зеркало из https://github.com/github/ruby.git
560 строки
22 KiB
C
560 строки
22 KiB
C
#include "yarp/unescape.h"
|
|
|
|
/******************************************************************************/
|
|
/* Character checks */
|
|
/******************************************************************************/
|
|
|
|
static inline bool
|
|
yp_char_is_hexadecimal_digits(const char *c, size_t length) {
|
|
for (size_t index = 0; index < length; index++) {
|
|
if (!yp_char_is_hexadecimal_digit(c[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Lookup tables for characters */
|
|
/******************************************************************************/
|
|
|
|
// This is a lookup table for unescapes that only take up a single character.
|
|
static const unsigned char unescape_chars[] = {
|
|
['\''] = '\'',
|
|
['\\'] = '\\',
|
|
['a'] = '\a',
|
|
['b'] = '\b',
|
|
['e'] = '\033',
|
|
['f'] = '\f',
|
|
['n'] = '\n',
|
|
['r'] = '\r',
|
|
['s'] = ' ',
|
|
['t'] = '\t',
|
|
['v'] = '\v'
|
|
};
|
|
|
|
// This is a lookup table for whether or not an ASCII character is printable.
|
|
static const bool ascii_printable_chars[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
|
|
};
|
|
|
|
static inline bool
|
|
char_is_ascii_printable(const char c) {
|
|
unsigned char v = (unsigned char) c;
|
|
return (v < 0x80) && ascii_printable_chars[v];
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Unescaping for segments */
|
|
/******************************************************************************/
|
|
|
|
// Scan the 1-3 digits of octal into the value. Returns the number of digits
|
|
// scanned.
|
|
static inline size_t
|
|
unescape_octal(const char *backslash, unsigned char *value) {
|
|
*value = (unsigned char) (backslash[1] - '0');
|
|
if (!yp_char_is_octal_digit(backslash[2])) {
|
|
return 2;
|
|
}
|
|
|
|
*value = (*value << 3) | (backslash[2] - '0');
|
|
if (!yp_char_is_octal_digit(backslash[3])) {
|
|
return 3;
|
|
}
|
|
|
|
*value = (*value << 3) | (backslash[3] - '0');
|
|
return 4;
|
|
}
|
|
|
|
// Convert a hexadecimal digit into its equivalent value.
|
|
static inline unsigned char
|
|
unescape_hexadecimal_digit(const char value) {
|
|
return (value <= '9') ? (unsigned char) (value - '0') : (value & 0x7) + 9;
|
|
}
|
|
|
|
// Scan the 1-2 digits of hexadecimal into the value. Returns the number of
|
|
// digits scanned.
|
|
static inline size_t
|
|
unescape_hexadecimal(const char *backslash, unsigned char *value) {
|
|
*value = unescape_hexadecimal_digit(backslash[2]);
|
|
if (!yp_char_is_hexadecimal_digit(backslash[3])) {
|
|
return 3;
|
|
}
|
|
|
|
*value = (*value << 4) | unescape_hexadecimal_digit(backslash[3]);
|
|
return 4;
|
|
}
|
|
|
|
// Scan the 4 digits of a Unicode escape into the value. Returns the number of
|
|
// digits scanned. This function assumes that the characters have already been
|
|
// validated.
|
|
static inline void
|
|
unescape_unicode(const char *string, size_t length, uint32_t *value) {
|
|
*value = 0;
|
|
for (size_t index = 0; index < length; index++) {
|
|
if (index != 0) *value <<= 4;
|
|
*value |= unescape_hexadecimal_digit(string[index]);
|
|
}
|
|
}
|
|
|
|
// Accepts the pointer to the string to write the unicode value along with the
|
|
// 32-bit value to write. Writes the UTF-8 representation of the value to the
|
|
// string and returns the number of bytes written.
|
|
static inline size_t
|
|
unescape_unicode_write(char *dest, uint32_t value, const char *start, const char *end, yp_list_t *error_list) {
|
|
unsigned char *bytes = (unsigned char *) dest;
|
|
|
|
if (value <= 0x7F) {
|
|
// 0xxxxxxx
|
|
bytes[0] = value;
|
|
return 1;
|
|
}
|
|
|
|
if (value <= 0x7FF) {
|
|
// 110xxxxx 10xxxxxx
|
|
bytes[0] = 0xC0 | (value >> 6);
|
|
bytes[1] = 0x80 | (value & 0x3F);
|
|
return 2;
|
|
}
|
|
|
|
if (value <= 0xFFFF) {
|
|
// 1110xxxx 10xxxxxx 10xxxxxx
|
|
bytes[0] = 0xE0 | (value >> 12);
|
|
bytes[1] = 0x80 | ((value >> 6) & 0x3F);
|
|
bytes[2] = 0x80 | (value & 0x3F);
|
|
return 3;
|
|
}
|
|
|
|
// At this point it must be a 4 digit UTF-8 representation. If it's not, then
|
|
// the input is invalid.
|
|
if (value <= 0x10FFFF) {
|
|
// 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
|
bytes[0] = 0xF0 | (value >> 18);
|
|
bytes[1] = 0x80 | ((value >> 12) & 0x3F);
|
|
bytes[2] = 0x80 | ((value >> 6) & 0x3F);
|
|
bytes[3] = 0x80 | (value & 0x3F);
|
|
return 4;
|
|
}
|
|
|
|
// If we get here, then the value is too big. This is an error, but we don't
|
|
// want to just crash, so instead we'll add an error to the error list and put
|
|
// in a replacement character instead.
|
|
yp_diagnostic_list_append(error_list, start, end, "Invalid Unicode escape sequence.");
|
|
bytes[0] = 0xEF;
|
|
bytes[1] = 0xBF;
|
|
bytes[2] = 0xBD;
|
|
return 3;
|
|
}
|
|
|
|
typedef enum {
|
|
YP_UNESCAPE_FLAG_NONE = 0,
|
|
YP_UNESCAPE_FLAG_CONTROL = 1,
|
|
YP_UNESCAPE_FLAG_META = 2,
|
|
YP_UNESCAPE_FLAG_EXPECT_SINGLE = 4
|
|
} yp_unescape_flag_t;
|
|
|
|
// Unescape a single character value based on the given flags.
|
|
static inline unsigned char
|
|
unescape_char(const unsigned char value, const unsigned char flags) {
|
|
unsigned char unescaped = value;
|
|
|
|
if (flags & YP_UNESCAPE_FLAG_CONTROL) {
|
|
unescaped &= 0x1f;
|
|
}
|
|
|
|
if (flags & YP_UNESCAPE_FLAG_META) {
|
|
unescaped |= 0x80;
|
|
}
|
|
|
|
return unescaped;
|
|
}
|
|
|
|
// Read a specific escape sequence into the given destination.
|
|
static const char *
|
|
unescape(char *dest, size_t *dest_length, const char *backslash, const char *end, yp_list_t *error_list, const unsigned char flags, bool write_to_str) {
|
|
switch (backslash[1]) {
|
|
// \a \b \e \f \n \r \s \t \v
|
|
case '\r': {
|
|
// if this is an \r\n we need to escape both
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(unescape_chars[(unsigned char) backslash[1]], flags);
|
|
}
|
|
|
|
if (backslash + 2 < end && backslash[2] == '\n') {
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(unescape_chars[(unsigned char) backslash[2]], flags);
|
|
}
|
|
return backslash + 3;
|
|
}
|
|
|
|
return backslash + 2;
|
|
}
|
|
case 'a':
|
|
case 'b':
|
|
case 'e':
|
|
case 'f':
|
|
case 'n':
|
|
case 'r':
|
|
case 's':
|
|
case 't':
|
|
case 'v':
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(unescape_chars[(unsigned char) backslash[1]], flags);
|
|
}
|
|
return backslash + 2;
|
|
// \nnn octal bit pattern, where nnn is 1-3 octal digits ([0-7])
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9': {
|
|
unsigned char value;
|
|
const char *cursor = backslash + unescape_octal(backslash, &value);
|
|
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(value, flags);
|
|
}
|
|
return cursor;
|
|
}
|
|
// \xnn hexadecimal bit pattern, where nn is 1-2 hexadecimal digits ([0-9a-fA-F])
|
|
case 'x': {
|
|
unsigned char value;
|
|
const char *cursor = backslash + unescape_hexadecimal(backslash, &value);
|
|
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(value, flags);
|
|
}
|
|
return cursor;
|
|
}
|
|
// \u{nnnn ...} Unicode character(s), where each nnnn is 1-6 hexadecimal digits ([0-9a-fA-F])
|
|
// \unnnn Unicode character, where nnnn is exactly 4 hexadecimal digits ([0-9a-fA-F])
|
|
case 'u': {
|
|
if ((flags & YP_UNESCAPE_FLAG_CONTROL) | (flags & YP_UNESCAPE_FLAG_META)) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Unicode escape sequence cannot be used with control or meta flags.");
|
|
return backslash + 2;
|
|
}
|
|
|
|
if ((backslash + 3) < end && backslash[2] == '{') {
|
|
const char *unicode_cursor = backslash + 3;
|
|
const char *extra_codepoints_start = NULL;
|
|
int codepoints_count = 0;
|
|
|
|
unicode_cursor += yp_strspn_whitespace(unicode_cursor, end - unicode_cursor);
|
|
|
|
while ((*unicode_cursor != '}') && (unicode_cursor < end)) {
|
|
const char *unicode_start = unicode_cursor;
|
|
size_t hexadecimal_length = yp_strspn_hexadecimal_digit(unicode_cursor, end - unicode_cursor);
|
|
|
|
// \u{nnnn} character literal allows only 1-6 hexadecimal digits
|
|
if (hexadecimal_length > 6)
|
|
yp_diagnostic_list_append(error_list, unicode_cursor, unicode_cursor + hexadecimal_length, "invalid Unicode escape.");
|
|
|
|
// there are not hexadecimal characters
|
|
if (hexadecimal_length == 0) {
|
|
yp_diagnostic_list_append(error_list, unicode_cursor, unicode_cursor + hexadecimal_length, "unterminated Unicode escape");
|
|
return unicode_cursor;
|
|
}
|
|
|
|
unicode_cursor += hexadecimal_length;
|
|
|
|
codepoints_count++;
|
|
if (flags & YP_UNESCAPE_FLAG_EXPECT_SINGLE && codepoints_count == 2)
|
|
extra_codepoints_start = unicode_start;
|
|
|
|
uint32_t value;
|
|
unescape_unicode(unicode_start, (size_t) (unicode_cursor - unicode_start), &value);
|
|
if (write_to_str) {
|
|
*dest_length += unescape_unicode_write(dest + *dest_length, value, unicode_start, unicode_cursor, error_list);
|
|
}
|
|
|
|
unicode_cursor += yp_strspn_whitespace(unicode_cursor, end - unicode_cursor);
|
|
}
|
|
|
|
// ?\u{nnnn} character literal should contain only one codepoint and cannot be like ?\u{nnnn mmmm}
|
|
if (flags & YP_UNESCAPE_FLAG_EXPECT_SINGLE && codepoints_count > 1)
|
|
yp_diagnostic_list_append(error_list, extra_codepoints_start, unicode_cursor - 1, "Multiple codepoints at single character literal");
|
|
|
|
return unicode_cursor + 1;
|
|
}
|
|
|
|
if ((backslash + 2) < end && yp_char_is_hexadecimal_digits(backslash + 2, 4)) {
|
|
uint32_t value;
|
|
unescape_unicode(backslash + 2, 4, &value);
|
|
|
|
if (write_to_str) {
|
|
*dest_length += unescape_unicode_write(dest + *dest_length, value, backslash + 2, backslash + 6, error_list);
|
|
}
|
|
return backslash + 6;
|
|
}
|
|
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid Unicode escape sequence");
|
|
return backslash + 2;
|
|
}
|
|
// \c\M-x meta control character, where x is an ASCII printable character
|
|
// \c? delete, ASCII 7Fh (DEL)
|
|
// \cx control character, where x is an ASCII printable character
|
|
case 'c':
|
|
if (backslash + 2 >= end) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
|
|
return end;
|
|
}
|
|
|
|
if (flags & YP_UNESCAPE_FLAG_CONTROL) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Control escape sequence cannot be doubled.");
|
|
return backslash + 2;
|
|
}
|
|
|
|
switch (backslash[2]) {
|
|
case '\\':
|
|
return unescape(dest, dest_length, backslash + 2, end, error_list, flags | YP_UNESCAPE_FLAG_CONTROL, write_to_str);
|
|
case '?':
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(0x7f, flags);
|
|
}
|
|
return backslash + 3;
|
|
default: {
|
|
if (!char_is_ascii_printable(backslash[2])) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
|
|
return backslash + 2;
|
|
}
|
|
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char((const unsigned char) backslash[2], flags | YP_UNESCAPE_FLAG_CONTROL);
|
|
}
|
|
return backslash + 3;
|
|
}
|
|
}
|
|
// \C-x control character, where x is an ASCII printable character
|
|
// \C-? delete, ASCII 7Fh (DEL)
|
|
case 'C':
|
|
if (backslash + 3 >= end) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
|
|
return end;
|
|
}
|
|
|
|
if (flags & YP_UNESCAPE_FLAG_CONTROL) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Control escape sequence cannot be doubled.");
|
|
return backslash + 2;
|
|
}
|
|
|
|
if (backslash[2] != '-') {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
|
|
return backslash + 2;
|
|
}
|
|
|
|
switch (backslash[3]) {
|
|
case '\\':
|
|
return unescape(dest, dest_length, backslash + 3, end, error_list, flags | YP_UNESCAPE_FLAG_CONTROL, write_to_str);
|
|
case '?':
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char(0x7f, flags);
|
|
}
|
|
return backslash + 4;
|
|
default:
|
|
if (!char_is_ascii_printable(backslash[3])) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid control escape sequence");
|
|
return backslash + 2;
|
|
}
|
|
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char((const unsigned char) backslash[3], flags | YP_UNESCAPE_FLAG_CONTROL);
|
|
}
|
|
return backslash + 4;
|
|
}
|
|
// \M-\C-x meta control character, where x is an ASCII printable character
|
|
// \M-\cx meta control character, where x is an ASCII printable character
|
|
// \M-x meta character, where x is an ASCII printable character
|
|
case 'M': {
|
|
if (backslash + 3 >= end) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
|
|
return end;
|
|
}
|
|
|
|
if (flags & YP_UNESCAPE_FLAG_META) {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Meta escape sequence cannot be doubled.");
|
|
return backslash + 2;
|
|
}
|
|
|
|
if (backslash[2] != '-') {
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid meta escape sequence");
|
|
return backslash + 2;
|
|
}
|
|
|
|
if (backslash[3] == '\\') {
|
|
return unescape(dest, dest_length, backslash + 3, end, error_list, flags | YP_UNESCAPE_FLAG_META, write_to_str);
|
|
}
|
|
|
|
if (char_is_ascii_printable(backslash[3])) {
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = (char) unescape_char((const unsigned char) backslash[3], flags | YP_UNESCAPE_FLAG_META);
|
|
}
|
|
return backslash + 4;
|
|
}
|
|
|
|
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid meta escape sequence");
|
|
return backslash + 3;
|
|
}
|
|
// In this case we're escaping something that doesn't need escaping.
|
|
default:
|
|
{
|
|
if (write_to_str) {
|
|
dest[(*dest_length)++] = backslash[1];
|
|
}
|
|
return backslash + 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Public functions and entrypoints */
|
|
/******************************************************************************/
|
|
|
|
// Unescape the contents of the given token into the given string using the
|
|
// given unescape mode. The supported escapes are:
|
|
//
|
|
// \a bell, ASCII 07h (BEL)
|
|
// \b backspace, ASCII 08h (BS)
|
|
// \t horizontal tab, ASCII 09h (TAB)
|
|
// \n newline (line feed), ASCII 0Ah (LF)
|
|
// \v vertical tab, ASCII 0Bh (VT)
|
|
// \f form feed, ASCII 0Ch (FF)
|
|
// \r carriage return, ASCII 0Dh (CR)
|
|
// \e escape, ASCII 1Bh (ESC)
|
|
// \s space, ASCII 20h (SPC)
|
|
// \\ backslash
|
|
// \nnn octal bit pattern, where nnn is 1-3 octal digits ([0-7])
|
|
// \xnn hexadecimal bit pattern, where nn is 1-2 hexadecimal digits ([0-9a-fA-F])
|
|
// \unnnn Unicode character, where nnnn is exactly 4 hexadecimal digits ([0-9a-fA-F])
|
|
// \u{nnnn ...} Unicode character(s), where each nnnn is 1-6 hexadecimal digits ([0-9a-fA-F])
|
|
// \cx or \C-x control character, where x is an ASCII printable character
|
|
// \M-x meta character, where x is an ASCII printable character
|
|
// \M-\C-x meta control character, where x is an ASCII printable character
|
|
// \M-\cx same as above
|
|
// \c\M-x same as above
|
|
// \c? or \C-? delete, ASCII 7Fh (DEL)
|
|
//
|
|
YP_EXPORTED_FUNCTION void
|
|
yp_unescape_manipulate_string(const char *value, size_t length, yp_string_t *string, yp_unescape_type_t unescape_type, yp_list_t *error_list) {
|
|
if (unescape_type == YP_UNESCAPE_NONE) {
|
|
// If we're not unescaping then we can reference the source directly.
|
|
yp_string_shared_init(string, value, value + length);
|
|
return;
|
|
}
|
|
|
|
const char *backslash = memchr(value, '\\', length);
|
|
|
|
if (backslash == NULL) {
|
|
// Here there are no escapes, so we can reference the source directly.
|
|
yp_string_shared_init(string, value, value + length);
|
|
return;
|
|
}
|
|
|
|
// Here we have found an escape character, so we need to handle all escapes
|
|
// within the string.
|
|
char *allocated = malloc(length);
|
|
if (allocated == NULL) {
|
|
yp_diagnostic_list_append(error_list, value, value + length, "Failed to allocate memory for unescaping.");
|
|
return;
|
|
}
|
|
|
|
yp_string_owned_init(string, allocated, length);
|
|
|
|
// This is the memory address where we're putting the unescaped string.
|
|
char *dest = string->as.owned.source;
|
|
size_t dest_length = 0;
|
|
|
|
// This is the current position in the source string that we're looking at.
|
|
// It's going to move along behind the backslash so that we can copy each
|
|
// segment of the string that doesn't contain an escape.
|
|
const char *cursor = value;
|
|
const char *end = value + length;
|
|
|
|
// For each escape found in the source string, we will handle it and update
|
|
// the moving cursor->backslash window.
|
|
while (backslash != NULL && backslash + 1 < end) {
|
|
assert(dest_length < length);
|
|
|
|
// This is the size of the segment of the string from the previous escape
|
|
// or the start of the string to the current escape.
|
|
size_t segment_size = (size_t) (backslash - cursor);
|
|
|
|
// Here we're going to copy everything up until the escape into the
|
|
// destination buffer.
|
|
memcpy(dest + dest_length, cursor, segment_size);
|
|
dest_length += segment_size;
|
|
|
|
switch (backslash[1]) {
|
|
case '\\':
|
|
case '\'':
|
|
dest[dest_length++] = (char) unescape_chars[(unsigned char) backslash[1]];
|
|
cursor = backslash + 2;
|
|
break;
|
|
default:
|
|
if (unescape_type == YP_UNESCAPE_MINIMAL) {
|
|
// In this case we're escaping something that doesn't need escaping.
|
|
dest[dest_length++] = '\\';
|
|
cursor = backslash + 1;
|
|
break;
|
|
}
|
|
|
|
// This is the only type of unescaping left. In this case we need to
|
|
// handle all of the different unescapes.
|
|
assert(unescape_type == YP_UNESCAPE_ALL);
|
|
cursor = unescape(dest, &dest_length, backslash, end, error_list, YP_UNESCAPE_FLAG_NONE, true);
|
|
break;
|
|
}
|
|
|
|
if (end > cursor) {
|
|
backslash = memchr(cursor, '\\', (size_t) (end - cursor));
|
|
} else {
|
|
backslash = NULL;
|
|
}
|
|
}
|
|
|
|
// We need to copy the final segment of the string after the last escape.
|
|
if (end > cursor) {
|
|
memcpy(dest + dest_length, cursor, (size_t) (end - cursor));
|
|
} else {
|
|
cursor = end;
|
|
}
|
|
|
|
// We also need to update the length at the end. This is because every escape
|
|
// reduces the length of the final string, and we don't want garbage at the
|
|
// end.
|
|
string->as.owned.length = dest_length + ((size_t) (end - cursor));
|
|
}
|
|
|
|
// This function is similar to yp_unescape_manipulate_string, except it doesn't
|
|
// actually perform any string manipulations. Instead, it calculates how long
|
|
// the unescaped character is, and returns that value
|
|
YP_EXPORTED_FUNCTION size_t
|
|
yp_unescape_calculate_difference(const char *backslash, const char *end, yp_unescape_type_t unescape_type, bool expect_single_codepoint, yp_list_t *error_list) {
|
|
assert(unescape_type != YP_UNESCAPE_NONE);
|
|
|
|
switch (backslash[1]) {
|
|
case '\\':
|
|
case '\'':
|
|
return 2;
|
|
default: {
|
|
if (unescape_type == YP_UNESCAPE_MINIMAL) return 2;
|
|
|
|
// This is the only type of unescaping left. In this case we need to
|
|
// handle all of the different unescapes.
|
|
assert(unescape_type == YP_UNESCAPE_ALL);
|
|
|
|
unsigned char flags = YP_UNESCAPE_FLAG_NONE;
|
|
if (expect_single_codepoint)
|
|
flags |= YP_UNESCAPE_FLAG_EXPECT_SINGLE;
|
|
|
|
const char *cursor = unescape(NULL, 0, backslash, end, error_list, flags, false);
|
|
assert(cursor > backslash);
|
|
|
|
return (size_t) (cursor - backslash);
|
|
}
|
|
}
|
|
}
|