ruby/gc.c

14477 строки
420 KiB
C

/**********************************************************************
gc.c -
$Author$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#define rb_data_object_alloc rb_data_object_alloc
#define rb_data_typed_object_alloc rb_data_typed_object_alloc
#include "ruby/internal/config.h"
#ifdef _WIN32
# include "ruby/ruby.h"
#endif
#include <signal.h>
#define sighandler_t ruby_sighandler_t
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
# include "wasm/setjmp.h"
# include "wasm/machine.h"
#else
# include <setjmp.h>
#endif
#include <stdarg.h>
#include <stdio.h>
/* MALLOC_HEADERS_BEGIN */
#ifndef HAVE_MALLOC_USABLE_SIZE
# ifdef _WIN32
# define HAVE_MALLOC_USABLE_SIZE
# define malloc_usable_size(a) _msize(a)
# elif defined HAVE_MALLOC_SIZE
# define HAVE_MALLOC_USABLE_SIZE
# define malloc_usable_size(a) malloc_size(a)
# endif
#endif
#ifdef HAVE_MALLOC_USABLE_SIZE
# ifdef RUBY_ALTERNATIVE_MALLOC_HEADER
/* Alternative malloc header is included in ruby/missing.h */
# elif defined(HAVE_MALLOC_H)
# include <malloc.h>
# elif defined(HAVE_MALLOC_NP_H)
# include <malloc_np.h>
# elif defined(HAVE_MALLOC_MALLOC_H)
# include <malloc/malloc.h>
# endif
#endif
#if !defined(PAGE_SIZE) && defined(HAVE_SYS_USER_H)
/* LIST_HEAD conflicts with sys/queue.h on macOS */
# include <sys/user.h>
#endif
/* MALLOC_HEADERS_END */
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#if defined _WIN32 || defined __CYGWIN__
# include <windows.h>
#elif defined(HAVE_POSIX_MEMALIGN)
#elif defined(HAVE_MEMALIGN)
# include <malloc.h>
#endif
#include <sys/types.h>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
# include <mach/task.h>
# include <mach/mach_init.h>
# include <mach/mach_port.h>
#endif
#undef LIST_HEAD /* ccan/list conflicts with BSD-origin sys/queue.h. */
#include "constant.h"
#include "debug_counter.h"
#include "eval_intern.h"
#include "gc.h"
#include "id_table.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/complex.h"
#include "internal/cont.h"
#include "internal/error.h"
#include "internal/eval.h"
#include "internal/gc.h"
#include "internal/hash.h"
#include "internal/imemo.h"
#include "internal/io.h"
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/proc.h"
#include "internal/rational.h"
#include "internal/sanitizers.h"
#include "internal/struct.h"
#include "internal/symbol.h"
#include "internal/thread.h"
#include "internal/variable.h"
#include "internal/warnings.h"
#include "mjit.h"
#include "probes.h"
#include "regint.h"
#include "ruby/debug.h"
#include "ruby/io.h"
#include "ruby/re.h"
#include "ruby/st.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "ruby_assert.h"
#include "ruby_atomic.h"
#include "symbol.h"
#include "transient_heap.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "ractor_core.h"
#include "builtin.h"
#define rb_setjmp(env) RUBY_SETJMP(env)
#define rb_jmp_buf rb_jmpbuf_t
#undef rb_data_object_wrap
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif
static inline struct rbimpl_size_mul_overflow_tag
size_add_overflow(size_t x, size_t y)
{
size_t z;
bool p;
#if 0
#elif __has_builtin(__builtin_add_overflow)
p = __builtin_add_overflow(x, y, &z);
#elif defined(DSIZE_T)
RB_GNUC_EXTENSION DSIZE_T dx = x;
RB_GNUC_EXTENSION DSIZE_T dy = y;
RB_GNUC_EXTENSION DSIZE_T dz = dx + dy;
p = dz > SIZE_MAX;
z = (size_t)dz;
#else
z = x + y;
p = z < y;
#endif
return (struct rbimpl_size_mul_overflow_tag) { p, z, };
}
static inline struct rbimpl_size_mul_overflow_tag
size_mul_add_overflow(size_t x, size_t y, size_t z) /* x * y + z */
{
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
struct rbimpl_size_mul_overflow_tag u = size_add_overflow(t.right, z);
return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left, u.right };
}
static inline struct rbimpl_size_mul_overflow_tag
size_mul_add_mul_overflow(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
{
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
struct rbimpl_size_mul_overflow_tag u = rbimpl_size_mul_overflow(z, w);
struct rbimpl_size_mul_overflow_tag v = size_add_overflow(t.right, u.right);
return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left || v.left, v.right };
}
PRINTF_ARGS(NORETURN(static void gc_raise(VALUE, const char*, ...)), 2, 3);
static inline size_t
size_mul_or_raise(size_t x, size_t y, VALUE exc)
{
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
if (LIKELY(!t.left)) {
return t.right;
}
else if (rb_during_gc()) {
rb_memerror(); /* or...? */
}
else {
gc_raise(
exc,
"integer overflow: %"PRIuSIZE
" * %"PRIuSIZE
" > %"PRIuSIZE,
x, y, (size_t)SIZE_MAX);
}
}
size_t
rb_size_mul_or_raise(size_t x, size_t y, VALUE exc)
{
return size_mul_or_raise(x, y, exc);
}
static inline size_t
size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc)
{
struct rbimpl_size_mul_overflow_tag t = size_mul_add_overflow(x, y, z);
if (LIKELY(!t.left)) {
return t.right;
}
else if (rb_during_gc()) {
rb_memerror(); /* or...? */
}
else {
gc_raise(
exc,
"integer overflow: %"PRIuSIZE
" * %"PRIuSIZE
" + %"PRIuSIZE
" > %"PRIuSIZE,
x, y, z, (size_t)SIZE_MAX);
}
}
size_t
rb_size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc)
{
return size_mul_add_or_raise(x, y, z, exc);
}
static inline size_t
size_mul_add_mul_or_raise(size_t x, size_t y, size_t z, size_t w, VALUE exc)
{
struct rbimpl_size_mul_overflow_tag t = size_mul_add_mul_overflow(x, y, z, w);
if (LIKELY(!t.left)) {
return t.right;
}
else if (rb_during_gc()) {
rb_memerror(); /* or...? */
}
else {
gc_raise(
exc,
"integer overflow: %"PRIdSIZE
" * %"PRIdSIZE
" + %"PRIdSIZE
" * %"PRIdSIZE
" > %"PRIdSIZE,
x, y, z, w, (size_t)SIZE_MAX);
}
}
#if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL
/* trick the compiler into thinking a external signal handler uses this */
volatile VALUE rb_gc_guarded_val;
volatile VALUE *
rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val)
{
rb_gc_guarded_val = val;
return ptr;
}
#endif
#ifndef GC_HEAP_INIT_SLOTS
#define GC_HEAP_INIT_SLOTS 10000
#endif
#ifndef GC_HEAP_FREE_SLOTS
#define GC_HEAP_FREE_SLOTS 4096
#endif
#ifndef GC_HEAP_GROWTH_FACTOR
#define GC_HEAP_GROWTH_FACTOR 1.8
#endif
#ifndef GC_HEAP_GROWTH_MAX_SLOTS
#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */
#endif
#ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR
#define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0
#endif
#ifndef GC_HEAP_FREE_SLOTS_MIN_RATIO
#define GC_HEAP_FREE_SLOTS_MIN_RATIO 0.20
#endif
#ifndef GC_HEAP_FREE_SLOTS_GOAL_RATIO
#define GC_HEAP_FREE_SLOTS_GOAL_RATIO 0.40
#endif
#ifndef GC_HEAP_FREE_SLOTS_MAX_RATIO
#define GC_HEAP_FREE_SLOTS_MAX_RATIO 0.65
#endif
#ifndef GC_MALLOC_LIMIT_MIN
#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
#endif
#ifndef GC_MALLOC_LIMIT_MAX
#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */)
#endif
#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR
#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4
#endif
#ifndef GC_OLDMALLOC_LIMIT_MIN
#define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
#endif
#ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR
#define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2
#endif
#ifndef GC_OLDMALLOC_LIMIT_MAX
#define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */)
#endif
#ifndef PRINT_MEASURE_LINE
#define PRINT_MEASURE_LINE 0
#endif
#ifndef PRINT_ENTER_EXIT_TICK
#define PRINT_ENTER_EXIT_TICK 0
#endif
#ifndef PRINT_ROOT_TICKS
#define PRINT_ROOT_TICKS 0
#endif
#define USE_TICK_T (PRINT_ENTER_EXIT_TICK || PRINT_MEASURE_LINE || PRINT_ROOT_TICKS)
#define TICK_TYPE 1
typedef struct {
size_t heap_init_slots;
size_t heap_free_slots;
double growth_factor;
size_t growth_max_slots;
double heap_free_slots_min_ratio;
double heap_free_slots_goal_ratio;
double heap_free_slots_max_ratio;
double oldobject_limit_factor;
size_t malloc_limit_min;
size_t malloc_limit_max;
double malloc_limit_growth_factor;
size_t oldmalloc_limit_min;
size_t oldmalloc_limit_max;
double oldmalloc_limit_growth_factor;
VALUE gc_stress;
} ruby_gc_params_t;
static ruby_gc_params_t gc_params = {
GC_HEAP_INIT_SLOTS,
GC_HEAP_FREE_SLOTS,
GC_HEAP_GROWTH_FACTOR,
GC_HEAP_GROWTH_MAX_SLOTS,
GC_HEAP_FREE_SLOTS_MIN_RATIO,
GC_HEAP_FREE_SLOTS_GOAL_RATIO,
GC_HEAP_FREE_SLOTS_MAX_RATIO,
GC_HEAP_OLDOBJECT_LIMIT_FACTOR,
GC_MALLOC_LIMIT_MIN,
GC_MALLOC_LIMIT_MAX,
GC_MALLOC_LIMIT_GROWTH_FACTOR,
GC_OLDMALLOC_LIMIT_MIN,
GC_OLDMALLOC_LIMIT_MAX,
GC_OLDMALLOC_LIMIT_GROWTH_FACTOR,
FALSE,
};
/* GC_DEBUG:
* enable to embed GC debugging information.
*/
#ifndef GC_DEBUG
#define GC_DEBUG 0
#endif
/* RGENGC_DEBUG:
* 1: basic information
* 2: remember set operation
* 3: mark
* 4:
* 5: sweep
*/
#ifndef RGENGC_DEBUG
#ifdef RUBY_DEVEL
#define RGENGC_DEBUG -1
#else
#define RGENGC_DEBUG 0
#endif
#endif
#if RGENGC_DEBUG < 0 && !defined(_MSC_VER)
# define RGENGC_DEBUG_ENABLED(level) (-(RGENGC_DEBUG) >= (level) && ruby_rgengc_debug >= (level))
#elif defined(HAVE_VA_ARGS_MACRO)
# define RGENGC_DEBUG_ENABLED(level) ((RGENGC_DEBUG) >= (level))
#else
# define RGENGC_DEBUG_ENABLED(level) 0
#endif
int ruby_rgengc_debug;
/* RGENGC_CHECK_MODE
* 0: disable all assertions
* 1: enable assertions (to debug RGenGC)
* 2: enable internal consistency check at each GC (for debugging)
* 3: enable internal consistency check at each GC steps (for debugging)
* 4: enable liveness check
* 5: show all references
*/
#ifndef RGENGC_CHECK_MODE
#define RGENGC_CHECK_MODE 0
#endif
// Note: using RUBY_ASSERT_WHEN() extend a macro in expr (info by nobu).
#define GC_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(RGENGC_CHECK_MODE > 0, expr, #expr)
/* RGENGC_OLD_NEWOBJ_CHECK
* 0: disable all assertions
* >0: make a OLD object when new object creation.
*
* Make one OLD object per RGENGC_OLD_NEWOBJ_CHECK WB protected objects creation.
*/
#ifndef RGENGC_OLD_NEWOBJ_CHECK
#define RGENGC_OLD_NEWOBJ_CHECK 0
#endif
/* RGENGC_PROFILE
* 0: disable RGenGC profiling
* 1: enable profiling for basic information
* 2: enable profiling for each types
*/
#ifndef RGENGC_PROFILE
#define RGENGC_PROFILE 0
#endif
/* RGENGC_ESTIMATE_OLDMALLOC
* Enable/disable to estimate increase size of malloc'ed size by old objects.
* If estimation exceeds threshold, then will invoke full GC.
* 0: disable estimation.
* 1: enable estimation.
*/
#ifndef RGENGC_ESTIMATE_OLDMALLOC
#define RGENGC_ESTIMATE_OLDMALLOC 1
#endif
/* RGENGC_FORCE_MAJOR_GC
* Force major/full GC if this macro is not 0.
*/
#ifndef RGENGC_FORCE_MAJOR_GC
#define RGENGC_FORCE_MAJOR_GC 0
#endif
#ifndef GC_PROFILE_MORE_DETAIL
#define GC_PROFILE_MORE_DETAIL 0
#endif
#ifndef GC_PROFILE_DETAIL_MEMORY
#define GC_PROFILE_DETAIL_MEMORY 0
#endif
#ifndef GC_ENABLE_INCREMENTAL_MARK
#define GC_ENABLE_INCREMENTAL_MARK USE_RINCGC
#endif
#ifndef GC_ENABLE_LAZY_SWEEP
#define GC_ENABLE_LAZY_SWEEP 1
#endif
#ifndef CALC_EXACT_MALLOC_SIZE
#define CALC_EXACT_MALLOC_SIZE USE_GC_MALLOC_OBJ_INFO_DETAILS
#endif
#if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0
#ifndef MALLOC_ALLOCATED_SIZE
#define MALLOC_ALLOCATED_SIZE 0
#endif
#else
#define MALLOC_ALLOCATED_SIZE 0
#endif
#ifndef MALLOC_ALLOCATED_SIZE_CHECK
#define MALLOC_ALLOCATED_SIZE_CHECK 0
#endif
#ifndef GC_DEBUG_STRESS_TO_CLASS
#define GC_DEBUG_STRESS_TO_CLASS 0
#endif
#ifndef RGENGC_OBJ_INFO
#define RGENGC_OBJ_INFO (RGENGC_DEBUG | RGENGC_CHECK_MODE)
#endif
typedef enum {
GPR_FLAG_NONE = 0x000,
/* major reason */
GPR_FLAG_MAJOR_BY_NOFREE = 0x001,
GPR_FLAG_MAJOR_BY_OLDGEN = 0x002,
GPR_FLAG_MAJOR_BY_SHADY = 0x004,
GPR_FLAG_MAJOR_BY_FORCE = 0x008,
#if RGENGC_ESTIMATE_OLDMALLOC
GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020,
#endif
GPR_FLAG_MAJOR_MASK = 0x0ff,
/* gc reason */
GPR_FLAG_NEWOBJ = 0x100,
GPR_FLAG_MALLOC = 0x200,
GPR_FLAG_METHOD = 0x400,
GPR_FLAG_CAPI = 0x800,
GPR_FLAG_STRESS = 0x1000,
/* others */
GPR_FLAG_IMMEDIATE_SWEEP = 0x2000,
GPR_FLAG_HAVE_FINALIZE = 0x4000,
GPR_FLAG_IMMEDIATE_MARK = 0x8000,
GPR_FLAG_FULL_MARK = 0x10000,
GPR_FLAG_COMPACT = 0x20000,
GPR_DEFAULT_REASON =
(GPR_FLAG_FULL_MARK | GPR_FLAG_IMMEDIATE_MARK |
GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_CAPI),
} gc_profile_record_flag;
typedef struct gc_profile_record {
unsigned int flags;
double gc_time;
double gc_invoke_time;
size_t heap_total_objects;
size_t heap_use_size;
size_t heap_total_size;
size_t moved_objects;
#if GC_PROFILE_MORE_DETAIL
double gc_mark_time;
double gc_sweep_time;
size_t heap_use_pages;
size_t heap_live_objects;
size_t heap_free_objects;
size_t allocate_increase;
size_t allocate_limit;
double prepare_time;
size_t removing_objects;
size_t empty_objects;
#if GC_PROFILE_DETAIL_MEMORY
long maxrss;
long minflt;
long majflt;
#endif
#endif
#if MALLOC_ALLOCATED_SIZE
size_t allocated_size;
#endif
#if RGENGC_PROFILE > 0
size_t old_objects;
size_t remembered_normal_objects;
size_t remembered_shady_objects;
#endif
} gc_profile_record;
struct RMoved {
VALUE flags;
VALUE dummy;
VALUE destination;
};
#define RMOVED(obj) ((struct RMoved *)(obj))
typedef struct RVALUE {
union {
struct {
VALUE flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RMoved moved;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RTypedData typeddata;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RMatch match;
struct RRational rational;
struct RComplex complex;
struct RSymbol symbol;
union {
rb_cref_t cref;
struct vm_svar svar;
struct vm_throw_data throw_data;
struct vm_ifunc ifunc;
struct MEMO memo;
struct rb_method_entry_struct ment;
const rb_iseq_t iseq;
rb_env_t env;
struct rb_imemo_tmpbuf_struct alloc;
rb_ast_t ast;
} imemo;
struct {
struct RBasic basic;
VALUE v1;
VALUE v2;
VALUE v3;
} values;
} as;
#if GC_DEBUG
const char *file;
int line;
#endif
} RVALUE;
#if GC_DEBUG
STATIC_ASSERT(sizeof_rvalue, offsetof(RVALUE, file) == SIZEOF_VALUE * 5);
#else
STATIC_ASSERT(sizeof_rvalue, sizeof(RVALUE) == SIZEOF_VALUE * 5);
#endif
STATIC_ASSERT(alignof_rvalue, RUBY_ALIGNOF(RVALUE) == SIZEOF_VALUE);
typedef uintptr_t bits_t;
enum {
BITS_SIZE = sizeof(bits_t),
BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT )
};
#define popcount_bits rb_popcount_intptr
struct heap_page_header {
struct heap_page *page;
};
struct heap_page_body {
struct heap_page_header header;
/* char gap[]; */
/* RVALUE values[]; */
};
struct gc_list {
VALUE *varptr;
struct gc_list *next;
};
#define STACK_CHUNK_SIZE 500
typedef struct stack_chunk {
VALUE data[STACK_CHUNK_SIZE];
struct stack_chunk *next;
} stack_chunk_t;
typedef struct mark_stack {
stack_chunk_t *chunk;
stack_chunk_t *cache;
int index;
int limit;
size_t cache_size;
size_t unused_cache_size;
} mark_stack_t;
#define SIZE_POOL_EDEN_HEAP(size_pool) (&(size_pool)->eden_heap)
#define SIZE_POOL_TOMB_HEAP(size_pool) (&(size_pool)->tomb_heap)
typedef struct rb_heap_struct {
struct heap_page *free_pages;
struct ccan_list_head pages;
struct heap_page *sweeping_page; /* iterator for .pages */
struct heap_page *compact_cursor;
uintptr_t compact_cursor_index;
#if GC_ENABLE_INCREMENTAL_MARK
struct heap_page *pooled_pages;
#endif
size_t total_pages; /* total page count in a heap */
size_t total_slots; /* total slot count (about total_pages * HEAP_PAGE_OBJ_LIMIT) */
} rb_heap_t;
typedef struct rb_size_pool_struct {
short slot_size;
size_t allocatable_pages;
/* Basic statistics */
size_t total_allocated_pages;
size_t total_freed_pages;
size_t force_major_gc_count;
#if USE_RVARGC
/* Sweeping statistics */
size_t freed_slots;
size_t empty_slots;
#endif
rb_heap_t eden_heap;
rb_heap_t tomb_heap;
} rb_size_pool_t;
enum gc_mode {
gc_mode_none,
gc_mode_marking,
gc_mode_sweeping,
gc_mode_compacting,
};
typedef struct rb_objspace {
struct {
size_t limit;
size_t increase;
#if MALLOC_ALLOCATED_SIZE
size_t allocated_size;
size_t allocations;
#endif
} malloc_params;
struct {
unsigned int mode : 2;
unsigned int immediate_sweep : 1;
unsigned int dont_gc : 1;
unsigned int dont_incremental : 1;
unsigned int during_gc : 1;
unsigned int during_compacting : 1;
unsigned int gc_stressful: 1;
unsigned int has_hook: 1;
unsigned int during_minor_gc : 1;
#if GC_ENABLE_INCREMENTAL_MARK
unsigned int during_incremental_marking : 1;
#endif
unsigned int measure_gc : 1;
} flags;
rb_event_flag_t hook_events;
size_t total_allocated_objects;
VALUE next_object_id;
rb_size_pool_t size_pools[SIZE_POOL_COUNT];
struct {
rb_atomic_t finalizing;
} atomic_flags;
mark_stack_t mark_stack;
size_t marked_slots;
struct {
struct heap_page **sorted;
size_t allocated_pages;
size_t allocatable_pages;
size_t sorted_length;
uintptr_t range[2];
size_t freeable_pages;
/* final */
size_t final_slots;
VALUE deferred_final;
} heap_pages;
st_table *finalizer_table;
struct {
int run;
unsigned int latest_gc_info;
gc_profile_record *records;
gc_profile_record *current_record;
size_t next_index;
size_t size;
#if GC_PROFILE_MORE_DETAIL
double prepare_time;
#endif
double invoke_time;
size_t minor_gc_count;
size_t major_gc_count;
size_t compact_count;
size_t read_barrier_faults;
#if RGENGC_PROFILE > 0
size_t total_generated_normal_object_count;
size_t total_generated_shady_object_count;
size_t total_shade_operation_count;
size_t total_promoted_count;
size_t total_remembered_normal_object_count;
size_t total_remembered_shady_object_count;
#if RGENGC_PROFILE >= 2
size_t generated_normal_object_count_types[RUBY_T_MASK];
size_t generated_shady_object_count_types[RUBY_T_MASK];
size_t shade_operation_count_types[RUBY_T_MASK];
size_t promoted_types[RUBY_T_MASK];
size_t remembered_normal_object_count_types[RUBY_T_MASK];
size_t remembered_shady_object_count_types[RUBY_T_MASK];
#endif
#endif /* RGENGC_PROFILE */
/* temporary profiling space */
double gc_sweep_start_time;
size_t total_allocated_objects_at_gc_start;
size_t heap_used_at_gc_start;
/* basic statistics */
size_t count;
size_t total_freed_objects;
uint64_t total_time_ns;
struct timespec start_time;
} profile;
struct gc_list *global_list;
VALUE gc_stress_mode;
struct {
VALUE parent_object;
int need_major_gc;
size_t last_major_gc;
size_t uncollectible_wb_unprotected_objects;
size_t uncollectible_wb_unprotected_objects_limit;
size_t old_objects;
size_t old_objects_limit;
#if RGENGC_ESTIMATE_OLDMALLOC
size_t oldmalloc_increase;
size_t oldmalloc_increase_limit;
#endif
#if RGENGC_CHECK_MODE >= 2
struct st_table *allrefs_table;
size_t error_count;
#endif
} rgengc;
struct {
size_t considered_count_table[T_MASK];
size_t moved_count_table[T_MASK];
size_t moved_up_count_table[T_MASK];
size_t moved_down_count_table[T_MASK];
size_t total_moved;
} rcompactor;
#if GC_ENABLE_INCREMENTAL_MARK
struct {
size_t pooled_slots;
size_t step_slots;
} rincgc;
#endif
st_table *id_to_obj_tbl;
st_table *obj_to_id_tbl;
#if GC_DEBUG_STRESS_TO_CLASS
VALUE stress_to_class;
#endif
} rb_objspace_t;
#ifndef HEAP_PAGE_ALIGN_LOG
/* default tiny heap size: 64KiB */
#define HEAP_PAGE_ALIGN_LOG 16
#endif
#define BASE_SLOT_SIZE sizeof(RVALUE)
#define CEILDIV(i, mod) roomof(i, mod)
enum {
HEAP_PAGE_ALIGN = (1UL << HEAP_PAGE_ALIGN_LOG),
HEAP_PAGE_ALIGN_MASK = (~(~0UL << HEAP_PAGE_ALIGN_LOG)),
HEAP_PAGE_SIZE = HEAP_PAGE_ALIGN,
HEAP_PAGE_OBJ_LIMIT = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)) / BASE_SLOT_SIZE),
HEAP_PAGE_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_PAGE_SIZE, BASE_SLOT_SIZE), BITS_BITLENGTH),
HEAP_PAGE_BITMAP_SIZE = (BITS_SIZE * HEAP_PAGE_BITMAP_LIMIT),
};
#define HEAP_PAGE_ALIGN (1 << HEAP_PAGE_ALIGN_LOG)
#define HEAP_PAGE_SIZE HEAP_PAGE_ALIGN
#if GC_ENABLE_INCREMENTAL_MARK && !defined(INCREMENTAL_MARK_STEP_ALLOCATIONS)
# define INCREMENTAL_MARK_STEP_ALLOCATIONS 500
#endif
#undef INIT_HEAP_PAGE_ALLOC_USE_MMAP
/* Must define either HEAP_PAGE_ALLOC_USE_MMAP or
* INIT_HEAP_PAGE_ALLOC_USE_MMAP. */
#ifndef HAVE_MMAP
/* We can't use mmap of course, if it is not available. */
static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
#elif defined(__wasm__)
/* wasmtime does not have proper support for mmap.
* See https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-rationale.md#why-no-mmap-and-friends
*/
static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
#elif HAVE_CONST_PAGE_SIZE
/* If we have the PAGE_SIZE and it is a constant, then we can directly use it. */
static const bool HEAP_PAGE_ALLOC_USE_MMAP = (PAGE_SIZE <= HEAP_PAGE_SIZE);
#elif defined(PAGE_MAX_SIZE) && (PAGE_MAX_SIZE <= HEAP_PAGE_SIZE)
/* If we can use the maximum page size. */
static const bool HEAP_PAGE_ALLOC_USE_MMAP = true;
#elif defined(PAGE_SIZE)
/* If the PAGE_SIZE macro can be used dynamically. */
# define INIT_HEAP_PAGE_ALLOC_USE_MMAP (PAGE_SIZE <= HEAP_PAGE_SIZE)
#elif defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE)
/* If we can use sysconf to determine the page size. */
# define INIT_HEAP_PAGE_ALLOC_USE_MMAP (sysconf(_SC_PAGE_SIZE) <= HEAP_PAGE_SIZE)
#else
/* Otherwise we can't determine the system page size, so don't use mmap. */
static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
#endif
#ifdef INIT_HEAP_PAGE_ALLOC_USE_MMAP
/* We can determine the system page size at runtime. */
# define HEAP_PAGE_ALLOC_USE_MMAP (heap_page_alloc_use_mmap != false)
static bool heap_page_alloc_use_mmap;
#endif
struct heap_page {
short slot_size;
short total_slots;
short free_slots;
short pinned_slots;
short final_slots;
struct {
unsigned int before_sweep : 1;
unsigned int has_remembered_objects : 1;
unsigned int has_uncollectible_shady_objects : 1;
unsigned int in_tomb : 1;
} flags;
rb_size_pool_t *size_pool;
struct heap_page *free_next;
uintptr_t start;
RVALUE *freelist;
struct ccan_list_node page_node;
bits_t wb_unprotected_bits[HEAP_PAGE_BITMAP_LIMIT];
/* the following three bitmaps are cleared at the beginning of full GC */
bits_t mark_bits[HEAP_PAGE_BITMAP_LIMIT];
bits_t uncollectible_bits[HEAP_PAGE_BITMAP_LIMIT];
bits_t marking_bits[HEAP_PAGE_BITMAP_LIMIT];
/* If set, the object is not movable */
bits_t pinned_bits[HEAP_PAGE_BITMAP_LIMIT];
};
/*
* When asan is enabled, this will prohibit writing to the freelist until it is unlocked
*/
static void
asan_lock_freelist(struct heap_page *page)
{
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*));
}
/*
* When asan is enabled, this will enable the ability to write to the freelist
*/
static void
asan_unlock_freelist(struct heap_page *page)
{
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false);
}
#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_PAGE_ALIGN_MASK)))
#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header)
#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page)
#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_PAGE_ALIGN_MASK) / BASE_SLOT_SIZE)
#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH )
#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1))
#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p))
/* Bitmap Operations */
#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p))
#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p))
#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
/* getting bitmap */
#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0])
#define GET_HEAP_PINNED_BITS(x) (&GET_HEAP_PAGE(x)->pinned_bits[0])
#define GET_HEAP_UNCOLLECTIBLE_BITS(x) (&GET_HEAP_PAGE(x)->uncollectible_bits[0])
#define GET_HEAP_WB_UNPROTECTED_BITS(x) (&GET_HEAP_PAGE(x)->wb_unprotected_bits[0])
#define GET_HEAP_MARKING_BITS(x) (&GET_HEAP_PAGE(x)->marking_bits[0])
#define GC_SWEEP_PAGES_FREEABLE_PER_STEP 3
/* Aliases */
#define rb_objspace (*rb_objspace_of(GET_VM()))
#define rb_objspace_of(vm) ((vm)->objspace)
#define ruby_initial_gc_stress gc_params.gc_stress
VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
#define malloc_limit objspace->malloc_params.limit
#define malloc_increase objspace->malloc_params.increase
#define malloc_allocated_size objspace->malloc_params.allocated_size
#define heap_pages_sorted objspace->heap_pages.sorted
#define heap_allocated_pages objspace->heap_pages.allocated_pages
#define heap_pages_sorted_length objspace->heap_pages.sorted_length
#define heap_pages_lomem objspace->heap_pages.range[0]
#define heap_pages_himem objspace->heap_pages.range[1]
#define heap_pages_freeable_pages objspace->heap_pages.freeable_pages
#define heap_pages_final_slots objspace->heap_pages.final_slots
#define heap_pages_deferred_final objspace->heap_pages.deferred_final
#define size_pools objspace->size_pools
#define during_gc objspace->flags.during_gc
#define finalizing objspace->atomic_flags.finalizing
#define finalizer_table objspace->finalizer_table
#define global_list objspace->global_list
#define ruby_gc_stressful objspace->flags.gc_stressful
#define ruby_gc_stress_mode objspace->gc_stress_mode
#if GC_DEBUG_STRESS_TO_CLASS
#define stress_to_class objspace->stress_to_class
#else
#define stress_to_class 0
#endif
#if 0
#define dont_gc_on() (fprintf(stderr, "dont_gc_on@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 1)
#define dont_gc_off() (fprintf(stderr, "dont_gc_off@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 0)
#define dont_gc_set(b) (fprintf(stderr, "dont_gc_set(%d)@%s:%d\n", __FILE__, __LINE__), (int)b), objspace->flags.dont_gc = (b))
#define dont_gc_val() (objspace->flags.dont_gc)
#else
#define dont_gc_on() (objspace->flags.dont_gc = 1)
#define dont_gc_off() (objspace->flags.dont_gc = 0)
#define dont_gc_set(b) (((int)b), objspace->flags.dont_gc = (b))
#define dont_gc_val() (objspace->flags.dont_gc)
#endif
static inline enum gc_mode
gc_mode_verify(enum gc_mode mode)
{
#if RGENGC_CHECK_MODE > 0
switch (mode) {
case gc_mode_none:
case gc_mode_marking:
case gc_mode_sweeping:
case gc_mode_compacting:
break;
default:
rb_bug("gc_mode_verify: unreachable (%d)", (int)mode);
}
#endif
return mode;
}
static inline bool
has_sweeping_pages(rb_objspace_t *objspace)
{
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
if (SIZE_POOL_EDEN_HEAP(&size_pools[i])->sweeping_page) {
return TRUE;
}
}
return FALSE;
}
static inline size_t
heap_eden_total_pages(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
count += SIZE_POOL_EDEN_HEAP(&size_pools[i])->total_pages;
}
return count;
}
static inline size_t
heap_eden_total_slots(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
count += SIZE_POOL_EDEN_HEAP(&size_pools[i])->total_slots;
}
return count;
}
static inline size_t
heap_tomb_total_pages(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
count += SIZE_POOL_TOMB_HEAP(&size_pools[i])->total_pages;
}
return count;
}
static inline size_t
heap_allocatable_pages(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
count += size_pools[i].allocatable_pages;
}
return count;
}
static inline size_t
heap_allocatable_slots(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
int slot_size_multiple = size_pool->slot_size / BASE_SLOT_SIZE;
count += size_pool->allocatable_pages * HEAP_PAGE_OBJ_LIMIT / slot_size_multiple;
}
return count;
}
static inline size_t
total_allocated_pages(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
count += size_pool->total_allocated_pages;
}
return count;
}
static inline size_t
total_freed_pages(rb_objspace_t *objspace)
{
size_t count = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
count += size_pool->total_freed_pages;
}
return count;
}
#define gc_mode(objspace) gc_mode_verify((enum gc_mode)(objspace)->flags.mode)
#define gc_mode_set(objspace, mode) ((objspace)->flags.mode = (unsigned int)gc_mode_verify(mode))
#define is_marking(objspace) (gc_mode(objspace) == gc_mode_marking)
#define is_sweeping(objspace) (gc_mode(objspace) == gc_mode_sweeping)
#define is_full_marking(objspace) ((objspace)->flags.during_minor_gc == FALSE)
#if GC_ENABLE_INCREMENTAL_MARK
#define is_incremental_marking(objspace) ((objspace)->flags.during_incremental_marking != FALSE)
#else
#define is_incremental_marking(objspace) FALSE
#endif
#if GC_ENABLE_INCREMENTAL_MARK
#define will_be_incremental_marking(objspace) ((objspace)->rgengc.need_major_gc != GPR_FLAG_NONE)
#else
#define will_be_incremental_marking(objspace) FALSE
#endif
#if GC_ENABLE_INCREMENTAL_MARK
#define GC_INCREMENTAL_SWEEP_SLOT_COUNT 2048
#endif
#define is_lazy_sweeping(objspace) (GC_ENABLE_LAZY_SWEEP && has_sweeping_pages(objspace))
#if SIZEOF_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
# define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
#else
# error not supported
#endif
#define RANY(o) ((RVALUE*)(o))
struct RZombie {
struct RBasic basic;
VALUE next;
void (*dfree)(void *);
void *data;
};
#define RZOMBIE(o) ((struct RZombie *)(o))
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
#if RUBY_MARK_FREE_DEBUG
int ruby_gc_debug_indent = 0;
#endif
VALUE rb_mGC;
int ruby_disable_gc = 0;
int ruby_enable_autocompact = 0;
void rb_iseq_mark(const rb_iseq_t *iseq);
void rb_iseq_update_references(rb_iseq_t *iseq);
void rb_iseq_free(const rb_iseq_t *iseq);
size_t rb_iseq_memsize(const rb_iseq_t *iseq);
void rb_vm_update_references(void *ptr);
void rb_gcdebug_print_obj_condition(VALUE obj);
static VALUE define_final0(VALUE obj, VALUE block);
NORETURN(static void *gc_vraise(void *ptr));
NORETURN(static void gc_raise(VALUE exc, const char *fmt, ...));
NORETURN(static void negative_size_allocation_error(const char *));
static void init_mark_stack(mark_stack_t *stack);
static int ready_to_gc(rb_objspace_t *objspace);
static int garbage_collect(rb_objspace_t *, unsigned int reason);
static int gc_start(rb_objspace_t *objspace, unsigned int reason);
static void gc_rest(rb_objspace_t *objspace);
enum gc_enter_event {
gc_enter_event_start,
gc_enter_event_mark_continue,
gc_enter_event_sweep_continue,
gc_enter_event_rest,
gc_enter_event_finalizer,
gc_enter_event_rb_memerror,
};
static inline void gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev);
static inline void gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev);
static void gc_marks(rb_objspace_t *objspace, int full_mark);
static void gc_marks_start(rb_objspace_t *objspace, int full);
static void gc_marks_finish(rb_objspace_t *objspace);
static void gc_marks_rest(rb_objspace_t *objspace);
static void gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap);
static void gc_sweep(rb_objspace_t *objspace);
static void gc_sweep_start(rb_objspace_t *objspace);
#if USE_RVARGC
static void gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool);
#endif
static void gc_sweep_finish(rb_objspace_t *objspace);
static int gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap);
static void gc_sweep_rest(rb_objspace_t *objspace);
static void gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap);
static inline void gc_mark(rb_objspace_t *objspace, VALUE ptr);
static inline void gc_pin(rb_objspace_t *objspace, VALUE ptr);
static inline void gc_mark_and_pin(rb_objspace_t *objspace, VALUE ptr);
static void gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr);
NO_SANITIZE("memory", static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr));
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
static int gc_mark_stacked_objects_incremental(rb_objspace_t *, size_t count);
static int gc_mark_stacked_objects_all(rb_objspace_t *);
static void gc_grey(rb_objspace_t *objspace, VALUE ptr);
static inline int gc_mark_set(rb_objspace_t *objspace, VALUE obj);
NO_SANITIZE("memory", static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr));
static void push_mark_stack(mark_stack_t *, VALUE);
static int pop_mark_stack(mark_stack_t *, VALUE *);
static size_t mark_stack_size(mark_stack_t *stack);
static void shrink_stack_chunk_cache(mark_stack_t *stack);
static size_t obj_memsize_of(VALUE obj, int use_all_types);
static void gc_verify_internal_consistency(rb_objspace_t *objspace);
static int gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj);
static int gc_verify_heap_pages(rb_objspace_t *objspace);
static void gc_stress_set(rb_objspace_t *objspace, VALUE flag);
static VALUE gc_disable_no_rest(rb_objspace_t *);
static double getrusage_time(void);
static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason);
static inline void gc_prof_timer_start(rb_objspace_t *);
static inline void gc_prof_timer_stop(rb_objspace_t *);
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
static inline void gc_prof_set_heap_info(rb_objspace_t *);
#define TYPED_UPDATE_IF_MOVED(_objspace, _type, _thing) do { \
if (gc_object_moved_p((_objspace), (VALUE)(_thing))) { \
*(_type *)&(_thing) = (_type)RMOVED(_thing)->destination; \
} \
} while (0)
#define UPDATE_IF_MOVED(_objspace, _thing) TYPED_UPDATE_IF_MOVED(_objspace, VALUE, _thing)
#define gc_prof_record(objspace) (objspace)->profile.current_record
#define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record)
#ifdef HAVE_VA_ARGS_MACRO
# define gc_report(level, objspace, ...) \
if (!RGENGC_DEBUG_ENABLED(level)) {} else gc_report_body(level, objspace, __VA_ARGS__)
#else
# define gc_report if (!RGENGC_DEBUG_ENABLED(0)) {} else gc_report_body
#endif
PRINTF_ARGS(static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4);
static const char *obj_info(VALUE obj);
static const char *obj_type_name(VALUE obj);
/*
* 1 - TSC (H/W Time Stamp Counter)
* 2 - getrusage
*/
#ifndef TICK_TYPE
#define TICK_TYPE 1
#endif
#if USE_TICK_T
#if TICK_TYPE == 1
/* the following code is only for internal tuning. */
/* Source code to use RDTSC is quoted and modified from
* https://www.mcs.anl.gov/~kazutomo/rdtsc.html
* written by Kazutomo Yoshii <kazutomo@mcs.anl.gov>
*/
#if defined(__GNUC__) && defined(__i386__)
typedef unsigned long long tick_t;
#define PRItick "llu"
static inline tick_t
tick(void)
{
unsigned long long int x;
__asm__ __volatile__ ("rdtsc" : "=A" (x));
return x;
}
#elif defined(__GNUC__) && defined(__x86_64__)
typedef unsigned long long tick_t;
#define PRItick "llu"
static __inline__ tick_t
tick(void)
{
unsigned long hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32);
}
#elif defined(__powerpc64__) && GCC_VERSION_SINCE(4,8,0)
typedef unsigned long long tick_t;
#define PRItick "llu"
static __inline__ tick_t
tick(void)
{
unsigned long long val = __builtin_ppc_get_timebase();
return val;
}
#elif defined(__aarch64__) && defined(__GNUC__)
typedef unsigned long tick_t;
#define PRItick "lu"
static __inline__ tick_t
tick(void)
{
unsigned long val;
__asm__ __volatile__ ("mrs %0, cntvct_el0" : "=r" (val));
return val;
}
#elif defined(_WIN32) && defined(_MSC_VER)
#include <intrin.h>
typedef unsigned __int64 tick_t;
#define PRItick "llu"
static inline tick_t
tick(void)
{
return __rdtsc();
}
#else /* use clock */
typedef clock_t tick_t;
#define PRItick "llu"
static inline tick_t
tick(void)
{
return clock();
}
#endif /* TSC */
#elif TICK_TYPE == 2
typedef double tick_t;
#define PRItick "4.9f"
static inline tick_t
tick(void)
{
return getrusage_time();
}
#else /* TICK_TYPE */
#error "choose tick type"
#endif /* TICK_TYPE */
#define MEASURE_LINE(expr) do { \
volatile tick_t start_time = tick(); \
volatile tick_t end_time; \
expr; \
end_time = tick(); \
fprintf(stderr, "0\t%"PRItick"\t%s\n", end_time - start_time, #expr); \
} while (0)
#else /* USE_TICK_T */
#define MEASURE_LINE(expr) expr
#endif /* USE_TICK_T */
static inline void *
asan_unpoison_object_temporary(VALUE obj)
{
void *ptr = asan_poisoned_object_p(obj);
asan_unpoison_object(obj, false);
return ptr;
}
static inline void *
asan_poison_object_restore(VALUE obj, void *ptr)
{
if (ptr) {
asan_poison_object(obj);
}
return NULL;
}
#define asan_unpoisoning_object(obj) \
for (void *poisoned = asan_unpoison_object_temporary(obj), \
*unpoisoning = &poisoned; /* flag to loop just once */ \
unpoisoning; \
unpoisoning = asan_poison_object_restore(obj, poisoned))
#define FL_CHECK2(name, x, pred) \
((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? \
(rb_bug(name": SPECIAL_CONST (%p)", (void *)(x)), 0) : (pred))
#define FL_TEST2(x,f) FL_CHECK2("FL_TEST2", x, FL_TEST_RAW((x),(f)) != 0)
#define FL_SET2(x,f) FL_CHECK2("FL_SET2", x, RBASIC(x)->flags |= (f))
#define FL_UNSET2(x,f) FL_CHECK2("FL_UNSET2", x, RBASIC(x)->flags &= ~(f))
#define RVALUE_MARK_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), (obj))
#define RVALUE_PIN_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), (obj))
#define RVALUE_PAGE_MARKED(page, obj) MARKED_IN_BITMAP((page)->mark_bits, (obj))
#define RVALUE_WB_UNPROTECTED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), (obj))
#define RVALUE_UNCOLLECTIBLE_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), (obj))
#define RVALUE_MARKING_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), (obj))
#define RVALUE_PAGE_WB_UNPROTECTED(page, obj) MARKED_IN_BITMAP((page)->wb_unprotected_bits, (obj))
#define RVALUE_PAGE_UNCOLLECTIBLE(page, obj) MARKED_IN_BITMAP((page)->uncollectible_bits, (obj))
#define RVALUE_PAGE_MARKING(page, obj) MARKED_IN_BITMAP((page)->marking_bits, (obj))
#define RVALUE_OLD_AGE 3
#define RVALUE_AGE_SHIFT 5 /* FL_PROMOTED0 bit */
static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj);
static int rgengc_remembered_sweep(rb_objspace_t *objspace, VALUE obj);
static int rgengc_remember(rb_objspace_t *objspace, VALUE obj);
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap);
static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap);
static inline int
RVALUE_FLAGS_AGE(VALUE flags)
{
return (int)((flags & (FL_PROMOTED0 | FL_PROMOTED1)) >> RVALUE_AGE_SHIFT);
}
static int
check_rvalue_consistency_force(const VALUE obj, int terminate)
{
int err = 0;
rb_objspace_t *objspace = &rb_objspace;
RB_VM_LOCK_ENTER_NO_BARRIER();
{
if (SPECIAL_CONST_P(obj)) {
fprintf(stderr, "check_rvalue_consistency: %p is a special const.\n", (void *)obj);
err++;
}
else if (!is_pointer_to_heap(objspace, (void *)obj)) {
/* check if it is in tomb_pages */
struct heap_page *page = NULL;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
ccan_list_for_each(&size_pool->tomb_heap.pages, page, page_node) {
if (page->start <= (uintptr_t)obj &&
(uintptr_t)obj < (page->start + (page->total_slots * size_pool->slot_size))) {
fprintf(stderr, "check_rvalue_consistency: %p is in a tomb_heap (%p).\n",
(void *)obj, (void *)page);
err++;
goto skip;
}
}
}
bp();
fprintf(stderr, "check_rvalue_consistency: %p is not a Ruby object.\n", (void *)obj);
err++;
skip:
;
}
else {
const int wb_unprotected_bit = RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0;
const int uncollectible_bit = RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0;
const int mark_bit = RVALUE_MARK_BITMAP(obj) != 0;
const int marking_bit = RVALUE_MARKING_BITMAP(obj) != 0, remembered_bit = marking_bit;
const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags);
if (GET_HEAP_PAGE(obj)->flags.in_tomb) {
fprintf(stderr, "check_rvalue_consistency: %s is in tomb page.\n", obj_info(obj));
err++;
}
if (BUILTIN_TYPE(obj) == T_NONE) {
fprintf(stderr, "check_rvalue_consistency: %s is T_NONE.\n", obj_info(obj));
err++;
}
if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
fprintf(stderr, "check_rvalue_consistency: %s is T_ZOMBIE.\n", obj_info(obj));
err++;
}
obj_memsize_of((VALUE)obj, FALSE);
/* check generation
*
* OLD == age == 3 && old-bitmap && mark-bit (except incremental marking)
*/
if (age > 0 && wb_unprotected_bit) {
fprintf(stderr, "check_rvalue_consistency: %s is not WB protected, but age is %d > 0.\n", obj_info(obj), age);
err++;
}
if (!is_marking(objspace) && uncollectible_bit && !mark_bit) {
fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but is not marked while !gc.\n", obj_info(obj));
err++;
}
if (!is_full_marking(objspace)) {
if (uncollectible_bit && age != RVALUE_OLD_AGE && !wb_unprotected_bit) {
fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but not old (age: %d) and not WB unprotected.\n",
obj_info(obj), age);
err++;
}
if (remembered_bit && age != RVALUE_OLD_AGE) {
fprintf(stderr, "check_rvalue_consistency: %s is remembered, but not old (age: %d).\n",
obj_info(obj), age);
err++;
}
}
/*
* check coloring
*
* marking:false marking:true
* marked:false white *invalid*
* marked:true black grey
*/
if (is_incremental_marking(objspace) && marking_bit) {
if (!is_marking(objspace) && !mark_bit) {
fprintf(stderr, "check_rvalue_consistency: %s is marking, but not marked.\n", obj_info(obj));
err++;
}
}
}
}
RB_VM_LOCK_LEAVE_NO_BARRIER();
if (err > 0 && terminate) {
rb_bug("check_rvalue_consistency_force: there is %d errors.", err);
}
return err;
}
#if RGENGC_CHECK_MODE == 0
static inline VALUE
check_rvalue_consistency(const VALUE obj)
{
return obj;
}
#else
static VALUE
check_rvalue_consistency(const VALUE obj)
{
check_rvalue_consistency_force(obj, TRUE);
return obj;
}
#endif
static inline int
gc_object_moved_p(rb_objspace_t * objspace, VALUE obj)
{
if (RB_SPECIAL_CONST_P(obj)) {
return FALSE;
}
else {
void *poisoned = asan_unpoison_object_temporary(obj);
int ret = BUILTIN_TYPE(obj) == T_MOVED;
/* Re-poison slot if it's not the one we want */
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
asan_poison_object(obj);
}
return ret;
}
}
static inline int
RVALUE_MARKED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_MARK_BITMAP(obj) != 0;
}
static inline int
RVALUE_PINNED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_PIN_BITMAP(obj) != 0;
}
static inline int
RVALUE_WB_UNPROTECTED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0;
}
static inline int
RVALUE_MARKING(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_MARKING_BITMAP(obj) != 0;
}
static inline int
RVALUE_REMEMBERED(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_MARKING_BITMAP(obj) != 0;
}
static inline int
RVALUE_UNCOLLECTIBLE(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0;
}
static inline int
RVALUE_OLD_P_RAW(VALUE obj)
{
const VALUE promoted = FL_PROMOTED0 | FL_PROMOTED1;
return (RBASIC(obj)->flags & promoted) == promoted;
}
static inline int
RVALUE_OLD_P(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_OLD_P_RAW(obj);
}
#if RGENGC_CHECK_MODE || GC_DEBUG
static inline int
RVALUE_AGE(VALUE obj)
{
check_rvalue_consistency(obj);
return RVALUE_FLAGS_AGE(RBASIC(obj)->flags);
}
#endif
static inline void
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
MARK_IN_BITMAP(&page->uncollectible_bits[0], obj);
objspace->rgengc.old_objects++;
rb_transient_heap_promote(obj);
#if RGENGC_PROFILE >= 2
objspace->profile.total_promoted_count++;
objspace->profile.promoted_types[BUILTIN_TYPE(obj)]++;
#endif
}
static inline void
RVALUE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, VALUE obj)
{
RB_DEBUG_COUNTER_INC(obj_promote);
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, GET_HEAP_PAGE(obj), obj);
}
static inline VALUE
RVALUE_FLAGS_AGE_SET(VALUE flags, int age)
{
flags &= ~(FL_PROMOTED0 | FL_PROMOTED1);
flags |= (age << RVALUE_AGE_SHIFT);
return flags;
}
/* set age to age+1 */
static inline void
RVALUE_AGE_INC(rb_objspace_t *objspace, VALUE obj)
{
VALUE flags = RBASIC(obj)->flags;
int age = RVALUE_FLAGS_AGE(flags);
if (RGENGC_CHECK_MODE && age == RVALUE_OLD_AGE) {
rb_bug("RVALUE_AGE_INC: can not increment age of OLD object %s.", obj_info(obj));
}
age++;
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(flags, age);
if (age == RVALUE_OLD_AGE) {
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj);
}
check_rvalue_consistency(obj);
}
/* set age to RVALUE_OLD_AGE */
static inline void
RVALUE_AGE_SET_OLD(rb_objspace_t *objspace, VALUE obj)
{
check_rvalue_consistency(obj);
GC_ASSERT(!RVALUE_OLD_P(obj));
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE);
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj);
check_rvalue_consistency(obj);
}
/* set age to RVALUE_OLD_AGE - 1 */
static inline void
RVALUE_AGE_SET_CANDIDATE(rb_objspace_t *objspace, VALUE obj)
{
check_rvalue_consistency(obj);
GC_ASSERT(!RVALUE_OLD_P(obj));
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE - 1);
check_rvalue_consistency(obj);
}
static inline void
RVALUE_DEMOTE_RAW(rb_objspace_t *objspace, VALUE obj)
{
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0);
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj);
}
static inline void
RVALUE_DEMOTE(rb_objspace_t *objspace, VALUE obj)
{
check_rvalue_consistency(obj);
GC_ASSERT(RVALUE_OLD_P(obj));
if (!is_incremental_marking(objspace) && RVALUE_REMEMBERED(obj)) {
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
}
RVALUE_DEMOTE_RAW(objspace, obj);
if (RVALUE_MARKED(obj)) {
objspace->rgengc.old_objects--;
}
check_rvalue_consistency(obj);
}
static inline void
RVALUE_AGE_RESET_RAW(VALUE obj)
{
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0);
}
static inline void
RVALUE_AGE_RESET(VALUE obj)
{
check_rvalue_consistency(obj);
GC_ASSERT(!RVALUE_OLD_P(obj));
RVALUE_AGE_RESET_RAW(obj);
check_rvalue_consistency(obj);
}
static inline int
RVALUE_BLACK_P(VALUE obj)
{
return RVALUE_MARKED(obj) && !RVALUE_MARKING(obj);
}
#if 0
static inline int
RVALUE_GREY_P(VALUE obj)
{
return RVALUE_MARKED(obj) && RVALUE_MARKING(obj);
}
#endif
static inline int
RVALUE_WHITE_P(VALUE obj)
{
return RVALUE_MARKED(obj) == FALSE;
}
/*
--------------------------- ObjectSpace -----------------------------
*/
static inline void *
calloc1(size_t n)
{
return calloc(1, n);
}
rb_objspace_t *
rb_objspace_alloc(void)
{
rb_objspace_t *objspace = calloc1(sizeof(rb_objspace_t));
objspace->flags.measure_gc = 1;
malloc_limit = gc_params.malloc_limit_min;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
size_pool->slot_size = (1 << i) * BASE_SLOT_SIZE;
ccan_list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages);
ccan_list_head_init(&SIZE_POOL_TOMB_HEAP(size_pool)->pages);
}
dont_gc_on();
return objspace;
}
static void free_stack_chunks(mark_stack_t *);
static void mark_stack_free_cache(mark_stack_t *);
static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page);
void
rb_objspace_free(rb_objspace_t *objspace)
{
if (is_lazy_sweeping(objspace))
rb_bug("lazy sweeping underway when freeing object space");
if (objspace->profile.records) {
free(objspace->profile.records);
objspace->profile.records = 0;
}
if (global_list) {
struct gc_list *list, *next;
for (list = global_list; list; list = next) {
next = list->next;
xfree(list);
}
}
if (heap_pages_sorted) {
size_t i;
for (i = 0; i < heap_allocated_pages; ++i) {
heap_page_free(objspace, heap_pages_sorted[i]);
}
free(heap_pages_sorted);
heap_allocated_pages = 0;
heap_pages_sorted_length = 0;
heap_pages_lomem = 0;
heap_pages_himem = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
SIZE_POOL_EDEN_HEAP(size_pool)->total_pages = 0;
SIZE_POOL_EDEN_HEAP(size_pool)->total_slots = 0;
}
}
st_free_table(objspace->id_to_obj_tbl);
st_free_table(objspace->obj_to_id_tbl);
free_stack_chunks(&objspace->mark_stack);
mark_stack_free_cache(&objspace->mark_stack);
free(objspace);
}
static void
heap_pages_expand_sorted_to(rb_objspace_t *objspace, size_t next_length)
{
struct heap_page **sorted;
size_t size = size_mul_or_raise(next_length, sizeof(struct heap_page *), rb_eRuntimeError);
gc_report(3, objspace, "heap_pages_expand_sorted: next_length: %"PRIdSIZE", size: %"PRIdSIZE"\n",
next_length, size);
if (heap_pages_sorted_length > 0) {
sorted = (struct heap_page **)realloc(heap_pages_sorted, size);
if (sorted) heap_pages_sorted = sorted;
}
else {
sorted = heap_pages_sorted = (struct heap_page **)malloc(size);
}
if (sorted == 0) {
rb_memerror();
}
heap_pages_sorted_length = next_length;
}
static void
heap_pages_expand_sorted(rb_objspace_t *objspace)
{
/* usually heap_allocatable_pages + heap_eden->total_pages == heap_pages_sorted_length
* because heap_allocatable_pages contains heap_tomb->total_pages (recycle heap_tomb pages).
* however, if there are pages which do not have empty slots, then try to create new pages
* so that the additional allocatable_pages counts (heap_tomb->total_pages) are added.
*/
size_t next_length = heap_allocatable_pages(objspace);
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
next_length += SIZE_POOL_EDEN_HEAP(size_pool)->total_pages;
next_length += SIZE_POOL_TOMB_HEAP(size_pool)->total_pages;
}
if (next_length > heap_pages_sorted_length) {
heap_pages_expand_sorted_to(objspace, next_length);
}
GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length);
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length);
}
static void
size_pool_allocatable_pages_set(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t s)
{
size_pool->allocatable_pages = s;
heap_pages_expand_sorted(objspace);
}
static inline void
heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
ASSERT_vm_locking();
RVALUE *p = (RVALUE *)obj;
asan_unpoison_object(obj, false);
asan_unlock_freelist(page);
p->as.free.flags = 0;
p->as.free.next = page->freelist;
page->freelist = p;
asan_lock_freelist(page);
if (RGENGC_CHECK_MODE &&
/* obj should belong to page */
!(page->start <= (uintptr_t)obj &&
(uintptr_t)obj < ((uintptr_t)page->start + (page->total_slots * page->slot_size)) &&
obj % BASE_SLOT_SIZE == 0)) {
rb_bug("heap_page_add_freeobj: %p is not rvalue.", (void *)p);
}
asan_poison_object(obj);
gc_report(3, objspace, "heap_page_add_freeobj: add %p to freelist\n", (void *)obj);
}
static inline void
heap_add_freepage(rb_heap_t *heap, struct heap_page *page)
{
asan_unlock_freelist(page);
GC_ASSERT(page->free_slots != 0);
GC_ASSERT(page->freelist != NULL);
page->free_next = heap->free_pages;
heap->free_pages = page;
RUBY_DEBUG_LOG("page:%p freelist:%p", (void *)page, (void *)page->freelist);
asan_lock_freelist(page);
}
#if GC_ENABLE_INCREMENTAL_MARK
static inline void
heap_add_poolpage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
asan_unlock_freelist(page);
GC_ASSERT(page->free_slots != 0);
GC_ASSERT(page->freelist != NULL);
page->free_next = heap->pooled_pages;
heap->pooled_pages = page;
objspace->rincgc.pooled_slots += page->free_slots;
asan_lock_freelist(page);
}
#endif
static void
heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
{
ccan_list_del(&page->page_node);
heap->total_pages--;
heap->total_slots -= page->total_slots;
}
static void rb_aligned_free(void *ptr, size_t size);
static void
heap_page_body_free(struct heap_page_body *page_body)
{
GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0);
if (HEAP_PAGE_ALLOC_USE_MMAP) {
#ifdef HAVE_MMAP
GC_ASSERT(HEAP_PAGE_SIZE % sysconf(_SC_PAGE_SIZE) == 0);
if (munmap(page_body, HEAP_PAGE_SIZE)) {
rb_bug("heap_page_body_free: munmap failed");
}
#endif
}
else {
rb_aligned_free(page_body, HEAP_PAGE_SIZE);
}
}
static void
heap_page_free(rb_objspace_t *objspace, struct heap_page *page)
{
heap_allocated_pages--;
page->size_pool->total_freed_pages++;
heap_page_body_free(GET_PAGE_BODY(page->start));
free(page);
}
static void
heap_pages_free_unused_pages(rb_objspace_t *objspace)
{
size_t i, j;
bool has_pages_in_tomb_heap = FALSE;
for (i = 0; i < SIZE_POOL_COUNT; i++) {
if (!ccan_list_empty(&SIZE_POOL_TOMB_HEAP(&size_pools[i])->pages)) {
has_pages_in_tomb_heap = TRUE;
break;
}
}
if (has_pages_in_tomb_heap) {
for (i = j = 1; j < heap_allocated_pages; i++) {
struct heap_page *page = heap_pages_sorted[i];
if (page->flags.in_tomb && page->free_slots == page->total_slots) {
heap_unlink_page(objspace, SIZE_POOL_TOMB_HEAP(page->size_pool), page);
heap_page_free(objspace, page);
}
else {
if (i != j) {
heap_pages_sorted[j] = page;
}
j++;
}
}
struct heap_page *hipage = heap_pages_sorted[heap_allocated_pages - 1];
uintptr_t himem = (uintptr_t)hipage->start + (hipage->total_slots * hipage->slot_size);
GC_ASSERT(himem <= heap_pages_himem);
heap_pages_himem = himem;
GC_ASSERT(j == heap_allocated_pages);
}
}
static struct heap_page_body *
heap_page_body_allocate(void)
{
struct heap_page_body *page_body;
if (HEAP_PAGE_ALLOC_USE_MMAP) {
#ifdef HAVE_MMAP
GC_ASSERT(HEAP_PAGE_ALIGN % sysconf(_SC_PAGE_SIZE) == 0);
char *ptr = mmap(NULL, HEAP_PAGE_ALIGN + HEAP_PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ptr == MAP_FAILED) {
return NULL;
}
char *aligned = ptr + HEAP_PAGE_ALIGN;
aligned -= ((VALUE)aligned & (HEAP_PAGE_ALIGN - 1));
GC_ASSERT(aligned > ptr);
GC_ASSERT(aligned <= ptr + HEAP_PAGE_ALIGN);
size_t start_out_of_range_size = aligned - ptr;
GC_ASSERT(start_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0);
if (start_out_of_range_size > 0) {
if (munmap(ptr, start_out_of_range_size)) {
rb_bug("heap_page_body_allocate: munmap failed for start");
}
}
size_t end_out_of_range_size = HEAP_PAGE_ALIGN - start_out_of_range_size;
GC_ASSERT(end_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0);
if (end_out_of_range_size > 0) {
if (munmap(aligned + HEAP_PAGE_SIZE, end_out_of_range_size)) {
rb_bug("heap_page_body_allocate: munmap failed for end");
}
}
page_body = (struct heap_page_body *)aligned;
#endif
}
else {
page_body = rb_aligned_malloc(HEAP_PAGE_ALIGN, HEAP_PAGE_SIZE);
}
GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0);
return page_body;
}
static struct heap_page *
heap_page_allocate(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
{
uintptr_t start, end, p;
struct heap_page *page;
uintptr_t hi, lo, mid;
size_t stride = size_pool->slot_size;
unsigned int limit = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)))/(int)stride;
/* assign heap_page body (contains heap_page_header and RVALUEs) */
struct heap_page_body *page_body = heap_page_body_allocate();
if (page_body == 0) {
rb_memerror();
}
/* assign heap_page entry */
page = calloc1(sizeof(struct heap_page));
if (page == 0) {
heap_page_body_free(page_body);
rb_memerror();
}
/* adjust obj_limit (object number available in this page) */
start = (uintptr_t)((VALUE)page_body + sizeof(struct heap_page_header));
if (start % BASE_SLOT_SIZE != 0) {
int delta = BASE_SLOT_SIZE - (start % BASE_SLOT_SIZE);
start = start + delta;
GC_ASSERT(NUM_IN_PAGE(start) == 0 || NUM_IN_PAGE(start) == 1);
/* Find a num in page that is evenly divisible by `stride`.
* This is to ensure that objects are aligned with bit planes.
* In other words, ensure there are an even number of objects
* per bit plane. */
if (NUM_IN_PAGE(start) == 1) {
start += stride - BASE_SLOT_SIZE;
}
GC_ASSERT(NUM_IN_PAGE(start) * BASE_SLOT_SIZE % stride == 0);
limit = (HEAP_PAGE_SIZE - (int)(start - (uintptr_t)page_body))/(int)stride;
}
end = start + (limit * (int)stride);
/* setup heap_pages_sorted */
lo = 0;
hi = (uintptr_t)heap_allocated_pages;
while (lo < hi) {
struct heap_page *mid_page;
mid = (lo + hi) / 2;
mid_page = heap_pages_sorted[mid];
if ((uintptr_t)mid_page->start < start) {
lo = mid + 1;
}
else if ((uintptr_t)mid_page->start > start) {
hi = mid;
}
else {
rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid);
}
}
if (hi < (uintptr_t)heap_allocated_pages) {
MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_allocated_pages - hi);
}
heap_pages_sorted[hi] = page;
heap_allocated_pages++;
GC_ASSERT(heap_eden_total_pages(objspace) + heap_allocatable_pages(objspace) <= heap_pages_sorted_length);
GC_ASSERT(heap_eden_total_pages(objspace) + heap_tomb_total_pages(objspace) == heap_allocated_pages - 1);
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length);
size_pool->total_allocated_pages++;
if (heap_allocated_pages > heap_pages_sorted_length) {
rb_bug("heap_page_allocate: allocated(%"PRIdSIZE") > sorted(%"PRIdSIZE")",
heap_allocated_pages, heap_pages_sorted_length);
}
if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start;
if (heap_pages_himem < end) heap_pages_himem = end;
page->start = start;
page->total_slots = limit;
page->slot_size = size_pool->slot_size;
page->size_pool = size_pool;
page_body->header.page = page;
for (p = start; p != end; p += stride) {
gc_report(3, objspace, "assign_heap_page: %p is added to freelist\n", (void *)p);
heap_page_add_freeobj(objspace, page, (VALUE)p);
}
page->free_slots = limit;
asan_lock_freelist(page);
return page;
}
static struct heap_page *
heap_page_resurrect(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
{
struct heap_page *page = 0, *next;
ccan_list_for_each_safe(&SIZE_POOL_TOMB_HEAP(size_pool)->pages, page, next, page_node) {
asan_unlock_freelist(page);
if (page->freelist != NULL) {
heap_unlink_page(objspace, &size_pool->tomb_heap, page);
asan_lock_freelist(page);
return page;
}
}
return NULL;
}
static struct heap_page *
heap_page_create(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
{
struct heap_page *page;
const char *method = "recycle";
size_pool->allocatable_pages--;
page = heap_page_resurrect(objspace, size_pool);
if (page == NULL) {
page = heap_page_allocate(objspace, size_pool);
method = "allocate";
}
if (0) fprintf(stderr, "heap_page_create: %s - %p, "
"heap_allocated_pages: %"PRIdSIZE", "
"heap_allocated_pages: %"PRIdSIZE", "
"tomb->total_pages: %"PRIdSIZE"\n",
method, (void *)page, heap_pages_sorted_length, heap_allocated_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages);
return page;
}
static void
heap_add_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page)
{
/* Adding to eden heap during incremental sweeping is forbidden */
GC_ASSERT(!(heap == SIZE_POOL_EDEN_HEAP(size_pool) && heap->sweeping_page));
page->flags.in_tomb = (heap == SIZE_POOL_TOMB_HEAP(size_pool));
ccan_list_add_tail(&heap->pages, &page->page_node);
heap->total_pages++;
heap->total_slots += page->total_slots;
}
static void
heap_assign_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
struct heap_page *page = heap_page_create(objspace, size_pool);
heap_add_page(objspace, size_pool, heap, page);
heap_add_freepage(heap, page);
}
static void
heap_add_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, size_t add)
{
size_t i;
size_pool_allocatable_pages_set(objspace, size_pool, add);
for (i = 0; i < add; i++) {
heap_assign_page(objspace, size_pool, heap);
}
GC_ASSERT(size_pool->allocatable_pages == 0);
}
static size_t
heap_extend_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t free_slots, size_t total_slots, size_t used)
{
double goal_ratio = gc_params.heap_free_slots_goal_ratio;
size_t next_used;
if (goal_ratio == 0.0) {
next_used = (size_t)(used * gc_params.growth_factor);
}
else if (total_slots == 0) {
int multiple = size_pool->slot_size / BASE_SLOT_SIZE;
next_used = (gc_params.heap_init_slots * multiple) / HEAP_PAGE_OBJ_LIMIT;
}
else {
/* Find `f' where free_slots = f * total_slots * goal_ratio
* => f = (total_slots - free_slots) / ((1 - goal_ratio) * total_slots)
*/
double f = (double)(total_slots - free_slots) / ((1 - goal_ratio) * total_slots);
if (f > gc_params.growth_factor) f = gc_params.growth_factor;
if (f < 1.0) f = 1.1;
next_used = (size_t)(f * used);
if (0) {
fprintf(stderr,
"free_slots(%8"PRIuSIZE")/total_slots(%8"PRIuSIZE")=%1.2f,"
" G(%1.2f), f(%1.2f),"
" used(%8"PRIuSIZE") => next_used(%8"PRIuSIZE")\n",
free_slots, total_slots, free_slots/(double)total_slots,
goal_ratio, f, used, next_used);
}
}
if (gc_params.growth_max_slots > 0) {
size_t max_used = (size_t)(used + gc_params.growth_max_slots/HEAP_PAGE_OBJ_LIMIT);
if (next_used > max_used) next_used = max_used;
}
size_t extend_page_count = next_used - used;
/* Extend by at least 1 page. */
if (extend_page_count == 0) extend_page_count = 1;
return extend_page_count;
}
static int
heap_increment(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
if (size_pool->allocatable_pages > 0) {
gc_report(1, objspace, "heap_increment: heap_pages_sorted_length: %"PRIdSIZE", "
"heap_pages_inc: %"PRIdSIZE", heap->total_pages: %"PRIdSIZE"\n",
heap_pages_sorted_length, size_pool->allocatable_pages, heap->total_pages);
GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length);
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length);
heap_assign_page(objspace, size_pool, heap);
return TRUE;
}
return FALSE;
}
static void
gc_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
/* Continue marking if in incremental marking. */
if (heap->free_pages == NULL && is_incremental_marking(objspace)) {
gc_marks_continue(objspace, size_pool, heap);
}
/* Continue sweeping if in lazy sweeping or the previous incremental
* marking finished and did not yield a free page. */
if (heap->free_pages == NULL && is_lazy_sweeping(objspace)) {
gc_sweep_continue(objspace, size_pool, heap);
}
}
static void
heap_prepare(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
GC_ASSERT(heap->free_pages == NULL);
/* Continue incremental marking or lazy sweeping, if in any of those steps. */
gc_continue(objspace, size_pool, heap);
/* If we still don't have a free page and not allowed to create a new page,
* we should start a new GC cycle. */
if (heap->free_pages == NULL &&
(will_be_incremental_marking(objspace) ||
(heap_increment(objspace, size_pool, heap) == FALSE))) {
if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) {
rb_memerror();
}
else {
/* Do steps of incremental marking or lazy sweeping if the GC run permits. */
gc_continue(objspace, size_pool, heap);
/* If we're not incremental marking (e.g. a minor GC) or finished
* sweeping and still don't have a free page, then
* gc_sweep_finish_size_pool should allow us to create a new page. */
if (heap->free_pages == NULL && !heap_increment(objspace, size_pool, heap)) {
if (objspace->rgengc.need_major_gc == GPR_FLAG_NONE) {
rb_bug("cannot create a new page after GC");
}
else { // Major GC is required, which will allow us to create new page
if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) {
rb_memerror();
}
else {
/* Do steps of incremental marking or lazy sweeping. */
gc_continue(objspace, size_pool, heap);
if (heap->free_pages == NULL &&
!heap_increment(objspace, size_pool, heap)) {
rb_bug("cannot create a new page after major GC");
}
}
}
}
}
}
GC_ASSERT(heap->free_pages != NULL);
}
void
rb_objspace_set_event_hook(const rb_event_flag_t event)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
objspace->flags.has_hook = (objspace->hook_events != 0);
}
static void
gc_event_hook_body(rb_execution_context_t *ec, rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data)
{
const VALUE *pc = ec->cfp->pc;
if (pc && VM_FRAME_RUBYFRAME_P(ec->cfp)) {
/* increment PC because source line is calculated with PC-1 */
ec->cfp->pc++;
}
EXEC_EVENT_HOOK(ec, event, ec->cfp->self, 0, 0, 0, data);
ec->cfp->pc = pc;
}
#define gc_event_hook_available_p(objspace) ((objspace)->flags.has_hook)
#define gc_event_hook_needed_p(objspace, event) ((objspace)->hook_events & (event))
#define gc_event_hook_prep(objspace, event, data, prep) do { \
if (UNLIKELY(gc_event_hook_needed_p(objspace, event))) { \
prep; \
gc_event_hook_body(GET_EC(), (objspace), (event), (data)); \
} \
} while (0)
#define gc_event_hook(objspace, event, data) gc_event_hook_prep(objspace, event, data, (void)0)
static inline VALUE
newobj_init(VALUE klass, VALUE flags, int wb_protected, rb_objspace_t *objspace, VALUE obj)
{
#if !__has_feature(memory_sanitizer)
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
#endif
RVALUE *p = RANY(obj);
p->as.basic.flags = flags;
*((VALUE *)&p->as.basic.klass) = klass;
#if RACTOR_CHECK_MODE
rb_ractor_setup_belonging(obj);
#endif
#if RGENGC_CHECK_MODE
p->as.values.v1 = p->as.values.v2 = p->as.values.v3 = 0;
RB_VM_LOCK_ENTER_NO_BARRIER();
{
check_rvalue_consistency(obj);
GC_ASSERT(RVALUE_MARKED(obj) == FALSE);
GC_ASSERT(RVALUE_MARKING(obj) == FALSE);
GC_ASSERT(RVALUE_OLD_P(obj) == FALSE);
GC_ASSERT(RVALUE_WB_UNPROTECTED(obj) == FALSE);
if (flags & FL_PROMOTED1) {
if (RVALUE_AGE(obj) != 2) rb_bug("newobj: %s of age (%d) != 2.", obj_info(obj), RVALUE_AGE(obj));
}
else {
if (RVALUE_AGE(obj) > 0) rb_bug("newobj: %s of age (%d) > 0.", obj_info(obj), RVALUE_AGE(obj));
}
if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %s is remembered.", obj_info(obj));
}
RB_VM_LOCK_LEAVE_NO_BARRIER();
#endif
if (UNLIKELY(wb_protected == FALSE)) {
ASSERT_vm_locking();
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
}
// TODO: make it atomic, or ractor local
objspace->total_allocated_objects++;
#if RGENGC_PROFILE
if (wb_protected) {
objspace->profile.total_generated_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
else {
objspace->profile.total_generated_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
#endif
#if GC_DEBUG
RANY(obj)->file = rb_source_location_cstr(&RANY(obj)->line);
GC_ASSERT(!SPECIAL_CONST_P(obj)); /* check alignment */
#endif
gc_report(5, objspace, "newobj: %s\n", obj_info(obj));
#if RGENGC_OLD_NEWOBJ_CHECK > 0
{
static int newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK;
if (!is_incremental_marking(objspace) &&
flags & FL_WB_PROTECTED && /* do not promote WB unprotected objects */
! RB_TYPE_P(obj, T_ARRAY)) { /* array.c assumes that allocated objects are new */
if (--newobj_cnt == 0) {
newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK;
gc_mark_set(objspace, obj);
RVALUE_AGE_SET_OLD(objspace, obj);
rb_gc_writebarrier_remember(obj);
}
}
}
#endif
// RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj));
return obj;
}
size_t
rb_gc_obj_slot_size(VALUE obj)
{
return GET_HEAP_PAGE(obj)->slot_size;
}
static inline size_t
size_pool_slot_size(unsigned char pool_id)
{
GC_ASSERT(pool_id < SIZE_POOL_COUNT);
size_t slot_size = (1 << pool_id) * BASE_SLOT_SIZE;
#if RGENGC_CHECK_MODE
rb_objspace_t *objspace = &rb_objspace;
GC_ASSERT(size_pools[pool_id].slot_size == (short)slot_size);
#endif
return slot_size;
}
bool
rb_gc_size_allocatable_p(size_t size)
{
return size <= size_pool_slot_size(SIZE_POOL_COUNT - 1);
}
static inline VALUE
ractor_cache_allocate_slot(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache,
size_t size_pool_idx)
{
rb_ractor_newobj_size_pool_cache_t *size_pool_cache = &cache->size_pool_caches[size_pool_idx];
RVALUE *p = size_pool_cache->freelist;
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) {
// Not allowed to allocate without running an incremental marking step
if (cache->incremental_mark_step_allocated_slots >= INCREMENTAL_MARK_STEP_ALLOCATIONS) {
return Qfalse;
}
if (p) {
cache->incremental_mark_step_allocated_slots++;
}
}
#endif
if (p) {
VALUE obj = (VALUE)p;
MAYBE_UNUSED(const size_t) stride = size_pool_slot_size(size_pool_idx);
size_pool_cache->freelist = p->as.free.next;
#if USE_RVARGC
asan_unpoison_memory_region(p, stride, true);
#else
asan_unpoison_object(obj, true);
#endif
#if RGENGC_CHECK_MODE
GC_ASSERT(rb_gc_obj_slot_size(obj) == stride);
// zero clear
MEMZERO((char *)obj, char, stride);
#endif
return obj;
}
else {
return Qfalse;
}
}
static struct heap_page *
heap_next_free_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
ASSERT_vm_locking();
struct heap_page *page;
if (heap->free_pages == NULL) {
heap_prepare(objspace, size_pool, heap);
}
page = heap->free_pages;
heap->free_pages = page->free_next;
GC_ASSERT(page->free_slots != 0);
RUBY_DEBUG_LOG("page:%p freelist:%p cnt:%d", (void *)page, (void *)page->freelist, page->free_slots);
asan_unlock_freelist(page);
return page;
}
static inline void
ractor_cache_set_page(rb_ractor_newobj_cache_t *cache, size_t size_pool_idx,
struct heap_page *page)
{
gc_report(3, &rb_objspace, "ractor_set_cache: Using page %p\n", (void *)GET_PAGE_BODY(page->start));
rb_ractor_newobj_size_pool_cache_t *size_pool_cache = &cache->size_pool_caches[size_pool_idx];
GC_ASSERT(size_pool_cache->freelist == NULL);
GC_ASSERT(page->free_slots != 0);
GC_ASSERT(page->freelist != NULL);
size_pool_cache->using_page = page;
size_pool_cache->freelist = page->freelist;
page->free_slots = 0;
page->freelist = NULL;
asan_unpoison_object((VALUE)size_pool_cache->freelist, false);
GC_ASSERT(RB_TYPE_P((VALUE)size_pool_cache->freelist, T_NONE));
asan_poison_object((VALUE)size_pool_cache->freelist);
}
static inline VALUE
newobj_fill(VALUE obj, VALUE v1, VALUE v2, VALUE v3)
{
RVALUE *p = (RVALUE *)obj;
p->as.values.v1 = v1;
p->as.values.v2 = v2;
p->as.values.v3 = v3;
return obj;
}
static inline size_t
size_pool_idx_for_size(size_t size)
{
#if USE_RVARGC
size_t slot_count = CEILDIV(size, BASE_SLOT_SIZE);
/* size_pool_idx is ceil(log2(slot_count)) */
size_t size_pool_idx = 64 - nlz_int64(slot_count - 1);
if (size_pool_idx >= SIZE_POOL_COUNT) {
rb_bug("size_pool_idx_for_size: allocation size too large");
}
#if RGENGC_CHECK_MODE
rb_objspace_t *objspace = &rb_objspace;
GC_ASSERT(size <= (size_t)size_pools[size_pool_idx].slot_size);
if (size_pool_idx > 0) GC_ASSERT(size > (size_t)size_pools[size_pool_idx - 1].slot_size);
#endif
return size_pool_idx;
#else
GC_ASSERT(size <= sizeof(RVALUE));
return 0;
#endif
}
static VALUE
newobj_alloc(rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx, bool vm_locked)
{
rb_size_pool_t *size_pool = &size_pools[size_pool_idx];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
rb_ractor_newobj_cache_t *cache = &cr->newobj_cache;
VALUE obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx);
if (UNLIKELY(obj == Qfalse)) {
unsigned int lev;
bool unlock_vm = false;
if (!vm_locked) {
RB_VM_LOCK_ENTER_CR_LEV(cr, &lev);
vm_locked = true;
unlock_vm = true;
}
{
ASSERT_vm_locking();
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) {
gc_marks_continue(objspace, size_pool, heap);
cache->incremental_mark_step_allocated_slots = 0;
// Retry allocation after resetting incremental_mark_step_allocated_slots
obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx);
}
#endif
if (obj == Qfalse) {
// Get next free page (possibly running GC)
struct heap_page *page = heap_next_free_page(objspace, size_pool, heap);
ractor_cache_set_page(cache, size_pool_idx, page);
// Retry allocation after moving to new page
obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx);
GC_ASSERT(obj != Qfalse);
}
}
if (unlock_vm) {
RB_VM_LOCK_LEAVE_CR_LEV(cr, &lev);
}
}
return obj;
}
ALWAYS_INLINE(static VALUE newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, int wb_protected, size_t size_pool_idx));
static inline VALUE
newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, int wb_protected, size_t size_pool_idx)
{
VALUE obj;
unsigned int lev;
RB_VM_LOCK_ENTER_CR_LEV(cr, &lev);
{
if (UNLIKELY(during_gc || ruby_gc_stressful)) {
if (during_gc) {
dont_gc_on();
during_gc = 0;
rb_bug("object allocation during garbage collection phase");
}
if (ruby_gc_stressful) {
if (!garbage_collect(objspace, GPR_FLAG_NEWOBJ)) {
rb_memerror();
}
}
}
obj = newobj_alloc(objspace, cr, size_pool_idx, true);
newobj_init(klass, flags, wb_protected, objspace, obj);
gc_event_hook_prep(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj, newobj_fill(obj, 0, 0, 0));
}
RB_VM_LOCK_LEAVE_CR_LEV(cr, &lev);
return obj;
}
NOINLINE(static VALUE newobj_slowpath_wb_protected(VALUE klass, VALUE flags,
rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx));
NOINLINE(static VALUE newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags,
rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx));
static VALUE
newobj_slowpath_wb_protected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx)
{
return newobj_slowpath(klass, flags, objspace, cr, TRUE, size_pool_idx);
}
static VALUE
newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx)
{
return newobj_slowpath(klass, flags, objspace, cr, FALSE, size_pool_idx);
}
static inline VALUE
newobj_of0(VALUE klass, VALUE flags, int wb_protected, rb_ractor_t *cr, size_t alloc_size)
{
VALUE obj;
rb_objspace_t *objspace = &rb_objspace;
RB_DEBUG_COUNTER_INC(obj_newobj);
(void)RB_DEBUG_COUNTER_INC_IF(obj_newobj_wb_unprotected, !wb_protected);
#if GC_DEBUG_STRESS_TO_CLASS
if (UNLIKELY(stress_to_class)) {
long i, cnt = RARRAY_LEN(stress_to_class);
for (i = 0; i < cnt; ++i) {
if (klass == RARRAY_AREF(stress_to_class, i)) rb_memerror();
}
}
#endif
size_t size_pool_idx = size_pool_idx_for_size(alloc_size);
if (!UNLIKELY(during_gc ||
ruby_gc_stressful ||
gc_event_hook_available_p(objspace)) &&
wb_protected) {
obj = newobj_alloc(objspace, cr, size_pool_idx, false);
newobj_init(klass, flags, wb_protected, objspace, obj);
}
else {
RB_DEBUG_COUNTER_INC(obj_newobj_slowpath);
obj = wb_protected ?
newobj_slowpath_wb_protected(klass, flags, objspace, cr, size_pool_idx) :
newobj_slowpath_wb_unprotected(klass, flags, objspace, cr, size_pool_idx);
}
return obj;
}
static inline VALUE
newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size)
{
VALUE obj = newobj_of0(klass, flags, wb_protected, GET_RACTOR(), alloc_size);
return newobj_fill(obj, v1, v2, v3);
}
static inline VALUE
newobj_of_cr(rb_ractor_t *cr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size)
{
VALUE obj = newobj_of0(klass, flags, wb_protected, cr, alloc_size);
return newobj_fill(obj, v1, v2, v3);
}
VALUE
rb_wb_unprotected_newobj_of(VALUE klass, VALUE flags, size_t size)
{
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
return newobj_of(klass, flags, 0, 0, 0, FALSE, size);
}
VALUE
rb_wb_protected_newobj_of(VALUE klass, VALUE flags, size_t size)
{
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
return newobj_of(klass, flags, 0, 0, 0, TRUE, size);
}
VALUE
rb_ec_wb_protected_newobj_of(rb_execution_context_t *ec, VALUE klass, VALUE flags, size_t size)
{
GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
return newobj_of_cr(rb_ec_ractor_ptr(ec), klass, flags, 0, 0, 0, TRUE, size);
}
/* for compatibility */
VALUE
rb_newobj(void)
{
return newobj_of(0, T_NONE, 0, 0, 0, FALSE, sizeof(RVALUE));
}
static size_t
rb_obj_embedded_size(uint32_t numiv)
{
return offsetof(struct RObject, as.ary) + (sizeof(VALUE) * numiv);
}
static VALUE
rb_class_instance_allocate_internal(VALUE klass, VALUE flags, bool wb_protected)
{
GC_ASSERT((flags & RUBY_T_MASK) == T_OBJECT);
GC_ASSERT(flags & ROBJECT_EMBED);
uint32_t index_tbl_num_entries = RCLASS_EXT(klass)->max_iv_count;
size_t size;
bool embed = true;
#if USE_RVARGC
size = rb_obj_embedded_size(index_tbl_num_entries);
if (!rb_gc_size_allocatable_p(size)) {
size = sizeof(struct RObject);
embed = false;
}
#else
size = sizeof(struct RObject);
if (index_tbl_num_entries > ROBJECT_EMBED_LEN_MAX) {
embed = false;
}
#endif
#if USE_RVARGC
VALUE obj = newobj_of(klass, flags, 0, 0, 0, wb_protected, size);
#else
VALUE obj = newobj_of(klass, flags, Qundef, Qundef, Qundef, wb_protected, size);
#endif
if (embed) {
#if USE_RVARGC
uint32_t capa = (uint32_t)((rb_gc_obj_slot_size(obj) - offsetof(struct RObject, as.ary)) / sizeof(VALUE));
GC_ASSERT(capa >= index_tbl_num_entries);
ROBJECT(obj)->numiv = capa;
for (size_t i = 0; i < capa; i++) {
ROBJECT(obj)->as.ary[i] = Qundef;
}
#endif
}
else {
rb_ensure_iv_list_size(obj, 0, index_tbl_num_entries);
}
return obj;
}
VALUE
rb_newobj_of(VALUE klass, VALUE flags)
{
if ((flags & RUBY_T_MASK) == T_OBJECT) {
return rb_class_instance_allocate_internal(klass, (flags | ROBJECT_EMBED) & ~FL_WB_PROTECTED, flags & FL_WB_PROTECTED);
}
else {
return newobj_of(klass, flags & ~FL_WB_PROTECTED, 0, 0, 0, flags & FL_WB_PROTECTED, sizeof(RVALUE));
}
}
#define UNEXPECTED_NODE(func) \
rb_bug(#func"(): GC does not handle T_NODE 0x%x(%p) 0x%"PRIxVALUE, \
BUILTIN_TYPE(obj), (void*)(obj), RBASIC(obj)->flags)
const char *
rb_imemo_name(enum imemo_type type)
{
// put no default case to get a warning if an imemo type is missing
switch (type) {
#define IMEMO_NAME(x) case imemo_##x: return #x;
IMEMO_NAME(env);
IMEMO_NAME(cref);
IMEMO_NAME(svar);
IMEMO_NAME(throw_data);
IMEMO_NAME(ifunc);
IMEMO_NAME(memo);
IMEMO_NAME(ment);
IMEMO_NAME(iseq);
IMEMO_NAME(tmpbuf);
IMEMO_NAME(ast);
IMEMO_NAME(parser_strterm);
IMEMO_NAME(callinfo);
IMEMO_NAME(callcache);
IMEMO_NAME(constcache);
#undef IMEMO_NAME
}
return "unknown";
}
#undef rb_imemo_new
VALUE
rb_imemo_new(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0)
{
size_t size = sizeof(RVALUE);
VALUE flags = T_IMEMO | (type << FL_USHIFT);
return newobj_of(v0, flags, v1, v2, v3, TRUE, size);
}
static VALUE
rb_imemo_tmpbuf_new(VALUE v1, VALUE v2, VALUE v3, VALUE v0)
{
size_t size = sizeof(RVALUE);
VALUE flags = T_IMEMO | (imemo_tmpbuf << FL_USHIFT);
return newobj_of(v0, flags, v1, v2, v3, FALSE, size);
}
static VALUE
rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(void *buf, size_t cnt)
{
return rb_imemo_tmpbuf_new((VALUE)buf, 0, (VALUE)cnt, 0);
}
rb_imemo_tmpbuf_t *
rb_imemo_tmpbuf_parser_heap(void *buf, rb_imemo_tmpbuf_t *old_heap, size_t cnt)
{
return (rb_imemo_tmpbuf_t *)rb_imemo_tmpbuf_new((VALUE)buf, (VALUE)old_heap, (VALUE)cnt, 0);
}
static size_t
imemo_memsize(VALUE obj)
{
size_t size = 0;
switch (imemo_type(obj)) {
case imemo_ment:
size += sizeof(RANY(obj)->as.imemo.ment.def);
break;
case imemo_iseq:
size += rb_iseq_memsize((rb_iseq_t *)obj);
break;
case imemo_env:
size += RANY(obj)->as.imemo.env.env_size * sizeof(VALUE);
break;
case imemo_tmpbuf:
size += RANY(obj)->as.imemo.alloc.cnt * sizeof(VALUE);
break;
case imemo_ast:
size += rb_ast_memsize(&RANY(obj)->as.imemo.ast);
break;
case imemo_cref:
case imemo_svar:
case imemo_throw_data:
case imemo_ifunc:
case imemo_memo:
case imemo_parser_strterm:
break;
default:
/* unreachable */
break;
}
return size;
}
#if IMEMO_DEBUG
VALUE
rb_imemo_new_debug(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0, const char *file, int line)
{
VALUE memo = rb_imemo_new(type, v1, v2, v3, v0);
fprintf(stderr, "memo %p (type: %d) @ %s:%d\n", (void *)memo, imemo_type(memo), file, line);
return memo;
}
#endif
VALUE
rb_class_allocate_instance(VALUE klass)
{
return rb_class_instance_allocate_internal(klass, T_OBJECT | ROBJECT_EMBED, RGENGC_WB_PROTECTED_OBJECT);
}
static inline void
rb_data_object_check(VALUE klass)
{
if (klass != rb_cObject && (rb_get_alloc_func(klass) == rb_class_allocate_instance)) {
rb_undef_alloc_func(klass);
rb_warn("undefining the allocator of T_DATA class %"PRIsVALUE, klass);
}
}
VALUE
rb_data_object_wrap(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
RUBY_ASSERT_ALWAYS(dfree != (RUBY_DATA_FUNC)1);
if (klass) rb_data_object_check(klass);
return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap, FALSE, sizeof(RVALUE));
}
VALUE
rb_data_object_zalloc(VALUE klass, size_t size, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
VALUE obj = rb_data_object_wrap(klass, 0, dmark, dfree);
DATA_PTR(obj) = xcalloc(1, size);
return obj;
}
VALUE
rb_data_typed_object_wrap(VALUE klass, void *datap, const rb_data_type_t *type)
{
RBIMPL_NONNULL_ARG(type);
if (klass) rb_data_object_check(klass);
return newobj_of(klass, T_DATA, (VALUE)type, (VALUE)1, (VALUE)datap, type->flags & RUBY_FL_WB_PROTECTED, sizeof(RVALUE));
}
VALUE
rb_data_typed_object_zalloc(VALUE klass, size_t size, const rb_data_type_t *type)
{
VALUE obj = rb_data_typed_object_wrap(klass, 0, type);
DATA_PTR(obj) = xcalloc(1, size);
return obj;
}
size_t
rb_objspace_data_type_memsize(VALUE obj)
{
if (RTYPEDDATA_P(obj)) {
const rb_data_type_t *type = RTYPEDDATA_TYPE(obj);
const void *ptr = RTYPEDDATA_DATA(obj);
if (ptr && type->function.dsize) {
return type->function.dsize(ptr);
}
}
return 0;
}
const char *
rb_objspace_data_type_name(VALUE obj)
{
if (RTYPEDDATA_P(obj)) {
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
}
else {
return 0;
}
}
static int
ptr_in_page_body_p(const void *ptr, const void *memb)
{
struct heap_page *page = *(struct heap_page **)memb;
uintptr_t p_body = (uintptr_t)GET_PAGE_BODY(page->start);
if ((uintptr_t)ptr >= p_body) {
return (uintptr_t)ptr < (p_body + HEAP_PAGE_SIZE) ? 0 : 1;
}
else {
return -1;
}
}
PUREFUNC(static inline struct heap_page * heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr);)
static inline struct heap_page *
heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr)
{
struct heap_page **res;
if (ptr < (uintptr_t)heap_pages_lomem ||
ptr > (uintptr_t)heap_pages_himem) {
return NULL;
}
res = bsearch((void *)ptr, heap_pages_sorted,
(size_t)heap_allocated_pages, sizeof(struct heap_page *),
ptr_in_page_body_p);
if (res) {
return *res;
}
else {
return NULL;
}
}
PUREFUNC(static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr);)
static inline int
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
{
register uintptr_t p = (uintptr_t)ptr;
register struct heap_page *page;
RB_DEBUG_COUNTER_INC(gc_isptr_trial);
if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE;
RB_DEBUG_COUNTER_INC(gc_isptr_range);
if (p % BASE_SLOT_SIZE != 0) return FALSE;
RB_DEBUG_COUNTER_INC(gc_isptr_align);
page = heap_page_for_ptr(objspace, (uintptr_t)ptr);
if (page) {
RB_DEBUG_COUNTER_INC(gc_isptr_maybe);
if (page->flags.in_tomb) {
return FALSE;
}
else {
if (p < page->start) return FALSE;
if (p >= page->start + (page->total_slots * page->slot_size)) return FALSE;
if ((NUM_IN_PAGE(p) * BASE_SLOT_SIZE) % page->slot_size != 0) return FALSE;
return TRUE;
}
}
return FALSE;
}
static enum rb_id_table_iterator_result
free_const_entry_i(VALUE value, void *data)
{
rb_const_entry_t *ce = (rb_const_entry_t *)value;
xfree(ce);
return ID_TABLE_CONTINUE;
}
void
rb_free_const_table(struct rb_id_table *tbl)
{
rb_id_table_foreach_values(tbl, free_const_entry_i, 0);
rb_id_table_free(tbl);
}
// alive: if false, target pointers can be freed already.
// To check it, we need objspace parameter.
static void
vm_ccs_free(struct rb_class_cc_entries *ccs, int alive, rb_objspace_t *objspace, VALUE klass)
{
if (ccs->entries) {
for (int i=0; i<ccs->len; i++) {
const struct rb_callcache *cc = ccs->entries[i].cc;
if (!alive) {
void *ptr = asan_unpoison_object_temporary((VALUE)cc);
// ccs can be free'ed.
if (is_pointer_to_heap(objspace, (void *)cc) &&
IMEMO_TYPE_P(cc, imemo_callcache) &&
cc->klass == klass) {
// OK. maybe target cc.
}
else {
if (ptr) {
asan_poison_object((VALUE)cc);
}
continue;
}
if (ptr) {
asan_poison_object((VALUE)cc);
}
}
vm_cc_invalidate(cc);
}
ruby_xfree(ccs->entries);
}
ruby_xfree(ccs);
}
void
rb_vm_ccs_free(struct rb_class_cc_entries *ccs)
{
RB_DEBUG_COUNTER_INC(ccs_free);
vm_ccs_free(ccs, TRUE, NULL, Qundef);
}
struct cc_tbl_i_data {
rb_objspace_t *objspace;
VALUE klass;
bool alive;
};
static enum rb_id_table_iterator_result
cc_table_mark_i(ID id, VALUE ccs_ptr, void *data_ptr)
{
struct cc_tbl_i_data *data = data_ptr;
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
VM_ASSERT(vm_ccs_p(ccs));
VM_ASSERT(id == ccs->cme->called_id);
if (METHOD_ENTRY_INVALIDATED(ccs->cme)) {
rb_vm_ccs_free(ccs);
return ID_TABLE_DELETE;
}
else {
gc_mark(data->objspace, (VALUE)ccs->cme);
for (int i=0; i<ccs->len; i++) {
VM_ASSERT(data->klass == ccs->entries[i].cc->klass);
VM_ASSERT(vm_cc_check_cme(ccs->entries[i].cc, ccs->cme));
gc_mark(data->objspace, (VALUE)ccs->entries[i].ci);
gc_mark(data->objspace, (VALUE)ccs->entries[i].cc);
}
return ID_TABLE_CONTINUE;
}
}
static void
cc_table_mark(rb_objspace_t *objspace, VALUE klass)
{
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass);
if (cc_tbl) {
struct cc_tbl_i_data data = {
.objspace = objspace,
.klass = klass,
};
rb_id_table_foreach(cc_tbl, cc_table_mark_i, &data);
}
}
static enum rb_id_table_iterator_result
cc_table_free_i(VALUE ccs_ptr, void *data_ptr)
{
struct cc_tbl_i_data *data = data_ptr;
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
VM_ASSERT(vm_ccs_p(ccs));
vm_ccs_free(ccs, data->alive, data->objspace, data->klass);
return ID_TABLE_CONTINUE;
}
static void
cc_table_free(rb_objspace_t *objspace, VALUE klass, bool alive)
{
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass);
if (cc_tbl) {
struct cc_tbl_i_data data = {
.objspace = objspace,
.klass = klass,
.alive = alive,
};
rb_id_table_foreach_values(cc_tbl, cc_table_free_i, &data);
rb_id_table_free(cc_tbl);
}
}
static enum rb_id_table_iterator_result
cvar_table_free_i(VALUE value, void * ctx)
{
xfree((void *) value);
return ID_TABLE_CONTINUE;
}
void
rb_cc_table_free(VALUE klass)
{
cc_table_free(&rb_objspace, klass, TRUE);
}
static inline void
make_zombie(rb_objspace_t *objspace, VALUE obj, void (*dfree)(void *), void *data)
{
struct RZombie *zombie = RZOMBIE(obj);
zombie->basic.flags = T_ZOMBIE | (zombie->basic.flags & FL_SEEN_OBJ_ID);
zombie->dfree = dfree;
zombie->data = data;
VALUE prev, next = heap_pages_deferred_final;
do {
zombie->next = prev = next;
next = RUBY_ATOMIC_VALUE_CAS(heap_pages_deferred_final, prev, obj);
} while (next != prev);
struct heap_page *page = GET_HEAP_PAGE(obj);
page->final_slots++;
heap_pages_final_slots++;
}
static inline void
make_io_zombie(rb_objspace_t *objspace, VALUE obj)
{
rb_io_t *fptr = RANY(obj)->as.file.fptr;
make_zombie(objspace, obj, rb_io_fptr_finalize_internal, fptr);
}
static void
obj_free_object_id(rb_objspace_t *objspace, VALUE obj)
{
ASSERT_vm_locking();
st_data_t o = (st_data_t)obj, id;
GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID));
FL_UNSET(obj, FL_SEEN_OBJ_ID);
if (st_delete(objspace->obj_to_id_tbl, &o, &id)) {
GC_ASSERT(id);
st_delete(objspace->id_to_obj_tbl, &id, NULL);
}
else {
rb_bug("Object ID seen, but not in mapping table: %s\n", obj_info(obj));
}
}
static int
obj_free(rb_objspace_t *objspace, VALUE obj)
{
RB_DEBUG_COUNTER_INC(obj_free);
// RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj));
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj);
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
default:
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
FL_UNSET(obj, FL_EXIVAR);
}
if (FL_TEST(obj, FL_SEEN_OBJ_ID) && !FL_TEST(obj, FL_FINALIZE)) {
obj_free_object_id(objspace, obj);
}
if (RVALUE_WB_UNPROTECTED(obj)) CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
#if RGENGC_CHECK_MODE
#define CHECK(x) if (x(obj) != FALSE) rb_bug("obj_free: " #x "(%s) != FALSE", obj_info(obj))
CHECK(RVALUE_WB_UNPROTECTED);
CHECK(RVALUE_MARKED);
CHECK(RVALUE_MARKING);
CHECK(RVALUE_UNCOLLECTIBLE);
#undef CHECK
#endif
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) {
RB_DEBUG_COUNTER_INC(obj_obj_embed);
}
else if (ROBJ_TRANSIENT_P(obj)) {
RB_DEBUG_COUNTER_INC(obj_obj_transient);
}
else {
rb_shape_t *shape = rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj));
if (shape) {
VALUE klass = RBASIC_CLASS(obj);
// Increment max_iv_count if applicable, used to determine size pool allocation
uint32_t num_of_ivs = shape->iv_count;
if (RCLASS_EXT(klass)->max_iv_count < num_of_ivs) {
RCLASS_EXT(klass)->max_iv_count = num_of_ivs;
}
}
xfree(RANY(obj)->as.object.as.heap.ivptr);
RB_DEBUG_COUNTER_INC(obj_obj_ptr);
}
break;
case T_MODULE:
case T_CLASS:
rb_id_table_free(RCLASS_M_TBL(obj));
cc_table_free(objspace, obj, FALSE);
if (RCLASS_IV_TBL(obj)) {
st_free_table(RCLASS_IV_TBL(obj));
}
if (RCLASS_CONST_TBL(obj)) {
rb_free_const_table(RCLASS_CONST_TBL(obj));
}
if (RCLASS_CVC_TBL(obj)) {
rb_id_table_foreach_values(RCLASS_CVC_TBL(obj), cvar_table_free_i, NULL);
rb_id_table_free(RCLASS_CVC_TBL(obj));
}
rb_class_remove_subclass_head(obj);
rb_class_remove_from_module_subclasses(obj);
rb_class_remove_from_super_subclasses(obj);
if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
xfree(RCLASS_SUPERCLASSES(obj));
}
#if SIZEOF_SERIAL_T != SIZEOF_VALUE && USE_RVARGC
xfree(RCLASS(obj)->class_serial_ptr);
#endif
#if !USE_RVARGC
if (RCLASS_EXT(obj))
xfree(RCLASS_EXT(obj));
#endif
(void)RB_DEBUG_COUNTER_INC_IF(obj_module_ptr, BUILTIN_TYPE(obj) == T_MODULE);
(void)RB_DEBUG_COUNTER_INC_IF(obj_class_ptr, BUILTIN_TYPE(obj) == T_CLASS);
break;
case T_STRING:
rb_str_free(obj);
break;
case T_ARRAY:
rb_ary_free(obj);
break;
case T_HASH:
#if USE_DEBUG_COUNTER
switch (RHASH_SIZE(obj)) {
case 0:
RB_DEBUG_COUNTER_INC(obj_hash_empty);
break;
case 1:
RB_DEBUG_COUNTER_INC(obj_hash_1);
break;
case 2:
RB_DEBUG_COUNTER_INC(obj_hash_2);
break;
case 3:
RB_DEBUG_COUNTER_INC(obj_hash_3);
break;
case 4:
RB_DEBUG_COUNTER_INC(obj_hash_4);
break;
case 5:
case 6:
case 7:
case 8:
RB_DEBUG_COUNTER_INC(obj_hash_5_8);
break;
default:
GC_ASSERT(RHASH_SIZE(obj) > 8);
RB_DEBUG_COUNTER_INC(obj_hash_g8);
}
if (RHASH_AR_TABLE_P(obj)) {
if (RHASH_AR_TABLE(obj) == NULL) {
RB_DEBUG_COUNTER_INC(obj_hash_null);
}
else {
RB_DEBUG_COUNTER_INC(obj_hash_ar);
}
}
else {
RB_DEBUG_COUNTER_INC(obj_hash_st);
}
#endif
if (/* RHASH_AR_TABLE_P(obj) */ !FL_TEST_RAW(obj, RHASH_ST_TABLE_FLAG)) {
struct ar_table_struct *tab = RHASH(obj)->as.ar;
if (tab) {
if (RHASH_TRANSIENT_P(obj)) {
RB_DEBUG_COUNTER_INC(obj_hash_transient);
}
else {
ruby_xfree(tab);
}
}
}
else {
GC_ASSERT(RHASH_ST_TABLE_P(obj));
st_free_table(RHASH(obj)->as.st);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
onig_free(RANY(obj)->as.regexp.ptr);
RB_DEBUG_COUNTER_INC(obj_regexp_ptr);
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
int free_immediately = FALSE;
void (*dfree)(void *);
void *data = DATA_PTR(obj);
if (RTYPEDDATA_P(obj)) {
free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0;
dfree = RANY(obj)->as.typeddata.type->function.dfree;
if (0 && free_immediately == 0) {
/* to expose non-free-immediate T_DATA */
fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name);
}
}
else {
dfree = RANY(obj)->as.data.dfree;
}
if (dfree) {
if (dfree == RUBY_DEFAULT_FREE) {
xfree(data);
RB_DEBUG_COUNTER_INC(obj_data_xfree);
}
else if (free_immediately) {
(*dfree)(data);
RB_DEBUG_COUNTER_INC(obj_data_imm_free);
}
else {
make_zombie(objspace, obj, dfree, data);
RB_DEBUG_COUNTER_INC(obj_data_zombie);
return FALSE;
}
}
else {
RB_DEBUG_COUNTER_INC(obj_data_empty);
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.rmatch) {
struct rmatch *rm = RANY(obj)->as.match.rmatch;
#if USE_DEBUG_COUNTER
if (rm->regs.num_regs >= 8) {
RB_DEBUG_COUNTER_INC(obj_match_ge8);
}
else if (rm->regs.num_regs >= 4) {
RB_DEBUG_COUNTER_INC(obj_match_ge4);
}
else if (rm->regs.num_regs >= 1) {
RB_DEBUG_COUNTER_INC(obj_match_under4);
}
#endif
onig_region_free(&rm->regs, 0);
if (rm->char_offset)
xfree(rm->char_offset);
xfree(rm);
RB_DEBUG_COUNTER_INC(obj_match_ptr);
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
make_io_zombie(objspace, obj);
RB_DEBUG_COUNTER_INC(obj_file_ptr);
return FALSE;
}
break;
case T_RATIONAL:
RB_DEBUG_COUNTER_INC(obj_rational);
break;
case T_COMPLEX:
RB_DEBUG_COUNTER_INC(obj_complex);
break;
case T_MOVED:
break;
case T_ICLASS:
/* Basically , T_ICLASS shares table with the module */
if (RICLASS_OWNS_M_TBL_P(obj)) {
/* Method table is not shared for origin iclasses of classes */
rb_id_table_free(RCLASS_M_TBL(obj));
}
if (RCLASS_CALLABLE_M_TBL(obj) != NULL) {
rb_id_table_free(RCLASS_CALLABLE_M_TBL(obj));
}
rb_class_remove_subclass_head(obj);
cc_table_free(objspace, obj, FALSE);
rb_class_remove_from_module_subclasses(obj);
rb_class_remove_from_super_subclasses(obj);
#if !USE_RVARGC
xfree(RCLASS_EXT(obj));
#endif
RB_DEBUG_COUNTER_INC(obj_iclass_ptr);
break;
case T_FLOAT:
RB_DEBUG_COUNTER_INC(obj_float);
break;
case T_BIGNUM:
if (!BIGNUM_EMBED_P(obj) && BIGNUM_DIGITS(obj)) {
xfree(BIGNUM_DIGITS(obj));
RB_DEBUG_COUNTER_INC(obj_bignum_ptr);
}
else {
RB_DEBUG_COUNTER_INC(obj_bignum_embed);
}
break;
case T_NODE:
UNEXPECTED_NODE(obj_free);
break;
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) ||
RANY(obj)->as.rstruct.as.heap.ptr == NULL) {
RB_DEBUG_COUNTER_INC(obj_struct_embed);
}
else if (RSTRUCT_TRANSIENT_P(obj)) {
RB_DEBUG_COUNTER_INC(obj_struct_transient);
}
else {
xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr);
RB_DEBUG_COUNTER_INC(obj_struct_ptr);
}
break;
case T_SYMBOL:
{
rb_gc_free_dsymbol(obj);
RB_DEBUG_COUNTER_INC(obj_symbol);
}
break;
case T_IMEMO:
switch (imemo_type(obj)) {
case imemo_ment:
rb_free_method_entry(&RANY(obj)->as.imemo.ment);
RB_DEBUG_COUNTER_INC(obj_imemo_ment);
break;
case imemo_iseq:
rb_iseq_free(&RANY(obj)->as.imemo.iseq);
RB_DEBUG_COUNTER_INC(obj_imemo_iseq);
break;
case imemo_env:
GC_ASSERT(VM_ENV_ESCAPED_P(RANY(obj)->as.imemo.env.ep));
xfree((VALUE *)RANY(obj)->as.imemo.env.env);
RB_DEBUG_COUNTER_INC(obj_imemo_env);
break;
case imemo_tmpbuf:
xfree(RANY(obj)->as.imemo.alloc.ptr);
RB_DEBUG_COUNTER_INC(obj_imemo_tmpbuf);
break;
case imemo_ast:
rb_ast_free(&RANY(obj)->as.imemo.ast);
RB_DEBUG_COUNTER_INC(obj_imemo_ast);
break;
case imemo_cref:
RB_DEBUG_COUNTER_INC(obj_imemo_cref);
break;
case imemo_svar:
RB_DEBUG_COUNTER_INC(obj_imemo_svar);
break;
case imemo_throw_data:
RB_DEBUG_COUNTER_INC(obj_imemo_throw_data);
break;
case imemo_ifunc:
RB_DEBUG_COUNTER_INC(obj_imemo_ifunc);
break;
case imemo_memo:
RB_DEBUG_COUNTER_INC(obj_imemo_memo);
break;
case imemo_parser_strterm:
RB_DEBUG_COUNTER_INC(obj_imemo_parser_strterm);
break;
case imemo_callinfo:
RB_DEBUG_COUNTER_INC(obj_imemo_callinfo);
break;
case imemo_callcache:
RB_DEBUG_COUNTER_INC(obj_imemo_callcache);
break;
case imemo_constcache:
RB_DEBUG_COUNTER_INC(obj_imemo_constcache);
break;
}
return TRUE;
default:
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
}
if (FL_TEST(obj, FL_FINALIZE)) {
make_zombie(objspace, obj, 0, 0);
return FALSE;
}
else {
return TRUE;
}
}
#define OBJ_ID_INCREMENT (sizeof(RVALUE) / 2)
#define OBJ_ID_INITIAL (OBJ_ID_INCREMENT * 2)
static int
object_id_cmp(st_data_t x, st_data_t y)
{
if (RB_BIGNUM_TYPE_P(x)) {
return !rb_big_eql(x, y);
}
else {
return x != y;
}
}
static st_index_t
object_id_hash(st_data_t n)
{
if (RB_BIGNUM_TYPE_P(n)) {
return FIX2LONG(rb_big_hash(n));
}
else {
return st_numhash(n);
}
}
static const struct st_hash_type object_id_hash_type = {
object_id_cmp,
object_id_hash,
};
void
Init_heap(void)
{
rb_objspace_t *objspace = &rb_objspace;
#if defined(INIT_HEAP_PAGE_ALLOC_USE_MMAP)
/* Need to determine if we can use mmap at runtime. */
heap_page_alloc_use_mmap = INIT_HEAP_PAGE_ALLOC_USE_MMAP;
#endif
objspace->next_object_id = INT2FIX(OBJ_ID_INITIAL);
objspace->id_to_obj_tbl = st_init_table(&object_id_hash_type);
objspace->obj_to_id_tbl = st_init_numtable();
#if RGENGC_ESTIMATE_OLDMALLOC
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
#endif
heap_add_pages(objspace, &size_pools[0], SIZE_POOL_EDEN_HEAP(&size_pools[0]), gc_params.heap_init_slots / HEAP_PAGE_OBJ_LIMIT);
/* Give other size pools allocatable pages. */
for (int i = 1; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
int multiple = size_pool->slot_size / BASE_SLOT_SIZE;
size_pool->allocatable_pages = gc_params.heap_init_slots * multiple / HEAP_PAGE_OBJ_LIMIT;
}
heap_pages_expand_sorted(objspace);
init_mark_stack(&objspace->mark_stack);
objspace->profile.invoke_time = getrusage_time();
finalizer_table = st_init_numtable();
}
void
Init_gc_stress(void)
{
rb_objspace_t *objspace = &rb_objspace;
gc_stress_set(objspace, ruby_initial_gc_stress);
}
typedef int each_obj_callback(void *, void *, size_t, void *);
static void objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected);
static void objspace_reachable_objects_from_root(rb_objspace_t *, void (func)(const char *, VALUE, void *), void *);
struct each_obj_data {
rb_objspace_t *objspace;
bool reenable_incremental;
each_obj_callback *callback;
void *data;
struct heap_page **pages[SIZE_POOL_COUNT];
size_t pages_counts[SIZE_POOL_COUNT];
};
static VALUE
objspace_each_objects_ensure(VALUE arg)
{
struct each_obj_data *data = (struct each_obj_data *)arg;
rb_objspace_t *objspace = data->objspace;
/* Reenable incremental GC */
if (data->reenable_incremental) {
objspace->flags.dont_incremental = FALSE;
}
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
struct heap_page **pages = data->pages[i];
/* pages could be NULL if an error was raised during setup (e.g.
* malloc failed due to out of memory). */
if (pages) {
free(pages);
}
}
return Qnil;
}
static VALUE
objspace_each_objects_try(VALUE arg)
{
struct each_obj_data *data = (struct each_obj_data *)arg;
rb_objspace_t *objspace = data->objspace;
/* Copy pages from all size_pools to their respective buffers. */
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
size_t size = size_mul_or_raise(SIZE_POOL_EDEN_HEAP(size_pool)->total_pages, sizeof(struct heap_page *), rb_eRuntimeError);
struct heap_page **pages = malloc(size);
if (!pages) rb_memerror();
/* Set up pages buffer by iterating over all pages in the current eden
* heap. This will be a snapshot of the state of the heap before we
* call the callback over each page that exists in this buffer. Thus it
* is safe for the callback to allocate objects without possibly entering
* an infinite loop. */
struct heap_page *page = 0;
size_t pages_count = 0;
ccan_list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) {
pages[pages_count] = page;
pages_count++;
}
data->pages[i] = pages;
data->pages_counts[i] = pages_count;
GC_ASSERT(pages_count == SIZE_POOL_EDEN_HEAP(size_pool)->total_pages);
}
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
size_t pages_count = data->pages_counts[i];
struct heap_page **pages = data->pages[i];
struct heap_page *page = ccan_list_top(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, struct heap_page, page_node);
for (size_t i = 0; i < pages_count; i++) {
/* If we have reached the end of the linked list then there are no
* more pages, so break. */
if (page == NULL) break;
/* If this page does not match the one in the buffer, then move to
* the next page in the buffer. */
if (pages[i] != page) continue;
uintptr_t pstart = (uintptr_t)page->start;
uintptr_t pend = pstart + (page->total_slots * size_pool->slot_size);
if (!__asan_region_is_poisoned((void *)pstart, pend - pstart) &&
(*data->callback)((void *)pstart, (void *)pend, size_pool->slot_size, data->data)) {
break;
}
page = ccan_list_next(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node);
}
}
return Qnil;
}
/*
* rb_objspace_each_objects() is special C API to walk through
* Ruby object space. This C API is too difficult to use it.
* To be frank, you should not use it. Or you need to read the
* source code of this function and understand what this function does.
*
* 'callback' will be called several times (the number of heap page,
* at current implementation) with:
* vstart: a pointer to the first living object of the heap_page.
* vend: a pointer to next to the valid heap_page area.
* stride: a distance to next VALUE.
*
* If callback() returns non-zero, the iteration will be stopped.
*
* This is a sample callback code to iterate liveness objects:
*
* int
* sample_callback(void *vstart, void *vend, int stride, void *data) {
* VALUE v = (VALUE)vstart;
* for (; v != (VALUE)vend; v += stride) {
* if (RBASIC(v)->flags) { // liveness check
* // do something with live object 'v'
* }
* return 0; // continue to iteration
* }
*
* Note: 'vstart' is not a top of heap_page. This point the first
* living object to grasp at least one object to avoid GC issue.
* This means that you can not walk through all Ruby object page
* including freed object page.
*
* Note: On this implementation, 'stride' is the same as sizeof(RVALUE).
* However, there are possibilities to pass variable values with
* 'stride' with some reasons. You must use stride instead of
* use some constant value in the iteration.
*/
void
rb_objspace_each_objects(each_obj_callback *callback, void *data)
{
objspace_each_objects(&rb_objspace, callback, data, TRUE);
}
static void
objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected)
{
/* Disable incremental GC */
bool reenable_incremental = FALSE;
if (protected) {
reenable_incremental = !objspace->flags.dont_incremental;
gc_rest(objspace);
objspace->flags.dont_incremental = TRUE;
}
struct each_obj_data each_obj_data = {
.objspace = objspace,
.reenable_incremental = reenable_incremental,
.callback = callback,
.data = data,
.pages = {NULL},
.pages_counts = {0},
};
rb_ensure(objspace_each_objects_try, (VALUE)&each_obj_data,
objspace_each_objects_ensure, (VALUE)&each_obj_data);
}
void
rb_objspace_each_objects_without_setup(each_obj_callback *callback, void *data)
{
objspace_each_objects(&rb_objspace, callback, data, FALSE);
}
struct os_each_struct {
size_t num;
VALUE of;
};
static int
internal_object_p(VALUE obj)
{
RVALUE *p = (RVALUE *)obj;
void *ptr = asan_unpoison_object_temporary(obj);
bool used_p = p->as.basic.flags;
if (used_p) {
switch (BUILTIN_TYPE(obj)) {
case T_NODE:
UNEXPECTED_NODE(internal_object_p);
break;
case T_NONE:
case T_MOVED:
case T_IMEMO:
case T_ICLASS:
case T_ZOMBIE:
break;
case T_CLASS:
if (!p->as.basic.klass) break;
if (FL_TEST(obj, FL_SINGLETON)) {
return rb_singleton_class_internal_p(obj);
}
return 0;
default:
if (!p->as.basic.klass) break;
return 0;
}
}
if (ptr || ! used_p) {
asan_poison_object(obj);
}
return 1;
}
int
rb_objspace_internal_object_p(VALUE obj)
{
return internal_object_p(obj);
}
static int
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
{
struct os_each_struct *oes = (struct os_each_struct *)data;
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
if (!internal_object_p(v)) {
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
if (!rb_multi_ractor_p() || rb_ractor_shareable_p(v)) {
rb_yield(v);
oes->num++;
}
}
}
}
return 0;
}
static VALUE
os_obj_of(VALUE of)
{
struct os_each_struct oes;
oes.num = 0;
oes.of = of;
rb_objspace_each_objects(os_obj_of_i, &oes);
return SIZET2NUM(oes.num);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } -> integer
* ObjectSpace.each_object([module]) -> an_enumerator
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, #each_object returns both
* the numbers we defined and several constants defined in the Math
* module.
*
* If no block is given, an enumerator is returned instead.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
of = (!rb_check_arity(argc, 0, 1) ? 0 : argv[0]);
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(VALUE os, VALUE obj)
{
return rb_undefine_finalizer(obj);
}
VALUE
rb_undefine_finalizer(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
st_data_t data = obj;
rb_check_frozen(obj);
st_delete(finalizer_table, &data, 0);
FL_UNSET(obj, FL_FINALIZE);
return obj;
}
static void
should_be_callable(VALUE block)
{
if (!rb_obj_respond_to(block, idCall, TRUE)) {
rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)",
rb_obj_class(block));
}
}
static void
should_be_finalizable(VALUE obj)
{
if (!FL_ABLE(obj)) {
rb_raise(rb_eArgError, "cannot define finalizer for %s",
rb_obj_classname(obj));
}
rb_check_frozen(obj);
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed. The object ID of the <i>obj</i> will be passed
* as an argument to <i>aProc</i>. If <i>aProc</i> is a lambda or
* method, make sure it can be called with a single argument.
*
* The return value is an array <code>[0, aProc]</code>.
*
* The two recommended patterns are to either create the finaliser proc
* in a non-instance method where it can safely capture the needed state,
* or to use a custom callable object that stores the needed state
* explicitly as instance variables.
*
* class Foo
* def initialize(data_needed_for_finalization)
* ObjectSpace.define_finalizer(self, self.class.create_finalizer(data_needed_for_finalization))
* end
*
* def self.create_finalizer(data_needed_for_finalization)
* proc {
* puts "finalizing #{data_needed_for_finalization}"
* }
* end
* end
*
* class Bar
* class Remover
* def initialize(data_needed_for_finalization)
* @data_needed_for_finalization = data_needed_for_finalization
* end
*
* def call(id)
* puts "finalizing #{@data_needed_for_finalization}"
* end
* end
*
* def initialize(data_needed_for_finalization)
* ObjectSpace.define_finalizer(self, Remover.new(data_needed_for_finalization))
* end
* end
*
* Note that if your finalizer references the object to be
* finalized it will never be run on GC, although it will still be
* run at exit. You will get a warning if you capture the object
* to be finalized as the receiver of the finalizer.
*
* class CapturesSelf
* def initialize(name)
* ObjectSpace.define_finalizer(self, proc {
* # this finalizer will only be run on exit
* puts "finalizing #{name}"
* })
* end
* end
*
* Also note that finalization can be unpredictable and is never guaranteed
* to be run except on exit.
*/
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
VALUE obj, block;
rb_scan_args(argc, argv, "11", &obj, &block);
should_be_finalizable(obj);
if (argc == 1) {
block = rb_block_proc();
}
else {
should_be_callable(block);
}
if (rb_callable_receiver(block) == obj) {
rb_warn("finalizer references object to be finalized");
}
return define_final0(obj, block);
}
static VALUE
define_final0(VALUE obj, VALUE block)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
RBASIC(obj)->flags |= FL_FINALIZE;
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
/* avoid duplicate block, table is usually small */
{
long len = RARRAY_LEN(table);
long i;
for (i = 0; i < len; i++) {
VALUE recv = RARRAY_AREF(table, i);
if (rb_equal(recv, block)) {
block = recv;
goto end;
}
}
}
rb_ary_push(table, block);
}
else {
table = rb_ary_new3(1, block);
RBASIC_CLEAR_CLASS(table);
st_add_direct(finalizer_table, obj, table);
}
end:
block = rb_ary_new3(2, INT2FIX(0), block);
OBJ_FREEZE(block);
return block;
}
VALUE
rb_define_finalizer(VALUE obj, VALUE block)
{
should_be_finalizable(obj);
should_be_callable(block);
return define_final0(obj, block);
}
void
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
st_insert(finalizer_table, dest, table);
}
FL_SET(dest, FL_FINALIZE);
}
static VALUE
run_single_final(VALUE cmd, VALUE objid)
{
return rb_check_funcall(cmd, idCall, 1, &objid);
}
static void
warn_exception_in_finalizer(rb_execution_context_t *ec, VALUE final)
{
if (final != Qundef && !NIL_P(ruby_verbose)) {
VALUE errinfo = ec->errinfo;
rb_warn("Exception in finalizer %+"PRIsVALUE, final);
rb_ec_error_print(ec, errinfo);
}
}
static void
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
{
long i;
enum ruby_tag_type state;
volatile struct {
VALUE errinfo;
VALUE objid;
VALUE final;
rb_control_frame_t *cfp;
long finished;
} saved;
rb_execution_context_t * volatile ec = GET_EC();
#define RESTORE_FINALIZER() (\
ec->cfp = saved.cfp, \
ec->errinfo = saved.errinfo)
saved.errinfo = ec->errinfo;
saved.objid = rb_obj_id(obj);
saved.cfp = ec->cfp;
saved.finished = 0;
saved.final = Qundef;
EC_PUSH_TAG(ec);
state = EC_EXEC_TAG();
if (state != TAG_NONE) {
++saved.finished; /* skip failed finalizer */
warn_exception_in_finalizer(ec, ATOMIC_VALUE_EXCHANGE(saved.final, Qundef));
}
for (i = saved.finished;
RESTORE_FINALIZER(), i<RARRAY_LEN(table);
saved.finished = ++i) {
run_single_final(saved.final = RARRAY_AREF(table, i), saved.objid);
}
EC_POP_TAG();
#undef RESTORE_FINALIZER
}
static void
run_final(rb_objspace_t *objspace, VALUE zombie)
{
st_data_t key, table;
if (RZOMBIE(zombie)->dfree) {
RZOMBIE(zombie)->dfree(RZOMBIE(zombie)->data);
}
key = (st_data_t)zombie;
if (st_delete(finalizer_table, &key, &table)) {
run_finalizer(objspace, zombie, (VALUE)table);
}
}
static void
finalize_list(rb_objspace_t *objspace, VALUE zombie)
{
while (zombie) {
VALUE next_zombie;
struct heap_page *page;
asan_unpoison_object(zombie, false);
next_zombie = RZOMBIE(zombie)->next;
page = GET_HEAP_PAGE(zombie);
run_final(objspace, zombie);
RB_VM_LOCK_ENTER();
{
GC_ASSERT(BUILTIN_TYPE(zombie) == T_ZOMBIE);
if (FL_TEST(zombie, FL_SEEN_OBJ_ID)) {
obj_free_object_id(objspace, zombie);
}
GC_ASSERT(heap_pages_final_slots > 0);
GC_ASSERT(page->final_slots > 0);
heap_pages_final_slots--;
page->final_slots--;
page->free_slots++;
heap_page_add_freeobj(objspace, page, zombie);
objspace->profile.total_freed_objects++;
}
RB_VM_LOCK_LEAVE();
zombie = next_zombie;
}
}
static void
finalize_deferred_heap_pages(rb_objspace_t *objspace)
{
VALUE zombie;
while ((zombie = ATOMIC_VALUE_EXCHANGE(heap_pages_deferred_final, 0)) != 0) {
finalize_list(objspace, zombie);
}
}
static void
finalize_deferred(rb_objspace_t *objspace)
{
rb_execution_context_t *ec = GET_EC();
ec->interrupt_mask |= PENDING_INTERRUPT_MASK;
finalize_deferred_heap_pages(objspace);
ec->interrupt_mask &= ~PENDING_INTERRUPT_MASK;
}
static void
gc_finalize_deferred(void *dmy)
{
rb_objspace_t *objspace = dmy;
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
finalize_deferred(objspace);
ATOMIC_SET(finalizing, 0);
}
static void
gc_finalize_deferred_register(rb_objspace_t *objspace)
{
if (rb_postponed_job_register_one(0, gc_finalize_deferred, objspace) == 0) {
rb_bug("gc_finalize_deferred_register: can't register finalizer.");
}
}
struct force_finalize_list {
VALUE obj;
VALUE table;
struct force_finalize_list *next;
};
static int
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
{
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
curr->obj = key;
curr->table = val;
curr->next = *prev;
*prev = curr;
return ST_CONTINUE;
}
bool rb_obj_is_main_ractor(VALUE gv);
void
rb_objspace_call_finalizer(rb_objspace_t *objspace)
{
size_t i;
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(objspace);
#endif
gc_rest(objspace);
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
/* run finalizers */
finalize_deferred(objspace);
GC_ASSERT(heap_pages_deferred_final == 0);
gc_rest(objspace);
/* prohibit incremental GC */
objspace->flags.dont_incremental = 1;
/* force to run finalizer */
while (finalizer_table->num_entries) {
struct force_finalize_list *list = 0;
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
while (list) {
struct force_finalize_list *curr = list;
st_data_t obj = (st_data_t)curr->obj;
run_finalizer(objspace, curr->obj, curr->table);
st_delete(finalizer_table, &obj, 0);
list = curr->next;
xfree(curr);
}
}
/* prohibit GC because force T_DATA finalizers can break an object graph consistency */
dont_gc_on();
/* running data/file finalizers are part of garbage collection */
unsigned int lock_lev;
gc_enter(objspace, gc_enter_event_finalizer, &lock_lev);
/* run data/file object's finalizers */
for (i = 0; i < heap_allocated_pages; i++) {
struct heap_page *page = heap_pages_sorted[i];
short stride = page->slot_size;
uintptr_t p = (uintptr_t)page->start;
uintptr_t pend = p + page->total_slots * stride;
for (; p < pend; p += stride) {
VALUE vp = (VALUE)p;
void *poisoned = asan_unpoison_object_temporary(vp);
switch (BUILTIN_TYPE(vp)) {
case T_DATA:
if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break;
if (rb_obj_is_thread(vp)) break;
if (rb_obj_is_mutex(vp)) break;
if (rb_obj_is_fiber(vp)) break;
if (rb_obj_is_main_ractor(vp)) break;
if (RTYPEDDATA_P(vp)) {
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
}
RANY(p)->as.free.flags = 0;
if (RANY(p)->as.data.dfree == RUBY_DEFAULT_FREE) {
xfree(DATA_PTR(p));
}
else if (RANY(p)->as.data.dfree) {
make_zombie(objspace, vp, RANY(p)->as.data.dfree, RANY(p)->as.data.data);
}
break;
case T_FILE:
if (RANY(p)->as.file.fptr) {
make_io_zombie(objspace, vp);
}
break;
default:
break;
}
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(vp) == T_NONE);
asan_poison_object(vp);
}
}
}
gc_exit(objspace, gc_enter_event_finalizer, &lock_lev);
finalize_deferred_heap_pages(objspace);
st_free_table(finalizer_table);
finalizer_table = 0;
ATOMIC_SET(finalizing, 0);
}
static inline int
is_swept_object(rb_objspace_t *objspace, VALUE ptr)
{
struct heap_page *page = GET_HEAP_PAGE(ptr);
return page->flags.before_sweep ? FALSE : TRUE;
}
/* garbage objects will be collected soon. */
static inline int
is_garbage_object(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_lazy_sweeping(objspace) ||
is_swept_object(objspace, ptr) ||
MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) {
return FALSE;
}
else {
return TRUE;
}
}
static inline int
is_live_object(rb_objspace_t *objspace, VALUE ptr)
{
switch (BUILTIN_TYPE(ptr)) {
case T_NONE:
case T_MOVED:
case T_ZOMBIE:
return FALSE;
default:
break;
}
if (!is_garbage_object(objspace, ptr)) {
return TRUE;
}
else {
return FALSE;
}
}
static inline int
is_markable_object(rb_objspace_t *objspace, VALUE obj)
{
if (rb_special_const_p(obj)) return FALSE; /* special const is not markable */
check_rvalue_consistency(obj);
return TRUE;
}
int
rb_objspace_markable_object_p(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
return is_markable_object(objspace, obj) && is_live_object(objspace, obj);
}
int
rb_objspace_garbage_object_p(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
return is_garbage_object(objspace, obj);
}
static VALUE
id2ref_obj_tbl(rb_objspace_t *objspace, VALUE objid)
{
VALUE orig;
if (st_lookup(objspace->id_to_obj_tbl, objid, &orig)) {
return orig;
}
else {
return Qundef;
}
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
* On multi-ractor mode, if the object is not shareable, it raises
* RangeError.
*/
static VALUE
id2ref(VALUE objid)
{
#if SIZEOF_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULONG(x)
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULL(x)
#endif
rb_objspace_t *objspace = &rb_objspace;
VALUE ptr;
VALUE orig;
void *p0;
objid = rb_to_int(objid);
if (FIXNUM_P(objid) || rb_big_size(objid) <= SIZEOF_VOIDP) {
ptr = NUM2PTR(objid);
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (NIL_P(ptr)) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
if (FLONUM_P(ptr)) return (VALUE)ptr;
ptr = obj_id_to_ref(objid);
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
p0 = (void *)ptr;
if (!rb_static_id_valid_p(symid))
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
}
if ((orig = id2ref_obj_tbl(objspace, objid)) != Qundef &&
is_live_object(objspace, orig)) {
if (!rb_multi_ractor_p() || rb_ractor_shareable_p(orig)) {
return orig;
}
else {
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is id of the unshareable object on multi-ractor", rb_int2str(objid, 10));
}
}
if (rb_int_ge(objid, objspace->next_object_id)) {
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_int2str(objid, 10));
}
else {
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is recycled object", rb_int2str(objid, 10));
}
}
static VALUE
os_id2ref(VALUE os, VALUE objid)
{
return id2ref(objid);
}
static VALUE
rb_find_object_id(VALUE obj, VALUE (*get_heap_object_id)(VALUE))
{
if (STATIC_SYM_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
else if (FLONUM_P(obj)) {
#if SIZEOF_LONG == SIZEOF_VOIDP
return LONG2NUM((SIGNED_VALUE)obj);
#else
return LL2NUM((SIGNED_VALUE)obj);
#endif
}
else if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return get_heap_object_id(obj);
}
static VALUE
cached_object_id(VALUE obj)
{
VALUE id;
rb_objspace_t *objspace = &rb_objspace;
RB_VM_LOCK_ENTER();
if (st_lookup(objspace->obj_to_id_tbl, (st_data_t)obj, &id)) {
GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID));
}
else {
GC_ASSERT(!FL_TEST(obj, FL_SEEN_OBJ_ID));
id = objspace->next_object_id;
objspace->next_object_id = rb_int_plus(id, INT2FIX(OBJ_ID_INCREMENT));
VALUE already_disabled = rb_gc_disable_no_rest();
st_insert(objspace->obj_to_id_tbl, (st_data_t)obj, (st_data_t)id);
st_insert(objspace->id_to_obj_tbl, (st_data_t)id, (st_data_t)obj);
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
FL_SET(obj, FL_SEEN_OBJ_ID);
}
RB_VM_LOCK_LEAVE();
return id;
}
static VALUE
nonspecial_obj_id_(VALUE obj)
{
return nonspecial_obj_id(obj);
}
VALUE
rb_memory_id(VALUE obj)
{
return rb_find_object_id(obj, nonspecial_obj_id_);
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ -> integer
* obj.object_id -> integer
*
* Returns an integer identifier for +obj+.
*
* The same number will be returned on all calls to +object_id+ for a given
* object, and no two active objects will share an id.
*
* Note: that some objects of builtin classes are reused for optimization.
* This is the case for immediate values and frozen string literals.
*
* BasicObject implements +__id__+, Kernel implements +object_id+.
*
* Immediate values are not passed by reference but are passed by value:
* +nil+, +true+, +false+, Fixnums, Symbols, and some Floats.
*
* Object.new.object_id == Object.new.object_id # => false
* (21 * 2).object_id == (21 * 2).object_id # => true
* "hello".object_id == "hello".object_id # => false
* "hi".freeze.object_id == "hi".freeze.object_id # => true
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
return rb_find_object_id(obj, cached_object_id);
}
static enum rb_id_table_iterator_result
cc_table_memsize_i(VALUE ccs_ptr, void *data_ptr)
{
size_t *total_size = data_ptr;
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
*total_size += sizeof(*ccs);
*total_size += sizeof(ccs->entries[0]) * ccs->capa;
return ID_TABLE_CONTINUE;
}
static size_t
cc_table_memsize(struct rb_id_table *cc_table)
{
size_t total = rb_id_table_memsize(cc_table);
rb_id_table_foreach_values(cc_table, cc_table_memsize_i, &total);
return total;
}
static size_t
obj_memsize_of(VALUE obj, int use_all_types)
{
size_t size = 0;
if (SPECIAL_CONST_P(obj)) {
return 0;
}
if (FL_TEST(obj, FL_EXIVAR)) {
size += rb_generic_ivar_memsize(obj);
}
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RBASIC(obj)->flags & ROBJECT_EMBED)) {
size += ROBJECT_NUMIV(obj) * sizeof(VALUE);
}
break;
case T_MODULE:
case T_CLASS:
if (RCLASS_EXT(obj)) {
if (RCLASS_M_TBL(obj)) {
size += rb_id_table_memsize(RCLASS_M_TBL(obj));
}
if (RCLASS_IV_TBL(obj)) {
size += st_memsize(RCLASS_IV_TBL(obj));
}
if (RCLASS_CVC_TBL(obj)) {
size += rb_id_table_memsize(RCLASS_CVC_TBL(obj));
}
if (RCLASS_EXT(obj)->iv_tbl) {
size += st_memsize(RCLASS_EXT(obj)->iv_tbl);
}
if (RCLASS_EXT(obj)->const_tbl) {
size += rb_id_table_memsize(RCLASS_EXT(obj)->const_tbl);
}
if (RCLASS_CC_TBL(obj)) {
size += cc_table_memsize(RCLASS_CC_TBL(obj));
}
if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
size += (RCLASS_SUPERCLASS_DEPTH(obj) + 1) * sizeof(VALUE);
}
#if !USE_RVARGC
size += sizeof(rb_classext_t);
#endif
}
break;
case T_ICLASS:
if (RICLASS_OWNS_M_TBL_P(obj)) {
if (RCLASS_M_TBL(obj)) {
size += rb_id_table_memsize(RCLASS_M_TBL(obj));
}
}
if (RCLASS_EXT(obj) && RCLASS_CC_TBL(obj)) {
size += cc_table_memsize(RCLASS_CC_TBL(obj));
}
break;
case T_STRING:
size += rb_str_memsize(obj);
break;
case T_ARRAY:
size += rb_ary_memsize(obj);
break;
case T_HASH:
if (RHASH_AR_TABLE_P(obj)) {
if (RHASH_AR_TABLE(obj) != NULL) {
size_t rb_hash_ar_table_size(void);
size += rb_hash_ar_table_size();
}
}
else {
VM_ASSERT(RHASH_ST_TABLE(obj) != NULL);
size += st_memsize(RHASH_ST_TABLE(obj));
}
break;
case T_REGEXP:
if (RREGEXP_PTR(obj)) {
size += onig_memsize(RREGEXP_PTR(obj));
}
break;
case T_DATA:
if (use_all_types) size += rb_objspace_data_type_memsize(obj);
break;
case T_MATCH:
if (RMATCH(obj)->rmatch) {
struct rmatch *rm = RMATCH(obj)->rmatch;
size += onig_region_memsize(&rm->regs);
size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated;
size += sizeof(struct rmatch);
}
break;
case T_FILE:
if (RFILE(obj)->fptr) {
size += rb_io_memsize(RFILE(obj)->fptr);
}
break;
case T_RATIONAL:
case T_COMPLEX:
break;
case T_IMEMO:
size += imemo_memsize(obj);
break;
case T_FLOAT:
case T_SYMBOL:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
size += BIGNUM_LEN(obj) * sizeof(BDIGIT);
}
break;
case T_NODE:
UNEXPECTED_NODE(obj_memsize_of);
break;
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RSTRUCT(obj)->as.heap.ptr) {
size += sizeof(VALUE) * RSTRUCT_LEN(obj);
}
break;
case T_ZOMBIE:
case T_MOVED:
break;
default:
rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)",
BUILTIN_TYPE(obj), (void*)obj);
}
return size + GET_HEAP_PAGE(obj)->slot_size;
}
size_t
rb_obj_memsize_of(VALUE obj)
{
return obj_memsize_of(obj, TRUE);
}
static int
set_zero(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE k = (VALUE)key;
VALUE hash = (VALUE)arg;
rb_hash_aset(hash, k, INT2FIX(0));
return ST_CONTINUE;
}
static VALUE
type_sym(size_t type)
{
switch (type) {
#define COUNT_TYPE(t) case (t): return ID2SYM(rb_intern(#t)); break;
COUNT_TYPE(T_NONE);
COUNT_TYPE(T_OBJECT);
COUNT_TYPE(T_CLASS);
COUNT_TYPE(T_MODULE);
COUNT_TYPE(T_FLOAT);
COUNT_TYPE(T_STRING);
COUNT_TYPE(T_REGEXP);
COUNT_TYPE(T_ARRAY);
COUNT_TYPE(T_HASH);
COUNT_TYPE(T_STRUCT);
COUNT_TYPE(T_BIGNUM);
COUNT_TYPE(T_FILE);
COUNT_TYPE(T_DATA);
COUNT_TYPE(T_MATCH);
COUNT_TYPE(T_COMPLEX);
COUNT_TYPE(T_RATIONAL);
COUNT_TYPE(T_NIL);
COUNT_TYPE(T_TRUE);
COUNT_TYPE(T_FALSE);
COUNT_TYPE(T_SYMBOL);
COUNT_TYPE(T_FIXNUM);
COUNT_TYPE(T_IMEMO);
COUNT_TYPE(T_UNDEF);
COUNT_TYPE(T_NODE);
COUNT_TYPE(T_ICLASS);
COUNT_TYPE(T_ZOMBIE);
COUNT_TYPE(T_MOVED);
#undef COUNT_TYPE
default: return SIZET2NUM(type); break;
}
}
/*
* call-seq:
* ObjectSpace.count_objects([result_hash]) -> hash
*
* Counts all objects grouped by type.
*
* It returns a hash, such as:
* {
* :TOTAL=>10000,
* :FREE=>3011,
* :T_OBJECT=>6,
* :T_CLASS=>404,
* # ...
* }
*
* The contents of the returned hash are implementation specific.
* It may be changed in future.
*
* The keys starting with +:T_+ means live objects.
* For example, +:T_ARRAY+ is the number of arrays.
* +:FREE+ means object slots which is not used now.
* +:TOTAL+ means sum of above.
*
* If the optional argument +result_hash+ is given,
* it is overwritten and returned. This is intended to avoid probe effect.
*
* h = {}
* ObjectSpace.count_objects(h)
* puts h
* # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 }
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
rb_objspace_t *objspace = &rb_objspace;
size_t counts[T_MASK+1];
size_t freed = 0;
size_t total = 0;
size_t i;
VALUE hash = Qnil;
if (rb_check_arity(argc, 0, 1) == 1) {
hash = argv[0];
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
for (i = 0; i < heap_allocated_pages; i++) {
struct heap_page *page = heap_pages_sorted[i];
short stride = page->slot_size;
uintptr_t p = (uintptr_t)page->start;
uintptr_t pend = p + page->total_slots * stride;
for (;p < pend; p += stride) {
VALUE vp = (VALUE)p;
GC_ASSERT((NUM_IN_PAGE(vp) * BASE_SLOT_SIZE) % page->slot_size == 0);
void *poisoned = asan_unpoison_object_temporary(vp);
if (RANY(p)->as.basic.flags) {
counts[BUILTIN_TYPE(vp)]++;
}
else {
freed++;
}
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(vp) == T_NONE);
asan_poison_object(vp);
}
}
total += page->total_slots;
}
if (NIL_P(hash)) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
rb_hash_stlike_foreach(hash, set_zero, hash);
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
for (i = 0; i <= T_MASK; i++) {
VALUE type = type_sym(i);
if (counts[i])
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
return hash;
}
/*
------------------------ Garbage Collection ------------------------
*/
/* Sweeping */
static size_t
objspace_available_slots(rb_objspace_t *objspace)
{
size_t total_slots = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
total_slots += SIZE_POOL_EDEN_HEAP(size_pool)->total_slots;
total_slots += SIZE_POOL_TOMB_HEAP(size_pool)->total_slots;
}
return total_slots;
}
static size_t
objspace_live_slots(rb_objspace_t *objspace)
{
return (objspace->total_allocated_objects - objspace->profile.total_freed_objects) - heap_pages_final_slots;
}
static size_t
objspace_free_slots(rb_objspace_t *objspace)
{
return objspace_available_slots(objspace) - objspace_live_slots(objspace) - heap_pages_final_slots;
}
static void
gc_setup_mark_bits(struct heap_page *page)
{
/* copy oldgen bitmap to mark bitmap */
memcpy(&page->mark_bits[0], &page->uncollectible_bits[0], HEAP_PAGE_BITMAP_SIZE);
}
static int gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj);
static VALUE gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size);
#if defined(_WIN32)
enum {HEAP_PAGE_LOCK = PAGE_NOACCESS, HEAP_PAGE_UNLOCK = PAGE_READWRITE};
static BOOL
protect_page_body(struct heap_page_body *body, DWORD protect)
{
DWORD old_protect;
return VirtualProtect(body, HEAP_PAGE_SIZE, protect, &old_protect) != 0;
}
#else
enum {HEAP_PAGE_LOCK = PROT_NONE, HEAP_PAGE_UNLOCK = PROT_READ | PROT_WRITE};
#define protect_page_body(body, protect) !mprotect((body), HEAP_PAGE_SIZE, (protect))
#endif
static void
lock_page_body(rb_objspace_t *objspace, struct heap_page_body *body)
{
if (!protect_page_body(body, HEAP_PAGE_LOCK)) {
rb_bug("Couldn't protect page %p, errno: %s", (void *)body, strerror(errno));
}
else {
gc_report(5, objspace, "Protecting page in move %p\n", (void *)body);
}
}
static void
unlock_page_body(rb_objspace_t *objspace, struct heap_page_body *body)
{
if (!protect_page_body(body, HEAP_PAGE_UNLOCK)) {
rb_bug("Couldn't unprotect page %p, errno: %s", (void *)body, strerror(errno));
}
else {
gc_report(5, objspace, "Unprotecting page in move %p\n", (void *)body);
}
}
static bool
try_move(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *free_page, VALUE src)
{
struct heap_page *src_page = GET_HEAP_PAGE(src);
if (!free_page) {
return false;
}
/* We should return true if either src is successfully moved, or src is
* unmoveable. A false return will cause the sweeping cursor to be
* incremented to the next page, and src will attempt to move again */
if (gc_is_moveable_obj(objspace, src)) {
GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(src), src));
VALUE dest = (VALUE)free_page->freelist;
asan_unpoison_object(dest, false);
if (!dest) {
/* if we can't get something from the freelist then the page must be
* full */
return false;
}
free_page->freelist = RANY(dest)->as.free.next;
GC_ASSERT(RB_BUILTIN_TYPE(dest) == T_NONE);
if (src_page->slot_size > free_page->slot_size) {
objspace->rcompactor.moved_down_count_table[BUILTIN_TYPE(src)]++;
}
else if (free_page->slot_size > src_page->slot_size) {
objspace->rcompactor.moved_up_count_table[BUILTIN_TYPE(src)]++;
}
objspace->rcompactor.moved_count_table[BUILTIN_TYPE(src)]++;
objspace->rcompactor.total_moved++;
gc_move(objspace, src, dest, src_page->slot_size, free_page->slot_size);
gc_pin(objspace, src);
free_page->free_slots--;
}
return true;
}
static void
gc_unprotect_pages(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *cursor = heap->compact_cursor;
while (cursor) {
unlock_page_body(objspace, GET_PAGE_BODY(cursor->start));
cursor = ccan_list_next(&heap->pages, cursor, page_node);
}
}
static void gc_update_references(rb_objspace_t * objspace);
static void invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page);
#ifndef GC_CAN_COMPILE_COMPACTION
#if defined(__wasi__) /* WebAssembly doesn't support signals */
# define GC_CAN_COMPILE_COMPACTION 0
#else
# define GC_CAN_COMPILE_COMPACTION 1
#endif
#endif
#if defined(__MINGW32__) || defined(_WIN32)
# define GC_COMPACTION_SUPPORTED 1
#else
/* If not MinGW, Windows, or does not have mmap, we cannot use mprotect for
* the read barrier, so we must disable compaction. */
# define GC_COMPACTION_SUPPORTED (GC_CAN_COMPILE_COMPACTION && HEAP_PAGE_ALLOC_USE_MMAP)
#endif
#if GC_CAN_COMPILE_COMPACTION
static void
read_barrier_handler(uintptr_t original_address)
{
VALUE obj;
rb_objspace_t * objspace = &rb_objspace;
/* Calculate address aligned to slots. */
uintptr_t address = original_address - (original_address % BASE_SLOT_SIZE);
obj = (VALUE)address;
struct heap_page_body *page_body = GET_PAGE_BODY(obj);
/* If the page_body is NULL, then mprotect cannot handle it and will crash
* with "Cannot allocate memory". */
if (page_body == NULL) {
rb_bug("read_barrier_handler: segmentation fault at %p", (void *)original_address);
}
RB_VM_LOCK_ENTER();
{
unlock_page_body(objspace, page_body);
objspace->profile.read_barrier_faults++;
invalidate_moved_page(objspace, GET_HEAP_PAGE(obj));
}
RB_VM_LOCK_LEAVE();
}
#endif
#if !GC_CAN_COMPILE_COMPACTION
static void
uninstall_handlers(void)
{
/* no-op */
}
static void
install_handlers(void)
{
/* no-op */
}
#elif defined(_WIN32)
static LPTOP_LEVEL_EXCEPTION_FILTER old_handler;
typedef void (*signal_handler)(int);
static signal_handler old_sigsegv_handler;
static LONG WINAPI
read_barrier_signal(EXCEPTION_POINTERS * info)
{
/* EXCEPTION_ACCESS_VIOLATION is what's raised by access to protected pages */
if (info->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) {
/* > The second array element specifies the virtual address of the inaccessible data.
* https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
*
* Use this address to invalidate the page */
read_barrier_handler((uintptr_t)info->ExceptionRecord->ExceptionInformation[1]);
return EXCEPTION_CONTINUE_EXECUTION;
}
else {
return EXCEPTION_CONTINUE_SEARCH;
}
}
static void
uninstall_handlers(void)
{
signal(SIGSEGV, old_sigsegv_handler);
SetUnhandledExceptionFilter(old_handler);
}
static void
install_handlers(void)
{
/* Remove SEGV handler so that the Unhandled Exception Filter handles it */
old_sigsegv_handler = signal(SIGSEGV, NULL);
/* Unhandled Exception Filter has access to the violation address similar
* to si_addr from sigaction */
old_handler = SetUnhandledExceptionFilter(read_barrier_signal);
}
#else
static struct sigaction old_sigbus_handler;
static struct sigaction old_sigsegv_handler;
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
static exception_mask_t old_exception_masks[32];
static mach_port_t old_exception_ports[32];
static exception_behavior_t old_exception_behaviors[32];
static thread_state_flavor_t old_exception_flavors[32];
static mach_msg_type_number_t old_exception_count;
static void
disable_mach_bad_access_exc(void)
{
old_exception_count = sizeof(old_exception_masks) / sizeof(old_exception_masks[0]);
task_swap_exception_ports(
mach_task_self(), EXC_MASK_BAD_ACCESS,
MACH_PORT_NULL, EXCEPTION_DEFAULT, 0,
old_exception_masks, &old_exception_count,
old_exception_ports, old_exception_behaviors, old_exception_flavors
);
}
static void
restore_mach_bad_access_exc(void)
{
for (mach_msg_type_number_t i = 0; i < old_exception_count; i++) {
task_set_exception_ports(
mach_task_self(),
old_exception_masks[i], old_exception_ports[i],
old_exception_behaviors[i], old_exception_flavors[i]
);
}
}
#endif
static void
read_barrier_signal(int sig, siginfo_t * info, void * data)
{
// setup SEGV/BUS handlers for errors
struct sigaction prev_sigbus, prev_sigsegv;
sigaction(SIGBUS, &old_sigbus_handler, &prev_sigbus);
sigaction(SIGSEGV, &old_sigsegv_handler, &prev_sigsegv);
// enable SIGBUS/SEGV
sigset_t set, prev_set;
sigemptyset(&set);
sigaddset(&set, SIGBUS);
sigaddset(&set, SIGSEGV);
sigprocmask(SIG_UNBLOCK, &set, &prev_set);
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
disable_mach_bad_access_exc();
#endif
// run handler
read_barrier_handler((uintptr_t)info->si_addr);
// reset SEGV/BUS handlers
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
restore_mach_bad_access_exc();
#endif
sigaction(SIGBUS, &prev_sigbus, NULL);
sigaction(SIGSEGV, &prev_sigsegv, NULL);
sigprocmask(SIG_SETMASK, &prev_set, NULL);
}
static void
uninstall_handlers(void)
{
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
restore_mach_bad_access_exc();
#endif
sigaction(SIGBUS, &old_sigbus_handler, NULL);
sigaction(SIGSEGV, &old_sigsegv_handler, NULL);
}
static void
install_handlers(void)
{
struct sigaction action;
memset(&action, 0, sizeof(struct sigaction));
sigemptyset(&action.sa_mask);
action.sa_sigaction = read_barrier_signal;
action.sa_flags = SA_SIGINFO | SA_ONSTACK;
sigaction(SIGBUS, &action, &old_sigbus_handler);
sigaction(SIGSEGV, &action, &old_sigsegv_handler);
#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
disable_mach_bad_access_exc();
#endif
}
#endif
static void
revert_stack_objects(VALUE stack_obj, void *ctx)
{
rb_objspace_t * objspace = (rb_objspace_t*)ctx;
if (BUILTIN_TYPE(stack_obj) == T_MOVED) {
/* For now we'll revert the whole page if the object made it to the
* stack. I think we can change this to move just the one object
* back though */
invalidate_moved_page(objspace, GET_HEAP_PAGE(stack_obj));
}
}
static void
revert_machine_stack_references(rb_objspace_t *objspace, VALUE v)
{
if (is_pointer_to_heap(objspace, (void *)v)) {
if (BUILTIN_TYPE(v) == T_MOVED) {
/* For now we'll revert the whole page if the object made it to the
* stack. I think we can change this to move just the one object
* back though */
invalidate_moved_page(objspace, GET_HEAP_PAGE(v));
}
}
}
static void each_machine_stack_value(const rb_execution_context_t *ec, void (*cb)(rb_objspace_t *, VALUE));
static void
check_stack_for_moved(rb_objspace_t *objspace)
{
rb_execution_context_t *ec = GET_EC();
rb_vm_t *vm = rb_ec_vm_ptr(ec);
rb_vm_each_stack_value(vm, revert_stack_objects, (void*)objspace);
each_machine_stack_value(ec, revert_machine_stack_references);
}
static void gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode);
static void
gc_compact_finish(rb_objspace_t *objspace)
{
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
gc_unprotect_pages(objspace, heap);
}
uninstall_handlers();
/* The mutator is allowed to run during incremental sweeping. T_MOVED
* objects can get pushed on the stack and when the compaction process
* finishes up, it may remove the read barrier before anything has a
* chance to read from the T_MOVED address. To fix this, we scan the stack
* then revert any moved objects that made it to the stack. */
check_stack_for_moved(objspace);
gc_update_references(objspace);
objspace->profile.compact_count++;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
heap->compact_cursor = NULL;
heap->free_pages = NULL;
heap->compact_cursor_index = 0;
}
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->moved_objects = objspace->rcompactor.total_moved - record->moved_objects;
}
objspace->flags.during_compacting = FALSE;
}
struct gc_sweep_context {
struct heap_page *page;
int final_slots;
int freed_slots;
int empty_slots;
};
static inline void
gc_sweep_plane(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct gc_sweep_context *ctx)
{
struct heap_page * sweep_page = ctx->page;
short slot_size = sweep_page->slot_size;
short slot_bits = slot_size / BASE_SLOT_SIZE;
GC_ASSERT(slot_bits > 0);
do {
VALUE vp = (VALUE)p;
GC_ASSERT(vp % BASE_SLOT_SIZE == 0);
asan_unpoison_object(vp, false);
if (bitset & 1) {
switch (BUILTIN_TYPE(vp)) {
default: /* majority case */
gc_report(2, objspace, "page_sweep: free %p\n", (void *)p);
#if RGENGC_CHECK_MODE
if (!is_full_marking(objspace)) {
if (RVALUE_OLD_P(vp)) rb_bug("page_sweep: %p - old while minor GC.", (void *)p);
if (rgengc_remembered_sweep(objspace, vp)) rb_bug("page_sweep: %p - remembered.", (void *)p);
}
#endif
if (obj_free(objspace, vp)) {
// always add free slots back to the swept pages freelist,
// so that if we're comapacting, we can re-use the slots
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, BASE_SLOT_SIZE);
heap_page_add_freeobj(objspace, sweep_page, vp);
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp));
ctx->freed_slots++;
}
else {
ctx->final_slots++;
}
break;
case T_MOVED:
if (objspace->flags.during_compacting) {
/* The sweep cursor shouldn't have made it to any
* T_MOVED slots while the compact flag is enabled.
* The sweep cursor and compact cursor move in
* opposite directions, and when they meet references will
* get updated and "during_compacting" should get disabled */
rb_bug("T_MOVED shouldn't be seen until compaction is finished\n");
}
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp));
ctx->empty_slots++;
heap_page_add_freeobj(objspace, sweep_page, vp);
break;
case T_ZOMBIE:
/* already counted */
break;
case T_NONE:
ctx->empty_slots++; /* already freed */
break;
}
}
p += slot_size;
bitset >>= slot_bits;
} while (bitset);
}
static inline void
gc_sweep_page(rb_objspace_t *objspace, rb_heap_t *heap, struct gc_sweep_context *ctx)
{
struct heap_page *sweep_page = ctx->page;
GC_ASSERT(SIZE_POOL_EDEN_HEAP(sweep_page->size_pool) == heap);
uintptr_t p;
bits_t *bits, bitset;
gc_report(2, objspace, "page_sweep: start.\n");
#if RGENGC_CHECK_MODE
if (!objspace->flags.immediate_sweep) {
GC_ASSERT(sweep_page->flags.before_sweep == TRUE);
}
#endif
sweep_page->flags.before_sweep = FALSE;
sweep_page->free_slots = 0;
p = (uintptr_t)sweep_page->start;
bits = sweep_page->mark_bits;
int page_rvalue_count = sweep_page->total_slots * (sweep_page->slot_size / BASE_SLOT_SIZE);
int out_of_range_bits = (NUM_IN_PAGE(p) + page_rvalue_count) % BITS_BITLENGTH;
if (out_of_range_bits != 0) { // sizeof(RVALUE) == 64
bits[BITMAP_INDEX(p) + page_rvalue_count / BITS_BITLENGTH] |= ~(((bits_t)1 << out_of_range_bits) - 1);
}
/* The last bitmap plane may not be used if the last plane does not
* have enough space for the slot_size. In that case, the last plane must
* be skipped since none of the bits will be set. */
int bitmap_plane_count = CEILDIV(NUM_IN_PAGE(p) + page_rvalue_count, BITS_BITLENGTH);
GC_ASSERT(bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT - 1 ||
bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT);
// Skip out of range slots at the head of the page
bitset = ~bits[0];
bitset >>= NUM_IN_PAGE(p);
if (bitset) {
gc_sweep_plane(objspace, heap, p, bitset, ctx);
}
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
for (int i = 1; i < bitmap_plane_count; i++) {
bitset = ~bits[i];
if (bitset) {
gc_sweep_plane(objspace, heap, p, bitset, ctx);
}
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
}
if (!heap->compact_cursor) {
gc_setup_mark_bits(sweep_page);
}
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->removing_objects += ctx->final_slots + ctx->freed_slots;
record->empty_objects += ctx->empty_slots;
}
#endif
if (0) fprintf(stderr, "gc_sweep_page(%"PRIdSIZE"): total_slots: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n",
rb_gc_count(),
sweep_page->total_slots,
ctx->freed_slots, ctx->empty_slots, ctx->final_slots);
sweep_page->free_slots += ctx->freed_slots + ctx->empty_slots;
objspace->profile.total_freed_objects += ctx->freed_slots;
if (heap_pages_deferred_final && !finalizing) {
rb_thread_t *th = GET_THREAD();
if (th) {
gc_finalize_deferred_register(objspace);
}
}
#if RGENGC_CHECK_MODE
short freelist_len = 0;
asan_unlock_freelist(sweep_page);
RVALUE *ptr = sweep_page->freelist;
while (ptr) {
freelist_len++;
ptr = ptr->as.free.next;
}
asan_lock_freelist(sweep_page);
if (freelist_len != sweep_page->free_slots) {
rb_bug("inconsistent freelist length: expected %d but was %d", sweep_page->free_slots, freelist_len);
}
#endif
gc_report(2, objspace, "page_sweep: end.\n");
}
#if !USE_RVARGC
/* allocate additional minimum page to work */
static void
gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
if (!heap->free_pages && heap_increment(objspace, size_pool, heap) == FALSE) {
/* there is no free after page_sweep() */
size_pool_allocatable_pages_set(objspace, size_pool, 1);
if (!heap_increment(objspace, size_pool, heap)) { /* can't allocate additional free objects */
rb_memerror();
}
}
}
}
#endif
static const char *
gc_mode_name(enum gc_mode mode)
{
switch (mode) {
case gc_mode_none: return "none";
case gc_mode_marking: return "marking";
case gc_mode_sweeping: return "sweeping";
case gc_mode_compacting: return "compacting";
default: rb_bug("gc_mode_name: unknown mode: %d", (int)mode);
}
}
static void
gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode)
{
#if RGENGC_CHECK_MODE
enum gc_mode prev_mode = gc_mode(objspace);
switch (prev_mode) {
case gc_mode_none: GC_ASSERT(mode == gc_mode_marking); break;
case gc_mode_marking: GC_ASSERT(mode == gc_mode_sweeping); break;
case gc_mode_sweeping: GC_ASSERT(mode == gc_mode_none || mode == gc_mode_compacting); break;
case gc_mode_compacting: GC_ASSERT(mode == gc_mode_none); break;
}
#endif
if (0) fprintf(stderr, "gc_mode_transition: %s->%s\n", gc_mode_name(gc_mode(objspace)), gc_mode_name(mode));
gc_mode_set(objspace, mode);
}
static void
heap_page_freelist_append(struct heap_page *page, RVALUE *freelist)
{
if (freelist) {
asan_unlock_freelist(page);
if (page->freelist) {
RVALUE *p = page->freelist;
asan_unpoison_object((VALUE)p, false);
while (p->as.free.next) {
RVALUE *prev = p;
p = p->as.free.next;
asan_poison_object((VALUE)prev);
asan_unpoison_object((VALUE)p, false);
}
p->as.free.next = freelist;
asan_poison_object((VALUE)p);
}
else {
page->freelist = freelist;
}
asan_lock_freelist(page);
}
}
static void
gc_sweep_start_heap(rb_objspace_t *objspace, rb_heap_t *heap)
{
heap->sweeping_page = ccan_list_top(&heap->pages, struct heap_page, page_node);
heap->free_pages = NULL;
#if GC_ENABLE_INCREMENTAL_MARK
heap->pooled_pages = NULL;
#endif
if (!objspace->flags.immediate_sweep) {
struct heap_page *page = NULL;
ccan_list_for_each(&heap->pages, page, page_node) {
page->flags.before_sweep = TRUE;
}
}
}
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
__attribute__((noinline))
#endif
static void
gc_sweep_start(rb_objspace_t *objspace)
{
gc_mode_transition(objspace, gc_mode_sweeping);
#if GC_ENABLE_INCREMENTAL_MARK
objspace->rincgc.pooled_slots = 0;
#endif
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
gc_sweep_start_heap(objspace, heap);
#if USE_RVARGC
/* We should call gc_sweep_finish_size_pool for size pools with no pages. */
if (heap->sweeping_page == NULL) {
GC_ASSERT(heap->total_pages == 0);
GC_ASSERT(heap->total_slots == 0);
gc_sweep_finish_size_pool(objspace, size_pool);
}
#endif
}
rb_ractor_t *r = NULL;
ccan_list_for_each(&GET_VM()->ractor.set, r, vmlr_node) {
rb_gc_ractor_newobj_cache_clear(&r->newobj_cache);
}
}
#if USE_RVARGC
static void
gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool)
{
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
size_t total_slots = heap->total_slots + SIZE_POOL_TOMB_HEAP(size_pool)->total_slots;
size_t total_pages = heap->total_pages + SIZE_POOL_TOMB_HEAP(size_pool)->total_pages;
size_t swept_slots = size_pool->freed_slots + size_pool->empty_slots;
size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio);
/* Some size pools may have very few pages (or even no pages). These size pools
* should still have allocatable pages. */
if (min_free_slots < gc_params.heap_init_slots) {
min_free_slots = gc_params.heap_init_slots;
}
/* If we don't have enough slots and we have pages on the tomb heap, move
* pages from the tomb heap to the eden heap. This may prevent page
* creation thrashing (frequently allocating and deallocting pages) and
* GC thrashing (running GC more frequently than required). */
struct heap_page *resurrected_page;
while (swept_slots < min_free_slots &&
(resurrected_page = heap_page_resurrect(objspace, size_pool))) {
swept_slots += resurrected_page->free_slots;
heap_add_page(objspace, size_pool, heap, resurrected_page);
heap_add_freepage(heap, resurrected_page);
}
if (swept_slots < min_free_slots) {
bool grow_heap = is_full_marking(objspace);
if (!is_full_marking(objspace)) {
/* The heap is a growth heap if it freed more slots than had empty
* slots and used up all of its allocatable pages. */
bool is_growth_heap = (size_pool->empty_slots == 0 ||
size_pool->freed_slots > size_pool->empty_slots) &&
size_pool->allocatable_pages == 0;
if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) {
grow_heap = TRUE;
}
else if (is_growth_heap) { /* Only growth heaps are allowed to start a major GC. */
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE;
size_pool->force_major_gc_count++;
}
}
if (grow_heap) {
size_t extend_page_count = heap_extend_pages(objspace, size_pool, swept_slots, total_slots, total_pages);
if (extend_page_count > size_pool->allocatable_pages) {
size_pool_allocatable_pages_set(objspace, size_pool, extend_page_count);
}
}
}
}
#endif
static void
gc_sweep_finish(rb_objspace_t *objspace)
{
gc_report(1, objspace, "gc_sweep_finish\n");
gc_prof_set_heap_info(objspace);
heap_pages_free_unused_pages(objspace);
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
/* if heap_pages has unused pages, then assign them to increment */
size_t tomb_pages = SIZE_POOL_TOMB_HEAP(size_pool)->total_pages;
if (size_pool->allocatable_pages < tomb_pages) {
size_pool->allocatable_pages = tomb_pages;
}
#if USE_RVARGC
size_pool->freed_slots = 0;
size_pool->empty_slots = 0;
#if GC_ENABLE_INCREMENTAL_MARK
if (!will_be_incremental_marking(objspace)) {
rb_heap_t *eden_heap = SIZE_POOL_EDEN_HEAP(size_pool);
struct heap_page *end_page = eden_heap->free_pages;
if (end_page) {
while (end_page->free_next) end_page = end_page->free_next;
end_page->free_next = eden_heap->pooled_pages;
}
else {
eden_heap->free_pages = eden_heap->pooled_pages;
}
eden_heap->pooled_pages = NULL;
objspace->rincgc.pooled_slots = 0;
}
#endif
#endif
}
heap_pages_expand_sorted(objspace);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0);
gc_mode_transition(objspace, gc_mode_none);
}
static int
gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
struct heap_page *sweep_page = heap->sweeping_page;
int unlink_limit = GC_SWEEP_PAGES_FREEABLE_PER_STEP;
#if GC_ENABLE_INCREMENTAL_MARK
int swept_slots = 0;
#if USE_RVARGC
bool need_pool = TRUE;
#else
int need_pool = will_be_incremental_marking(objspace) ? TRUE : FALSE;
#endif
gc_report(2, objspace, "gc_sweep_step (need_pool: %d)\n", need_pool);
#else
gc_report(2, objspace, "gc_sweep_step\n");
#endif
if (sweep_page == NULL) return FALSE;
#if GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_start(objspace);
#endif
do {
RUBY_DEBUG_LOG("sweep_page:%p", (void *)sweep_page);
struct gc_sweep_context ctx = {
.page = sweep_page,
.final_slots = 0,
.freed_slots = 0,
.empty_slots = 0,
};
gc_sweep_page(objspace, heap, &ctx);
int free_slots = ctx.freed_slots + ctx.empty_slots;
heap->sweeping_page = ccan_list_next(&heap->pages, sweep_page, page_node);
if (sweep_page->final_slots + free_slots == sweep_page->total_slots &&
heap_pages_freeable_pages > 0 &&
unlink_limit > 0) {
heap_pages_freeable_pages--;
unlink_limit--;
/* there are no living objects -> move this page to tomb heap */
heap_unlink_page(objspace, heap, sweep_page);
heap_add_page(objspace, size_pool, SIZE_POOL_TOMB_HEAP(size_pool), sweep_page);
}
else if (free_slots > 0) {
#if USE_RVARGC
size_pool->freed_slots += ctx.freed_slots;
size_pool->empty_slots += ctx.empty_slots;
#endif
#if GC_ENABLE_INCREMENTAL_MARK
if (need_pool) {
heap_add_poolpage(objspace, heap, sweep_page);
need_pool = FALSE;
}
else {
heap_add_freepage(heap, sweep_page);
swept_slots += free_slots;
if (swept_slots > GC_INCREMENTAL_SWEEP_SLOT_COUNT) {
break;
}
}
#else
heap_add_freepage(heap, sweep_page);
break;
#endif
}
else {
sweep_page->free_next = NULL;
}
} while ((sweep_page = heap->sweeping_page));
if (!heap->sweeping_page) {
#if USE_RVARGC
gc_sweep_finish_size_pool(objspace, size_pool);
#endif
if (!has_sweeping_pages(objspace)) {
gc_sweep_finish(objspace);
}
}
#if GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_stop(objspace);
#endif
return heap->free_pages != NULL;
}
static void
gc_sweep_rest(rb_objspace_t *objspace)
{
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
while (SIZE_POOL_EDEN_HEAP(size_pool)->sweeping_page) {
gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
}
}
}
static void
gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *sweep_size_pool, rb_heap_t *heap)
{
GC_ASSERT(dont_gc_val() == FALSE);
if (!GC_ENABLE_LAZY_SWEEP) return;
unsigned int lock_lev;
gc_enter(objspace, gc_enter_event_sweep_continue, &lock_lev);
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
if (!gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool))) {
#if USE_RVARGC
/* sweep_size_pool requires a free slot but sweeping did not yield any. */
if (size_pool == sweep_size_pool) {
if (size_pool->allocatable_pages > 0) {
heap_increment(objspace, size_pool, heap);
}
else {
/* Not allowed to create a new page so finish sweeping. */
gc_sweep_rest(objspace);
break;
}
}
#endif
}
}
gc_exit(objspace, gc_enter_event_sweep_continue, &lock_lev);
}
static void
invalidate_moved_plane(rb_objspace_t *objspace, struct heap_page *page, uintptr_t p, bits_t bitset)
{
if (bitset) {
do {
if (bitset & 1) {
VALUE forwarding_object = (VALUE)p;
VALUE object;
if (BUILTIN_TYPE(forwarding_object) == T_MOVED) {
GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object));
GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(forwarding_object), forwarding_object));
CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object);
object = rb_gc_location(forwarding_object);
gc_move(objspace, object, forwarding_object, GET_HEAP_PAGE(object)->slot_size, page->slot_size);
/* forwarding_object is now our actual object, and "object"
* is the free slot for the original page */
struct heap_page *orig_page = GET_HEAP_PAGE(object);
orig_page->free_slots++;
heap_page_add_freeobj(objspace, orig_page, object);
GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(forwarding_object), forwarding_object));
GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_MOVED);
GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_NONE);
}
}
p += BASE_SLOT_SIZE;
bitset >>= 1;
} while (bitset);
}
}
static void
invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page)
{
int i;
bits_t *mark_bits, *pin_bits;
bits_t bitset;
mark_bits = page->mark_bits;
pin_bits = page->pinned_bits;
uintptr_t p = page->start;
// Skip out of range slots at the head of the page
bitset = pin_bits[0] & ~mark_bits[0];
bitset >>= NUM_IN_PAGE(p);
invalidate_moved_plane(objspace, page, p, bitset);
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
for (i=1; i < HEAP_PAGE_BITMAP_LIMIT; i++) {
/* Moved objects are pinned but never marked. We reuse the pin bits
* to indicate there is a moved object in this slot. */
bitset = pin_bits[i] & ~mark_bits[i];
invalidate_moved_plane(objspace, page, p, bitset);
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
}
}
static void
gc_compact_start(rb_objspace_t *objspace)
{
struct heap_page *page = NULL;
gc_mode_transition(objspace, gc_mode_compacting);
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(&size_pools[i]);
ccan_list_for_each(&heap->pages, page, page_node) {
page->flags.before_sweep = TRUE;
}
heap->compact_cursor = ccan_list_tail(&heap->pages, struct heap_page, page_node);
heap->compact_cursor_index = 0;
}
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->moved_objects = objspace->rcompactor.total_moved;
}
memset(objspace->rcompactor.considered_count_table, 0, T_MASK * sizeof(size_t));
memset(objspace->rcompactor.moved_count_table, 0, T_MASK * sizeof(size_t));
memset(objspace->rcompactor.moved_up_count_table, 0, T_MASK * sizeof(size_t));
memset(objspace->rcompactor.moved_down_count_table, 0, T_MASK * sizeof(size_t));
/* Set up read barrier for pages containing MOVED objects */
install_handlers();
}
static void gc_sweep_compact(rb_objspace_t *objspace);
static void
gc_sweep(rb_objspace_t *objspace)
{
const unsigned int immediate_sweep = objspace->flags.immediate_sweep;
gc_report(1, objspace, "gc_sweep: immediate: %d\n", immediate_sweep);
gc_sweep_start(objspace);
if (objspace->flags.during_compacting) {
gc_sweep_compact(objspace);
}
if (immediate_sweep) {
#if !GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_start(objspace);
#endif
gc_sweep_rest(objspace);
#if !GC_ENABLE_LAZY_SWEEP
gc_prof_sweep_timer_stop(objspace);
#endif
}
else {
/* Sweep every size pool. */
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
}
}
#if !USE_RVARGC
rb_size_pool_t *size_pool = &size_pools[0];
gc_heap_prepare_minimum_pages(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
#endif
}
/* Marking - Marking stack */
static stack_chunk_t *
stack_chunk_alloc(void)
{
stack_chunk_t *res;
res = malloc(sizeof(stack_chunk_t));
if (!res)
rb_memerror();
return res;
}
static inline int
is_mark_stack_empty(mark_stack_t *stack)
{
return stack->chunk == NULL;
}
static size_t
mark_stack_size(mark_stack_t *stack)
{
size_t size = stack->index;
stack_chunk_t *chunk = stack->chunk ? stack->chunk->next : NULL;
while (chunk) {
size += stack->limit;
chunk = chunk->next;
}
return size;
}
static void
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
{
chunk->next = stack->cache;
stack->cache = chunk;
stack->cache_size++;
}
static void
shrink_stack_chunk_cache(mark_stack_t *stack)
{
stack_chunk_t *chunk;
if (stack->unused_cache_size > (stack->cache_size/2)) {
chunk = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
free(chunk);
}
stack->unused_cache_size = stack->cache_size;
}
static void
push_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *next;
GC_ASSERT(stack->index == stack->limit);
if (stack->cache_size > 0) {
next = stack->cache;
stack->cache = stack->cache->next;
stack->cache_size--;
if (stack->unused_cache_size > stack->cache_size)
stack->unused_cache_size = stack->cache_size;
}
else {
next = stack_chunk_alloc();
}
next->next = stack->chunk;
stack->chunk = next;
stack->index = 0;
}
static void
pop_mark_stack_chunk(mark_stack_t *stack)
{
stack_chunk_t *prev;
prev = stack->chunk->next;
GC_ASSERT(stack->index == 0);
add_stack_chunk_cache(stack, stack->chunk);
stack->chunk = prev;
stack->index = stack->limit;
}
static void
mark_stack_chunk_list_free(stack_chunk_t *chunk)
{
stack_chunk_t *next = NULL;
while (chunk != NULL) {
next = chunk->next;
free(chunk);
chunk = next;
}
}
static void
free_stack_chunks(mark_stack_t *stack)
{
mark_stack_chunk_list_free(stack->chunk);
}
static void
mark_stack_free_cache(mark_stack_t *stack)
{
mark_stack_chunk_list_free(stack->cache);
stack->cache_size = 0;
stack->unused_cache_size = 0;
}
static void
push_mark_stack(mark_stack_t *stack, VALUE data)
{
VALUE obj = data;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
case T_CLASS:
case T_MODULE:
case T_FLOAT:
case T_STRING:
case T_REGEXP:
case T_ARRAY:
case T_HASH:
case T_STRUCT:
case T_BIGNUM:
case T_FILE:
case T_DATA:
case T_MATCH:
case T_COMPLEX:
case T_RATIONAL:
case T_TRUE:
case T_FALSE:
case T_SYMBOL:
case T_IMEMO:
case T_ICLASS:
if (stack->index == stack->limit) {
push_mark_stack_chunk(stack);
}
stack->chunk->data[stack->index++] = data;
return;
case T_NONE:
case T_NIL:
case T_FIXNUM:
case T_MOVED:
case T_ZOMBIE:
case T_UNDEF:
case T_MASK:
rb_bug("push_mark_stack() called for broken object");
break;
case T_NODE:
UNEXPECTED_NODE(push_mark_stack);
break;
}
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
BUILTIN_TYPE(obj), (void *)data,
is_pointer_to_heap(&rb_objspace, (void *)data) ? "corrupted object" : "non object");
}
static int
pop_mark_stack(mark_stack_t *stack, VALUE *data)
{
if (is_mark_stack_empty(stack)) {
return FALSE;
}
if (stack->index == 1) {
*data = stack->chunk->data[--stack->index];
pop_mark_stack_chunk(stack);
}
else {
*data = stack->chunk->data[--stack->index];
}
return TRUE;
}
static void
init_mark_stack(mark_stack_t *stack)
{
int i;
MEMZERO(stack, mark_stack_t, 1);
stack->index = stack->limit = STACK_CHUNK_SIZE;
for (i=0; i < 4; i++) {
add_stack_chunk_cache(stack, stack_chunk_alloc());
}
stack->unused_cache_size = stack->cache_size;
}
/* Marking */
#define SET_STACK_END SET_MACHINE_STACK_END(&ec->machine.stack_end)
#define STACK_START (ec->machine.stack_start)
#define STACK_END (ec->machine.stack_end)
#define STACK_LEVEL_MAX (ec->machine.stack_maxsize/sizeof(VALUE))
#if STACK_GROW_DIRECTION < 0
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
#else
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
: (size_t)(STACK_END - STACK_START + 1))
#endif
#if !STACK_GROW_DIRECTION
int ruby_stack_grow_direction;
int
ruby_get_stack_grow_direction(volatile VALUE *addr)
{
VALUE *end;
SET_MACHINE_STACK_END(&end);
if (end > addr) return ruby_stack_grow_direction = 1;
return ruby_stack_grow_direction = -1;
}
#endif
size_t
ruby_stack_length(VALUE **p)
{
rb_execution_context_t *ec = GET_EC();
SET_STACK_END;
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
return STACK_LENGTH;
}
#define PREVENT_STACK_OVERFLOW 1
#ifndef PREVENT_STACK_OVERFLOW
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
# define PREVENT_STACK_OVERFLOW 1
#else
# define PREVENT_STACK_OVERFLOW 0
#endif
#endif
#if PREVENT_STACK_OVERFLOW && !defined(__EMSCRIPTEN__)
static int
stack_check(rb_execution_context_t *ec, int water_mark)
{
SET_STACK_END;
size_t length = STACK_LENGTH;
size_t maximum_length = STACK_LEVEL_MAX - water_mark;
return length > maximum_length;
}
#else
#define stack_check(ec, water_mark) FALSE
#endif
#define STACKFRAME_FOR_CALL_CFUNC 2048
MJIT_FUNC_EXPORTED int
rb_ec_stack_check(rb_execution_context_t *ec)
{
return stack_check(ec, STACKFRAME_FOR_CALL_CFUNC);
}
int
ruby_stack_check(void)
{
return stack_check(GET_EC(), STACKFRAME_FOR_CALL_CFUNC);
}
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(static void each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE)));
static void
each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE))
{
VALUE v;
while (n--) {
v = *x;
cb(objspace, v);
x++;
}
}
static void
gc_mark_locations(rb_objspace_t *objspace, const VALUE *start, const VALUE *end, void (*cb)(rb_objspace_t *, VALUE))
{
long n;
if (end <= start) return;
n = end - start;
each_location(objspace, start, n, cb);
}
void
rb_gc_mark_locations(const VALUE *start, const VALUE *end)
{
gc_mark_locations(&rb_objspace, start, end, gc_mark_maybe);
}
static void
gc_mark_values(rb_objspace_t *objspace, long n, const VALUE *values)
{
long i;
for (i=0; i<n; i++) {
gc_mark(objspace, values[i]);
}
}
void
rb_gc_mark_values(long n, const VALUE *values)
{
long i;
rb_objspace_t *objspace = &rb_objspace;
for (i=0; i<n; i++) {
gc_mark_and_pin(objspace, values[i]);
}
}
static void
gc_mark_stack_values(rb_objspace_t *objspace, long n, const VALUE *values)
{
long i;
for (i=0; i<n; i++) {
if (is_markable_object(objspace, values[i])) {
gc_mark_and_pin(objspace, values[i]);
}
}
}
void
rb_gc_mark_vm_stack_values(long n, const VALUE *values)
{
rb_objspace_t *objspace = &rb_objspace;
gc_mark_stack_values(objspace, n, values);
}
static int
mark_value(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, (VALUE)value);
return ST_CONTINUE;
}
static int
mark_value_pin(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark_and_pin(objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_tbl_no_pin(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl || tbl->num_entries == 0) return;
st_foreach(tbl, mark_value, (st_data_t)objspace);
}
static void
mark_tbl(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl || tbl->num_entries == 0) return;
st_foreach(tbl, mark_value_pin, (st_data_t)objspace);
}
static int
mark_key(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark_and_pin(objspace, (VALUE)key);
return ST_CONTINUE;
}
static void
mark_set(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_key, (st_data_t)objspace);
}
static int
pin_value(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark_and_pin(objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_finalizer_tbl(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl) return;
st_foreach(tbl, pin_value, (st_data_t)objspace);
}
void
rb_mark_set(st_table *tbl)
{
mark_set(&rb_objspace, tbl);
}
static int
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, (VALUE)key);
gc_mark(objspace, (VALUE)value);
return ST_CONTINUE;
}
static int
pin_key_pin_value(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark_and_pin(objspace, (VALUE)key);
gc_mark_and_pin(objspace, (VALUE)value);
return ST_CONTINUE;
}
static int
pin_key_mark_value(st_data_t key, st_data_t value, st_data_t data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark_and_pin(objspace, (VALUE)key);
gc_mark(objspace, (VALUE)value);
return ST_CONTINUE;
}
static void
mark_hash(rb_objspace_t *objspace, VALUE hash)
{
if (rb_hash_compare_by_id_p(hash)) {
rb_hash_stlike_foreach(hash, pin_key_mark_value, (st_data_t)objspace);
}
else {
rb_hash_stlike_foreach(hash, mark_keyvalue, (st_data_t)objspace);
}
if (RHASH_AR_TABLE_P(hash)) {
if (LIKELY(during_gc) && RHASH_TRANSIENT_P(hash)) {
rb_transient_heap_mark(hash, RHASH_AR_TABLE(hash));
}
}
else {
VM_ASSERT(!RHASH_TRANSIENT_P(hash));
}
gc_mark(objspace, RHASH(hash)->ifnone);
}
static void
mark_st(rb_objspace_t *objspace, st_table *tbl)
{
if (!tbl) return;
st_foreach(tbl, pin_key_pin_value, (st_data_t)objspace);
}
void
rb_mark_hash(st_table *tbl)
{
mark_st(&rb_objspace, tbl);
}
static void
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
{
const rb_method_definition_t *def = me->def;
gc_mark(objspace, me->owner);
gc_mark(objspace, me->defined_class);
if (def) {
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
if (def->body.iseq.iseqptr) gc_mark(objspace, (VALUE)def->body.iseq.iseqptr);
gc_mark(objspace, (VALUE)def->body.iseq.cref);
if (def->iseq_overload && me->defined_class) {
// it can be a key of "overloaded_cme" table
// so it should be pinned.
gc_mark_and_pin(objspace, (VALUE)me);
}
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
gc_mark(objspace, def->body.attr.location);
break;
case VM_METHOD_TYPE_BMETHOD:
gc_mark(objspace, def->body.bmethod.proc);
if (def->body.bmethod.hooks) rb_hook_list_mark(def->body.bmethod.hooks);
break;
case VM_METHOD_TYPE_ALIAS:
gc_mark(objspace, (VALUE)def->body.alias.original_me);
return;
case VM_METHOD_TYPE_REFINED:
gc_mark(objspace, (VALUE)def->body.refined.orig_me);
gc_mark(objspace, (VALUE)def->body.refined.owner);
break;
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_OPTIMIZED:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
break;
}
}
}
static enum rb_id_table_iterator_result
mark_method_entry_i(VALUE me, void *data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
gc_mark(objspace, me);
return ID_TABLE_CONTINUE;
}
static void
mark_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
{
if (tbl) {
rb_id_table_foreach_values(tbl, mark_method_entry_i, objspace);
}
}
static enum rb_id_table_iterator_result
mark_const_entry_i(VALUE value, void *data)
{
const rb_const_entry_t *ce = (const rb_const_entry_t *)value;
rb_objspace_t *objspace = data;
gc_mark(objspace, ce->value);
gc_mark(objspace, ce->file);
return ID_TABLE_CONTINUE;
}
static void
mark_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
{
if (!tbl) return;
rb_id_table_foreach_values(tbl, mark_const_entry_i, objspace);
}
#if STACK_GROW_DIRECTION < 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
#elif STACK_GROW_DIRECTION > 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
#else
#define GET_STACK_BOUNDS(start, end, appendix) \
((STACK_END < STACK_START) ? \
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
#endif
static void each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec,
const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE));
#if defined(__wasm__)
static VALUE *rb_stack_range_tmp[2];
static void
rb_mark_locations(void *begin, void *end)
{
rb_stack_range_tmp[0] = begin;
rb_stack_range_tmp[1] = end;
}
# if defined(__EMSCRIPTEN__)
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec)
{
emscripten_scan_stack(rb_mark_locations);
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
emscripten_scan_registers(rb_mark_locations);
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
}
# else // use Asyncify version
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec)
{
rb_wasm_scan_stack(rb_mark_locations);
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
rb_wasm_scan_locals(rb_mark_locations);
each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe);
}
# endif
#else // !defined(__wasm__)
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec)
{
union {
rb_jmp_buf j;
VALUE v[sizeof(rb_jmp_buf) / (sizeof(VALUE))];
} save_regs_gc_mark;
VALUE *stack_start, *stack_end;
FLUSH_REGISTER_WINDOWS;
memset(&save_regs_gc_mark, 0, sizeof(save_regs_gc_mark));
/* This assumes that all registers are saved into the jmp_buf (and stack) */
rb_setjmp(save_regs_gc_mark.j);
/* SET_STACK_END must be called in this function because
* the stack frame of this function may contain
* callee save registers and they should be marked. */
SET_STACK_END;
GET_STACK_BOUNDS(stack_start, stack_end, 1);
each_location(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v), gc_mark_maybe);
each_stack_location(objspace, ec, stack_start, stack_end, gc_mark_maybe);
}
#endif
static void
each_machine_stack_value(const rb_execution_context_t *ec, void (*cb)(rb_objspace_t *, VALUE))
{
rb_objspace_t *objspace = &rb_objspace;
VALUE *stack_start, *stack_end;
GET_STACK_BOUNDS(stack_start, stack_end, 0);
each_stack_location(objspace, ec, stack_start, stack_end, cb);
}
void
rb_gc_mark_machine_stack(const rb_execution_context_t *ec)
{
each_machine_stack_value(ec, gc_mark_maybe);
}
static void
each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec,
const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE))
{
gc_mark_locations(objspace, stack_start, stack_end, cb);
#if defined(__mc68000__)
gc_mark_locations(objspace,
(VALUE*)((char*)stack_start + 2),
(VALUE*)((char*)stack_end - 2), cb);
#endif
}
void
rb_mark_tbl(st_table *tbl)
{
mark_tbl(&rb_objspace, tbl);
}
void
rb_mark_tbl_no_pin(st_table *tbl)
{
mark_tbl_no_pin(&rb_objspace, tbl);
}
static void
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj)
{
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
if (is_pointer_to_heap(objspace, (void *)obj)) {
void *ptr = asan_unpoison_object_temporary(obj);
/* Garbage can live on the stack, so do not mark or pin */
switch (BUILTIN_TYPE(obj)) {
case T_ZOMBIE:
case T_NONE:
break;
default:
gc_mark_and_pin(objspace, obj);
break;
}
if (ptr) {
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
asan_poison_object(obj);
}
}
}
void
rb_gc_mark_maybe(VALUE obj)
{
gc_mark_maybe(&rb_objspace, obj);
}
static inline int
gc_mark_set(rb_objspace_t *objspace, VALUE obj)
{
ASSERT_vm_locking();
if (RVALUE_MARKED(obj)) return 0;
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj);
return 1;
}
static int
gc_remember_unprotected(rb_objspace_t *objspace, VALUE obj)
{
struct heap_page *page = GET_HEAP_PAGE(obj);
bits_t *uncollectible_bits = &page->uncollectible_bits[0];
if (!MARKED_IN_BITMAP(uncollectible_bits, obj)) {
page->flags.has_uncollectible_shady_objects = TRUE;
MARK_IN_BITMAP(uncollectible_bits, obj);
objspace->rgengc.uncollectible_wb_unprotected_objects++;
#if RGENGC_PROFILE > 0
objspace->profile.total_remembered_shady_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
#endif
return TRUE;
}
else {
return FALSE;
}
}
static void
rgengc_check_relation(rb_objspace_t *objspace, VALUE obj)
{
const VALUE old_parent = objspace->rgengc.parent_object;
if (old_parent) { /* parent object is old */
if (RVALUE_WB_UNPROTECTED(obj)) {
if (gc_remember_unprotected(objspace, obj)) {
gc_report(2, objspace, "relation: (O->S) %s -> %s\n", obj_info(old_parent), obj_info(obj));
}
}
else {
if (!RVALUE_OLD_P(obj)) {
if (RVALUE_MARKED(obj)) {
/* An object pointed from an OLD object should be OLD. */
gc_report(2, objspace, "relation: (O->unmarked Y) %s -> %s\n", obj_info(old_parent), obj_info(obj));
RVALUE_AGE_SET_OLD(objspace, obj);
if (is_incremental_marking(objspace)) {
if (!RVALUE_MARKING(obj)) {
gc_grey(objspace, obj);
}
}
else {
rgengc_remember(objspace, obj);
}
}
else {
gc_report(2, objspace, "relation: (O->Y) %s -> %s\n", obj_info(old_parent), obj_info(obj));
RVALUE_AGE_SET_CANDIDATE(objspace, obj);
}
}
}
}
GC_ASSERT(old_parent == objspace->rgengc.parent_object);
}
static void
gc_grey(rb_objspace_t *objspace, VALUE obj)
{
#if RGENGC_CHECK_MODE
if (RVALUE_MARKED(obj) == FALSE) rb_bug("gc_grey: %s is not marked.", obj_info(obj));
if (RVALUE_MARKING(obj) == TRUE) rb_bug("gc_grey: %s is marking/remembered.", obj_info(obj));
#endif
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) {
MARK_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
}
#endif
push_mark_stack(&objspace->mark_stack, obj);
}
static void
gc_aging(rb_objspace_t *objspace, VALUE obj)
{
struct heap_page *page = GET_HEAP_PAGE(obj);
GC_ASSERT(RVALUE_MARKING(obj) == FALSE);
check_rvalue_consistency(obj);
if (!RVALUE_PAGE_WB_UNPROTECTED(page, obj)) {
if (!RVALUE_OLD_P(obj)) {
gc_report(3, objspace, "gc_aging: YOUNG: %s\n", obj_info(obj));
RVALUE_AGE_INC(objspace, obj);
}
else if (is_full_marking(objspace)) {
GC_ASSERT(RVALUE_PAGE_UNCOLLECTIBLE(page, obj) == FALSE);
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, page, obj);
}
}
check_rvalue_consistency(obj);
objspace->marked_slots++;
}
NOINLINE(static void gc_mark_ptr(rb_objspace_t *objspace, VALUE obj));
static void reachable_objects_from_callback(VALUE obj);
static void
gc_mark_ptr(rb_objspace_t *objspace, VALUE obj)
{
if (LIKELY(during_gc)) {
rgengc_check_relation(objspace, obj);
if (!gc_mark_set(objspace, obj)) return; /* already marked */
if (0) { // for debug GC marking miss
if (objspace->rgengc.parent_object) {
RUBY_DEBUG_LOG("%p (%s) parent:%p (%s)",
(void *)obj, obj_type_name(obj),
(void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object));
}
else {
RUBY_DEBUG_LOG("%p (%s)", (void *)obj, obj_type_name(obj));
}
}
if (UNLIKELY(RB_TYPE_P(obj, T_NONE))) {
rp(obj);
rb_bug("try to mark T_NONE object"); /* check here will help debugging */
}
gc_aging(objspace, obj);
gc_grey(objspace, obj);
}
else {
reachable_objects_from_callback(obj);
}
}
static inline void
gc_pin(rb_objspace_t *objspace, VALUE obj)
{
GC_ASSERT(is_markable_object(objspace, obj));
if (UNLIKELY(objspace->flags.during_compacting)) {
if (LIKELY(during_gc)) {
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj);
}
}
}
static inline void
gc_mark_and_pin(rb_objspace_t *objspace, VALUE obj)
{
if (!is_markable_object(objspace, obj)) return;
gc_pin(objspace, obj);
gc_mark_ptr(objspace, obj);
}
static inline void
gc_mark(rb_objspace_t *objspace, VALUE obj)
{
if (!is_markable_object(objspace, obj)) return;
gc_mark_ptr(objspace, obj);
}
void
rb_gc_mark_movable(VALUE ptr)
{
gc_mark(&rb_objspace, ptr);
}
void
rb_gc_mark(VALUE ptr)
{
gc_mark_and_pin(&rb_objspace, ptr);
}
/* CAUTION: THIS FUNCTION ENABLE *ONLY BEFORE* SWEEPING.
* This function is only for GC_END_MARK timing.
*/
int
rb_objspace_marked_object_p(VALUE obj)
{
return RVALUE_MARKED(obj) ? TRUE : FALSE;
}
static inline void
gc_mark_set_parent(rb_objspace_t *objspace, VALUE obj)
{
if (RVALUE_OLD_P(obj)) {
objspace->rgengc.parent_object = obj;
}
else {
objspace->rgengc.parent_object = Qfalse;
}
}
static void
gc_mark_imemo(rb_objspace_t *objspace, VALUE obj)
{
switch (imemo_type(obj)) {
case imemo_env:
{
const rb_env_t *env = (const rb_env_t *)obj;
if (LIKELY(env->ep)) {
// just after newobj() can be NULL here.
GC_ASSERT(env->ep[VM_ENV_DATA_INDEX_ENV] == obj);
GC_ASSERT(VM_ENV_ESCAPED_P(env->ep));
gc_mark_values(objspace, (long)env->env_size, env->env);
VM_ENV_FLAGS_SET(env->ep, VM_ENV_FLAG_WB_REQUIRED);
gc_mark(objspace, (VALUE)rb_vm_env_prev_env(env));
gc_mark(objspace, (VALUE)env->iseq);
}
}
return;
case imemo_cref:
gc_mark(objspace, RANY(obj)->as.imemo.cref.klass_or_self);
gc_mark(objspace, (VALUE)RANY(obj)->as.imemo.cref.next);
gc_mark(objspace, RANY(obj)->as.imemo.cref.refinements);
return;
case imemo_svar:
gc_mark(objspace, RANY(obj)->as.imemo.svar.cref_or_me);
gc_mark(objspace, RANY(obj)->as.imemo.svar.lastline);
gc_mark(objspace, RANY(obj)->as.imemo.svar.backref);
gc_mark(objspace, RANY(obj)->as.imemo.svar.others);
return;
case imemo_throw_data:
gc_mark(objspace, RANY(obj)->as.imemo.throw_data.throw_obj);
return;
case imemo_ifunc:
gc_mark_maybe(objspace, (VALUE)RANY(obj)->as.imemo.ifunc.data);
return;
case imemo_memo:
gc_mark(objspace, RANY(obj)->as.imemo.memo.v1);
gc_mark(objspace, RANY(obj)->as.imemo.memo.v2);
gc_mark_maybe(objspace, RANY(obj)->as.imemo.memo.u3.value);
return;
case imemo_ment:
mark_method_entry(objspace, &RANY(obj)->as.imemo.ment);
return;
case imemo_iseq:
rb_iseq_mark((rb_iseq_t *)obj);
return;
case imemo_tmpbuf:
{
const rb_imemo_tmpbuf_t *m = &RANY(obj)->as.imemo.alloc;
do {
rb_gc_mark_locations(m->ptr, m->ptr + m->cnt);
} while ((m = m->next) != NULL);
}
return;
case imemo_ast:
rb_ast_mark(&RANY(obj)->as.imemo.ast);
return;
case imemo_parser_strterm:
rb_strterm_mark(obj);
return;
case imemo_callinfo:
return;
case imemo_callcache:
{
const struct rb_callcache *cc = (const struct rb_callcache *)obj;
// should not mark klass here
gc_mark(objspace, (VALUE)vm_cc_cme(cc));
}
return;
case imemo_constcache:
{
const struct iseq_inline_constant_cache_entry *ice = (struct iseq_inline_constant_cache_entry *)obj;
gc_mark(objspace, ice->value);
}
return;
#if VM_CHECK_MODE > 0
default:
VM_UNREACHABLE(gc_mark_imemo);
#endif
}
}
static void
gc_mark_children(rb_objspace_t *objspace, VALUE obj)
{
register RVALUE *any = RANY(obj);
gc_mark_set_parent(objspace, obj);
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(obj);
}
switch (BUILTIN_TYPE(obj)) {
case T_FLOAT:
case T_BIGNUM:
case T_SYMBOL:
/* Not immediates, but does not have references and singleton
* class */
return;
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
UNEXPECTED_NODE(rb_gc_mark);
break;
case T_IMEMO:
gc_mark_imemo(objspace, obj);
return;
default:
break;
}
gc_mark(objspace, any->as.basic.klass);
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
if (RCLASS_SUPER(obj)) {
gc_mark(objspace, RCLASS_SUPER(obj));
}
if (!RCLASS_EXT(obj)) break;
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
cc_table_mark(objspace, obj);
mark_tbl_no_pin(objspace, RCLASS_IV_TBL(obj));
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
break;
case T_ICLASS:
if (RICLASS_OWNS_M_TBL_P(obj)) {
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
}
if (RCLASS_SUPER(obj)) {
gc_mark(objspace, RCLASS_SUPER(obj));
}
if (!RCLASS_EXT(obj)) break;
if (RCLASS_INCLUDER(obj)) {
gc_mark(objspace, RCLASS_INCLUDER(obj));
}
mark_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
cc_table_mark(objspace, obj);
break;
case T_ARRAY:
if (ARY_SHARED_P(obj)) {
VALUE root = ARY_SHARED_ROOT(obj);
gc_mark(objspace, root);
}
else {
long i, len = RARRAY_LEN(obj);
const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(obj);
for (i=0; i < len; i++) {
gc_mark(objspace, ptr[i]);
}
if (LIKELY(during_gc)) {
if (!ARY_EMBED_P(obj) && RARRAY_TRANSIENT_P(obj)) {
rb_transient_heap_mark(obj, ptr);
}
}
}
break;
case T_HASH:
mark_hash(objspace, obj);
break;
case T_STRING:
if (STR_SHARED_P(obj)) {
gc_mark(objspace, any->as.string.as.heap.aux.shared);
}
break;
case T_DATA:
{
void *const ptr = DATA_PTR(obj);
if (ptr) {
RUBY_DATA_FUNC mark_func = RTYPEDDATA_P(obj) ?
any->as.typeddata.type->function.dmark :
any->as.data.dmark;
if (mark_func) (*mark_func)(ptr);
}
}
break;
case T_OBJECT:
{
const VALUE * const ptr = ROBJECT_IVPTR(obj);
uint32_t i, len = ROBJECT_NUMIV(obj);
for (i = 0; i < len; i++) {
gc_mark(objspace, ptr[i]);
}
if (LIKELY(during_gc) &&
ROBJ_TRANSIENT_P(obj)) {
rb_transient_heap_mark(obj, ptr);
}
}
break;
case T_FILE:
if (any->as.file.fptr) {
gc_mark(objspace, any->as.file.fptr->self);
gc_mark(objspace, any->as.file.fptr->pathv);
gc_mark(objspace, any->as.file.fptr->tied_io_for_writing);
gc_mark(objspace, any->as.file.fptr->writeconv_asciicompat);
gc_mark(objspace, any->as.file.fptr->writeconv_pre_ecopts);
gc_mark(objspace, any->as.file.fptr->encs.ecopts);
gc_mark(objspace, any->as.file.fptr->write_lock);
gc_mark(objspace, any->as.file.fptr->timeout);
}
break;
case T_REGEXP:
gc_mark(objspace, any->as.regexp.src);
break;
case T_MATCH:
gc_mark(objspace, any->as.match.regexp);
if (any->as.match.str) {
gc_mark(objspace, any->as.match.str);
}
break;
case T_RATIONAL:
gc_mark(objspace, any->as.rational.num);
gc_mark(objspace, any->as.rational.den);
break;
case T_COMPLEX:
gc_mark(objspace, any->as.complex.real);
gc_mark(objspace, any->as.complex.imag);
break;
case T_STRUCT:
{
long i;
const long len = RSTRUCT_LEN(obj);
const VALUE * const ptr = RSTRUCT_CONST_PTR(obj);
for (i=0; i<len; i++) {
gc_mark(objspace, ptr[i]);
}
if (LIKELY(during_gc) &&
RSTRUCT_TRANSIENT_P(obj)) {
rb_transient_heap_mark(obj, ptr);
}
}
break;
default:
#if GC_DEBUG
rb_gcdebug_print_obj_condition((VALUE)obj);
#endif
if (BUILTIN_TYPE(obj) == T_MOVED) rb_bug("rb_gc_mark(): %p is T_MOVED", (void *)obj);
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
BUILTIN_TYPE(obj), (void *)any,
is_pointer_to_heap(objspace, any) ? "corrupted object" : "non object");
}
}
/**
* incremental: 0 -> not incremental (do all)
* incremental: n -> mark at most `n' objects
*/
static inline int
gc_mark_stacked_objects(rb_objspace_t *objspace, int incremental, size_t count)
{
mark_stack_t *mstack = &objspace->mark_stack;
VALUE obj;
#if GC_ENABLE_INCREMENTAL_MARK
size_t marked_slots_at_the_beginning = objspace->marked_slots;
size_t popped_count = 0;
#endif
while (pop_mark_stack(mstack, &obj)) {
if (obj == Qundef) continue; /* skip */
if (RGENGC_CHECK_MODE && !RVALUE_MARKED(obj)) {
rb_bug("gc_mark_stacked_objects: %s is not marked.", obj_info(obj));
}
gc_mark_children(objspace, obj);
#if GC_ENABLE_INCREMENTAL_MARK
if (incremental) {
if (RGENGC_CHECK_MODE && !RVALUE_MARKING(obj)) {
rb_bug("gc_mark_stacked_objects: incremental, but marking bit is 0");
}
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
popped_count++;
if (popped_count + (objspace->marked_slots - marked_slots_at_the_beginning) > count) {
break;
}
}
else {
/* just ignore marking bits */
}
#endif
}
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace);
if (is_mark_stack_empty(mstack)) {
shrink_stack_chunk_cache(mstack);
return TRUE;
}
else {
return FALSE;
}
}
static int
gc_mark_stacked_objects_incremental(rb_objspace_t *objspace, size_t count)
{
return gc_mark_stacked_objects(objspace, TRUE, count);
}
static int
gc_mark_stacked_objects_all(rb_objspace_t *objspace)
{
return gc_mark_stacked_objects(objspace, FALSE, 0);
}
#if PRINT_ROOT_TICKS
#define MAX_TICKS 0x100
static tick_t mark_ticks[MAX_TICKS];
static const char *mark_ticks_categories[MAX_TICKS];
static void
show_mark_ticks(void)
{
int i;
fprintf(stderr, "mark ticks result:\n");
for (i=0; i<MAX_TICKS; i++) {
const char *category = mark_ticks_categories[i];
if (category) {
fprintf(stderr, "%s\t%8lu\n", category, (unsigned long)mark_ticks[i]);
}
else {
break;
}
}
}
#endif /* PRINT_ROOT_TICKS */
static void
gc_mark_roots(rb_objspace_t *objspace, const char **categoryp)
{
struct gc_list *list;
rb_execution_context_t *ec = GET_EC();
rb_vm_t *vm = rb_ec_vm_ptr(ec);
#if PRINT_ROOT_TICKS
tick_t start_tick = tick();
int tick_count = 0;
const char *prev_category = 0;
if (mark_ticks_categories[0] == 0) {
atexit(show_mark_ticks);
}
#endif
if (categoryp) *categoryp = "xxx";
objspace->rgengc.parent_object = Qfalse;
#if PRINT_ROOT_TICKS
#define MARK_CHECKPOINT_PRINT_TICK(category) do { \
if (prev_category) { \
tick_t t = tick(); \
mark_ticks[tick_count] = t - start_tick; \
mark_ticks_categories[tick_count] = prev_category; \
tick_count++; \
} \
prev_category = category; \
start_tick = tick(); \
} while (0)
#else /* PRINT_ROOT_TICKS */
#define MARK_CHECKPOINT_PRINT_TICK(category)
#endif
#define MARK_CHECKPOINT(category) do { \
if (categoryp) *categoryp = category; \
MARK_CHECKPOINT_PRINT_TICK(category); \
} while (0)
MARK_CHECKPOINT("vm");
SET_STACK_END;
rb_vm_mark(vm);
if (vm->self) gc_mark(objspace, vm->self);
MARK_CHECKPOINT("finalizers");
mark_finalizer_tbl(objspace, finalizer_table);
MARK_CHECKPOINT("machine_context");
mark_current_machine_context(objspace, ec);
/* mark protected global variables */
MARK_CHECKPOINT("global_list");
for (list = global_list; list; list = list->next) {
gc_mark_maybe(objspace, *list->varptr);
}
MARK_CHECKPOINT("end_proc");
rb_mark_end_proc();
MARK_CHECKPOINT("global_tbl");
rb_gc_mark_global_tbl();
MARK_CHECKPOINT("object_id");
rb_gc_mark(objspace->next_object_id);
mark_tbl_no_pin(objspace, objspace->obj_to_id_tbl); /* Only mark ids */
if (stress_to_class) rb_gc_mark(stress_to_class);
MARK_CHECKPOINT("finish");
#undef MARK_CHECKPOINT
}
#if RGENGC_CHECK_MODE >= 4
#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01)
#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01)
#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1))
struct reflist {
VALUE *list;
int pos;
int size;
};
static struct reflist *
reflist_create(VALUE obj)
{
struct reflist *refs = xmalloc(sizeof(struct reflist));
refs->size = 1;
refs->list = ALLOC_N(VALUE, refs->size);
refs->list[0] = obj;
refs->pos = 1;
return refs;
}
static void
reflist_destruct(struct reflist *refs)
{
xfree(refs->list);
xfree(refs);
}
static void
reflist_add(struct reflist *refs, VALUE obj)
{
if (refs->pos == refs->size) {
refs->size *= 2;
SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2);
}
refs->list[refs->pos++] = obj;
}
static void
reflist_dump(struct reflist *refs)
{
int i;
for (i=0; i<refs->pos; i++) {
VALUE obj = refs->list[i];
if (IS_ROOTSIG(obj)) { /* root */
fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj));
}
else {
fprintf(stderr, "<%s>", obj_info(obj));
}
if (i+1 < refs->pos) fprintf(stderr, ", ");
}
}
static int
reflist_referred_from_machine_context(struct reflist *refs)
{
int i;
for (i=0; i<refs->pos; i++) {
VALUE obj = refs->list[i];
if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1;
}
return 0;
}
struct allrefs {
rb_objspace_t *objspace;
/* a -> obj1
* b -> obj1
* c -> obj1
* c -> obj2
* d -> obj3
* #=> {obj1 => [a, b, c], obj2 => [c, d]}
*/
struct st_table *references;
const char *category;
VALUE root_obj;
mark_stack_t mark_stack;
};
static int
allrefs_add(struct allrefs *data, VALUE obj)
{
struct reflist *refs;
st_data_t r;
if (st_lookup(data->references, obj, &r)) {
refs = (struct reflist *)r;
reflist_add(refs, data->root_obj);
return 0;
}
else {
refs = reflist_create(data->root_obj);
st_insert(data->references, obj, (st_data_t)refs);
return 1;
}
}
static void
allrefs_i(VALUE obj, void *ptr)
{
struct allrefs *data = (struct allrefs *)ptr;
if (allrefs_add(data, obj)) {
push_mark_stack(&data->mark_stack, obj);
}
}
static void
allrefs_roots_i(VALUE obj, void *ptr)
{
struct allrefs *data = (struct allrefs *)ptr;
if (strlen(data->category) == 0) rb_bug("!!!");
data->root_obj = MAKE_ROOTSIG(data->category);
if (allrefs_add(data, obj)) {
push_mark_stack(&data->mark_stack, obj);
}
}
#define PUSH_MARK_FUNC_DATA(v) do { \
struct gc_mark_func_data_struct *prev_mark_func_data = GET_RACTOR()->mfd; \
GET_RACTOR()->mfd = (v);
#define POP_MARK_FUNC_DATA() GET_RACTOR()->mfd = prev_mark_func_data;} while (0)
static st_table *
objspace_allrefs(rb_objspace_t *objspace)
{
struct allrefs data;
struct gc_mark_func_data_struct mfd;
VALUE obj;
int prev_dont_gc = dont_gc_val();
dont_gc_on();
data.objspace = objspace;
data.references = st_init_numtable();
init_mark_stack(&data.mark_stack);
mfd.mark_func = allrefs_roots_i;
mfd.data = &data;
/* traverse root objects */
PUSH_MARK_FUNC_DATA(&mfd);
GET_RACTOR()->mfd = &mfd;
gc_mark_roots(objspace, &data.category);
POP_MARK_FUNC_DATA();
/* traverse rest objects reachable from root objects */
while (pop_mark_stack(&data.mark_stack, &obj)) {
rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data);
}
free_stack_chunks(&data.mark_stack);
dont_gc_set(prev_dont_gc);
return data.references;
}
static int
objspace_allrefs_destruct_i(st_data_t key, st_data_t value, st_data_t ptr)
{
struct reflist *refs = (struct reflist *)value;
reflist_destruct(refs);
return ST_CONTINUE;
}
static void
objspace_allrefs_destruct(struct st_table *refs)
{
st_foreach(refs, objspace_allrefs_destruct_i, 0);
st_free_table(refs);
}
#if RGENGC_CHECK_MODE >= 5
static int
allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr)
{
VALUE obj = (VALUE)k;
struct reflist *refs = (struct reflist *)v;
fprintf(stderr, "[allrefs_dump_i] %s <- ", obj_info(obj));
reflist_dump(refs);
fprintf(stderr, "\n");
return ST_CONTINUE;
}
static void
allrefs_dump(rb_objspace_t *objspace)
{
VALUE size = objspace->rgengc.allrefs_table->num_entries;
fprintf(stderr, "[all refs] (size: %"PRIuVALUE")\n", size);
st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0);
}
#endif
static int
gc_check_after_marks_i(st_data_t k, st_data_t v, st_data_t ptr)
{
VALUE obj = k;
struct reflist *refs = (struct reflist *)v;
rb_objspace_t *objspace = (rb_objspace_t *)ptr;
/* object should be marked or oldgen */
if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) {
fprintf(stderr, "gc_check_after_marks_i: %s is not marked and not oldgen.\n", obj_info(obj));
fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj);
reflist_dump(refs);
if (reflist_referred_from_machine_context(refs)) {
fprintf(stderr, " (marked from machine stack).\n");
/* marked from machine context can be false positive */
}
else {
objspace->rgengc.error_count++;
fprintf(stderr, "\n");
}
}
return ST_CONTINUE;
}
static void
gc_marks_check(rb_objspace_t *objspace, st_foreach_callback_func *checker_func, const char *checker_name)
{
size_t saved_malloc_increase = objspace->malloc_params.increase;
#if RGENGC_ESTIMATE_OLDMALLOC
size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase;
#endif
VALUE already_disabled = rb_objspace_gc_disable(objspace);
objspace->rgengc.allrefs_table = objspace_allrefs(objspace);
if (checker_func) {
st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace);
}
if (objspace->rgengc.error_count > 0) {
#if RGENGC_CHECK_MODE >= 5
allrefs_dump(objspace);
#endif
if (checker_name) rb_bug("%s: GC has problem.", checker_name);
}
objspace_allrefs_destruct(objspace->rgengc.allrefs_table);
objspace->rgengc.allrefs_table = 0;
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
objspace->malloc_params.increase = saved_malloc_increase;
#if RGENGC_ESTIMATE_OLDMALLOC
objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase;
#endif
}
#endif /* RGENGC_CHECK_MODE >= 4 */
struct verify_internal_consistency_struct {
rb_objspace_t *objspace;
int err_count;
size_t live_object_count;
size_t zombie_object_count;
VALUE parent;
size_t old_object_count;
size_t remembered_shady_count;
};
static void
check_generation_i(const VALUE child, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
const VALUE parent = data->parent;
if (RGENGC_CHECK_MODE) GC_ASSERT(RVALUE_OLD_P(parent));
if (!RVALUE_OLD_P(child)) {
if (!RVALUE_REMEMBERED(parent) &&
!RVALUE_REMEMBERED(child) &&
!RVALUE_UNCOLLECTIBLE(child)) {
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (O->Y) %s -> %s\n", obj_info(parent), obj_info(child));
data->err_count++;
}
}
}
static void
check_color_i(const VALUE child, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
const VALUE parent = data->parent;
if (!RVALUE_WB_UNPROTECTED(parent) && RVALUE_WHITE_P(child)) {
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (B->W) - %s -> %s\n",
obj_info(parent), obj_info(child));
data->err_count++;
}
}
static void
check_children_i(const VALUE child, void *ptr)
{
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr;
if (check_rvalue_consistency_force(child, FALSE) != 0) {
fprintf(stderr, "check_children_i: %s has error (referenced from %s)",
obj_info(child), obj_info(data->parent));
rb_print_backtrace(); /* C backtrace will help to debug */
data->err_count++;
}
}
static int
verify_internal_consistency_i(void *page_start, void *page_end, size_t stride,
struct verify_internal_consistency_struct *data)
{
VALUE obj;
rb_objspace_t *objspace = data->objspace;
for (obj = (VALUE)page_start; obj != (VALUE)page_end; obj += stride) {
void *poisoned = asan_unpoison_object_temporary(obj);
if (is_live_object(objspace, obj)) {
/* count objects */
data->live_object_count++;
data->parent = obj;
/* Normally, we don't expect T_MOVED objects to be in the heap.
* But they can stay alive on the stack, */
if (!gc_object_moved_p(objspace, obj)) {
/* moved slots don't have children */
rb_objspace_reachable_objects_from(obj, check_children_i, (void *)data);
}
/* check health of children */
if (RVALUE_OLD_P(obj)) data->old_object_count++;
if (RVALUE_WB_UNPROTECTED(obj) && RVALUE_UNCOLLECTIBLE(obj)) data->remembered_shady_count++;
if (!is_marking(objspace) && RVALUE_OLD_P(obj)) {
/* reachable objects from an oldgen object should be old or (young with remember) */
data->parent = obj;
rb_objspace_reachable_objects_from(obj, check_generation_i, (void *)data);
}
if (is_incremental_marking(objspace)) {
if (RVALUE_BLACK_P(obj)) {
/* reachable objects from black objects should be black or grey objects */
data->parent = obj;
rb_objspace_reachable_objects_from(obj, check_color_i, (void *)data);
}
}
}
else {
if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
GC_ASSERT((RBASIC(obj)->flags & ~FL_SEEN_OBJ_ID) == T_ZOMBIE);
data->zombie_object_count++;
}
}
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
asan_poison_object(obj);
}
}
return 0;
}
static int
gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
{
unsigned int has_remembered_shady = FALSE;
unsigned int has_remembered_old = FALSE;
int remembered_old_objects = 0;
int free_objects = 0;
int zombie_objects = 0;
short slot_size = page->slot_size;
uintptr_t start = (uintptr_t)page->start;
uintptr_t end = start + page->total_slots * slot_size;
for (uintptr_t ptr = start; ptr < end; ptr += slot_size) {
VALUE val = (VALUE)ptr;
void *poisoned = asan_unpoison_object_temporary(val);
enum ruby_value_type type = BUILTIN_TYPE(val);
if (type == T_NONE) free_objects++;
if (type == T_ZOMBIE) zombie_objects++;
if (RVALUE_PAGE_UNCOLLECTIBLE(page, val) && RVALUE_PAGE_WB_UNPROTECTED(page, val)) {
has_remembered_shady = TRUE;
}
if (RVALUE_PAGE_MARKING(page, val)) {
has_remembered_old = TRUE;
remembered_old_objects++;
}
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(val) == T_NONE);
asan_poison_object(val);
}
}
if (!is_incremental_marking(objspace) &&
page->flags.has_remembered_objects == FALSE && has_remembered_old == TRUE) {
for (uintptr_t ptr = start; ptr < end; ptr += slot_size) {
VALUE val = (VALUE)ptr;
if (RVALUE_PAGE_MARKING(page, val)) {
fprintf(stderr, "marking -> %s\n", obj_info(val));
}
}
rb_bug("page %p's has_remembered_objects should be false, but there are remembered old objects (%d). %s",
(void *)page, remembered_old_objects, obj ? obj_info(obj) : "");
}
if (page->flags.has_uncollectible_shady_objects == FALSE && has_remembered_shady == TRUE) {
rb_bug("page %p's has_remembered_shady should be false, but there are remembered shady objects. %s",
(void *)page, obj ? obj_info(obj) : "");
}
if (0) {
/* free_slots may not equal to free_objects */
if (page->free_slots != free_objects) {
rb_bug("page %p's free_slots should be %d, but %d\n", (void *)page, page->free_slots, free_objects);
}
}
if (page->final_slots != zombie_objects) {
rb_bug("page %p's final_slots should be %d, but %d\n", (void *)page, page->final_slots, zombie_objects);
}
return remembered_old_objects;
}
static int
gc_verify_heap_pages_(rb_objspace_t *objspace, struct ccan_list_head *head)
{
int remembered_old_objects = 0;
struct heap_page *page = 0;
ccan_list_for_each(head, page, page_node) {
asan_unlock_freelist(page);
RVALUE *p = page->freelist;
while (p) {
VALUE vp = (VALUE)p;
VALUE prev = vp;
asan_unpoison_object(vp, false);
if (BUILTIN_TYPE(vp) != T_NONE) {
fprintf(stderr, "freelist slot expected to be T_NONE but was: %s\n", obj_info(vp));
}
p = p->as.free.next;
asan_poison_object(prev);
}
asan_lock_freelist(page);
if (page->flags.has_remembered_objects == FALSE) {
remembered_old_objects += gc_verify_heap_page(objspace, page, Qfalse);
}
}
return remembered_old_objects;
}
static int
gc_verify_heap_pages(rb_objspace_t *objspace)
{
int remembered_old_objects = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
remembered_old_objects += gc_verify_heap_pages_(objspace, &(SIZE_POOL_EDEN_HEAP(&size_pools[i])->pages));
remembered_old_objects += gc_verify_heap_pages_(objspace, &(SIZE_POOL_TOMB_HEAP(&size_pools[i])->pages));
}
return remembered_old_objects;
}
/*
* call-seq:
* GC.verify_internal_consistency -> nil
*
* Verify internal consistency.
*
* This method is implementation specific.
* Now this method checks generational consistency
* if RGenGC is supported.
*/
static VALUE
gc_verify_internal_consistency_m(VALUE dummy)
{
gc_verify_internal_consistency(&rb_objspace);
return Qnil;
}
static void
gc_verify_internal_consistency_(rb_objspace_t *objspace)
{
struct verify_internal_consistency_struct data = {0};
data.objspace = objspace;
gc_report(5, objspace, "gc_verify_internal_consistency: start\n");
/* check relations */
for (size_t i = 0; i < heap_allocated_pages; i++) {
struct heap_page *page = heap_pages_sorted[i];
short slot_size = page->slot_size;
uintptr_t start = (uintptr_t)page->start;
uintptr_t end = start + page->total_slots * slot_size;
verify_internal_consistency_i((void *)start, (void *)end, slot_size, &data);
}
if (data.err_count != 0) {
#if RGENGC_CHECK_MODE >= 5
objspace->rgengc.error_count = data.err_count;
gc_marks_check(objspace, NULL, NULL);
allrefs_dump(objspace);
#endif
rb_bug("gc_verify_internal_consistency: found internal inconsistency.");
}
/* check heap_page status */
gc_verify_heap_pages(objspace);
/* check counters */
if (!is_lazy_sweeping(objspace) &&
!finalizing &&
ruby_single_main_ractor != NULL) {
if (objspace_live_slots(objspace) != data.live_object_count) {
fprintf(stderr, "heap_pages_final_slots: %"PRIdSIZE", "
"objspace->profile.total_freed_objects: %"PRIdSIZE"\n",
heap_pages_final_slots, objspace->profile.total_freed_objects);
rb_bug("inconsistent live slot number: expect %"PRIuSIZE", but %"PRIuSIZE".",
objspace_live_slots(objspace), data.live_object_count);
}
}
if (!is_marking(objspace)) {
if (objspace->rgengc.old_objects != data.old_object_count) {
rb_bug("inconsistent old slot number: expect %"PRIuSIZE", but %"PRIuSIZE".",
objspace->rgengc.old_objects, data.old_object_count);
}
if (objspace->rgengc.uncollectible_wb_unprotected_objects != data.remembered_shady_count) {
rb_bug("inconsistent number of wb unprotected objects: expect %"PRIuSIZE", but %"PRIuSIZE".",
objspace->rgengc.uncollectible_wb_unprotected_objects, data.remembered_shady_count);
}
}
if (!finalizing) {
size_t list_count = 0;
{
VALUE z = heap_pages_deferred_final;
while (z) {
list_count++;
z = RZOMBIE(z)->next;
}
}
if (heap_pages_final_slots != data.zombie_object_count ||
heap_pages_final_slots != list_count) {
rb_bug("inconsistent finalizing object count:\n"
" expect %"PRIuSIZE"\n"
" but %"PRIuSIZE" zombies\n"
" heap_pages_deferred_final list has %"PRIuSIZE" items.",
heap_pages_final_slots,
data.zombie_object_count,
list_count);
}
}
gc_report(5, objspace, "gc_verify_internal_consistency: OK\n");
}
static void
gc_verify_internal_consistency(rb_objspace_t *objspace)
{
RB_VM_LOCK_ENTER();
{
rb_vm_barrier(); // stop other ractors
unsigned int prev_during_gc = during_gc;
during_gc = FALSE; // stop gc here
{
gc_verify_internal_consistency_(objspace);
}
during_gc = prev_during_gc;
}
RB_VM_LOCK_LEAVE();
}
void
rb_gc_verify_internal_consistency(void)
{
gc_verify_internal_consistency(&rb_objspace);
}
static VALUE
gc_verify_transient_heap_internal_consistency(VALUE dmy)
{
rb_transient_heap_verify();
return Qnil;
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
heap_move_pooled_pages_to_free_pages(rb_heap_t *heap)
{
if (heap->pooled_pages) {
if (heap->free_pages) {
struct heap_page *free_pages_tail = heap->free_pages;
while (free_pages_tail->free_next) {
free_pages_tail = free_pages_tail->free_next;
}
free_pages_tail->free_next = heap->pooled_pages;
}
else {
heap->free_pages = heap->pooled_pages;
}
heap->pooled_pages = NULL;
}
}
#endif
/* marks */
static void
gc_marks_start(rb_objspace_t *objspace, int full_mark)
{
/* start marking */
gc_report(1, objspace, "gc_marks_start: (%s)\n", full_mark ? "full" : "minor");
gc_mode_transition(objspace, gc_mode_marking);
if (full_mark) {
#if GC_ENABLE_INCREMENTAL_MARK
size_t incremental_marking_steps = (objspace->rincgc.pooled_slots / INCREMENTAL_MARK_STEP_ALLOCATIONS) + 1;
objspace->rincgc.step_slots = (objspace->marked_slots * 2) / incremental_marking_steps;
if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE", "
"objspace->rincgc.pooled_page_num: %"PRIdSIZE", "
"objspace->rincgc.step_slots: %"PRIdSIZE", \n",
objspace->marked_slots, objspace->rincgc.pooled_slots, objspace->rincgc.step_slots);
#endif
objspace->flags.during_minor_gc = FALSE;
if (ruby_enable_autocompact) {
objspace->flags.during_compacting |= TRUE;
}
objspace->profile.major_gc_count++;
objspace->rgengc.uncollectible_wb_unprotected_objects = 0;
objspace->rgengc.old_objects = 0;
objspace->rgengc.last_major_gc = objspace->profile.count;
objspace->marked_slots = 0;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
rgengc_mark_and_rememberset_clear(objspace, heap);
heap_move_pooled_pages_to_free_pages(heap);
}
}
else {
objspace->flags.during_minor_gc = TRUE;
objspace->marked_slots =
objspace->rgengc.old_objects + objspace->rgengc.uncollectible_wb_unprotected_objects; /* uncollectible objects are marked already */
objspace->profile.minor_gc_count++;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rgengc_rememberset_mark(objspace, SIZE_POOL_EDEN_HEAP(&size_pools[i]));
}
}
gc_mark_roots(objspace, NULL);
gc_report(1, objspace, "gc_marks_start: (%s) end, stack in %"PRIdSIZE"\n",
full_mark ? "full" : "minor", mark_stack_size(&objspace->mark_stack));
}
#if GC_ENABLE_INCREMENTAL_MARK
static inline void
gc_marks_wb_unprotected_objects_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bits)
{
if (bits) {
do {
if (bits & 1) {
gc_report(2, objspace, "gc_marks_wb_unprotected_objects: marked shady: %s\n", obj_info((VALUE)p));
GC_ASSERT(RVALUE_WB_UNPROTECTED((VALUE)p));
GC_ASSERT(RVALUE_MARKED((VALUE)p));
gc_mark_children(objspace, (VALUE)p);
}
p += BASE_SLOT_SIZE;
bits >>= 1;
} while (bits);
}
}
static void
gc_marks_wb_unprotected_objects(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = 0;
ccan_list_for_each(&heap->pages, page, page_node) {
bits_t *mark_bits = page->mark_bits;
bits_t *wbun_bits = page->wb_unprotected_bits;
uintptr_t p = page->start;
size_t j;
bits_t bits = mark_bits[0] & wbun_bits[0];
bits >>= NUM_IN_PAGE(p);
gc_marks_wb_unprotected_objects_plane(objspace, p, bits);
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
for (j=1; j<HEAP_PAGE_BITMAP_LIMIT; j++) {
bits_t bits = mark_bits[j] & wbun_bits[j];
gc_marks_wb_unprotected_objects_plane(objspace, p, bits);
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
}
}
gc_mark_stacked_objects_all(objspace);
}
#endif
static void
gc_marks_finish(rb_objspace_t *objspace)
{
#if GC_ENABLE_INCREMENTAL_MARK
/* finish incremental GC */
if (is_incremental_marking(objspace)) {
if (RGENGC_CHECK_MODE && is_mark_stack_empty(&objspace->mark_stack) == 0) {
rb_bug("gc_marks_finish: mark stack is not empty (%"PRIdSIZE").",
mark_stack_size(&objspace->mark_stack));
}
gc_mark_roots(objspace, 0);
while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == false);
#if RGENGC_CHECK_MODE >= 2
if (gc_verify_heap_pages(objspace) != 0) {
rb_bug("gc_marks_finish (incremental): there are remembered old objects.");
}
#endif
objspace->flags.during_incremental_marking = FALSE;
/* check children of all marked wb-unprotected objects */
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
gc_marks_wb_unprotected_objects(objspace, SIZE_POOL_EDEN_HEAP(&size_pools[i]));
}
}
#endif /* GC_ENABLE_INCREMENTAL_MARK */
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(objspace);
#endif
if (is_full_marking(objspace)) {
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */
const double r = gc_params.oldobject_limit_factor;
objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r);
objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r);
}
#if RGENGC_CHECK_MODE >= 4
during_gc = FALSE;
gc_marks_check(objspace, gc_check_after_marks_i, "after_marks");
during_gc = TRUE;
#endif
{
/* decide full GC is needed or not */
size_t total_slots = heap_allocatable_slots(objspace) + heap_eden_total_slots(objspace);
size_t sweep_slots = total_slots - objspace->marked_slots; /* will be swept slots */
size_t max_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_max_ratio);
size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio);
int full_marking = is_full_marking(objspace);
const int r_cnt = GET_VM()->ractor.cnt;
const int r_mul = r_cnt > 8 ? 8 : r_cnt; // upto 8
GC_ASSERT(heap_eden_total_slots(objspace) >= objspace->marked_slots);
/* setup free-able page counts */
if (max_free_slots < gc_params.heap_init_slots * r_mul) {
max_free_slots = gc_params.heap_init_slots * r_mul;
}
if (sweep_slots > max_free_slots) {
heap_pages_freeable_pages = (sweep_slots - max_free_slots) / HEAP_PAGE_OBJ_LIMIT;
}
else {
heap_pages_freeable_pages = 0;
}
/* check free_min */
if (min_free_slots < gc_params.heap_free_slots * r_mul) {
min_free_slots = gc_params.heap_free_slots * r_mul;
}
if (sweep_slots < min_free_slots) {
if (!full_marking) {
if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) {
full_marking = TRUE;
/* do not update last_major_gc, because full marking is not done. */
/* goto increment; */
}
else {
gc_report(1, objspace, "gc_marks_finish: next is full GC!!)\n");
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE;
}
}
#if !USE_RVARGC
if (full_marking) {
/* increment: */
gc_report(1, objspace, "gc_marks_finish: heap_set_increment!!\n");
rb_size_pool_t *size_pool = &size_pools[0];
size_pool_allocatable_pages_set(objspace, size_pool, heap_extend_pages(objspace, size_pool, sweep_slots, total_slots, heap_allocated_pages + heap_allocatable_pages(objspace)));
heap_increment(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
}
#endif
}
if (full_marking) {
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */
const double r = gc_params.oldobject_limit_factor;
objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r);
objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r);
}
if (objspace->rgengc.uncollectible_wb_unprotected_objects > objspace->rgengc.uncollectible_wb_unprotected_objects_limit) {
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_SHADY;
}
if (objspace->rgengc.old_objects > objspace->rgengc.old_objects_limit) {
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDGEN;
}
if (RGENGC_FORCE_MAJOR_GC) {
objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_FORCE;
}
gc_report(1, objspace, "gc_marks_finish (marks %"PRIdSIZE" objects, "
"old %"PRIdSIZE" objects, total %"PRIdSIZE" slots, "
"sweep %"PRIdSIZE" slots, increment: %"PRIdSIZE", next GC: %s)\n",
objspace->marked_slots, objspace->rgengc.old_objects, heap_eden_total_slots(objspace), sweep_slots, heap_allocatable_pages(objspace),
objspace->rgengc.need_major_gc ? "major" : "minor");
}
rb_transient_heap_finish_marking();
rb_ractor_finish_marking();
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0);
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
gc_marks_step(rb_objspace_t *objspace, size_t slots)
{
GC_ASSERT(is_marking(objspace));
if (gc_mark_stacked_objects_incremental(objspace, slots)) {
gc_marks_finish(objspace);
gc_sweep(objspace);
}
if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE"\n", objspace->marked_slots);
}
#endif
static bool
gc_compact_heap_cursors_met_p(rb_heap_t *heap)
{
return heap->sweeping_page == heap->compact_cursor;
}
static rb_size_pool_t *
gc_compact_destination_pool(rb_objspace_t *objspace, rb_size_pool_t *src_pool, VALUE src)
{
size_t obj_size;
switch (BUILTIN_TYPE(src)) {
case T_ARRAY:
obj_size = rb_ary_size_as_embedded(src);
break;
case T_OBJECT:
obj_size = rb_obj_embedded_size(ROBJECT_NUMIV(src));
break;
case T_STRING:
obj_size = rb_str_size_as_embedded(src);
break;
default:
return src_pool;
}
if (rb_gc_size_allocatable_p(obj_size)){
return &size_pools[size_pool_idx_for_size(obj_size)];
}
else {
return &size_pools[0];
}
}
static bool
gc_compact_move(rb_objspace_t *objspace, rb_heap_t *heap, rb_size_pool_t *size_pool, VALUE src)
{
GC_ASSERT(BUILTIN_TYPE(src) != T_MOVED);
rb_heap_t *dheap = SIZE_POOL_EDEN_HEAP(gc_compact_destination_pool(objspace, size_pool, src));
if (gc_compact_heap_cursors_met_p(dheap)) {
return dheap != heap;
}
while (!try_move(objspace, dheap, dheap->free_pages, src)) {
struct gc_sweep_context ctx = {
.page = dheap->sweeping_page,
.final_slots = 0,
.freed_slots = 0,
.empty_slots = 0,
};
/* The page of src could be partially compacted, so it may contain
* T_MOVED. Sweeping a page may read objects on this page, so we
* need to lock the page. */
lock_page_body(objspace, GET_PAGE_BODY(src));
gc_sweep_page(objspace, dheap, &ctx);
unlock_page_body(objspace, GET_PAGE_BODY(src));
if (dheap->sweeping_page->free_slots > 0) {
heap_add_freepage(dheap, dheap->sweeping_page);
};
dheap->sweeping_page = ccan_list_next(&dheap->pages, dheap->sweeping_page, page_node);
if (gc_compact_heap_cursors_met_p(dheap)) {
return false;
}
}
return true;
}
static bool
gc_compact_plane(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct heap_page *page)
{
short slot_size = page->slot_size;
short slot_bits = slot_size / BASE_SLOT_SIZE;
GC_ASSERT(slot_bits > 0);
do {
VALUE vp = (VALUE)p;
GC_ASSERT(vp % sizeof(RVALUE) == 0);
if (bitset & 1) {
objspace->rcompactor.considered_count_table[BUILTIN_TYPE(vp)]++;
if (!gc_compact_move(objspace, heap, size_pool, vp)) {
//the cursors met. bubble up
return false;
}
}
p += slot_size;
bitset >>= slot_bits;
} while (bitset);
return true;
}
// Iterate up all the objects in page, moving them to where they want to go
static bool
gc_compact_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page)
{
GC_ASSERT(page == heap->compact_cursor);
bits_t *mark_bits, *pin_bits;
bits_t bitset;
uintptr_t p = page->start;
mark_bits = page->mark_bits;
pin_bits = page->pinned_bits;
// objects that can be moved are marked and not pinned
bitset = (mark_bits[0] & ~pin_bits[0]);
bitset >>= NUM_IN_PAGE(p);
if (bitset) {
if (!gc_compact_plane(objspace, size_pool, heap, (uintptr_t)p, bitset, page))
return false;
}
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
for (int j = 1; j < HEAP_PAGE_BITMAP_LIMIT; j++) {
bitset = (mark_bits[j] & ~pin_bits[j]);
if (bitset) {
if (!gc_compact_plane(objspace, size_pool, heap, (uintptr_t)p, bitset, page))
return false;
}
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
}
return true;
}
static bool
gc_compact_all_compacted_p(rb_objspace_t *objspace)
{
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
if (heap->total_pages > 0 &&
!gc_compact_heap_cursors_met_p(heap)) {
return false;
}
}
return true;
}
static void
gc_sweep_compact(rb_objspace_t *objspace)
{
gc_compact_start(objspace);
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(objspace);
#endif
while (!gc_compact_all_compacted_p(objspace)) {
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
if (gc_compact_heap_cursors_met_p(heap)) {
continue;
}
struct heap_page *start_page = heap->compact_cursor;
if (!gc_compact_page(objspace, size_pool, heap, start_page)) {
lock_page_body(objspace, GET_PAGE_BODY(start_page->start));
continue;
}
// If we get here, we've finished moving all objects on the compact_cursor page
// So we can lock it and move the cursor on to the next one.
lock_page_body(objspace, GET_PAGE_BODY(start_page->start));
heap->compact_cursor = ccan_list_prev(&heap->pages, heap->compact_cursor, page_node);
}
}
gc_compact_finish(objspace);
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(objspace);
#endif
}
static void
gc_marks_rest(rb_objspace_t *objspace)
{
gc_report(1, objspace, "gc_marks_rest\n");
#if GC_ENABLE_INCREMENTAL_MARK
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
SIZE_POOL_EDEN_HEAP(&size_pools[i])->pooled_pages = NULL;
}
#endif
if (is_incremental_marking(objspace)) {
while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == FALSE);
}
else {
gc_mark_stacked_objects_all(objspace);
}
gc_marks_finish(objspace);
/* move to sweep */
gc_sweep(objspace);
}
static void
gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
GC_ASSERT(dont_gc_val() == FALSE);
#if GC_ENABLE_INCREMENTAL_MARK
unsigned int lock_lev;
gc_enter(objspace, gc_enter_event_mark_continue, &lock_lev);
if (heap->free_pages) {
gc_report(2, objspace, "gc_marks_continue: has pooled pages");
gc_marks_step(objspace, objspace->rincgc.step_slots);
}
else {
gc_report(2, objspace, "gc_marks_continue: no more pooled pages (stack depth: %"PRIdSIZE").\n",
mark_stack_size(&objspace->mark_stack));
gc_marks_rest(objspace);
}
gc_exit(objspace, gc_enter_event_mark_continue, &lock_lev);
#endif
}
static void
gc_marks(rb_objspace_t *objspace, int full_mark)
{
gc_prof_mark_timer_start(objspace);
/* setup marking */
gc_marks_start(objspace, full_mark);
if (!is_incremental_marking(objspace)) {
gc_marks_rest(objspace);
}
#if RGENGC_PROFILE > 0
if (gc_prof_record(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->old_objects = objspace->rgengc.old_objects;
}
#endif
gc_prof_mark_timer_stop(objspace);
}
/* RGENGC */
static void
gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
{
if (level <= RGENGC_DEBUG) {
char buf[1024];
FILE *out = stderr;
va_list args;
const char *status = " ";
if (during_gc) {
status = is_full_marking(objspace) ? "+" : "-";
}
else {
if (is_lazy_sweeping(objspace)) {
status = "S";
}
if (is_incremental_marking(objspace)) {
status = "M";
}
}
va_start(args, fmt);
vsnprintf(buf, 1024, fmt, args);
va_end(args);
fprintf(out, "%s|", status);
fputs(buf, out);
}
}
/* bit operations */
static int
rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj)
{
return RVALUE_REMEMBERED(obj);
}
static int
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
{
struct heap_page *page = GET_HEAP_PAGE(obj);
bits_t *bits = &page->marking_bits[0];
GC_ASSERT(!is_incremental_marking(objspace));
if (MARKED_IN_BITMAP(bits, obj)) {
return FALSE;
}
else {
page->flags.has_remembered_objects = TRUE;
MARK_IN_BITMAP(bits, obj);
return TRUE;
}
}
/* wb, etc */
/* return FALSE if already remembered */
static int
rgengc_remember(rb_objspace_t *objspace, VALUE obj)
{
gc_report(6, objspace, "rgengc_remember: %s %s\n", obj_info(obj),
rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now");
check_rvalue_consistency(obj);
if (RGENGC_CHECK_MODE) {
if (RVALUE_WB_UNPROTECTED(obj)) rb_bug("rgengc_remember: %s is not wb protected.", obj_info(obj));
}
#if RGENGC_PROFILE > 0
if (!rgengc_remembered(objspace, obj)) {
if (RVALUE_WB_UNPROTECTED(obj) == 0) {
objspace->profile.total_remembered_normal_object_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
#endif
}
}
#endif /* RGENGC_PROFILE > 0 */
return rgengc_remembersetbits_set(objspace, obj);
}
static int
rgengc_remembered_sweep(rb_objspace_t *objspace, VALUE obj)
{
int result = rgengc_remembersetbits_get(objspace, obj);
check_rvalue_consistency(obj);
return result;
}
static int
rgengc_remembered(rb_objspace_t *objspace, VALUE obj)
{
gc_report(6, objspace, "rgengc_remembered: %s\n", obj_info(obj));
return rgengc_remembered_sweep(objspace, obj);
}
#ifndef PROFILE_REMEMBERSET_MARK
#define PROFILE_REMEMBERSET_MARK 0
#endif
static inline void
rgengc_rememberset_mark_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bitset)
{
if (bitset) {
do {
if (bitset & 1) {
VALUE obj = (VALUE)p;
gc_report(2, objspace, "rgengc_rememberset_mark: mark %s\n", obj_info(obj));
GC_ASSERT(RVALUE_UNCOLLECTIBLE(obj));
GC_ASSERT(RVALUE_OLD_P(obj) || RVALUE_WB_UNPROTECTED(obj));
gc_mark_children(objspace, obj);
}
p += BASE_SLOT_SIZE;
bitset >>= 1;
} while (bitset);
}
}
static void
rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap)
{
size_t j;
struct heap_page *page = 0;
#if PROFILE_REMEMBERSET_MARK
int has_old = 0, has_shady = 0, has_both = 0, skip = 0;
#endif
gc_report(1, objspace, "rgengc_rememberset_mark: start\n");
ccan_list_for_each(&heap->pages, page, page_node) {
if (page->flags.has_remembered_objects | page->flags.has_uncollectible_shady_objects) {
uintptr_t p = page->start;
bits_t bitset, bits[HEAP_PAGE_BITMAP_LIMIT];
bits_t *marking_bits = page->marking_bits;
bits_t *uncollectible_bits = page->uncollectible_bits;
bits_t *wb_unprotected_bits = page->wb_unprotected_bits;
#if PROFILE_REMEMBERSET_MARK
if (page->flags.has_remembered_objects && page->flags.has_uncollectible_shady_objects) has_both++;
else if (page->flags.has_remembered_objects) has_old++;
else if (page->flags.has_uncollectible_shady_objects) has_shady++;
#endif
for (j=0; j<HEAP_PAGE_BITMAP_LIMIT; j++) {
bits[j] = marking_bits[j] | (uncollectible_bits[j] & wb_unprotected_bits[j]);
marking_bits[j] = 0;
}
page->flags.has_remembered_objects = FALSE;
bitset = bits[0];
bitset >>= NUM_IN_PAGE(p);
rgengc_rememberset_mark_plane(objspace, p, bitset);
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
for (j=1; j < HEAP_PAGE_BITMAP_LIMIT; j++) {
bitset = bits[j];
rgengc_rememberset_mark_plane(objspace, p, bitset);
p += BITS_BITLENGTH * BASE_SLOT_SIZE;
}
}
#if PROFILE_REMEMBERSET_MARK
else {
skip++;
}
#endif
}
#if PROFILE_REMEMBERSET_MARK
fprintf(stderr, "%d\t%d\t%d\t%d\n", has_both, has_old, has_shady, skip);
#endif
gc_report(1, objspace, "rgengc_rememberset_mark: finished\n");
}
static void
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap)
{
struct heap_page *page = 0;
ccan_list_for_each(&heap->pages, page, page_node) {
memset(&page->mark_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
memset(&page->uncollectible_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
memset(&page->marking_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
memset(&page->pinned_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
page->flags.has_uncollectible_shady_objects = FALSE;
page->flags.has_remembered_objects = FALSE;
}
}
/* RGENGC: APIs */
NOINLINE(static void gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace));
static void
gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace)
{
if (RGENGC_CHECK_MODE) {
if (!RVALUE_OLD_P(a)) rb_bug("gc_writebarrier_generational: %s is not an old object.", obj_info(a));
if ( RVALUE_OLD_P(b)) rb_bug("gc_writebarrier_generational: %s is an old object.", obj_info(b));
if (is_incremental_marking(objspace)) rb_bug("gc_writebarrier_generational: called while incremental marking: %s -> %s", obj_info(a), obj_info(b));
}
#if 1
/* mark `a' and remember (default behavior) */
if (!rgengc_remembered(objspace, a)) {
RB_VM_LOCK_ENTER_NO_BARRIER();
{
rgengc_remember(objspace, a);
}
RB_VM_LOCK_LEAVE_NO_BARRIER();
gc_report(1, objspace, "gc_writebarrier_generational: %s (remembered) -> %s\n", obj_info(a), obj_info(b));
}
#else
/* mark `b' and remember */
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(b), b);
if (RVALUE_WB_UNPROTECTED(b)) {
gc_remember_unprotected(objspace, b);
}
else {
RVALUE_AGE_SET_OLD(objspace, b);
rgengc_remember(objspace, b);
}
gc_report(1, objspace, "gc_writebarrier_generational: %s -> %s (remembered)\n", obj_info(a), obj_info(b));
#endif
check_rvalue_consistency(a);
check_rvalue_consistency(b);
}
#if GC_ENABLE_INCREMENTAL_MARK
static void
gc_mark_from(rb_objspace_t *objspace, VALUE obj, VALUE parent)
{
gc_mark_set_parent(objspace, parent);
rgengc_check_relation(objspace, obj);
if (gc_mark_set(objspace, obj) == FALSE) return;
gc_aging(objspace, obj);
gc_grey(objspace, obj);
}
NOINLINE(static void gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace));
static void
gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace)
{
gc_report(2, objspace, "gc_writebarrier_incremental: [LG] %p -> %s\n", (void *)a, obj_info(b));
if (RVALUE_BLACK_P(a)) {
if (RVALUE_WHITE_P(b)) {
if (!RVALUE_WB_UNPROTECTED(a)) {
gc_report(2, objspace, "gc_writebarrier_incremental: [IN] %p -> %s\n", (void *)a, obj_info(b));
gc_mark_from(objspace, b, a);
}
}
else if (RVALUE_OLD_P(a) && !RVALUE_OLD_P(b)) {
if (!RVALUE_WB_UNPROTECTED(b)) {
gc_report(1, objspace, "gc_writebarrier_incremental: [GN] %p -> %s\n", (void *)a, obj_info(b));
RVALUE_AGE_SET_OLD(objspace, b);
if (RVALUE_BLACK_P(b)) {
gc_grey(objspace, b);
}
}
else {
gc_report(1, objspace, "gc_writebarrier_incremental: [LL] %p -> %s\n", (void *)a, obj_info(b));
gc_remember_unprotected(objspace, b);
}
}
if (UNLIKELY(objspace->flags.during_compacting)) {
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(b), b);
}
}
}
#else
#define gc_writebarrier_incremental(a, b, objspace)
#endif
void
rb_gc_writebarrier(VALUE a, VALUE b)
{
rb_objspace_t *objspace = &rb_objspace;
if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(a)) rb_bug("rb_gc_writebarrier: a is special const");
if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(b)) rb_bug("rb_gc_writebarrier: b is special const");
retry:
if (!is_incremental_marking(objspace)) {
if (!RVALUE_OLD_P(a) || RVALUE_OLD_P(b)) {
// do nothing
}
else {
gc_writebarrier_generational(a, b, objspace);
}
}
else {
bool retry = false;
/* slow path */
RB_VM_LOCK_ENTER_NO_BARRIER();
{
if (is_incremental_marking(objspace)) {
gc_writebarrier_incremental(a, b, objspace);
}
else {
retry = true;
}
}
RB_VM_LOCK_LEAVE_NO_BARRIER();
if (retry) goto retry;
}
return;
}
void
rb_gc_writebarrier_unprotect(VALUE obj)
{
if (RVALUE_WB_UNPROTECTED(obj)) {
return;
}
else {
rb_objspace_t *objspace = &rb_objspace;
gc_report(2, objspace, "rb_gc_writebarrier_unprotect: %s %s\n", obj_info(obj),
rgengc_remembered(objspace, obj) ? " (already remembered)" : "");
RB_VM_LOCK_ENTER_NO_BARRIER();
{
if (RVALUE_OLD_P(obj)) {
gc_report(1, objspace, "rb_gc_writebarrier_unprotect: %s\n", obj_info(obj));
RVALUE_DEMOTE(objspace, obj);
gc_mark_set(objspace, obj);
gc_remember_unprotected(objspace, obj);
#if RGENGC_PROFILE
objspace->profile.total_shade_operation_count++;
#if RGENGC_PROFILE >= 2
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
#endif /* RGENGC_PROFILE >= 2 */
#endif /* RGENGC_PROFILE */
}
else {
RVALUE_AGE_RESET(obj);
}
RB_DEBUG_COUNTER_INC(obj_wb_unprotect);
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
}
RB_VM_LOCK_LEAVE_NO_BARRIER();
}
}
/*
* remember `obj' if needed.
*/
MJIT_FUNC_EXPORTED void
rb_gc_writebarrier_remember(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
gc_report(1, objspace, "rb_gc_writebarrier_remember: %s\n", obj_info(obj));
if (is_incremental_marking(objspace)) {
if (RVALUE_BLACK_P(obj)) {
gc_grey(objspace, obj);
}
}
else {
if (RVALUE_OLD_P(obj)) {
rgengc_remember(objspace, obj);
}
}
}
static st_table *rgengc_unprotect_logging_table;
static int
rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val, st_data_t arg)
{
fprintf(stderr, "%s\t%"PRIuVALUE"\n", (char *)key, (VALUE)val);
return ST_CONTINUE;
}
static void
rgengc_unprotect_logging_exit_func(void)
{
st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0);
}
void
rb_gc_unprotect_logging(void *objptr, const char *filename, int line)
{
VALUE obj = (VALUE)objptr;
if (rgengc_unprotect_logging_table == 0) {
rgengc_unprotect_logging_table = st_init_strtable();
atexit(rgengc_unprotect_logging_exit_func);
}
if (RVALUE_WB_UNPROTECTED(obj) == 0) {
char buff[0x100];
st_data_t cnt = 1;
char *ptr = buff;
snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_info(obj), filename, line);
if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) {
cnt++;
}
else {
ptr = (strdup)(buff);
if (!ptr) rb_memerror();
}
st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt);
}
}
void
rb_copy_wb_protected_attribute(VALUE dest, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
if (RVALUE_WB_UNPROTECTED(obj) && !RVALUE_WB_UNPROTECTED(dest)) {
if (!RVALUE_OLD_P(dest)) {
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(dest), dest);
RVALUE_AGE_RESET_RAW(dest);
}
else {
RVALUE_DEMOTE(objspace, dest);
}
}
check_rvalue_consistency(dest);
}
/* RGENGC analysis information */
VALUE
rb_obj_rgengc_writebarrier_protected_p(VALUE obj)
{
return RBOOL(!RVALUE_WB_UNPROTECTED(obj));
}
VALUE
rb_obj_rgengc_promoted_p(VALUE obj)
{
return RBOOL(OBJ_PROMOTED(obj));
}
size_t
rb_obj_gc_flags(VALUE obj, ID* flags, size_t max)
{
size_t n = 0;
static ID ID_marked;
static ID ID_wb_protected, ID_old, ID_marking, ID_uncollectible, ID_pinned;
if (!ID_marked) {
#define I(s) ID_##s = rb_intern(#s);
I(marked);
I(wb_protected);
I(old);
I(marking);
I(uncollectible);
I(pinned);
#undef I
}
if (RVALUE_WB_UNPROTECTED(obj) == 0 && n<max) flags[n++] = ID_wb_protected;
if (RVALUE_OLD_P(obj) && n<max) flags[n++] = ID_old;
if (RVALUE_UNCOLLECTIBLE(obj) && n<max) flags[n++] = ID_uncollectible;
if (MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj) && n<max) flags[n++] = ID_marking;
if (MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) && n<max) flags[n++] = ID_marked;
if (MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj) && n<max) flags[n++] = ID_pinned;
return n;
}
/* GC */
void
rb_gc_ractor_newobj_cache_clear(rb_ractor_newobj_cache_t *newobj_cache)
{
#if GC_ENABLE_INCREMENTAL_MARK
newobj_cache->incremental_mark_step_allocated_slots = 0;
#endif
for (size_t size_pool_idx = 0; size_pool_idx < SIZE_POOL_COUNT; size_pool_idx++) {
rb_ractor_newobj_size_pool_cache_t *cache = &newobj_cache->size_pool_caches[size_pool_idx];
struct heap_page *page = cache->using_page;
RVALUE *freelist = cache->freelist;
RUBY_DEBUG_LOG("ractor using_page:%p freelist:%p", (void *)page, (void *)freelist);
heap_page_freelist_append(page, freelist);
cache->using_page = NULL;
cache->freelist = NULL;
}
}
void
rb_gc_force_recycle(VALUE obj)
{
/* no-op */
}
#ifndef MARK_OBJECT_ARY_BUCKET_SIZE
#define MARK_OBJECT_ARY_BUCKET_SIZE 1024
#endif
void
rb_gc_register_mark_object(VALUE obj)
{
if (!is_pointer_to_heap(&rb_objspace, (void *)obj))
return;
RB_VM_LOCK_ENTER();
{
VALUE ary_ary = GET_VM()->mark_object_ary;
VALUE ary = rb_ary_last(0, 0, ary_ary);
if (NIL_P(ary) || RARRAY_LEN(ary) >= MARK_OBJECT_ARY_BUCKET_SIZE) {
ary = rb_ary_hidden_new(MARK_OBJECT_ARY_BUCKET_SIZE);
rb_ary_push(ary_ary, ary);
}
rb_ary_push(ary, obj);
}
RB_VM_LOCK_LEAVE();
}
void
rb_gc_register_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_list;
tmp->varptr = addr;
global_list = tmp;
}
void
rb_gc_unregister_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp = global_list;
if (tmp->varptr == addr) {
global_list = tmp->next;
xfree(tmp);
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
xfree(t);
break;
}
tmp = tmp->next;
}
}
void
rb_global_variable(VALUE *var)
{
rb_gc_register_address(var);
}
#define GC_NOTIFY 0
enum {
gc_stress_no_major,
gc_stress_no_immediate_sweep,
gc_stress_full_mark_after_malloc,
gc_stress_max
};
#define gc_stress_full_mark_after_malloc_p() \
(FIXNUM_P(ruby_gc_stress_mode) && (FIX2LONG(ruby_gc_stress_mode) & (1<<gc_stress_full_mark_after_malloc)))
static void
heap_ready_to_gc(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap)
{
if (!heap->free_pages) {
if (!heap_increment(objspace, size_pool, heap)) {
size_pool_allocatable_pages_set(objspace, size_pool, 1);
heap_increment(objspace, size_pool, heap);
}
}
}
static int
ready_to_gc(rb_objspace_t *objspace)
{
if (dont_gc_val() || during_gc || ruby_disable_gc) {
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
heap_ready_to_gc(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool));
}
return FALSE;
}
else {
return TRUE;
}
}
static void
gc_reset_malloc_info(rb_objspace_t *objspace, bool full_mark)
{
gc_prof_set_malloc_info(objspace);
{
size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
size_t old_limit = malloc_limit;
if (inc > malloc_limit) {
malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor);
if (malloc_limit > gc_params.malloc_limit_max) {
malloc_limit = gc_params.malloc_limit_max;
}
}
else {
malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */
if (malloc_limit < gc_params.malloc_limit_min) {
malloc_limit = gc_params.malloc_limit_min;
}
}
if (0) {
if (old_limit != malloc_limit) {
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n",
rb_gc_count(), old_limit, malloc_limit);
}
else {
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n",
rb_gc_count(), malloc_limit);
}
}
}
/* reset oldmalloc info */
#if RGENGC_ESTIMATE_OLDMALLOC
if (!full_mark) {
if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) {
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDMALLOC;
objspace->rgengc.oldmalloc_increase_limit =
(size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor);
if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max;
}
}
if (0) fprintf(stderr, "%"PRIdSIZE"\t%d\t%"PRIuSIZE"\t%"PRIuSIZE"\t%"PRIdSIZE"\n",
rb_gc_count(),
objspace->rgengc.need_major_gc,
objspace->rgengc.oldmalloc_increase,
objspace->rgengc.oldmalloc_increase_limit,
gc_params.oldmalloc_limit_max);
}
else {
/* major GC */
objspace->rgengc.oldmalloc_increase = 0;
if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) {
objspace->rgengc.oldmalloc_increase_limit =
(size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1));
if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
}
}
}
#endif
}
static int
garbage_collect(rb_objspace_t *objspace, unsigned int reason)
{
int ret;
RB_VM_LOCK_ENTER();
{
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time();
#endif
gc_rest(objspace);
#if GC_PROFILE_MORE_DETAIL
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
#endif
ret = gc_start(objspace, reason);
}
RB_VM_LOCK_LEAVE();
return ret;
}
static int
gc_start(rb_objspace_t *objspace, unsigned int reason)
{
unsigned int do_full_mark = !!(reason & GPR_FLAG_FULL_MARK);
#if GC_ENABLE_INCREMENTAL_MARK
unsigned int immediate_mark = reason & GPR_FLAG_IMMEDIATE_MARK;
#endif
/* reason may be clobbered, later, so keep set immediate_sweep here */
objspace->flags.immediate_sweep = !!(reason & GPR_FLAG_IMMEDIATE_SWEEP);
/* Explicitly enable compaction (GC.compact) */
if (do_full_mark && ruby_enable_autocompact) {
objspace->flags.during_compacting = TRUE;
}
else {
objspace->flags.during_compacting = !!(reason & GPR_FLAG_COMPACT);
}
if (!heap_allocated_pages) return FALSE; /* heap is not ready */
if (!(reason & GPR_FLAG_METHOD) && !ready_to_gc(objspace)) return TRUE; /* GC is not allowed */
GC_ASSERT(gc_mode(objspace) == gc_mode_none);
GC_ASSERT(!is_lazy_sweeping(objspace));
GC_ASSERT(!is_incremental_marking(objspace));
unsigned int lock_lev;
gc_enter(objspace, gc_enter_event_start, &lock_lev);
#if RGENGC_CHECK_MODE >= 2
gc_verify_internal_consistency(objspace);
#endif
if (ruby_gc_stressful) {
int flag = FIXNUM_P(ruby_gc_stress_mode) ? FIX2INT(ruby_gc_stress_mode) : 0;
if ((flag & (1<<gc_stress_no_major)) == 0) {
do_full_mark = TRUE;
}
objspace->flags.immediate_sweep = !(flag & (1<<gc_stress_no_immediate_sweep));
}
else {
if (objspace->rgengc.need_major_gc) {
reason |= objspace->rgengc.need_major_gc;
do_full_mark = TRUE;
}
else if (RGENGC_FORCE_MAJOR_GC) {
reason = GPR_FLAG_MAJOR_BY_FORCE;
do_full_mark = TRUE;
}
objspace->rgengc.need_major_gc = GPR_FLAG_NONE;
}
if (do_full_mark && (reason & GPR_FLAG_MAJOR_MASK) == 0) {
reason |= GPR_FLAG_MAJOR_BY_FORCE; /* GC by CAPI, METHOD, and so on. */
}
#if GC_ENABLE_INCREMENTAL_MARK
if (!GC_ENABLE_INCREMENTAL_MARK || objspace->flags.dont_incremental || immediate_mark) {
objspace->flags.during_incremental_marking = FALSE;
}
else {
objspace->flags.during_incremental_marking = do_full_mark;
}
#endif
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_incremental) {
objspace->flags.immediate_sweep = TRUE;
}
if (objspace->flags.immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP;
gc_report(1, objspace, "gc_start(reason: %x) => %u, %d, %d\n",
reason,
do_full_mark, !is_incremental_marking(objspace), objspace->flags.immediate_sweep);
#if USE_DEBUG_COUNTER
RB_DEBUG_COUNTER_INC(gc_count);
if (reason & GPR_FLAG_MAJOR_MASK) {
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_nofree, reason & GPR_FLAG_MAJOR_BY_NOFREE);
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldgen, reason & GPR_FLAG_MAJOR_BY_OLDGEN);
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_shady, reason & GPR_FLAG_MAJOR_BY_SHADY);
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_force, reason & GPR_FLAG_MAJOR_BY_FORCE);
#if RGENGC_ESTIMATE_OLDMALLOC
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldmalloc, reason & GPR_FLAG_MAJOR_BY_OLDMALLOC);
#endif
}
else {
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_newobj, reason & GPR_FLAG_NEWOBJ);
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_malloc, reason & GPR_FLAG_MALLOC);
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_method, reason & GPR_FLAG_METHOD);
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_capi, reason & GPR_FLAG_CAPI);
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_stress, reason & GPR_FLAG_STRESS);
}
#endif
objspace->profile.count++;
objspace->profile.latest_gc_info = reason;
objspace->profile.total_allocated_objects_at_gc_start = objspace->total_allocated_objects;
objspace->profile.heap_used_at_gc_start = heap_allocated_pages;
gc_prof_setup_new_record(objspace, reason);
gc_reset_malloc_info(objspace, do_full_mark);
rb_transient_heap_start_marking(do_full_mark);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */);
GC_ASSERT(during_gc);
gc_prof_timer_start(objspace);
{
gc_marks(objspace, do_full_mark);
}
gc_prof_timer_stop(objspace);
gc_exit(objspace, gc_enter_event_start, &lock_lev);
return TRUE;
}
static void
gc_rest(rb_objspace_t *objspace)
{
int marking = is_incremental_marking(objspace);
int sweeping = is_lazy_sweeping(objspace);
if (marking || sweeping) {
unsigned int lock_lev;
gc_enter(objspace, gc_enter_event_rest, &lock_lev);
if (RGENGC_CHECK_MODE >= 2) gc_verify_internal_consistency(objspace);
if (is_incremental_marking(objspace)) {
gc_marks_rest(objspace);
}
if (is_lazy_sweeping(objspace)) {
gc_sweep_rest(objspace);
}
gc_exit(objspace, gc_enter_event_rest, &lock_lev);
}
}
struct objspace_and_reason {
rb_objspace_t *objspace;
unsigned int reason;
};
static void
gc_current_status_fill(rb_objspace_t *objspace, char *buff)
{
int i = 0;
if (is_marking(objspace)) {
buff[i++] = 'M';
if (is_full_marking(objspace)) buff[i++] = 'F';
#if GC_ENABLE_INCREMENTAL_MARK
if (is_incremental_marking(objspace)) buff[i++] = 'I';
#endif
}
else if (is_sweeping(objspace)) {
buff[i++] = 'S';
if (is_lazy_sweeping(objspace)) buff[i++] = 'L';
}
else {
buff[i++] = 'N';
}
buff[i] = '\0';
}
static const char *
gc_current_status(rb_objspace_t *objspace)
{
static char buff[0x10];
gc_current_status_fill(objspace, buff);
return buff;
}
#if PRINT_ENTER_EXIT_TICK
static tick_t last_exit_tick;
static tick_t enter_tick;
static int enter_count = 0;
static char last_gc_status[0x10];
static inline void
gc_record(rb_objspace_t *objspace, int direction, const char *event)
{
if (direction == 0) { /* enter */
enter_count++;
enter_tick = tick();
gc_current_status_fill(objspace, last_gc_status);
}
else { /* exit */
tick_t exit_tick = tick();
char current_gc_status[0x10];
gc_current_status_fill(objspace, current_gc_status);
#if 1
/* [last mutator time] [gc time] [event] */
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
enter_tick - last_exit_tick,
exit_tick - enter_tick,
event,
last_gc_status, current_gc_status,
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
last_exit_tick = exit_tick;
#else
/* [enter_tick] [gc time] [event] */
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
enter_tick,
exit_tick - enter_tick,
event,
last_gc_status, current_gc_status,
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
#endif
}
}
#else /* PRINT_ENTER_EXIT_TICK */
static inline void
gc_record(rb_objspace_t *objspace, int direction, const char *event)
{
/* null */
}
#endif /* PRINT_ENTER_EXIT_TICK */
static const char *
gc_enter_event_cstr(enum gc_enter_event event)
{
switch (event) {
case gc_enter_event_start: return "start";
case gc_enter_event_mark_continue: return "mark_continue";
case gc_enter_event_sweep_continue: return "sweep_continue";
case gc_enter_event_rest: return "rest";
case gc_enter_event_finalizer: return "finalizer";
case gc_enter_event_rb_memerror: return "rb_memerror";
}
return NULL;
}
static void
gc_enter_count(enum gc_enter_event event)
{
switch (event) {
case gc_enter_event_start: RB_DEBUG_COUNTER_INC(gc_enter_start); break;
case gc_enter_event_mark_continue: RB_DEBUG_COUNTER_INC(gc_enter_mark_continue); break;
case gc_enter_event_sweep_continue: RB_DEBUG_COUNTER_INC(gc_enter_sweep_continue); break;
case gc_enter_event_rest: RB_DEBUG_COUNTER_INC(gc_enter_rest); break;
case gc_enter_event_finalizer: RB_DEBUG_COUNTER_INC(gc_enter_finalizer); break;
case gc_enter_event_rb_memerror: /* nothing */ break;
}
}
#ifndef MEASURE_GC
#define MEASURE_GC (objspace->flags.measure_gc)
#endif
static bool
gc_enter_event_measure_p(rb_objspace_t *objspace, enum gc_enter_event event)
{
if (!MEASURE_GC) return false;
switch (event) {
case gc_enter_event_start:
case gc_enter_event_mark_continue:
case gc_enter_event_sweep_continue:
case gc_enter_event_rest:
return true;
default:
// case gc_enter_event_finalizer:
// case gc_enter_event_rb_memerror:
return false;
}
}
static bool current_process_time(struct timespec *ts);
static void
gc_enter_clock(rb_objspace_t *objspace, enum gc_enter_event event)
{
if (gc_enter_event_measure_p(objspace, event)) {
if (!current_process_time(&objspace->profile.start_time)) {
objspace->profile.start_time.tv_sec = 0;
objspace->profile.start_time.tv_nsec = 0;
}
}
}
static void
gc_exit_clock(rb_objspace_t *objspace, enum gc_enter_event event)
{
if (gc_enter_event_measure_p(objspace, event)) {
struct timespec end_time;
if ((objspace->profile.start_time.tv_sec > 0 ||
objspace->profile.start_time.tv_nsec > 0) &&
current_process_time(&end_time)) {
if (end_time.tv_sec < objspace->profile.start_time.tv_sec) {
return; // ignore
}
else {
uint64_t ns =
(uint64_t)(end_time.tv_sec - objspace->profile.start_time.tv_sec) * (1000 * 1000 * 1000) +
(end_time.tv_nsec - objspace->profile.start_time.tv_nsec);
objspace->profile.total_time_ns += ns;
}
}
}
}
static inline void
gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev)
{
RB_VM_LOCK_ENTER_LEV(lock_lev);
gc_enter_clock(objspace, event);
switch (event) {
case gc_enter_event_rest:
if (!is_marking(objspace)) break;
// fall through
case gc_enter_event_start:
case gc_enter_event_mark_continue:
// stop other ractors
rb_vm_barrier();
break;
default:
break;
}
gc_enter_count(event);
if (UNLIKELY(during_gc != 0)) rb_bug("during_gc != 0");
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace);
during_gc = TRUE;
RUBY_DEBUG_LOG("%s (%s)",gc_enter_event_cstr(event), gc_current_status(objspace));
gc_report(1, objspace, "gc_enter: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace));
gc_record(objspace, 0, gc_enter_event_cstr(event));
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_ENTER, 0); /* TODO: which parameter should be passed? */
}
static inline void
gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev)
{
GC_ASSERT(during_gc != 0);
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_EXIT, 0); /* TODO: which parameter should be passsed? */
gc_record(objspace, 1, gc_enter_event_cstr(event));
RUBY_DEBUG_LOG("%s (%s)", gc_enter_event_cstr(event), gc_current_status(objspace));
gc_report(1, objspace, "gc_exit: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace));
during_gc = FALSE;
gc_exit_clock(objspace, event);
RB_VM_LOCK_LEAVE_LEV(lock_lev);
#if RGENGC_CHECK_MODE >= 2
if (event == gc_enter_event_sweep_continue && gc_mode(objspace) == gc_mode_none) {
GC_ASSERT(!during_gc);
// sweep finished
gc_verify_internal_consistency(objspace);
}
#endif
}
static void *
gc_with_gvl(void *ptr)
{
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
return (void *)(VALUE)garbage_collect(oar->objspace, oar->reason);
}
static int
garbage_collect_with_gvl(rb_objspace_t *objspace, unsigned int reason)
{
if (dont_gc_val()) return TRUE;
if (ruby_thread_has_gvl_p()) {
return garbage_collect(objspace, reason);
}
else {
if (ruby_native_thread_p()) {
struct objspace_and_reason oar;
oar.objspace = objspace;
oar.reason = reason;
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
static VALUE
gc_start_internal(rb_execution_context_t *ec, VALUE self, VALUE full_mark, VALUE immediate_mark, VALUE immediate_sweep, VALUE compact)
{
rb_objspace_t *objspace = &rb_objspace;
unsigned int reason = (GPR_FLAG_FULL_MARK |
GPR_FLAG_IMMEDIATE_MARK |
GPR_FLAG_IMMEDIATE_SWEEP |
GPR_FLAG_METHOD);
/* For now, compact implies full mark / sweep, so ignore other flags */
if (RTEST(compact)) {
GC_ASSERT(GC_COMPACTION_SUPPORTED);
reason |= GPR_FLAG_COMPACT;
}
else {
if (!RTEST(full_mark)) reason &= ~GPR_FLAG_FULL_MARK;
if (!RTEST(immediate_mark)) reason &= ~GPR_FLAG_IMMEDIATE_MARK;
if (!RTEST(immediate_sweep)) reason &= ~GPR_FLAG_IMMEDIATE_SWEEP;
}
garbage_collect(objspace, reason);
gc_finalize_deferred(objspace);
return Qnil;
}
static int
gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj)
{
GC_ASSERT(!SPECIAL_CONST_P(obj));
switch (BUILTIN_TYPE(obj)) {
case T_NONE:
case T_NIL:
case T_MOVED:
case T_ZOMBIE:
return FALSE;
case T_SYMBOL:
if (DYNAMIC_SYM_P(obj) && (RSYMBOL(obj)->id & ~ID_SCOPE_MASK)) {
return FALSE;
}
/* fall through */
case T_STRING:
case T_OBJECT:
case T_FLOAT:
case T_IMEMO:
case T_ARRAY:
case T_BIGNUM:
case T_ICLASS:
case T_MODULE:
case T_REGEXP:
case T_DATA:
case T_MATCH:
case T_STRUCT:
case T_HASH:
case T_FILE:
case T_COMPLEX:
case T_RATIONAL:
case T_NODE:
case T_CLASS:
if (FL_TEST(obj, FL_FINALIZE)) {
/* The finalizer table is a numtable. It looks up objects by address.
* We can't mark the keys in the finalizer table because that would
* prevent the objects from being collected. This check prevents
* objects that are keys in the finalizer table from being moved
* without directly pinning them. */
if (st_is_member(finalizer_table, obj)) {
return FALSE;
}
}
GC_ASSERT(RVALUE_MARKED(obj));
GC_ASSERT(!RVALUE_PINNED(obj));
return TRUE;
default:
rb_bug("gc_is_moveable_obj: unreachable (%d)", (int)BUILTIN_TYPE(obj));
break;
}
return FALSE;
}
static VALUE
gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size)
{
int marked;
int wb_unprotected;
int uncollectible;
int marking;
RVALUE *dest = (RVALUE *)free;
RVALUE *src = (RVALUE *)scan;
gc_report(4, objspace, "Moving object: %p -> %p\n", (void*)scan, (void *)free);
GC_ASSERT(BUILTIN_TYPE(scan) != T_NONE);
GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(free), free));
/* Save off bits for current object. */
marked = rb_objspace_marked_object_p((VALUE)src);
wb_unprotected = RVALUE_WB_UNPROTECTED((VALUE)src);
uncollectible = RVALUE_UNCOLLECTIBLE((VALUE)src);
marking = RVALUE_MARKING((VALUE)src);
/* Clear bits for eventual T_MOVED */
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)src), (VALUE)src);
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)src), (VALUE)src);
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)src), (VALUE)src);
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)src), (VALUE)src);
if (FL_TEST((VALUE)src, FL_EXIVAR)) {
/* Same deal as below. Generic ivars are held in st tables.
* Resizing the table could cause a GC to happen and we can't allow it */
VALUE already_disabled = rb_gc_disable_no_rest();
rb_mv_generic_ivar((VALUE)src, (VALUE)dest);
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
}
st_data_t srcid = (st_data_t)src, id;
/* If the source object's object_id has been seen, we need to update
* the object to object id mapping. */
if (st_lookup(objspace->obj_to_id_tbl, srcid, &id)) {
gc_report(4, objspace, "Moving object with seen id: %p -> %p\n", (void *)src, (void *)dest);
/* inserting in the st table can cause the GC to run. We need to
* prevent re-entry in to the GC since `gc_move` is running in the GC,
* so temporarily disable the GC around the st table mutation */
VALUE already_disabled = rb_gc_disable_no_rest();
st_delete(objspace->obj_to_id_tbl, &srcid, 0);
st_insert(objspace->obj_to_id_tbl, (st_data_t)dest, id);
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
}
/* Move the object */
memcpy(dest, src, MIN(src_slot_size, slot_size));
memset(src, 0, src_slot_size);
/* Set bits for object in new location */
if (marking) {
MARK_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)dest), (VALUE)dest);
}
else {
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)dest), (VALUE)dest);
}
if (marked) {
MARK_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest);
}
else {
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest);
}
if (wb_unprotected) {
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest);
}
else {
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest);
}
if (uncollectible) {
MARK_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest);
}
else {
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest);
}
/* Assign forwarding address */
src->as.moved.flags = T_MOVED;
src->as.moved.dummy = Qundef;
src->as.moved.destination = (VALUE)dest;
GC_ASSERT(BUILTIN_TYPE((VALUE)dest) != T_NONE);
return (VALUE)src;
}
#if GC_CAN_COMPILE_COMPACTION
static int
compare_free_slots(const void *left, const void *right, void *dummy)
{
struct heap_page *left_page;
struct heap_page *right_page;
left_page = *(struct heap_page * const *)left;
right_page = *(struct heap_page * const *)right;
return left_page->free_slots - right_page->free_slots;
}
static void
gc_sort_heap_by_empty_slots(rb_objspace_t *objspace)
{
for (int j = 0; j < SIZE_POOL_COUNT; j++) {
rb_size_pool_t *size_pool = &size_pools[j];
size_t total_pages = SIZE_POOL_EDEN_HEAP(size_pool)->total_pages;
size_t size = size_mul_or_raise(total_pages, sizeof(struct heap_page *), rb_eRuntimeError);
struct heap_page *page = 0, **page_list = malloc(size);
size_t i = 0;
SIZE_POOL_EDEN_HEAP(size_pool)->free_pages = NULL;
ccan_list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) {
page_list[i++] = page;
GC_ASSERT(page);
}
GC_ASSERT((size_t)i == total_pages);
/* Sort the heap so "filled pages" are first. `heap_add_page` adds to the
* head of the list, so empty pages will end up at the start of the heap */
ruby_qsort(page_list, total_pages, sizeof(struct heap_page *), compare_free_slots, NULL);
/* Reset the eden heap */
ccan_list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages);
for (i = 0; i < total_pages; i++) {
ccan_list_add(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, &page_list[i]->page_node);
if (page_list[i]->free_slots != 0) {
heap_add_freepage(SIZE_POOL_EDEN_HEAP(size_pool), page_list[i]);
}
}
free(page_list);
}
}
#endif
static void
gc_ref_update_array(rb_objspace_t * objspace, VALUE v)
{
if (ARY_SHARED_P(v)) {
#if USE_RVARGC
VALUE old_root = RARRAY(v)->as.heap.aux.shared_root;
#endif
UPDATE_IF_MOVED(objspace, RARRAY(v)->as.heap.aux.shared_root);
#if USE_RVARGC
VALUE new_root = RARRAY(v)->as.heap.aux.shared_root;
// If the root is embedded and its location has changed
if (ARY_EMBED_P(new_root) && new_root != old_root) {
size_t offset = (size_t)(RARRAY(v)->as.heap.ptr - RARRAY(old_root)->as.ary);
GC_ASSERT(RARRAY(v)->as.heap.ptr >= RARRAY(old_root)->as.ary);
RARRAY(v)->as.heap.ptr = RARRAY(new_root)->as.ary + offset;
}
#endif
}
else {
long len = RARRAY_LEN(v);
if (len > 0) {
VALUE *ptr = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(v);
for (long i = 0; i < len; i++) {
UPDATE_IF_MOVED(objspace, ptr[i]);
}
}
#if USE_RVARGC
if ((size_t)GET_HEAP_PAGE(v)->slot_size >= rb_ary_size_as_embedded(v)) {
if (rb_ary_embeddable_p(v)) {
rb_ary_make_embedded(v);
}
}
#endif
}
}
static void
gc_ref_update_object(rb_objspace_t *objspace, VALUE v)
{
VALUE *ptr = ROBJECT_IVPTR(v);
uint32_t numiv = ROBJECT_NUMIV(v);
#if USE_RVARGC
size_t slot_size = rb_gc_obj_slot_size(v);
size_t embed_size = rb_obj_embedded_size(numiv);
if (slot_size >= embed_size && !RB_FL_TEST_RAW(v, ROBJECT_EMBED)) {
// Object can be re-embedded
memcpy(ROBJECT(v)->as.ary, ptr, sizeof(VALUE) * numiv);
RB_FL_SET_RAW(v, ROBJECT_EMBED);
if (ROBJ_TRANSIENT_P(v)) {
ROBJ_TRANSIENT_UNSET(v);
}
else {
xfree(ptr);
}
ptr = ROBJECT(v)->as.ary;
uint32_t capa = (uint32_t)((slot_size - offsetof(struct RObject, as.ary)) / sizeof(VALUE));
ROBJECT(v)->numiv = capa;
// Fill end with Qundef
for (uint32_t i = numiv; i < capa; i++) {
ptr[i] = Qundef;
}
}
#endif
for (uint32_t i = 0; i < numiv; i++) {
UPDATE_IF_MOVED(objspace, ptr[i]);
}
}
static int
hash_replace_ref(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
{
rb_objspace_t *objspace = (rb_objspace_t *)argp;
if (gc_object_moved_p(objspace, (VALUE)*key)) {
*key = rb_gc_location((VALUE)*key);
}
if (gc_object_moved_p(objspace, (VALUE)*value)) {
*value = rb_gc_location((VALUE)*value);
}
return ST_CONTINUE;
}
static int
hash_foreach_replace(st_data_t key, st_data_t value, st_data_t argp, int error)
{
rb_objspace_t *objspace;
objspace = (rb_objspace_t *)argp;
if (gc_object_moved_p(objspace, (VALUE)key)) {
return ST_REPLACE;
}
if (gc_object_moved_p(objspace, (VALUE)value)) {
return ST_REPLACE;
}
return ST_CONTINUE;
}
static int
hash_replace_ref_value(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
{
rb_objspace_t *objspace = (rb_objspace_t *)argp;
if (gc_object_moved_p(objspace, (VALUE)*value)) {
*value = rb_gc_location((VALUE)*value);
}
return ST_CONTINUE;
}
static int
hash_foreach_replace_value(st_data_t key, st_data_t value, st_data_t argp, int error)
{
rb_objspace_t *objspace;
objspace = (rb_objspace_t *)argp;
if (gc_object_moved_p(objspace, (VALUE)value)) {
return ST_REPLACE;
}
return ST_CONTINUE;
}
static void
gc_update_tbl_refs(rb_objspace_t * objspace, st_table *tbl)
{
if (!tbl || tbl->num_entries == 0) return;
if (st_foreach_with_replace(tbl, hash_foreach_replace_value, hash_replace_ref_value, (st_data_t)objspace)) {
rb_raise(rb_eRuntimeError, "hash modified during iteration");
}
}
static void
gc_update_table_refs(rb_objspace_t * objspace, st_table *tbl)
{
if (!tbl || tbl->num_entries == 0) return;
if (st_foreach_with_replace(tbl, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace)) {
rb_raise(rb_eRuntimeError, "hash modified during iteration");
}
}
/* Update MOVED references in an st_table */
void
rb_gc_update_tbl_refs(st_table *ptr)
{
rb_objspace_t *objspace = &rb_objspace;
gc_update_table_refs(objspace, ptr);
}
static void
gc_ref_update_hash(rb_objspace_t * objspace, VALUE v)
{
rb_hash_stlike_foreach_with_replace(v, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace);
}
static void
gc_ref_update_method_entry(rb_objspace_t *objspace, rb_method_entry_t *me)
{
rb_method_definition_t *def = me->def;
UPDATE_IF_MOVED(objspace, me->owner);
UPDATE_IF_MOVED(objspace, me->defined_class);
if (def) {
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
if (def->body.iseq.iseqptr) {
TYPED_UPDATE_IF_MOVED(objspace, rb_iseq_t *, def->body.iseq.iseqptr);
}
TYPED_UPDATE_IF_MOVED(objspace, rb_cref_t *, def->body.iseq.cref);
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
UPDATE_IF_MOVED(objspace, def->body.attr.location);
break;
case VM_METHOD_TYPE_BMETHOD:
UPDATE_IF_MOVED(objspace, def->body.bmethod.proc);
break;
case VM_METHOD_TYPE_ALIAS:
TYPED_UPDATE_IF_MOVED(objspace, struct rb_method_entry_struct *, def->body.alias.original_me);
return;
case VM_METHOD_TYPE_REFINED:
TYPED_UPDATE_IF_MOVED(objspace, struct rb_method_entry_struct *, def->body.refined.orig_me);
UPDATE_IF_MOVED(objspace, def->body.refined.owner);
break;
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_OPTIMIZED:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
break;
}
}
}
static void
gc_update_values(rb_objspace_t *objspace, long n, VALUE *values)
{
long i;
for (i=0; i<n; i++) {
UPDATE_IF_MOVED(objspace, values[i]);
}
}
static void
gc_ref_update_imemo(rb_objspace_t *objspace, VALUE obj)
{
switch (imemo_type(obj)) {
case imemo_env:
{
rb_env_t *env = (rb_env_t *)obj;
if (LIKELY(env->ep)) {
// just after newobj() can be NULL here.
TYPED_UPDATE_IF_MOVED(objspace, rb_iseq_t *, env->iseq);
UPDATE_IF_MOVED(objspace, env->ep[VM_ENV_DATA_INDEX_ENV]);
gc_update_values(objspace, (long)env->env_size, (VALUE *)env->env);
}
}
break;
case imemo_cref:
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.cref.klass_or_self);
TYPED_UPDATE_IF_MOVED(objspace, struct rb_cref_struct *, RANY(obj)->as.imemo.cref.next);
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.cref.refinements);
break;
case imemo_svar:
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.cref_or_me);
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.lastline);
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.backref);
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.others);
break;
case imemo_throw_data:
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.throw_data.throw_obj);
break;
case imemo_ifunc:
break;
case imemo_memo:
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.memo.v1);
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.memo.v2);
break;
case imemo_ment:
gc_ref_update_method_entry(objspace, &RANY(obj)->as.imemo.ment);
break;
case imemo_iseq:
rb_iseq_update_references((rb_iseq_t *)obj);
break;
case imemo_ast:
rb_ast_update_references((rb_ast_t *)obj);
break;
case imemo_callcache:
{
const struct rb_callcache *cc = (const struct rb_callcache *)obj;
if (cc->klass) {
UPDATE_IF_MOVED(objspace, cc->klass);
if (!is_live_object(objspace, cc->klass)) {
*((VALUE *)(&cc->klass)) = (VALUE)0;
}
}
if (cc->cme_) {
TYPED_UPDATE_IF_MOVED(objspace, struct rb_callable_method_entry_struct *, cc->cme_);
if (!is_live_object(objspace, (VALUE)cc->cme_)) {
*((struct rb_callable_method_entry_struct **)(&cc->cme_)) = (struct rb_callable_method_entry_struct *)0;
}
}
}
break;
case imemo_constcache:
{
const struct iseq_inline_constant_cache_entry *ice = (struct iseq_inline_constant_cache_entry *)obj;
UPDATE_IF_MOVED(objspace, ice->value);
}
break;
case imemo_parser_strterm:
case imemo_tmpbuf:
case imemo_callinfo:
break;
default:
rb_bug("not reachable %d", imemo_type(obj));
break;
}
}
static enum rb_id_table_iterator_result
check_id_table_move(VALUE value, void *data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
if (gc_object_moved_p(objspace, (VALUE)value)) {
return ID_TABLE_REPLACE;
}
return ID_TABLE_CONTINUE;
}
/* Returns the new location of an object, if it moved. Otherwise returns
* the existing location. */
VALUE
rb_gc_location(VALUE value)
{
VALUE destination;
if (!SPECIAL_CONST_P(value)) {
void *poisoned = asan_unpoison_object_temporary(value);
if (BUILTIN_TYPE(value) == T_MOVED) {
destination = (VALUE)RMOVED(value)->destination;
GC_ASSERT(BUILTIN_TYPE(destination) != T_NONE);
}
else {
destination = value;
}
/* Re-poison slot if it's not the one we want */
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(value) == T_NONE);
asan_poison_object(value);
}
}
else {
destination = value;
}
return destination;
}
static enum rb_id_table_iterator_result
update_id_table(VALUE *value, void *data, int existing)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
if (gc_object_moved_p(objspace, (VALUE)*value)) {
*value = rb_gc_location((VALUE)*value);
}
return ID_TABLE_CONTINUE;
}
static void
update_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
{
if (tbl) {
rb_id_table_foreach_values_with_replace(tbl, check_id_table_move, update_id_table, objspace);
}
}
static enum rb_id_table_iterator_result
update_cc_tbl_i(VALUE ccs_ptr, void *data)
{
rb_objspace_t *objspace = (rb_objspace_t *)data;
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
VM_ASSERT(vm_ccs_p(ccs));
if (gc_object_moved_p(objspace, (VALUE)ccs->cme)) {
ccs->cme = (const rb_callable_method_entry_t *)rb_gc_location((VALUE)ccs->cme);
}
for (int i=0; i<ccs->len; i++) {
if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].ci)) {
ccs->entries[i].ci = (struct rb_callinfo *)rb_gc_location((VALUE)ccs->entries[i].ci);
}
if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].cc)) {
ccs->entries[i].cc = (struct rb_callcache *)rb_gc_location((VALUE)ccs->entries[i].cc);
}
}
// do not replace
return ID_TABLE_CONTINUE;
}
static void
update_cc_tbl(rb_objspace_t *objspace, VALUE klass)
{
struct rb_id_table *tbl = RCLASS_CC_TBL(klass);
if (tbl) {
rb_id_table_foreach_values(tbl, update_cc_tbl_i, objspace);
}
}
static enum rb_id_table_iterator_result
update_cvc_tbl_i(VALUE cvc_entry, void *data)
{
struct rb_cvar_class_tbl_entry *entry;
entry = (struct rb_cvar_class_tbl_entry *)cvc_entry;
entry->class_value = rb_gc_location(entry->class_value);
return ID_TABLE_CONTINUE;
}
static void
update_cvc_tbl(rb_objspace_t *objspace, VALUE klass)
{
struct rb_id_table *tbl = RCLASS_CVC_TBL(klass);
if (tbl) {
rb_id_table_foreach_values(tbl, update_cvc_tbl_i, objspace);
}
}
static enum rb_id_table_iterator_result
update_const_table(VALUE value, void *data)
{
rb_const_entry_t *ce = (rb_const_entry_t *)value;
rb_objspace_t * objspace = (rb_objspace_t *)data;
if (gc_object_moved_p(objspace, ce->value)) {
ce->value = rb_gc_location(ce->value);
}
if (gc_object_moved_p(objspace, ce->file)) {
ce->file = rb_gc_location(ce->file);
}
return ID_TABLE_CONTINUE;
}
static void
update_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl)
{
if (!tbl) return;
rb_id_table_foreach_values(tbl, update_const_table, objspace);
}
static void
update_subclass_entries(rb_objspace_t *objspace, rb_subclass_entry_t *entry)
{
while (entry) {
UPDATE_IF_MOVED(objspace, entry->klass);
entry = entry->next;
}
}
static void
update_class_ext(rb_objspace_t *objspace, rb_classext_t *ext)
{
UPDATE_IF_MOVED(objspace, ext->origin_);
UPDATE_IF_MOVED(objspace, ext->includer);
UPDATE_IF_MOVED(objspace, ext->refined_class);
update_subclass_entries(objspace, ext->subclasses);
}
static void
update_superclasses(rb_objspace_t *objspace, VALUE obj)
{
if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
for (size_t i = 0; i < RCLASS_SUPERCLASS_DEPTH(obj) + 1; i++) {
UPDATE_IF_MOVED(objspace, RCLASS_SUPERCLASSES(obj)[i]);
}
}
}
static void
gc_update_object_references(rb_objspace_t *objspace, VALUE obj)
{
RVALUE *any = RANY(obj);
gc_report(4, objspace, "update-refs: %p ->\n", (void *)obj);
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
if (RCLASS_SUPER((VALUE)obj)) {
UPDATE_IF_MOVED(objspace, RCLASS(obj)->super);
}
if (!RCLASS_EXT(obj)) break;
update_m_tbl(objspace, RCLASS_M_TBL(obj));
update_cc_tbl(objspace, obj);
update_cvc_tbl(objspace, obj);
update_superclasses(objspace, obj);
gc_update_tbl_refs(objspace, RCLASS_IV_TBL(obj));
update_class_ext(objspace, RCLASS_EXT(obj));
update_const_tbl(objspace, RCLASS_CONST_TBL(obj));
break;
case T_ICLASS:
if (FL_TEST(obj, RICLASS_IS_ORIGIN) &&
!FL_TEST(obj, RICLASS_ORIGIN_SHARED_MTBL)) {
update_m_tbl(objspace, RCLASS_M_TBL(obj));
}
if (RCLASS_SUPER((VALUE)obj)) {
UPDATE_IF_MOVED(objspace, RCLASS(obj)->super);
}
if (!RCLASS_EXT(obj)) break;
if (RCLASS_IV_TBL(obj)) {
gc_update_tbl_refs(objspace, RCLASS_IV_TBL(obj));
}
update_class_ext(objspace, RCLASS_EXT(obj));
update_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
update_cc_tbl(objspace, obj);
break;
case T_IMEMO:
gc_ref_update_imemo(objspace, obj);
return;
case T_NIL:
case T_FIXNUM:
case T_NODE:
case T_MOVED:
case T_NONE:
/* These can't move */
return;
case T_ARRAY:
gc_ref_update_array(objspace, obj);
break;
case T_HASH:
gc_ref_update_hash(objspace, obj);
UPDATE_IF_MOVED(objspace, any->as.hash.ifnone);
break;
case T_STRING:
{
#if USE_RVARGC
#endif
if (STR_SHARED_P(obj)) {
#if USE_RVARGC
VALUE old_root = any->as.string.as.heap.aux.shared;
#endif
UPDATE_IF_MOVED(objspace, any->as.string.as.heap.aux.shared);
#if USE_RVARGC
VALUE new_root = any->as.string.as.heap.aux.shared;
rb_str_update_shared_ary(obj, old_root, new_root);
// if, after move the string is not embedded, and can fit in the
// slot it's been placed in, then re-embed it
if ((size_t)GET_HEAP_PAGE(obj)->slot_size >= rb_str_size_as_embedded(obj)) {
if (!STR_EMBED_P(obj) && rb_str_reembeddable_p(obj)) {
rb_str_make_embedded(obj);
}
}
#endif
}
break;
}
case T_DATA:
/* Call the compaction callback, if it exists */
{
void *const ptr = DATA_PTR(obj);
if (ptr) {
if (RTYPEDDATA_P(obj)) {
RUBY_DATA_FUNC compact_func = any->as.typeddata.type->function.dcompact;
if (compact_func) (*compact_func)(ptr);
}
}
}
break;
case T_OBJECT:
gc_ref_update_object(objspace, obj);
break;
case T_FILE:
if (any->as.file.fptr) {
UPDATE_IF_MOVED(objspace, any->as.file.fptr->self);
UPDATE_IF_MOVED(objspace, any->as.file.fptr->pathv);
UPDATE_IF_MOVED(objspace, any->as.file.fptr->tied_io_for_writing);
UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_asciicompat);
UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_pre_ecopts);
UPDATE_IF_MOVED(objspace, any->as.file.fptr->encs.ecopts);
UPDATE_IF_MOVED(objspace, any->as.file.fptr->write_lock);
}
break;
case T_REGEXP:
UPDATE_IF_MOVED(objspace, any->as.regexp.src);
break;
case T_SYMBOL:
if (DYNAMIC_SYM_P((VALUE)any)) {
UPDATE_IF_MOVED(objspace, RSYMBOL(any)->fstr);
}
break;
case T_FLOAT:
case T_BIGNUM:
break;
case T_MATCH:
UPDATE_IF_MOVED(objspace, any->as.match.regexp);
if (any->as.match.str) {
UPDATE_IF_MOVED(objspace, any->as.match.str);
}
break;
case T_RATIONAL:
UPDATE_IF_MOVED(objspace, any->as.rational.num);
UPDATE_IF_MOVED(objspace, any->as.rational.den);
break;
case T_COMPLEX:
UPDATE_IF_MOVED(objspace, any->as.complex.real);
UPDATE_IF_MOVED(objspace, any->as.complex.imag);
break;
case T_STRUCT:
{
long i, len = RSTRUCT_LEN(obj);
VALUE *ptr = (VALUE *)RSTRUCT_CONST_PTR(obj);
for (i = 0; i < len; i++) {
UPDATE_IF_MOVED(objspace, ptr[i]);
}
}
break;
default:
#if GC_DEBUG
rb_gcdebug_print_obj_condition((VALUE)obj);
rb_obj_info_dump(obj);
rb_bug("unreachable");
#endif
break;
}
UPDATE_IF_MOVED(objspace, RBASIC(obj)->klass);
gc_report(4, objspace, "update-refs: %p <-\n", (void *)obj);
}
static int
gc_ref_update(void *vstart, void *vend, size_t stride, rb_objspace_t * objspace, struct heap_page *page)
{
VALUE v = (VALUE)vstart;
asan_unlock_freelist(page);
asan_lock_freelist(page);
page->flags.has_uncollectible_shady_objects = FALSE;
page->flags.has_remembered_objects = FALSE;
/* For each object on the page */
for (; v != (VALUE)vend; v += stride) {
void *poisoned = asan_unpoison_object_temporary(v);
switch (BUILTIN_TYPE(v)) {
case T_NONE:
case T_MOVED:
case T_ZOMBIE:
break;
default:
if (RVALUE_WB_UNPROTECTED(v)) {
page->flags.has_uncollectible_shady_objects = TRUE;
}
if (RVALUE_PAGE_MARKING(page, v)) {
page->flags.has_remembered_objects = TRUE;
}
if (page->flags.before_sweep) {
if (RVALUE_MARKED(v)) {
gc_update_object_references(objspace, v);
}
}
else {
gc_update_object_references(objspace, v);
}
}
if (poisoned) {
asan_poison_object(v);
}
}
return 0;
}
extern rb_symbols_t ruby_global_symbols;
#define global_symbols ruby_global_symbols
static void
gc_update_references(rb_objspace_t *objspace)
{
rb_execution_context_t *ec = GET_EC();
rb_vm_t *vm = rb_ec_vm_ptr(ec);
struct heap_page *page = NULL;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
bool should_set_mark_bits = TRUE;
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
ccan_list_for_each(&heap->pages, page, page_node) {
uintptr_t start = (uintptr_t)page->start;
uintptr_t end = start + (page->total_slots * size_pool->slot_size);
gc_ref_update((void *)start, (void *)end, size_pool->slot_size, objspace, page);
if (page == heap->sweeping_page) {
should_set_mark_bits = FALSE;
}
if (should_set_mark_bits) {
gc_setup_mark_bits(page);
}
}
}
rb_vm_update_references(vm);
rb_transient_heap_update_references();
rb_gc_update_global_tbl();
global_symbols.ids = rb_gc_location(global_symbols.ids);
global_symbols.dsymbol_fstr_hash = rb_gc_location(global_symbols.dsymbol_fstr_hash);
gc_update_tbl_refs(objspace, objspace->obj_to_id_tbl);
gc_update_table_refs(objspace, objspace->id_to_obj_tbl);
gc_update_table_refs(objspace, global_symbols.str_sym);
gc_update_table_refs(objspace, finalizer_table);
}
#if GC_CAN_COMPILE_COMPACTION
/*
* call-seq:
* GC.latest_compact_info -> {:considered=>{:T_CLASS=>11}, :moved=>{:T_CLASS=>11}}
*
* Returns information about object moved in the most recent GC compaction.
*
* The returned hash has two keys :considered and :moved. The hash for
* :considered lists the number of objects that were considered for movement
* by the compactor, and the :moved hash lists the number of objects that
* were actually moved. Some objects can't be moved (maybe they were pinned)
* so these numbers can be used to calculate compaction efficiency.
*/
static VALUE
gc_compact_stats(VALUE self)
{
size_t i;
rb_objspace_t *objspace = &rb_objspace;
VALUE h = rb_hash_new();
VALUE considered = rb_hash_new();
VALUE moved = rb_hash_new();
VALUE moved_up = rb_hash_new();
VALUE moved_down = rb_hash_new();
for (i=0; i<T_MASK; i++) {
if (objspace->rcompactor.considered_count_table[i]) {
rb_hash_aset(considered, type_sym(i), SIZET2NUM(objspace->rcompactor.considered_count_table[i]));
}
if (objspace->rcompactor.moved_count_table[i]) {
rb_hash_aset(moved, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_count_table[i]));
}
if (objspace->rcompactor.moved_up_count_table[i]) {
rb_hash_aset(moved_up, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_up_count_table[i]));
}
if (objspace->rcompactor.moved_down_count_table[i]) {
rb_hash_aset(moved_down, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_down_count_table[i]));
}
}
rb_hash_aset(h, ID2SYM(rb_intern("considered")), considered);
rb_hash_aset(h, ID2SYM(rb_intern("moved")), moved);
rb_hash_aset(h, ID2SYM(rb_intern("moved_up")), moved_up);
rb_hash_aset(h, ID2SYM(rb_intern("moved_down")), moved_down);
return h;
}
#else
# define gc_compact_stats rb_f_notimplement
#endif
#if GC_CAN_COMPILE_COMPACTION
static void
root_obj_check_moved_i(const char *category, VALUE obj, void *data)
{
if (gc_object_moved_p(&rb_objspace, obj)) {
rb_bug("ROOT %s points to MOVED: %p -> %s\n", category, (void *)obj, obj_info(rb_gc_location(obj)));
}
}
static void
reachable_object_check_moved_i(VALUE ref, void *data)
{
VALUE parent = (VALUE)data;
if (gc_object_moved_p(&rb_objspace, ref)) {
rb_bug("Object %s points to MOVED: %p -> %s\n", obj_info(parent), (void *)ref, obj_info(rb_gc_location(ref)));
}
}
static int
heap_check_moved_i(void *vstart, void *vend, size_t stride, void *data)
{
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
if (gc_object_moved_p(&rb_objspace, v)) {
/* Moved object still on the heap, something may have a reference. */
}
else {
void *poisoned = asan_unpoison_object_temporary(v);
switch (BUILTIN_TYPE(v)) {
case T_NONE:
case T_ZOMBIE:
break;
default:
if (!rb_objspace_garbage_object_p(v)) {
rb_objspace_reachable_objects_from(v, reachable_object_check_moved_i, (void *)v);
}
}
if (poisoned) {
GC_ASSERT(BUILTIN_TYPE(v) == T_NONE);
asan_poison_object(v);
}
}
}
return 0;
}
/*
* call-seq:
* GC.compact
*
* This function compacts objects together in Ruby's heap. It eliminates
* unused space (or fragmentation) in the heap by moving objects in to that
* unused space. This function returns a hash which contains statistics about
* which objects were moved. See `GC.latest_gc_info` for details about
* compaction statistics.
*
* This method is implementation specific and not expected to be implemented
* in any implementation besides MRI.
*
* To test whether GC compaction is supported, use the idiom:
*
* GC.respond_to?(:compact)
*/
static VALUE
gc_compact(VALUE self)
{
/* Run GC with compaction enabled */
gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue);
return gc_compact_stats(self);
}
#else
# define gc_compact rb_f_notimplement
#endif
#if GC_CAN_COMPILE_COMPACTION
static VALUE
gc_verify_compaction_references(rb_execution_context_t *ec, VALUE self, VALUE double_heap, VALUE expand_heap, VALUE toward_empty)
{
rb_objspace_t *objspace = &rb_objspace;
/* Clear the heap. */
gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qfalse);
size_t growth_slots = gc_params.heap_init_slots;
if (RTEST(double_heap)) {
rb_warn("double_heap is deprecated, please use expand_heap instead");
}
RB_VM_LOCK_ENTER();
{
gc_rest(objspace);
/* if both double_heap and expand_heap are set, expand_heap takes precedence */
if (RTEST(double_heap) || RTEST(expand_heap)) {
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool);
if (RTEST(expand_heap)) {
size_t required_pages = growth_slots / size_pool->slot_size;
heap_add_pages(objspace, size_pool, heap, MAX(required_pages, heap->total_pages));
}
else {
heap_add_pages(objspace, size_pool, heap, heap->total_pages);
}
}
}
if (RTEST(toward_empty)) {
gc_sort_heap_by_empty_slots(objspace);
}
}
RB_VM_LOCK_LEAVE();
gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue);
objspace_reachable_objects_from_root(objspace, root_obj_check_moved_i, NULL);
objspace_each_objects(objspace, heap_check_moved_i, NULL, TRUE);
return gc_compact_stats(self);
}
#else
# define gc_verify_compaction_references (rb_builtin_arity3_function_type)rb_f_notimplement
#endif
VALUE
rb_gc_start(void)
{
rb_gc();
return Qnil;
}
void
rb_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
unsigned int reason = GPR_DEFAULT_REASON;
garbage_collect(objspace, reason);
}
int
rb_during_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
return during_gc;
}
#if RGENGC_PROFILE >= 2
static const char *type_name(int type, VALUE obj);
static void
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
{
VALUE result = rb_hash_new_with_size(T_MASK);
int i;
for (i=0; i<T_MASK; i++) {
const char *type = type_name(i, 0);
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
}
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
}
#endif
size_t
rb_gc_count(void)
{
return rb_objspace.profile.count;
}
static VALUE
gc_count(rb_execution_context_t *ec, VALUE self)
{
return SIZET2NUM(rb_gc_count());
}
static VALUE
gc_info_decode(rb_objspace_t *objspace, const VALUE hash_or_key, const unsigned int orig_flags)
{
static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer, sym_state;
static VALUE sym_nofree, sym_oldgen, sym_shady, sym_force, sym_stress;
#if RGENGC_ESTIMATE_OLDMALLOC
static VALUE sym_oldmalloc;
#endif
static VALUE sym_newobj, sym_malloc, sym_method, sym_capi;
static VALUE sym_none, sym_marking, sym_sweeping;
VALUE hash = Qnil, key = Qnil;
VALUE major_by;
unsigned int flags = orig_flags ? orig_flags : objspace->profile.latest_gc_info;
if (SYMBOL_P(hash_or_key)) {
key = hash_or_key;
}
else if (RB_TYPE_P(hash_or_key, T_HASH)) {
hash = hash_or_key;
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
if (NIL_P(sym_major_by)) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(major_by);
S(gc_by);
S(immediate_sweep);
S(have_finalizer);
S(state);
S(stress);
S(nofree);
S(oldgen);
S(shady);
S(force);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc);
#endif
S(newobj);
S(malloc);
S(method);
S(capi);
S(none);
S(marking);
S(sweeping);
#undef S
}
#define SET(name, attr) \
if (key == sym_##name) \
return (attr); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, (attr));
major_by =
(flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
(flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
(flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
(flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force :
#if RGENGC_ESTIMATE_OLDMALLOC
(flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
#endif
Qnil;
SET(major_by, major_by);
SET(gc_by,
(flags & GPR_FLAG_NEWOBJ) ? sym_newobj :
(flags & GPR_FLAG_MALLOC) ? sym_malloc :
(flags & GPR_FLAG_METHOD) ? sym_method :
(flags & GPR_FLAG_CAPI) ? sym_capi :
(flags & GPR_FLAG_STRESS) ? sym_stress :
Qnil
);
SET(have_finalizer, RBOOL(flags & GPR_FLAG_HAVE_FINALIZE));
SET(immediate_sweep, RBOOL(flags & GPR_FLAG_IMMEDIATE_SWEEP));
if (orig_flags == 0) {
SET(state, gc_mode(objspace) == gc_mode_none ? sym_none :
gc_mode(objspace) == gc_mode_marking ? sym_marking : sym_sweeping);
}
#undef SET
if (!NIL_P(key)) {/* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return hash;
}
VALUE
rb_gc_latest_gc_info(VALUE key)
{
rb_objspace_t *objspace = &rb_objspace;
return gc_info_decode(objspace, key, 0);
}
static VALUE
gc_latest_gc_info(rb_execution_context_t *ec, VALUE self, VALUE arg)
{
rb_objspace_t *objspace = &rb_objspace;
if (NIL_P(arg)) {
arg = rb_hash_new();
}
else if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
return gc_info_decode(objspace, arg, 0);
}
enum gc_stat_sym {
gc_stat_sym_count,
gc_stat_sym_time,
gc_stat_sym_heap_allocated_pages,
gc_stat_sym_heap_sorted_length,
gc_stat_sym_heap_allocatable_pages,
gc_stat_sym_heap_available_slots,
gc_stat_sym_heap_live_slots,
gc_stat_sym_heap_free_slots,
gc_stat_sym_heap_final_slots,
gc_stat_sym_heap_marked_slots,
gc_stat_sym_heap_eden_pages,
gc_stat_sym_heap_tomb_pages,
gc_stat_sym_total_allocated_pages,
gc_stat_sym_total_freed_pages,
gc_stat_sym_total_allocated_objects,
gc_stat_sym_total_freed_objects,
gc_stat_sym_malloc_increase_bytes,
gc_stat_sym_malloc_increase_bytes_limit,
gc_stat_sym_minor_gc_count,
gc_stat_sym_major_gc_count,
gc_stat_sym_compact_count,
gc_stat_sym_read_barrier_faults,
gc_stat_sym_total_moved_objects,
gc_stat_sym_remembered_wb_unprotected_objects,
gc_stat_sym_remembered_wb_unprotected_objects_limit,
gc_stat_sym_old_objects,
gc_stat_sym_old_objects_limit,
#if RGENGC_ESTIMATE_OLDMALLOC
gc_stat_sym_oldmalloc_increase_bytes,
gc_stat_sym_oldmalloc_increase_bytes_limit,
#endif
#if RGENGC_PROFILE
gc_stat_sym_total_generated_normal_object_count,
gc_stat_sym_total_generated_shady_object_count,
gc_stat_sym_total_shade_operation_count,
gc_stat_sym_total_promoted_count,
gc_stat_sym_total_remembered_normal_object_count,
gc_stat_sym_total_remembered_shady_object_count,
#endif
gc_stat_sym_last
};
static VALUE gc_stat_symbols[gc_stat_sym_last];
static void
setup_gc_stat_symbols(void)
{
if (gc_stat_symbols[0] == 0) {
#define S(s) gc_stat_symbols[gc_stat_sym_##s] = ID2SYM(rb_intern_const(#s))
S(count);
S(time);
S(heap_allocated_pages);
S(heap_sorted_length);
S(heap_allocatable_pages);
S(heap_available_slots);
S(heap_live_slots);
S(heap_free_slots);
S(heap_final_slots);
S(heap_marked_slots);
S(heap_eden_pages);
S(heap_tomb_pages);
S(total_allocated_pages);
S(total_freed_pages);
S(total_allocated_objects);
S(total_freed_objects);
S(malloc_increase_bytes);
S(malloc_increase_bytes_limit);
S(minor_gc_count);
S(major_gc_count);
S(compact_count);
S(read_barrier_faults);
S(total_moved_objects);
S(remembered_wb_unprotected_objects);
S(remembered_wb_unprotected_objects_limit);
S(old_objects);
S(old_objects_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
S(oldmalloc_increase_bytes);
S(oldmalloc_increase_bytes_limit);
#endif
#if RGENGC_PROFILE
S(total_generated_normal_object_count);
S(total_generated_shady_object_count);
S(total_shade_operation_count);
S(total_promoted_count);
S(total_remembered_normal_object_count);
S(total_remembered_shady_object_count);
#endif /* RGENGC_PROFILE */
#undef S
}
}
static size_t
gc_stat_internal(VALUE hash_or_sym)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE hash = Qnil, key = Qnil;
setup_gc_stat_symbols();
if (RB_TYPE_P(hash_or_sym, T_HASH)) {
hash = hash_or_sym;
}
else if (SYMBOL_P(hash_or_sym)) {
key = hash_or_sym;
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol argument");
}
#define SET(name, attr) \
if (key == gc_stat_symbols[gc_stat_sym_##name]) \
return attr; \
else if (hash != Qnil) \
rb_hash_aset(hash, gc_stat_symbols[gc_stat_sym_##name], SIZET2NUM(attr));
SET(count, objspace->profile.count);
SET(time, (size_t) (objspace->profile.total_time_ns / (1000 * 1000) /* ns -> ms */)); // TODO: UINT64T2NUM
/* implementation dependent counters */
SET(heap_allocated_pages, heap_allocated_pages);
SET(heap_sorted_length, heap_pages_sorted_length);
SET(heap_allocatable_pages, heap_allocatable_pages(objspace));
SET(heap_available_slots, objspace_available_slots(objspace));
SET(heap_live_slots, objspace_live_slots(objspace));
SET(heap_free_slots, objspace_free_slots(objspace));
SET(heap_final_slots, heap_pages_final_slots);
SET(heap_marked_slots, objspace->marked_slots);
SET(heap_eden_pages, heap_eden_total_pages(objspace));
SET(heap_tomb_pages, heap_tomb_total_pages(objspace));
SET(total_allocated_pages, total_allocated_pages(objspace));
SET(total_freed_pages, total_freed_pages(objspace));
SET(total_allocated_objects, objspace->total_allocated_objects);
SET(total_freed_objects, objspace->profile.total_freed_objects);
SET(malloc_increase_bytes, malloc_increase);
SET(malloc_increase_bytes_limit, malloc_limit);
SET(minor_gc_count, objspace->profile.minor_gc_count);
SET(major_gc_count, objspace->profile.major_gc_count);
SET(compact_count, objspace->profile.compact_count);
SET(read_barrier_faults, objspace->profile.read_barrier_faults);
SET(total_moved_objects, objspace->rcompactor.total_moved);
SET(remembered_wb_unprotected_objects, objspace->rgengc.uncollectible_wb_unprotected_objects);
SET(remembered_wb_unprotected_objects_limit, objspace->rgengc.uncollectible_wb_unprotected_objects_limit);
SET(old_objects, objspace->rgengc.old_objects);
SET(old_objects_limit, objspace->rgengc.old_objects_limit);
#if RGENGC_ESTIMATE_OLDMALLOC
SET(oldmalloc_increase_bytes, objspace->rgengc.oldmalloc_increase);
SET(oldmalloc_increase_bytes_limit, objspace->rgengc.oldmalloc_increase_limit);
#endif
#if RGENGC_PROFILE
SET(total_generated_normal_object_count, objspace->profile.total_generated_normal_object_count);
SET(total_generated_shady_object_count, objspace->profile.total_generated_shady_object_count);
SET(total_shade_operation_count, objspace->profile.total_shade_operation_count);
SET(total_promoted_count, objspace->profile.total_promoted_count);
SET(total_remembered_normal_object_count, objspace->profile.total_remembered_normal_object_count);
SET(total_remembered_shady_object_count, objspace->profile.total_remembered_shady_object_count);
#endif /* RGENGC_PROFILE */
#undef SET
if (!NIL_P(key)) { /* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
#if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2
if (hash != Qnil) {
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
gc_count_add_each_types(hash, "promoted_types", objspace->profile.promoted_types);
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
}
#endif
return 0;
}
static VALUE
gc_stat(rb_execution_context_t *ec, VALUE self, VALUE arg) // arg is (nil || hash || symbol)
{
if (NIL_P(arg)) {
arg = rb_hash_new();
}
else if (SYMBOL_P(arg)) {
size_t value = gc_stat_internal(arg);
return SIZET2NUM(value);
}
else if (RB_TYPE_P(arg, T_HASH)) {
// ok
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
gc_stat_internal(arg);
return arg;
}
size_t
rb_gc_stat(VALUE key)
{
if (SYMBOL_P(key)) {
size_t value = gc_stat_internal(key);
return value;
}
else {
gc_stat_internal(key);
return 0;
}
}
enum gc_stat_heap_sym {
gc_stat_heap_sym_slot_size,
gc_stat_heap_sym_heap_allocatable_pages,
gc_stat_heap_sym_heap_eden_pages,
gc_stat_heap_sym_heap_eden_slots,
gc_stat_heap_sym_heap_tomb_pages,
gc_stat_heap_sym_heap_tomb_slots,
gc_stat_heap_sym_total_allocated_pages,
gc_stat_heap_sym_total_freed_pages,
gc_stat_heap_sym_force_major_gc_count,
gc_stat_heap_sym_last
};
static VALUE gc_stat_heap_symbols[gc_stat_heap_sym_last];
static void
setup_gc_stat_heap_symbols(void)
{
if (gc_stat_heap_symbols[0] == 0) {
#define S(s) gc_stat_heap_symbols[gc_stat_heap_sym_##s] = ID2SYM(rb_intern_const(#s))
S(slot_size);
S(heap_allocatable_pages);
S(heap_eden_pages);
S(heap_eden_slots);
S(heap_tomb_pages);
S(heap_tomb_slots);
S(total_allocated_pages);
S(total_freed_pages);
S(force_major_gc_count);
#undef S
}
}
static size_t
gc_stat_heap_internal(int size_pool_idx, VALUE hash_or_sym)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE hash = Qnil, key = Qnil;
setup_gc_stat_heap_symbols();
if (RB_TYPE_P(hash_or_sym, T_HASH)) {
hash = hash_or_sym;
}
else if (SYMBOL_P(hash_or_sym)) {
key = hash_or_sym;
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol argument");
}
if (size_pool_idx < 0 || size_pool_idx >= SIZE_POOL_COUNT) {
rb_raise(rb_eArgError, "size pool index out of range");
}
rb_size_pool_t *size_pool = &size_pools[size_pool_idx];
#define SET(name, attr) \
if (key == gc_stat_heap_symbols[gc_stat_heap_sym_##name]) \
return attr; \
else if (hash != Qnil) \
rb_hash_aset(hash, gc_stat_heap_symbols[gc_stat_heap_sym_##name], SIZET2NUM(attr));
SET(slot_size, size_pool->slot_size);
SET(heap_allocatable_pages, size_pool->allocatable_pages);
SET(heap_eden_pages, SIZE_POOL_EDEN_HEAP(size_pool)->total_pages);
SET(heap_eden_slots, SIZE_POOL_EDEN_HEAP(size_pool)->total_slots);
SET(heap_tomb_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages);
SET(heap_tomb_slots, SIZE_POOL_TOMB_HEAP(size_pool)->total_slots);
SET(total_allocated_pages, size_pool->total_allocated_pages);
SET(total_freed_pages, size_pool->total_freed_pages);
SET(force_major_gc_count, size_pool->force_major_gc_count);
#undef SET
if (!NIL_P(key)) { /* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return 0;
}
static VALUE
gc_stat_heap(rb_execution_context_t *ec, VALUE self, VALUE heap_name, VALUE arg)
{
if (NIL_P(heap_name)) {
if (NIL_P(arg)) {
arg = rb_hash_new();
}
else if (RB_TYPE_P(arg, T_HASH)) {
// ok
}
else {
rb_raise(rb_eTypeError, "non-hash given");
}
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
VALUE hash = rb_hash_aref(arg, INT2FIX(i));
if (NIL_P(hash)) {
hash = rb_hash_new();
rb_hash_aset(arg, INT2FIX(i), hash);
}
gc_stat_heap_internal(i, hash);
}
}
else if (FIXNUM_P(heap_name)) {
int size_pool_idx = FIX2INT(heap_name);
if (NIL_P(arg)) {
arg = rb_hash_new();
}
else if (SYMBOL_P(arg)) {
size_t value = gc_stat_heap_internal(size_pool_idx, arg);
return SIZET2NUM(value);
}
else if (RB_TYPE_P(arg, T_HASH)) {
// ok
}
else {
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
gc_stat_heap_internal(size_pool_idx, arg);
}
else {
rb_raise(rb_eTypeError, "heap_name must be nil or an Integer");
}
return arg;
}
static VALUE
gc_stress_get(rb_execution_context_t *ec, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return ruby_gc_stress_mode;
}
static void
gc_stress_set(rb_objspace_t *objspace, VALUE flag)
{
objspace->flags.gc_stressful = RTEST(flag);
objspace->gc_stress_mode = flag;
}
static VALUE
gc_stress_set_m(rb_execution_context_t *ec, VALUE self, VALUE flag)
{
rb_objspace_t *objspace = &rb_objspace;
gc_stress_set(objspace, flag);
return flag;
}
VALUE
rb_gc_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
return rb_objspace_gc_enable(objspace);
}
VALUE
rb_objspace_gc_enable(rb_objspace_t *objspace)
{
int old = dont_gc_val();
dont_gc_off();
return RBOOL(old);
}
static VALUE
gc_enable(rb_execution_context_t *ec, VALUE _)
{
return rb_gc_enable();
}
VALUE
rb_gc_disable_no_rest(void)
{
rb_objspace_t *objspace = &rb_objspace;
return gc_disable_no_rest(objspace);
}
static VALUE
gc_disable_no_rest(rb_objspace_t *objspace)
{
int old = dont_gc_val();
dont_gc_on();
return RBOOL(old);
}
VALUE
rb_gc_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
return rb_objspace_gc_disable(objspace);
}
VALUE
rb_objspace_gc_disable(rb_objspace_t *objspace)
{
gc_rest(objspace);
return gc_disable_no_rest(objspace);
}
static VALUE
gc_disable(rb_execution_context_t *ec, VALUE _)
{
return rb_gc_disable();
}
#if GC_CAN_COMPILE_COMPACTION
/*
* call-seq:
* GC.auto_compact = flag
*
* Updates automatic compaction mode.
*
* When enabled, the compactor will execute on every major collection.
*
* Enabling compaction will degrade performance on major collections.
*/
static VALUE
gc_set_auto_compact(VALUE _, VALUE v)
{
GC_ASSERT(GC_COMPACTION_SUPPORTED);
ruby_enable_autocompact = RTEST(v);
return v;
}
#else
# define gc_set_auto_compact rb_f_notimplement
#endif
#if GC_CAN_COMPILE_COMPACTION
/*
* call-seq:
* GC.auto_compact -> true or false
*
* Returns whether or not automatic compaction has been enabled.
*/
static VALUE
gc_get_auto_compact(VALUE _)
{
return RBOOL(ruby_enable_autocompact);
}
#else
# define gc_get_auto_compact rb_f_notimplement
#endif
static int
get_envparam_size(const char *name, size_t *default_value, size_t lower_bound)
{
const char *ptr = getenv(name);
ssize_t val;
if (ptr != NULL && *ptr) {
size_t unit = 0;
char *end;
#if SIZEOF_SIZE_T == SIZEOF_LONG_LONG
val = strtoll(ptr, &end, 0);
#else
val = strtol(ptr, &end, 0);
#endif
switch (*end) {
case 'k': case 'K':
unit = 1024;
++end;
break;
case 'm': case 'M':
unit = 1024*1024;
++end;
break;
case 'g': case 'G':
unit = 1024*1024*1024;
++end;
break;
}
while (*end && isspace((unsigned char)*end)) end++;
if (*end) {
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
return 0;
}
if (unit > 0) {
if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) {
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr);
return 0;
}
val *= unit;
}
if (val > 0 && (size_t)val > lower_bound) {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE")\n", name, val, *default_value);
}
*default_value = (size_t)val;
return 1;
}
else {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE") is ignored because it must be greater than %"PRIuSIZE".\n",
name, val, *default_value, lower_bound);
}
return 0;
}
}
return 0;
}
static int
get_envparam_double(const char *name, double *default_value, double lower_bound, double upper_bound, int accept_zero)
{
const char *ptr = getenv(name);
double val;
if (ptr != NULL && *ptr) {
char *end;
val = strtod(ptr, &end);
if (!*ptr || *end) {
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
return 0;
}
if (accept_zero && val == 0.0) {
goto accept;
}
else if (val <= lower_bound) {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n",
name, val, *default_value, lower_bound);
}
}
else if (upper_bound != 0.0 && /* ignore upper_bound if it is 0.0 */
val > upper_bound) {
if (RTEST(ruby_verbose)) {
fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be lower than %f.\n",
name, val, *default_value, upper_bound);
}
}
else {
goto accept;
}
}
return 0;
accept:
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value);
*default_value = val;
return 1;
}
static void
gc_set_initial_pages(void)
{
size_t min_pages;
rb_objspace_t *objspace = &rb_objspace;
gc_rest(objspace);
min_pages = gc_params.heap_init_slots / HEAP_PAGE_OBJ_LIMIT;
size_t pages_per_class = (min_pages - heap_eden_total_pages(objspace)) / SIZE_POOL_COUNT;
for (int i = 0; i < SIZE_POOL_COUNT; i++) {
rb_size_pool_t *size_pool = &size_pools[i];
heap_add_pages(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool), pages_per_class);
}
heap_add_pages(objspace, &size_pools[0], SIZE_POOL_EDEN_HEAP(&size_pools[0]), min_pages - heap_eden_total_pages(objspace));
}
/*
* GC tuning environment variables
*
* * RUBY_GC_HEAP_INIT_SLOTS
* - Initial allocation slots.
* * RUBY_GC_HEAP_FREE_SLOTS
* - Prepare at least this amount of slots after GC.
* - Allocate slots if there are not enough slots.
* * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1)
* - Allocate slots by this factor.
* - (next slots number) = (current slots number) * (this factor)
* * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1)
* - Allocation rate is limited to this number of slots.
* * RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO (new from 2.4)
* - Allocate additional pages when the number of free slots is
* lower than the value (total_slots * (this ratio)).
* * RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO (new from 2.4)
* - Allocate slots to satisfy this formula:
* free_slots = total_slots * goal_ratio
* - In other words, prepare (total_slots * goal_ratio) free slots.
* - if this value is 0.0, then use RUBY_GC_HEAP_GROWTH_FACTOR directly.
* * RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO (new from 2.4)
* - Allow to free pages when the number of free slots is
* greater than the value (total_slots * (this ratio)).
* * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1)
* - Do full GC when the number of old objects is more than R * N
* where R is this factor and
* N is the number of old objects just after last full GC.
*
* * obsolete
* * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1)
* * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1)
*
* * RUBY_GC_MALLOC_LIMIT
* * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1)
* * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
*
* * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1)
* * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1)
* * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
*/
void
ruby_gc_set_params(void)
{
rb_objspace_t *objspace = &rb_objspace;
/* RUBY_GC_HEAP_FREE_SLOTS */
if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) {
/* ok */
}
/* RUBY_GC_HEAP_INIT_SLOTS */
if (get_envparam_size("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) {
gc_set_initial_pages();
}
get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0, 0.0, FALSE);
get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0);
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO", &gc_params.heap_free_slots_min_ratio,
0.0, 1.0, FALSE);
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO", &gc_params.heap_free_slots_max_ratio,
gc_params.heap_free_slots_min_ratio, 1.0, FALSE);
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO", &gc_params.heap_free_slots_goal_ratio,
gc_params.heap_free_slots_min_ratio, gc_params.heap_free_slots_max_ratio, TRUE);
get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0, 0.0, TRUE);
if (get_envparam_size("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0)) {
malloc_limit = gc_params.malloc_limit_min;
}
get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0);
if (!gc_params.malloc_limit_max) { /* ignore max-check if 0 */
gc_params.malloc_limit_max = SIZE_MAX;
}
get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0, 0.0, FALSE);
#if RGENGC_ESTIMATE_OLDMALLOC
if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) {
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
}
get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0);
get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0, 0.0, FALSE);
#endif
}
static void
reachable_objects_from_callback(VALUE obj)
{
rb_ractor_t *cr = GET_RACTOR();
cr->mfd->mark_func(obj, cr->mfd->data);
}
void
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
{
rb_objspace_t *objspace = &rb_objspace;
RB_VM_LOCK_ENTER();
{
if (during_gc) rb_bug("rb_objspace_reachable_objects_from() is not supported while during_gc == true");
if (is_markable_object(objspace, obj)) {
rb_ractor_t *cr = GET_RACTOR();
struct gc_mark_func_data_struct mfd = {
.mark_func = func,
.data = data,
}, *prev_mfd = cr->mfd;
cr->mfd = &mfd;
gc_mark_children(objspace, obj);
cr->mfd = prev_mfd;
}
}
RB_VM_LOCK_LEAVE();
}
struct root_objects_data {
const char *category;
void (*func)(const char *category, VALUE, void *);
void *data;
};
static void
root_objects_from(VALUE obj, void *ptr)
{
const struct root_objects_data *data = (struct root_objects_data *)ptr;
(*data->func)(data->category, obj, data->data);
}
void
rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data)
{
rb_objspace_t *objspace = &rb_objspace;
objspace_reachable_objects_from_root(objspace, func, passing_data);
}
static void
objspace_reachable_objects_from_root(rb_objspace_t *objspace, void (func)(const char *category, VALUE, void *), void *passing_data)
{
if (during_gc) rb_bug("objspace_reachable_objects_from_root() is not supported while during_gc == true");
rb_ractor_t *cr = GET_RACTOR();
struct root_objects_data data = {
.func = func,
.data = passing_data,
};
struct gc_mark_func_data_struct mfd = {
.mark_func = root_objects_from,
.data = &data,
}, *prev_mfd = cr->mfd;
cr->mfd = &mfd;
gc_mark_roots(objspace, &data.category);
cr->mfd = prev_mfd;
}
/*
------------------------ Extended allocator ------------------------
*/
struct gc_raise_tag {
VALUE exc;
const char *fmt;
va_list *ap;
};
static void *
gc_vraise(void *ptr)
{
struct gc_raise_tag *argv = ptr;
rb_vraise(argv->exc, argv->fmt, *argv->ap);
UNREACHABLE_RETURN(NULL);
}
static void
gc_raise(VALUE exc, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
struct gc_raise_tag argv = {
exc, fmt, &ap,
};
if (ruby_thread_has_gvl_p()) {
gc_vraise(&argv);
UNREACHABLE;
}
else if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(gc_vraise, &argv);
UNREACHABLE;
}
else {
/* Not in a ruby thread */
fprintf(stderr, "%s", "[FATAL] ");
vfprintf(stderr, fmt, ap);
}
va_end(ap);
abort();
}
static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size);
static void
negative_size_allocation_error(const char *msg)
{
gc_raise(rb_eNoMemError, "%s", msg);
}
static void *
ruby_memerror_body(void *dummy)
{
rb_memerror();
return 0;
}
NORETURN(static void ruby_memerror(void));
RBIMPL_ATTR_MAYBE_UNUSED()
static void
ruby_memerror(void)
{
if (ruby_thread_has_gvl_p()) {
rb_memerror();
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(ruby_memerror_body, 0);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
}
}
exit(EXIT_FAILURE);
}
void
rb_memerror(void)
{
rb_execution_context_t *ec = GET_EC();
rb_objspace_t *objspace = rb_objspace_of(rb_ec_vm_ptr(ec));
VALUE exc;
if (0) {
// Print out pid, sleep, so you can attach debugger to see what went wrong:
fprintf(stderr, "rb_memerror pid=%"PRI_PIDT_PREFIX"d\n", getpid());
sleep(60);
}
if (during_gc) {
// TODO: OMG!! How to implement it?
gc_exit(objspace, gc_enter_event_rb_memerror, NULL);
}
exc = nomem_error;
if (!exc ||
rb_ec_raised_p(ec, RAISED_NOMEMORY)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
if (rb_ec_raised_p(ec, RAISED_NOMEMORY)) {
rb_ec_raised_clear(ec);
}
else {
rb_ec_raised_set(ec, RAISED_NOMEMORY);
exc = ruby_vm_special_exception_copy(exc);
}
ec->errinfo = exc;
EC_JUMP_TAG(ec, TAG_RAISE);
}
void *
rb_aligned_malloc(size_t alignment, size_t size)
{
/* alignment must be a power of 2 */
GC_ASSERT(((alignment - 1) & alignment) == 0);
GC_ASSERT(alignment % sizeof(void*) == 0);
void *res;
#if defined __MINGW32__
res = __mingw_aligned_malloc(size, alignment);
#elif defined _WIN32
void *_aligned_malloc(size_t, size_t);
res = _aligned_malloc(size, alignment);
#elif defined(HAVE_POSIX_MEMALIGN)
if (posix_memalign(&res, alignment, size) != 0) {
return NULL;
}
#elif defined(HAVE_MEMALIGN)
res = memalign(alignment, size);
#else
char* aligned;
res = malloc(alignment + size + sizeof(void*));
aligned = (char*)res + alignment + sizeof(void*);
aligned -= ((VALUE)aligned & (alignment - 1));
((void**)aligned)[-1] = res;
res = (void*)aligned;
#endif
GC_ASSERT((uintptr_t)res % alignment == 0);
return res;
}
static void
rb_aligned_free(void *ptr, size_t size)
{
#if defined __MINGW32__
__mingw_aligned_free(ptr);
#elif defined _WIN32
_aligned_free(ptr);
#elif defined(HAVE_POSIX_MEMALIGN) || defined(HAVE_MEMALIGN)
free(ptr);
#else
free(((void**)ptr)[-1]);
#endif
}
static inline size_t
objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint)
{
#ifdef HAVE_MALLOC_USABLE_SIZE
return malloc_usable_size(ptr);
#else
return hint;
#endif
}
enum memop_type {
MEMOP_TYPE_MALLOC = 0,
MEMOP_TYPE_FREE,
MEMOP_TYPE_REALLOC
};
static inline void
atomic_sub_nounderflow(size_t *var, size_t sub)
{
if (sub == 0) return;
while (1) {
size_t val = *var;
if (val < sub) sub = val;
if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break;
}
}
static void
objspace_malloc_gc_stress(rb_objspace_t *objspace)
{
if (ruby_gc_stressful && ruby_native_thread_p()) {
unsigned int reason = (GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP |
GPR_FLAG_STRESS | GPR_FLAG_MALLOC);
if (gc_stress_full_mark_after_malloc_p()) {
reason |= GPR_FLAG_FULL_MARK;
}
garbage_collect_with_gvl(objspace, reason);
}
}
static inline bool
objspace_malloc_increase_report(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
{
if (0) fprintf(stderr, "increase - ptr: %p, type: %s, new_size: %"PRIdSIZE", old_size: %"PRIdSIZE"\n",
mem,
type == MEMOP_TYPE_MALLOC ? "malloc" :
type == MEMOP_TYPE_FREE ? "free " :
type == MEMOP_TYPE_REALLOC ? "realloc": "error",
new_size, old_size);
return false;
}
static bool
objspace_malloc_increase_body(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
{
if (new_size > old_size) {
ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size);
#if RGENGC_ESTIMATE_OLDMALLOC
ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size);
#endif
}
else {
atomic_sub_nounderflow(&malloc_increase, old_size - new_size);
#if RGENGC_ESTIMATE_OLDMALLOC
atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size);
#endif
}
if (type == MEMOP_TYPE_MALLOC) {
retry:
if (malloc_increase > malloc_limit && ruby_native_thread_p() && !dont_gc_val()) {
if (ruby_thread_has_gvl_p() && is_lazy_sweeping(objspace)) {
gc_rest(objspace); /* gc_rest can reduce malloc_increase */
goto retry;
}
garbage_collect_with_gvl(objspace, GPR_FLAG_MALLOC);
}
}
#if MALLOC_ALLOCATED_SIZE
if (new_size >= old_size) {
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size);
}
else {
size_t dec_size = old_size - new_size;
size_t allocated_size = objspace->malloc_params.allocated_size;
#if MALLOC_ALLOCATED_SIZE_CHECK
if (allocated_size < dec_size) {
rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size.");
}
#endif
atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size);
}
switch (type) {
case MEMOP_TYPE_MALLOC:
ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
break;
case MEMOP_TYPE_FREE:
{
size_t allocations = objspace->malloc_params.allocations;
if (allocations > 0) {
atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1);
}
#if MALLOC_ALLOCATED_SIZE_CHECK
else {
GC_ASSERT(objspace->malloc_params.allocations > 0);
}
#endif
}
break;
case MEMOP_TYPE_REALLOC: /* ignore */ break;
}
#endif
return true;
}
#define objspace_malloc_increase(...) \
for (bool malloc_increase_done = objspace_malloc_increase_report(__VA_ARGS__); \
!malloc_increase_done; \
malloc_increase_done = objspace_malloc_increase_body(__VA_ARGS__))
struct malloc_obj_info { /* 4 words */
size_t size;
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
size_t gen;
const char *file;
size_t line;
#endif
};
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
const char *ruby_malloc_info_file;
int ruby_malloc_info_line;
#endif
static inline size_t
objspace_malloc_prepare(rb_objspace_t *objspace, size_t size)
{
if (size == 0) size = 1;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(struct malloc_obj_info);
#endif
return size;
}
static inline void *
objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
{
size = objspace_malloc_size(objspace, mem, size);
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC);
#if CALC_EXACT_MALLOC_SIZE
{
struct malloc_obj_info *info = mem;
info->size = size;
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
info->gen = objspace->profile.count;
info->file = ruby_malloc_info_file;
info->line = info->file ? ruby_malloc_info_line : 0;
#endif
mem = info + 1;
}
#endif
return mem;
}
#if defined(__GNUC__) && RUBY_DEBUG
#define RB_BUG_INSTEAD_OF_RB_MEMERROR 1
#endif
#ifndef RB_BUG_INSTEAD_OF_RB_MEMERROR
# define RB_BUG_INSTEAD_OF_RB_MEMERROR 0
#endif
#define GC_MEMERROR(...) \
((RB_BUG_INSTEAD_OF_RB_MEMERROR+0) ? rb_bug("" __VA_ARGS__) : rb_memerror())
#define TRY_WITH_GC(siz, expr) do { \
const gc_profile_record_flag gpr = \
GPR_FLAG_FULL_MARK | \
GPR_FLAG_IMMEDIATE_MARK | \
GPR_FLAG_IMMEDIATE_SWEEP | \
GPR_FLAG_MALLOC; \
objspace_malloc_gc_stress(objspace); \
\
if (LIKELY((expr))) { \
/* Success on 1st try */ \
} \
else if (!garbage_collect_with_gvl(objspace, gpr)) { \
/* @shyouhei thinks this doesn't happen */ \
GC_MEMERROR("TRY_WITH_GC: could not GC"); \
} \
else if ((expr)) { \
/* Success on 2nd try */ \
} \
else { \
GC_MEMERROR("TRY_WITH_GC: could not allocate:" \
"%"PRIdSIZE" bytes for %s", \
siz, # expr); \
} \
} while (0)
/* these shouldn't be called directly.
* objspace_* functions do not check allocation size.
*/
static void *
objspace_xmalloc0(rb_objspace_t *objspace, size_t size)
{
void *mem;
size = objspace_malloc_prepare(objspace, size);
TRY_WITH_GC(size, mem = malloc(size));
RB_DEBUG_COUNTER_INC(heap_xmalloc);
return objspace_malloc_fixup(objspace, mem, size);
}
static inline size_t
xmalloc2_size(const size_t count, const size_t elsize)
{
return size_mul_or_raise(count, elsize, rb_eArgError);
}
static void *
objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size)
{
void *mem;
if (!ptr) return objspace_xmalloc0(objspace, new_size);
/*
* The behavior of realloc(ptr, 0) is implementation defined.
* Therefore we don't use realloc(ptr, 0) for portability reason.
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
*/
if (new_size == 0) {
if ((mem = objspace_xmalloc0(objspace, 0)) != NULL) {
/*
* - OpenBSD's malloc(3) man page says that when 0 is passed, it
* returns a non-NULL pointer to an access-protected memory page.
* The returned pointer cannot be read / written at all, but
* still be a valid argument of free().
*
* https://man.openbsd.org/malloc.3
*
* - Linux's malloc(3) man page says that it _might_ perhaps return
* a non-NULL pointer when its argument is 0. That return value
* is safe (and is expected) to be passed to free().
*
* https://man7.org/linux/man-pages/man3/malloc.3.html
*
* - As I read the implementation jemalloc's malloc() returns fully
* normal 16 bytes memory region when its argument is 0.
*
* - As I read the implementation musl libc's malloc() returns
* fully normal 32 bytes memory region when its argument is 0.
*
* - Other malloc implementations can also return non-NULL.
*/
objspace_xfree(objspace, ptr, old_size);
return mem;
}
else {
/*
* It is dangerous to return NULL here, because that could lead to
* RCE. Fallback to 1 byte instead of zero.
*
* https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932
*/
new_size = 1;
}
}
#if CALC_EXACT_MALLOC_SIZE
{
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
new_size += sizeof(struct malloc_obj_info);
ptr = info;
old_size = info->size;
}
#endif
old_size = objspace_malloc_size(objspace, ptr, old_size);
TRY_WITH_GC(new_size, mem = RB_GNUC_EXTENSION_BLOCK(realloc(ptr, new_size)));
new_size = objspace_malloc_size(objspace, mem, new_size);
#if CALC_EXACT_MALLOC_SIZE
{
struct malloc_obj_info *info = mem;
info->size = new_size;
mem = info + 1;
}
#endif
objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC);
RB_DEBUG_COUNTER_INC(heap_xrealloc);
return mem;
}
#if CALC_EXACT_MALLOC_SIZE && USE_GC_MALLOC_OBJ_INFO_DETAILS
#define MALLOC_INFO_GEN_SIZE 100
#define MALLOC_INFO_SIZE_SIZE 10
static size_t malloc_info_gen_cnt[MALLOC_INFO_GEN_SIZE];
static size_t malloc_info_gen_size[MALLOC_INFO_GEN_SIZE];
static size_t malloc_info_size[MALLOC_INFO_SIZE_SIZE+1];
static st_table *malloc_info_file_table;
static int
mmalloc_info_file_i(st_data_t key, st_data_t val, st_data_t dmy)
{
const char *file = (void *)key;
const size_t *data = (void *)val;
fprintf(stderr, "%s\t%"PRIdSIZE"\t%"PRIdSIZE"\n", file, data[0], data[1]);
return ST_CONTINUE;
}
__attribute__((destructor))
void
rb_malloc_info_show_results(void)
{
int i;
fprintf(stderr, "* malloc_info gen statistics\n");
for (i=0; i<MALLOC_INFO_GEN_SIZE; i++) {
if (i == MALLOC_INFO_GEN_SIZE-1) {
fprintf(stderr, "more\t%"PRIdSIZE"\t%"PRIdSIZE"\n", malloc_info_gen_cnt[i], malloc_info_gen_size[i]);
}
else {
fprintf(stderr, "%d\t%"PRIdSIZE"\t%"PRIdSIZE"\n", i, malloc_info_gen_cnt[i], malloc_info_gen_size[i]);
}
}
fprintf(stderr, "* malloc_info size statistics\n");
for (i=0; i<MALLOC_INFO_SIZE_SIZE; i++) {
int s = 16 << i;
fprintf(stderr, "%d\t%"PRIdSIZE"\n", s, malloc_info_size[i]);
}
fprintf(stderr, "more\t%"PRIdSIZE"\n", malloc_info_size[i]);
if (malloc_info_file_table) {
fprintf(stderr, "* malloc_info file statistics\n");
st_foreach(malloc_info_file_table, mmalloc_info_file_i, 0);
}
}
#else
void
rb_malloc_info_show_results(void)
{
}
#endif
static void
objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size)
{
if (!ptr) {
/*
* ISO/IEC 9899 says "If ptr is a null pointer, no action occurs" since
* its first version. We would better follow.
*/
return;
}
#if CALC_EXACT_MALLOC_SIZE
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
ptr = info;
old_size = info->size;
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
{
int gen = (int)(objspace->profile.count - info->gen);
int gen_index = gen >= MALLOC_INFO_GEN_SIZE ? MALLOC_INFO_GEN_SIZE-1 : gen;
int i;
malloc_info_gen_cnt[gen_index]++;
malloc_info_gen_size[gen_index] += info->size;
for (i=0; i<MALLOC_INFO_SIZE_SIZE; i++) {
size_t s = 16 << i;
if (info->size <= s) {
malloc_info_size[i]++;
goto found;
}
}
malloc_info_size[i]++;
found:;
{
st_data_t key = (st_data_t)info->file, d;
size_t *data;
if (malloc_info_file_table == NULL) {
malloc_info_file_table = st_init_numtable_with_size(1024);
}
if (st_lookup(malloc_info_file_table, key, &d)) {
/* hit */
data = (size_t *)d;
}
else {
data = malloc(xmalloc2_size(2, sizeof(size_t)));
if (data == NULL) rb_bug("objspace_xfree: can not allocate memory");
data[0] = data[1] = 0;
st_insert(malloc_info_file_table, key, (st_data_t)data);
}
data[0] ++;
data[1] += info->size;
};
if (0 && gen >= 2) { /* verbose output */
if (info->file) {
fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d, pos: %s:%"PRIdSIZE"\n",
info->size, gen, info->file, info->line);
}
else {
fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d\n",
info->size, gen);
}
}
}
#endif
#endif
old_size = objspace_malloc_size(objspace, ptr, old_size);
objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE) {
free(ptr);
ptr = NULL;
RB_DEBUG_COUNTER_INC(heap_xfree);
}
}
static void *
ruby_xmalloc0(size_t size)
{
return objspace_xmalloc0(&rb_objspace, size);
}
void *
ruby_xmalloc_body(size_t size)
{
if ((ssize_t)size < 0) {
negative_size_allocation_error("too large allocation size");
}
return ruby_xmalloc0(size);
}
void
ruby_malloc_size_overflow(size_t count, size_t elsize)
{
rb_raise(rb_eArgError,
"malloc: possible integer overflow (%"PRIuSIZE"*%"PRIuSIZE")",
count, elsize);
}
void *
ruby_xmalloc2_body(size_t n, size_t size)
{
return objspace_xmalloc0(&rb_objspace, xmalloc2_size(n, size));
}
static void *
objspace_xcalloc(rb_objspace_t *objspace, size_t size)
{
void *mem;
size = objspace_malloc_prepare(objspace, size);
TRY_WITH_GC(size, mem = calloc1(size));
return objspace_malloc_fixup(objspace, mem, size);
}
void *
ruby_xcalloc_body(size_t n, size_t size)
{
return objspace_xcalloc(&rb_objspace, xmalloc2_size(n, size));
}
#ifdef ruby_sized_xrealloc
#undef ruby_sized_xrealloc
#endif
void *
ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size)
{
if ((ssize_t)new_size < 0) {
negative_size_allocation_error("too large allocation size");
}
return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size);
}
void *
ruby_xrealloc_body(void *ptr, size_t new_size)
{
return ruby_sized_xrealloc(ptr, new_size, 0);
}
#ifdef ruby_sized_xrealloc2
#undef ruby_sized_xrealloc2
#endif
void *
ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n)
{
size_t len = xmalloc2_size(n, size);
return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size);
}
void *
ruby_xrealloc2_body(void *ptr, size_t n, size_t size)
{
return ruby_sized_xrealloc2(ptr, n, size, 0);
}
#ifdef ruby_sized_xfree
#undef ruby_sized_xfree
#endif
void
ruby_sized_xfree(void *x, size_t size)
{
if (x) {
objspace_xfree(&rb_objspace, x, size);
}
}
void
ruby_xfree(void *x)
{
ruby_sized_xfree(x, 0);
}
void *
rb_xmalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */
{
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
return ruby_xmalloc(w);
}
void *
rb_xcalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */
{
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
return ruby_xcalloc(w, 1);
}
void *
rb_xrealloc_mul_add(const void *p, size_t x, size_t y, size_t z) /* x * y + z */
{
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
return ruby_xrealloc((void *)p, w);
}
void *
rb_xmalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
{
size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError);
return ruby_xmalloc(u);
}
void *
rb_xcalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
{
size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError);
return ruby_xcalloc(u, 1);
}
/* Mimic ruby_xmalloc, but need not rb_objspace.
* should return pointer suitable for ruby_xfree
*/
void *
ruby_mimmalloc(size_t size)
{
void *mem;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(struct malloc_obj_info);
#endif
mem = malloc(size);
#if CALC_EXACT_MALLOC_SIZE
if (!mem) {
return NULL;
}
else
/* set 0 for consistency of allocated_size/allocations */
{
struct malloc_obj_info *info = mem;
info->size = 0;
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
info->gen = 0;
info->file = NULL;
info->line = 0;
#endif
mem = info + 1;
}
#endif
return mem;
}
void
ruby_mimfree(void *ptr)
{
#if CALC_EXACT_MALLOC_SIZE
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
ptr = info;
#endif
free(ptr);
}
void *
rb_alloc_tmp_buffer_with_count(volatile VALUE *store, size_t size, size_t cnt)
{
void *ptr;
VALUE imemo;
rb_imemo_tmpbuf_t *tmpbuf;
/* Keep the order; allocate an empty imemo first then xmalloc, to
* get rid of potential memory leak */
imemo = rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(NULL, 0);
*store = imemo;
ptr = ruby_xmalloc0(size);
tmpbuf = (rb_imemo_tmpbuf_t *)imemo;
tmpbuf->ptr = ptr;
tmpbuf->cnt = cnt;
return ptr;
}
void *
rb_alloc_tmp_buffer(volatile VALUE *store, long len)
{
long cnt;
if (len < 0 || (cnt = (long)roomof(len, sizeof(VALUE))) < 0) {
rb_raise(rb_eArgError, "negative buffer size (or size too big)");
}
return rb_alloc_tmp_buffer_with_count(store, len, cnt);
}
void
rb_free_tmp_buffer(volatile VALUE *store)
{
rb_imemo_tmpbuf_t *s = (rb_imemo_tmpbuf_t*)ATOMIC_VALUE_EXCHANGE(*store, 0);
if (s) {
void *ptr = ATOMIC_PTR_EXCHANGE(s->ptr, 0);
s->cnt = 0;
ruby_xfree(ptr);
}
}
#if MALLOC_ALLOCATED_SIZE
/*
* call-seq:
* GC.malloc_allocated_size -> Integer
*
* Returns the size of memory allocated by malloc().
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocated_size(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocated_size);
}
/*
* call-seq:
* GC.malloc_allocations -> Integer
*
* Returns the number of malloc() allocations.
*
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
*/
static VALUE
gc_malloc_allocations(VALUE self)
{
return UINT2NUM(rb_objspace.malloc_params.allocations);
}
#endif
void
rb_gc_adjust_memory_usage(ssize_t diff)
{
rb_objspace_t *objspace = &rb_objspace;
if (diff > 0) {
objspace_malloc_increase(objspace, 0, diff, 0, MEMOP_TYPE_REALLOC);
}
else if (diff < 0) {
objspace_malloc_increase(objspace, 0, 0, -diff, MEMOP_TYPE_REALLOC);
}
}
/*
------------------------------ WeakMap ------------------------------
*/
struct weakmap {
st_table *obj2wmap; /* obj -> [ref,...] */
st_table *wmap2obj; /* ref -> obj */
VALUE final;
};
#define WMAP_DELETE_DEAD_OBJECT_IN_MARK 0
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK
static int
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
VALUE obj = (VALUE)val;
if (!is_live_object(objspace, obj)) return ST_DELETE;
return ST_CONTINUE;
}
#endif
static void
wmap_compact(void *ptr)
{
struct weakmap *w = ptr;
if (w->wmap2obj) rb_gc_update_tbl_refs(w->wmap2obj);
if (w->obj2wmap) rb_gc_update_tbl_refs(w->obj2wmap);
w->final = rb_gc_location(w->final);
}
static void
wmap_mark(void *ptr)
{
struct weakmap *w = ptr;
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK
if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
#endif
rb_gc_mark_movable(w->final);
}
static int
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE *ptr = (VALUE *)val;
ruby_sized_xfree(ptr, (ptr[0] + 1) * sizeof(VALUE));
return ST_CONTINUE;
}
static void
wmap_free(void *ptr)
{
struct weakmap *w = ptr;
st_foreach(w->obj2wmap, wmap_free_map, 0);
st_free_table(w->obj2wmap);
st_free_table(w->wmap2obj);
}
static int
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE *ptr = (VALUE *)val;
*(size_t *)arg += (ptr[0] + 1) * sizeof(VALUE);
return ST_CONTINUE;
}
static size_t
wmap_memsize(const void *ptr)
{
size_t size;
const struct weakmap *w = ptr;
size = sizeof(*w);
size += st_memsize(w->obj2wmap);
size += st_memsize(w->wmap2obj);
st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
return size;
}
static const rb_data_type_t weakmap_type = {
"weakmap",
{
wmap_mark,
wmap_free,
wmap_memsize,
wmap_compact,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE wmap_finalize(RB_BLOCK_CALL_FUNC_ARGLIST(objid, self));
static VALUE
wmap_allocate(VALUE klass)
{
struct weakmap *w;
VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
w->obj2wmap = rb_init_identtable();
w->wmap2obj = rb_init_identtable();
w->final = rb_func_lambda_new(wmap_finalize, obj, 1, 1);
return obj;
}
static int
wmap_live_p(rb_objspace_t *objspace, VALUE obj)
{
if (SPECIAL_CONST_P(obj)) return TRUE;
/* If is_pointer_to_heap returns false, the page could be in the tomb heap
* or have already been freed. */
if (!is_pointer_to_heap(objspace, (void *)obj)) return FALSE;
void *poisoned = asan_unpoison_object_temporary(obj);
enum ruby_value_type t = BUILTIN_TYPE(obj);
int ret = (!(t == T_NONE || t >= T_FIXNUM || t == T_ICLASS) &&
is_live_object(objspace, obj));
if (poisoned) {
asan_poison_object(obj);
}
return ret;
}
static int
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
{
VALUE wmap, *ptr, size, i, j;
if (!existing) return ST_STOP;
wmap = (VALUE)arg, ptr = (VALUE *)*value;
for (i = j = 1, size = ptr[0]; i <= size; ++i) {
if (ptr[i] != wmap) {
ptr[j++] = ptr[i];
}
}
if (j == 1) {
ruby_sized_xfree(ptr, i * sizeof(VALUE));
return ST_DELETE;
}
if (j < i) {
SIZED_REALLOC_N(ptr, VALUE, j + 1, i);
ptr[0] = j;
*value = (st_data_t)ptr;
}
return ST_CONTINUE;
}
/* :nodoc: */
static VALUE
wmap_finalize(RB_BLOCK_CALL_FUNC_ARGLIST(objid, self))
{
st_data_t orig, wmap, data;
VALUE obj, *rids, i, size;
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
/* Get reference from object id. */
if ((obj = id2ref_obj_tbl(&rb_objspace, objid)) == Qundef) {
rb_bug("wmap_finalize: objid is not found.");
}
/* obj is original referenced object and/or weak reference. */
orig = (st_data_t)obj;
if (st_delete(w->obj2wmap, &orig, &data)) {
rids = (VALUE *)data;
size = *rids++;
for (i = 0; i < size; ++i) {
wmap = (st_data_t)rids[i];
st_delete(w->wmap2obj, &wmap, NULL);
}
ruby_sized_xfree((VALUE *)data, (size + 1) * sizeof(VALUE));
}
wmap = (st_data_t)obj;
if (st_delete(w->wmap2obj, &wmap, &orig)) {
wmap = (st_data_t)obj;
st_update(w->obj2wmap, orig, wmap_final_func, wmap);
}
return self;
}
struct wmap_iter_arg {
rb_objspace_t *objspace;
VALUE value;
};
static VALUE
wmap_inspect_append(rb_objspace_t *objspace, VALUE str, VALUE obj)
{
if (SPECIAL_CONST_P(obj)) {
return rb_str_append(str, rb_inspect(obj));
}
else if (wmap_live_p(objspace, obj)) {
return rb_str_append(str, rb_any_to_s(obj));
}
else {
return rb_str_catf(str, "#<collected:%p>", (void*)obj);
}
}
static int
wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE str = argp->value;
VALUE k = (VALUE)key, v = (VALUE)val;
if (RSTRING_PTR(str)[0] == '#') {
rb_str_cat2(str, ", ");
}
else {
rb_str_cat2(str, ": ");
RSTRING_PTR(str)[0] = '#';
}
wmap_inspect_append(objspace, str, k);
rb_str_cat2(str, " => ");
wmap_inspect_append(objspace, str, v);
return ST_CONTINUE;
}
static VALUE
wmap_inspect(VALUE self)
{
VALUE str;
VALUE c = rb_class_name(CLASS_OF(self));
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self);
if (w->wmap2obj) {
args.objspace = &rb_objspace;
args.value = str;
st_foreach(w->wmap2obj, wmap_inspect_i, (st_data_t)&args);
}
RSTRING_PTR(str)[0] = '#';
rb_str_cat2(str, ">");
return str;
}
static inline bool
wmap_live_entry_p(rb_objspace_t *objspace, st_data_t key, st_data_t val)
{
return wmap_live_p(objspace, (VALUE)key) && wmap_live_p(objspace, (VALUE)val);
}
static int
wmap_each_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
if (wmap_live_entry_p(objspace, key, val)) {
rb_yield_values(2, (VALUE)key, (VALUE)val);
return ST_CONTINUE;
}
else {
return ST_DELETE;
}
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace);
return self;
}
static int
wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
if (wmap_live_entry_p(objspace, key, val)) {
rb_yield((VALUE)key);
return ST_CONTINUE;
}
else {
return ST_DELETE;
}
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each_key(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace);
return self;
}
static int
wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg)
{
rb_objspace_t *objspace = (rb_objspace_t *)arg;
if (wmap_live_entry_p(objspace, key, val)) {
rb_yield((VALUE)val);
return ST_CONTINUE;
}
else {
return ST_DELETE;
}
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_each_value(VALUE self)
{
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace);
return self;
}
static int
wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE ary = argp->value;
if (wmap_live_entry_p(objspace, key, val)) {
rb_ary_push(ary, (VALUE)key);
return ST_CONTINUE;
}
else {
return ST_DELETE;
}
}
/* Iterates over keys and objects in a weakly referenced object */
static VALUE
wmap_keys(VALUE self)
{
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
args.objspace = &rb_objspace;
args.value = rb_ary_new();
st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)&args);
return args.value;
}
static int
wmap_values_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
rb_objspace_t *objspace = argp->objspace;
VALUE ary = argp->value;
if (wmap_live_entry_p(objspace, key, val)) {
rb_ary_push(ary, (VALUE)val);
return ST_CONTINUE;
}
else {
return ST_DELETE;
}
}
/* Iterates over values and objects in a weakly referenced object */
static VALUE
wmap_values(VALUE self)
{
struct weakmap *w;
struct wmap_iter_arg args;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
args.objspace = &rb_objspace;
args.value = rb_ary_new();
st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args);
return args.value;
}
static int
wmap_aset_update(st_data_t *key, st_data_t *val, st_data_t arg, int existing)
{
VALUE size, *ptr, *optr;
if (existing) {
size = (ptr = optr = (VALUE *)*val)[0];
++size;
SIZED_REALLOC_N(ptr, VALUE, size + 1, size);
}
else {
optr = 0;
size = 1;
ptr = ruby_xmalloc0(2 * sizeof(VALUE));
}
ptr[0] = size;
ptr[size] = (VALUE)arg;
if (ptr == optr) return ST_STOP;
*val = (st_data_t)ptr;
return ST_CONTINUE;
}
/* Creates a weak reference from the given key to the given value */
static VALUE
wmap_aset(VALUE self, VALUE key, VALUE value)
{
struct weakmap *w;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
if (FL_ABLE(value)) {
define_final0(value, w->final);
}
if (FL_ABLE(key)) {
define_final0(key, w->final);
}
st_update(w->obj2wmap, (st_data_t)value, wmap_aset_update, key);
st_insert(w->wmap2obj, (st_data_t)key, (st_data_t)value);
return nonspecial_obj_id(value);
}
/* Retrieves a weakly referenced object with the given key */
static VALUE
wmap_lookup(VALUE self, VALUE key)
{
st_data_t data;
VALUE obj;
struct weakmap *w;
rb_objspace_t *objspace = &rb_objspace;
GC_ASSERT(wmap_live_p(objspace, key));
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
if (!st_lookup(w->wmap2obj, (st_data_t)key, &data)) return Qundef;
obj = (VALUE)data;
if (!wmap_live_p(objspace, obj)) return Qundef;
return obj;
}
/* Retrieves a weakly referenced object with the given key */
static VALUE
wmap_aref(VALUE self, VALUE key)
{
VALUE obj = wmap_lookup(self, key);
return obj != Qundef ? obj : Qnil;
}
/* Returns +true+ if +key+ is registered */
static VALUE
wmap_has_key(VALUE self, VALUE key)
{
return RBOOL(wmap_lookup(self, key) != Qundef);
}
/* Returns the number of referenced objects */
static VALUE
wmap_size(VALUE self)
{
struct weakmap *w;
st_index_t n;
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
n = w->wmap2obj->num_entries;
#if SIZEOF_ST_INDEX_T <= SIZEOF_LONG
return ULONG2NUM(n);
#else
return ULL2NUM(n);
#endif
}
/*
------------------------------ GC profiler ------------------------------
*/
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
static bool
current_process_time(struct timespec *ts)
{
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
{
static int try_clock_gettime = 1;
if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, ts) == 0) {
return true;
}
else {
try_clock_gettime = 0;
}
}
#endif
#ifdef RUSAGE_SELF
{
struct rusage usage;
struct timeval time;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
time = usage.ru_utime;
ts->tv_sec = time.tv_sec;
ts->tv_nsec = (int32_t)time.tv_usec * 1000;
return true;
}
}
#endif
#ifdef _WIN32
{
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER ui;
if (GetProcessTimes(GetCurrentProcess(),
&creation_time, &exit_time, &kernel_time, &user_time) != 0) {
memcpy(&ui, &user_time, sizeof(FILETIME));
#define PER100NSEC (uint64_t)(1000 * 1000 * 10)
ts->tv_nsec = (long)(ui.QuadPart % PER100NSEC);
ts->tv_sec = (time_t)(ui.QuadPart / PER100NSEC);
return true;
}
}
#endif
return false;
}
static double
getrusage_time(void)
{
struct timespec ts;
if (current_process_time(&ts)) {
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
else {
return 0.0;
}
}
static inline void
gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason)
{
if (objspace->profile.run) {
size_t index = objspace->profile.next_index;
gc_profile_record *record;
/* create new record */
objspace->profile.next_index++;
if (!objspace->profile.records) {
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
objspace->profile.records = malloc(xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size));
}
if (index >= objspace->profile.size) {
void *ptr;
objspace->profile.size += 1000;
ptr = realloc(objspace->profile.records, xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size));
if (!ptr) rb_memerror();
objspace->profile.records = ptr;
}
if (!objspace->profile.records) {
rb_bug("gc_profile malloc or realloc miss");
}
record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1];
MEMZERO(record, gc_profile_record, 1);
/* setup before-GC parameter */
record->flags = reason | (ruby_gc_stressful ? GPR_FLAG_STRESS : 0);
#if MALLOC_ALLOCATED_SIZE
record->allocated_size = malloc_allocated_size;
#endif
#if GC_PROFILE_MORE_DETAIL && GC_PROFILE_DETAIL_MEMORY
#ifdef RUSAGE_SELF
{
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
record->maxrss = usage.ru_maxrss;
record->minflt = usage.ru_minflt;
record->majflt = usage.ru_majflt;
}
}
#endif
#endif
}
}
static inline void
gc_prof_timer_start(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
#if GC_PROFILE_MORE_DETAIL
record->prepare_time = objspace->profile.prepare_time;
#endif
record->gc_time = 0;
record->gc_invoke_time = getrusage_time();
}
}
static double
elapsed_time_from(double time)
{
double now = getrusage_time();
if (now > time) {
return now - time;
}
else {
return 0;
}
}
static inline void
gc_prof_timer_stop(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->gc_time = elapsed_time_from(record->gc_invoke_time);
record->gc_invoke_time -= objspace->profile.invoke_time;
}
}
#define RUBY_DTRACE_GC_HOOK(name) \
do {if (RUBY_DTRACE_GC_##name##_ENABLED()) RUBY_DTRACE_GC_##name();} while (0)
static inline void
gc_prof_mark_timer_start(rb_objspace_t *objspace)
{
RUBY_DTRACE_GC_HOOK(MARK_BEGIN);
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_prof_record(objspace)->gc_mark_time = getrusage_time();
}
#endif
}
static inline void
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
{
RUBY_DTRACE_GC_HOOK(MARK_END);
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->gc_mark_time = elapsed_time_from(record->gc_mark_time);
}
#endif
}
static inline void
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
{
RUBY_DTRACE_GC_HOOK(SWEEP_BEGIN);
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) {
objspace->profile.gc_sweep_start_time = getrusage_time();
}
}
}
static inline void
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
{
RUBY_DTRACE_GC_HOOK(SWEEP_END);
if (gc_prof_enabled(objspace)) {
double sweep_time;
gc_profile_record *record = gc_prof_record(objspace);
if (record->gc_time > 0) {
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
/* need to accumulate GC time for lazy sweep after gc() */
record->gc_time += sweep_time;
}
else if (GC_PROFILE_MORE_DETAIL) {
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
}
#if GC_PROFILE_MORE_DETAIL
record->gc_sweep_time += sweep_time;
if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE;
#endif
if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE;
}
}
static inline void
gc_prof_set_malloc_info(rb_objspace_t *objspace)
{
#if GC_PROFILE_MORE_DETAIL
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
record->allocate_increase = malloc_increase;
record->allocate_limit = malloc_limit;
}
#endif
}
static inline void
gc_prof_set_heap_info(rb_objspace_t *objspace)
{
if (gc_prof_enabled(objspace)) {
gc_profile_record *record = gc_prof_record(objspace);
size_t live = objspace->profile.total_allocated_objects_at_gc_start - objspace->profile.total_freed_objects;
size_t total = objspace->profile.heap_used_at_gc_start * HEAP_PAGE_OBJ_LIMIT;
#if GC_PROFILE_MORE_DETAIL
record->heap_use_pages = objspace->profile.heap_used_at_gc_start;
record->heap_live_objects = live;
record->heap_free_objects = total - live;
#endif
record->heap_total_objects = total;
record->heap_use_size = live * sizeof(RVALUE);
record->heap_total_size = total * sizeof(RVALUE);
}
}
/*
* call-seq:
* GC::Profiler.clear -> nil
*
* Clears the GC profiler data.
*
*/
static VALUE
gc_profile_clear(VALUE _)
{
rb_objspace_t *objspace = &rb_objspace;
void *p = objspace->profile.records;
objspace->profile.records = NULL;
objspace->profile.size = 0;
objspace->profile.next_index = 0;
objspace->profile.current_record = 0;
if (p) {
free(p);
}
return Qnil;
}
/*
* call-seq:
* GC::Profiler.raw_data -> [Hash, ...]
*
* Returns an Array of individual raw profile data Hashes ordered
* from earliest to latest by +:GC_INVOKE_TIME+.
*
* For example:
*
* [
* {
* :GC_TIME=>1.3000000000000858e-05,
* :GC_INVOKE_TIME=>0.010634999999999999,
* :HEAP_USE_SIZE=>289640,
* :HEAP_TOTAL_SIZE=>588960,
* :HEAP_TOTAL_OBJECTS=>14724,
* :GC_IS_MARKED=>false
* },
* # ...
* ]
*
* The keys mean:
*
* +:GC_TIME+::
* Time elapsed in seconds for this GC run
* +:GC_INVOKE_TIME+::
* Time elapsed in seconds from startup to when the GC was invoked
* +:HEAP_USE_SIZE+::
* Total bytes of heap used
* +:HEAP_TOTAL_SIZE+::
* Total size of heap in bytes
* +:HEAP_TOTAL_OBJECTS+::
* Total number of objects
* +:GC_IS_MARKED+::
* Returns +true+ if the GC is in mark phase
*
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
* to the following hash keys:
*
* +:GC_MARK_TIME+::
* +:GC_SWEEP_TIME+::
* +:ALLOCATE_INCREASE+::
* +:ALLOCATE_LIMIT+::
* +:HEAP_USE_PAGES+::
* +:HEAP_LIVE_OBJECTS+::
* +:HEAP_FREE_OBJECTS+::
* +:HAVE_FINALIZE+::
*
*/
static VALUE
gc_profile_record_get(VALUE _)
{
VALUE prof;
VALUE gc_profile = rb_ary_new();
size_t i;
rb_objspace_t *objspace = (&rb_objspace);
if (!objspace->profile.run) {
return Qnil;
}
for (i =0; i < objspace->profile.next_index; i++) {
gc_profile_record *record = &objspace->profile.records[i];
prof = rb_hash_new();
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(0, rb_hash_new(), record->flags));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("MOVED_OBJECTS")), SIZET2NUM(record->moved_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
#if GC_PROFILE_MORE_DETAIL
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), RBOOL(record->flags & GPR_FLAG_HAVE_FINALIZE));
#endif
#if RGENGC_PROFILE > 0
rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects));
#endif
rb_ary_push(gc_profile, prof);
}
return gc_profile;
}
#if GC_PROFILE_MORE_DETAIL
#define MAJOR_REASON_MAX 0x10
static char *
gc_profile_dump_major_reason(unsigned int flags, char *buff)
{
unsigned int reason = flags & GPR_FLAG_MAJOR_MASK;
int i = 0;
if (reason == GPR_FLAG_NONE) {
buff[0] = '-';
buff[1] = 0;
}
else {
#define C(x, s) \
if (reason & GPR_FLAG_MAJOR_BY_##x) { \
buff[i++] = #x[0]; \
if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \
buff[i] = 0; \
}
C(NOFREE, N);
C(OLDGEN, O);
C(SHADY, S);
#if RGENGC_ESTIMATE_OLDMALLOC
C(OLDMALLOC, M);
#endif
#undef C
}
return buff;
}
#endif
static void
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
{
rb_objspace_t *objspace = &rb_objspace;
size_t count = objspace->profile.next_index;
#ifdef MAJOR_REASON_MAX
char reason_str[MAJOR_REASON_MAX];
#endif
if (objspace->profile.run && count /* > 1 */) {
size_t i;
const gc_profile_record *record;
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count));
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
for (i = 0; i < count; i++) {
record = &objspace->profile.records[i];
append(out, rb_sprintf("%5"PRIuSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
i+1, record->gc_invoke_time, record->heap_use_size,
record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
}
#if GC_PROFILE_MORE_DETAIL
const char *str = "\n\n" \
"More detail.\n" \
"Prepare Time = Previously GC's rest sweep time\n"
"Index Flags Allocate Inc. Allocate Limit"
#if CALC_EXACT_MALLOC_SIZE
" Allocated Size"
#endif
" Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj"
#if RGENGC_PROFILE
" OldgenObj RemNormObj RemShadObj"
#endif
#if GC_PROFILE_DETAIL_MEMORY
" MaxRSS(KB) MinorFLT MajorFLT"
#endif
"\n";
append(out, rb_str_new_cstr(str));
for (i = 0; i < count; i++) {
record = &objspace->profile.records[i];
append(out, rb_sprintf("%5"PRIuSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
#if CALC_EXACT_MALLOC_SIZE
" %15"PRIuSIZE
#endif
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
#if RGENGC_PROFILE
"%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
#endif
#if GC_PROFILE_DETAIL_MEMORY
"%11ld %8ld %8ld"
#endif
"\n",
i+1,
gc_profile_dump_major_reason(record->flags, reason_str),
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
(record->flags & GPR_FLAG_METHOD) ? "METHOD" :
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
record->allocate_increase, record->allocate_limit,
#if CALC_EXACT_MALLOC_SIZE
record->allocated_size,
#endif
record->heap_use_pages,
record->gc_mark_time*1000,
record->gc_sweep_time*1000,
record->prepare_time*1000,
record->heap_live_objects,
record->heap_free_objects,
record->removing_objects,
record->empty_objects
#if RGENGC_PROFILE
,
record->old_objects,
record->remembered_normal_objects,
record->remembered_shady_objects
#endif
#if GC_PROFILE_DETAIL_MEMORY
,
record->maxrss / 1024,
record->minflt,
record->majflt
#endif
));
}
#endif
}
}
/*
* call-seq:
* GC::Profiler.result -> String
*
* Returns a profile data report such as:
*
* GC 1 invokes.
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
* 1 0.012 159240 212940 10647 0.00000000000001530000
*/
static VALUE
gc_profile_result(VALUE _)
{
VALUE str = rb_str_buf_new(0);
gc_profile_dump_on(str, rb_str_buf_append);
return str;
}
/*
* call-seq:
* GC::Profiler.report
* GC::Profiler.report(io)
*
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
*
*/
static VALUE
gc_profile_report(int argc, VALUE *argv, VALUE self)
{
VALUE out;
out = (!rb_check_arity(argc, 0, 1) ? rb_stdout : argv[0]);
gc_profile_dump_on(out, rb_io_write);
return Qnil;
}
/*
* call-seq:
* GC::Profiler.total_time -> float
*
* The total time used for garbage collection in seconds
*/
static VALUE
gc_profile_total_time(VALUE self)
{
double time = 0;
rb_objspace_t *objspace = &rb_objspace;
if (objspace->profile.run && objspace->profile.next_index > 0) {
size_t i;
size_t count = objspace->profile.next_index;
for (i = 0; i < count; i++) {
time += objspace->profile.records[i].gc_time;
}
}
return DBL2NUM(time);
}
/*
* call-seq:
* GC::Profiler.enabled? -> true or false
*
* The current status of GC profile mode.
*/
static VALUE
gc_profile_enable_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return RBOOL(objspace->profile.run);
}
/*
* call-seq:
* GC::Profiler.enable -> nil
*
* Starts the GC profiler.
*
*/
static VALUE
gc_profile_enable(VALUE _)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = TRUE;
objspace->profile.current_record = 0;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.disable -> nil
*
* Stops the GC profiler.
*
*/
static VALUE
gc_profile_disable(VALUE _)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = FALSE;
objspace->profile.current_record = 0;
return Qnil;
}
/*
------------------------------ DEBUG ------------------------------
*/
static const char *
type_name(int type, VALUE obj)
{
switch (type) {
#define TYPE_NAME(t) case (t): return #t;
TYPE_NAME(T_NONE);
TYPE_NAME(T_OBJECT);
TYPE_NAME(T_CLASS);
TYPE_NAME(T_MODULE);
TYPE_NAME(T_FLOAT);
TYPE_NAME(T_STRING);
TYPE_NAME(T_REGEXP);
TYPE_NAME(T_ARRAY);
TYPE_NAME(T_HASH);
TYPE_NAME(T_STRUCT);
TYPE_NAME(T_BIGNUM);
TYPE_NAME(T_FILE);
TYPE_NAME(T_MATCH);
TYPE_NAME(T_COMPLEX);
TYPE_NAME(T_RATIONAL);
TYPE_NAME(T_NIL);
TYPE_NAME(T_TRUE);
TYPE_NAME(T_FALSE);
TYPE_NAME(T_SYMBOL);
TYPE_NAME(T_FIXNUM);
TYPE_NAME(T_UNDEF);
TYPE_NAME(T_IMEMO);
TYPE_NAME(T_ICLASS);
TYPE_NAME(T_MOVED);
TYPE_NAME(T_ZOMBIE);
case T_DATA:
if (obj && rb_objspace_data_type_name(obj)) {
return rb_objspace_data_type_name(obj);
}
return "T_DATA";
#undef TYPE_NAME
}
return "unknown";
}
static const char *
obj_type_name(VALUE obj)
{
return type_name(TYPE(obj), obj);
}
const char *
rb_method_type_name(rb_method_type_t type)
{
switch (type) {
case VM_METHOD_TYPE_ISEQ: return "iseq";
case VM_METHOD_TYPE_ATTRSET: return "attrest";
case VM_METHOD_TYPE_IVAR: return "ivar";
case VM_METHOD_TYPE_BMETHOD: return "bmethod";
case VM_METHOD_TYPE_ALIAS: return "alias";
case VM_METHOD_TYPE_REFINED: return "refined";
case VM_METHOD_TYPE_CFUNC: return "cfunc";
case VM_METHOD_TYPE_ZSUPER: return "zsuper";
case VM_METHOD_TYPE_MISSING: return "missing";
case VM_METHOD_TYPE_OPTIMIZED: return "optimized";
case VM_METHOD_TYPE_UNDEF: return "undef";
case VM_METHOD_TYPE_NOTIMPLEMENTED: return "notimplemented";
}
rb_bug("rb_method_type_name: unreachable (type: %d)", type);
}
static void
rb_raw_iseq_info(char *const buff, const size_t buff_size, const rb_iseq_t *iseq)
{
if (buff_size > 0 && ISEQ_BODY(iseq) && ISEQ_BODY(iseq)->location.label && !RB_TYPE_P(ISEQ_BODY(iseq)->location.pathobj, T_MOVED)) {
VALUE path = rb_iseq_path(iseq);
int n = ISEQ_BODY(iseq)->location.first_lineno;
snprintf(buff, buff_size, " %s@%s:%d",
RSTRING_PTR(ISEQ_BODY(iseq)->location.label),
RSTRING_PTR(path), n);
}
}
static int
str_len_no_raise(VALUE str)
{
long len = RSTRING_LEN(str);
if (len < 0) return 0;
if (len > INT_MAX) return INT_MAX;
return (int)len;
}
#define BUFF_ARGS buff + pos, buff_size - pos
#define APPEND_F(...) if ((pos += snprintf(BUFF_ARGS, "" __VA_ARGS__)) >= buff_size) goto end
#define APPEND_S(s) do { \
if ((pos + (int)rb_strlen_lit(s)) >= buff_size) { \
goto end; \
} \
else { \
memcpy(buff + pos, (s), rb_strlen_lit(s) + 1); \
} \
} while (0)
#define TF(c) ((c) != 0 ? "true" : "false")
#define C(c, s) ((c) != 0 ? (s) : " ")
static size_t
rb_raw_obj_info_common(char *const buff, const size_t buff_size, const VALUE obj)
{
size_t pos = 0;
if (SPECIAL_CONST_P(obj)) {
APPEND_F("%s", obj_type_name(obj));
if (FIXNUM_P(obj)) {
APPEND_F(" %ld", FIX2LONG(obj));
}
else if (SYMBOL_P(obj)) {
APPEND_F(" %s", rb_id2name(SYM2ID(obj)));
}
}
else {
const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags);
if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
APPEND_F("%p [%d%s%s%s%s%s%s] %s ",
(void *)obj, age,
C(RVALUE_UNCOLLECTIBLE_BITMAP(obj), "L"),
C(RVALUE_MARK_BITMAP(obj), "M"),
C(RVALUE_PIN_BITMAP(obj), "P"),
C(RVALUE_MARKING_BITMAP(obj), "R"),
C(RVALUE_WB_UNPROTECTED_BITMAP(obj), "U"),
C(rb_objspace_garbage_object_p(obj), "G"),
obj_type_name(obj));
}
else {
/* fake */
APPEND_F("%p [%dXXXX] %s",
(void *)obj, age,
obj_type_name(obj));
}
if (internal_object_p(obj)) {
/* ignore */
}
else if (RBASIC(obj)->klass == 0) {
APPEND_S("(temporary internal)");
}
else if (RTEST(RBASIC(obj)->klass)) {
VALUE class_path = rb_class_path_cached(RBASIC(obj)->klass);
if (!NIL_P(class_path)) {
APPEND_F("(%s)", RSTRING_PTR(class_path));
}
}
#if GC_DEBUG
APPEND_F("@%s:%d", RANY(obj)->file, RANY(obj)->line);
#endif
}
end:
return pos;
}
static size_t
rb_raw_obj_info_buitin_type(char *const buff, const size_t buff_size, const VALUE obj, size_t pos)
{
if (LIKELY(pos < buff_size) && !SPECIAL_CONST_P(obj)) {
const enum ruby_value_type type = BUILTIN_TYPE(obj);
switch (type) {
case T_NODE:
UNEXPECTED_NODE(rb_raw_obj_info);
break;
case T_ARRAY:
if (ARY_SHARED_P(obj)) {
APPEND_S("shared -> ");
rb_raw_obj_info(BUFF_ARGS, ARY_SHARED_ROOT(obj));
}
else if (ARY_EMBED_P(obj)) {
APPEND_F("[%s%s] len: %ld (embed)",
C(ARY_EMBED_P(obj), "E"),
C(ARY_SHARED_P(obj), "S"),
RARRAY_LEN(obj));
}
else {
APPEND_F("[%s%s%s] len: %ld, capa:%ld ptr:%p",
C(ARY_EMBED_P(obj), "E"),
C(ARY_SHARED_P(obj), "S"),
C(RARRAY_TRANSIENT_P(obj), "T"),
RARRAY_LEN(obj),
ARY_EMBED_P(obj) ? -1L : RARRAY(obj)->as.heap.aux.capa,
(void *)RARRAY_CONST_PTR_TRANSIENT(obj));
}
break;
case T_STRING: {
if (STR_SHARED_P(obj)) {
APPEND_F(" [shared] len: %ld", RSTRING_LEN(obj));
}
else {
if (STR_EMBED_P(obj)) APPEND_S(" [embed]");
APPEND_F(" len: %ld, capa: %" PRIdSIZE, RSTRING_LEN(obj), rb_str_capacity(obj));
}
APPEND_F(" \"%.*s\"", str_len_no_raise(obj), RSTRING_PTR(obj));
break;
}
case T_SYMBOL: {
VALUE fstr = RSYMBOL(obj)->fstr;
ID id = RSYMBOL(obj)->id;
if (RB_TYPE_P(fstr, T_STRING)) {
APPEND_F(":%s id:%d", RSTRING_PTR(fstr), (unsigned int)id);
}
else {
APPEND_F("(%p) id:%d", (void *)fstr, (unsigned int)id);
}
break;
}
case T_MOVED: {
APPEND_F("-> %p", (void*)rb_gc_location(obj));
break;
}
case T_HASH: {
APPEND_F("[%c%c] %"PRIdSIZE,
RHASH_AR_TABLE_P(obj) ? 'A' : 'S',
RHASH_TRANSIENT_P(obj) ? 'T' : ' ',
RHASH_SIZE(obj));
break;
}
case T_CLASS:
case T_MODULE:
{
VALUE class_path = rb_class_path_cached(obj);
if (!NIL_P(class_path)) {
APPEND_F("%s", RSTRING_PTR(class_path));
}
else {
APPEND_S("(annon)");
}
break;
}
case T_ICLASS:
{
VALUE class_path = rb_class_path_cached(RBASIC_CLASS(obj));
if (!NIL_P(class_path)) {
APPEND_F("src:%s", RSTRING_PTR(class_path));
}
break;
}
case T_OBJECT:
{
uint32_t len = ROBJECT_NUMIV(obj);
if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) {
APPEND_F("(embed) len:%d", len);
}
else {
VALUE *ptr = ROBJECT_IVPTR(obj);
APPEND_F("len:%d ptr:%p", len, (void *)ptr);
}
}
break;
case T_DATA: {
const struct rb_block *block;
const rb_iseq_t *iseq;
if (rb_obj_is_proc(obj) &&
(block = vm_proc_block(obj)) != NULL &&
(vm_block_type(block) == block_type_iseq) &&
(iseq = vm_block_iseq(block)) != NULL) {
rb_raw_iseq_info(BUFF_ARGS, iseq);
}
else if (rb_ractor_p(obj)) {
rb_ractor_t *r = (void *)DATA_PTR(obj);
if (r) {
APPEND_F("r:%d", r->pub.id);
}
}
else {
const char * const type_name = rb_objspace_data_type_name(obj);
if (type_name) {
APPEND_F("%s", type_name);
}
}
break;
}
case T_IMEMO: {
APPEND_F("<%s> ", rb_imemo_name(imemo_type(obj)));
switch (imemo_type(obj)) {
case imemo_ment:
{
const rb_method_entry_t *me = &RANY(obj)->as.imemo.ment;
APPEND_F(":%s (%s%s%s%s) type:%s alias:%d owner:%p defined_class:%p",
rb_id2name(me->called_id),
METHOD_ENTRY_VISI(me) == METHOD_VISI_PUBLIC ? "pub" :
METHOD_ENTRY_VISI(me) == METHOD_VISI_PRIVATE ? "pri" : "pro",
METHOD_ENTRY_COMPLEMENTED(me) ? ",cmp" : "",
METHOD_ENTRY_CACHED(me) ? ",cc" : "",
METHOD_ENTRY_INVALIDATED(me) ? ",inv" : "",
me->def ? rb_method_type_name(me->def->type) : "NULL",
me->def ? me->def->alias_count : -1,
(void *)me->owner, // obj_info(me->owner),
(void *)me->defined_class); //obj_info(me->defined_class)));
if (me->def) {
switch (me->def->type) {
case VM_METHOD_TYPE_ISEQ:
APPEND_S(" (iseq:");
rb_raw_obj_info(BUFF_ARGS, (VALUE)me->def->body.iseq.iseqptr);
APPEND_S(")");
break;
default:
break;
}
}
break;
}
case imemo_iseq: {
const rb_iseq_t *iseq = (const rb_iseq_t *)obj;
rb_raw_iseq_info(BUFF_ARGS, iseq);
break;
}
case imemo_callinfo:
{
const struct rb_callinfo *ci = (const struct rb_callinfo *)obj;
APPEND_F("(mid:%s, flag:%x argc:%d, kwarg:%s)",
rb_id2name(vm_ci_mid(ci)),
vm_ci_flag(ci),
vm_ci_argc(ci),
vm_ci_kwarg(ci) ? "available" : "NULL");
break;
}
case imemo_callcache:
{
const struct rb_callcache *cc = (const struct rb_callcache *)obj;
VALUE class_path = cc->klass ? rb_class_path_cached(cc->klass) : Qnil;
const rb_callable_method_entry_t *cme = vm_cc_cme(cc);
APPEND_F("(klass:%s cme:%s%s (%p) call:%p",
NIL_P(class_path) ? (cc->klass ? "??" : "<NULL>") : RSTRING_PTR(class_path),
cme ? rb_id2name(cme->called_id) : "<NULL>",
cme ? (METHOD_ENTRY_INVALIDATED(cme) ? " [inv]" : "") : "",
(void *)cme,
(void *)vm_cc_call(cc));
break;
}
default:
break;
}
}
default:
break;
}
}
end:
return pos;
}
#undef TF
#undef C
const char *
rb_raw_obj_info(char *const buff, const size_t buff_size, VALUE obj)
{
asan_unpoisoning_object(obj) {
size_t pos = rb_raw_obj_info_common(buff, buff_size, obj);
pos = rb_raw_obj_info_buitin_type(buff, buff_size, obj, pos);
if (pos >= buff_size) {} // truncated
}
return buff;
}
#undef APPEND_S
#undef APPEND_F
#undef BUFF_ARGS
#if RGENGC_OBJ_INFO
#define OBJ_INFO_BUFFERS_NUM 10
#define OBJ_INFO_BUFFERS_SIZE 0x100
static rb_atomic_t obj_info_buffers_index = 0;
static char obj_info_buffers[OBJ_INFO_BUFFERS_NUM][OBJ_INFO_BUFFERS_SIZE];
/* Increments *var atomically and resets *var to 0 when maxval is
* reached. Returns the wraparound old *var value (0...maxval). */
static rb_atomic_t
atomic_inc_wraparound(rb_atomic_t *var, const rb_atomic_t maxval)
{
rb_atomic_t oldval = RUBY_ATOMIC_FETCH_ADD(*var, 1);
if (UNLIKELY(oldval >= maxval - 1)) { // wraparound *var
const rb_atomic_t newval = oldval + 1;
RUBY_ATOMIC_CAS(*var, newval, newval % maxval);
oldval %= maxval;
}
return oldval;
}
static const char *
obj_info(VALUE obj)
{
rb_atomic_t index = atomic_inc_wraparound(&obj_info_buffers_index, OBJ_INFO_BUFFERS_NUM);
char *const buff = obj_info_buffers[index];
return rb_raw_obj_info(buff, OBJ_INFO_BUFFERS_SIZE, obj);
}
#else
static const char *
obj_info(VALUE obj)
{
return obj_type_name(obj);
}
#endif
MJIT_FUNC_EXPORTED const char *
rb_obj_info(VALUE obj)
{
return obj_info(obj);
}
void
rb_obj_info_dump(VALUE obj)
{
char buff[0x100];
fprintf(stderr, "rb_obj_info_dump: %s\n", rb_raw_obj_info(buff, 0x100, obj));
}
MJIT_FUNC_EXPORTED void
rb_obj_info_dump_loc(VALUE obj, const char *file, int line, const char *func)
{
char buff[0x100];
fprintf(stderr, "<OBJ_INFO:%s@%s:%d> %s\n", func, file, line, rb_raw_obj_info(buff, 0x100, obj));
}
#if GC_DEBUG
void
rb_gcdebug_print_obj_condition(VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
fprintf(stderr, "created at: %s:%d\n", RANY(obj)->file, RANY(obj)->line);
if (BUILTIN_TYPE(obj) == T_MOVED) {
fprintf(stderr, "moved?: true\n");
}
else {
fprintf(stderr, "moved?: false\n");
}
if (is_pointer_to_heap(objspace, (void *)obj)) {
fprintf(stderr, "pointer to heap?: true\n");
}
else {
fprintf(stderr, "pointer to heap?: false\n");
return;
}
fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false");
fprintf(stderr, "pinned? : %s\n", MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj) ? "true" : "false");
fprintf(stderr, "age? : %d\n", RVALUE_AGE(obj));
fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false");
fprintf(stderr, "WB-protected?: %s\n", RVALUE_WB_UNPROTECTED(obj) ? "false" : "true");
fprintf(stderr, "remembered? : %s\n", RVALUE_REMEMBERED(obj) ? "true" : "false");
if (is_lazy_sweeping(objspace)) {
fprintf(stderr, "lazy sweeping?: true\n");
fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet");
}
else {
fprintf(stderr, "lazy sweeping?: false\n");
}
}
static VALUE
gcdebug_sentinel(RB_BLOCK_CALL_FUNC_ARGLIST(obj, name))
{
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
return Qnil;
}
void
rb_gcdebug_sentinel(VALUE obj, const char *name)
{
rb_define_finalizer(obj, rb_proc_new(gcdebug_sentinel, (VALUE)name));
}
#endif /* GC_DEBUG */
#if GC_DEBUG_STRESS_TO_CLASS
/*
* call-seq:
* GC.add_stress_to_class(class[, ...])
*
* Raises NoMemoryError when allocating an instance of the given classes.
*
*/
static VALUE
rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
if (!stress_to_class) {
stress_to_class = rb_ary_hidden_new(argc);
}
rb_ary_cat(stress_to_class, argv, argc);
return self;
}
/*
* call-seq:
* GC.remove_stress_to_class(class[, ...])
*
* No longer raises NoMemoryError when allocating an instance of the
* given classes.
*
*/
static VALUE
rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
int i;
if (stress_to_class) {
for (i = 0; i < argc; ++i) {
rb_ary_delete_same(stress_to_class, argv[i]);
}
if (RARRAY_LEN(stress_to_class) == 0) {
stress_to_class = 0;
}
}
return Qnil;
}
#endif
/*
* Document-module: ObjectSpace
*
* The ObjectSpace module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* ObjectSpace also provides support for object finalizers, procs that will be
* called when a specific object is about to be destroyed by garbage
* collection. See the documentation for
* <code>ObjectSpace.define_finalizer</code> for important information on
* how to use this method correctly.
*
* a = "A"
* b = "B"
*
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
*
* a = nil
* b = nil
*
* _produces:_
*
* Finalizer two on 537763470
* Finalizer one on 537763480
*/
/*
* Document-class: ObjectSpace::WeakMap
*
* An ObjectSpace::WeakMap object holds references to
* any objects, but those objects can get garbage collected.
*
* This class is mostly used internally by WeakRef, please use
* +lib/weakref.rb+ for the public interface.
*/
/* Document-class: GC::Profiler
*
* The GC profiler provides access to information on GC runs including time,
* length and object space size.
*
* Example:
*
* GC::Profiler.enable
*
* require 'rdoc/rdoc'
*
* GC::Profiler.report
*
* GC::Profiler.disable
*
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
*/
#include "gc.rbinc"
void
Init_GC(void)
{
#undef rb_intern
VALUE rb_mObjSpace;
VALUE rb_mProfiler;
VALUE gc_constants;
rb_mGC = rb_define_module("GC");
gc_constants = rb_hash_new();
rb_hash_aset(gc_constants, ID2SYM(rb_intern("DEBUG")), RBOOL(GC_DEBUG));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("BASE_SLOT_SIZE")), SIZET2NUM(BASE_SLOT_SIZE));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(sizeof(RVALUE)));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_OBJ_LIMIT")), SIZET2NUM(HEAP_PAGE_OBJ_LIMIT));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_BITMAP_SIZE")), SIZET2NUM(HEAP_PAGE_BITMAP_SIZE));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_SIZE")), SIZET2NUM(HEAP_PAGE_SIZE));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("SIZE_POOL_COUNT")), LONG2FIX(SIZE_POOL_COUNT));
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVARGC_MAX_ALLOCATE_SIZE")), LONG2FIX(size_pool_slot_size(SIZE_POOL_COUNT - 1)));
OBJ_FREEZE(gc_constants);
/* internal constants */
rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants);
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
rb_mObjSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObjSpace, "_id2ref", os_id2ref, 1);
rb_vm_register_special_exception(ruby_error_nomemory, rb_eNoMemError, "failed to allocate memory");
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
{
VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject);
rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1);
rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0);
rb_define_method(rb_cWeakMap, "each", wmap_each, 0);
rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0);
rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0);
rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0);
rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0);
rb_define_method(rb_cWeakMap, "values", wmap_values, 0);
rb_define_method(rb_cWeakMap, "size", wmap_size, 0);
rb_define_method(rb_cWeakMap, "length", wmap_size, 0);
rb_include_module(rb_cWeakMap, rb_mEnumerable);
}
/* internal methods */
rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency_m, 0);
rb_define_singleton_method(rb_mGC, "verify_transient_heap_internal_consistency", gc_verify_transient_heap_internal_consistency, 0);
#if MALLOC_ALLOCATED_SIZE
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
#endif
if (GC_COMPACTION_SUPPORTED) {
rb_define_singleton_method(rb_mGC, "compact", gc_compact, 0);
rb_define_singleton_method(rb_mGC, "auto_compact", gc_get_auto_compact, 0);
rb_define_singleton_method(rb_mGC, "auto_compact=", gc_set_auto_compact, 1);
rb_define_singleton_method(rb_mGC, "latest_compact_info", gc_compact_stats, 0);
}
else {
rb_define_singleton_method(rb_mGC, "compact", rb_f_notimplement, 0);
rb_define_singleton_method(rb_mGC, "auto_compact", rb_f_notimplement, 0);
rb_define_singleton_method(rb_mGC, "auto_compact=", rb_f_notimplement, 1);
rb_define_singleton_method(rb_mGC, "latest_compact_info", rb_f_notimplement, 0);
/* When !GC_COMPACTION_SUPPORTED, this method is not defined in gc.rb */
rb_define_singleton_method(rb_mGC, "verify_compaction_references", rb_f_notimplement, -1);
}
#if GC_DEBUG_STRESS_TO_CLASS
rb_define_singleton_method(rb_mGC, "add_stress_to_class", rb_gcdebug_add_stress_to_class, -1);
rb_define_singleton_method(rb_mGC, "remove_stress_to_class", rb_gcdebug_remove_stress_to_class, -1);
#endif
{
VALUE opts;
/* GC build options */
rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new());
#define OPT(o) if (o) rb_ary_push(opts, rb_fstring_lit(#o))
OPT(GC_DEBUG);
OPT(USE_RGENGC);
OPT(RGENGC_DEBUG);
OPT(RGENGC_CHECK_MODE);
OPT(RGENGC_PROFILE);
OPT(RGENGC_ESTIMATE_OLDMALLOC);
OPT(GC_PROFILE_MORE_DETAIL);
OPT(GC_ENABLE_LAZY_SWEEP);
OPT(CALC_EXACT_MALLOC_SIZE);
OPT(MALLOC_ALLOCATED_SIZE);
OPT(MALLOC_ALLOCATED_SIZE_CHECK);
OPT(GC_PROFILE_DETAIL_MEMORY);
OPT(GC_COMPACTION_SUPPORTED);
#undef OPT
OBJ_FREEZE(opts);
}
}
#ifdef ruby_xmalloc
#undef ruby_xmalloc
#endif
#ifdef ruby_xmalloc2
#undef ruby_xmalloc2
#endif
#ifdef ruby_xcalloc
#undef ruby_xcalloc
#endif
#ifdef ruby_xrealloc
#undef ruby_xrealloc
#endif
#ifdef ruby_xrealloc2
#undef ruby_xrealloc2
#endif
void *
ruby_xmalloc(size_t size)
{
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
ruby_malloc_info_file = __FILE__;
ruby_malloc_info_line = __LINE__;
#endif
return ruby_xmalloc_body(size);
}
void *
ruby_xmalloc2(size_t n, size_t size)
{
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
ruby_malloc_info_file = __FILE__;
ruby_malloc_info_line = __LINE__;
#endif
return ruby_xmalloc2_body(n, size);
}
void *
ruby_xcalloc(size_t n, size_t size)
{
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
ruby_malloc_info_file = __FILE__;
ruby_malloc_info_line = __LINE__;
#endif
return ruby_xcalloc_body(n, size);
}
void *
ruby_xrealloc(void *ptr, size_t new_size)
{
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
ruby_malloc_info_file = __FILE__;
ruby_malloc_info_line = __LINE__;
#endif
return ruby_xrealloc_body(ptr, new_size);
}
void *
ruby_xrealloc2(void *ptr, size_t n, size_t new_size)
{
#if USE_GC_MALLOC_OBJ_INFO_DETAILS
ruby_malloc_info_file = __FILE__;
ruby_malloc_info_line = __LINE__;
#endif
return ruby_xrealloc2_body(ptr, n, new_size);
}