зеркало из https://github.com/github/ruby.git
4067 строки
111 KiB
C
4067 строки
111 KiB
C
/**********************************************************************
|
|
|
|
proc.c - Proc, Binding, Env
|
|
|
|
$Author$
|
|
created at: Wed Jan 17 12:13:14 2007
|
|
|
|
Copyright (C) 2004-2007 Koichi Sasada
|
|
|
|
**********************************************************************/
|
|
|
|
#include "eval_intern.h"
|
|
#include "gc.h"
|
|
#include "internal.h"
|
|
#include "internal/class.h"
|
|
#include "internal/error.h"
|
|
#include "internal/object.h"
|
|
#include "internal/proc.h"
|
|
#include "internal/symbol.h"
|
|
#include "iseq.h"
|
|
#include "vm_core.h"
|
|
|
|
/* Proc.new with no block will raise an exception in the future
|
|
* versions */
|
|
#define PROC_NEW_REQUIRES_BLOCK 0
|
|
|
|
#if !defined(__GNUC__) || __GNUC__ < 5 || defined(__MINGW32__)
|
|
# define NO_CLOBBERED(v) (*(volatile VALUE *)&(v))
|
|
#else
|
|
# define NO_CLOBBERED(v) (v)
|
|
#endif
|
|
|
|
#define UPDATE_TYPED_REFERENCE(_type, _ref) *(_type*)&_ref = (_type)rb_gc_location((VALUE)_ref)
|
|
#define UPDATE_REFERENCE(_ref) UPDATE_TYPED_REFERENCE(VALUE, _ref)
|
|
|
|
const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
|
|
|
|
struct METHOD {
|
|
const VALUE recv;
|
|
const VALUE klass;
|
|
const VALUE iclass;
|
|
const rb_method_entry_t * const me;
|
|
/* for bound methods, `me' should be rb_callable_method_entry_t * */
|
|
};
|
|
|
|
VALUE rb_cUnboundMethod;
|
|
VALUE rb_cMethod;
|
|
VALUE rb_cBinding;
|
|
VALUE rb_cProc;
|
|
|
|
static rb_block_call_func bmcall;
|
|
static int method_arity(VALUE);
|
|
static int method_min_max_arity(VALUE, int *max);
|
|
|
|
#define attached id__attached__
|
|
|
|
/* Proc */
|
|
|
|
#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
|
|
|
|
static void
|
|
block_mark(const struct rb_block *block)
|
|
{
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
case block_type_ifunc:
|
|
{
|
|
const struct rb_captured_block *captured = &block->as.captured;
|
|
RUBY_MARK_NO_PIN_UNLESS_NULL(captured->self);
|
|
RUBY_MARK_NO_PIN_UNLESS_NULL((VALUE)captured->code.val);
|
|
if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) {
|
|
RUBY_MARK_NO_PIN_UNLESS_NULL(VM_ENV_ENVVAL(captured->ep));
|
|
}
|
|
}
|
|
break;
|
|
case block_type_symbol:
|
|
RUBY_MARK_NO_PIN_UNLESS_NULL(block->as.symbol);
|
|
break;
|
|
case block_type_proc:
|
|
RUBY_MARK_NO_PIN_UNLESS_NULL(block->as.proc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
block_compact(struct rb_block *block)
|
|
{
|
|
switch (block->type) {
|
|
case block_type_iseq:
|
|
case block_type_ifunc:
|
|
{
|
|
struct rb_captured_block *captured = &block->as.captured;
|
|
captured->self = rb_gc_location(captured->self);
|
|
captured->code.val = rb_gc_location(captured->code.val);
|
|
if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) {
|
|
UPDATE_REFERENCE(captured->ep[VM_ENV_DATA_INDEX_ENV]);
|
|
}
|
|
}
|
|
break;
|
|
case block_type_symbol:
|
|
block->as.symbol = rb_gc_location(block->as.symbol);
|
|
break;
|
|
case block_type_proc:
|
|
block->as.proc = rb_gc_location(block->as.proc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
proc_compact(void *ptr)
|
|
{
|
|
rb_proc_t *proc = ptr;
|
|
block_compact((struct rb_block *)&proc->block);
|
|
}
|
|
|
|
static void
|
|
proc_mark(void *ptr)
|
|
{
|
|
rb_proc_t *proc = ptr;
|
|
block_mark(&proc->block);
|
|
RUBY_MARK_LEAVE("proc");
|
|
}
|
|
|
|
typedef struct {
|
|
rb_proc_t basic;
|
|
VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
|
|
} cfunc_proc_t;
|
|
|
|
static size_t
|
|
proc_memsize(const void *ptr)
|
|
{
|
|
const rb_proc_t *proc = ptr;
|
|
if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
|
|
return sizeof(cfunc_proc_t);
|
|
return sizeof(rb_proc_t);
|
|
}
|
|
|
|
static const rb_data_type_t proc_data_type = {
|
|
"proc",
|
|
{
|
|
proc_mark,
|
|
RUBY_TYPED_DEFAULT_FREE,
|
|
proc_memsize,
|
|
proc_compact,
|
|
},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
|
|
};
|
|
|
|
VALUE
|
|
rb_proc_alloc(VALUE klass)
|
|
{
|
|
rb_proc_t *proc;
|
|
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_is_proc(VALUE proc)
|
|
{
|
|
if (rb_typeddata_is_kind_of(proc, &proc_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
proc_clone(VALUE self)
|
|
{
|
|
VALUE procval = rb_proc_dup(self);
|
|
CLONESETUP(procval, self);
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.lambda? -> true or false
|
|
*
|
|
* Returns +true+ if a Proc object is lambda.
|
|
* +false+ if non-lambda.
|
|
*
|
|
* The lambda-ness affects argument handling and the behavior of +return+ and +break+.
|
|
*
|
|
* A Proc object generated by +proc+ ignores extra arguments.
|
|
*
|
|
* proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
|
|
*
|
|
* It provides +nil+ for missing arguments.
|
|
*
|
|
* proc {|a,b| [a,b] }.call(1) #=> [1,nil]
|
|
*
|
|
* It expands a single array argument.
|
|
*
|
|
* proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
|
|
*
|
|
* A Proc object generated by +lambda+ doesn't have such tricks.
|
|
*
|
|
* lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
|
|
* lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
|
|
* lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
|
|
*
|
|
* Proc#lambda? is a predicate for the tricks.
|
|
* It returns +true+ if no tricks apply.
|
|
*
|
|
* lambda {}.lambda? #=> true
|
|
* proc {}.lambda? #=> false
|
|
*
|
|
* Proc.new is the same as +proc+.
|
|
*
|
|
* Proc.new {}.lambda? #=> false
|
|
*
|
|
* +lambda+, +proc+ and Proc.new preserve the tricks of
|
|
* a Proc object given by <code>&</code> argument.
|
|
*
|
|
* lambda(&lambda {}).lambda? #=> true
|
|
* proc(&lambda {}).lambda? #=> true
|
|
* Proc.new(&lambda {}).lambda? #=> true
|
|
*
|
|
* lambda(&proc {}).lambda? #=> false
|
|
* proc(&proc {}).lambda? #=> false
|
|
* Proc.new(&proc {}).lambda? #=> false
|
|
*
|
|
* A Proc object generated by <code>&</code> argument has the tricks
|
|
*
|
|
* def n(&b) b.lambda? end
|
|
* n {} #=> false
|
|
*
|
|
* The <code>&</code> argument preserves the tricks if a Proc object
|
|
* is given by <code>&</code> argument.
|
|
*
|
|
* n(&lambda {}) #=> true
|
|
* n(&proc {}) #=> false
|
|
* n(&Proc.new {}) #=> false
|
|
*
|
|
* A Proc object converted from a method has no tricks.
|
|
*
|
|
* def m() end
|
|
* method(:m).to_proc.lambda? #=> true
|
|
*
|
|
* n(&method(:m)) #=> true
|
|
* n(&method(:m).to_proc) #=> true
|
|
*
|
|
* +define_method+ is treated the same as method definition.
|
|
* The defined method has no tricks.
|
|
*
|
|
* class C
|
|
* define_method(:d) {}
|
|
* end
|
|
* C.new.d(1,2) #=> ArgumentError
|
|
* C.new.method(:d).to_proc.lambda? #=> true
|
|
*
|
|
* +define_method+ always defines a method without the tricks,
|
|
* even if a non-lambda Proc object is given.
|
|
* This is the only exception for which the tricks are not preserved.
|
|
*
|
|
* class C
|
|
* define_method(:e, &proc {})
|
|
* end
|
|
* C.new.e(1,2) #=> ArgumentError
|
|
* C.new.method(:e).to_proc.lambda? #=> true
|
|
*
|
|
* This exception ensures that methods never have tricks
|
|
* and makes it easy to have wrappers to define methods that behave as usual.
|
|
*
|
|
* class C
|
|
* def self.def2(name, &body)
|
|
* define_method(name, &body)
|
|
* end
|
|
*
|
|
* def2(:f) {}
|
|
* end
|
|
* C.new.f(1,2) #=> ArgumentError
|
|
*
|
|
* The wrapper <i>def2</i> defines a method which has no tricks.
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_proc_lambda_p(VALUE procval)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
return proc->is_lambda ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/* Binding */
|
|
|
|
static void
|
|
binding_free(void *ptr)
|
|
{
|
|
RUBY_FREE_ENTER("binding");
|
|
ruby_xfree(ptr);
|
|
RUBY_FREE_LEAVE("binding");
|
|
}
|
|
|
|
static void
|
|
binding_mark(void *ptr)
|
|
{
|
|
rb_binding_t *bind = ptr;
|
|
|
|
RUBY_MARK_ENTER("binding");
|
|
block_mark(&bind->block);
|
|
rb_gc_mark_movable(bind->pathobj);
|
|
RUBY_MARK_LEAVE("binding");
|
|
}
|
|
|
|
static void
|
|
binding_compact(void *ptr)
|
|
{
|
|
rb_binding_t *bind = ptr;
|
|
|
|
block_compact((struct rb_block *)&bind->block);
|
|
UPDATE_REFERENCE(bind->pathobj);
|
|
}
|
|
|
|
static size_t
|
|
binding_memsize(const void *ptr)
|
|
{
|
|
return sizeof(rb_binding_t);
|
|
}
|
|
|
|
const rb_data_type_t ruby_binding_data_type = {
|
|
"binding",
|
|
{
|
|
binding_mark,
|
|
binding_free,
|
|
binding_memsize,
|
|
binding_compact,
|
|
},
|
|
0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
VALUE
|
|
rb_binding_alloc(VALUE klass)
|
|
{
|
|
VALUE obj;
|
|
rb_binding_t *bind;
|
|
obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
|
|
return obj;
|
|
}
|
|
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
binding_dup(VALUE self)
|
|
{
|
|
VALUE bindval = rb_binding_alloc(rb_cBinding);
|
|
rb_binding_t *src, *dst;
|
|
GetBindingPtr(self, src);
|
|
GetBindingPtr(bindval, dst);
|
|
rb_vm_block_copy(bindval, &dst->block, &src->block);
|
|
RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
|
|
dst->first_lineno = src->first_lineno;
|
|
return bindval;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
binding_clone(VALUE self)
|
|
{
|
|
VALUE bindval = binding_dup(self);
|
|
CLONESETUP(bindval, self);
|
|
return bindval;
|
|
}
|
|
|
|
VALUE
|
|
rb_binding_new(void)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
return rb_vm_make_binding(ec, ec->cfp);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding -> a_binding
|
|
*
|
|
* Returns a +Binding+ object, describing the variable and
|
|
* method bindings at the point of call. This object can be used when
|
|
* calling +eval+ to execute the evaluated command in this
|
|
* environment. See also the description of class +Binding+.
|
|
*
|
|
* def get_binding(param)
|
|
* binding
|
|
* end
|
|
* b = get_binding("hello")
|
|
* eval("param", b) #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_f_binding(VALUE self)
|
|
{
|
|
return rb_binding_new();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.eval(string [, filename [,lineno]]) -> obj
|
|
*
|
|
* Evaluates the Ruby expression(s) in <em>string</em>, in the
|
|
* <em>binding</em>'s context. If the optional <em>filename</em> and
|
|
* <em>lineno</em> parameters are present, they will be used when
|
|
* reporting syntax errors.
|
|
*
|
|
* def get_binding(param)
|
|
* binding
|
|
* end
|
|
* b = get_binding("hello")
|
|
* b.eval("param") #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
bind_eval(int argc, VALUE *argv, VALUE bindval)
|
|
{
|
|
VALUE args[4];
|
|
|
|
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
|
|
args[1] = bindval;
|
|
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
|
|
}
|
|
|
|
static const VALUE *
|
|
get_local_variable_ptr(const rb_env_t **envp, ID lid)
|
|
{
|
|
const rb_env_t *env = *envp;
|
|
do {
|
|
if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
|
|
const rb_iseq_t *iseq = env->iseq;
|
|
unsigned int i;
|
|
|
|
VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
|
|
|
|
for (i=0; i<iseq->body->local_table_size; i++) {
|
|
if (iseq->body->local_table[i] == lid) {
|
|
if (iseq->body->local_iseq == iseq &&
|
|
iseq->body->param.flags.has_block &&
|
|
(unsigned int)iseq->body->param.block_start == i) {
|
|
const VALUE *ep = env->ep;
|
|
if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
|
|
RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
|
|
VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
|
|
}
|
|
}
|
|
|
|
*envp = env;
|
|
return &env->env[i];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
*envp = NULL;
|
|
return NULL;
|
|
}
|
|
} while ((env = rb_vm_env_prev_env(env)) != NULL);
|
|
|
|
*envp = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* check local variable name.
|
|
* returns ID if it's an already interned symbol, or 0 with setting
|
|
* local name in String to *namep.
|
|
*/
|
|
static ID
|
|
check_local_id(VALUE bindval, volatile VALUE *pname)
|
|
{
|
|
ID lid = rb_check_id(pname);
|
|
VALUE name = *pname;
|
|
|
|
if (lid) {
|
|
if (!rb_is_local_id(lid)) {
|
|
rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
|
|
bindval, ID2SYM(lid));
|
|
}
|
|
}
|
|
else {
|
|
if (!rb_is_local_name(name)) {
|
|
rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
|
|
bindval, name);
|
|
}
|
|
return 0;
|
|
}
|
|
return lid;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variables -> Array
|
|
*
|
|
* Returns the names of the binding's local variables as symbols.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* 2.times do |n|
|
|
* binding.local_variables #=> [:a, :n]
|
|
* end
|
|
* end
|
|
*
|
|
* This method is the short version of the following code:
|
|
*
|
|
* binding.eval("local_variables")
|
|
*
|
|
*/
|
|
static VALUE
|
|
bind_local_variables(VALUE bindval)
|
|
{
|
|
const rb_binding_t *bind;
|
|
const rb_env_t *env;
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
return rb_vm_env_local_variables(env);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variable_get(symbol) -> obj
|
|
*
|
|
* Returns the value of the local variable +symbol+.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* binding.local_variable_get(:a) #=> 1
|
|
* binding.local_variable_get(:b) #=> NameError
|
|
* end
|
|
*
|
|
* This method is the short version of the following code:
|
|
*
|
|
* binding.eval("#{symbol}")
|
|
*
|
|
*/
|
|
static VALUE
|
|
bind_local_variable_get(VALUE bindval, VALUE sym)
|
|
{
|
|
ID lid = check_local_id(bindval, &sym);
|
|
const rb_binding_t *bind;
|
|
const VALUE *ptr;
|
|
const rb_env_t *env;
|
|
|
|
if (!lid) goto undefined;
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
|
|
sym = ID2SYM(lid);
|
|
undefined:
|
|
rb_name_err_raise("local variable `%1$s' is not defined for %2$s",
|
|
bindval, sym);
|
|
}
|
|
|
|
return *ptr;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variable_set(symbol, obj) -> obj
|
|
*
|
|
* Set local variable named +symbol+ as +obj+.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* bind = binding
|
|
* bind.local_variable_set(:a, 2) # set existing local variable `a'
|
|
* bind.local_variable_set(:b, 3) # create new local variable `b'
|
|
* # `b' exists only in binding
|
|
*
|
|
* p bind.local_variable_get(:a) #=> 2
|
|
* p bind.local_variable_get(:b) #=> 3
|
|
* p a #=> 2
|
|
* p b #=> NameError
|
|
* end
|
|
*
|
|
* This method behaves similarly to the following code:
|
|
*
|
|
* binding.eval("#{symbol} = #{obj}")
|
|
*
|
|
* if +obj+ can be dumped in Ruby code.
|
|
*/
|
|
static VALUE
|
|
bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
|
|
{
|
|
ID lid = check_local_id(bindval, &sym);
|
|
rb_binding_t *bind;
|
|
const VALUE *ptr;
|
|
const rb_env_t *env;
|
|
|
|
if (!lid) lid = rb_intern_str(sym);
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
|
|
/* not found. create new env */
|
|
ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
}
|
|
|
|
RB_OBJ_WRITE(env, ptr, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variable_defined?(symbol) -> obj
|
|
*
|
|
* Returns +true+ if a local variable +symbol+ exists.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* binding.local_variable_defined?(:a) #=> true
|
|
* binding.local_variable_defined?(:b) #=> false
|
|
* end
|
|
*
|
|
* This method is the short version of the following code:
|
|
*
|
|
* binding.eval("defined?(#{symbol}) == 'local-variable'")
|
|
*
|
|
*/
|
|
static VALUE
|
|
bind_local_variable_defined_p(VALUE bindval, VALUE sym)
|
|
{
|
|
ID lid = check_local_id(bindval, &sym);
|
|
const rb_binding_t *bind;
|
|
const rb_env_t *env;
|
|
|
|
if (!lid) return Qfalse;
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
return get_local_variable_ptr(&env, lid) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.receiver -> object
|
|
*
|
|
* Returns the bound receiver of the binding object.
|
|
*/
|
|
static VALUE
|
|
bind_receiver(VALUE bindval)
|
|
{
|
|
const rb_binding_t *bind;
|
|
GetBindingPtr(bindval, bind);
|
|
return vm_block_self(&bind->block);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.source_location -> [String, Integer]
|
|
*
|
|
* Returns the Ruby source filename and line number of the binding object.
|
|
*/
|
|
static VALUE
|
|
bind_location(VALUE bindval)
|
|
{
|
|
VALUE loc[2];
|
|
const rb_binding_t *bind;
|
|
GetBindingPtr(bindval, bind);
|
|
loc[0] = pathobj_path(bind->pathobj);
|
|
loc[1] = INT2FIX(bind->first_lineno);
|
|
|
|
return rb_ary_new4(2, loc);
|
|
}
|
|
|
|
static VALUE
|
|
cfunc_proc_new(VALUE klass, VALUE ifunc, int8_t is_lambda)
|
|
{
|
|
rb_proc_t *proc;
|
|
cfunc_proc_t *sproc;
|
|
VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
|
|
VALUE *ep;
|
|
|
|
proc = &sproc->basic;
|
|
vm_block_type_set(&proc->block, block_type_ifunc);
|
|
|
|
*(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
|
|
ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
|
|
ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
|
|
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
|
|
ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */
|
|
|
|
/* self? */
|
|
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
|
|
proc->is_lambda = is_lambda;
|
|
return procval;
|
|
}
|
|
|
|
static VALUE
|
|
sym_proc_new(VALUE klass, VALUE sym)
|
|
{
|
|
VALUE procval = rb_proc_alloc(klass);
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
vm_block_type_set(&proc->block, block_type_symbol);
|
|
RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
|
|
return procval;
|
|
}
|
|
|
|
struct vm_ifunc *
|
|
rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc)
|
|
{
|
|
union {
|
|
struct vm_ifunc_argc argc;
|
|
VALUE packed;
|
|
} arity;
|
|
|
|
if (min_argc < UNLIMITED_ARGUMENTS ||
|
|
#if SIZEOF_INT * 2 > SIZEOF_VALUE
|
|
min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
|
|
#endif
|
|
0) {
|
|
rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
|
|
min_argc);
|
|
}
|
|
if (max_argc < UNLIMITED_ARGUMENTS ||
|
|
#if SIZEOF_INT * 2 > SIZEOF_VALUE
|
|
max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
|
|
#endif
|
|
0) {
|
|
rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
|
|
max_argc);
|
|
}
|
|
arity.argc.min = min_argc;
|
|
arity.argc.max = max_argc;
|
|
VALUE ret = rb_imemo_new(imemo_ifunc, (VALUE)func, (VALUE)data, arity.packed, 0);
|
|
return (struct vm_ifunc *)ret;
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_func_proc_new(rb_block_call_func_t func, VALUE val)
|
|
{
|
|
struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val);
|
|
return cfunc_proc_new(rb_cProc, (VALUE)ifunc, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
|
|
{
|
|
struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
|
|
return cfunc_proc_new(rb_cProc, (VALUE)ifunc, 1);
|
|
}
|
|
|
|
static const char proc_without_block[] = "tried to create Proc object without a block";
|
|
|
|
static VALUE
|
|
proc_new(VALUE klass, int8_t is_lambda, int8_t kernel)
|
|
{
|
|
VALUE procval;
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
VALUE block_handler;
|
|
|
|
if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
|
|
#if !PROC_NEW_REQUIRES_BLOCK
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
|
|
if ((block_handler = rb_vm_frame_block_handler(cfp)) != VM_BLOCK_HANDLER_NONE) {
|
|
if (is_lambda) {
|
|
rb_raise(rb_eArgError, proc_without_block);
|
|
}
|
|
else {
|
|
const char *name = kernel ? "Kernel#proc" : "Proc.new";
|
|
rb_warn_deprecated("Capturing the given block using %s",
|
|
"`&block`", name);
|
|
}
|
|
}
|
|
#else
|
|
if (0);
|
|
#endif
|
|
else {
|
|
rb_raise(rb_eArgError, proc_without_block);
|
|
}
|
|
}
|
|
|
|
/* block is in cf */
|
|
switch (vm_block_handler_type(block_handler)) {
|
|
case block_handler_type_proc:
|
|
procval = VM_BH_TO_PROC(block_handler);
|
|
|
|
if (RBASIC_CLASS(procval) == klass) {
|
|
return procval;
|
|
}
|
|
else {
|
|
VALUE newprocval = rb_proc_dup(procval);
|
|
RBASIC_SET_CLASS(newprocval, klass);
|
|
return newprocval;
|
|
}
|
|
break;
|
|
|
|
case block_handler_type_symbol:
|
|
return (klass != rb_cProc) ?
|
|
sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
|
|
rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
|
|
break;
|
|
|
|
case block_handler_type_ifunc:
|
|
return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
|
|
case block_handler_type_iseq:
|
|
{
|
|
const struct rb_captured_block *captured = VM_BH_TO_CAPT_BLOCK(block_handler);
|
|
rb_control_frame_t *last_ruby_cfp = rb_vm_get_ruby_level_next_cfp(ec, cfp);
|
|
if (is_lambda && last_ruby_cfp && vm_cfp_forwarded_bh_p(last_ruby_cfp, block_handler)) {
|
|
is_lambda = false;
|
|
}
|
|
return rb_vm_make_proc_lambda(ec, captured, klass, is_lambda);
|
|
}
|
|
}
|
|
VM_UNREACHABLE(proc_new);
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Proc.new {|...| block } -> a_proc
|
|
* Proc.new -> a_proc
|
|
*
|
|
* Creates a new Proc object, bound to the current context. Proc::new
|
|
* may be called without a block only within a method with an
|
|
* attached block, in which case that block is converted to the Proc
|
|
* object.
|
|
*
|
|
* def proc_from
|
|
* Proc.new
|
|
* end
|
|
* proc = proc_from { "hello" }
|
|
* proc.call #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE block = proc_new(klass, FALSE, FALSE);
|
|
|
|
rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS);
|
|
return block;
|
|
}
|
|
|
|
VALUE
|
|
rb_block_proc(void)
|
|
{
|
|
return proc_new(rb_cProc, FALSE, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* proc { |...| block } -> a_proc
|
|
*
|
|
* Equivalent to Proc.new.
|
|
*/
|
|
|
|
static VALUE
|
|
f_proc(VALUE _)
|
|
{
|
|
return proc_new(rb_cProc, FALSE, TRUE);
|
|
}
|
|
|
|
VALUE
|
|
rb_block_lambda(void)
|
|
{
|
|
return proc_new(rb_cProc, TRUE, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* lambda { |...| block } -> a_proc
|
|
*
|
|
* Equivalent to Proc.new, except the resulting Proc objects check the
|
|
* number of parameters passed when called.
|
|
*/
|
|
|
|
static VALUE
|
|
f_lambda(VALUE _)
|
|
{
|
|
return rb_block_lambda();
|
|
}
|
|
|
|
/* Document-method: Proc#===
|
|
*
|
|
* call-seq:
|
|
* proc === obj -> result_of_proc
|
|
*
|
|
* Invokes the block with +obj+ as the proc's parameter like Proc#call.
|
|
* This allows a proc object to be the target of a +when+ clause
|
|
* in a case statement.
|
|
*/
|
|
|
|
/* CHECKME: are the argument checking semantics correct? */
|
|
|
|
/*
|
|
* Document-method: Proc#[]
|
|
* Document-method: Proc#call
|
|
* Document-method: Proc#yield
|
|
*
|
|
* call-seq:
|
|
* prc.call(params,...) -> obj
|
|
* prc[params,...] -> obj
|
|
* prc.(params,...) -> obj
|
|
* prc.yield(params,...) -> obj
|
|
*
|
|
* Invokes the block, setting the block's parameters to the values in
|
|
* <i>params</i> using something close to method calling semantics.
|
|
* Returns the value of the last expression evaluated in the block.
|
|
*
|
|
* a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
|
|
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
|
|
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
|
|
* a_proc.(9, 1, 2, 3) #=> [9, 18, 27]
|
|
* a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
|
|
*
|
|
* Note that <code>prc.()</code> invokes <code>prc.call()</code> with
|
|
* the parameters given. It's syntactic sugar to hide "call".
|
|
*
|
|
* For procs created using #lambda or <code>->()</code> an error is
|
|
* generated if the wrong number of parameters are passed to the
|
|
* proc. For procs created using Proc.new or Kernel.proc, extra
|
|
* parameters are silently discarded and missing parameters are set
|
|
* to +nil+.
|
|
*
|
|
* a_proc = proc {|a,b| [a,b] }
|
|
* a_proc.call(1) #=> [1, nil]
|
|
*
|
|
* a_proc = lambda {|a,b| [a,b] }
|
|
* a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
|
|
*
|
|
* See also Proc#lambda?.
|
|
*/
|
|
#if 0
|
|
static VALUE
|
|
proc_call(int argc, VALUE *argv, VALUE procval)
|
|
{
|
|
/* removed */
|
|
}
|
|
#endif
|
|
|
|
#if SIZEOF_LONG > SIZEOF_INT
|
|
static inline int
|
|
check_argc(long argc)
|
|
{
|
|
if (argc > INT_MAX || argc < 0) {
|
|
rb_raise(rb_eArgError, "too many arguments (%lu)",
|
|
(unsigned long)argc);
|
|
}
|
|
return (int)argc;
|
|
}
|
|
#else
|
|
#define check_argc(argc) (argc)
|
|
#endif
|
|
|
|
VALUE
|
|
rb_proc_call_kw(VALUE self, VALUE args, int kw_splat)
|
|
{
|
|
VALUE vret;
|
|
rb_proc_t *proc;
|
|
VALUE v;
|
|
int argc = check_argc(RARRAY_LEN(args));
|
|
const VALUE *argv = RARRAY_CONST_PTR(args);
|
|
GetProcPtr(self, proc);
|
|
v = rb_adjust_argv_kw_splat(&argc, &argv, &kw_splat);
|
|
vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv,
|
|
kw_splat, VM_BLOCK_HANDLER_NONE);
|
|
rb_free_tmp_buffer(&v);
|
|
RB_GC_GUARD(self);
|
|
RB_GC_GUARD(args);
|
|
return vret;
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_call(VALUE self, VALUE args)
|
|
{
|
|
VALUE vret;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
vret = rb_vm_invoke_proc(GET_EC(), proc,
|
|
check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args),
|
|
RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE);
|
|
RB_GC_GUARD(self);
|
|
RB_GC_GUARD(args);
|
|
return vret;
|
|
}
|
|
|
|
static VALUE
|
|
proc_to_block_handler(VALUE procval)
|
|
{
|
|
return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
VALUE vret;
|
|
rb_proc_t *proc;
|
|
VALUE v = rb_adjust_argv_kw_splat(&argc, &argv, &kw_splat);
|
|
GetProcPtr(self, proc);
|
|
vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval));
|
|
rb_free_tmp_buffer(&v);
|
|
RB_GC_GUARD(self);
|
|
return vret;
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
VALUE vret;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
vret = rb_vm_invoke_proc(ec, proc, argc, argv, RB_NO_KEYWORDS, proc_to_block_handler(passed_procval));
|
|
RB_GC_GUARD(self);
|
|
return vret;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.arity -> integer
|
|
*
|
|
* Returns the number of mandatory arguments. If the block
|
|
* is declared to take no arguments, returns 0. If the block is known
|
|
* to take exactly n arguments, returns n.
|
|
* If the block has optional arguments, returns -n-1, where n is the
|
|
* number of mandatory arguments, with the exception for blocks that
|
|
* are not lambdas and have only a finite number of optional arguments;
|
|
* in this latter case, returns n.
|
|
* Keyword arguments will be considered as a single additional argument,
|
|
* that argument being mandatory if any keyword argument is mandatory.
|
|
* A #proc with no argument declarations is the same as a block
|
|
* declaring <code>||</code> as its arguments.
|
|
*
|
|
* proc {}.arity #=> 0
|
|
* proc { || }.arity #=> 0
|
|
* proc { |a| }.arity #=> 1
|
|
* proc { |a, b| }.arity #=> 2
|
|
* proc { |a, b, c| }.arity #=> 3
|
|
* proc { |*a| }.arity #=> -1
|
|
* proc { |a, *b| }.arity #=> -2
|
|
* proc { |a, *b, c| }.arity #=> -3
|
|
* proc { |x:, y:, z:0| }.arity #=> 1
|
|
* proc { |*a, x:, y:0| }.arity #=> -2
|
|
*
|
|
* proc { |a=0| }.arity #=> 0
|
|
* lambda { |a=0| }.arity #=> -1
|
|
* proc { |a=0, b| }.arity #=> 1
|
|
* lambda { |a=0, b| }.arity #=> -2
|
|
* proc { |a=0, b=0| }.arity #=> 0
|
|
* lambda { |a=0, b=0| }.arity #=> -1
|
|
* proc { |a, b=0| }.arity #=> 1
|
|
* lambda { |a, b=0| }.arity #=> -2
|
|
* proc { |(a, b), c=0| }.arity #=> 1
|
|
* lambda { |(a, b), c=0| }.arity #=> -2
|
|
* proc { |a, x:0, y:0| }.arity #=> 1
|
|
* lambda { |a, x:0, y:0| }.arity #=> -2
|
|
*/
|
|
|
|
static VALUE
|
|
proc_arity(VALUE self)
|
|
{
|
|
int arity = rb_proc_arity(self);
|
|
return INT2FIX(arity);
|
|
}
|
|
|
|
static inline int
|
|
rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
|
|
{
|
|
*max = iseq->body->param.flags.has_rest == FALSE ?
|
|
iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num +
|
|
(iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE)
|
|
: UNLIMITED_ARGUMENTS;
|
|
return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0);
|
|
}
|
|
|
|
static int
|
|
rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
|
|
{
|
|
again:
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
|
|
case block_type_proc:
|
|
block = vm_proc_block(block->as.proc);
|
|
goto again;
|
|
case block_type_ifunc:
|
|
{
|
|
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
|
|
if (IS_METHOD_PROC_IFUNC(ifunc)) {
|
|
/* e.g. method(:foo).to_proc.arity */
|
|
return method_min_max_arity((VALUE)ifunc->data, max);
|
|
}
|
|
*max = ifunc->argc.max;
|
|
return ifunc->argc.min;
|
|
}
|
|
case block_type_symbol:
|
|
break;
|
|
}
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of required parameters and stores the maximum
|
|
* number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
|
|
* For non-lambda procs, the maximum is the number of non-ignored
|
|
* parameters even though there is no actual limit to the number of parameters
|
|
*/
|
|
static int
|
|
rb_proc_min_max_arity(VALUE self, int *max)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
return rb_vm_block_min_max_arity(&proc->block, max);
|
|
}
|
|
|
|
int
|
|
rb_proc_arity(VALUE self)
|
|
{
|
|
rb_proc_t *proc;
|
|
int max, min;
|
|
GetProcPtr(self, proc);
|
|
min = rb_vm_block_min_max_arity(&proc->block, &max);
|
|
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
|
|
}
|
|
|
|
static void
|
|
block_setup(struct rb_block *block, VALUE block_handler)
|
|
{
|
|
switch (vm_block_handler_type(block_handler)) {
|
|
case block_handler_type_iseq:
|
|
block->type = block_type_iseq;
|
|
block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
|
|
break;
|
|
case block_handler_type_ifunc:
|
|
block->type = block_type_ifunc;
|
|
block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
|
|
break;
|
|
case block_handler_type_symbol:
|
|
block->type = block_type_symbol;
|
|
block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
|
|
break;
|
|
case block_handler_type_proc:
|
|
block->type = block_type_proc;
|
|
block->as.proc = VM_BH_TO_PROC(block_handler);
|
|
}
|
|
}
|
|
|
|
int
|
|
rb_block_arity(void)
|
|
{
|
|
int min, max;
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
VALUE block_handler = rb_vm_frame_block_handler(cfp);
|
|
struct rb_block block;
|
|
|
|
if (block_handler == VM_BLOCK_HANDLER_NONE) {
|
|
rb_raise(rb_eArgError, "no block given");
|
|
}
|
|
|
|
block_setup(&block, block_handler);
|
|
min = rb_vm_block_min_max_arity(&block, &max);
|
|
|
|
switch (vm_block_type(&block)) {
|
|
case block_handler_type_symbol:
|
|
return -1;
|
|
|
|
case block_handler_type_proc:
|
|
{
|
|
VALUE procval = block_handler;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
|
|
/* fall through */
|
|
}
|
|
|
|
default:
|
|
return max != UNLIMITED_ARGUMENTS ? min : -min-1;
|
|
}
|
|
}
|
|
|
|
int
|
|
rb_block_min_max_arity(int *max)
|
|
{
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
VALUE block_handler = rb_vm_frame_block_handler(cfp);
|
|
struct rb_block block;
|
|
|
|
if (block_handler == VM_BLOCK_HANDLER_NONE) {
|
|
rb_raise(rb_eArgError, "no block given");
|
|
}
|
|
|
|
block_setup(&block, block_handler);
|
|
return rb_vm_block_min_max_arity(&block, max);
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_proc_get_iseq(VALUE self, int *is_proc)
|
|
{
|
|
const rb_proc_t *proc;
|
|
const struct rb_block *block;
|
|
|
|
GetProcPtr(self, proc);
|
|
block = &proc->block;
|
|
if (is_proc) *is_proc = !proc->is_lambda;
|
|
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
return rb_iseq_check(block->as.captured.code.iseq);
|
|
case block_type_proc:
|
|
return rb_proc_get_iseq(block->as.proc, is_proc);
|
|
case block_type_ifunc:
|
|
{
|
|
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
|
|
if (IS_METHOD_PROC_IFUNC(ifunc)) {
|
|
/* method(:foo).to_proc */
|
|
if (is_proc) *is_proc = 0;
|
|
return rb_method_iseq((VALUE)ifunc->data);
|
|
}
|
|
else {
|
|
return NULL;
|
|
}
|
|
}
|
|
case block_type_symbol:
|
|
return NULL;
|
|
}
|
|
|
|
VM_UNREACHABLE(rb_proc_get_iseq);
|
|
return NULL;
|
|
}
|
|
|
|
static VALUE
|
|
iseq_location(const rb_iseq_t *iseq)
|
|
{
|
|
VALUE loc[2];
|
|
|
|
if (!iseq) return Qnil;
|
|
rb_iseq_check(iseq);
|
|
loc[0] = rb_iseq_path(iseq);
|
|
loc[1] = iseq->body->location.first_lineno;
|
|
|
|
return rb_ary_new4(2, loc);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_iseq_location(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq_location(iseq);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.source_location -> [String, Integer]
|
|
*
|
|
* Returns the Ruby source filename and line number containing this proc
|
|
* or +nil+ if this proc was not defined in Ruby (i.e. native).
|
|
*/
|
|
|
|
VALUE
|
|
rb_proc_location(VALUE self)
|
|
{
|
|
return iseq_location(rb_proc_get_iseq(self, 0));
|
|
}
|
|
|
|
VALUE
|
|
rb_unnamed_parameters(int arity)
|
|
{
|
|
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
|
|
int n = (arity < 0) ? ~arity : arity;
|
|
ID req, rest;
|
|
CONST_ID(req, "req");
|
|
a = rb_ary_new3(1, ID2SYM(req));
|
|
OBJ_FREEZE(a);
|
|
for (; n; --n) {
|
|
rb_ary_push(param, a);
|
|
}
|
|
if (arity < 0) {
|
|
CONST_ID(rest, "rest");
|
|
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
|
|
}
|
|
return param;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.parameters -> array
|
|
*
|
|
* Returns the parameter information of this proc.
|
|
*
|
|
* prc = lambda{|x, y=42, *other|}
|
|
* prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_proc_parameters(VALUE self)
|
|
{
|
|
int is_proc;
|
|
const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc);
|
|
if (!iseq) {
|
|
return rb_unnamed_parameters(rb_proc_arity(self));
|
|
}
|
|
return rb_iseq_parameters(iseq, is_proc);
|
|
}
|
|
|
|
st_index_t
|
|
rb_hash_proc(st_index_t hash, VALUE prc)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(prc, proc);
|
|
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val);
|
|
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self);
|
|
return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep >> 16);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_sym_to_proc(VALUE sym)
|
|
{
|
|
static VALUE sym_proc_cache = Qfalse;
|
|
enum {SYM_PROC_CACHE_SIZE = 67};
|
|
VALUE proc;
|
|
long index;
|
|
ID id;
|
|
|
|
if (!sym_proc_cache) {
|
|
sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2);
|
|
rb_gc_register_mark_object(sym_proc_cache);
|
|
rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil);
|
|
}
|
|
|
|
id = SYM2ID(sym);
|
|
index = (id % SYM_PROC_CACHE_SIZE) << 1;
|
|
|
|
if (RARRAY_AREF(sym_proc_cache, index) == sym) {
|
|
return RARRAY_AREF(sym_proc_cache, index + 1);
|
|
}
|
|
else {
|
|
proc = sym_proc_new(rb_cProc, ID2SYM(id));
|
|
RARRAY_ASET(sym_proc_cache, index, sym);
|
|
RARRAY_ASET(sym_proc_cache, index + 1, proc);
|
|
return proc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.hash -> integer
|
|
*
|
|
* Returns a hash value corresponding to proc body.
|
|
*
|
|
* See also Object#hash.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_hash(VALUE self)
|
|
{
|
|
st_index_t hash;
|
|
hash = rb_hash_start(0);
|
|
hash = rb_hash_proc(hash, self);
|
|
hash = rb_hash_end(hash);
|
|
return ST2FIX(hash);
|
|
}
|
|
|
|
VALUE
|
|
rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
|
|
{
|
|
VALUE cname = rb_obj_class(self);
|
|
VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
|
|
|
|
again:
|
|
switch (vm_block_type(block)) {
|
|
case block_type_proc:
|
|
block = vm_proc_block(block->as.proc);
|
|
goto again;
|
|
case block_type_iseq:
|
|
{
|
|
const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
|
|
rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self,
|
|
rb_iseq_path(iseq),
|
|
FIX2INT(iseq->body->location.first_lineno));
|
|
}
|
|
break;
|
|
case block_type_symbol:
|
|
rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
|
|
break;
|
|
case block_type_ifunc:
|
|
rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
|
|
break;
|
|
}
|
|
|
|
if (additional_info) rb_str_cat_cstr(str, additional_info);
|
|
rb_str_cat_cstr(str, ">");
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.to_s -> string
|
|
*
|
|
* Returns the unique identifier for this proc, along with
|
|
* an indication of where the proc was defined.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_to_s(VALUE self)
|
|
{
|
|
const rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.to_proc -> proc
|
|
*
|
|
* Part of the protocol for converting objects to Proc objects.
|
|
* Instances of class Proc simply return themselves.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_to_proc(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
static void
|
|
bm_mark(void *ptr)
|
|
{
|
|
struct METHOD *data = ptr;
|
|
rb_gc_mark_movable(data->recv);
|
|
rb_gc_mark_movable(data->klass);
|
|
rb_gc_mark_movable(data->iclass);
|
|
rb_gc_mark_movable((VALUE)data->me);
|
|
}
|
|
|
|
static void
|
|
bm_compact(void *ptr)
|
|
{
|
|
struct METHOD *data = ptr;
|
|
UPDATE_REFERENCE(data->recv);
|
|
UPDATE_REFERENCE(data->klass);
|
|
UPDATE_REFERENCE(data->iclass);
|
|
UPDATE_TYPED_REFERENCE(rb_method_entry_t *, data->me);
|
|
}
|
|
|
|
static size_t
|
|
bm_memsize(const void *ptr)
|
|
{
|
|
return sizeof(struct METHOD);
|
|
}
|
|
|
|
static const rb_data_type_t method_data_type = {
|
|
"method",
|
|
{
|
|
bm_mark,
|
|
RUBY_TYPED_DEFAULT_FREE,
|
|
bm_memsize,
|
|
bm_compact,
|
|
},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
VALUE
|
|
rb_obj_is_method(VALUE m)
|
|
{
|
|
if (rb_typeddata_is_kind_of(m, &method_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static int
|
|
respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
|
|
{
|
|
/* TODO: merge with obj_respond_to() */
|
|
ID rmiss = idRespond_to_missing;
|
|
|
|
if (obj == Qundef) return 0;
|
|
if (rb_method_basic_definition_p(klass, rmiss)) return 0;
|
|
return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue));
|
|
}
|
|
|
|
|
|
static VALUE
|
|
mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
|
|
rb_method_entry_t *me;
|
|
rb_method_definition_t *def;
|
|
|
|
RB_OBJ_WRITE(method, &data->recv, obj);
|
|
RB_OBJ_WRITE(method, &data->klass, klass);
|
|
|
|
def = ZALLOC(rb_method_definition_t);
|
|
def->type = VM_METHOD_TYPE_MISSING;
|
|
def->original_id = id;
|
|
|
|
me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
|
|
|
|
RB_OBJ_WRITE(method, &data->me, me);
|
|
|
|
return method;
|
|
}
|
|
|
|
static VALUE
|
|
mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass)
|
|
{
|
|
VALUE vid = rb_str_intern(*name);
|
|
*name = vid;
|
|
if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse;
|
|
return mnew_missing(klass, obj, SYM2ID(vid), mclass);
|
|
}
|
|
|
|
static VALUE
|
|
mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
|
|
VALUE obj, ID id, VALUE mclass, int scope, int error)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE method;
|
|
rb_method_visibility_t visi = METHOD_VISI_UNDEF;
|
|
|
|
again:
|
|
if (UNDEFINED_METHOD_ENTRY_P(me)) {
|
|
if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
|
|
return mnew_missing(klass, obj, id, mclass);
|
|
}
|
|
if (!error) return Qnil;
|
|
rb_print_undef(klass, id, METHOD_VISI_UNDEF);
|
|
}
|
|
if (visi == METHOD_VISI_UNDEF) {
|
|
visi = METHOD_ENTRY_VISI(me);
|
|
if (scope && (visi != METHOD_VISI_PUBLIC)) {
|
|
if (!error) return Qnil;
|
|
rb_print_inaccessible(klass, id, visi);
|
|
}
|
|
}
|
|
if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
|
|
if (me->defined_class) {
|
|
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
|
|
id = me->def->original_id;
|
|
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
|
|
}
|
|
else {
|
|
VALUE klass = RCLASS_SUPER(me->owner);
|
|
id = me->def->original_id;
|
|
me = rb_method_entry_without_refinements(klass, id, &iclass);
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
|
|
|
|
RB_OBJ_WRITE(method, &data->recv, obj);
|
|
RB_OBJ_WRITE(method, &data->klass, klass);
|
|
RB_OBJ_WRITE(method, &data->iclass, iclass);
|
|
RB_OBJ_WRITE(method, &data->me, me);
|
|
|
|
return method;
|
|
}
|
|
|
|
static VALUE
|
|
mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
|
|
VALUE obj, ID id, VALUE mclass, int scope)
|
|
{
|
|
return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
|
|
}
|
|
|
|
static VALUE
|
|
mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
|
|
{
|
|
const rb_method_entry_t *me;
|
|
VALUE iclass = Qnil;
|
|
|
|
if (obj == Qundef) { /* UnboundMethod */
|
|
me = rb_method_entry_with_refinements(klass, id, &iclass);
|
|
}
|
|
else {
|
|
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
|
|
}
|
|
return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
|
|
}
|
|
|
|
static inline VALUE
|
|
method_entry_defined_class(const rb_method_entry_t *me)
|
|
{
|
|
VALUE defined_class = me->defined_class;
|
|
return defined_class ? defined_class : me->owner;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Document-class: Method
|
|
*
|
|
* Method objects are created by Object#method, and are associated
|
|
* with a particular object (not just with a class). They may be
|
|
* used to invoke the method within the object, and as a block
|
|
* associated with an iterator. They may also be unbound from one
|
|
* object (creating an UnboundMethod) and bound to another.
|
|
*
|
|
* class Thing
|
|
* def square(n)
|
|
* n*n
|
|
* end
|
|
* end
|
|
* thing = Thing.new
|
|
* meth = thing.method(:square)
|
|
*
|
|
* meth.call(9) #=> 81
|
|
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
|
|
*
|
|
* [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3
|
|
*
|
|
* require 'date'
|
|
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
|
|
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.eql?(other_meth) -> true or false
|
|
* meth == other_meth -> true or false
|
|
*
|
|
* Two method objects are equal if they are bound to the same
|
|
* object and refer to the same method definition and their owners are the
|
|
* same class or module.
|
|
*/
|
|
|
|
static VALUE
|
|
method_eq(VALUE method, VALUE other)
|
|
{
|
|
struct METHOD *m1, *m2;
|
|
VALUE klass1, klass2;
|
|
|
|
if (!rb_obj_is_method(other))
|
|
return Qfalse;
|
|
if (CLASS_OF(method) != CLASS_OF(other))
|
|
return Qfalse;
|
|
|
|
Check_TypedStruct(method, &method_data_type);
|
|
m1 = (struct METHOD *)DATA_PTR(method);
|
|
m2 = (struct METHOD *)DATA_PTR(other);
|
|
|
|
klass1 = method_entry_defined_class(m1->me);
|
|
klass2 = method_entry_defined_class(m2->me);
|
|
|
|
if (!rb_method_entry_eq(m1->me, m2->me) ||
|
|
klass1 != klass2 ||
|
|
m1->klass != m2->klass ||
|
|
m1->recv != m2->recv) {
|
|
return Qfalse;
|
|
}
|
|
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.hash -> integer
|
|
*
|
|
* Returns a hash value corresponding to the method object.
|
|
*
|
|
* See also Object#hash.
|
|
*/
|
|
|
|
static VALUE
|
|
method_hash(VALUE method)
|
|
{
|
|
struct METHOD *m;
|
|
st_index_t hash;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
|
|
hash = rb_hash_start((st_index_t)m->recv);
|
|
hash = rb_hash_method_entry(hash, m->me);
|
|
hash = rb_hash_end(hash);
|
|
|
|
return ST2FIX(hash);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.unbind -> unbound_method
|
|
*
|
|
* Dissociates <i>meth</i> from its current receiver. The resulting
|
|
* UnboundMethod can subsequently be bound to a new object of the
|
|
* same class (see UnboundMethod).
|
|
*/
|
|
|
|
static VALUE
|
|
method_unbind(VALUE obj)
|
|
{
|
|
VALUE method;
|
|
struct METHOD *orig, *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
|
|
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
|
|
&method_data_type, data);
|
|
RB_OBJ_WRITE(method, &data->recv, Qundef);
|
|
RB_OBJ_WRITE(method, &data->klass, orig->klass);
|
|
RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
|
|
RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
|
|
|
|
return method;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.receiver -> object
|
|
*
|
|
* Returns the bound receiver of the method object.
|
|
*
|
|
* (1..3).method(:map).receiver # => 1..3
|
|
*/
|
|
|
|
static VALUE
|
|
method_receiver(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return data->recv;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.name -> symbol
|
|
*
|
|
* Returns the name of the method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_name(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return ID2SYM(data->me->called_id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.original_name -> symbol
|
|
*
|
|
* Returns the original name of the method.
|
|
*
|
|
* class C
|
|
* def foo; end
|
|
* alias bar foo
|
|
* end
|
|
* C.instance_method(:bar).original_name # => :foo
|
|
*/
|
|
|
|
static VALUE
|
|
method_original_name(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return ID2SYM(data->me->def->original_id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.owner -> class_or_module
|
|
*
|
|
* Returns the class or module that defines the method.
|
|
* See also Method#receiver.
|
|
*
|
|
* (1..3).method(:map).owner #=> Enumerable
|
|
*/
|
|
|
|
static VALUE
|
|
method_owner(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return data->me->owner;
|
|
}
|
|
|
|
void
|
|
rb_method_name_error(VALUE klass, VALUE str)
|
|
{
|
|
#define MSG(s) rb_fstring_lit("undefined method `%1$s' for"s" `%2$s'")
|
|
VALUE c = klass;
|
|
VALUE s;
|
|
|
|
if (FL_TEST(c, FL_SINGLETON)) {
|
|
VALUE obj = rb_ivar_get(klass, attached);
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
c = obj;
|
|
s = MSG("");
|
|
}
|
|
goto normal_class;
|
|
}
|
|
else if (RB_TYPE_P(c, T_MODULE)) {
|
|
s = MSG(" module");
|
|
}
|
|
else {
|
|
normal_class:
|
|
s = MSG(" class");
|
|
}
|
|
rb_name_err_raise_str(s, c, str);
|
|
#undef MSG
|
|
}
|
|
|
|
static VALUE
|
|
obj_method(VALUE obj, VALUE vid, int scope)
|
|
{
|
|
ID id = rb_check_id(&vid);
|
|
const VALUE klass = CLASS_OF(obj);
|
|
const VALUE mclass = rb_cMethod;
|
|
|
|
if (!id) {
|
|
VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass);
|
|
if (m) return m;
|
|
rb_method_name_error(klass, vid);
|
|
}
|
|
return mnew(klass, obj, id, mclass, scope);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.method(sym) -> method
|
|
*
|
|
* Looks up the named method as a receiver in <i>obj</i>, returning a
|
|
* Method object (or raising NameError). The Method object acts as a
|
|
* closure in <i>obj</i>'s object instance, so instance variables and
|
|
* the value of <code>self</code> remain available.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @iv = n
|
|
* end
|
|
* def hello()
|
|
* "Hello, @iv = #{@iv}"
|
|
* end
|
|
* end
|
|
*
|
|
* k = Demo.new(99)
|
|
* m = k.method(:hello)
|
|
* m.call #=> "Hello, @iv = 99"
|
|
*
|
|
* l = Demo.new('Fred')
|
|
* m = l.method("hello")
|
|
* m.call #=> "Hello, @iv = Fred"
|
|
*
|
|
* Note that Method implements <code>to_proc</code> method, which
|
|
* means it can be used with iterators.
|
|
*
|
|
* [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
|
|
*
|
|
* out = File.open('test.txt', 'w')
|
|
* [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
|
|
*
|
|
* require 'date'
|
|
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
|
|
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_method(VALUE obj, VALUE vid)
|
|
{
|
|
return obj_method(obj, vid, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.public_method(sym) -> method
|
|
*
|
|
* Similar to _method_, searches public method only.
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_public_method(VALUE obj, VALUE vid)
|
|
{
|
|
return obj_method(obj, vid, TRUE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.singleton_method(sym) -> method
|
|
*
|
|
* Similar to _method_, searches singleton method only.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @iv = n
|
|
* end
|
|
* def hello()
|
|
* "Hello, @iv = #{@iv}"
|
|
* end
|
|
* end
|
|
*
|
|
* k = Demo.new(99)
|
|
* def k.hi
|
|
* "Hi, @iv = #{@iv}"
|
|
* end
|
|
* m = k.singleton_method(:hi)
|
|
* m.call #=> "Hi, @iv = 99"
|
|
* m = k.singleton_method(:hello) #=> NameError
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_singleton_method(VALUE obj, VALUE vid)
|
|
{
|
|
const rb_method_entry_t *me;
|
|
VALUE klass = rb_singleton_class_get(obj);
|
|
ID id = rb_check_id(&vid);
|
|
|
|
if (NIL_P(klass) || NIL_P(klass = RCLASS_ORIGIN(klass))) {
|
|
undef:
|
|
rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'",
|
|
obj, vid);
|
|
}
|
|
if (!id) {
|
|
VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
|
|
if (m) return m;
|
|
goto undef;
|
|
}
|
|
me = rb_method_entry_at(klass, id);
|
|
if (UNDEFINED_METHOD_ENTRY_P(me) ||
|
|
UNDEFINED_REFINED_METHOD_P(me->def)) {
|
|
vid = ID2SYM(id);
|
|
goto undef;
|
|
}
|
|
return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.instance_method(symbol) -> unbound_method
|
|
*
|
|
* Returns an +UnboundMethod+ representing the given
|
|
* instance method in _mod_.
|
|
*
|
|
* class Interpreter
|
|
* def do_a() print "there, "; end
|
|
* def do_d() print "Hello "; end
|
|
* def do_e() print "!\n"; end
|
|
* def do_v() print "Dave"; end
|
|
* Dispatcher = {
|
|
* "a" => instance_method(:do_a),
|
|
* "d" => instance_method(:do_d),
|
|
* "e" => instance_method(:do_e),
|
|
* "v" => instance_method(:do_v)
|
|
* }
|
|
* def interpret(string)
|
|
* string.each_char {|b| Dispatcher[b].bind(self).call }
|
|
* end
|
|
* end
|
|
*
|
|
* interpreter = Interpreter.new
|
|
* interpreter.interpret('dave')
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* Hello there, Dave!
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_instance_method(VALUE mod, VALUE vid)
|
|
{
|
|
ID id = rb_check_id(&vid);
|
|
if (!id) {
|
|
rb_method_name_error(mod, vid);
|
|
}
|
|
return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.public_instance_method(symbol) -> unbound_method
|
|
*
|
|
* Similar to _instance_method_, searches public method only.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_public_instance_method(VALUE mod, VALUE vid)
|
|
{
|
|
ID id = rb_check_id(&vid);
|
|
if (!id) {
|
|
rb_method_name_error(mod, vid);
|
|
}
|
|
return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* define_method(symbol, method) -> symbol
|
|
* define_method(symbol) { block } -> symbol
|
|
*
|
|
* Defines an instance method in the receiver. The _method_
|
|
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
|
|
* If a block is specified, it is used as the method body.
|
|
* If a block or the _method_ parameter has parameters,
|
|
* they're used as method parameters.
|
|
* This block is evaluated using #instance_eval.
|
|
*
|
|
* class A
|
|
* def fred
|
|
* puts "In Fred"
|
|
* end
|
|
* def create_method(name, &block)
|
|
* self.class.define_method(name, &block)
|
|
* end
|
|
* define_method(:wilma) { puts "Charge it!" }
|
|
* define_method(:flint) {|name| puts "I'm #{name}!"}
|
|
* end
|
|
* class B < A
|
|
* define_method(:barney, instance_method(:fred))
|
|
* end
|
|
* a = B.new
|
|
* a.barney
|
|
* a.wilma
|
|
* a.flint('Dino')
|
|
* a.create_method(:betty) { p self }
|
|
* a.betty
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* In Fred
|
|
* Charge it!
|
|
* I'm Dino!
|
|
* #<B:0x401b39e8>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
|
|
{
|
|
ID id;
|
|
VALUE body;
|
|
VALUE name;
|
|
const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
|
|
const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
|
|
const rb_scope_visibility_t *scope_visi = &default_scope_visi;
|
|
int is_method = FALSE;
|
|
|
|
if (cref) {
|
|
scope_visi = CREF_SCOPE_VISI(cref);
|
|
}
|
|
|
|
rb_check_arity(argc, 1, 2);
|
|
name = argv[0];
|
|
id = rb_check_id(&name);
|
|
if (argc == 1) {
|
|
#if PROC_NEW_REQUIRES_BLOCK
|
|
body = rb_block_lambda();
|
|
#else
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
VALUE block_handler = rb_vm_frame_block_handler(ec->cfp);
|
|
if (block_handler == VM_BLOCK_HANDLER_NONE) rb_raise(rb_eArgError, proc_without_block);
|
|
|
|
switch (vm_block_handler_type(block_handler)) {
|
|
case block_handler_type_proc:
|
|
body = VM_BH_TO_PROC(block_handler);
|
|
break;
|
|
case block_handler_type_symbol:
|
|
body = rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
|
|
break;
|
|
case block_handler_type_iseq:
|
|
case block_handler_type_ifunc:
|
|
body = rb_vm_make_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
body = argv[1];
|
|
|
|
if (rb_obj_is_method(body)) {
|
|
is_method = TRUE;
|
|
}
|
|
else if (rb_obj_is_proc(body)) {
|
|
is_method = FALSE;
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError,
|
|
"wrong argument type %s (expected Proc/Method/UnboundMethod)",
|
|
rb_obj_classname(body));
|
|
}
|
|
}
|
|
if (!id) id = rb_to_id(name);
|
|
|
|
if (is_method) {
|
|
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
|
|
if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
|
|
!RTEST(rb_class_inherited_p(mod, method->me->owner))) {
|
|
if (FL_TEST(method->me->owner, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError,
|
|
"can't bind singleton method to a different class");
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError,
|
|
"bind argument must be a subclass of % "PRIsVALUE,
|
|
method->me->owner);
|
|
}
|
|
}
|
|
rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
|
|
if (scope_visi->module_func) {
|
|
rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
|
|
}
|
|
RB_GC_GUARD(body);
|
|
}
|
|
else {
|
|
VALUE procval = rb_proc_dup(body);
|
|
if (vm_proc_iseq(procval) != NULL) {
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
proc->is_lambda = TRUE;
|
|
proc->is_from_method = TRUE;
|
|
}
|
|
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
|
|
if (scope_visi->module_func) {
|
|
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
|
|
}
|
|
}
|
|
|
|
return ID2SYM(id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* define_singleton_method(symbol, method) -> symbol
|
|
* define_singleton_method(symbol) { block } -> symbol
|
|
*
|
|
* Defines a singleton method in the receiver. The _method_
|
|
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
|
|
* If a block is specified, it is used as the method body.
|
|
* If a block or a method has parameters, they're used as method parameters.
|
|
*
|
|
* class A
|
|
* class << self
|
|
* def class_name
|
|
* to_s
|
|
* end
|
|
* end
|
|
* end
|
|
* A.define_singleton_method(:who_am_i) do
|
|
* "I am: #{class_name}"
|
|
* end
|
|
* A.who_am_i # ==> "I am: A"
|
|
*
|
|
* guy = "Bob"
|
|
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
|
|
* guy.hello #=> "Bob: Hello there!"
|
|
*
|
|
* chris = "Chris"
|
|
* chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
|
|
* chris.greet("Hi") #=> "Hi, I'm Chris!"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE klass = rb_singleton_class(obj);
|
|
|
|
return rb_mod_define_method(argc, argv, klass);
|
|
}
|
|
|
|
/*
|
|
* define_method(symbol, method) -> symbol
|
|
* define_method(symbol) { block } -> symbol
|
|
*
|
|
* Defines a global function by _method_ or the block.
|
|
*/
|
|
|
|
static VALUE
|
|
top_define_method(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
VALUE klass;
|
|
|
|
klass = th->top_wrapper;
|
|
if (klass) {
|
|
rb_warning("main.define_method in the wrapped load is effective only in wrapper module");
|
|
}
|
|
else {
|
|
klass = rb_cObject;
|
|
}
|
|
return rb_mod_define_method(argc, argv, klass);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* method.clone -> new_method
|
|
*
|
|
* Returns a clone of this method.
|
|
*
|
|
* class A
|
|
* def foo
|
|
* return "bar"
|
|
* end
|
|
* end
|
|
*
|
|
* m = A.new.method(:foo)
|
|
* m.call # => "bar"
|
|
* n = m.clone.call # => "bar"
|
|
*/
|
|
|
|
static VALUE
|
|
method_clone(VALUE self)
|
|
{
|
|
VALUE clone;
|
|
struct METHOD *orig, *data;
|
|
|
|
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
|
|
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
|
|
CLONESETUP(clone, self);
|
|
RB_OBJ_WRITE(clone, &data->recv, orig->recv);
|
|
RB_OBJ_WRITE(clone, &data->klass, orig->klass);
|
|
RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
|
|
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
|
|
return clone;
|
|
}
|
|
|
|
/* Document-method: Method#===
|
|
*
|
|
* call-seq:
|
|
* method === obj -> result_of_method
|
|
*
|
|
* Invokes the method with +obj+ as the parameter like #call.
|
|
* This allows a method object to be the target of a +when+ clause
|
|
* in a case statement.
|
|
*
|
|
* require 'prime'
|
|
*
|
|
* case 1373
|
|
* when Prime.method(:prime?)
|
|
* # ...
|
|
* end
|
|
*/
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.call(args, ...) -> obj
|
|
* meth[args, ...] -> obj
|
|
*
|
|
* Invokes the <i>meth</i> with the specified arguments, returning the
|
|
* method's return value.
|
|
*
|
|
* m = 12.method("+")
|
|
* m.call(3) #=> 15
|
|
* m.call(20) #=> 32
|
|
*/
|
|
|
|
static VALUE
|
|
rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
|
|
{
|
|
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
|
|
return rb_method_call_with_block_kw(argc, argv, method, procval, RB_PASS_CALLED_KEYWORDS);
|
|
}
|
|
|
|
VALUE
|
|
rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat)
|
|
{
|
|
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
|
|
return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat);
|
|
}
|
|
|
|
VALUE
|
|
rb_method_call(int argc, const VALUE *argv, VALUE method)
|
|
{
|
|
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
|
|
return rb_method_call_with_block(argc, argv, method, procval);
|
|
}
|
|
|
|
static const rb_callable_method_entry_t *
|
|
method_callable_method_entry(const struct METHOD *data)
|
|
{
|
|
if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
|
|
return (const rb_callable_method_entry_t *)data->me;
|
|
}
|
|
|
|
static inline VALUE
|
|
call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
|
|
int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
|
|
{
|
|
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
|
|
return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv,
|
|
method_callable_method_entry(data), kw_splat);
|
|
}
|
|
|
|
VALUE
|
|
rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat)
|
|
{
|
|
const struct METHOD *data;
|
|
rb_execution_context_t *ec = GET_EC();
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
if (data->recv == Qundef) {
|
|
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
|
|
}
|
|
return call_method_data(ec, data, argc, argv, passed_procval, kw_splat);
|
|
}
|
|
|
|
VALUE
|
|
rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
|
|
{
|
|
return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Document-class: UnboundMethod
|
|
*
|
|
* Ruby supports two forms of objectified methods. Class Method is
|
|
* used to represent methods that are associated with a particular
|
|
* object: these method objects are bound to that object. Bound
|
|
* method objects for an object can be created using Object#method.
|
|
*
|
|
* Ruby also supports unbound methods; methods objects that are not
|
|
* associated with a particular object. These can be created either
|
|
* by calling Module#instance_method or by calling #unbind on a bound
|
|
* method object. The result of both of these is an UnboundMethod
|
|
* object.
|
|
*
|
|
* Unbound methods can only be called after they are bound to an
|
|
* object. That object must be a kind_of? the method's original
|
|
* class.
|
|
*
|
|
* class Square
|
|
* def area
|
|
* @side * @side
|
|
* end
|
|
* def initialize(side)
|
|
* @side = side
|
|
* end
|
|
* end
|
|
*
|
|
* area_un = Square.instance_method(:area)
|
|
*
|
|
* s = Square.new(12)
|
|
* area = area_un.bind(s)
|
|
* area.call #=> 144
|
|
*
|
|
* Unbound methods are a reference to the method at the time it was
|
|
* objectified: subsequent changes to the underlying class will not
|
|
* affect the unbound method.
|
|
*
|
|
* class Test
|
|
* def test
|
|
* :original
|
|
* end
|
|
* end
|
|
* um = Test.instance_method(:test)
|
|
* class Test
|
|
* def test
|
|
* :modified
|
|
* end
|
|
* end
|
|
* t = Test.new
|
|
* t.test #=> :modified
|
|
* um.bind(t).call #=> :original
|
|
*
|
|
*/
|
|
|
|
static void
|
|
convert_umethod_to_method_components(VALUE method, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
|
|
VALUE methclass = data->me->owner;
|
|
VALUE iclass = data->me->defined_class;
|
|
VALUE klass = CLASS_OF(recv);
|
|
|
|
if (!RB_TYPE_P(methclass, T_MODULE) &&
|
|
methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) {
|
|
if (FL_TEST(methclass, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError,
|
|
"singleton method called for a different object");
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
|
|
methclass);
|
|
}
|
|
}
|
|
|
|
const rb_method_entry_t *me = rb_method_entry_clone(data->me);
|
|
|
|
if (RB_TYPE_P(me->owner, T_MODULE)) {
|
|
VALUE ic = rb_class_search_ancestor(klass, me->owner);
|
|
if (ic) {
|
|
klass = ic;
|
|
iclass = ic;
|
|
}
|
|
else {
|
|
klass = rb_include_class_new(methclass, klass);
|
|
}
|
|
me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass);
|
|
}
|
|
|
|
*methclass_out = methclass;
|
|
*klass_out = klass;
|
|
*iclass_out = iclass;
|
|
*me_out = me;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* umeth.bind(obj) -> method
|
|
*
|
|
* Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which
|
|
* <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must
|
|
* be true.
|
|
*
|
|
* class A
|
|
* def test
|
|
* puts "In test, class = #{self.class}"
|
|
* end
|
|
* end
|
|
* class B < A
|
|
* end
|
|
* class C < B
|
|
* end
|
|
*
|
|
*
|
|
* um = B.instance_method(:test)
|
|
* bm = um.bind(C.new)
|
|
* bm.call
|
|
* bm = um.bind(B.new)
|
|
* bm.call
|
|
* bm = um.bind(A.new)
|
|
* bm.call
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* In test, class = C
|
|
* In test, class = B
|
|
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
|
|
* from prog.rb:16
|
|
*/
|
|
|
|
static VALUE
|
|
umethod_bind(VALUE method, VALUE recv)
|
|
{
|
|
VALUE methclass, klass, iclass;
|
|
const rb_method_entry_t *me;
|
|
convert_umethod_to_method_components(method, recv, &methclass, &klass, &iclass, &me);
|
|
|
|
struct METHOD *bound;
|
|
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
|
|
RB_OBJ_WRITE(method, &bound->recv, recv);
|
|
RB_OBJ_WRITE(method, &bound->klass, klass);
|
|
RB_OBJ_WRITE(method, &bound->iclass, iclass);
|
|
RB_OBJ_WRITE(method, &bound->me, me);
|
|
|
|
return method;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* umeth.bind_call(recv, args, ...) -> obj
|
|
*
|
|
* Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the
|
|
* specified arguments.
|
|
* This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>.
|
|
*/
|
|
static VALUE
|
|
umethod_bind_call(int argc, VALUE *argv, VALUE method)
|
|
{
|
|
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
|
|
VALUE recv = argv[0];
|
|
argc--;
|
|
argv++;
|
|
|
|
VALUE methclass, klass, iclass;
|
|
const rb_method_entry_t *me;
|
|
convert_umethod_to_method_components(method, recv, &methclass, &klass, &iclass, &me);
|
|
struct METHOD bound = { recv, klass, 0, me };
|
|
|
|
VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil;
|
|
|
|
rb_execution_context_t *ec = GET_EC();
|
|
return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS);
|
|
}
|
|
|
|
/*
|
|
* Returns the number of required parameters and stores the maximum
|
|
* number of parameters in max, or UNLIMITED_ARGUMENTS
|
|
* if there is no maximum.
|
|
*/
|
|
static int
|
|
rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max)
|
|
{
|
|
const rb_method_definition_t *def = me->def;
|
|
|
|
again:
|
|
if (!def) return *max = 0;
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
if (def->body.cfunc.argc < 0) {
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
}
|
|
return *max = check_argc(def->body.cfunc.argc);
|
|
case VM_METHOD_TYPE_ZSUPER:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
return *max = 1;
|
|
case VM_METHOD_TYPE_IVAR:
|
|
return *max = 0;
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
def = def->body.alias.original_me->def;
|
|
goto again;
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
return rb_proc_min_max_arity(def->body.bmethod.proc, max);
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
return *max = 0;
|
|
case VM_METHOD_TYPE_MISSING:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case VM_METHOD_TYPE_OPTIMIZED: {
|
|
switch (def->body.optimize_type) {
|
|
case OPTIMIZED_METHOD_TYPE_SEND:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case OPTIMIZED_METHOD_TYPE_CALL:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case VM_METHOD_TYPE_REFINED:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
}
|
|
rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type);
|
|
UNREACHABLE_RETURN(Qnil);
|
|
}
|
|
|
|
int
|
|
rb_method_entry_arity(const rb_method_entry_t *me)
|
|
{
|
|
int max, min = rb_method_entry_min_max_arity(me, &max);
|
|
return min == max ? min : -min-1;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.arity -> integer
|
|
*
|
|
* Returns an indication of the number of arguments accepted by a
|
|
* method. Returns a nonnegative integer for methods that take a fixed
|
|
* number of arguments. For Ruby methods that take a variable number of
|
|
* arguments, returns -n-1, where n is the number of required arguments.
|
|
* Keyword arguments will be considered as a single additional argument,
|
|
* that argument being mandatory if any keyword argument is mandatory.
|
|
* For methods written in C, returns -1 if the call takes a
|
|
* variable number of arguments.
|
|
*
|
|
* class C
|
|
* def one; end
|
|
* def two(a); end
|
|
* def three(*a); end
|
|
* def four(a, b); end
|
|
* def five(a, b, *c); end
|
|
* def six(a, b, *c, &d); end
|
|
* def seven(a, b, x:0); end
|
|
* def eight(x:, y:); end
|
|
* def nine(x:, y:, **z); end
|
|
* def ten(*a, x:, y:); end
|
|
* end
|
|
* c = C.new
|
|
* c.method(:one).arity #=> 0
|
|
* c.method(:two).arity #=> 1
|
|
* c.method(:three).arity #=> -1
|
|
* c.method(:four).arity #=> 2
|
|
* c.method(:five).arity #=> -3
|
|
* c.method(:six).arity #=> -3
|
|
* c.method(:seven).arity #=> -3
|
|
* c.method(:eight).arity #=> 1
|
|
* c.method(:nine).arity #=> 1
|
|
* c.method(:ten).arity #=> -2
|
|
*
|
|
* "cat".method(:size).arity #=> 0
|
|
* "cat".method(:replace).arity #=> 1
|
|
* "cat".method(:squeeze).arity #=> -1
|
|
* "cat".method(:count).arity #=> -1
|
|
*/
|
|
|
|
static VALUE
|
|
method_arity_m(VALUE method)
|
|
{
|
|
int n = method_arity(method);
|
|
return INT2FIX(n);
|
|
}
|
|
|
|
static int
|
|
method_arity(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return rb_method_entry_arity(data->me);
|
|
}
|
|
|
|
static const rb_method_entry_t *
|
|
original_method_entry(VALUE mod, ID id)
|
|
{
|
|
const rb_method_entry_t *me;
|
|
|
|
while ((me = rb_method_entry(mod, id)) != 0) {
|
|
const rb_method_definition_t *def = me->def;
|
|
if (def->type != VM_METHOD_TYPE_ZSUPER) break;
|
|
mod = RCLASS_SUPER(me->owner);
|
|
id = def->original_id;
|
|
}
|
|
return me;
|
|
}
|
|
|
|
static int
|
|
method_min_max_arity(VALUE method, int *max)
|
|
{
|
|
const struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return rb_method_entry_min_max_arity(data->me, max);
|
|
}
|
|
|
|
int
|
|
rb_mod_method_arity(VALUE mod, ID id)
|
|
{
|
|
const rb_method_entry_t *me = original_method_entry(mod, id);
|
|
if (!me) return 0; /* should raise? */
|
|
return rb_method_entry_arity(me);
|
|
}
|
|
|
|
int
|
|
rb_obj_method_arity(VALUE obj, ID id)
|
|
{
|
|
return rb_mod_method_arity(CLASS_OF(obj), id);
|
|
}
|
|
|
|
const rb_method_definition_t *
|
|
rb_method_def(VALUE method)
|
|
{
|
|
const struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return data->me->def;
|
|
}
|
|
|
|
static const rb_iseq_t *
|
|
method_def_iseq(const rb_method_definition_t *def)
|
|
{
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return rb_iseq_check(def->body.iseq.iseqptr);
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
return rb_proc_get_iseq(def->body.bmethod.proc, 0);
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
return method_def_iseq(def->body.alias.original_me->def);
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
case VM_METHOD_TYPE_IVAR:
|
|
case VM_METHOD_TYPE_ZSUPER:
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
case VM_METHOD_TYPE_OPTIMIZED:
|
|
case VM_METHOD_TYPE_MISSING:
|
|
case VM_METHOD_TYPE_REFINED:
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_method_iseq(VALUE method)
|
|
{
|
|
return method_def_iseq(rb_method_def(method));
|
|
}
|
|
|
|
static const rb_cref_t *
|
|
method_cref(VALUE method)
|
|
{
|
|
const rb_method_definition_t *def = rb_method_def(method);
|
|
|
|
again:
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return def->body.iseq.cref;
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
def = def->body.alias.original_me->def;
|
|
goto again;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
method_def_location(const rb_method_definition_t *def)
|
|
{
|
|
if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
|
|
if (!def->body.attr.location)
|
|
return Qnil;
|
|
return rb_ary_dup(def->body.attr.location);
|
|
}
|
|
return iseq_location(method_def_iseq(def));
|
|
}
|
|
|
|
VALUE
|
|
rb_method_entry_location(const rb_method_entry_t *me)
|
|
{
|
|
if (!me) return Qnil;
|
|
return method_def_location(me->def);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.source_location -> [String, Integer]
|
|
*
|
|
* Returns the Ruby source filename and line number containing this method
|
|
* or nil if this method was not defined in Ruby (i.e. native).
|
|
*/
|
|
|
|
VALUE
|
|
rb_method_location(VALUE method)
|
|
{
|
|
return method_def_location(rb_method_def(method));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.parameters -> array
|
|
*
|
|
* Returns the parameter information of this method.
|
|
*
|
|
* def foo(bar); end
|
|
* method(:foo).parameters #=> [[:req, :bar]]
|
|
*
|
|
* def foo(bar, baz, bat, &blk); end
|
|
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
|
|
*
|
|
* def foo(bar, *args); end
|
|
* method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
|
|
*
|
|
* def foo(bar, baz, *args, &blk); end
|
|
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_method_parameters(VALUE method)
|
|
{
|
|
const rb_iseq_t *iseq = rb_method_iseq(method);
|
|
if (!iseq) {
|
|
return rb_unnamed_parameters(method_arity(method));
|
|
}
|
|
return rb_iseq_parameters(iseq, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.to_s -> string
|
|
* meth.inspect -> string
|
|
*
|
|
* Returns a human-readable description of the underlying method.
|
|
*
|
|
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
|
|
* (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
|
|
*
|
|
* In the latter case, the method description includes the "owner" of the
|
|
* original method (+Enumerable+ module, which is included into +Range+).
|
|
*
|
|
* +inspect+ also provides, when possible, method argument names (call
|
|
* sequence) and source location.
|
|
*
|
|
* require 'net/http'
|
|
* Net::HTTP.method(:get).inspect
|
|
* #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
|
|
*
|
|
* <code>...</code> in argument definition means argument is optional (has
|
|
* some default value).
|
|
*
|
|
* For methods defined in C (language core and extensions), location and
|
|
* argument names can't be extracted, and only generic information is provided
|
|
* in form of <code>*</code> (any number of arguments) or <code>_</code> (some
|
|
* positional argument).
|
|
*
|
|
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
|
|
* "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
|
|
|
|
*/
|
|
|
|
static VALUE
|
|
method_inspect(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE str;
|
|
const char *sharp = "#";
|
|
VALUE mklass;
|
|
VALUE defined_class;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
|
|
|
|
mklass = data->klass;
|
|
|
|
if (RB_TYPE_P(mklass, T_ICLASS)) {
|
|
/* TODO: I'm not sure why mklass is T_ICLASS.
|
|
* UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
|
|
* but not sure it is needed.
|
|
*/
|
|
mklass = RBASIC_CLASS(mklass);
|
|
}
|
|
|
|
if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
|
|
defined_class = data->me->def->body.alias.original_me->owner;
|
|
}
|
|
else {
|
|
defined_class = method_entry_defined_class(data->me);
|
|
}
|
|
|
|
if (RB_TYPE_P(defined_class, T_ICLASS)) {
|
|
defined_class = RBASIC_CLASS(defined_class);
|
|
}
|
|
|
|
if (FL_TEST(mklass, FL_SINGLETON)) {
|
|
VALUE v = rb_ivar_get(mklass, attached);
|
|
|
|
if (data->recv == Qundef) {
|
|
rb_str_buf_append(str, rb_inspect(mklass));
|
|
}
|
|
else if (data->recv == v) {
|
|
rb_str_buf_append(str, rb_inspect(v));
|
|
sharp = ".";
|
|
}
|
|
else {
|
|
rb_str_buf_append(str, rb_inspect(data->recv));
|
|
rb_str_buf_cat2(str, "(");
|
|
rb_str_buf_append(str, rb_inspect(v));
|
|
rb_str_buf_cat2(str, ")");
|
|
sharp = ".";
|
|
}
|
|
}
|
|
else {
|
|
rb_str_buf_append(str, rb_inspect(mklass));
|
|
if (defined_class != mklass) {
|
|
rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
|
|
}
|
|
}
|
|
rb_str_buf_cat2(str, sharp);
|
|
rb_str_append(str, rb_id2str(data->me->called_id));
|
|
if (data->me->called_id != data->me->def->original_id) {
|
|
rb_str_catf(str, "(%"PRIsVALUE")",
|
|
rb_id2str(data->me->def->original_id));
|
|
}
|
|
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
|
|
rb_str_buf_cat2(str, " (not-implemented)");
|
|
}
|
|
|
|
// parameter information
|
|
{
|
|
VALUE params = rb_method_parameters(method);
|
|
VALUE pair, name, kind;
|
|
const VALUE req = ID2SYM(rb_intern("req"));
|
|
const VALUE opt = ID2SYM(rb_intern("opt"));
|
|
const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
|
|
const VALUE key = ID2SYM(rb_intern("key"));
|
|
const VALUE rest = ID2SYM(rb_intern("rest"));
|
|
const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
|
|
const VALUE block = ID2SYM(rb_intern("block"));
|
|
const VALUE nokey = ID2SYM(rb_intern("nokey"));
|
|
int forwarding = 0;
|
|
|
|
rb_str_buf_cat2(str, "(");
|
|
|
|
for (int i = 0; i < RARRAY_LEN(params); i++) {
|
|
pair = RARRAY_AREF(params, i);
|
|
kind = RARRAY_AREF(pair, 0);
|
|
name = RARRAY_AREF(pair, 1);
|
|
// FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?..
|
|
if (NIL_P(name) || name == Qfalse) {
|
|
// FIXME: can it be reduced to switch/case?
|
|
if (kind == req || kind == opt) {
|
|
name = rb_str_new2("_");
|
|
}
|
|
else if (kind == rest || kind == keyrest) {
|
|
name = rb_str_new2("");
|
|
}
|
|
else if (kind == block) {
|
|
name = rb_str_new2("block");
|
|
}
|
|
else if (kind == nokey) {
|
|
name = rb_str_new2("nil");
|
|
}
|
|
}
|
|
|
|
if (kind == req) {
|
|
rb_str_catf(str, "%"PRIsVALUE, name);
|
|
}
|
|
else if (kind == opt) {
|
|
rb_str_catf(str, "%"PRIsVALUE"=...", name);
|
|
}
|
|
else if (kind == keyreq) {
|
|
rb_str_catf(str, "%"PRIsVALUE":", name);
|
|
}
|
|
else if (kind == key) {
|
|
rb_str_catf(str, "%"PRIsVALUE": ...", name);
|
|
}
|
|
else if (kind == rest) {
|
|
if (name == ID2SYM('*')) {
|
|
forwarding = 1;
|
|
rb_str_cat_cstr(str, "...");
|
|
}
|
|
else {
|
|
rb_str_catf(str, "*%"PRIsVALUE, name);
|
|
}
|
|
}
|
|
else if (kind == keyrest) {
|
|
rb_str_catf(str, "**%"PRIsVALUE, name);
|
|
}
|
|
else if (kind == block) {
|
|
if (name == ID2SYM('&')) {
|
|
if (forwarding) {
|
|
rb_str_set_len(str, RSTRING_LEN(str) - 2);
|
|
}
|
|
else {
|
|
rb_str_cat_cstr(str, "...");
|
|
}
|
|
}
|
|
else {
|
|
rb_str_catf(str, "&%"PRIsVALUE, name);
|
|
}
|
|
}
|
|
else if (kind == nokey) {
|
|
rb_str_buf_cat2(str, "**nil");
|
|
}
|
|
|
|
if (i < RARRAY_LEN(params) - 1) {
|
|
rb_str_buf_cat2(str, ", ");
|
|
}
|
|
}
|
|
rb_str_buf_cat2(str, ")");
|
|
}
|
|
|
|
{ // source location
|
|
VALUE loc = rb_method_location(method);
|
|
if (!NIL_P(loc)) {
|
|
rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
|
|
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
|
|
}
|
|
}
|
|
|
|
rb_str_buf_cat2(str, ">");
|
|
|
|
return str;
|
|
}
|
|
|
|
static VALUE
|
|
mproc(VALUE method)
|
|
{
|
|
return rb_funcallv(rb_mRubyVMFrozenCore, idProc, 0, 0);
|
|
}
|
|
|
|
static VALUE
|
|
mlambda(VALUE method)
|
|
{
|
|
return rb_funcallv(rb_mRubyVMFrozenCore, idLambda, 0, 0);
|
|
}
|
|
|
|
static VALUE
|
|
bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method))
|
|
{
|
|
return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS);
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_new(
|
|
rb_block_call_func_t func,
|
|
VALUE val)
|
|
{
|
|
VALUE procval = rb_iterate(mproc, 0, func, val);
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.to_proc -> proc
|
|
*
|
|
* Returns a Proc object corresponding to this method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_to_proc(VALUE method)
|
|
{
|
|
VALUE procval;
|
|
rb_proc_t *proc;
|
|
|
|
/*
|
|
* class Method
|
|
* def to_proc
|
|
* lambda{|*args|
|
|
* self.call(*args)
|
|
* }
|
|
* end
|
|
* end
|
|
*/
|
|
procval = rb_iterate(mlambda, 0, bmcall, method);
|
|
GetProcPtr(procval, proc);
|
|
proc->is_from_method = 1;
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.super_method -> method
|
|
*
|
|
* Returns a Method of superclass which would be called when super is used
|
|
* or nil if there is no method on superclass.
|
|
*/
|
|
|
|
static VALUE
|
|
method_super_method(VALUE method)
|
|
{
|
|
const struct METHOD *data;
|
|
VALUE super_class, iclass;
|
|
ID mid;
|
|
const rb_method_entry_t *me;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
iclass = data->iclass;
|
|
if (!iclass) return Qnil;
|
|
super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
|
|
mid = data->me->called_id;
|
|
if (!super_class) return Qnil;
|
|
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
|
|
if (!me) return Qnil;
|
|
return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* local_jump_error.exit_value -> obj
|
|
*
|
|
* Returns the exit value associated with this +LocalJumpError+.
|
|
*/
|
|
static VALUE
|
|
localjump_xvalue(VALUE exc)
|
|
{
|
|
return rb_iv_get(exc, "@exit_value");
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* local_jump_error.reason -> symbol
|
|
*
|
|
* The reason this block was terminated:
|
|
* :break, :redo, :retry, :next, :return, or :noreason.
|
|
*/
|
|
|
|
static VALUE
|
|
localjump_reason(VALUE exc)
|
|
{
|
|
return rb_iv_get(exc, "@reason");
|
|
}
|
|
|
|
rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
|
|
|
|
static const rb_env_t *
|
|
env_clone(const rb_env_t *env, const rb_cref_t *cref)
|
|
{
|
|
VALUE *new_ep;
|
|
VALUE *new_body;
|
|
const rb_env_t *new_env;
|
|
|
|
VM_ASSERT(env->ep > env->env);
|
|
VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
|
|
|
|
if (cref == NULL) {
|
|
cref = rb_vm_cref_new_toplevel();
|
|
}
|
|
|
|
new_body = ALLOC_N(VALUE, env->env_size);
|
|
MEMCPY(new_body, env->env, VALUE, env->env_size);
|
|
new_ep = &new_body[env->ep - env->env];
|
|
new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
|
|
RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
|
|
VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
|
|
return new_env;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.binding -> binding
|
|
*
|
|
* Returns the binding associated with <i>prc</i>.
|
|
*
|
|
* def fred(param)
|
|
* proc {}
|
|
* end
|
|
*
|
|
* b = fred(99)
|
|
* eval("param", b.binding) #=> 99
|
|
*/
|
|
static VALUE
|
|
proc_binding(VALUE self)
|
|
{
|
|
VALUE bindval, binding_self = Qundef;
|
|
rb_binding_t *bind;
|
|
const rb_proc_t *proc;
|
|
const rb_iseq_t *iseq = NULL;
|
|
const struct rb_block *block;
|
|
const rb_env_t *env = NULL;
|
|
|
|
GetProcPtr(self, proc);
|
|
block = &proc->block;
|
|
|
|
again:
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
iseq = block->as.captured.code.iseq;
|
|
binding_self = block->as.captured.self;
|
|
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
|
|
break;
|
|
case block_type_proc:
|
|
GetProcPtr(block->as.proc, proc);
|
|
block = &proc->block;
|
|
goto again;
|
|
case block_type_symbol:
|
|
goto error;
|
|
case block_type_ifunc:
|
|
{
|
|
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
|
|
if (IS_METHOD_PROC_IFUNC(ifunc)) {
|
|
VALUE method = (VALUE)ifunc->data;
|
|
VALUE name = rb_fstring_lit("<empty_iseq>");
|
|
rb_iseq_t *empty;
|
|
binding_self = method_receiver(method);
|
|
iseq = rb_method_iseq(method);
|
|
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
|
|
env = env_clone(env, method_cref(method));
|
|
/* set empty iseq */
|
|
empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP);
|
|
RB_OBJ_WRITE(env, &env->iseq, empty);
|
|
break;
|
|
}
|
|
else {
|
|
error:
|
|
rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
|
|
return Qnil;
|
|
}
|
|
}
|
|
}
|
|
|
|
bindval = rb_binding_alloc(rb_cBinding);
|
|
GetBindingPtr(bindval, bind);
|
|
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
|
|
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
|
|
rb_vm_block_ep_update(bindval, &bind->block, env->ep);
|
|
RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
|
|
|
|
if (iseq) {
|
|
rb_iseq_check(iseq);
|
|
RB_OBJ_WRITE(bindval, &bind->pathobj, iseq->body->location.pathobj);
|
|
bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq));
|
|
}
|
|
else {
|
|
RB_OBJ_WRITE(bindval, &bind->pathobj,
|
|
rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil));
|
|
bind->first_lineno = 1;
|
|
}
|
|
|
|
return bindval;
|
|
}
|
|
|
|
static rb_block_call_func curry;
|
|
|
|
static VALUE
|
|
make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
|
|
{
|
|
VALUE args = rb_ary_new3(3, proc, passed, arity);
|
|
rb_proc_t *procp;
|
|
int is_lambda;
|
|
|
|
GetProcPtr(proc, procp);
|
|
is_lambda = procp->is_lambda;
|
|
rb_ary_freeze(passed);
|
|
rb_ary_freeze(args);
|
|
proc = rb_proc_new(curry, args);
|
|
GetProcPtr(proc, procp);
|
|
procp->is_lambda = is_lambda;
|
|
return proc;
|
|
}
|
|
|
|
static VALUE
|
|
curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
|
|
{
|
|
VALUE proc, passed, arity;
|
|
proc = RARRAY_AREF(args, 0);
|
|
passed = RARRAY_AREF(args, 1);
|
|
arity = RARRAY_AREF(args, 2);
|
|
|
|
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
|
|
rb_ary_freeze(passed);
|
|
|
|
if (RARRAY_LEN(passed) < FIX2INT(arity)) {
|
|
if (!NIL_P(blockarg)) {
|
|
rb_warn("given block not used");
|
|
}
|
|
arity = make_curry_proc(proc, passed, arity);
|
|
return arity;
|
|
}
|
|
else {
|
|
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.curry -> a_proc
|
|
* prc.curry(arity) -> a_proc
|
|
*
|
|
* Returns a curried proc. If the optional <i>arity</i> argument is given,
|
|
* it determines the number of arguments.
|
|
* A curried proc receives some arguments. If a sufficient number of
|
|
* arguments are supplied, it passes the supplied arguments to the original
|
|
* proc and returns the result. Otherwise, returns another curried proc that
|
|
* takes the rest of arguments.
|
|
*
|
|
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 6
|
|
* p b.curry(5)[1][2][3][4][5] #=> 6
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 6
|
|
* p b.curry(1)[1] #=> 1
|
|
*
|
|
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 10
|
|
* p b.curry(5)[1][2][3][4][5] #=> 15
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 15
|
|
* p b.curry(1)[1] #=> 1
|
|
*
|
|
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3)
|
|
* p b.curry(5) #=> wrong number of arguments (given 5, expected 3)
|
|
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
|
|
*
|
|
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 10
|
|
* p b.curry(5)[1][2][3][4][5] #=> 15
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 15
|
|
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
|
|
*
|
|
* b = proc { :foo }
|
|
* p b.curry[] #=> :foo
|
|
*/
|
|
static VALUE
|
|
proc_curry(int argc, const VALUE *argv, VALUE self)
|
|
{
|
|
int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
|
|
VALUE arity;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) {
|
|
arity = INT2FIX(min_arity);
|
|
}
|
|
else {
|
|
sarity = FIX2INT(arity);
|
|
if (rb_proc_lambda_p(self)) {
|
|
rb_check_arity(sarity, min_arity, max_arity);
|
|
}
|
|
}
|
|
|
|
return make_curry_proc(self, rb_ary_new(), arity);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.curry -> proc
|
|
* meth.curry(arity) -> proc
|
|
*
|
|
* Returns a curried proc based on the method. When the proc is called with a number of
|
|
* arguments that is lower than the method's arity, then another curried proc is returned.
|
|
* Only when enough arguments have been supplied to satisfy the method signature, will the
|
|
* method actually be called.
|
|
*
|
|
* The optional <i>arity</i> argument should be supplied when currying methods with
|
|
* variable arguments to determine how many arguments are needed before the method is
|
|
* called.
|
|
*
|
|
* def foo(a,b,c)
|
|
* [a, b, c]
|
|
* end
|
|
*
|
|
* proc = self.method(:foo).curry
|
|
* proc2 = proc.call(1, 2) #=> #<Proc>
|
|
* proc2.call(3) #=> [1,2,3]
|
|
*
|
|
* def vararg(*args)
|
|
* args
|
|
* end
|
|
*
|
|
* proc = self.method(:vararg).curry(4)
|
|
* proc2 = proc.call(:x) #=> #<Proc>
|
|
* proc3 = proc2.call(:y, :z) #=> #<Proc>
|
|
* proc3.call(:a) #=> [:x, :y, :z, :a]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_method_curry(int argc, const VALUE *argv, VALUE self)
|
|
{
|
|
VALUE proc = method_to_proc(self);
|
|
return proc_curry(argc, argv, proc);
|
|
}
|
|
|
|
static VALUE
|
|
compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
|
|
{
|
|
VALUE f, g, fargs;
|
|
f = RARRAY_AREF(args, 0);
|
|
g = RARRAY_AREF(args, 1);
|
|
|
|
if (rb_obj_is_proc(g))
|
|
fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
|
|
else
|
|
fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
|
|
|
|
if (rb_obj_is_proc(f))
|
|
return rb_proc_call(f, rb_ary_new3(1, fargs));
|
|
else
|
|
return rb_funcallv(f, idCall, 1, &fargs);
|
|
}
|
|
|
|
static VALUE
|
|
to_callable(VALUE f)
|
|
{
|
|
VALUE mesg;
|
|
|
|
if (rb_obj_is_proc(f)) return f;
|
|
if (rb_obj_is_method(f)) return f;
|
|
if (rb_obj_respond_to(f, idCall, TRUE)) return f;
|
|
mesg = rb_fstring_lit("callable object is expected");
|
|
rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg));
|
|
}
|
|
|
|
static VALUE rb_proc_compose_to_left(VALUE self, VALUE g);
|
|
static VALUE rb_proc_compose_to_right(VALUE self, VALUE g);
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc << g -> a_proc
|
|
*
|
|
* Returns a proc that is the composition of this proc and the given <i>g</i>.
|
|
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
|
|
* then calls this proc with the result.
|
|
*
|
|
* f = proc {|x| x * x }
|
|
* g = proc {|x| x + x }
|
|
* p (f << g).call(2) #=> 16
|
|
*
|
|
* See Proc#>> for detailed explanations.
|
|
*/
|
|
static VALUE
|
|
proc_compose_to_left(VALUE self, VALUE g)
|
|
{
|
|
return rb_proc_compose_to_left(self, to_callable(g));
|
|
}
|
|
|
|
static VALUE
|
|
rb_proc_compose_to_left(VALUE self, VALUE g)
|
|
{
|
|
VALUE proc, args, procs[2];
|
|
rb_proc_t *procp;
|
|
int is_lambda;
|
|
|
|
procs[0] = self;
|
|
procs[1] = g;
|
|
args = rb_ary_tmp_new_from_values(0, 2, procs);
|
|
|
|
GetProcPtr(self, procp);
|
|
is_lambda = procp->is_lambda;
|
|
|
|
proc = rb_proc_new(compose, args);
|
|
GetProcPtr(proc, procp);
|
|
procp->is_lambda = is_lambda;
|
|
|
|
return proc;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc >> g -> a_proc
|
|
*
|
|
* Returns a proc that is the composition of this proc and the given <i>g</i>.
|
|
* The returned proc takes a variable number of arguments, calls this proc with them
|
|
* then calls <i>g</i> with the result.
|
|
*
|
|
* f = proc {|x| x * x }
|
|
* g = proc {|x| x + x }
|
|
* p (f >> g).call(2) #=> 8
|
|
*
|
|
* <i>g</i> could be other Proc, or Method, or any other object responding to
|
|
* +call+ method:
|
|
*
|
|
* class Parser
|
|
* def self.call(text)
|
|
* # ...some complicated parsing logic...
|
|
* end
|
|
* end
|
|
*
|
|
* pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" }
|
|
* pipeline.call('data.json')
|
|
*
|
|
* See also Method#>> and Method#<<.
|
|
*/
|
|
static VALUE
|
|
proc_compose_to_right(VALUE self, VALUE g)
|
|
{
|
|
return rb_proc_compose_to_right(self, to_callable(g));
|
|
}
|
|
|
|
static VALUE
|
|
rb_proc_compose_to_right(VALUE self, VALUE g)
|
|
{
|
|
VALUE proc, args, procs[2];
|
|
rb_proc_t *procp;
|
|
int is_lambda;
|
|
|
|
procs[0] = g;
|
|
procs[1] = self;
|
|
args = rb_ary_tmp_new_from_values(0, 2, procs);
|
|
|
|
GetProcPtr(self, procp);
|
|
is_lambda = procp->is_lambda;
|
|
|
|
proc = rb_proc_new(compose, args);
|
|
GetProcPtr(proc, procp);
|
|
procp->is_lambda = is_lambda;
|
|
|
|
return proc;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth << g -> a_proc
|
|
*
|
|
* Returns a proc that is the composition of this method and the given <i>g</i>.
|
|
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
|
|
* then calls this method with the result.
|
|
*
|
|
* def f(x)
|
|
* x * x
|
|
* end
|
|
*
|
|
* f = self.method(:f)
|
|
* g = proc {|x| x + x }
|
|
* p (f << g).call(2) #=> 16
|
|
*/
|
|
static VALUE
|
|
rb_method_compose_to_left(VALUE self, VALUE g)
|
|
{
|
|
g = to_callable(g);
|
|
self = method_to_proc(self);
|
|
return proc_compose_to_left(self, g);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth >> g -> a_proc
|
|
*
|
|
* Returns a proc that is the composition of this method and the given <i>g</i>.
|
|
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
|
|
* then calls this method with the result.
|
|
*
|
|
* def f(x)
|
|
* x * x
|
|
* end
|
|
*
|
|
* f = self.method(:f)
|
|
* g = proc {|x| x + x }
|
|
* p (f >> g).call(2) #=> 8
|
|
*/
|
|
static VALUE
|
|
rb_method_compose_to_right(VALUE self, VALUE g)
|
|
{
|
|
g = to_callable(g);
|
|
self = method_to_proc(self);
|
|
return proc_compose_to_right(self, g);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* proc.ruby2_keywords -> proc
|
|
*
|
|
* Marks the proc as passing keywords through a normal argument splat.
|
|
* This should only be called on procs that accept an argument splat
|
|
* (<tt>*args</tt>) but not explicit keywords or a keyword splat. It
|
|
* marks the proc such that if the proc is called with keyword arguments,
|
|
* the final hash argument is marked with a special flag such that if it
|
|
* is the final element of a normal argument splat to another method call,
|
|
* and that method call does not include explicit keywords or a keyword
|
|
* splat, the final element is interpreted as keywords. In other words,
|
|
* keywords will be passed through the proc to other methods.
|
|
*
|
|
* This should only be used for procs that delegate keywords to another
|
|
* method, and only for backwards compatibility with Ruby versions before
|
|
* 2.7.
|
|
*
|
|
* This method will probably be removed at some point, as it exists only
|
|
* for backwards compatibility. As it does not exist in Ruby versions
|
|
* before 2.7, check that the proc responds to this method before calling
|
|
* it. Also, be aware that if this method is removed, the behavior of the
|
|
* proc will change so that it does not pass through keywords.
|
|
*
|
|
* module Mod
|
|
* foo = ->(meth, *args, &block) do
|
|
* send(:"do_#{meth}", *args, &block)
|
|
* end
|
|
* foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords)
|
|
* end
|
|
*/
|
|
|
|
static VALUE
|
|
proc_ruby2_keywords(VALUE procval)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
rb_check_frozen(procval);
|
|
|
|
if (proc->is_from_method) {
|
|
rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)");
|
|
return procval;
|
|
}
|
|
|
|
switch (proc->block.type) {
|
|
case block_type_iseq:
|
|
if (proc->block.as.captured.code.iseq->body->param.flags.has_rest &&
|
|
!proc->block.as.captured.code.iseq->body->param.flags.has_kw &&
|
|
!proc->block.as.captured.code.iseq->body->param.flags.has_kwrest) {
|
|
proc->block.as.captured.code.iseq->body->param.flags.ruby2_keywords = 1;
|
|
}
|
|
else {
|
|
rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)");
|
|
}
|
|
break;
|
|
default:
|
|
rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)");
|
|
break;
|
|
}
|
|
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* Document-class: LocalJumpError
|
|
*
|
|
* Raised when Ruby can't yield as requested.
|
|
*
|
|
* A typical scenario is attempting to yield when no block is given:
|
|
*
|
|
* def call_block
|
|
* yield 42
|
|
* end
|
|
* call_block
|
|
*
|
|
* <em>raises the exception:</em>
|
|
*
|
|
* LocalJumpError: no block given (yield)
|
|
*
|
|
* A more subtle example:
|
|
*
|
|
* def get_me_a_return
|
|
* Proc.new { return 42 }
|
|
* end
|
|
* get_me_a_return.call
|
|
*
|
|
* <em>raises the exception:</em>
|
|
*
|
|
* LocalJumpError: unexpected return
|
|
*/
|
|
|
|
/*
|
|
* Document-class: SystemStackError
|
|
*
|
|
* Raised in case of a stack overflow.
|
|
*
|
|
* def me_myself_and_i
|
|
* me_myself_and_i
|
|
* end
|
|
* me_myself_and_i
|
|
*
|
|
* <em>raises the exception:</em>
|
|
*
|
|
* SystemStackError: stack level too deep
|
|
*/
|
|
|
|
/*
|
|
* Document-class: Proc
|
|
*
|
|
* A +Proc+ object is an encapsulation of a block of code, which can be stored
|
|
* in a local variable, passed to a method or another Proc, and can be called.
|
|
* Proc is an essential concept in Ruby and a core of its functional
|
|
* programming features.
|
|
*
|
|
* square = Proc.new {|x| x**2 }
|
|
*
|
|
* square.call(3) #=> 9
|
|
* # shorthands:
|
|
* square.(3) #=> 9
|
|
* square[3] #=> 9
|
|
*
|
|
* Proc objects are _closures_, meaning they remember and can use the entire
|
|
* context in which they were created.
|
|
*
|
|
* def gen_times(factor)
|
|
* Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation
|
|
* end
|
|
*
|
|
* times3 = gen_times(3)
|
|
* times5 = gen_times(5)
|
|
*
|
|
* times3.call(12) #=> 36
|
|
* times5.call(5) #=> 25
|
|
* times3.call(times5.call(4)) #=> 60
|
|
*
|
|
* == Creation
|
|
*
|
|
* There are several methods to create a Proc
|
|
*
|
|
* * Use the Proc class constructor:
|
|
*
|
|
* proc1 = Proc.new {|x| x**2 }
|
|
*
|
|
* * Use the Kernel#proc method as a shorthand of Proc.new:
|
|
*
|
|
* proc2 = proc {|x| x**2 }
|
|
*
|
|
* * Receiving a block of code into proc argument (note the <code>&</code>):
|
|
*
|
|
* def make_proc(&block)
|
|
* block
|
|
* end
|
|
*
|
|
* proc3 = make_proc {|x| x**2 }
|
|
*
|
|
* * Construct a proc with lambda semantics using the Kernel#lambda method
|
|
* (see below for explanations about lambdas):
|
|
*
|
|
* lambda1 = lambda {|x| x**2 }
|
|
*
|
|
* * Use the Lambda literal syntax (also constructs a proc with lambda semantics):
|
|
*
|
|
* lambda2 = ->(x) { x**2 }
|
|
*
|
|
* == Lambda and non-lambda semantics
|
|
*
|
|
* Procs are coming in two flavors: lambda and non-lambda (regular procs).
|
|
* Differences are:
|
|
*
|
|
* * In lambdas, +return+ and +break+ means exit from this lambda;
|
|
* * In non-lambda procs, +return+ means exit from embracing method
|
|
* (and will throw +LocalJumpError+ if invoked outside the method);
|
|
* * In non-lambda procs, +break+ means exit from the method which the block given for.
|
|
* (and will throw +LocalJumpError+ if invoked after the method returns);
|
|
* * In lambdas, arguments are treated in the same way as in methods: strict,
|
|
* with +ArgumentError+ for mismatching argument number,
|
|
* and no additional argument processing;
|
|
* * Regular procs accept arguments more generously: missing arguments
|
|
* are filled with +nil+, single Array arguments are deconstructed if the
|
|
* proc has multiple arguments, and there is no error raised on extra
|
|
* arguments.
|
|
*
|
|
* Examples:
|
|
*
|
|
* # +return+ in non-lambda proc, +b+, exits +m2+.
|
|
* # (The block +{ return }+ is given for +m1+ and embraced by +m2+.)
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a
|
|
* #=> []
|
|
*
|
|
* # +break+ in non-lambda proc, +b+, exits +m1+.
|
|
* # (The block +{ break }+ is given for +m1+ and embraced by +m2+.)
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a
|
|
* #=> [:m2]
|
|
*
|
|
* # +next+ in non-lambda proc, +b+, exits the block.
|
|
* # (The block +{ next }+ is given for +m1+ and embraced by +m2+.)
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a
|
|
* #=> [:m1, :m2]
|
|
*
|
|
* # Using +proc+ method changes the behavior as follows because
|
|
* # The block is given for +proc+ method and embraced by +m2+.
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a
|
|
* #=> []
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a
|
|
* # break from proc-closure (LocalJumpError)
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a
|
|
* #=> [:m1, :m2]
|
|
*
|
|
* # +return+, +break+ and +next+ in the stubby lambda exits the block.
|
|
* # (+lambda+ method behaves same.)
|
|
* # (The block is given for stubby lambda syntax and embraced by +m2+.)
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a
|
|
* #=> [:m1, :m2]
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a
|
|
* #=> [:m1, :m2]
|
|
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a
|
|
* #=> [:m1, :m2]
|
|
*
|
|
* p = proc {|x, y| "x=#{x}, y=#{y}" }
|
|
* p.call(1, 2) #=> "x=1, y=2"
|
|
* p.call([1, 2]) #=> "x=1, y=2", array deconstructed
|
|
* p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded
|
|
* p.call(1) #=> "x=1, y=", nil substituted instead of error
|
|
*
|
|
* l = lambda {|x, y| "x=#{x}, y=#{y}" }
|
|
* l.call(1, 2) #=> "x=1, y=2"
|
|
* l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2)
|
|
* l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2)
|
|
* l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
|
|
*
|
|
* def test_return
|
|
* -> { return 3 }.call # just returns from lambda into method body
|
|
* proc { return 4 }.call # returns from method
|
|
* return 5
|
|
* end
|
|
*
|
|
* test_return # => 4, return from proc
|
|
*
|
|
* Lambdas are useful as self-sufficient functions, in particular useful as
|
|
* arguments to higher-order functions, behaving exactly like Ruby methods.
|
|
*
|
|
* Procs are useful for implementing iterators:
|
|
*
|
|
* def test
|
|
* [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 }
|
|
* # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
* end
|
|
*
|
|
* Inside +map+, the block of code is treated as a regular (non-lambda) proc,
|
|
* which means that the internal arrays will be deconstructed to pairs of
|
|
* arguments, and +return+ will exit from the method +test+. That would
|
|
* not be possible with a stricter lambda.
|
|
*
|
|
* You can tell a lambda from a regular proc by using the #lambda? instance method.
|
|
*
|
|
* Lambda semantics is typically preserved during the proc lifetime, including
|
|
* <code>&</code>-deconstruction to a block of code:
|
|
*
|
|
* p = proc {|x, y| x }
|
|
* l = lambda {|x, y| x }
|
|
* [[1, 2], [3, 4]].map(&p) #=> [1, 2]
|
|
* [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
|
|
*
|
|
* The only exception is dynamic method definition: even if defined by
|
|
* passing a non-lambda proc, methods still have normal semantics of argument
|
|
* checking.
|
|
*
|
|
* class C
|
|
* define_method(:e, &proc {})
|
|
* end
|
|
* C.new.e(1,2) #=> ArgumentError
|
|
* C.new.method(:e).to_proc.lambda? #=> true
|
|
*
|
|
* This exception ensures that methods never have unusual argument passing
|
|
* conventions, and makes it easy to have wrappers defining methods that
|
|
* behave as usual.
|
|
*
|
|
* class C
|
|
* def self.def2(name, &body)
|
|
* define_method(name, &body)
|
|
* end
|
|
*
|
|
* def2(:f) {}
|
|
* end
|
|
* C.new.f(1,2) #=> ArgumentError
|
|
*
|
|
* The wrapper <code>def2</code> receives _body_ as a non-lambda proc,
|
|
* yet defines a method which has normal semantics.
|
|
*
|
|
* == Conversion of other objects to procs
|
|
*
|
|
* Any object that implements the +to_proc+ method can be converted into
|
|
* a proc by the <code>&</code> operator, and therefore con be
|
|
* consumed by iterators.
|
|
*
|
|
|
|
* class Greeter
|
|
* def initialize(greeting)
|
|
* @greeting = greeting
|
|
* end
|
|
*
|
|
* def to_proc
|
|
* proc {|name| "#{@greeting}, #{name}!" }
|
|
* end
|
|
* end
|
|
*
|
|
* hi = Greeter.new("Hi")
|
|
* hey = Greeter.new("Hey")
|
|
* ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"]
|
|
* ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"]
|
|
*
|
|
* Of the Ruby core classes, this method is implemented by Symbol,
|
|
* Method, and Hash.
|
|
*
|
|
* :to_s.to_proc.call(1) #=> "1"
|
|
* [1, 2].map(&:to_s) #=> ["1", "2"]
|
|
*
|
|
* method(:puts).to_proc.call(1) # prints 1
|
|
* [1, 2].each(&method(:puts)) # prints 1, 2
|
|
*
|
|
* {test: 1}.to_proc.call(:test) #=> 1
|
|
* %i[test many keys].map(&{test: 1}) #=> [1, nil, nil]
|
|
*
|
|
* == Orphaned Proc
|
|
*
|
|
* +return+ and +break+ in a block exit a method.
|
|
* If a Proc object is generated from the block and the Proc object
|
|
* survives until the method is returned, +return+ and +break+ cannot work.
|
|
* In such case, +return+ and +break+ raises LocalJumpError.
|
|
* A Proc object in such situation is called as orphaned Proc object.
|
|
*
|
|
* Note that the method to exit is different for +return+ and +break+.
|
|
* There is a situation that orphaned for +break+ but not orphaned for +return+.
|
|
*
|
|
* def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok
|
|
* def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok
|
|
*
|
|
* def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok
|
|
* def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError
|
|
*
|
|
* def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError
|
|
* def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
|
|
*
|
|
* Since +return+ and +break+ exits the block itself in lambdas,
|
|
* lambdas cannot be orphaned.
|
|
*
|
|
* == Numbered parameters
|
|
*
|
|
* Numbered parameters are implicitly defined block parameters intended to
|
|
* simplify writing short blocks:
|
|
*
|
|
* # Explicit parameter:
|
|
* %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE
|
|
* (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25]
|
|
*
|
|
* # Implicit parameter:
|
|
* %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
|
|
* (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
|
|
*
|
|
* Parameter names from +_1+ to +_9+ are supported:
|
|
*
|
|
* [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 }
|
|
* # => [120, 150, 180]
|
|
*
|
|
* Though, it is advised to resort to them wisely, probably limiting
|
|
* yourself to +_1+ and +_2+, and to one-line blocks.
|
|
*
|
|
* Numbered parameters can't be used together with explicitly named
|
|
* ones:
|
|
*
|
|
* [10, 20, 30].map { |x| _1**2 }
|
|
* # SyntaxError (ordinary parameter is defined)
|
|
*
|
|
* To avoid conflicts, naming local variables or method
|
|
* arguments +_1+, +_2+ and so on, causes a warning.
|
|
*
|
|
* _1 = 'test'
|
|
* # warning: `_1' is reserved as numbered parameter
|
|
*
|
|
* Using implicit numbered parameters affects block's arity:
|
|
*
|
|
* p = proc { _1 + _2 }
|
|
* l = lambda { _1 + _2 }
|
|
* p.parameters # => [[:opt, :_1], [:opt, :_2]]
|
|
* p.arity # => 2
|
|
* l.parameters # => [[:req, :_1], [:req, :_2]]
|
|
* l.arity # => 2
|
|
*
|
|
* Blocks with numbered parameters can't be nested:
|
|
*
|
|
* %w[test me].each { _1.each_char { p _1 } }
|
|
* # SyntaxError (numbered parameter is already used in outer block here)
|
|
* # %w[test me].each { _1.each_char { p _1 } }
|
|
* # ^~
|
|
*
|
|
* Numbered parameters were introduced in Ruby 2.7.
|
|
*/
|
|
|
|
|
|
void
|
|
Init_Proc(void)
|
|
{
|
|
#undef rb_intern
|
|
/* Proc */
|
|
rb_cProc = rb_define_class("Proc", rb_cObject);
|
|
rb_undef_alloc_func(rb_cProc);
|
|
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
|
|
|
|
rb_add_method(rb_cProc, idCall, VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
|
|
#if 0 /* for RDoc */
|
|
rb_define_method(rb_cProc, "call", proc_call, -1);
|
|
rb_define_method(rb_cProc, "[]", proc_call, -1);
|
|
rb_define_method(rb_cProc, "===", proc_call, -1);
|
|
rb_define_method(rb_cProc, "yield", proc_call, -1);
|
|
#endif
|
|
|
|
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
|
|
rb_define_method(rb_cProc, "arity", proc_arity, 0);
|
|
rb_define_method(rb_cProc, "clone", proc_clone, 0);
|
|
rb_define_method(rb_cProc, "dup", rb_proc_dup, 0);
|
|
rb_define_method(rb_cProc, "hash", proc_hash, 0);
|
|
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
|
|
rb_define_alias(rb_cProc, "inspect", "to_s");
|
|
rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
|
|
rb_define_method(rb_cProc, "binding", proc_binding, 0);
|
|
rb_define_method(rb_cProc, "curry", proc_curry, -1);
|
|
rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1);
|
|
rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1);
|
|
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
|
|
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
|
|
rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0);
|
|
|
|
/* Exceptions */
|
|
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
|
|
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
|
|
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
|
|
|
|
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
|
|
rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
|
|
|
|
/* utility functions */
|
|
rb_define_global_function("proc", f_proc, 0);
|
|
rb_define_global_function("lambda", f_lambda, 0);
|
|
|
|
/* Method */
|
|
rb_cMethod = rb_define_class("Method", rb_cObject);
|
|
rb_undef_alloc_func(rb_cMethod);
|
|
rb_undef_method(CLASS_OF(rb_cMethod), "new");
|
|
rb_define_method(rb_cMethod, "==", method_eq, 1);
|
|
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
|
|
rb_define_method(rb_cMethod, "hash", method_hash, 0);
|
|
rb_define_method(rb_cMethod, "clone", method_clone, 0);
|
|
rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1);
|
|
rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1);
|
|
rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
|
|
rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1);
|
|
rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1);
|
|
rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1);
|
|
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
|
|
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
|
|
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
|
|
rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
|
|
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
|
|
rb_define_method(rb_cMethod, "name", method_name, 0);
|
|
rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
|
|
rb_define_method(rb_cMethod, "owner", method_owner, 0);
|
|
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
|
|
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
|
|
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
|
|
rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
|
|
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
|
|
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
|
|
rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
|
|
|
|
/* UnboundMethod */
|
|
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
|
|
rb_undef_alloc_func(rb_cUnboundMethod);
|
|
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
|
|
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
|
|
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
|
|
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
|
|
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
|
|
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
|
|
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
|
|
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
|
|
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
|
|
rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
|
|
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
|
|
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
|
|
rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1);
|
|
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
|
|
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
|
|
rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
|
|
|
|
/* Module#*_method */
|
|
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
|
|
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
|
|
rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
|
|
|
|
/* Kernel */
|
|
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
|
|
|
|
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
|
|
"define_method", top_define_method, -1);
|
|
}
|
|
|
|
/*
|
|
* Objects of class Binding encapsulate the execution context at some
|
|
* particular place in the code and retain this context for future
|
|
* use. The variables, methods, value of <code>self</code>, and
|
|
* possibly an iterator block that can be accessed in this context
|
|
* are all retained. Binding objects can be created using
|
|
* Kernel#binding, and are made available to the callback of
|
|
* Kernel#set_trace_func and instances of TracePoint.
|
|
*
|
|
* These binding objects can be passed as the second argument of the
|
|
* Kernel#eval method, establishing an environment for the
|
|
* evaluation.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @secret = n
|
|
* end
|
|
* def get_binding
|
|
* binding
|
|
* end
|
|
* end
|
|
*
|
|
* k1 = Demo.new(99)
|
|
* b1 = k1.get_binding
|
|
* k2 = Demo.new(-3)
|
|
* b2 = k2.get_binding
|
|
*
|
|
* eval("@secret", b1) #=> 99
|
|
* eval("@secret", b2) #=> -3
|
|
* eval("@secret") #=> nil
|
|
*
|
|
* Binding objects have no class-specific methods.
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Binding(void)
|
|
{
|
|
rb_cBinding = rb_define_class("Binding", rb_cObject);
|
|
rb_undef_alloc_func(rb_cBinding);
|
|
rb_undef_method(CLASS_OF(rb_cBinding), "new");
|
|
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
|
|
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
|
|
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
|
|
rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
|
|
rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
|
|
rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
|
|
rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
|
|
rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
|
|
rb_define_method(rb_cBinding, "source_location", bind_location, 0);
|
|
rb_define_global_function("binding", rb_f_binding, 0);
|
|
}
|