ruby/gc.c

2298 строки
52 KiB
C

/**********************************************************************
gc.c -
$Author$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/signal.h"
#include "ruby/st.h"
#include "ruby/node.h"
#include "ruby/re.h"
#include "ruby/io.h"
#include "vm_core.h"
#include "gc.h"
#include <stdio.h>
#include <setjmp.h>
#include <sys/types.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if defined _WIN32 || defined __CYGWIN__
#include <windows.h>
#endif
#ifdef HAVE_VALGRIND_MEMCHECK_H
# include <valgrind/memcheck.h>
# ifndef VALGRIND_MAKE_MEM_DEFINED
# define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE(p, n)
# endif
# ifndef VALGRIND_MAKE_MEM_UNDEFINED
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE(p, n)
# endif
#else
# define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */
#endif
int rb_io_fptr_finalize(struct rb_io_t*);
#if !defined(setjmp) && defined(HAVE__SETJMP)
#define setjmp(env) _setjmp(env)
#endif
/* Make alloca work the best possible way. */
#ifdef __GNUC__
# ifndef atarist
# ifndef alloca
# define alloca __builtin_alloca
# endif
# endif /* atarist */
#else
# ifdef HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
#pragma alloca
# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
void *alloca ();
# endif
# endif /* AIX */
# endif /* HAVE_ALLOCA_H */
#endif /* __GNUC__ */
#ifndef GC_MALLOC_LIMIT
#if defined(MSDOS) || defined(__human68k__)
#define GC_MALLOC_LIMIT 200000
#else
#define GC_MALLOC_LIMIT 8000000
#endif
#endif
static unsigned long malloc_increase = 0;
static unsigned long malloc_limit = GC_MALLOC_LIMIT;
static VALUE nomem_error;
static int dont_gc;
static int during_gc;
static int need_call_final = 0;
static st_table *finalizer_table = 0;
#define MARK_STACK_MAX 1024
static VALUE mark_stack[MARK_STACK_MAX];
static VALUE *mark_stack_ptr;
static int mark_stack_overflow;
int ruby_gc_debug_indent = 0;
#undef GC_DEBUG
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
#endif
typedef struct RVALUE {
union {
struct {
VALUE flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
} as;
#ifdef GC_DEBUG
char *file;
int line;
#endif
} RVALUE;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(pop)
#endif
static RVALUE *freelist = 0;
static RVALUE *deferred_final_list = 0;
#define HEAPS_INCREMENT 10
static struct heaps_slot {
void *membase;
RVALUE *slot;
int limit;
} *heaps;
static int heaps_length = 0;
static int heaps_used = 0;
#define HEAP_MIN_SLOTS 10000
static int heap_slots = HEAP_MIN_SLOTS;
#define FREE_MIN 4096
static RVALUE *himem, *lomem;
extern st_table *rb_class_tbl;
VALUE *rb_gc_stack_start = 0;
#ifdef __ia64
VALUE *rb_gc_register_stack_start = 0;
#endif
int ruby_gc_stress = 0;
#ifdef DJGPP
/* set stack size (http://www.delorie.com/djgpp/v2faq/faq15_9.html) */
unsigned int _stklen = 0x180000; /* 1.5 kB */
#endif
#if defined(DJGPP) || defined(_WIN32_WCE)
size_t rb_gc_stack_maxsize = 65535*sizeof(VALUE);
#else
size_t rb_gc_stack_maxsize = 655300*sizeof(VALUE);
#endif
static void run_final(VALUE obj);
static int garbage_collect(void);
void
rb_global_variable(VALUE *var)
{
rb_gc_register_address(var);
}
void
rb_memerror(void)
{
static int recurse = 0;
if (!nomem_error || (recurse > 0 && rb_safe_level() < 4)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(1);
}
recurse++;
rb_exc_raise(nomem_error);
}
/*
* call-seq:
* GC.stress => true or false
*
* returns current status of GC stress mode.
*/
static VALUE
gc_stress_get(VALUE self)
{
return ruby_gc_stress ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC.stress = bool => bool
*
* updates GC stress mode.
*
* When GC.stress = true, GC is invoked for all GC opportunity:
* all memory and object allocation.
*
* Since it makes Ruby very slow, it is only for debugging.
*/
static VALUE
gc_stress_set(VALUE self, VALUE bool)
{
rb_secure(2);
ruby_gc_stress = RTEST(bool);
return bool;
}
void *
ruby_xmalloc(size_t size)
{
void *mem;
if (size < 0) {
rb_raise(rb_eNoMemError, "negative allocation size (or too big)");
}
if (size == 0) size = 1;
malloc_increase += size;
if (ruby_gc_stress || malloc_increase > malloc_limit) {
garbage_collect();
}
RUBY_CRITICAL(mem = malloc(size));
if (!mem) {
if (garbage_collect()) {
RUBY_CRITICAL(mem = malloc(size));
}
if (!mem) {
rb_memerror();
}
}
return mem;
}
void *
ruby_xmalloc2(size_t n, size_t size)
{
long len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "malloc: possible integer overflow");
}
return ruby_xmalloc(len);
}
void *
ruby_xcalloc(size_t n, size_t size)
{
void *mem;
mem = ruby_xmalloc2(n, size);
memset(mem, 0, n * size);
return mem;
}
void *
ruby_xrealloc(void *ptr, size_t size)
{
void *mem;
if (size < 0) {
rb_raise(rb_eArgError, "negative re-allocation size");
}
if (!ptr) return ruby_xmalloc(size);
if (size == 0) size = 1;
malloc_increase += size;
if (ruby_gc_stress) garbage_collect();
RUBY_CRITICAL(mem = realloc(ptr, size));
if (!mem) {
if (garbage_collect()) {
RUBY_CRITICAL(mem = realloc(ptr, size));
}
if (!mem) {
rb_memerror();
}
}
return mem;
}
void *
ruby_xrealloc2(void *ptr, size_t n, size_t size)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "realloc: possible integer overflow");
}
return ruby_xrealloc(ptr, len);
}
void
ruby_xfree(void *x)
{
if (x)
RUBY_CRITICAL(free(x));
}
/*
* call-seq:
* GC.enable => true or false
*
* Enables garbage collection, returning <code>true</code> if garbage
* collection was previously disabled.
*
* GC.disable #=> false
* GC.enable #=> true
* GC.enable #=> false
*
*/
VALUE
rb_gc_enable(void)
{
int old = dont_gc;
dont_gc = Qfalse;
return old;
}
/*
* call-seq:
* GC.disable => true or false
*
* Disables garbage collection, returning <code>true</code> if garbage
* collection was already disabled.
*
* GC.disable #=> false
* GC.disable #=> true
*
*/
VALUE
rb_gc_disable(void)
{
int old = dont_gc;
dont_gc = Qtrue;
return old;
}
VALUE rb_mGC;
static struct gc_list {
VALUE *varptr;
struct gc_list *next;
} *global_List = 0;
void
rb_gc_register_address(VALUE *addr)
{
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_List;
tmp->varptr = addr;
global_List = tmp;
}
void
rb_register_mark_object(VALUE obj)
{
VALUE ary = GET_THREAD()->vm->mark_object_ary;
rb_ary_push(ary, obj);
}
void
rb_gc_unregister_address(VALUE *addr)
{
struct gc_list *tmp = global_List;
if (tmp->varptr == addr) {
global_List = tmp->next;
RUBY_CRITICAL(free(tmp));
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
RUBY_CRITICAL(free(t));
break;
}
tmp = tmp->next;
}
}
static void
add_heap(void)
{
RVALUE *p, *pend;
if (heaps_used == heaps_length) {
/* Realloc heaps */
struct heaps_slot *p;
int length;
heaps_length += HEAPS_INCREMENT;
length = heaps_length*sizeof(struct heaps_slot);
RUBY_CRITICAL(
if (heaps_used > 0) {
p = (struct heaps_slot *)realloc(heaps, length);
if (p) heaps = p;
}
else {
p = heaps = (struct heaps_slot *)malloc(length);
});
if (p == 0) rb_memerror();
}
for (;;) {
RUBY_CRITICAL(p = (RVALUE*)malloc(sizeof(RVALUE)*(heap_slots+1)));
if (p == 0) {
if (heap_slots == HEAP_MIN_SLOTS) {
rb_memerror();
}
heap_slots = HEAP_MIN_SLOTS;
continue;
}
heaps[heaps_used].membase = p;
if ((VALUE)p % sizeof(RVALUE) == 0)
heap_slots += 1;
else
p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
heaps[heaps_used].slot = p;
heaps[heaps_used].limit = heap_slots;
break;
}
pend = p + heap_slots;
if (lomem == 0 || lomem > p) lomem = p;
if (himem < pend) himem = pend;
heaps_used++;
heap_slots *= 1.8;
while (p < pend) {
p->as.free.flags = 0;
p->as.free.next = freelist;
freelist = p;
p++;
}
}
#define RANY(o) ((RVALUE*)(o))
static VALUE
rb_newobj_from_heap(void)
{
VALUE obj;
if (ruby_gc_stress || !freelist) {
if(!garbage_collect()) {
rb_memerror();
}
}
obj = (VALUE)freelist;
freelist = freelist->as.free.next;
MEMZERO((void*)obj, RVALUE, 1);
#ifdef GC_DEBUG
RANY(obj)->file = rb_sourcefile();
RANY(obj)->line = rb_sourceline();
#endif
return obj;
}
#if USE_VALUE_CACHE
static VALUE
rb_fill_value_cache(rb_thread_t *th)
{
int i;
VALUE rv;
/* LOCK */
for (i=0; i<RUBY_VM_VALUE_CACHE_SIZE; i++) {
VALUE v = rb_newobj_from_heap();
th->value_cache[i] = v;
RBASIC(v)->flags = FL_MARK;
}
th->value_cache_ptr = &th->value_cache[0];
rv = rb_newobj_from_heap();
/* UNLOCK */
return rv;
}
#endif
VALUE
rb_newobj(void)
{
#if USE_VALUE_CACHE
rb_thread_t *th = GET_THREAD();
VALUE v = *th->value_cache_ptr;
if (v) {
RBASIC(v)->flags = 0;
th->value_cache_ptr++;
}
else {
v = rb_fill_value_cache(th);
}
#if defined(GC_DEBUG)
printf("cache index: %d, v: %p, th: %p\n",
th->value_cache_ptr - th->value_cache, v, th);
#endif
return v;
#else
return rb_newobj_from_heap();
#endif
}
NODE*
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
{
NODE *n = (NODE*)rb_newobj();
n->flags |= T_NODE;
nd_set_type(n, type);
n->u1.value = a0;
n->u2.value = a1;
n->u3.value = a2;
return n;
}
VALUE
rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
NEWOBJ(data, struct RData);
if (klass) Check_Type(klass, T_CLASS);
OBJSETUP(data, klass, T_DATA);
data->data = datap;
data->dfree = dfree;
data->dmark = dmark;
return (VALUE)data;
}
#ifdef __ia64
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
#else
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
#endif
#define STACK_START (th->machine_stack_start)
#define STACK_END (th->machine_stack_end)
#define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
#if defined(sparc) || defined(__sparc__)
# define STACK_LENGTH (STACK_START - STACK_END + 0x80)
#elif STACK_GROW_DIRECTION < 0
# define STACK_LENGTH (STACK_START - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH (STACK_END - STACK_START + 1)
#else
# define STACK_LENGTH ((STACK_END < STACK_START) ? STACK_START - STACK_END\
: STACK_END - STACK_START + 1)
#endif
#if STACK_GROW_DIRECTION > 0
# define STACK_UPPER(x, a, b) a
#elif STACK_GROW_DIRECTION < 0
# define STACK_UPPER(x, a, b) b
#else
static int grow_direction;
static int
stack_grow_direction(VALUE *addr)
{
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
if (STACK_END > addr) return grow_direction = 1;
return grow_direction = -1;
}
# define stack_growup_p(x) ((grow_direction ? grow_direction : stack_grow_direction(x)) > 0)
# define STACK_UPPER(x, a, b) (stack_growup_p(x) ? a : b)
#endif
#define GC_WATER_MARK 512
int
ruby_stack_length(VALUE **p)
{
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
return STACK_LENGTH;
}
int
ruby_stack_check(void)
{
int ret;
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
ret = STACK_LENGTH > STACK_LEVEL_MAX + GC_WATER_MARK;
#ifdef __ia64
if (!ret) {
ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
th->machine_register_stack_maxsize/sizeof(VALUE) + GC_WATER_MARK;
}
#endif
return ret;
}
static void
init_mark_stack(void)
{
mark_stack_overflow = 0;
mark_stack_ptr = mark_stack;
}
#define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
static st_table *source_filenames;
char *
rb_source_filename(const char *f)
{
st_data_t name;
if (!st_lookup(source_filenames, (st_data_t)f, &name)) {
long len = strlen(f) + 1;
char *ptr = ALLOC_N(char, len + 1);
name = (st_data_t)ptr;
*ptr++ = 0;
MEMCPY(ptr, f, char, len);
st_add_direct(source_filenames, (st_data_t)ptr, name);
return ptr;
}
return (char *)name + 1;
}
void
rb_mark_source_filename(char *f)
{
if (f) {
f[-1] = 1;
}
}
static int
sweep_source_filename(char *key, char *value)
{
if (*value) {
*value = 0;
return ST_CONTINUE;
}
else {
free(value);
return ST_DELETE;
}
}
static void gc_mark(VALUE ptr, int lev);
static void gc_mark_children(VALUE ptr, int lev);
static void
gc_mark_all(void)
{
RVALUE *p, *pend;
int i;
init_mark_stack();
for (i = 0; i < heaps_used; i++) {
p = heaps[i].slot; pend = p + heaps[i].limit;
while (p < pend) {
if ((p->as.basic.flags & FL_MARK) &&
(p->as.basic.flags != FL_MARK)) {
gc_mark_children((VALUE)p, 0);
}
p++;
}
}
}
static void
gc_mark_rest(void)
{
VALUE tmp_arry[MARK_STACK_MAX];
VALUE *p;
p = (mark_stack_ptr - mark_stack) + tmp_arry;
MEMCPY(tmp_arry, mark_stack, VALUE, p - tmp_arry);
init_mark_stack();
while (p != tmp_arry) {
p--;
gc_mark_children(*p, 0);
}
}
static inline int
is_pointer_to_heap(void *ptr)
{
register RVALUE *p = RANY(ptr);
register RVALUE *heap_org;
register long i;
if (p < lomem || p > himem) return Qfalse;
if ((VALUE)p % sizeof(RVALUE) != 0) return Qfalse;
/* check if p looks like a pointer */
for (i=0; i < heaps_used; i++) {
heap_org = heaps[i].slot;
if (heap_org <= p && p < heap_org + heaps[i].limit)
return Qtrue;
}
return Qfalse;
}
static void
mark_locations_array(register VALUE *x, register long n)
{
VALUE v;
while (n--) {
v = *x;
VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v));
if (is_pointer_to_heap((void *)v)) {
gc_mark(v, 0);
}
x++;
}
}
void
rb_gc_mark_locations(VALUE *start, VALUE *end)
{
long n;
n = end - start;
mark_locations_array(start,n);
}
static int
mark_entry(ID key, VALUE value, int lev)
{
gc_mark(value, lev);
return ST_CONTINUE;
}
static void
mark_tbl(st_table *tbl, int lev)
{
if (!tbl) return;
st_foreach(tbl, mark_entry, lev);
}
void
rb_mark_tbl(st_table *tbl)
{
mark_tbl(tbl, 0);
}
static int
mark_key(VALUE key, VALUE value, int lev)
{
gc_mark(key, lev);
return ST_CONTINUE;
}
static void
mark_set(st_table *tbl, int lev)
{
if (!tbl) return;
st_foreach(tbl, mark_key, lev);
}
void
rb_mark_set(st_table *tbl)
{
mark_set(tbl, 0);
}
static int
mark_keyvalue(VALUE key, VALUE value, int lev)
{
gc_mark(key, lev);
gc_mark(value, lev);
return ST_CONTINUE;
}
static void
mark_hash(st_table *tbl, int lev)
{
if (!tbl) return;
st_foreach(tbl, mark_keyvalue, lev);
}
void
rb_mark_hash(st_table *tbl)
{
mark_hash(tbl, 0);
}
void
rb_gc_mark_maybe(VALUE obj)
{
if (is_pointer_to_heap((void *)obj)) {
gc_mark(obj, 0);
}
}
#define GC_LEVEL_MAX 250
static void
gc_mark(VALUE ptr, int lev)
{
register RVALUE *obj;
obj = RANY(ptr);
if (rb_special_const_p(ptr)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
if (obj->as.basic.flags & FL_MARK) return; /* already marked */
obj->as.basic.flags |= FL_MARK;
if (lev > GC_LEVEL_MAX || (lev == 0 && ruby_stack_check())) {
if (!mark_stack_overflow) {
if (mark_stack_ptr - mark_stack < MARK_STACK_MAX) {
*mark_stack_ptr = ptr;
mark_stack_ptr++;
}
else {
mark_stack_overflow = 1;
}
}
return;
}
gc_mark_children(ptr, lev+1);
}
void
rb_gc_mark(VALUE ptr)
{
gc_mark(ptr, 0);
}
static void
gc_mark_children(VALUE ptr, int lev)
{
register RVALUE *obj = RANY(ptr);
goto marking; /* skip */
again:
obj = RANY(ptr);
if (rb_special_const_p(ptr)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
if (obj->as.basic.flags & FL_MARK) return; /* already marked */
obj->as.basic.flags |= FL_MARK;
marking:
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(ptr);
}
switch (obj->as.basic.flags & T_MASK) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
rb_mark_source_filename(obj->as.node.nd_file);
switch (nd_type(obj)) {
case NODE_IF: /* 1,2,3 */
case NODE_FOR:
case NODE_ITER:
case NODE_WHEN:
case NODE_MASGN:
case NODE_RESCUE:
case NODE_RESBODY:
case NODE_CLASS:
case NODE_BLOCK_PASS:
gc_mark((VALUE)obj->as.node.u2.node, lev);
/* fall through */
case NODE_BLOCK: /* 1,3 */
case NODE_OPTBLOCK:
case NODE_ARRAY:
case NODE_DSTR:
case NODE_DXSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_ENSURE:
case NODE_CALL:
case NODE_DEFS:
case NODE_OP_ASGN1:
case NODE_ARGS:
gc_mark((VALUE)obj->as.node.u1.node, lev);
/* fall through */
case NODE_SUPER: /* 3 */
case NODE_FCALL:
case NODE_DEFN:
case NODE_ARGS_AUX:
ptr = (VALUE)obj->as.node.u3.node;
goto again;
case NODE_METHOD: /* 1,2 */
case NODE_WHILE:
case NODE_UNTIL:
case NODE_AND:
case NODE_OR:
case NODE_CASE:
case NODE_SCLASS:
case NODE_DOT2:
case NODE_DOT3:
case NODE_FLIP2:
case NODE_FLIP3:
case NODE_MATCH2:
case NODE_MATCH3:
case NODE_OP_ASGN_OR:
case NODE_OP_ASGN_AND:
case NODE_MODULE:
case NODE_ALIAS:
case NODE_VALIAS:
case NODE_ARGSCAT:
gc_mark((VALUE)obj->as.node.u1.node, lev);
/* fall through */
case NODE_FBODY: /* 2 */
case NODE_GASGN:
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_IASGN:
case NODE_IASGN2:
case NODE_CVASGN:
case NODE_COLON3:
case NODE_OPT_N:
case NODE_EVSTR:
case NODE_UNDEF:
case NODE_POSTEXE:
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_HASH: /* 1 */
case NODE_LIT:
case NODE_STR:
case NODE_XSTR:
case NODE_DEFINED:
case NODE_MATCH:
case NODE_RETURN:
case NODE_BREAK:
case NODE_NEXT:
case NODE_YIELD:
case NODE_COLON2:
case NODE_SPLAT:
case NODE_TO_ARY:
ptr = (VALUE)obj->as.node.u1.node;
goto again;
case NODE_SCOPE: /* 2,3 */
case NODE_CDECL:
case NODE_OPT_ARG:
gc_mark((VALUE)obj->as.node.u3.node, lev);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ZARRAY: /* - */
case NODE_ZSUPER:
case NODE_CFUNC:
case NODE_VCALL:
case NODE_GVAR:
case NODE_LVAR:
case NODE_DVAR:
case NODE_IVAR:
case NODE_CVAR:
case NODE_NTH_REF:
case NODE_BACK_REF:
case NODE_REDO:
case NODE_RETRY:
case NODE_SELF:
case NODE_NIL:
case NODE_TRUE:
case NODE_FALSE:
case NODE_ERRINFO:
case NODE_ATTRSET:
case NODE_BLOCK_ARG:
break;
case NODE_ALLOCA:
mark_locations_array((VALUE*)obj->as.node.u1.value,
obj->as.node.u3.cnt);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
default: /* unlisted NODE */
if (is_pointer_to_heap(obj->as.node.u1.node)) {
gc_mark((VALUE)obj->as.node.u1.node, lev);
}
if (is_pointer_to_heap(obj->as.node.u2.node)) {
gc_mark((VALUE)obj->as.node.u2.node, lev);
}
if (is_pointer_to_heap(obj->as.node.u3.node)) {
gc_mark((VALUE)obj->as.node.u3.node, lev);
}
}
return; /* no need to mark class. */
}
gc_mark(obj->as.basic.klass, lev);
switch (obj->as.basic.flags & T_MASK) {
case T_ICLASS:
case T_CLASS:
case T_MODULE:
mark_tbl(RCLASS_M_TBL(obj), lev);
mark_tbl(RCLASS_IV_TBL(obj), lev);
ptr = RCLASS_SUPER(obj);
goto again;
case T_ARRAY:
if (FL_TEST(obj, ELTS_SHARED)) {
ptr = obj->as.array.aux.shared;
goto again;
}
else {
long i, len = RARRAY_LEN(obj);
VALUE *ptr = RARRAY_PTR(obj);
for (i=0; i < len; i++) {
gc_mark(*ptr++, lev);
}
}
break;
case T_HASH:
mark_hash(obj->as.hash.ntbl, lev);
ptr = obj->as.hash.ifnone;
goto again;
case T_STRING:
#define STR_ASSOC FL_USER3 /* copied from string.c */
if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
ptr = obj->as.string.as.heap.aux.shared;
goto again;
}
break;
case T_DATA:
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
break;
case T_OBJECT:
{
long i, len = ROBJECT_LEN(obj);
VALUE *ptr = ROBJECT_PTR(obj);
for (i = 0; i < len; i++) {
gc_mark(*ptr++, lev);
}
}
break;
case T_FILE:
if (obj->as.file.fptr)
gc_mark(obj->as.file.fptr->tied_io_for_writing, lev);
break;
case T_REGEXP:
case T_FLOAT:
case T_BIGNUM:
case T_BLOCK:
break;
case T_MATCH:
gc_mark(obj->as.match.regexp, lev);
if (obj->as.match.str) {
ptr = obj->as.match.str;
goto again;
}
break;
case T_STRUCT:
{
long len = RSTRUCT_LEN(obj);
VALUE *ptr = RSTRUCT_PTR(obj);
while (len--) {
gc_mark(*ptr++, lev);
}
}
break;
case T_VALUES:
{
rb_gc_mark(RVALUES(obj)->v1);
rb_gc_mark(RVALUES(obj)->v2);
ptr = RVALUES(obj)->v3;
goto again;
}
break;
default:
rb_bug("rb_gc_mark(): unknown data type 0x%lx(%p) %s",
obj->as.basic.flags & T_MASK, obj,
is_pointer_to_heap(obj) ? "corrupted object" : "non object");
}
}
static void obj_free(VALUE);
static void
finalize_list(RVALUE *p)
{
while (p) {
RVALUE *tmp = p->as.free.next;
run_final((VALUE)p);
if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
p->as.free.flags = 0;
p->as.free.next = freelist;
freelist = p;
}
p = tmp;
}
}
static void
free_unused_heaps(void)
{
int i, j;
for (i = j = 1; j < heaps_used; i++) {
if (heaps[i].limit == 0) {
free(heaps[i].membase);
heaps_used--;
}
else {
if (i != j) {
heaps[j] = heaps[i];
}
j++;
}
}
}
void rb_gc_abort_threads(void);
static void
gc_sweep(void)
{
RVALUE *p, *pend, *final_list;
int freed = 0;
int i;
unsigned long live = 0;
unsigned long free_min = 0;
for (i = 0; i < heaps_used; i++) {
free_min += heaps[i].limit;
}
free_min = free_min * 0.2;
if (free_min < FREE_MIN)
free_min = FREE_MIN;
if (source_filenames) {
st_foreach(source_filenames, sweep_source_filename, 0);
}
freelist = 0;
final_list = deferred_final_list;
deferred_final_list = 0;
for (i = 0; i < heaps_used; i++) {
int n = 0;
RVALUE *free = freelist;
RVALUE *final = final_list;
p = heaps[i].slot; pend = p + heaps[i].limit;
while (p < pend) {
if (!(p->as.basic.flags & FL_MARK)) {
if (p->as.basic.flags) {
obj_free((VALUE)p);
}
if (need_call_final && FL_TEST(p, FL_FINALIZE)) {
p->as.free.flags = FL_MARK; /* remain marked */
p->as.free.next = final_list;
final_list = p;
}
else {
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
p->as.free.flags = 0;
p->as.free.next = freelist;
freelist = p;
}
n++;
}
else if (RBASIC(p)->flags == FL_MARK) {
/* objects to be finalized */
/* do nothing remain marked */
}
else {
RBASIC(p)->flags &= ~FL_MARK;
live++;
}
p++;
}
if (n == heaps[i].limit && freed > free_min) {
RVALUE *pp;
heaps[i].limit = 0;
for (pp = final_list; pp != final; pp = pp->as.free.next) {
p->as.free.flags |= FL_SINGLETON; /* freeing page mark */
}
freelist = free; /* cancel this page from freelist */
}
else {
freed += n;
}
}
if (malloc_increase > malloc_limit) {
malloc_limit += (malloc_increase - malloc_limit) * (double)live / (live + freed);
if (malloc_limit < GC_MALLOC_LIMIT) malloc_limit = GC_MALLOC_LIMIT;
}
malloc_increase = 0;
if (freed < free_min) {
add_heap();
}
during_gc = 0;
/* clear finalization list */
if (final_list) {
deferred_final_list = final_list;
return;
}
free_unused_heaps();
}
void
rb_gc_force_recycle(VALUE p)
{
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
RANY(p)->as.free.flags = 0;
RANY(p)->as.free.next = freelist;
freelist = RANY(p);
}
static void
obj_free(VALUE obj)
{
switch (RANY(obj)->as.basic.flags & T_MASK) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
}
switch (RANY(obj)->as.basic.flags & T_MASK) {
case T_OBJECT:
if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
RANY(obj)->as.object.as.heap.ptr) {
RUBY_CRITICAL(free(RANY(obj)->as.object.as.heap.ptr));
}
break;
case T_MODULE:
case T_CLASS:
rb_clear_cache_by_class((VALUE)obj);
st_free_table(RCLASS_M_TBL(obj));
if (RCLASS_IV_TBL(obj)) {
st_free_table(RCLASS_IV_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
st_free_table(RCLASS_IV_INDEX_TBL(obj));
}
RUBY_CRITICAL(free(RANY(obj)->as.klass.ptr));
break;
case T_STRING:
rb_str_free(obj);
break;
case T_ARRAY:
rb_ary_free(obj);
break;
case T_HASH:
if (RANY(obj)->as.hash.ntbl) {
st_free_table(RANY(obj)->as.hash.ntbl);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
onig_free(RANY(obj)->as.regexp.ptr);
}
if (RANY(obj)->as.regexp.str) {
RUBY_CRITICAL(free(RANY(obj)->as.regexp.str));
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
if ((long)RANY(obj)->as.data.dfree == -1) {
RUBY_CRITICAL(free(DATA_PTR(obj)));
}
else if (RANY(obj)->as.data.dfree) {
(*RANY(obj)->as.data.dfree)(DATA_PTR(obj));
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.regs) {
onig_region_free(RANY(obj)->as.match.regs, 0);
RUBY_CRITICAL(free(RANY(obj)->as.match.regs));
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
rb_io_fptr_finalize(RANY(obj)->as.file.fptr);
}
break;
case T_ICLASS:
/* iClass shares table with the module */
break;
case T_FLOAT:
case T_BLOCK:
break;
case T_VALUES:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
RUBY_CRITICAL(free(RBIGNUM_DIGITS(obj)));
}
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RANY(obj)->as.node.u1.tbl) {
RUBY_CRITICAL(free(RANY(obj)->as.node.u1.tbl));
}
break;
case NODE_ALLOCA:
RUBY_CRITICAL(free(RANY(obj)->as.node.u1.node));
break;
}
return; /* no need to free iv_tbl */
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RANY(obj)->as.rstruct.as.heap.ptr) {
RUBY_CRITICAL(free(RANY(obj)->as.rstruct.as.heap.ptr));
}
break;
default:
rb_bug("gc_sweep(): unknown data type 0x%lx(%p)",
RANY(obj)->as.basic.flags & T_MASK, (void*)obj);
}
}
#ifdef __GNUC__
#if defined(__human68k__) || defined(DJGPP)
#if defined(__human68k__)
typedef unsigned long rb_jmp_buf[8];
__asm__ (".even\n\
_rb_setjmp:\n\
move.l 4(sp),a0\n\
movem.l d3-d7/a3-a5,(a0)\n\
moveq.l #0,d0\n\
rts");
#ifdef setjmp
#undef setjmp
#endif
#else
#if defined(DJGPP)
typedef unsigned long rb_jmp_buf[6];
__asm__ (".align 4\n\
_rb_setjmp:\n\
pushl %ebp\n\
movl %esp,%ebp\n\
movl 8(%ebp),%ebp\n\
movl %eax,(%ebp)\n\
movl %ebx,4(%ebp)\n\
movl %ecx,8(%ebp)\n\
movl %edx,12(%ebp)\n\
movl %esi,16(%ebp)\n\
movl %edi,20(%ebp)\n\
popl %ebp\n\
xorl %eax,%eax\n\
ret");
#endif
#endif
int rb_setjmp (rb_jmp_buf);
#define jmp_buf rb_jmp_buf
#define setjmp rb_setjmp
#endif /* __human68k__ or DJGPP */
#endif /* __GNUC__ */
#define GC_NOTIFY 0
void rb_vm_mark(void *ptr);
static void
mark_current_machine_context(rb_thread_t *th)
{
jmp_buf save_regs_gc_mark;
VALUE *stack_start, *stack_end;
SET_STACK_END;
#if STACK_GROW_DIRECTION < 0
stack_start = th->machine_stack_end;
stack_end = th->machine_stack_start;
#elif STACK_GROW_DIRECTION > 0
stack_start = th->machine_stack_start;
stack_end = th->machine_stack_end + 1;
#else
if (th->machine_stack_end < th->machine_stack_start) {
stack_start = th->machine_stack_end;
stack_end = th->machine_stack_start;
}
else {
stack_start = th->machine_stack_start;
stack_end = th->machine_stack_end + 1;
}
#endif
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf (and stack) */
setjmp(save_regs_gc_mark);
mark_locations_array((VALUE*)save_regs_gc_mark,
sizeof(save_regs_gc_mark) / sizeof(VALUE));
mark_locations_array(stack_start, stack_end - stack_start);
#ifdef __ia64
mark_locations_array(th->machine_register_stack_start,
th->machine_register_stack_end - th->machine_register_stack_start);
#endif
#if defined(__human68k__) || defined(__mc68000__)
mark_locations_array((VALUE*)((char*)STACK_END + 2),
(STACK_START - STACK_END));
#endif
}
void rb_gc_mark_encodings(void);
static int
garbage_collect(void)
{
struct gc_list *list;
rb_thread_t *th = GET_THREAD();
if (GC_NOTIFY) printf("start garbage_collect()\n");
if (!heaps) {
return Qfalse;
}
if (dont_gc || during_gc) {
if (!freelist) {
add_heap();
}
return Qtrue;
}
during_gc++;
SET_STACK_END;
init_mark_stack();
th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
if (finalizer_table) {
mark_tbl(finalizer_table, 0);
}
mark_current_machine_context(th);
rb_gc_mark_threads();
rb_gc_mark_symbols();
rb_gc_mark_encodings();
/* mark protected global variables */
for (list = global_List; list; list = list->next) {
rb_gc_mark_maybe(*list->varptr);
}
rb_mark_end_proc();
rb_gc_mark_global_tbl();
rb_mark_tbl(rb_class_tbl);
rb_gc_mark_trap_list();
/* mark generic instance variables for special constants */
rb_mark_generic_ivar_tbl();
rb_gc_mark_parser();
/* gc_mark objects whose marking are not completed*/
while (!MARK_STACK_EMPTY) {
if (mark_stack_overflow) {
gc_mark_all();
}
else {
gc_mark_rest();
}
}
gc_sweep();
if (GC_NOTIFY) printf("end garbage_collect()\n");
return Qtrue;
}
int
rb_garbage_collect(void)
{
return garbage_collect();
}
void
rb_gc_mark_machine_stack(rb_thread_t *th)
{
#if STACK_GROW_DIRECTION < 0
rb_gc_mark_locations(th->machine_stack_end, th->machine_stack_start);
#elif STACK_GROW_DIRECTION > 0
rb_gc_mark_locations(th->machine_stack_start, th->machine_stack_end);
#else
if (th->machine_stack_start < th->machine_stack_end) {
rb_gc_mark_locations(th->machine_stack_start, th->machine_stack_end);
}
else {
rb_gc_mark_locations(th->machine_stack_end, th->machine_stack_start);
}
#endif
#ifdef __ia64
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
#endif
}
void
rb_gc(void)
{
garbage_collect();
rb_gc_finalize_deferred();
}
/*
* call-seq:
* GC.start => nil
* gc.garbage_collect => nil
* ObjectSpace.garbage_collect => nil
*
* Initiates garbage collection, unless manually disabled.
*
*/
VALUE
rb_gc_start(void)
{
rb_gc();
return Qnil;
}
void
ruby_set_stack_size(size_t size)
{
rb_gc_stack_maxsize = size;
}
void
Init_stack(VALUE *addr)
{
#ifdef __ia64
if (rb_gc_register_stack_start == 0) {
# if defined(__FreeBSD__)
/*
* FreeBSD/ia64 currently does not have a way for a process to get the
* base address for the RSE backing store, so hardcode it.
*/
rb_gc_register_stack_start = (4ULL<<61);
# elif defined(HAVE___LIBC_IA64_REGISTER_BACKING_STORE_BASE)
# pragma weak __libc_ia64_register_backing_store_base
extern unsigned long __libc_ia64_register_backing_store_base;
rb_gc_register_stack_start = (VALUE*)__libc_ia64_register_backing_store_base;
# endif
}
{
VALUE *bsp = (VALUE*)rb_ia64_bsp();
if (rb_gc_register_stack_start == 0 ||
bsp < rb_gc_register_stack_start) {
rb_gc_register_stack_start = bsp;
}
}
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
MEMORY_BASIC_INFORMATION m;
memset(&m, 0, sizeof(m));
VirtualQuery(&m, &m, sizeof(m));
rb_gc_stack_start =
STACK_UPPER((VALUE *)&m, (VALUE *)m.BaseAddress,
(VALUE *)((char *)m.BaseAddress + m.RegionSize) - 1);
#elif defined(STACK_END_ADDRESS)
{
extern void *STACK_END_ADDRESS;
rb_gc_stack_start = STACK_END_ADDRESS;
}
#else
if (!addr) addr = (VALUE *)&addr;
STACK_UPPER(&addr, addr, ++addr);
if (rb_gc_stack_start) {
if (STACK_UPPER(&addr,
rb_gc_stack_start > addr,
rb_gc_stack_start < addr))
rb_gc_stack_start = addr;
return;
}
rb_gc_stack_start = addr;
#endif
#ifdef HAVE_GETRLIMIT
{
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
unsigned int space = rlim.rlim_cur/5;
if (space > 1024*1024) space = 1024*1024;
rb_gc_stack_maxsize = rlim.rlim_cur - space;
}
}
#endif
}
void ruby_init_stack(VALUE *addr
#ifdef __ia64
, void *bsp
#endif
)
{
if (!rb_gc_stack_start ||
STACK_UPPER(&addr,
rb_gc_stack_start > addr,
rb_gc_stack_start < addr)) {
rb_gc_stack_start = addr;
}
#ifdef __ia64
if (!rb_gc_register_stack_start ||
(VALUE*)bsp < rb_gc_register_stack_start) {
rb_gc_register_stack_start = (VALUE*)bsp;
}
#endif
#ifdef HAVE_GETRLIMIT
{
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
unsigned int space = rlim.rlim_cur/5;
if (space > 1024*1024) space = 1024*1024;
rb_gc_stack_maxsize = rlim.rlim_cur - space;
}
}
#elif defined _WIN32
{
MEMORY_BASIC_INFORMATION mi;
DWORD size;
DWORD space;
if (VirtualQuery(&mi, &mi, sizeof(mi))) {
size = (char *)mi.BaseAddress - (char *)mi.AllocationBase;
space = size / 5;
if (space > 1024*1024) space = 1024*1024;
rb_gc_stack_maxsize = size - space;
}
}
#endif
}
/*
* Document-class: ObjectSpace
*
* The <code>ObjectSpace</code> module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* <code>ObjectSpace</code> also provides support for object
* finalizers, procs that will be called when a specific object is
* about to be destroyed by garbage collection.
*
* include ObjectSpace
*
*
* a = "A"
* b = "B"
* c = "C"
*
*
* define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
* define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
*
* <em>produces:</em>
*
* Finalizer three on 537763470
* Finalizer one on 537763480
* Finalizer two on 537763480
*
*/
void
Init_heap(void)
{
if (!rb_gc_stack_start) {
Init_stack(0);
}
add_heap();
}
static VALUE
os_obj_of(VALUE of)
{
int i;
int n = 0;
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = heaps[i].slot; pend = p + heaps[i].limit;
for (;p < pend; p++) {
if (p->as.basic.flags) {
switch (BUILTIN_TYPE(p)) {
case T_NONE:
case T_ICLASS:
case T_NODE:
case T_VALUES:
continue;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON)) continue;
default:
if (!p->as.basic.klass) continue;
if (!of || rb_obj_is_kind_of((VALUE)p, of)) {
rb_yield((VALUE)p);
n++;
}
}
}
}
}
return INT2FIX(n);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } => fixnum
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, <code>each_object</code>
* returns both the numbers we defined and several constants defined in
* the <code>Math</code> module.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
rb_secure(4);
if (rb_scan_args(argc, argv, "01", &of) == 0) {
of = 0;
}
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
static VALUE finalizers;
/* deprecated
*/
static VALUE
add_final(VALUE os, VALUE block)
{
rb_warn("ObjectSpace::add_finalizer is deprecated; use define_finalizer");
if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
rb_ary_push(finalizers, block);
return block;
}
/*
* deprecated
*/
static VALUE
rm_final(VALUE os, VALUE block)
{
rb_warn("ObjectSpace::remove_finalizer is deprecated; use undefine_finalizer");
rb_ary_delete(finalizers, block);
return block;
}
/*
* deprecated
*/
static VALUE
finals(void)
{
rb_warn("ObjectSpace::finalizers is deprecated");
return finalizers;
}
/*
* deprecated
*/
static VALUE
call_final(VALUE os, VALUE obj)
{
rb_warn("ObjectSpace::call_finalizer is deprecated; use define_finalizer");
need_call_final = 1;
FL_SET(obj, FL_FINALIZE);
return obj;
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(VALUE os, VALUE obj)
{
if (finalizer_table) {
st_delete(finalizer_table, (st_data_t*)&obj, 0);
}
return obj;
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed.
*
*/
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
VALUE obj, block, table;
rb_scan_args(argc, argv, "11", &obj, &block);
if (argc == 1) {
block = rb_block_proc();
}
else if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
need_call_final = 1;
FL_SET(obj, FL_FINALIZE);
block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
if (!finalizer_table) {
finalizer_table = st_init_numtable();
}
if (st_lookup(finalizer_table, obj, &table)) {
rb_ary_push(table, block);
}
else {
st_add_direct(finalizer_table, obj, rb_ary_new3(1, block));
}
return block;
}
void
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
{
VALUE table;
if (!finalizer_table) return;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &table)) {
st_insert(finalizer_table, dest, table);
}
FL_SET(dest, FL_FINALIZE);
}
static VALUE
run_single_final(VALUE arg)
{
VALUE *args = (VALUE *)arg;
rb_eval_cmd(args[0], args[1], (int)args[2]);
return Qnil;
}
static void
run_final(VALUE obj)
{
long i;
int status, critical_save = rb_thread_critical;
VALUE args[3], table, objid;
objid = rb_obj_id(obj); /* make obj into id */
rb_thread_critical = Qtrue;
args[1] = 0;
if (RARRAY_LEN(finalizers) > 0) {
args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
}
args[2] = (VALUE)rb_safe_level();
for (i=0; i<RARRAY_LEN(finalizers); i++) {
args[0] = RARRAY_PTR(finalizers)[i];
rb_protect(run_single_final, (VALUE)args, &status);
}
if (finalizer_table && st_delete(finalizer_table, (st_data_t*)&obj, &table)) {
if (!args[1] && RARRAY_LEN(table) > 0) {
args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
}
for (i=0; i<RARRAY_LEN(table); i++) {
VALUE final = RARRAY_PTR(table)[i];
args[0] = RARRAY_PTR(final)[1];
args[2] = FIX2INT(RARRAY_PTR(final)[0]);
rb_protect(run_single_final, (VALUE)args, &status);
}
}
rb_thread_critical = critical_save;
}
void
rb_gc_finalize_deferred(void)
{
RVALUE *p = deferred_final_list;
during_gc++;
deferred_final_list = 0;
if (p) {
finalize_list(p);
}
free_unused_heaps();
during_gc = 0;
}
void
rb_gc_call_finalizer_at_exit(void)
{
RVALUE *p, *pend;
int i;
/* finalizers are part of garbage collection */
during_gc++;
/* run finalizers */
if (need_call_final) {
p = deferred_final_list;
deferred_final_list = 0;
finalize_list(p);
for (i = 0; i < heaps_used; i++) {
p = heaps[i].slot; pend = p + heaps[i].limit;
while (p < pend) {
if (FL_TEST(p, FL_FINALIZE)) {
FL_UNSET(p, FL_FINALIZE);
p->as.basic.klass = 0;
run_final((VALUE)p);
}
p++;
}
}
}
/* run data object's finalizers */
for (i = 0; i < heaps_used; i++) {
p = heaps[i].slot; pend = p + heaps[i].limit;
while (p < pend) {
if (BUILTIN_TYPE(p) == T_DATA &&
DATA_PTR(p) && RANY(p)->as.data.dfree &&
RANY(p)->as.basic.klass != rb_cThread) {
p->as.free.flags = 0;
if ((long)RANY(p)->as.data.dfree == -1) {
RUBY_CRITICAL(free(DATA_PTR(p)));
}
else if (RANY(p)->as.data.dfree) {
(*RANY(p)->as.data.dfree)(DATA_PTR(p));
}
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
}
else if (BUILTIN_TYPE(p) == T_FILE) {
if (rb_io_fptr_finalize(RANY(p)->as.file.fptr)) {
p->as.free.flags = 0;
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
}
}
p++;
}
}
during_gc = 0;
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
*/
static VALUE
id2ref(VALUE obj, VALUE objid)
{
#if SIZEOF_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULONG(x)
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULL(x)
#endif
VALUE ptr;
void *p0;
rb_secure(4);
ptr = NUM2PTR(objid);
p0 = (void *)ptr;
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
ptr = objid ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
if (rb_id2name(symid) == 0)
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
if (!is_pointer_to_heap((void *)ptr) ||
BUILTIN_TYPE(ptr) >= T_VALUES || BUILTIN_TYPE(ptr) == T_ICLASS) {
rb_raise(rb_eRangeError, "%p is not id value", p0);
}
if (BUILTIN_TYPE(ptr) == 0 || RBASIC(ptr)->klass == 0) {
rb_raise(rb_eRangeError, "%p is recycled object", p0);
}
return (VALUE)ptr;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ => fixnum
* obj.object_id => fixnum
*
* Returns an integer identifier for <i>obj</i>. The same number will
* be returned on all calls to <code>id</code> for a given object, and
* no two active objects will share an id.
* <code>Object#object_id</code> is a different concept from the
* <code>:name</code> notation, which returns the symbol id of
* <code>name</code>. Replaces the deprecated <code>Object#id</code>.
*/
/*
* call-seq:
* obj.hash => fixnum
*
* Generates a <code>Fixnum</code> hash value for this object. This
* function must have the property that <code>a.eql?(b)</code> implies
* <code>a.hash == b.hash</code>. The hash value is used by class
* <code>Hash</code>. Any hash value that exceeds the capacity of a
* <code>Fixnum</code> will be truncated before being used.
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (TYPE(obj) == T_SYMBOL) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return (VALUE)((SIGNED_VALUE)obj|FIXNUM_FLAG);
}
/*
* call-seq:
* ObjectSpace.count_objects([result_hash]) -> hash
*
* Counts objects for each type.
*
* It returns a hash as:
* {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...}
*
* If the optional argument, result_hash, is given,
* it is overwritten and returned.
* This is intended to avoid probe effect.
*
* The contents of the returned hash is implementation defined.
* It may be changed in future.
*
* This method is not expected to work except C Ruby.
*
*/
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
long counts[T_MASK+1];
long freed = 0;
long total = 0;
int i;
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (TYPE(hash) != T_HASH)
rb_raise(rb_eTypeError, "non-hash given");
}
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = heaps[i].slot; pend = p + heaps[i].limit;
for (;p < pend; p++) {
if (p->as.basic.flags) {
counts[BUILTIN_TYPE(p)]++;
}
else {
freed++;
}
}
total += heaps[i].limit;
}
if (hash == Qnil)
hash = rb_hash_new();
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), LONG2NUM(total));
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), LONG2NUM(freed));
for (i = 0; i <= T_MASK; i++) {
VALUE type;
switch (i) {
case T_NONE: type = ID2SYM(rb_intern("T_NONE")); break;
case T_NIL: type = ID2SYM(rb_intern("T_NIL")); break;
case T_OBJECT: type = ID2SYM(rb_intern("T_OBJECT")); break;
case T_CLASS: type = ID2SYM(rb_intern("T_CLASS")); break;
case T_ICLASS: type = ID2SYM(rb_intern("T_ICLASS")); break;
case T_MODULE: type = ID2SYM(rb_intern("T_MODULE")); break;
case T_FLOAT: type = ID2SYM(rb_intern("T_FLOAT")); break;
case T_STRING: type = ID2SYM(rb_intern("T_STRING")); break;
case T_REGEXP: type = ID2SYM(rb_intern("T_REGEXP")); break;
case T_ARRAY: type = ID2SYM(rb_intern("T_ARRAY")); break;
case T_FIXNUM: type = ID2SYM(rb_intern("T_FIXNUM")); break;
case T_HASH: type = ID2SYM(rb_intern("T_HASH")); break;
case T_STRUCT: type = ID2SYM(rb_intern("T_STRUCT")); break;
case T_BIGNUM: type = ID2SYM(rb_intern("T_BIGNUM")); break;
case T_FILE: type = ID2SYM(rb_intern("T_FILE")); break;
case T_TRUE: type = ID2SYM(rb_intern("T_TRUE")); break;
case T_FALSE: type = ID2SYM(rb_intern("T_FALSE")); break;
case T_DATA: type = ID2SYM(rb_intern("T_DATA")); break;
case T_MATCH: type = ID2SYM(rb_intern("T_MATCH")); break;
case T_SYMBOL: type = ID2SYM(rb_intern("T_SYMBOL")); break;
case T_VALUES: type = ID2SYM(rb_intern("T_VALUES")); break;
case T_BLOCK: type = ID2SYM(rb_intern("T_BLOCK")); break;
case T_UNDEF: type = ID2SYM(rb_intern("T_UNDEF")); break;
case T_NODE: type = ID2SYM(rb_intern("T_NODE")); break;
default: type = INT2NUM(i); break;
}
if (counts[i])
rb_hash_aset(hash, type, LONG2NUM(counts[i]));
}
return hash;
}
/*
* The <code>GC</code> module provides an interface to Ruby's mark and
* sweep garbage collection mechanism. Some of the underlying methods
* are also available via the <code>ObjectSpace</code> module.
*/
void
Init_GC(void)
{
VALUE rb_mObSpace;
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
rb_mObSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
rb_define_module_function(rb_mObSpace, "add_finalizer", add_final, 1);
rb_define_module_function(rb_mObSpace, "remove_finalizer", rm_final, 1);
rb_define_module_function(rb_mObSpace, "finalizers", finals, 0);
rb_define_module_function(rb_mObSpace, "call_finalizer", call_final, 1);
rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
rb_gc_register_address(&rb_mObSpace);
rb_global_variable(&finalizers);
rb_gc_unregister_address(&rb_mObSpace);
finalizers = rb_ary_new();
source_filenames = st_init_strtable();
rb_global_variable(&nomem_error);
nomem_error = rb_exc_new2(rb_eNoMemError, "failed to allocate memory");
rb_define_method(rb_mKernel, "hash", rb_obj_id, 0);
rb_define_method(rb_mKernel, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1);
}