(self, src);
|
|
GetProcPtr(procval, dst);
|
|
|
|
dst->block = src->block;
|
|
dst->block.proc = procval;
|
|
dst->envval = src->envval;
|
|
dst->safe_level = src->safe_level;
|
|
dst->is_lambda = src->is_lambda;
|
|
|
|
return procval;
|
|
}
|
|
|
|
static VALUE
|
|
proc_clone(VALUE self)
|
|
{
|
|
VALUE procval = proc_dup(self);
|
|
CLONESETUP(procval, self);
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.lambda? => true or false
|
|
*
|
|
* Returns true for a Proc object which argument handling is rigid.
|
|
* Such procs are typically generated by lambda.
|
|
*
|
|
* A Proc object generated by proc ignore extra arguments.
|
|
*
|
|
* proc {|a,b| [a,b] }.call(1,2,3) => [1,2]
|
|
*
|
|
* It provides nil for lacked arguments.
|
|
*
|
|
* proc {|a,b| [a,b] }.call(1) => [1,nil]
|
|
*
|
|
* It expand single-array argument.
|
|
*
|
|
* proc {|a,b| [a,b] }.call([1,2]) => [1,2]
|
|
*
|
|
* A Proc object generated by lambda doesn't have such tricks.
|
|
*
|
|
* lambda {|a,b| [a,b] }.call(1,2,3) => ArgumentError
|
|
* lambda {|a,b| [a,b] }.call(1) => ArgumentError
|
|
* lambda {|a,b| [a,b] }.call([1,2]) => ArgumentError
|
|
*
|
|
* Proc#lambda? is a predicate for the tricks.
|
|
* It returns true if no tricks.
|
|
*
|
|
* lambda {}.lambda? => true
|
|
* proc {}.lambda? => false
|
|
*
|
|
* Proc.new is same as proc.
|
|
*
|
|
* Proc.new {}.lambda? => false
|
|
*
|
|
* lambda, proc and Proc.new preserves the tricks of
|
|
* a Proc object given by & argument.
|
|
*
|
|
* lambda(&lambda {}).lambda? => true
|
|
* proc(&lambda {}).lambda? => true
|
|
* Proc.new(&lambda {}).lambda? => true
|
|
*
|
|
* lambda(&proc {}).lambda? => false
|
|
* proc(&proc {}).lambda? => false
|
|
* Proc.new(&proc {}).lambda? => false
|
|
*
|
|
* A Proc object generated by & argument has the tricks
|
|
*
|
|
* def n(&b) b.lambda? end
|
|
* n {} => false
|
|
*
|
|
* The & argument preserves the tricks if a Proc object is given
|
|
* by & argument.
|
|
*
|
|
* n(&lambda {}) => true
|
|
* n(&proc {}) => false
|
|
* n(&Proc.new {}) => false
|
|
*
|
|
* A Proc object converted from a method has no tricks.
|
|
*
|
|
* def m() end
|
|
* method(:m).to_proc.lambda? => true
|
|
*
|
|
* n(&method(:m)) => true
|
|
* n(&method(:m).to_proc) => true
|
|
*
|
|
* define_method is treated same as method definition.
|
|
* The defined method has no tricks.
|
|
*
|
|
* class C
|
|
* define_method(:d) {}
|
|
* end
|
|
* C.new.e(1,2) => ArgumentError
|
|
* C.new.method(:d).to_proc.lambda? => true
|
|
*
|
|
* define_method always defines a method without the tricks,
|
|
* even if a non-lambda Proc object is given.
|
|
* This is the only exception which the tricks are not preserved.
|
|
*
|
|
* class C
|
|
* define_method(:e, &proc {})
|
|
* end
|
|
* C.new.e(1,2) => ArgumentError
|
|
* C.new.method(:e).to_proc.lambda? => true
|
|
*
|
|
* This exception is for a wrapper of define_method.
|
|
* It eases defining a method defining method which defines a usual method which has no tricks.
|
|
*
|
|
* class << C
|
|
* def def2(name, &body)
|
|
* define_method(name, &body)
|
|
* end
|
|
* end
|
|
* class C
|
|
* def2(:f) {}
|
|
* end
|
|
* C.new.f(1,2) => ArgumentError
|
|
*
|
|
* The wrapper, def2, defines a method which has no tricks.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
proc_lambda_p(VALUE procval)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
return proc->is_lambda ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/* Binding */
|
|
|
|
static void
|
|
binding_free(void *ptr)
|
|
{
|
|
rb_binding_t *bind;
|
|
RUBY_FREE_ENTER("binding");
|
|
if (ptr) {
|
|
bind = ptr;
|
|
ruby_xfree(ptr);
|
|
}
|
|
RUBY_FREE_LEAVE("binding");
|
|
}
|
|
|
|
static void
|
|
binding_mark(void *ptr)
|
|
{
|
|
rb_binding_t *bind;
|
|
RUBY_MARK_ENTER("binding");
|
|
if (ptr) {
|
|
bind = ptr;
|
|
RUBY_MARK_UNLESS_NULL(bind->env);
|
|
}
|
|
RUBY_MARK_LEAVE("binding");
|
|
}
|
|
|
|
static size_t
|
|
binding_memsize(void *ptr)
|
|
{
|
|
return ptr ? sizeof(rb_binding_t) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t binding_data_type = {
|
|
"binding",
|
|
binding_mark,
|
|
binding_free,
|
|
binding_memsize,
|
|
};
|
|
|
|
static VALUE
|
|
binding_alloc(VALUE klass)
|
|
{
|
|
VALUE obj;
|
|
rb_binding_t *bind;
|
|
obj = TypedData_Make_Struct(klass, rb_binding_t, &binding_data_type, bind);
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
binding_dup(VALUE self)
|
|
{
|
|
VALUE bindval = binding_alloc(rb_cBinding);
|
|
rb_binding_t *src, *dst;
|
|
GetBindingPtr(self, src);
|
|
GetBindingPtr(bindval, dst);
|
|
dst->env = src->env;
|
|
return bindval;
|
|
}
|
|
|
|
static VALUE
|
|
binding_clone(VALUE self)
|
|
{
|
|
VALUE bindval = binding_dup(self);
|
|
CLONESETUP(bindval, self);
|
|
return bindval;
|
|
}
|
|
|
|
VALUE
|
|
rb_binding_new(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
|
|
VALUE bindval = binding_alloc(rb_cBinding);
|
|
rb_binding_t *bind;
|
|
|
|
if (cfp == 0) {
|
|
rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
|
|
}
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
bind->env = rb_vm_make_env_object(th, cfp);
|
|
return bindval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding -> a_binding
|
|
*
|
|
* Returns a +Binding+ object, describing the variable and
|
|
* method bindings at the point of call. This object can be used when
|
|
* calling +eval+ to execute the evaluated command in this
|
|
* environment. Also see the description of class +Binding+.
|
|
*
|
|
* def getBinding(param)
|
|
* return binding
|
|
* end
|
|
* b = getBinding("hello")
|
|
* eval("param", b) #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_f_binding(VALUE self)
|
|
{
|
|
return rb_binding_new();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.eval(string [, filename [,lineno]]) => obj
|
|
*
|
|
* Evaluates the Ruby expression(s) in <em>string</em>, in the
|
|
* <em>binding</em>'s context. If the optional <em>filename</em> and
|
|
* <em>lineno</em> parameters are present, they will be used when
|
|
* reporting syntax errors.
|
|
*
|
|
* def getBinding(param)
|
|
* return binding
|
|
* end
|
|
* b = getBinding("hello")
|
|
* b.eval("param") #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
bind_eval(int argc, VALUE *argv, VALUE bindval)
|
|
{
|
|
VALUE args[4];
|
|
|
|
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
|
|
args[1] = bindval;
|
|
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
|
|
}
|
|
|
|
static VALUE
|
|
proc_new(VALUE klass, int is_lambda)
|
|
{
|
|
VALUE procval = Qnil;
|
|
rb_thread_t *th = GET_THREAD();
|
|
rb_control_frame_t *cfp = th->cfp;
|
|
rb_block_t *block;
|
|
|
|
if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0 &&
|
|
!RUBY_VM_CLASS_SPECIAL_P(cfp->lfp[0])) {
|
|
|
|
block = GC_GUARDED_PTR_REF(cfp->lfp[0]);
|
|
}
|
|
else {
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
|
|
if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0 &&
|
|
!RUBY_VM_CLASS_SPECIAL_P(cfp->lfp[0])) {
|
|
|
|
block = GC_GUARDED_PTR_REF(cfp->lfp[0]);
|
|
|
|
if (is_lambda) {
|
|
rb_warn("tried to create Proc object without a block");
|
|
}
|
|
}
|
|
else {
|
|
rb_raise(rb_eArgError,
|
|
"tried to create Proc object without a block");
|
|
}
|
|
}
|
|
|
|
procval = block->proc;
|
|
|
|
if (procval) {
|
|
if (RBASIC(procval)->klass == klass) {
|
|
return procval;
|
|
}
|
|
else {
|
|
VALUE newprocval = proc_dup(procval);
|
|
RBASIC(newprocval)->klass = klass;
|
|
return newprocval;
|
|
}
|
|
}
|
|
|
|
procval = rb_vm_make_proc(th, block, klass);
|
|
|
|
if (is_lambda) {
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
proc->is_lambda = TRUE;
|
|
}
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Proc.new {|...| block } => a_proc
|
|
* Proc.new => a_proc
|
|
*
|
|
* Creates a new <code>Proc</code> object, bound to the current
|
|
* context. <code>Proc::new</code> may be called without a block only
|
|
* within a method with an attached block, in which case that block is
|
|
* converted to the <code>Proc</code> object.
|
|
*
|
|
* def proc_from
|
|
* Proc.new
|
|
* end
|
|
* proc = proc_from { "hello" }
|
|
* proc.call #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE block = proc_new(klass, FALSE);
|
|
|
|
rb_obj_call_init(block, argc, argv);
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* proc { |...| block } => a_proc
|
|
*
|
|
* Equivalent to <code>Proc.new</code>.
|
|
*/
|
|
|
|
VALUE
|
|
rb_block_proc(void)
|
|
{
|
|
return proc_new(rb_cProc, FALSE);
|
|
}
|
|
|
|
VALUE
|
|
rb_block_lambda(void)
|
|
{
|
|
return proc_new(rb_cProc, TRUE);
|
|
}
|
|
|
|
VALUE
|
|
rb_f_lambda(void)
|
|
{
|
|
rb_warn("rb_f_lambda() is deprecated; use rb_block_proc() instead");
|
|
return rb_block_lambda();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* lambda { |...| block } => a_proc
|
|
*
|
|
* Equivalent to <code>Proc.new</code>, except the resulting Proc objects
|
|
* check the number of parameters passed when called.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_lambda(void)
|
|
{
|
|
return rb_block_lambda();
|
|
}
|
|
|
|
/* CHECKME: are the argument checking semantics correct? */
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.call(params,...) => obj
|
|
* prc[params,...] => obj
|
|
* prc.(params,...) => obj
|
|
*
|
|
* Invokes the block, setting the block's parameters to the values in
|
|
* <i>params</i> using something close to method calling semantics.
|
|
* Generates a warning if multiple values are passed to a proc that
|
|
* expects just one (previously this silently converted the parameters
|
|
* to an array). Note that prc.() invokes prc.call() with the parameters
|
|
* given. It's a syntax sugar to hide "call".
|
|
*
|
|
* For procs created using <code>Kernel.proc</code>, generates an
|
|
* error if the wrong number of parameters
|
|
* are passed to a proc with multiple parameters. For procs created using
|
|
* <code>Proc.new</code>, extra parameters are silently discarded.
|
|
*
|
|
* Returns the value of the last expression evaluated in the block. See
|
|
* also <code>Proc#yield</code>.
|
|
*
|
|
* a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
|
|
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
|
|
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
|
|
* a_proc = Proc.new {|a,b| a}
|
|
* a_proc.call(1,2,3)
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* prog.rb:5: wrong number of arguments (3 for 2) (ArgumentError)
|
|
* from prog.rb:4:in `call'
|
|
* from prog.rb:5
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc === obj => obj
|
|
*
|
|
* Invokes the block, with <i>obj</i> as the block's parameter. It is
|
|
* to allow a proc object to be a target of when clause in the case statement.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_call(int argc, VALUE *argv, VALUE procval)
|
|
{
|
|
rb_proc_t *proc;
|
|
rb_block_t *blockptr = 0;
|
|
rb_iseq_t *iseq;
|
|
GetProcPtr(procval, proc);
|
|
|
|
iseq = proc->block.iseq;
|
|
if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) {
|
|
if (rb_block_given_p()) {
|
|
rb_proc_t *proc;
|
|
VALUE procval;
|
|
procval = rb_block_proc();
|
|
GetProcPtr(procval, proc);
|
|
blockptr = &proc->block;
|
|
}
|
|
}
|
|
|
|
return rb_vm_invoke_proc(GET_THREAD(), proc, proc->block.self,
|
|
argc, argv, blockptr);
|
|
}
|
|
|
|
#if SIZEOF_LONG > SIZEOF_INT
|
|
static inline int
|
|
check_argc(long argc)
|
|
{
|
|
if (argc > INT_MAX || argc < 0) {
|
|
rb_raise(rb_eArgError, "too many arguments (%lu)",
|
|
(unsigned long)argc);
|
|
}
|
|
return (int)argc;
|
|
}
|
|
#else
|
|
#define check_argc(argc) (argc)
|
|
#endif
|
|
|
|
VALUE
|
|
rb_proc_call(VALUE self, VALUE args)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
return rb_vm_invoke_proc(GET_THREAD(), proc, proc->block.self,
|
|
check_argc(RARRAY_LEN(args)), RARRAY_PTR(args), 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_call_with_block(VALUE self, int argc, VALUE *argv, VALUE pass_procval)
|
|
{
|
|
rb_proc_t *proc;
|
|
rb_block_t *block = 0;
|
|
GetProcPtr(self, proc);
|
|
|
|
if (!NIL_P(pass_procval)) {
|
|
rb_proc_t *pass_proc;
|
|
GetProcPtr(pass_procval, pass_proc);
|
|
block = &pass_proc->block;
|
|
}
|
|
|
|
return rb_vm_invoke_proc(GET_THREAD(), proc, proc->block.self,
|
|
argc, argv, block);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.arity -> fixnum
|
|
*
|
|
* Returns the number of arguments that would not be ignored. If the block
|
|
* is declared to take no arguments, returns 0. If the block is known
|
|
* to take exactly n arguments, returns n. If the block has optional
|
|
* arguments, return -n-1, where n is the number of mandatory
|
|
* arguments. A <code>proc</code> with no argument declarations
|
|
* is the same a block declaring <code>||</code> as its arguments.
|
|
*
|
|
* Proc.new {}.arity #=> 0
|
|
* Proc.new {||}.arity #=> 0
|
|
* Proc.new {|a|}.arity #=> 1
|
|
* Proc.new {|a,b|}.arity #=> 2
|
|
* Proc.new {|a,b,c|}.arity #=> 3
|
|
* Proc.new {|*a|}.arity #=> -1
|
|
* Proc.new {|a,*b|}.arity #=> -2
|
|
* Proc.new {|a,*b, c|}.arity #=> -3
|
|
*/
|
|
|
|
static VALUE
|
|
proc_arity(VALUE self)
|
|
{
|
|
int arity = rb_proc_arity(self);
|
|
return INT2FIX(arity);
|
|
}
|
|
|
|
int
|
|
rb_proc_arity(VALUE self)
|
|
{
|
|
rb_proc_t *proc;
|
|
rb_iseq_t *iseq;
|
|
GetProcPtr(self, proc);
|
|
iseq = proc->block.iseq;
|
|
if (iseq) {
|
|
if (BUILTIN_TYPE(iseq) != T_NODE) {
|
|
if (iseq->arg_rest < 0) {
|
|
return iseq->argc;
|
|
}
|
|
else {
|
|
return -(iseq->argc + 1 + iseq->arg_post_len);
|
|
}
|
|
}
|
|
else {
|
|
NODE *node = (NODE *)iseq;
|
|
if (nd_type(node) == NODE_IFUNC && node->nd_cfnc == bmcall) {
|
|
/* method(:foo).to_proc.arity */
|
|
return method_arity(node->nd_tval);
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static rb_iseq_t *
|
|
get_proc_iseq(VALUE self, int *is_proc)
|
|
{
|
|
rb_proc_t *proc;
|
|
rb_iseq_t *iseq;
|
|
|
|
GetProcPtr(self, proc);
|
|
iseq = proc->block.iseq;
|
|
if (is_proc) *is_proc = !proc->is_lambda;
|
|
if (!RUBY_VM_NORMAL_ISEQ_P(iseq)) {
|
|
NODE *node = (NODE *)iseq;
|
|
iseq = 0;
|
|
if (nd_type(node) == NODE_IFUNC && node->nd_cfnc == bmcall) {
|
|
/* method(:foo).to_proc */
|
|
iseq = rb_method_get_iseq(node->nd_tval);
|
|
if (is_proc) *is_proc = 0;
|
|
}
|
|
}
|
|
return iseq;
|
|
}
|
|
|
|
static VALUE
|
|
iseq_location(rb_iseq_t *iseq)
|
|
{
|
|
VALUE loc[2];
|
|
|
|
if (!iseq) return Qnil;
|
|
loc[0] = iseq->filename;
|
|
if (iseq->insn_info_table) {
|
|
loc[1] = INT2FIX(rb_iseq_first_lineno(iseq));
|
|
}
|
|
else {
|
|
loc[1] = Qnil;
|
|
}
|
|
return rb_ary_new4(2, loc);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.source_location => [String, Fixnum]
|
|
*
|
|
* returns the ruby source filename and line number containing this proc
|
|
* or nil if this proc was not defined in ruby (i.e. native)
|
|
*/
|
|
|
|
VALUE
|
|
rb_proc_location(VALUE self)
|
|
{
|
|
return iseq_location(get_proc_iseq(self, 0));
|
|
}
|
|
|
|
static VALUE
|
|
unnamed_parameters(int arity)
|
|
{
|
|
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
|
|
int n = (arity < 0) ? ~arity : arity;
|
|
ID req, rest;
|
|
CONST_ID(req, "req");
|
|
a = rb_ary_new3(1, ID2SYM(req));
|
|
OBJ_FREEZE(a);
|
|
for (; n; --n) {
|
|
rb_ary_push(param, a);
|
|
}
|
|
if (arity < 0) {
|
|
CONST_ID(rest, "rest");
|
|
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
|
|
}
|
|
return param;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* proc.parameters => array
|
|
*
|
|
* returns the parameter information of this proc
|
|
*/
|
|
|
|
static VALUE
|
|
rb_proc_parameters(VALUE self)
|
|
{
|
|
int is_proc;
|
|
rb_iseq_t *iseq = get_proc_iseq(self, &is_proc);
|
|
if (!iseq) {
|
|
return unnamed_parameters(rb_proc_arity(self));
|
|
}
|
|
return rb_iseq_parameters(iseq, is_proc);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc == other_proc => true or false
|
|
*
|
|
* Return <code>true</code> if <i>prc</i> is the same object as
|
|
* <i>other_proc</i>, or if they are both procs with the same body.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_eq(VALUE self, VALUE other)
|
|
{
|
|
if (self == other) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
if (rb_obj_is_proc(other)) {
|
|
rb_proc_t *p1, *p2;
|
|
GetProcPtr(self, p1);
|
|
GetProcPtr(other, p2);
|
|
if (p1->envval == p2->envval &&
|
|
p1->block.iseq->iseq_size == p2->block.iseq->iseq_size &&
|
|
p1->block.iseq->local_size == p2->block.iseq->local_size &&
|
|
MEMCMP(p1->block.iseq->iseq, p2->block.iseq->iseq, VALUE,
|
|
p1->block.iseq->iseq_size) == 0) {
|
|
return Qtrue;
|
|
}
|
|
}
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.hash => integer
|
|
*
|
|
* Return hash value corresponding to proc body.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_hash(VALUE self)
|
|
{
|
|
long hash;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
hash = (long)proc->block.iseq;
|
|
hash ^= (long)proc->envval;
|
|
hash ^= (long)proc->block.lfp >> 16;
|
|
return LONG2FIX(hash);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.to_s => string
|
|
*
|
|
* Shows the unique identifier for this proc, along with
|
|
* an indication of where the proc was defined.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_to_s(VALUE self)
|
|
{
|
|
VALUE str = 0;
|
|
rb_proc_t *proc;
|
|
const char *cname = rb_obj_classname(self);
|
|
rb_iseq_t *iseq;
|
|
const char *is_lambda;
|
|
|
|
GetProcPtr(self, proc);
|
|
iseq = proc->block.iseq;
|
|
is_lambda = proc->is_lambda ? " (lambda)" : "";
|
|
|
|
if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
|
|
int line_no = 0;
|
|
|
|
if (iseq->insn_info_table) {
|
|
line_no = rb_iseq_first_lineno(iseq);
|
|
}
|
|
str = rb_sprintf("#<%s:%p@%s:%d%s>", cname, (void *)self,
|
|
RSTRING_PTR(iseq->filename),
|
|
line_no, is_lambda);
|
|
}
|
|
else {
|
|
str = rb_sprintf("#<%s:%p%s>", cname, (void *)proc->block.iseq,
|
|
is_lambda);
|
|
}
|
|
|
|
if (OBJ_TAINTED(self)) {
|
|
OBJ_TAINT(str);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.to_proc -> prc
|
|
*
|
|
* Part of the protocol for converting objects to <code>Proc</code>
|
|
* objects. Instances of class <code>Proc</code> simply return
|
|
* themselves.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_to_proc(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
static void
|
|
bm_mark(void *ptr)
|
|
{
|
|
struct METHOD *data = ptr;
|
|
rb_gc_mark(data->rclass);
|
|
rb_gc_mark(data->recv);
|
|
rb_gc_mark_method_entry(&data->me);
|
|
}
|
|
|
|
static void
|
|
bm_free(void *ptr)
|
|
{
|
|
struct METHOD *data = ptr;
|
|
rb_method_definition_t *def = data->me.def;
|
|
if (def->alias_count == 0)
|
|
xfree(def);
|
|
else if (def->alias_count > 0)
|
|
def->alias_count--;
|
|
}
|
|
|
|
static size_t
|
|
bm_memsize(void *ptr)
|
|
{
|
|
return ptr ? sizeof(struct METHOD) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t method_data_type = {
|
|
"method",
|
|
bm_mark,
|
|
bm_free,
|
|
bm_memsize,
|
|
};
|
|
|
|
static inline int
|
|
rb_obj_is_method(VALUE m)
|
|
{
|
|
return rb_typeddata_is_kind_of(m, &method_data_type);
|
|
}
|
|
|
|
static VALUE
|
|
mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
|
|
{
|
|
VALUE method;
|
|
VALUE rclass = klass;
|
|
ID rid = id;
|
|
struct METHOD *data;
|
|
rb_method_entry_t *me;
|
|
rb_method_definition_t *def;
|
|
|
|
again:
|
|
me = rb_method_entry(klass, id);
|
|
if (UNDEFINED_METHOD_ENTRY_P(me)) {
|
|
rb_print_undef(klass, id, 0);
|
|
}
|
|
def = me->def;
|
|
if (scope && (me->flag & NOEX_MASK) != NOEX_PUBLIC) {
|
|
rb_print_undef(rclass, def->original_id, (int)(me->flag & NOEX_MASK));
|
|
}
|
|
if (def->type == VM_METHOD_TYPE_ZSUPER) {
|
|
klass = RCLASS_SUPER(me->klass);
|
|
id = def->original_id;
|
|
goto again;
|
|
}
|
|
|
|
klass = me->klass;
|
|
|
|
while (rclass != klass &&
|
|
(FL_TEST(rclass, FL_SINGLETON) || TYPE(rclass) == T_ICLASS)) {
|
|
rclass = RCLASS_SUPER(rclass);
|
|
}
|
|
|
|
if (TYPE(klass) == T_ICLASS) {
|
|
klass = RBASIC(klass)->klass;
|
|
}
|
|
|
|
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
|
|
|
|
data->recv = obj;
|
|
data->rclass = rclass;
|
|
data->id = rid;
|
|
data->me = *me;
|
|
if (def) def->alias_count++;
|
|
|
|
OBJ_INFECT(method, klass);
|
|
|
|
return method;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Document-class : Method
|
|
*
|
|
* Method objects are created by <code>Object#method</code>, and are
|
|
* associated with a particular object (not just with a class). They
|
|
* may be used to invoke the method within the object, and as a block
|
|
* associated with an iterator. They may also be unbound from one
|
|
* object (creating an <code>UnboundMethod</code>) and bound to
|
|
* another.
|
|
*
|
|
* class Thing
|
|
* def square(n)
|
|
* n*n
|
|
* end
|
|
* end
|
|
* thing = Thing.new
|
|
* meth = thing.method(:square)
|
|
*
|
|
* meth.call(9) #=> 81
|
|
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth == other_meth => true or false
|
|
*
|
|
* Two method objects are equal if that are bound to the same
|
|
* object and contain the same body.
|
|
*/
|
|
|
|
static VALUE
|
|
method_eq(VALUE method, VALUE other)
|
|
{
|
|
struct METHOD *m1, *m2;
|
|
extern int rb_method_entry_eq(rb_method_entry_t *m1, rb_method_entry_t *m2);
|
|
|
|
if (!rb_obj_is_method(other))
|
|
return Qfalse;
|
|
if (CLASS_OF(method) != CLASS_OF(other))
|
|
return Qfalse;
|
|
|
|
Check_TypedStruct(method, &method_data_type);
|
|
m1 = (struct METHOD *)DATA_PTR(method);
|
|
m2 = (struct METHOD *)DATA_PTR(other);
|
|
|
|
if (!rb_method_entry_eq(&m1->me, &m2->me) ||
|
|
m1->rclass != m2->rclass ||
|
|
m1->recv != m2->recv) {
|
|
return Qfalse;
|
|
}
|
|
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.hash => integer
|
|
*
|
|
* Return a hash value corresponding to the method object.
|
|
*/
|
|
|
|
static VALUE
|
|
method_hash(VALUE method)
|
|
{
|
|
struct METHOD *m;
|
|
long hash;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
|
|
hash = (long)m->rclass;
|
|
hash ^= (long)m->recv;
|
|
hash ^= (long)m->me.def;
|
|
|
|
return INT2FIX(hash);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.unbind => unbound_method
|
|
*
|
|
* Dissociates <i>meth</i> from it's current receiver. The resulting
|
|
* <code>UnboundMethod</code> can subsequently be bound to a new object
|
|
* of the same class (see <code>UnboundMethod</code>).
|
|
*/
|
|
|
|
static VALUE
|
|
method_unbind(VALUE obj)
|
|
{
|
|
VALUE method;
|
|
struct METHOD *orig, *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
|
|
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
|
|
&method_data_type, data);
|
|
data->recv = Qundef;
|
|
data->id = orig->id;
|
|
data->me = orig->me;
|
|
if (orig->me.def) orig->me.def->alias_count++;
|
|
data->rclass = orig->rclass;
|
|
OBJ_INFECT(method, obj);
|
|
|
|
return method;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.receiver => object
|
|
*
|
|
* Returns the bound receiver of the method object.
|
|
*/
|
|
|
|
static VALUE
|
|
method_receiver(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return data->recv;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.name => symbol
|
|
*
|
|
* Returns the name of the method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_name(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return ID2SYM(data->id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.owner => class_or_module
|
|
*
|
|
* Returns the class or module that defines the method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_owner(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return data->me.klass;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.method(sym) => method
|
|
*
|
|
* Looks up the named method as a receiver in <i>obj</i>, returning a
|
|
* <code>Method</code> object (or raising <code>NameError</code>). The
|
|
* <code>Method</code> object acts as a closure in <i>obj</i>'s object
|
|
* instance, so instance variables and the value of <code>self</code>
|
|
* remain available.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @iv = n
|
|
* end
|
|
* def hello()
|
|
* "Hello, @iv = #{@iv}"
|
|
* end
|
|
* end
|
|
*
|
|
* k = Demo.new(99)
|
|
* m = k.method(:hello)
|
|
* m.call #=> "Hello, @iv = 99"
|
|
*
|
|
* l = Demo.new('Fred')
|
|
* m = l.method("hello")
|
|
* m.call #=> "Hello, @iv = Fred"
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_method(VALUE obj, VALUE vid)
|
|
{
|
|
return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod, FALSE);
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_public_method(VALUE obj, VALUE vid)
|
|
{
|
|
return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod, TRUE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.instance_method(symbol) => unbound_method
|
|
*
|
|
* Returns an +UnboundMethod+ representing the given
|
|
* instance method in _mod_.
|
|
*
|
|
* class Interpreter
|
|
* def do_a() print "there, "; end
|
|
* def do_d() print "Hello "; end
|
|
* def do_e() print "!\n"; end
|
|
* def do_v() print "Dave"; end
|
|
* Dispatcher = {
|
|
* ?a => instance_method(:do_a),
|
|
* ?d => instance_method(:do_d),
|
|
* ?e => instance_method(:do_e),
|
|
* ?v => instance_method(:do_v)
|
|
* }
|
|
* def interpret(string)
|
|
* string.each_byte {|b| Dispatcher[b].bind(self).call }
|
|
* end
|
|
* end
|
|
*
|
|
*
|
|
* interpreter = Interpreter.new
|
|
* interpreter.interpret('dave')
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* Hello there, Dave!
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_instance_method(VALUE mod, VALUE vid)
|
|
{
|
|
return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, FALSE);
|
|
}
|
|
|
|
static VALUE
|
|
rb_mod_public_instance_method(VALUE mod, VALUE vid)
|
|
{
|
|
return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, TRUE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* define_method(symbol, method) => new_method
|
|
* define_method(symbol) { block } => proc
|
|
*
|
|
* Defines an instance method in the receiver. The _method_
|
|
* parameter can be a +Proc+ or +Method+ object.
|
|
* If a block is specified, it is used as the method body. This block
|
|
* is evaluated using <code>instance_eval</code>, a point that is
|
|
* tricky to demonstrate because <code>define_method</code> is private.
|
|
* (This is why we resort to the +send+ hack in this example.)
|
|
*
|
|
* class A
|
|
* def fred
|
|
* puts "In Fred"
|
|
* end
|
|
* def create_method(name, &block)
|
|
* self.class.send(:define_method, name, &block)
|
|
* end
|
|
* define_method(:wilma) { puts "Charge it!" }
|
|
* end
|
|
* class B < A
|
|
* define_method(:barney, instance_method(:fred))
|
|
* end
|
|
* a = B.new
|
|
* a.barney
|
|
* a.wilma
|
|
* a.create_method(:betty) { p self }
|
|
* a.betty
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* In Fred
|
|
* Charge it!
|
|
* #<B:0x401b39e8>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
|
|
{
|
|
ID id;
|
|
VALUE body;
|
|
int noex = NOEX_PUBLIC;
|
|
|
|
if (argc == 1) {
|
|
id = rb_to_id(argv[0]);
|
|
body = rb_block_lambda();
|
|
}
|
|
else if (argc == 2) {
|
|
id = rb_to_id(argv[0]);
|
|
body = argv[1];
|
|
if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
|
|
rb_raise(rb_eTypeError,
|
|
"wrong argument type %s (expected Proc/Method)",
|
|
rb_obj_classname(body));
|
|
}
|
|
}
|
|
else {
|
|
rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc);
|
|
}
|
|
|
|
if (rb_obj_is_method(body)) {
|
|
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
|
|
VALUE rclass = method->rclass;
|
|
if (rclass != mod) {
|
|
if (FL_TEST(rclass, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError,
|
|
"can't bind singleton method to a different class");
|
|
}
|
|
if (!RTEST(rb_class_inherited_p(mod, rclass))) {
|
|
rb_raise(rb_eTypeError,
|
|
"bind argument must be a subclass of %s",
|
|
rb_class2name(rclass));
|
|
}
|
|
}
|
|
rb_add_method_me(mod, id, &method->me, noex);
|
|
}
|
|
else if (rb_obj_is_proc(body)) {
|
|
rb_proc_t *proc;
|
|
body = proc_dup(body);
|
|
GetProcPtr(body, proc);
|
|
if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
|
|
proc->block.iseq->defined_method_id = id;
|
|
proc->block.iseq->klass = mod;
|
|
proc->is_lambda = TRUE;
|
|
proc->is_from_method = TRUE;
|
|
}
|
|
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex);
|
|
}
|
|
else {
|
|
/* type error */
|
|
rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
|
|
}
|
|
|
|
return body;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* define_singleton_method(symbol, method) => new_method
|
|
* define_singleton_method(symbol) { block } => proc
|
|
*
|
|
* Defines a singleton method in the receiver. The _method_
|
|
* parameter can be a +Proc+ or +Method+ object.
|
|
* If a block is specified, it is used as the method body.
|
|
*
|
|
* class A
|
|
* class << self
|
|
* def class_name
|
|
* to_s
|
|
* end
|
|
* end
|
|
* end
|
|
* A.define_singleton_method(:who_am_i) do
|
|
* "I am: #{class_name}"
|
|
* end
|
|
* A.who_am_i # ==> "I am: A"
|
|
*
|
|
* guy = "Bob"
|
|
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
|
|
* guy.hello # => "Bob: Hello there!"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE klass = rb_singleton_class(obj);
|
|
|
|
return rb_mod_define_method(argc, argv, klass);
|
|
}
|
|
|
|
|
|
/*
|
|
* MISSING: documentation
|
|
*/
|
|
|
|
static VALUE
|
|
method_clone(VALUE self)
|
|
{
|
|
VALUE clone;
|
|
struct METHOD *orig, *data;
|
|
|
|
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
|
|
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
|
|
CLONESETUP(clone, self);
|
|
*data = *orig;
|
|
if (data->me.def) data->me.def->alias_count++;
|
|
|
|
return clone;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.call(args, ...) => obj
|
|
* meth[args, ...] => obj
|
|
*
|
|
* Invokes the <i>meth</i> with the specified arguments, returning the
|
|
* method's return value.
|
|
*
|
|
* m = 12.method("+")
|
|
* m.call(3) #=> 15
|
|
* m.call(20) #=> 32
|
|
*/
|
|
|
|
VALUE
|
|
rb_method_call(int argc, VALUE *argv, VALUE method)
|
|
{
|
|
VALUE result = Qnil; /* OK */
|
|
struct METHOD *data;
|
|
int state;
|
|
volatile int safe = -1;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
if (data->recv == Qundef) {
|
|
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
|
|
}
|
|
PUSH_TAG();
|
|
if (OBJ_TAINTED(method)) {
|
|
safe = rb_safe_level();
|
|
if (rb_safe_level() < 4) {
|
|
rb_set_safe_level_force(4);
|
|
}
|
|
}
|
|
if ((state = EXEC_TAG()) == 0) {
|
|
rb_thread_t *th = GET_THREAD();
|
|
VALUE rb_vm_call(rb_thread_t *th, VALUE recv, VALUE id, int argc, const VALUE *argv,
|
|
const rb_method_entry_t *me);
|
|
|
|
PASS_PASSED_BLOCK_TH(th);
|
|
result = rb_vm_call(th, data->recv, data->id, argc, argv, &data->me);
|
|
}
|
|
POP_TAG();
|
|
if (safe >= 0)
|
|
rb_set_safe_level_force(safe);
|
|
if (state)
|
|
JUMP_TAG(state);
|
|
return result;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Document-class: UnboundMethod
|
|
*
|
|
* Ruby supports two forms of objectified methods. Class
|
|
* <code>Method</code> is used to represent methods that are associated
|
|
* with a particular object: these method objects are bound to that
|
|
* object. Bound method objects for an object can be created using
|
|
* <code>Object#method</code>.
|
|
*
|
|
* Ruby also supports unbound methods; methods objects that are not
|
|
* associated with a particular object. These can be created either by
|
|
* calling <code>Module#instance_method</code> or by calling
|
|
* <code>unbind</code> on a bound method object. The result of both of
|
|
* these is an <code>UnboundMethod</code> object.
|
|
*
|
|
* Unbound methods can only be called after they are bound to an
|
|
* object. That object must be be a kind_of? the method's original
|
|
* class.
|
|
*
|
|
* class Square
|
|
* def area
|
|
* @side * @side
|
|
* end
|
|
* def initialize(side)
|
|
* @side = side
|
|
* end
|
|
* end
|
|
*
|
|
* area_un = Square.instance_method(:area)
|
|
*
|
|
* s = Square.new(12)
|
|
* area = area_un.bind(s)
|
|
* area.call #=> 144
|
|
*
|
|
* Unbound methods are a reference to the method at the time it was
|
|
* objectified: subsequent changes to the underlying class will not
|
|
* affect the unbound method.
|
|
*
|
|
* class Test
|
|
* def test
|
|
* :original
|
|
* end
|
|
* end
|
|
* um = Test.instance_method(:test)
|
|
* class Test
|
|
* def test
|
|
* :modified
|
|
* end
|
|
* end
|
|
* t = Test.new
|
|
* t.test #=> :modified
|
|
* um.bind(t).call #=> :original
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* umeth.bind(obj) -> method
|
|
*
|
|
* Bind <i>umeth</i> to <i>obj</i>. If <code>Klass</code> was the class
|
|
* from which <i>umeth</i> was obtained,
|
|
* <code>obj.kind_of?(Klass)</code> must be true.
|
|
*
|
|
* class A
|
|
* def test
|
|
* puts "In test, class = #{self.class}"
|
|
* end
|
|
* end
|
|
* class B < A
|
|
* end
|
|
* class C < B
|
|
* end
|
|
*
|
|
*
|
|
* um = B.instance_method(:test)
|
|
* bm = um.bind(C.new)
|
|
* bm.call
|
|
* bm = um.bind(B.new)
|
|
* bm.call
|
|
* bm = um.bind(A.new)
|
|
* bm.call
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* In test, class = C
|
|
* In test, class = B
|
|
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
|
|
* from prog.rb:16
|
|
*/
|
|
|
|
static VALUE
|
|
umethod_bind(VALUE method, VALUE recv)
|
|
{
|
|
struct METHOD *data, *bound;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
if (data->rclass != CLASS_OF(recv)) {
|
|
if (FL_TEST(data->rclass, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError,
|
|
"singleton method called for a different object");
|
|
}
|
|
if (!rb_obj_is_kind_of(recv, data->rclass)) {
|
|
rb_raise(rb_eTypeError, "bind argument must be an instance of %s",
|
|
rb_class2name(data->rclass));
|
|
}
|
|
}
|
|
|
|
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
|
|
*bound = *data;
|
|
if (bound->me.def) bound->me.def->alias_count++;
|
|
bound->recv = recv;
|
|
bound->rclass = CLASS_OF(recv);
|
|
|
|
return method;
|
|
}
|
|
|
|
int
|
|
rb_method_entry_arity(const rb_method_entry_t *me)
|
|
{
|
|
const rb_method_definition_t *def = me->def;
|
|
if (!def) return 0;
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
if (def->body.cfunc.argc < 0)
|
|
return -1;
|
|
return check_argc(def->body.cfunc.argc);
|
|
case VM_METHOD_TYPE_ZSUPER:
|
|
return -1;
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
return 1;
|
|
case VM_METHOD_TYPE_IVAR:
|
|
return 0;
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
return rb_proc_arity(def->body.proc);
|
|
case VM_METHOD_TYPE_ISEQ: {
|
|
rb_iseq_t *iseq = def->body.iseq;
|
|
if (iseq->arg_rest == -1 && iseq->arg_opts == 0) {
|
|
return iseq->argc;
|
|
}
|
|
else {
|
|
return -(iseq->argc + 1 + iseq->arg_post_len);
|
|
}
|
|
}
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
return 0;
|
|
case VM_METHOD_TYPE_OPTIMIZED: {
|
|
switch (def->body.optimize_type) {
|
|
case OPTIMIZED_METHOD_TYPE_SEND:
|
|
return -1;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rb_bug("rb_method_entry_arity: invalid method entry type (%d)", def->type);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.arity => fixnum
|
|
*
|
|
* Returns an indication of the number of arguments accepted by a
|
|
* method. Returns a nonnegative integer for methods that take a fixed
|
|
* number of arguments. For Ruby methods that take a variable number of
|
|
* arguments, returns -n-1, where n is the number of required
|
|
* arguments. For methods written in C, returns -1 if the call takes a
|
|
* variable number of arguments.
|
|
*
|
|
* class C
|
|
* def one; end
|
|
* def two(a); end
|
|
* def three(*a); end
|
|
* def four(a, b); end
|
|
* def five(a, b, *c); end
|
|
* def six(a, b, *c, &d); end
|
|
* end
|
|
* c = C.new
|
|
* c.method(:one).arity #=> 0
|
|
* c.method(:two).arity #=> 1
|
|
* c.method(:three).arity #=> -1
|
|
* c.method(:four).arity #=> 2
|
|
* c.method(:five).arity #=> -3
|
|
* c.method(:six).arity #=> -3
|
|
*
|
|
* "cat".method(:size).arity #=> 0
|
|
* "cat".method(:replace).arity #=> 1
|
|
* "cat".method(:squeeze).arity #=> -1
|
|
* "cat".method(:count).arity #=> -1
|
|
*/
|
|
|
|
static VALUE
|
|
method_arity_m(VALUE method)
|
|
{
|
|
int n = method_arity(method);
|
|
return INT2FIX(n);
|
|
}
|
|
|
|
static int
|
|
method_arity(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return rb_method_entry_arity(&data->me);
|
|
}
|
|
|
|
int
|
|
rb_mod_method_arity(VALUE mod, ID id)
|
|
{
|
|
rb_method_entry_t *me = rb_method_entry(mod, id);
|
|
return rb_method_entry_arity(me);
|
|
}
|
|
|
|
int
|
|
rb_obj_method_arity(VALUE obj, ID id)
|
|
{
|
|
return rb_mod_method_arity(CLASS_OF(obj), id);
|
|
}
|
|
|
|
rb_iseq_t *
|
|
rb_method_get_iseq(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
rb_method_definition_t *def;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
def = data->me.def;
|
|
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
return get_proc_iseq(def->body.proc, 0);
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return def->body.iseq;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.source_location => [String, Fixnum]
|
|
*
|
|
* returns the ruby source filename and line number containing this method
|
|
* or nil if this method was not defined in ruby (i.e. native)
|
|
*/
|
|
|
|
VALUE
|
|
rb_method_location(VALUE method)
|
|
{
|
|
return iseq_location(rb_method_get_iseq(method));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.parameters => array
|
|
*
|
|
* returns the parameter information of this method
|
|
*/
|
|
|
|
static VALUE
|
|
rb_method_parameters(VALUE method)
|
|
{
|
|
rb_iseq_t *iseq = rb_method_get_iseq(method);
|
|
if (!iseq) {
|
|
return unnamed_parameters(method_arity(method));
|
|
}
|
|
return rb_iseq_parameters(iseq, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.to_s => string
|
|
* meth.inspect => string
|
|
*
|
|
* Show the name of the underlying method.
|
|
*
|
|
* "cat".method(:count).inspect #=> "#<Method: String#count>"
|
|
*/
|
|
|
|
static VALUE
|
|
method_inspect(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE str;
|
|
const char *s;
|
|
const char *sharp = "#";
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
str = rb_str_buf_new2("#<");
|
|
s = rb_obj_classname(method);
|
|
rb_str_buf_cat2(str, s);
|
|
rb_str_buf_cat2(str, ": ");
|
|
|
|
if (FL_TEST(data->me.klass, FL_SINGLETON)) {
|
|
VALUE v = rb_iv_get(data->me.klass, "__attached__");
|
|
|
|
if (data->recv == Qundef) {
|
|
rb_str_buf_append(str, rb_inspect(data->me.klass));
|
|
}
|
|
else if (data->recv == v) {
|
|
rb_str_buf_append(str, rb_inspect(v));
|
|
sharp = ".";
|
|
}
|
|
else {
|
|
rb_str_buf_append(str, rb_inspect(data->recv));
|
|
rb_str_buf_cat2(str, "(");
|
|
rb_str_buf_append(str, rb_inspect(v));
|
|
rb_str_buf_cat2(str, ")");
|
|
sharp = ".";
|
|
}
|
|
}
|
|
else {
|
|
rb_str_buf_cat2(str, rb_class2name(data->rclass));
|
|
if (data->rclass != data->me.klass) {
|
|
rb_str_buf_cat2(str, "(");
|
|
rb_str_buf_cat2(str, rb_class2name(data->me.klass));
|
|
rb_str_buf_cat2(str, ")");
|
|
}
|
|
}
|
|
rb_str_buf_cat2(str, sharp);
|
|
rb_str_append(str, rb_id2str(data->me.def->original_id));
|
|
if (data->me.def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
|
|
rb_str_buf_cat2(str, " (not-implemented)");
|
|
}
|
|
rb_str_buf_cat2(str, ">");
|
|
|
|
return str;
|
|
}
|
|
|
|
static VALUE
|
|
mproc(VALUE method)
|
|
{
|
|
return rb_funcall(Qnil, rb_intern("proc"), 0);
|
|
}
|
|
|
|
static VALUE
|
|
mlambda(VALUE method)
|
|
{
|
|
return rb_funcall(Qnil, rb_intern("lambda"), 0);
|
|
}
|
|
|
|
static VALUE
|
|
bmcall(VALUE args, VALUE method)
|
|
{
|
|
volatile VALUE a;
|
|
VALUE ret;
|
|
int argc;
|
|
|
|
if (CLASS_OF(args) != rb_cArray) {
|
|
args = rb_ary_new3(1, args);
|
|
argc = 1;
|
|
}
|
|
else {
|
|
argc = check_argc(RARRAY_LEN(args));
|
|
}
|
|
ret = rb_method_call(argc, RARRAY_PTR(args), method);
|
|
RB_GC_GUARD(a) = args;
|
|
return ret;
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_new(
|
|
VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
|
|
VALUE val)
|
|
{
|
|
VALUE procval = rb_iterate(mproc, 0, func, val);
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.to_proc => prc
|
|
*
|
|
* Returns a <code>Proc</code> object corresponding to this method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_proc(VALUE method)
|
|
{
|
|
VALUE procval;
|
|
rb_proc_t *proc;
|
|
/*
|
|
* class Method
|
|
* def to_proc
|
|
* proc{|*args|
|
|
* self.call(*args)
|
|
* }
|
|
* end
|
|
* end
|
|
*/
|
|
procval = rb_iterate(mlambda, 0, bmcall, method);
|
|
GetProcPtr(procval, proc);
|
|
proc->is_from_method = 1;
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call_seq:
|
|
* local_jump_error.exit_value => obj
|
|
*
|
|
* Returns the exit value associated with this +LocalJumpError+.
|
|
*/
|
|
static VALUE
|
|
localjump_xvalue(VALUE exc)
|
|
{
|
|
return rb_iv_get(exc, "@exit_value");
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* local_jump_error.reason => symbol
|
|
*
|
|
* The reason this block was terminated:
|
|
* :break, :redo, :retry, :next, :return, or :noreason.
|
|
*/
|
|
|
|
static VALUE
|
|
localjump_reason(VALUE exc)
|
|
{
|
|
return rb_iv_get(exc, "@reason");
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.binding => binding
|
|
*
|
|
* Returns the binding associated with <i>prc</i>. Note that
|
|
* <code>Kernel#eval</code> accepts either a <code>Proc</code> or a
|
|
* <code>Binding</code> object as its second parameter.
|
|
*
|
|
* def fred(param)
|
|
* proc {}
|
|
* end
|
|
*
|
|
* b = fred(99)
|
|
* eval("param", b.binding) #=> 99
|
|
*/
|
|
static VALUE
|
|
proc_binding(VALUE self)
|
|
{
|
|
rb_proc_t *proc;
|
|
VALUE bindval = binding_alloc(rb_cBinding);
|
|
rb_binding_t *bind;
|
|
|
|
GetProcPtr(self, proc);
|
|
GetBindingPtr(bindval, bind);
|
|
|
|
if (TYPE(proc->block.iseq) == T_NODE) {
|
|
rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
|
|
}
|
|
|
|
bind->env = proc->envval;
|
|
return bindval;
|
|
}
|
|
|
|
static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc);
|
|
|
|
static VALUE
|
|
make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
|
|
{
|
|
VALUE args = rb_ary_new3(3, proc, passed, arity);
|
|
rb_proc_t *procp;
|
|
int is_lambda;
|
|
|
|
GetProcPtr(proc, procp);
|
|
is_lambda = procp->is_lambda;
|
|
rb_ary_freeze(passed);
|
|
rb_ary_freeze(args);
|
|
proc = rb_proc_new(curry, args);
|
|
GetProcPtr(proc, procp);
|
|
procp->is_lambda = is_lambda;
|
|
return proc;
|
|
}
|
|
|
|
static VALUE
|
|
curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc)
|
|
{
|
|
VALUE proc, passed, arity;
|
|
proc = RARRAY_PTR(args)[0];
|
|
passed = RARRAY_PTR(args)[1];
|
|
arity = RARRAY_PTR(args)[2];
|
|
|
|
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
|
|
rb_ary_freeze(passed);
|
|
|
|
if (RARRAY_LEN(passed) < FIX2INT(arity)) {
|
|
if (!NIL_P(passed_proc)) {
|
|
rb_warn("given block not used");
|
|
}
|
|
arity = make_curry_proc(proc, passed, arity);
|
|
return arity;
|
|
}
|
|
else {
|
|
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)),
|
|
RARRAY_PTR(passed), passed_proc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.curry => a_proc
|
|
* prc.curry(arity) => a_proc
|
|
*
|
|
* Returns a curried proc. If the optional <i>arity</i> argument is given,
|
|
* it determines the number of arguments.
|
|
* A curried proc receives some arguments. If a sufficient number of
|
|
* arguments are supplied, it passes the supplied arguments to the original
|
|
* proc and returns the result. Otherwise, returns another curried proc that
|
|
* takes the rest of arguments.
|
|
*
|
|
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 6
|
|
* p b.curry(5)[1][2][3][4][5] #=> 6
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 6
|
|
* p b.curry(1)[1] #=> 1
|
|
*
|
|
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 10
|
|
* p b.curry(5)[1][2][3][4][5] #=> 15
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 15
|
|
* p b.curry(1)[1] #=> 1
|
|
*
|
|
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (4 or 3)
|
|
* p b.curry(5) #=> wrong number of arguments (5 or 3)
|
|
* p b.curry(1) #=> wrong number of arguments (1 or 3)
|
|
*
|
|
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 10
|
|
* p b.curry(5)[1][2][3][4][5] #=> 15
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 15
|
|
* p b.curry(1) #=> wrong number of arguments (1 or 3)
|
|
*
|
|
* b = proc { :foo }
|
|
* p b.curry[] #=> :foo
|
|
*/
|
|
static VALUE
|
|
proc_curry(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
int sarity, marity = rb_proc_arity(self);
|
|
VALUE arity, opt = Qfalse;
|
|
|
|
if (marity < 0) {
|
|
marity = -marity - 1;
|
|
opt = Qtrue;
|
|
}
|
|
|
|
rb_scan_args(argc, argv, "01", &arity);
|
|
if (NIL_P(arity)) {
|
|
arity = INT2FIX(marity);
|
|
}
|
|
else {
|
|
sarity = FIX2INT(arity);
|
|
if (proc_lambda_p(self) && (sarity < marity || (sarity > marity && !opt))) {
|
|
rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", sarity, marity);
|
|
}
|
|
}
|
|
|
|
return make_curry_proc(self, rb_ary_new(), arity);
|
|
}
|
|
|
|
/*
|
|
* <code>Proc</code> objects are blocks of code that have been bound to
|
|
* a set of local variables. Once bound, the code may be called in
|
|
* different contexts and still access those variables.
|
|
*
|
|
* def gen_times(factor)
|
|
* return Proc.new {|n| n*factor }
|
|
* end
|
|
*
|
|
* times3 = gen_times(3)
|
|
* times5 = gen_times(5)
|
|
*
|
|
* times3.call(12) #=> 36
|
|
* times5.call(5) #=> 25
|
|
* times3.call(times5.call(4)) #=> 60
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Proc(void)
|
|
{
|
|
/* Proc */
|
|
rb_cProc = rb_define_class("Proc", rb_cObject);
|
|
rb_undef_alloc_func(rb_cProc);
|
|
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
|
|
|
|
#if 0 /* incomplete. */
|
|
rb_add_method(rb_cProc, rb_intern("call"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
|
|
rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
|
|
rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
|
|
rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
|
|
#else
|
|
rb_define_method(rb_cProc, "call", proc_call, -1);
|
|
rb_define_method(rb_cProc, "[]", proc_call, -1);
|
|
rb_define_method(rb_cProc, "===", proc_call, -1);
|
|
rb_define_method(rb_cProc, "yield", proc_call, -1);
|
|
#endif
|
|
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
|
|
rb_define_method(rb_cProc, "arity", proc_arity, 0);
|
|
rb_define_method(rb_cProc, "clone", proc_clone, 0);
|
|
rb_define_method(rb_cProc, "dup", proc_dup, 0);
|
|
rb_define_method(rb_cProc, "==", proc_eq, 1);
|
|
rb_define_method(rb_cProc, "eql?", proc_eq, 1);
|
|
rb_define_method(rb_cProc, "hash", proc_hash, 0);
|
|
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
|
|
rb_define_method(rb_cProc, "lambda?", proc_lambda_p, 0);
|
|
rb_define_method(rb_cProc, "binding", proc_binding, 0);
|
|
rb_define_method(rb_cProc, "curry", proc_curry, -1);
|
|
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
|
|
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
|
|
|
|
/* Exceptions */
|
|
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
|
|
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
|
|
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
|
|
|
|
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
|
|
sysstack_error = rb_exc_new3(rb_eSysStackError,
|
|
rb_obj_freeze(rb_str_new2("stack level too deep")));
|
|
OBJ_TAINT(sysstack_error);
|
|
OBJ_FREEZE(sysstack_error);
|
|
|
|
/* utility functions */
|
|
rb_define_global_function("proc", rb_block_proc, 0);
|
|
rb_define_global_function("lambda", proc_lambda, 0);
|
|
|
|
/* Method */
|
|
rb_cMethod = rb_define_class("Method", rb_cObject);
|
|
rb_undef_alloc_func(rb_cMethod);
|
|
rb_undef_method(CLASS_OF(rb_cMethod), "new");
|
|
rb_define_method(rb_cMethod, "==", method_eq, 1);
|
|
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
|
|
rb_define_method(rb_cMethod, "hash", method_hash, 0);
|
|
rb_define_method(rb_cMethod, "clone", method_clone, 0);
|
|
rb_define_method(rb_cMethod, "call", rb_method_call, -1);
|
|
rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
|
|
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
|
|
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
|
|
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
|
|
rb_define_method(rb_cMethod, "to_proc", method_proc, 0);
|
|
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
|
|
rb_define_method(rb_cMethod, "name", method_name, 0);
|
|
rb_define_method(rb_cMethod, "owner", method_owner, 0);
|
|
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
|
|
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
|
|
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
|
|
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
|
|
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
|
|
|
|
/* UnboundMethod */
|
|
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
|
|
rb_undef_alloc_func(rb_cUnboundMethod);
|
|
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
|
|
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
|
|
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
|
|
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
|
|
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
|
|
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
|
|
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
|
|
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
|
|
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
|
|
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
|
|
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
|
|
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
|
|
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
|
|
|
|
/* Module#*_method */
|
|
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
|
|
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
|
|
rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1);
|
|
|
|
/* Kernel */
|
|
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
|
|
}
|
|
|
|
/*
|
|
* Objects of class <code>Binding</code> encapsulate the execution
|
|
* context at some particular place in the code and retain this context
|
|
* for future use. The variables, methods, value of <code>self</code>,
|
|
* and possibly an iterator block that can be accessed in this context
|
|
* are all retained. Binding objects can be created using
|
|
* <code>Kernel#binding</code>, and are made available to the callback
|
|
* of <code>Kernel#set_trace_func</code>.
|
|
*
|
|
* These binding objects can be passed as the second argument of the
|
|
* <code>Kernel#eval</code> method, establishing an environment for the
|
|
* evaluation.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @secret = n
|
|
* end
|
|
* def getBinding
|
|
* return binding()
|
|
* end
|
|
* end
|
|
*
|
|
* k1 = Demo.new(99)
|
|
* b1 = k1.getBinding
|
|
* k2 = Demo.new(-3)
|
|
* b2 = k2.getBinding
|
|
*
|
|
* eval("@secret", b1) #=> 99
|
|
* eval("@secret", b2) #=> -3
|
|
* eval("@secret") #=> nil
|
|
*
|
|
* Binding objects have no class-specific methods.
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Binding(void)
|
|
{
|
|
rb_cBinding = rb_define_class("Binding", rb_cObject);
|
|
rb_undef_alloc_func(rb_cBinding);
|
|
rb_undef_method(CLASS_OF(rb_cBinding), "new");
|
|
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
|
|
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
|
|
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
|
|
rb_define_global_function("binding", rb_f_binding, 0);
|
|
}
|
|
|