ruby/process.c

5159 строки
124 KiB
C

/**********************************************************************
process.c -
$Author$
created at: Tue Aug 10 14:30:50 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/signal.h"
#include "ruby/io.h"
#include "ruby/util.h"
#include "vm_core.h"
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef __DJGPP__
#include <process.h>
#endif
#include <time.h>
#include <ctype.h>
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
struct timeval rb_time_interval(VALUE);
#ifdef HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#include "ruby/st.h"
#ifdef __EMX__
#undef HAVE_GETPGRP
#endif
#include <sys/stat.h>
#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#ifdef HAVE_GRP_H
#include <grp.h>
#endif
#if defined(HAVE_TIMES) || defined(_WIN32)
static VALUE rb_cProcessTms;
#endif
#ifndef WIFEXITED
#define WIFEXITED(w) (((w) & 0xff) == 0)
#endif
#ifndef WIFSIGNALED
#define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f))
#endif
#ifndef WIFSTOPPED
#define WIFSTOPPED(w) (((w) & 0xff) == 0x7f)
#endif
#ifndef WEXITSTATUS
#define WEXITSTATUS(w) (((w) >> 8) & 0xff)
#endif
#ifndef WTERMSIG
#define WTERMSIG(w) ((w) & 0x7f)
#endif
#ifndef WSTOPSIG
#define WSTOPSIG WEXITSTATUS
#endif
#if defined(__APPLE__) && ( defined(__MACH__) || defined(__DARWIN__) ) && !defined(__MacOS_X__)
#define __MacOS_X__ 1
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
#define HAVE_44BSD_SETUID 1
#define HAVE_44BSD_SETGID 1
#endif
#ifdef __NetBSD__
#undef HAVE_SETRUID
#undef HAVE_SETRGID
#endif
#ifdef BROKEN_SETREUID
#define setreuid ruby_setreuid
#endif
#ifdef BROKEN_SETREGID
#define setregid ruby_setregid
#endif
#if defined(HAVE_44BSD_SETUID) || defined(__MacOS_X__)
#if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID)
#define OBSOLETE_SETREUID 1
#endif
#if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID)
#define OBSOLETE_SETREGID 1
#endif
#endif
#if SIZEOF_RLIM_T == SIZEOF_INT
# define RLIM2NUM(v) UINT2NUM(v)
# define NUM2RLIM(v) NUM2UINT(v)
#elif SIZEOF_RLIM_T == SIZEOF_LONG
# define RLIM2NUM(v) ULONG2NUM(v)
# define NUM2RLIM(v) NUM2ULONG(v)
#elif SIZEOF_RLIM_T == SIZEOF_LONG_LONG
# define RLIM2NUM(v) ULL2NUM(v)
# define NUM2RLIM(v) NUM2ULL(v)
#endif
#define preserving_errno(stmts) \
do {int saved_errno = errno; stmts; errno = saved_errno;} while (0)
/*
* call-seq:
* Process.pid => fixnum
*
* Returns the process id of this process. Not available on all
* platforms.
*
* Process.pid #=> 27415
*/
static VALUE
get_pid(void)
{
rb_secure(2);
return PIDT2NUM(getpid());
}
/*
* call-seq:
* Process.ppid => fixnum
*
* Returns the process id of the parent of this process. Always
* returns 0 on NT. Not available on all platforms.
*
* puts "I am #{Process.pid}"
* Process.fork { puts "Dad is #{Process.ppid}" }
*
* <em>produces:</em>
*
* I am 27417
* Dad is 27417
*/
static VALUE
get_ppid(void)
{
rb_secure(2);
#ifdef _WIN32
return INT2FIX(0);
#else
return PIDT2NUM(getppid());
#endif
}
/*********************************************************************
*
* Document-class: Process::Status
*
* <code>Process::Status</code> encapsulates the information on the
* status of a running or terminated system process. The built-in
* variable <code>$?</code> is either +nil+ or a
* <code>Process::Status</code> object.
*
* fork { exit 99 } #=> 26557
* Process.wait #=> 26557
* $?.class #=> Process::Status
* $?.to_i #=> 25344
* $? >> 8 #=> 99
* $?.stopped? #=> false
* $?.exited? #=> true
* $?.exitstatus #=> 99
*
* Posix systems record information on processes using a 16-bit
* integer. The lower bits record the process status (stopped,
* exited, signaled) and the upper bits possibly contain additional
* information (for example the program's return code in the case of
* exited processes). Pre Ruby 1.8, these bits were exposed directly
* to the Ruby program. Ruby now encapsulates these in a
* <code>Process::Status</code> object. To maximize compatibility,
* however, these objects retain a bit-oriented interface. In the
* descriptions that follow, when we talk about the integer value of
* _stat_, we're referring to this 16 bit value.
*/
static VALUE rb_cProcessStatus;
VALUE
rb_last_status_get(void)
{
return GET_VM()->last_status;
}
void
rb_last_status_set(int status, rb_pid_t pid)
{
rb_vm_t *vm = GET_VM();
vm->last_status = rb_obj_alloc(rb_cProcessStatus);
rb_iv_set(vm->last_status, "status", INT2FIX(status));
rb_iv_set(vm->last_status, "pid", PIDT2NUM(pid));
}
static void
rb_last_status_clear(void)
{
rb_vm_t *vm = GET_VM();
vm->last_status = Qnil;
}
/*
* call-seq:
* stat.to_i => fixnum
* stat.to_int => fixnum
*
* Returns the bits in _stat_ as a <code>Fixnum</code>. Poking
* around in these bits is platform dependent.
*
* fork { exit 0xab } #=> 26566
* Process.wait #=> 26566
* sprintf('%04x', $?.to_i) #=> "ab00"
*/
static VALUE
pst_to_i(VALUE st)
{
return rb_iv_get(st, "status");
}
/*
* call-seq:
* stat.pid => fixnum
*
* Returns the process ID that this status object represents.
*
* fork { exit } #=> 26569
* Process.wait #=> 26569
* $?.pid #=> 26569
*/
static VALUE
pst_pid(VALUE st)
{
return rb_iv_get(st, "pid");
}
static void
pst_message(VALUE str, rb_pid_t pid, int status)
{
char buf[256];
snprintf(buf, sizeof(buf), "pid %ld", (long)pid);
rb_str_cat2(str, buf);
if (WIFSTOPPED(status)) {
int stopsig = WSTOPSIG(status);
const char *signame = ruby_signal_name(stopsig);
if (signame) {
snprintf(buf, sizeof(buf), " stopped SIG%s (signal %d)", signame, stopsig);
}
else {
snprintf(buf, sizeof(buf), " stopped signal %d", stopsig);
}
rb_str_cat2(str, buf);
}
if (WIFSIGNALED(status)) {
int termsig = WTERMSIG(status);
const char *signame = ruby_signal_name(termsig);
if (signame) {
snprintf(buf, sizeof(buf), " SIG%s (signal %d)", signame, termsig);
}
else {
snprintf(buf, sizeof(buf), " signal %d", termsig);
}
rb_str_cat2(str, buf);
}
if (WIFEXITED(status)) {
snprintf(buf, sizeof(buf), " exit %d", WEXITSTATUS(status));
rb_str_cat2(str, buf);
}
#ifdef WCOREDUMP
if (WCOREDUMP(status)) {
rb_str_cat2(str, " (core dumped)");
}
#endif
}
/*
* call-seq:
* stat.to_s => string
*
* Show pid and exit status as a string.
*/
static VALUE
pst_to_s(VALUE st)
{
rb_pid_t pid;
int status;
VALUE str;
pid = NUM2LONG(pst_pid(st));
status = NUM2INT(pst_to_i(st));
str = rb_str_buf_new(0);
pst_message(str, pid, status);
return str;
}
/*
* call-seq:
* stat.inspect => string
*
* Override the inspection method.
*/
static VALUE
pst_inspect(VALUE st)
{
rb_pid_t pid;
int status;
VALUE str;
pid = NUM2LONG(pst_pid(st));
status = NUM2INT(pst_to_i(st));
str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st)));
pst_message(str, pid, status);
rb_str_cat2(str, ">");
return str;
}
/*
* call-seq:
* stat == other => true or false
*
* Returns +true+ if the integer value of _stat_
* equals <em>other</em>.
*/
static VALUE
pst_equal(VALUE st1, VALUE st2)
{
if (st1 == st2) return Qtrue;
return rb_equal(pst_to_i(st1), st2);
}
/*
* call-seq:
* stat & num => fixnum
*
* Logical AND of the bits in _stat_ with <em>num</em>.
*
* fork { exit 0x37 }
* Process.wait
* sprintf('%04x', $?.to_i) #=> "3700"
* sprintf('%04x', $? & 0x1e00) #=> "1600"
*/
static VALUE
pst_bitand(VALUE st1, VALUE st2)
{
int status = NUM2INT(st1) & NUM2INT(st2);
return INT2NUM(status);
}
/*
* call-seq:
* stat >> num => fixnum
*
* Shift the bits in _stat_ right <em>num</em> places.
*
* fork { exit 99 } #=> 26563
* Process.wait #=> 26563
* $?.to_i #=> 25344
* $? >> 8 #=> 99
*/
static VALUE
pst_rshift(VALUE st1, VALUE st2)
{
int status = NUM2INT(st1) >> NUM2INT(st2);
return INT2NUM(status);
}
/*
* call-seq:
* stat.stopped? => true or false
*
* Returns +true+ if this process is stopped. This is only
* returned if the corresponding <code>wait</code> call had the
* <code>WUNTRACED</code> flag set.
*/
static VALUE
pst_wifstopped(VALUE st)
{
int status = NUM2INT(st);
if (WIFSTOPPED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.stopsig => fixnum or nil
*
* Returns the number of the signal that caused _stat_ to stop
* (or +nil+ if self is not stopped).
*/
static VALUE
pst_wstopsig(VALUE st)
{
int status = NUM2INT(st);
if (WIFSTOPPED(status))
return INT2NUM(WSTOPSIG(status));
return Qnil;
}
/*
* call-seq:
* stat.signaled? => true or false
*
* Returns +true+ if _stat_ terminated because of
* an uncaught signal.
*/
static VALUE
pst_wifsignaled(VALUE st)
{
int status = NUM2INT(st);
if (WIFSIGNALED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.termsig => fixnum or nil
*
* Returns the number of the signal that caused _stat_ to
* terminate (or +nil+ if self was not terminated by an
* uncaught signal).
*/
static VALUE
pst_wtermsig(VALUE st)
{
int status = NUM2INT(st);
if (WIFSIGNALED(status))
return INT2NUM(WTERMSIG(status));
return Qnil;
}
/*
* call-seq:
* stat.exited? => true or false
*
* Returns +true+ if _stat_ exited normally (for
* example using an <code>exit()</code> call or finishing the
* program).
*/
static VALUE
pst_wifexited(VALUE st)
{
int status = NUM2INT(st);
if (WIFEXITED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.exitstatus => fixnum or nil
*
* Returns the least significant eight bits of the return code of
* _stat_. Only available if <code>exited?</code> is
* +true+.
*
* fork { } #=> 26572
* Process.wait #=> 26572
* $?.exited? #=> true
* $?.exitstatus #=> 0
*
* fork { exit 99 } #=> 26573
* Process.wait #=> 26573
* $?.exited? #=> true
* $?.exitstatus #=> 99
*/
static VALUE
pst_wexitstatus(VALUE st)
{
int status = NUM2INT(st);
if (WIFEXITED(status))
return INT2NUM(WEXITSTATUS(status));
return Qnil;
}
/*
* call-seq:
* stat.success? => true, false or nil
*
* Returns +true+ if _stat_ is successful, +false+ if not.
* Returns +nil+ if <code>exited?</code> is not +true+.
*/
static VALUE
pst_success_p(VALUE st)
{
int status = NUM2INT(st);
if (!WIFEXITED(status))
return Qnil;
return WEXITSTATUS(status) == EXIT_SUCCESS ? Qtrue : Qfalse;
}
/*
* call-seq:
* stat.coredump? => true or false
*
* Returns +true+ if _stat_ generated a coredump
* when it terminated. Not available on all platforms.
*/
static VALUE
pst_wcoredump(VALUE st)
{
#ifdef WCOREDUMP
int status = NUM2INT(st);
if (WCOREDUMP(status))
return Qtrue;
else
return Qfalse;
#else
return Qfalse;
#endif
}
#if !defined(HAVE_WAITPID) && !defined(HAVE_WAIT4)
#define NO_WAITPID
static st_table *pid_tbl;
#else
struct waitpid_arg {
rb_pid_t pid;
int *st;
int flags;
};
#endif
static VALUE
rb_waitpid_blocking(void *data)
{
rb_pid_t result;
#ifndef NO_WAITPID
struct waitpid_arg *arg = data;
#endif
TRAP_BEG;
#if defined NO_WAITPID
result = wait(data);
#elif defined HAVE_WAITPID
result = waitpid(arg->pid, arg->st, arg->flags);
#else /* HAVE_WAIT4 */
result = wait4(arg->pid, arg->st, arg->flags, NULL);
#endif
TRAP_END;
return (VALUE)result;
}
rb_pid_t
rb_waitpid(rb_pid_t pid, int *st, int flags)
{
rb_pid_t result;
#ifndef NO_WAITPID
struct waitpid_arg arg;
arg.pid = pid;
arg.st = st;
arg.flags = flags;
result = (rb_pid_t)rb_thread_blocking_region(rb_waitpid_blocking, &arg,
RB_UBF_DFL, 0);
if (result < 0) {
#if 0
if (errno == EINTR) {
rb_thread_polling();
goto retry;
}
#endif
return -1;
}
#else /* NO_WAITPID */
if (pid_tbl && st_lookup(pid_tbl, pid, (st_data_t *)st)) {
rb_last_status_set(*st, pid);
st_delete(pid_tbl, (st_data_t*)&pid, NULL);
return pid;
}
if (flags) {
rb_raise(rb_eArgError, "can't do waitpid with flags");
}
for (;;) {
result = (rb_pid_t)rb_thread_blocking_region(rb_waitpid_blocking,
st, RB_UBF_DFL);
if (result < 0) {
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
return -1;
}
if (result == pid) {
break;
}
if (!pid_tbl)
pid_tbl = st_init_numtable();
st_insert(pid_tbl, pid, (st_data_t)st);
if (!rb_thread_alone()) rb_thread_schedule();
}
#endif
if (result > 0) {
rb_last_status_set(*st, result);
}
return result;
}
#ifdef NO_WAITPID
struct wait_data {
rb_pid_t pid;
int status;
};
static int
wait_each(rb_pid_t pid, int status, struct wait_data *data)
{
if (data->status != -1) return ST_STOP;
data->pid = pid;
data->status = status;
return ST_DELETE;
}
static int
waitall_each(rb_pid_t pid, int status, VALUE ary)
{
rb_last_status_set(status, pid);
rb_ary_push(ary, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get());
return ST_DELETE;
}
#endif
/* [MG]:FIXME: I wasn't sure how this should be done, since ::wait()
has historically been documented as if it didn't take any arguments
despite the fact that it's just an alias for ::waitpid(). The way I
have it below is more truthful, but a little confusing.
I also took the liberty of putting in the pid values, as they're
pretty useful, and it looked as if the original 'ri' output was
supposed to contain them after "[...]depending on the value of
aPid:".
The 'ansi' and 'bs' formats of the ri output don't display the
definition list for some reason, but the plain text one does.
*/
/*
* call-seq:
* Process.wait() => fixnum
* Process.wait(pid=-1, flags=0) => fixnum
* Process.waitpid(pid=-1, flags=0) => fixnum
*
* Waits for a child process to exit, returns its process id, and
* sets <code>$?</code> to a <code>Process::Status</code> object
* containing information on that process. Which child it waits on
* depends on the value of _pid_:
*
* > 0:: Waits for the child whose process ID equals _pid_.
*
* 0:: Waits for any child whose process group ID equals that of the
* calling process.
*
* -1:: Waits for any child process (the default if no _pid_ is
* given).
*
* < -1:: Waits for any child whose process group ID equals the absolute
* value of _pid_.
*
* The _flags_ argument may be a logical or of the flag values
* <code>Process::WNOHANG</code> (do not block if no child available)
* or <code>Process::WUNTRACED</code> (return stopped children that
* haven't been reported). Not all flags are available on all
* platforms, but a flag value of zero will work on all platforms.
*
* Calling this method raises a <code>SystemError</code> if there are
* no child processes. Not available on all platforms.
*
* include Process
* fork { exit 99 } #=> 27429
* wait #=> 27429
* $?.exitstatus #=> 99
*
* pid = fork { sleep 3 } #=> 27440
* Time.now #=> 2008-03-08 19:56:16 +0900
* waitpid(pid, Process::WNOHANG) #=> nil
* Time.now #=> 2008-03-08 19:56:16 +0900
* waitpid(pid, 0) #=> 27440
* Time.now #=> 2008-03-08 19:56:19 +0900
*/
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
/*
* call-seq:
* Process.wait2(pid=-1, flags=0) => [pid, status]
* Process.waitpid2(pid=-1, flags=0) => [pid, status]
*
* Waits for a child process to exit (see Process::waitpid for exact
* semantics) and returns an array containing the process id and the
* exit status (a <code>Process::Status</code> object) of that
* child. Raises a <code>SystemError</code> if there are no child
* processes.
*
* Process.fork { exit 99 } #=> 27437
* pid, status = Process.wait2
* pid #=> 27437
* status.exitstatus #=> 99
*/
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
/*
* call-seq:
* Process.waitall => [ [pid1,status1], ...]
*
* Waits for all children, returning an array of
* _pid_/_status_ pairs (where _status_ is a
* <code>Process::Status</code> object).
*
* fork { sleep 0.2; exit 2 } #=> 27432
* fork { sleep 0.1; exit 1 } #=> 27433
* fork { exit 0 } #=> 27434
* p Process.waitall
*
* <em>produces</em>:
*
* [[27434, #<Process::Status: pid=27434,exited(0)>],
* [27433, #<Process::Status: pid=27433,exited(1)>],
* [27432, #<Process::Status: pid=27432,exited(2)>]]
*/
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
rb_secure(2);
result = rb_ary_new();
#ifdef NO_WAITPID
if (pid_tbl) {
st_foreach(pid_tbl, waitall_each, result);
}
#else
rb_last_status_clear();
#endif
for (pid = -1;;) {
#ifdef NO_WAITPID
pid = wait(&status);
#else
pid = rb_waitpid(-1, &status, 0);
#endif
if (pid == -1) {
if (errno == ECHILD)
break;
#ifdef NO_WAITPID
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
#endif
rb_sys_fail(0);
}
#ifdef NO_WAITPID
rb_last_status_set(status, pid);
#endif
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
static VALUE
detach_process_watcher(void *arg)
{
rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg;
int status;
while ((cpid = rb_waitpid(pid, &status, 0)) == 0) {
/* wait while alive */
}
return rb_last_status_get();
}
VALUE
rb_detach_process(rb_pid_t pid)
{
return rb_thread_create(detach_process_watcher, (void*)(VALUE)pid);
}
/*
* call-seq:
* Process.detach(pid) => thread
*
* Some operating systems retain the status of terminated child
* processes until the parent collects that status (normally using
* some variant of <code>wait()</code>. If the parent never collects
* this status, the child stays around as a <em>zombie</em> process.
* <code>Process::detach</code> prevents this by setting up a
* separate Ruby thread whose sole job is to reap the status of the
* process _pid_ when it terminates. Use <code>detach</code>
* only when you do not intent to explicitly wait for the child to
* terminate.
*
* The waiting thread returns the exit status of the detached process
* when it terminates, so you can use <code>Thread#join</code> to
* know the result. If specified _pid_ is not a valid child process
* ID, the thread returns +nil+ immediately.
*
* In this first example, we don't reap the first child process, so
* it appears as a zombie in the process status display.
*
* p1 = fork { sleep 0.1 }
* p2 = fork { sleep 0.2 }
* Process.waitpid(p2)
* sleep 2
* system("ps -ho pid,state -p #{p1}")
*
* <em>produces:</em>
*
* 27389 Z
*
* In the next example, <code>Process::detach</code> is used to reap
* the child automatically.
*
* p1 = fork { sleep 0.1 }
* p2 = fork { sleep 0.2 }
* Process.detach(p1)
* Process.waitpid(p2)
* sleep 2
* system("ps -ho pid,state -p #{p1}")
*
* <em>(produces no output)</em>
*/
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
rb_secure(2);
return rb_detach_process(NUM2PIDT(pid));
}
#ifndef HAVE_STRING_H
char *strtok();
#endif
void rb_thread_stop_timer_thread(void);
void rb_thread_start_timer_thread(void);
void rb_thread_reset_timer_thread(void);
#define before_exec() \
(rb_enable_interrupt(), rb_thread_stop_timer_thread())
#define after_exec() \
(rb_thread_start_timer_thread(), rb_disable_interrupt())
extern char *dln_find_exe(const char *fname, const char *path);
static void
security(const char *str)
{
if (rb_env_path_tainted()) {
if (rb_safe_level() > 0) {
rb_raise(rb_eSecurityError, "Insecure PATH - %s", str);
}
}
}
static int
proc_exec_v(char **argv, const char *prog)
{
if (!prog)
prog = argv[0];
prog = dln_find_exe(prog, 0);
if (!prog) {
errno = ENOENT;
return -1;
}
#if (defined(MSDOS) && !defined(DJGPP)) || defined(__human68k__) || defined(__EMX__) || defined(OS2)
{
#if defined(__human68k__)
#define COMMAND "command.x"
#endif
#if defined(__EMX__) || defined(OS2) /* OS/2 emx */
#define COMMAND "cmd.exe"
#endif
#if (defined(MSDOS) && !defined(DJGPP))
#define COMMAND "command.com"
#endif
char *extension;
if ((extension = strrchr(prog, '.')) != NULL && STRCASECMP(extension, ".bat") == 0) {
char **new_argv;
char *p;
int n;
for (n = 0; argv[n]; n++)
/* no-op */;
new_argv = ALLOCA_N(char*, n + 2);
for (; n > 0; n--)
new_argv[n + 1] = argv[n];
new_argv[1] = strcpy(ALLOCA_N(char, strlen(argv[0]) + 1), argv[0]);
for (p = new_argv[1]; *p != '\0'; p++)
if (*p == '/')
*p = '\\';
new_argv[0] = COMMAND;
argv = new_argv;
prog = dln_find_exe(argv[0], 0);
if (!prog) {
errno = ENOENT;
return -1;
}
}
}
#endif /* MSDOS or __human68k__ or __EMX__ */
before_exec();
execv(prog, argv);
preserving_errno(after_exec());
return -1;
}
int
rb_proc_exec_n(int argc, VALUE *argv, const char *prog)
{
char **args;
int i;
args = ALLOCA_N(char*, argc+1);
for (i=0; i<argc; i++) {
args[i] = RSTRING_PTR(argv[i]);
}
args[i] = 0;
if (args[0]) {
return proc_exec_v(args, prog);
}
return -1;
}
int
rb_proc_exec(const char *str)
{
#ifndef _WIN32
const char *s = str;
char *ss, *t;
char **argv, **a;
#endif
while (*str && ISSPACE(*str))
str++;
#ifdef _WIN32
before_exec();
rb_w32_spawn(P_OVERLAY, (char *)str, 0);
after_exec();
#else
for (s=str; *s; s++) {
if (ISSPACE(*s)) {
const char *p, *nl = NULL;
for (p = s; ISSPACE(*p); p++) {
if (*p == '\n') nl = p;
}
if (!*p) break;
if (nl) s = nl;
}
if (*s != ' ' && !ISALPHA(*s) && strchr("*?{}[]<>()~&|\\$;'`\"\n",*s)) {
#if defined(MSDOS)
int status;
before_exec();
status = system(str);
after_exec();
if (status != -1)
exit(status);
#elif defined(__human68k__) || defined(__CYGWIN32__) || defined(__EMX__)
char *shell = dln_find_exe("sh", 0);
int status = -1;
before_exec();
if (shell)
execl(shell, "sh", "-c", str, (char *) NULL);
else
status = system(str);
after_exec();
if (status != -1)
exit(status);
#else
before_exec();
execl("/bin/sh", "sh", "-c", str, (char *)NULL);
preserving_errno(after_exec());
#endif
return -1;
}
}
a = argv = ALLOCA_N(char*, (s-str)/2+2);
ss = ALLOCA_N(char, s-str+1);
memcpy(ss, str, s-str);
ss[s-str] = '\0';
if ((*a++ = strtok(ss, " \t")) != 0) {
while ((t = strtok(NULL, " \t")) != 0) {
*a++ = t;
}
*a = NULL;
}
if (argv[0]) {
return proc_exec_v(argv, 0);
}
errno = ENOENT;
#endif /* _WIN32 */
return -1;
}
#if defined(_WIN32)
#define HAVE_SPAWNV 1
#endif
#if !defined(HAVE_FORK) && defined(HAVE_SPAWNV)
#if defined(_WIN32)
#define proc_spawn_v(argv, prog) rb_w32_aspawn(P_NOWAIT, prog, argv)
#else
static rb_pid_t
proc_spawn_v(char **argv, char *prog)
{
char *extension;
rb_pid_t status;
if (!prog)
prog = argv[0];
security(prog);
prog = dln_find_exe(prog, 0);
if (!prog)
return -1;
#if defined(__human68k__)
if ((extension = strrchr(prog, '.')) != NULL && STRCASECMP(extension, ".bat") == 0) {
char **new_argv;
char *p;
int n;
for (n = 0; argv[n]; n++)
/* no-op */;
new_argv = ALLOCA_N(char*, n + 2);
for (; n > 0; n--)
new_argv[n + 1] = argv[n];
new_argv[1] = strcpy(ALLOCA_N(char, strlen(argv[0]) + 1), argv[0]);
for (p = new_argv[1]; *p != '\0'; p++)
if (*p == '/')
*p = '\\';
new_argv[0] = COMMAND;
argv = new_argv;
prog = dln_find_exe(argv[0], 0);
if (!prog) {
errno = ENOENT;
return -1;
}
}
#endif
before_exec();
status = spawnv(P_WAIT, prog, argv);
rb_last_status_set(status == -1 ? 127 : status, 0);
after_exec();
return status;
}
#endif
static rb_pid_t
proc_spawn_n(int argc, VALUE *argv, VALUE prog)
{
char **args;
int i;
args = ALLOCA_N(char*, argc + 1);
for (i = 0; i < argc; i++) {
args[i] = RSTRING_PTR(argv[i]);
}
args[i] = (char*) 0;
if (args[0])
return proc_spawn_v(args, prog ? RSTRING_PTR(prog) : 0);
return -1;
}
#if defined(_WIN32)
#define proc_spawn(str) rb_w32_spawn(P_NOWAIT, str, 0)
#else
static rb_pid_t
proc_spawn(char *str)
{
char *s, *t;
char **argv, **a;
rb_pid_t status;
for (s = str; *s; s++) {
if (*s != ' ' && !ISALPHA(*s) && strchr("*?{}[]<>()~&|\\$;'`\"\n",*s)) {
char *shell = dln_find_exe("sh", 0);
before_exec();
status = shell?spawnl(P_WAIT,shell,"sh","-c",str,(char*)NULL):system(str);
rb_last_status_set(status == -1 ? 127 : status, 0);
after_exec();
return status;
}
}
a = argv = ALLOCA_N(char*, (s - str) / 2 + 2);
s = ALLOCA_N(char, s - str + 1);
strcpy(s, str);
if (*a++ = strtok(s, " \t")) {
while (t = strtok(NULL, " \t"))
*a++ = t;
*a = NULL;
}
return argv[0] ? proc_spawn_v(argv, 0) : -1;
}
#endif
#endif
static VALUE
hide_obj(VALUE obj)
{
RBASIC(obj)->klass = 0;
return obj;
}
enum {
EXEC_OPTION_PGROUP,
EXEC_OPTION_RLIMIT,
EXEC_OPTION_UNSETENV_OTHERS,
EXEC_OPTION_ENV,
EXEC_OPTION_CHDIR,
EXEC_OPTION_UMASK,
EXEC_OPTION_DUP2,
EXEC_OPTION_CLOSE,
EXEC_OPTION_OPEN,
EXEC_OPTION_CLOSE_OTHERS,
};
static VALUE
check_exec_redirect_fd(VALUE v)
{
VALUE tmp;
int fd;
if (FIXNUM_P(v)) {
fd = FIX2INT(v);
}
else if (!NIL_P(tmp = rb_check_convert_type(v, T_FILE, "IO", "to_io"))) {
rb_io_t *fptr;
GetOpenFile(tmp, fptr);
fd = fptr->fd;
}
else {
rb_raise(rb_eArgError, "wrong exec redirect");
}
if (fd < 0) {
rb_raise(rb_eArgError, "negative file descriptor");
}
return INT2FIX(fd);
}
static void
check_exec_redirect(VALUE key, VALUE val, VALUE options)
{
int index;
VALUE ary, param;
VALUE path, flags, perm;
ID id;
switch (TYPE(val)) {
case T_SYMBOL:
id = SYM2ID(val);
if (id == rb_intern("close")) {
index = EXEC_OPTION_CLOSE;
param = Qnil;
}
else {
rb_raise(rb_eArgError, "wrong exec redirect symbol: %s",
rb_id2name(id));
}
break;
case T_FILE:
val = check_exec_redirect_fd(val);
/* fall through */
case T_FIXNUM:
index = EXEC_OPTION_DUP2;
param = val;
break;
case T_ARRAY:
index = EXEC_OPTION_OPEN;
path = rb_ary_entry(val, 0);
FilePathValue(path);
flags = rb_ary_entry(val, 1);
if (NIL_P(flags))
flags = INT2NUM(O_RDONLY);
else if (TYPE(flags) == T_STRING)
flags = INT2NUM(rb_io_mode_modenum(StringValueCStr(flags)));
else
flags = rb_to_int(flags);
perm = rb_ary_entry(val, 2);
perm = NIL_P(perm) ? INT2FIX(0644) : rb_to_int(perm);
param = hide_obj(rb_ary_new3(3, hide_obj(rb_str_dup(path)),
flags, perm));
break;
case T_STRING:
index = EXEC_OPTION_OPEN;
path = val;
FilePathValue(path);
if ((FIXNUM_P(key) && (FIX2INT(key) == 1 || FIX2INT(key) == 2)) ||
key == rb_stdout || key == rb_stderr)
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC);
else
flags = INT2NUM(O_RDONLY);
perm = INT2FIX(0644);
param = hide_obj(rb_ary_new3(3, hide_obj(rb_str_dup(path)),
flags, perm));
break;
default:
rb_raise(rb_eArgError, "wrong exec redirect action");
}
ary = rb_ary_entry(options, index);
if (NIL_P(ary)) {
ary = hide_obj(rb_ary_new());
rb_ary_store(options, index, ary);
}
if (TYPE(key) != T_ARRAY) {
VALUE fd = check_exec_redirect_fd(key);
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
}
else {
int i, n=0;
for (i = 0 ; i < RARRAY_LEN(key); i++) {
VALUE v = RARRAY_PTR(key)[i];
VALUE fd = check_exec_redirect_fd(v);
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
n++;
}
}
}
#ifdef RLIM2NUM
static int rlimit_type_by_lname(const char *name);
#endif
static int
check_exec_options_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE options = (VALUE)arg;
ID id;
#ifdef RLIM2NUM
int rtype;
#endif
rb_secure(2);
switch (TYPE(key)) {
case T_SYMBOL:
id = SYM2ID(key);
#ifdef HAVE_SETPGID
if (id == rb_intern("pgroup")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_PGROUP))) {
rb_raise(rb_eArgError, "pgroup option specified twice");
}
if (!RTEST(val))
val = Qfalse;
else if (val == Qtrue)
val = INT2FIX(0);
else {
pid_t pgroup = NUM2PIDT(val);
if (pgroup < 0) {
rb_raise(rb_eArgError, "negative process group ID : %ld", (long)pgroup);
}
val = PIDT2NUM(pgroup);
}
rb_ary_store(options, EXEC_OPTION_PGROUP, val);
}
else
#endif
#ifdef RLIM2NUM
if (strncmp("rlimit_", rb_id2name(id), 7) == 0 &&
(rtype = rlimit_type_by_lname(rb_id2name(id)+7)) != -1) {
VALUE ary = rb_ary_entry(options, EXEC_OPTION_RLIMIT);
VALUE tmp, softlim, hardlim;
if (NIL_P(ary)) {
ary = hide_obj(rb_ary_new());
rb_ary_store(options, EXEC_OPTION_RLIMIT, ary);
}
tmp = rb_check_array_type(val);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) == 1)
softlim = hardlim = rb_to_int(rb_ary_entry(tmp, 0));
else if (RARRAY_LEN(tmp) == 2) {
softlim = rb_to_int(rb_ary_entry(tmp, 0));
hardlim = rb_to_int(rb_ary_entry(tmp, 1));
}
else {
rb_raise(rb_eArgError, "wrong exec rlimit option");
}
}
else {
softlim = hardlim = rb_to_int(val);
}
tmp = hide_obj(rb_ary_new3(3, INT2NUM(rtype), softlim, hardlim));
rb_ary_push(ary, tmp);
}
else
#endif
if (id == rb_intern("unsetenv_others")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_UNSETENV_OTHERS))) {
rb_raise(rb_eArgError, "unsetenv_others option specified twice");
}
val = RTEST(val) ? Qtrue : Qfalse;
rb_ary_store(options, EXEC_OPTION_UNSETENV_OTHERS, val);
}
else if (id == rb_intern("chdir")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_CHDIR))) {
rb_raise(rb_eArgError, "chdir option specified twice");
}
FilePathValue(val);
rb_ary_store(options, EXEC_OPTION_CHDIR,
hide_obj(rb_str_dup(val)));
}
else if (id == rb_intern("umask")) {
mode_t cmask = NUM2LONG(val);
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_UMASK))) {
rb_raise(rb_eArgError, "umask option specified twice");
}
rb_ary_store(options, EXEC_OPTION_UMASK, LONG2NUM(cmask));
}
#ifdef HAVE_FORK
else if (id == rb_intern("close_others")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_CLOSE_OTHERS))) {
rb_raise(rb_eArgError, "close_others option specified twice");
}
val = RTEST(val) ? Qtrue : Qfalse;
rb_ary_store(options, EXEC_OPTION_CLOSE_OTHERS, val);
}
#endif
else if (id == rb_intern("in")) {
key = INT2FIX(0);
goto redirect;
}
else if (id == rb_intern("out")) {
key = INT2FIX(1);
goto redirect;
}
else if (id == rb_intern("err")) {
key = INT2FIX(2);
goto redirect;
}
else {
rb_raise(rb_eArgError, "wrong exec option symbol: %s",
rb_id2name(id));
}
break;
case T_FIXNUM:
case T_FILE:
case T_ARRAY:
redirect:
check_exec_redirect(key, val, options);
break;
default:
rb_raise(rb_eArgError, "wrong exec option");
}
return ST_CONTINUE;
}
static VALUE
check_exec_fds(VALUE options)
{
VALUE h = rb_hash_new();
VALUE ary;
int index, i;
int maxhint = -1;
for (index = EXEC_OPTION_DUP2; index <= EXEC_OPTION_OPEN; index++) {
ary = rb_ary_entry(options, index);
if (NIL_P(ary))
continue;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int fd = FIX2INT(RARRAY_PTR(elt)[0]);
if (RTEST(rb_hash_lookup(h, INT2FIX(fd)))) {
rb_raise(rb_eArgError, "fd %d specified twice", fd);
}
rb_hash_aset(h, INT2FIX(fd), Qtrue);
if (maxhint < fd)
maxhint = fd;
if (index == EXEC_OPTION_DUP2) {
fd = FIX2INT(RARRAY_PTR(elt)[1]);
if (maxhint < fd)
maxhint = fd;
}
}
}
#ifdef HAVE_FORK
if (RTEST(rb_ary_entry(options, EXEC_OPTION_CLOSE_OTHERS))) {
rb_ary_store(options, EXEC_OPTION_CLOSE_OTHERS, INT2FIX(maxhint));
}
#endif
return h;
}
static VALUE
rb_check_exec_options(VALUE opthash, VALUE *fds)
{
VALUE options, h;
int i;
options = hide_obj(rb_ary_new());
if (TYPE(opthash) == T_ARRAY) {
for (i = 0; i < RARRAY_LEN(opthash); i++) {
VALUE hash = RARRAY_PTR(opthash)[i];
st_foreach(RHASH_TBL(hash), check_exec_options_i, (st_data_t)options);
}
}
else {
st_foreach(RHASH_TBL(opthash), check_exec_options_i, (st_data_t)options);
}
h = check_exec_fds(options);
if (fds)
*fds = h;
return options;
}
static int
check_exec_env_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE env = (VALUE)arg;
char *k;
k = StringValueCStr(key);
if (strchr(k, '='))
rb_raise(rb_eArgError, "environment name contains a equal : %s", k);
if (!NIL_P(val))
StringValueCStr(val);
rb_ary_push(env, hide_obj(rb_assoc_new(key, val)));
return ST_CONTINUE;
}
static VALUE
rb_check_exec_env(VALUE hash)
{
VALUE env;
env = hide_obj(rb_ary_new());
st_foreach(RHASH_TBL(hash), check_exec_env_i, (st_data_t)env);
return env;
}
static VALUE
rb_check_argv(int argc, VALUE *argv)
{
VALUE tmp, prog;
int i;
const char *name = 0;
if (argc == 0) {
rb_raise(rb_eArgError, "wrong number of arguments");
}
prog = 0;
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) != 2) {
rb_raise(rb_eArgError, "wrong first argument");
}
prog = RARRAY_PTR(tmp)[0];
argv[0] = RARRAY_PTR(tmp)[1];
SafeStringValue(prog);
StringValueCStr(prog);
prog = rb_str_new4(prog);
name = RSTRING_PTR(prog);
}
for (i = 0; i < argc; i++) {
SafeStringValue(argv[i]);
argv[i] = rb_str_new4(argv[i]);
StringValueCStr(argv[i]);
}
security(name ? name : RSTRING_PTR(argv[0]));
return prog;
}
VALUE
rb_exec_getargs(int *argc_p, VALUE **argv_p, int accept_shell, VALUE *env_ret, VALUE *options_ret)
{
VALUE hash, prog;
if (0 < *argc_p) {
hash = rb_check_convert_type((*argv_p)[*argc_p-1], T_HASH, "Hash", "to_hash");
if (!NIL_P(hash)) {
*options_ret = hash;
(*argc_p)--;
}
}
if (0 < *argc_p) {
hash = rb_check_convert_type((*argv_p)[0], T_HASH, "Hash", "to_hash");
if (!NIL_P(hash)) {
*env_ret = hash;
(*argc_p)--;
(*argv_p)++;
}
}
prog = rb_check_argv(*argc_p, *argv_p);
if (!prog) {
prog = (*argv_p)[0];
if (accept_shell && *argc_p == 1) {
*argc_p = 0;
*argv_p = 0;
}
}
return prog;
}
void
rb_exec_initarg2(VALUE prog, int argc, VALUE *argv,
VALUE env, VALUE opthash, struct rb_exec_arg *e)
{
VALUE options=Qnil, fds=Qnil;
MEMZERO(e, struct rb_exec_arg, 1);
if (!NIL_P(opthash)) {
options = rb_check_exec_options(opthash, &fds);
}
if (!NIL_P(env)) {
env = rb_check_exec_env(env);
if (NIL_P(options))
options = hide_obj(rb_ary_new());
rb_ary_store(options, EXEC_OPTION_ENV, env);
}
e->argc = argc;
e->argv = argv;
e->prog = prog ? RSTRING_PTR(prog) : 0;
e->options = options;
e->redirect_fds = fds;
}
VALUE
rb_exec_initarg(int argc, VALUE *argv, int accept_shell, struct rb_exec_arg *e)
{
VALUE prog, env=Qnil, opthash=Qnil;
prog = rb_exec_getargs(&argc, &argv, accept_shell, &env, &opthash);
rb_exec_initarg2(prog, argc, argv, env, opthash, e);
return prog;
}
/*
* call-seq:
* exec([env,] command [, arg, ...] [,options])
*
* Replaces the current process by running the given external _command_.
* If optional arguments, sequence of +arg+, are not given, that argument is
* taken as a line that is subject to shell expansion before being
* executed. If one or more +arg+ given, they
* are passed as parameters to _command_ with no shell
* expansion. If +command+ is a two-element array, the first
* element is the command to be executed, and the second argument is
* used as the <code>argv[0]</code> value, which may show up in process
* listings. In MSDOS environments, the command is executed in a
* subshell; otherwise, one of the <code>exec(2)</code> system calls is
* used, so the running command may inherit some of the environment of
* the original program (including open file descriptors).
*
* The hash arguments, env and options, are same as
* <code>system</code> and <code>spawn</code>.
* See <code>spawn</code> for details.
*
* Raises SystemCallError if the _command_ couldn't execute (typically
* <code>Errno::ENOENT</code> when it was not found).
*
* exec "echo *" # echoes list of files in current directory
* # never get here
*
*
* exec "echo", "*" # echoes an asterisk
* # never get here
*/
VALUE
rb_f_exec(int argc, VALUE *argv)
{
struct rb_exec_arg e;
rb_exec_initarg(argc, argv, Qtrue, &e);
rb_exec(&e);
rb_sys_fail(e.prog);
return Qnil; /* dummy */
}
/*#define DEBUG_REDIRECT*/
#if defined(DEBUG_REDIRECT)
#include <stdarg.h>
static void
ttyprintf(const char *fmt, ...)
{
va_list ap;
FILE *tty;
int save = errno;
tty = fopen("/dev/tty", "w");
if (!tty)
return;
va_start(ap, fmt);
vfprintf(tty, fmt, ap);
va_end(ap);
fclose(tty);
errno = save;
}
static int
redirect_dup(int oldfd)
{
int ret;
ret = dup(oldfd);
ttyprintf("dup(%d) => %d\n", oldfd, ret);
return ret;
}
static int
redirect_dup2(int oldfd, int newfd)
{
int ret;
ret = dup2(oldfd, newfd);
ttyprintf("dup2(%d, %d)\n", oldfd, newfd);
return ret;
}
static int
redirect_close(int fd)
{
int ret;
ret = close(fd);
ttyprintf("close(%d)\n", fd);
return ret;
}
static int
redirect_open(const char *pathname, int flags, mode_t perm)
{
int ret;
ret = open(pathname, flags, perm);
ttyprintf("open(\"%s\", 0x%x, 0%o) => %d\n", pathname, flags, perm, ret);
return ret;
}
#else
#define redirect_dup(oldfd) dup(oldfd)
#define redirect_dup2(oldfd, newfd) dup2(oldfd, newfd)
#define redirect_close(fd) close(fd)
#define redirect_open(pathname, flags, perm) open(pathname, flags, perm)
#endif
static int
intcmp(const void *a, const void *b)
{
return *(int*)a - *(int*)b;
}
static int
run_exec_dup2(VALUE ary)
{
int n, i;
int ret;
int extra_fd = -1;
struct fd_pair {
int oldfd;
int newfd;
int older_index;
int num_newer;
} *pairs = 0;
n = RARRAY_LEN(ary);
pairs = ALLOC_N(struct fd_pair, n);
/* initialize oldfd and newfd: O(n) */
for (i = 0; i < n; i++) {
VALUE elt = RARRAY_PTR(ary)[i];
pairs[i].oldfd = FIX2INT(RARRAY_PTR(elt)[1]);
pairs[i].newfd = FIX2INT(RARRAY_PTR(elt)[0]); /* unique */
pairs[i].older_index = -1;
}
/* sort the table by oldfd: O(n log n) */
qsort(pairs, n, sizeof(struct fd_pair), intcmp);
/* initialize older_index and num_newer: O(n log n) */
for (i = 0; i < n; i++) {
int newfd = pairs[i].newfd;
struct fd_pair key, *found;
key.oldfd = newfd;
found = bsearch(&key, pairs, n, sizeof(struct fd_pair), intcmp);
pairs[i].num_newer = 0;
if (found) {
while (pairs < found && (found-1)->oldfd == newfd)
found--;
while (found < pairs+n && found->oldfd == newfd) {
pairs[i].num_newer++;
found->older_index = i;
found++;
}
}
}
/* non-cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
int j = i;
while (j != -1 && pairs[j].oldfd != -1 && pairs[j].num_newer == 0) {
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd);
if (ret == -1)
goto fail;
pairs[j].oldfd = -1;
j = pairs[j].older_index;
if (j != -1)
pairs[j].num_newer--;
}
}
/* cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
int j;
if (pairs[i].oldfd == -1)
continue;
if (pairs[i].oldfd == pairs[i].newfd) { /* self cycle */
#ifdef F_GETFD
int fd = pairs[i].oldfd;
ret = fcntl(fd, F_GETFD);
if (ret == -1)
goto fail;
if (ret & FD_CLOEXEC) {
ret &= ~FD_CLOEXEC;
ret = fcntl(fd, F_SETFD, ret);
if (ret == -1)
goto fail;
}
#endif
pairs[i].oldfd = -1;
continue;
}
if (extra_fd == -1) {
extra_fd = redirect_dup(pairs[i].oldfd);
if (extra_fd == -1)
goto fail;
}
else {
ret = redirect_dup2(pairs[i].oldfd, extra_fd);
if (ret == -1)
goto fail;
}
pairs[i].oldfd = extra_fd;
j = pairs[i].older_index;
pairs[i].older_index = -1;
while (j != -1) {
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd);
if (ret == -1)
goto fail;
pairs[j].oldfd = -1;
j = pairs[j].older_index;
}
}
if (extra_fd != -1) {
ret = redirect_close(extra_fd);
if (ret == -1)
goto fail;
}
return 0;
fail:
if (pairs)
xfree(pairs);
return -1;
}
static int
run_exec_close(VALUE ary)
{
int i, ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int fd = FIX2INT(RARRAY_PTR(elt)[0]);
ret = redirect_close(fd);
if (ret == -1)
return -1;
}
return 0;
}
static int
run_exec_open(VALUE ary)
{
int i, ret;
for (i = 0; i < RARRAY_LEN(ary);) {
VALUE elt = RARRAY_PTR(ary)[i];
int fd = FIX2INT(RARRAY_PTR(elt)[0]);
VALUE param = RARRAY_PTR(elt)[1];
char *path = RSTRING_PTR(RARRAY_PTR(param)[0]);
int flags = NUM2INT(RARRAY_PTR(param)[1]);
int perm = NUM2INT(RARRAY_PTR(param)[2]);
int need_close = 1;
int fd2 = redirect_open(path, flags, perm);
if (fd2 == -1) return -1;
while (i < RARRAY_LEN(ary) &&
(elt = RARRAY_PTR(ary)[i], RARRAY_PTR(elt)[1] == param)) {
fd = FIX2INT(RARRAY_PTR(elt)[0]);
if (fd == fd2) {
need_close = 0;
}
else {
ret = redirect_dup2(fd2, fd);
if (ret == -1) return -1;
}
i++;
}
if (need_close) {
ret = redirect_close(fd2);
if (ret == -1) return -1;
}
}
return 0;
}
#ifdef HAVE_SETPGID
static int
run_exec_pgroup(VALUE obj)
{
/*
* If FD_CLOEXEC is available, rb_fork waits the child's execve.
* So setpgid is done in the child when rb_fork is returned in the parent.
* No race condition, even without setpgid from the parent.
* (Is there an environment which has setpgid but FD_CLOEXEC?)
*/
pid_t pgroup = NUM2PIDT(obj);
if (pgroup == 0) {
pgroup = getpid();
}
return setpgid(getpid(), pgroup);
}
#endif
#ifdef RLIM2NUM
static int
run_exec_rlimit(VALUE ary)
{
int i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int rtype = NUM2INT(RARRAY_PTR(elt)[0]);
struct rlimit rlim;
rlim.rlim_cur = NUM2RLIM(RARRAY_PTR(elt)[1]);
rlim.rlim_max = NUM2RLIM(RARRAY_PTR(elt)[2]);
if (setrlimit(rtype, &rlim) == -1)
return -1;
}
return 0;
}
#endif
static int
run_exec_options(const struct rb_exec_arg *e)
{
VALUE options = e->options;
VALUE obj;
if (!RTEST(options))
return 0;
#ifdef HAVE_SETPGID
obj = rb_ary_entry(options, EXEC_OPTION_PGROUP);
if (RTEST(obj)) {
if (run_exec_pgroup(obj) == -1)
return -1;
}
#endif
#ifdef RLIM2NUM
obj = rb_ary_entry(options, EXEC_OPTION_RLIMIT);
if (!NIL_P(obj)) {
if (run_exec_rlimit(obj) == -1)
return -1;
}
#endif
obj = rb_ary_entry(options, EXEC_OPTION_UNSETENV_OTHERS);
if (RTEST(obj)) {
rb_env_clear();
}
obj = rb_ary_entry(options, EXEC_OPTION_ENV);
if (!NIL_P(obj)) {
int i;
for (i = 0; i < RARRAY_LEN(obj); i++) {
VALUE pair = RARRAY_PTR(obj)[i];
VALUE key = RARRAY_PTR(pair)[0];
VALUE val = RARRAY_PTR(pair)[1];
if (NIL_P(val))
ruby_setenv(StringValueCStr(key), 0);
else
ruby_setenv(StringValueCStr(key), StringValueCStr(val));
}
}
obj = rb_ary_entry(options, EXEC_OPTION_CHDIR);
if (!NIL_P(obj)) {
if (chdir(RSTRING_PTR(obj)) == -1)
return -1;
}
obj = rb_ary_entry(options, EXEC_OPTION_UMASK);
if (!NIL_P(obj)) {
mode_t mask = NUM2LONG(obj);
umask(mask); /* never fail */
}
obj = rb_ary_entry(options, EXEC_OPTION_DUP2);
if (!NIL_P(obj)) {
if (run_exec_dup2(obj) == -1)
return -1;
}
obj = rb_ary_entry(options, EXEC_OPTION_CLOSE);
if (!NIL_P(obj)) {
if (run_exec_close(obj) == -1)
return -1;
}
#ifdef HAVE_FORK
obj = rb_ary_entry(options, EXEC_OPTION_CLOSE_OTHERS);
if (RTEST(obj)) {
rb_close_before_exec(3, FIX2INT(obj), e->redirect_fds);
}
#endif
obj = rb_ary_entry(options, EXEC_OPTION_OPEN);
if (!NIL_P(obj)) {
if (run_exec_open(obj) == -1)
return -1;
}
return 0;
}
int
rb_exec(const struct rb_exec_arg *e)
{
int argc = e->argc;
VALUE *argv = e->argv;
const char *prog = e->prog;
if (run_exec_options(e) < 0) {
return -1;
}
if (argc == 0) {
rb_proc_exec(prog);
}
else {
rb_proc_exec_n(argc, argv, prog);
}
#ifndef FD_CLOEXEC
preserving_errno({
fprintf(stderr, "%s:%d: command not found: %s\n",
rb_sourcefile(), rb_sourceline(), prog);
});
#endif
return -1;
}
#ifdef HAVE_FORK
static int
rb_exec_atfork(void* arg)
{
rb_thread_atfork();
return rb_exec(arg);
}
#endif
#ifdef HAVE_FORK
#ifdef FD_CLOEXEC
#if SIZEOF_INT == SIZEOF_LONG
#define proc_syswait (VALUE (*)(VALUE))rb_syswait
#else
static VALUE
proc_syswait(VALUE pid)
{
rb_syswait((int)pid);
return Qnil;
}
#endif
#endif
static int
move_fds_to_avoid_crash(int *fdp, int n, VALUE fds)
{
long min = 0;
int i;
for (i = 0; i < n; i++) {
int ret;
while (RTEST(rb_hash_lookup(fds, INT2FIX(fdp[i])))) {
if (min <= fdp[i])
min = fdp[i]+1;
while (RTEST(rb_hash_lookup(fds, INT2FIX(min))))
min++;
ret = fcntl(fdp[i], F_DUPFD, min);
if (ret == -1)
return -1;
close(fdp[i]);
fdp[i] = ret;
}
}
return 0;
}
static int
pipe_nocrash(int filedes[2], VALUE fds)
{
int ret;
ret = pipe(filedes);
if (ret == -1)
return -1;
if (RTEST(fds)) {
int save = errno;
if (move_fds_to_avoid_crash(filedes, 2, fds) == -1) {
close(filedes[0]);
close(filedes[1]);
return -1;
}
errno = save;
}
return ret;
}
/*
* Forks child process, and returns the process ID in the parent
* process.
*
* If +status+ is given, protects from any exceptions and sets the
* jump status to it.
*
* In the child process, just returns 0 if +chfunc+ is +NULL+.
* Otherwise +chfunc+ will be called with +charg+, and then the child
* process exits with +EXIT_SUCCESS+ when it returned zero.
*
* In the case of the function is called and returns non-zero value,
* the child process exits with non-+EXIT_SUCCESS+ value (normally
* 127). And, on the platforms where +FD_CLOEXEC+ is available,
* +errno+ is propagated to the parent process, and this function
* returns -1 in the parent process. On the other platforms, just
* returns pid.
*
* If fds is not Qnil, internal pipe for the errno propagation is
* arranged to avoid conflicts of the hash keys in +fds+.
*
* +chfunc+ must not raise any exceptions.
*/
rb_pid_t
rb_fork(int *status, int (*chfunc)(void*), void *charg, VALUE fds)
{
rb_pid_t pid;
int err, state = 0;
#ifdef FD_CLOEXEC
int ep[2];
#endif
#ifndef __VMS
#define prefork() ( \
rb_io_flush(rb_stdout), \
rb_io_flush(rb_stderr) \
)
#else
#define prefork() ((void)0)
#endif
prefork();
#ifdef FD_CLOEXEC
if (chfunc) {
if (pipe_nocrash(ep, fds)) return -1;
if (fcntl(ep[1], F_SETFD, FD_CLOEXEC)) {
preserving_errno((close(ep[0]), close(ep[1])));
return -1;
}
}
#endif
for (; (pid = fork()) < 0; prefork()) {
switch (errno) {
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
if (!status && !chfunc) {
rb_thread_sleep(1);
continue;
}
else {
rb_protect((VALUE (*)())rb_thread_sleep, 1, &state);
if (status) *status = state;
if (!state) continue;
}
default:
#ifdef FD_CLOEXEC
if (chfunc) {
preserving_errno((close(ep[0]), close(ep[1])));
}
#endif
if (state && !status) rb_jump_tag(state);
return -1;
}
}
if (!pid) {
rb_thread_reset_timer_thread();
if (chfunc) {
#ifdef FD_CLOEXEC
close(ep[0]);
#endif
if (!(*chfunc)(charg)) _exit(EXIT_SUCCESS);
#ifdef FD_CLOEXEC
err = errno;
write(ep[1], &err, sizeof(err));
#endif
#if EXIT_SUCCESS == 127
_exit(EXIT_FAILURE);
#else
_exit(127);
#endif
}
rb_thread_start_timer_thread();
}
#ifdef FD_CLOEXEC
else if (chfunc) {
close(ep[1]);
if ((state = read(ep[0], &err, sizeof(err))) < 0) {
err = errno;
}
close(ep[0]);
if (state) {
if (status) {
rb_protect(proc_syswait, (VALUE)pid, status);
}
else {
rb_syswait(pid);
}
errno = err;
return -1;
}
}
#endif
return pid;
}
#endif
/*
* call-seq:
* Kernel.fork [{ block }] => fixnum or nil
* Process.fork [{ block }] => fixnum or nil
*
* Creates a subprocess. If a block is specified, that block is run
* in the subprocess, and the subprocess terminates with a status of
* zero. Otherwise, the +fork+ call returns twice, once in
* the parent, returning the process ID of the child, and once in
* the child, returning _nil_. The child process can exit using
* <code>Kernel.exit!</code> to avoid running any
* <code>at_exit</code> functions. The parent process should
* use <code>Process.wait</code> to collect the termination statuses
* of its children or use <code>Process.detach</code> to register
* disinterest in their status; otherwise, the operating system
* may accumulate zombie processes.
*
* The thread calling fork is the only thread in the created child process.
* fork doesn't copy other threads.
*/
static VALUE
rb_f_fork(VALUE obj)
{
#if defined(HAVE_FORK) && !defined(__NetBSD__)
rb_pid_t pid;
rb_secure(2);
switch (pid = rb_fork(0, 0, 0, Qnil)) {
case 0:
#ifdef linux
after_exec();
#endif
rb_thread_atfork();
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
case -1:
rb_sys_fail("fork(2)");
return Qnil;
default:
return PIDT2NUM(pid);
}
#else
rb_notimplement();
#endif
}
/*
* call-seq:
* Process.exit!(fixnum=-1)
*
* Exits the process immediately. No exit handlers are
* run. <em>fixnum</em> is returned to the underlying system as the
* exit status.
*
* Process.exit!(0)
*/
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
VALUE status;
int istatus;
rb_secure(4);
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
break;
}
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
return Qnil; /* not reached */
}
void
rb_exit(int status)
{
if (GET_THREAD()->tag) {
VALUE args[2];
args[0] = INT2NUM(status);
args[1] = rb_str_new2("exit");
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
ruby_finalize();
exit(status);
}
/*
* call-seq:
* exit(integer=0)
* Kernel::exit(integer=0)
* Process::exit(integer=0)
*
* Initiates the termination of the Ruby script by raising the
* <code>SystemExit</code> exception. This exception may be caught. The
* optional parameter is used to return a status code to the invoking
* environment.
*
* begin
* exit
* puts "never get here"
* rescue SystemExit
* puts "rescued a SystemExit exception"
* end
* puts "after begin block"
*
* <em>produces:</em>
*
* rescued a SystemExit exception
* after begin block
*
* Just prior to termination, Ruby executes any <code>at_exit</code> functions
* (see Kernel::at_exit) and runs any object finalizers (see
* ObjectSpace::define_finalizer).
*
* at_exit { puts "at_exit function" }
* ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
* exit
*
* <em>produces:</em>
*
* at_exit function
* in finalizer
*/
VALUE
rb_f_exit(int argc, VALUE *argv)
{
VALUE status;
int istatus;
rb_secure(4);
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
if (istatus == 0)
istatus = EXIT_SUCCESS;
#endif
break;
}
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
return Qnil; /* not reached */
}
/*
* call-seq:
* abort
* Kernel::abort
* Process::abort
*
* Terminate execution immediately, effectively by calling
* <code>Kernel.exit(1)</code>. If _msg_ is given, it is written
* to STDERR prior to terminating.
*/
VALUE
rb_f_abort(int argc, VALUE *argv)
{
extern void ruby_error_print(void);
rb_secure(4);
if (argc == 0) {
if (!NIL_P(GET_THREAD()->errinfo)) {
ruby_error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
rb_scan_args(argc, argv, "1", &args[1]);
StringValue(argv[0]);
rb_io_puts(argc, argv, rb_stderr);
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
return Qnil; /* not reached */
}
#if defined(sun)
#define signal(a,b) sigset(a,b)
#else
# if defined(POSIX_SIGNAL)
# define signal(a,b) posix_signal(a,b)
# endif
#endif
void
rb_syswait(rb_pid_t pid)
{
static int overriding;
#ifdef SIGHUP
RETSIGTYPE (*hfunc)(int) = 0;
#endif
#ifdef SIGQUIT
RETSIGTYPE (*qfunc)(int) = 0;
#endif
RETSIGTYPE (*ifunc)(int) = 0;
int status;
int i, hooked = Qfalse;
if (!overriding) {
#ifdef SIGHUP
hfunc = signal(SIGHUP, SIG_IGN);
#endif
#ifdef SIGQUIT
qfunc = signal(SIGQUIT, SIG_IGN);
#endif
ifunc = signal(SIGINT, SIG_IGN);
overriding = Qtrue;
hooked = Qtrue;
}
do {
i = rb_waitpid(pid, &status, 0);
} while (i == -1 && errno == EINTR);
if (hooked) {
#ifdef SIGHUP
signal(SIGHUP, hfunc);
#endif
#ifdef SIGQUIT
signal(SIGQUIT, qfunc);
#endif
signal(SIGINT, ifunc);
overriding = Qfalse;
}
}
static rb_pid_t
rb_spawn_internal(int argc, VALUE *argv, int default_close_others)
{
rb_pid_t status;
VALUE prog;
struct rb_exec_arg earg;
int argc2 = argc;
VALUE *argv2 = argv, env = Qnil, opthash = Qnil;
VALUE close_others = ID2SYM(rb_intern("close_others"));
prog = rb_exec_getargs(&argc2, &argv2, Qtrue, &env, &opthash);
if (default_close_others) {
if (NIL_P(opthash)) {
opthash = rb_hash_new();
RBASIC(opthash)->klass = 0;
}
if (RBASIC(opthash)->klass) {
opthash = rb_hash_dup(opthash);
RBASIC(opthash)->klass = 0;
}
if (!st_lookup(RHASH_TBL(opthash), close_others, 0))
rb_hash_aset(opthash, close_others, Qtrue);
}
rb_exec_initarg2(prog, argc2, argv2, env, opthash, &earg);
#if defined HAVE_FORK
status = rb_fork(&status, rb_exec_atfork, &earg, earg.redirect_fds);
if (prog && earg.argc) earg.argv[0] = prog;
#elif defined HAVE_SPAWNV
argc = earg.argc;
argv = earg.argv;
if (!argc) {
status = proc_spawn(RSTRING_PTR(prog));
}
else {
status = proc_spawn_n(argc, argv, prog);
}
if (prog && argc) argv[0] = prog;
#else
argc = earg.argc;
argv = earg.argv;
if (prog && argc) argv[0] = prog;
if (argc) prog = rb_ary_join(rb_ary_new4(argc, argv), rb_str_new2(" "));
status = system(StringValuePtr(prog));
# if defined(__human68k__) || defined(__DJGPP__)
rb_last_status_set(status == -1 ? 127 : status, 0);
# else
rb_last_status_set((status & 0xff) << 8, 0);
# endif
#endif
return status;
}
rb_pid_t
rb_spawn(int argc, VALUE *argv)
{
return rb_spawn_internal(argc, argv, Qtrue);
}
/*
* call-seq:
* system([env,] cmd [, arg, ...] [,options]) => true, false or nil
*
* Executes _cmd_ in a subshell, returning +true+ if the command
* gives zero exit status, +false+ for non zero exit status. Returns
* +nil+ if command execution fails. An error status is available in
* <code>$?</code>. The arguments are processed in the same way as
* for <code>Kernel::exec</code>.
*
* The hash arguments, env and options, are same as
* <code>exec</code> and <code>spawn</code>.
* See <code>spawn</code> for details.
*
* system("echo *")
* system("echo", "*")
*
* <em>produces:</em>
*
* config.h main.rb
* *
*/
static VALUE
rb_f_system(int argc, VALUE *argv)
{
int status;
#if defined(SIGCLD) && !defined(SIGCHLD)
# define SIGCHLD SIGCLD
#endif
#ifdef SIGCHLD
RETSIGTYPE (*chfunc)(int);
chfunc = signal(SIGCHLD, SIG_DFL);
#endif
status = rb_spawn_internal(argc, argv, Qfalse);
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
if (status > 0) {
rb_syswait(status);
}
#endif
#ifdef SIGCHLD
signal(SIGCHLD, chfunc);
#endif
if (status < 0) {
return Qnil;
}
status = NUM2INT(rb_last_status_get());
if (status == EXIT_SUCCESS) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* spawn([env,] cmd [, arg, ...] [,options]) => pid
*
* Similar to <code>Kernel::system</code> except for not waiting for
* end of _cmd_, but returns its <i>pid</i>.
*
* If a hash is given as +env+, the environment is
* updated by +env+ before <code>exec(2)</code> in the child process.
*
* If a hash is given as +options+,
* it specifies
* process group,
* resource limit,
* current directory,
* umask and
* redirects for the child process.
* Also, it can be specified to clear environment variables.
*
* The <code>:unsetenv_others</code> key in +options+ specifies
* to clear environment variables, other than specified by +env+.
*
* pid = spawn(command, :unsetenv_others=>true) # no environment variable
* pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
*
* The <code>:pgroup</code> key in +options+ specifies a process group.
* The corresponding value should be true, zero or positive integer.
* true and zero means the process should be a process leader.
* Other values specifies a process group to be belongs.
*
* pid = spawn(command, :pgroup=>true) # process leader
* pid = spawn(command, :pgroup=>10) # belongs to the process group 10
*
* The <code>:rlimit_</code><em>foo</em> key specifies a resource limit.
* <em>foo</em> should be one of resource types such as <code>core</code>
* The corresponding value should be an integer or an array which have one or
* two integers: same as cur_limit and max_limit arguments for
* Process.setrlimit.
*
* pid = spawn(command, :rlimit_core=>0) # never dump core.
* cur, max = Process.getrlimit(:CORE)
* pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
* pid = spawn(command, :rlimit_core=>max) # enable core dump
*
* The <code>:chdir</code> key in +options+ specifies the current directory.
*
* pid = spawn(command, :chdir=>"/var/tmp")
*
* The <code>:umask</code> key in +options+ specifies the umask.
*
* pid = spawn(command, :umask=>077)
*
* The :in, :out, :err, a fixnum, an IO and an array key specifies a redirect.
* The redirection maps a file descriptor in the child process.
*
* For example, stderr can be merged into stdout:
*
* pid = spawn(command, :err=>:out)
* pid = spawn(command, STDERR=>STDOUT)
* pid = spawn(command, 2=>1)
*
* The hash keys specifies a file descriptor
* in the child process started by <code>spawn</code>.
* :err, STDERR and 2 specifies the standard error stream.
*
* The hash values specifies a file descriptor
* in the parent process which invokes <code>spawn</code>.
* :out, STDOUT and 1 specifies the standard output stream.
*
* The standard output in the child process is not specified.
* So it is inherited from the parent process.
*
* The standard input stream can be specifed by :in, STDIN and 0.
*
* A filename can be specified as a hash value.
*
* pid = spawn(command, STDIN=>"/dev/null") # read mode
* pid = spawn(command, STDOUT=>"/dev/null") # write mode
* pid = spawn(command, STDERR=>"log") # write mode
* pid = spawn(command, 3=>"/dev/null") # read mode
*
* For standard output and standard error,
* it is opened in write mode.
* Otherwise read mode is used.
*
* For specifying flags and permission of file creation explicitly,
* an array is used instead.
*
* pid = spawn(command, STDIN=>["file"]) # read mode is assumed
* pid = spawn(command, STDIN=>["file", "r"])
* pid = spawn(command, STDOUT=>["log", "w"]) # 0644 assumed
* pid = spawn(command, STDOUT=>["log", "w", 0600])
* pid = spawn(command, STDOUT=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
*
* The array specifies a filename, flags and permission.
* The flags can be a string or an integer.
* If the flags is ommitted or nil, File::RDONLY is assumed.
* The permission should be an integer.
* If the permission is ommitted or nil, 0644 is assumed.
*
* If an array of IOs and integers are specified as a hash key,
* all the elemetns are redirected.
*
* # standard output and standard error is redirected to log file.
* pid = spawn(command, [STDOUT, STDERR]=>["log", "w"])
*
* spawn closes all non-standard unspecified descriptors by default.
* The "standard" descriptors are 0, 1 and 2.
* This behavior is specified by :close_others option.
*
* pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
* pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
*
* :close_others is true by default for spawn and IO.popen.
*
* So IO.pipe and spawn can be used as IO.popen.
*
* # similar to r = IO.popen(command)
* r, w = IO.pipe
* pid = spawn(command, STDOUT=>w) # r, w is closed in the child process.
* w.close
*
* :close is specified as a hash value to close a fd individualy.
*
* f = open(foo)
* system(command, f=>:close) # don't inherit f.
*
* It is also possible to exchange file descriptors.
*
* pid = spawn(command, STDOUT=>STDERR, STDERR=>STDOUT)
*
* The hash keys specify file descriptors in the child process.
* The hash values specifies file descriptors in the parent process.
* So the above specifies exchanging STDOUT and STDERR.
* Internally, +spawn+ uses an extra file descriptor to resolve such cyclic
* file descriptor mapping.
*
*/
static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
rb_pid_t pid;
pid = rb_spawn(argc, argv);
if (pid == -1) rb_sys_fail(RSTRING_PTR(argv[0]));
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
/*
* call-seq:
* sleep([duration]) => fixnum
*
* Suspends the current thread for _duration_ seconds (which may be any number,
* including a +Float+ with fractional seconds). Returns the actual number of
* seconds slept (rounded), which may be less than that asked for if another
* thread calls <code>Thread#run</code>. Zero arguments causes +sleep+ to sleep
* forever.
*
* Time.new #=> 2008-03-08 19:56:19 +0900
* sleep 1.2 #=> 1
* Time.new #=> 2008-03-08 19:56:20 +0900
* sleep 1.9 #=> 2
* Time.new #=> 2008-03-08 19:56:22 +0900
*/
static VALUE
rb_f_sleep(int argc, VALUE *argv)
{
int beg, end;
beg = time(0);
if (argc == 0) {
rb_thread_sleep_forever();
}
else if (argc == 1) {
rb_thread_wait_for(rb_time_interval(argv[0]));
}
else {
rb_raise(rb_eArgError, "wrong number of arguments");
}
end = time(0) - beg;
return INT2FIX(end);
}
/*
* call-seq:
* Process.getpgrp => integer
*
* Returns the process group ID for this process. Not available on
* all platforms.
*
* Process.getpgid(0) #=> 25527
* Process.getpgrp #=> 25527
*/
static VALUE
proc_getpgrp(void)
{
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) || defined(HAVE_GETPGID)
rb_pid_t pgrp;
#endif
rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else
# ifdef HAVE_GETPGID
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
# else
rb_notimplement();
# endif
#endif
}
/*
* call-seq:
* Process.setpgrp => 0
*
* Equivalent to <code>setpgid(0,0)</code>. Not available on all
* platforms.
*/
static VALUE
proc_setpgrp(void)
{
rb_secure(2);
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return INT2FIX(0);
}
/*
* call-seq:
* Process.getpgid(pid) => integer
*
* Returns the process group ID for the given process id. Not
* available on all platforms.
*
* Process.getpgid(Process.ppid()) #=> 25527
*/
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
#if defined(HAVE_GETPGID) && !defined(__CHECKER__)
rb_pid_t i;
rb_secure(2);
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
#else
rb_notimplement();
#endif
}
/*
* call-seq:
* Process.setpgid(pid, integer) => 0
*
* Sets the process group ID of _pid_ (0 indicates this
* process) to <em>integer</em>. Not available on all platforms.
*/
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
#ifdef HAVE_SETPGID
rb_pid_t ipid, ipgrp;
rb_secure(2);
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
#else
rb_notimplement();
#endif
}
/*
* call-seq:
* Process.setsid => fixnum
*
* Establishes this process as a new session and process group
* leader, with no controlling tty. Returns the session id. Not
* available on all platforms.
*
* Process.setsid #=> 27422
*/
static VALUE
proc_setsid(void)
{
#if defined(HAVE_SETSID)
rb_pid_t pid;
rb_secure(2);
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
#elif defined(HAVE_SETPGRP) && defined(TIOCNOTTY)
rb_pid_t pid;
int ret;
rb_secure(2);
pid = getpid();
#if defined(SETPGRP_VOID)
ret = setpgrp();
/* If `pid_t setpgrp(void)' is equivalent to setsid(),
`ret' will be the same value as `pid', and following open() will fail.
In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */
#else
ret = setpgrp(0, pid);
#endif
if (ret == -1) rb_sys_fail(0);
if ((fd = open("/dev/tty", O_RDWR)) >= 0) {
ioctl(fd, TIOCNOTTY, NULL);
close(fd);
}
return PIDT2NUM(pid);
#else
rb_notimplement();
#endif
}
/*
* call-seq:
* Process.getpriority(kind, integer) => fixnum
*
* Gets the scheduling priority for specified process, process group,
* or user. <em>kind</em> indicates the kind of entity to find: one
* of <code>Process::PRIO_PGRP</code>,
* <code>Process::PRIO_USER</code>, or
* <code>Process::PRIO_PROCESS</code>. _integer_ is an id
* indicating the particular process, process group, or user (an id
* of 0 means _current_). Lower priorities are more favorable
* for scheduling. Not available on all platforms.
*
* Process.getpriority(Process::PRIO_USER, 0) #=> 19
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
*/
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
#ifdef HAVE_GETPRIORITY
int prio, iwhich, iwho;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
#else
rb_notimplement();
#endif
}
/*
* call-seq:
* Process.setpriority(kind, integer, priority) => 0
*
* See <code>Process#getpriority</code>.
*
* Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
* Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
* Process.getpriority(Process::PRIO_USER, 0) #=> 19
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
*/
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
#ifdef HAVE_GETPRIORITY
int iwhich, iwho, iprio;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
#else
rb_notimplement();
#endif
}
#if defined(RLIM2NUM)
static int
rlimit_resource_name2int(const char *name, int casetype)
{
size_t len = strlen(name);
if (16 < len) return -1;
if (casetype == 1) {
int i;
char *name2 = ALLOCA_N(char, len+1);
for (i = 0; i < len; i++) {
if (!ISLOWER(name[i]))
return -1;
name2[i] = TOUPPER(name[i]);
}
name2[len] = '\0';
name = name2;
}
switch (*name) {
case 'A':
#ifdef RLIMIT_AS
if (strcmp(name, "AS") == 0) return RLIMIT_AS;
#endif
break;
case 'C':
#ifdef RLIMIT_CORE
if (strcmp(name, "CORE") == 0) return RLIMIT_CORE;
#endif
#ifdef RLIMIT_CPU
if (strcmp(name, "CPU") == 0) return RLIMIT_CPU;
#endif
break;
case 'D':
#ifdef RLIMIT_DATA
if (strcmp(name, "DATA") == 0) return RLIMIT_DATA;
#endif
break;
case 'F':
#ifdef RLIMIT_FSIZE
if (strcmp(name, "FSIZE") == 0) return RLIMIT_FSIZE;
#endif
break;
case 'M':
#ifdef RLIMIT_MEMLOCK
if (strcmp(name, "MEMLOCK") == 0) return RLIMIT_MEMLOCK;
#endif
break;
case 'N':
#ifdef RLIMIT_NOFILE
if (strcmp(name, "NOFILE") == 0) return RLIMIT_NOFILE;
#endif
#ifdef RLIMIT_NPROC
if (strcmp(name, "NPROC") == 0) return RLIMIT_NPROC;
#endif
break;
case 'R':
#ifdef RLIMIT_RSS
if (strcmp(name, "RSS") == 0) return RLIMIT_RSS;
#endif
break;
case 'S':
#ifdef RLIMIT_STACK
if (strcmp(name, "STACK") == 0) return RLIMIT_STACK;
#endif
#ifdef RLIMIT_SBSIZE
if (strcmp(name, "SBSIZE") == 0) return RLIMIT_SBSIZE;
#endif
break;
}
return -1;
}
static int
rlimit_type_by_hname(const char *name)
{
return rlimit_resource_name2int(name, 0);
}
static int
rlimit_type_by_lname(const char *name)
{
return rlimit_resource_name2int(name, 1);
}
static int
rlimit_resource_type(VALUE rtype)
{
const char *name;
VALUE v;
int r;
switch (TYPE(rtype)) {
case T_SYMBOL:
name = rb_id2name(SYM2ID(rtype));
break;
default:
v = rb_check_string_type(rtype);
if (!NIL_P(v)) {
rtype = v;
case T_STRING:
name = StringValueCStr(rtype);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2INT(rtype);
}
r = rlimit_type_by_hname(name);
if (r != -1)
return r;
rb_raise(rb_eArgError, "invalid resource name: %s", name);
}
static rlim_t
rlimit_resource_value(VALUE rval)
{
const char *name;
VALUE v;
switch (TYPE(rval)) {
case T_SYMBOL:
name = rb_id2name(SYM2ID(rval));
break;
default:
v = rb_check_string_type(rval);
if (!NIL_P(v)) {
rval = v;
case T_STRING:
name = StringValueCStr(rval);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2RLIM(rval);
}
#ifdef RLIM_INFINITY
if (strcmp(name, "INFINITY") == 0) return RLIM_INFINITY;
#endif
#ifdef RLIM_SAVED_MAX
if (strcmp(name, "SAVED_MAX") == 0) return RLIM_SAVED_MAX;
#endif
#ifdef RLIM_SAVED_CUR
if (strcmp(name, "SAVED_CUR") == 0) return RLIM_SAVED_CUR;
#endif
rb_raise(rb_eArgError, "invalid resource value: %s", name);
}
#endif
/*
* call-seq:
* Process.getrlimit(resource) => [cur_limit, max_limit]
*
* Gets the resource limit of the process.
* _cur_limit_ means current (soft) limit and
* _max_limit_ means maximum (hard) limit.
*
* _resource_ indicates the kind of resource to limit.
* It is specified as a symbol such as <code>:CORE</code>,
* a string such as <code>"CORE"</code> or
* a constant such as <code>Process::RLIMIT_CORE</code>.
* See Process.setrlimit for details.
*
* _cur_limit_ and _max_limit_ may be <code>Process::RLIM_INFINITY</code>,
* <code>Process::RLIM_SAVED_MAX</code> or
* <code>Process::RLIM_SAVED_CUR</code>.
* See Process.setrlimit and the system getrlimit(2) manual for details.
*/
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
#if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM)
struct rlimit rlim;
rb_secure(2);
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
#else
rb_notimplement();
#endif
}
/*
* call-seq:
* Process.setrlimit(resource, cur_limit, max_limit) => nil
* Process.setrlimit(resource, cur_limit) => nil
*
* Sets the resource limit of the process.
* _cur_limit_ means current (soft) limit and
* _max_limit_ means maximum (hard) limit.
*
* If _max_limit_ is not given, _cur_limit_ is used.
*
* _resource_ indicates the kind of resource to limit.
* It should be a symbol such as <code>:CORE</code>,
* a string such as <code>"CORE"</code> or
* a constant such as <code>Process::RLIMIT_CORE</code>.
* The available resources are OS dependent.
* Ruby may support following resources.
*
* [CORE] core size (bytes) (SUSv3)
* [CPU] CPU time (seconds) (SUSv3)
* [DATA] data segment (bytes) (SUSv3)
* [FSIZE] file size (bytes) (SUSv3)
* [NOFILE] file descriptors (number) (SUSv3)
* [STACK] stack size (bytes) (SUSv3)
* [AS] total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
* [MEMLOCK] total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
* [NPROC] number of processes for the user (number) (4.4BSD, GNU/Linux)
* [RSS] resident memory size (bytes) (4.2BSD, GNU/Linux)
* [SBSIZE] all socket buffers (bytes) (NetBSD, FreeBSD)
*
* _cur_limit_ and _max_limit_ may be
* <code>:INFINITY</code>, <code>"INFINITY"</code> or
* <code>Process::RLIM_INFINITY</code>,
* which means that the resource is not limited.
* They may be <code>Process::RLIM_SAVED_MAX</code>,
* <code>Process::RLIM_SAVED_CUR</code> and
* corresponding symbols and strings too.
* See system setrlimit(2) manual for details.
*
* The following example raise the soft limit of core size to
* the hard limit to try to make core dump possible.
*
* Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
*
*/
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_secure(2);
rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
if (rlim_max == Qnil)
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
#else
rb_notimplement();
#endif
}
static int under_uid_switch = 0;
static void
check_uid_switch(void)
{
rb_secure(2);
if (under_uid_switch) {
rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method");
}
}
static int under_gid_switch = 0;
static void
check_gid_switch(void)
{
rb_secure(2);
if (under_gid_switch) {
rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method");
}
}
/*********************************************************************
* Document-class: Process::Sys
*
* The <code>Process::Sys</code> module contains UID and GID
* functions which provide direct bindings to the system calls of the
* same names instead of the more-portable versions of the same
* functionality found in the <code>Process</code>,
* <code>Process::UID</code>, and <code>Process::GID</code> modules.
*/
/*
* call-seq:
* Process::Sys.setuid(integer) => nil
*
* Set the user ID of the current process to _integer_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setuid(VALUE obj, VALUE id)
{
#if defined HAVE_SETUID
check_uid_switch();
if (setuid(NUM2UIDT(id)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setruid(integer) => nil
*
* Set the real user ID of the calling process to _integer_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setruid(VALUE obj, VALUE id)
{
#if defined HAVE_SETRUID
check_uid_switch();
if (setruid(NUM2UIDT(id)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.seteuid(integer) => nil
*
* Set the effective user ID of the calling process to
* _integer_. Not available on all platforms.
*
*/
static VALUE
p_sys_seteuid(VALUE obj, VALUE id)
{
#if defined HAVE_SETEUID
check_uid_switch();
if (seteuid(NUM2UIDT(id)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setreuid(rid, eid) => nil
*
* Sets the (integer) real and/or effective user IDs of the current
* process to _rid_ and _eid_, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid)
{
#if defined HAVE_SETREUID
check_uid_switch();
if (setreuid(NUM2UIDT(rid),NUM2UIDT(eid)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setresuid(rid, eid, sid) => nil
*
* Sets the (integer) real, effective, and saved user IDs of the
* current process to _rid_, _eid_, and _sid_ respectively. A
* value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
#if defined HAVE_SETRESUID
check_uid_switch();
if (setresuid(NUM2UIDT(rid),NUM2UIDT(eid),NUM2UIDT(sid)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process.uid => fixnum
* Process::UID.rid => fixnum
* Process::Sys.getuid => fixnum
*
* Returns the (real) user ID of this process.
*
* Process.uid #=> 501
*/
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
/*
* call-seq:
* Process.uid= integer => numeric
*
* Sets the (integer) user ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = NUM2UIDT(id);
#if defined(HAVE_SETRESUID) && !defined(__CHECKER__)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#else
rb_notimplement();
#endif
return id;
}
/********************************************************************
*
* Document-class: Process::UID
*
* The <code>Process::UID</code> module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved user IDs.
*
*/
static rb_uid_t SAVED_USER_ID = -1;
#ifdef BROKEN_SETREUID
int
setreuid(rb_uid_t ruid, rb_uid_t euid)
{
if (ruid != -1 && ruid != getuid()) {
if (euid == -1) euid = geteuid();
if (setuid(ruid) < 0) return -1;
}
if (euid != -1 && euid != geteuid()) {
if (seteuid(euid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::UID.change_privilege(integer) => fixnum
*
* Change the current process's real and effective user ID to that
* specified by _integer_. Returns the new user ID. Not
* available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.change_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [31, 31]
*/
static VALUE
p_uid_change_privilege(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = NUM2UIDT(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESUID)
if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETUID)
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
} else {
if (uid == 0) { /* (r,e,s) == (root, root, x) */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else {
if (setreuid(0, -1) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
} else {
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
} else {
if (uid == 0) {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setruid(0) < 0) rb_sys_fail(0);
} else {
if (setruid(0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
} else {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#else
rb_notimplement();
#endif
} else { /* unprivileged user */
#if defined(HAVE_SETRESUID)
if (setresuid((getuid() == uid)? -1: uid,
(geteuid() == uid)? -1: uid,
(SAVED_USER_ID == uid)? -1: uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (SAVED_USER_ID == uid) {
if (setreuid((getuid() == uid)? -1: uid,
(geteuid() == uid)? -1: uid) < 0) rb_sys_fail(0);
} else if (getuid() != uid) {
if (setreuid(uid, (geteuid() == uid)? -1: uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else if (/* getuid() == uid && */ geteuid() != uid) {
if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
} else { /* getuid() == uid && geteuid() == uid */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (SAVED_USER_ID == uid) {
if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0);
if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0);
} else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) {
if (getuid() != uid) {
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
}
} else if (/* geteuid() != uid && */ getuid() == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_44BSD_SETUID
if (getuid() == uid) {
/* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETEUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#else
rb_notimplement();
#endif
}
return id;
}
/*
* call-seq:
* Process::Sys.setgid(integer) => nil
*
* Set the group ID of the current process to _integer_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setgid(VALUE obj, VALUE id)
{
#if defined HAVE_SETGID
check_gid_switch();
if (setgid(NUM2GIDT(id)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setrgid(integer) => nil
*
* Set the real group ID of the calling process to _integer_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setrgid(VALUE obj, VALUE id)
{
#if defined HAVE_SETRGID
check_gid_switch();
if (setrgid(NUM2GIDT(id)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setegid(integer) => nil
*
* Set the effective group ID of the calling process to
* _integer_. Not available on all platforms.
*
*/
static VALUE
p_sys_setegid(VALUE obj, VALUE id)
{
#if defined HAVE_SETEGID
check_gid_switch();
if (setegid(NUM2GIDT(id)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setregid(rid, eid) => nil
*
* Sets the (integer) real and/or effective group IDs of the current
* process to <em>rid</em> and <em>eid</em>, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setregid(VALUE obj, VALUE rid, VALUE eid)
{
#if defined HAVE_SETREGID
check_gid_switch();
if (setregid(NUM2GIDT(rid),NUM2GIDT(eid)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.setresgid(rid, eid, sid) => nil
*
* Sets the (integer) real, effective, and saved user IDs of the
* current process to <em>rid</em>, <em>eid</em>, and <em>sid</em>
* respectively. A value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
#if defined HAVE_SETRESGID
check_gid_switch();
if (setresgid(NUM2GIDT(rid),NUM2GIDT(eid),NUM2GIDT(sid)) != 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return Qnil;
}
/*
* call-seq:
* Process::Sys.issetugid => true or false
*
* Returns +true+ if the process was created as a result
* of an execve(2) system call which had either of the setuid or
* setgid bits set (and extra privileges were given as a result) or
* if it has changed any of its real, effective or saved user or
* group IDs since it began execution.
*
*/
static VALUE
p_sys_issetugid(VALUE obj)
{
#if defined HAVE_ISSETUGID
rb_secure(2);
if (issetugid()) {
return Qtrue;
} else {
return Qfalse;
}
#else
rb_notimplement();
return Qnil; /* not reached */
#endif
}
/*
* call-seq:
* Process.gid => fixnum
* Process::GID.rid => fixnum
* Process::Sys.getgid => fixnum
*
* Returns the (real) group ID for this process.
*
* Process.gid #=> 500
*/
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
/*
* call-seq:
* Process.gid= fixnum => fixnum
*
* Sets the group ID for this process.
*/
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = NUM2GIDT(id);
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#else
rb_notimplement();
#endif
return GIDT2NUM(gid);
}
static size_t maxgroups = 32;
/*
* call-seq:
* Process.groups => array
*
* Get an <code>Array</code> of the gids of groups in the
* supplemental group access list for this process.
*
* Process.groups #=> [27, 6, 10, 11]
*
*/
static VALUE
proc_getgroups(VALUE obj)
{
#ifdef HAVE_GETGROUPS
VALUE ary;
size_t ngroups;
rb_gid_t *groups;
int i;
groups = ALLOCA_N(rb_gid_t, maxgroups);
ngroups = getgroups(maxgroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
return ary;
#else
rb_notimplement();
return Qnil;
#endif
}
/*
* call-seq:
* Process.groups= array => array
*
* Set the supplemental group access list to the given
* <code>Array</code> of group IDs.
*
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11]
* Process.groups #=> [27, 6, 10, 11]
*
*/
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
#ifdef HAVE_SETGROUPS
size_t ngroups;
rb_gid_t *groups;
int i;
struct group *gr;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LEN(ary);
if (ngroups > maxgroups)
rb_raise(rb_eArgError, "too many groups, %lu max", (unsigned long)maxgroups);
groups = ALLOCA_N(rb_gid_t, ngroups);
for (i = 0; i < ngroups && i < RARRAY_LEN(ary); i++) {
VALUE g = RARRAY_PTR(ary)[i];
if (FIXNUM_P(g)) {
groups[i] = NUM2GIDT(g);
}
else {
VALUE tmp = rb_check_string_type(g);
if (NIL_P(tmp)) {
groups[i] = NUM2GIDT(g);
}
else {
gr = getgrnam(RSTRING_PTR(tmp));
if (gr == NULL)
rb_raise(rb_eArgError,
"can't find group for %s", RSTRING_PTR(tmp));
groups[i] = gr->gr_gid;
}
}
}
i = setgroups(ngroups, groups);
if (i == -1)
rb_sys_fail(0);
return proc_getgroups(obj);
#else
rb_notimplement();
return Qnil;
#endif
}
/*
* call-seq:
* Process.initgroups(username, gid) => array
*
* Initializes the supplemental group access list by reading the
* system group database and using all groups of which the given user
* is a member. The group with the specified <em>gid</em> is also
* added to the list. Returns the resulting <code>Array</code> of the
* gids of all the groups in the supplementary group access list. Not
* available on all platforms.
*
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
* Process.groups #=> [30, 6, 10, 11]
*
*/
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
#ifdef HAVE_INITGROUPS
if (initgroups(StringValuePtr(uname), NUM2GIDT(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
#else
rb_notimplement();
return Qnil;
#endif
}
/*
* call-seq:
* Process.maxgroups => fixnum
*
* Returns the maximum number of gids allowed in the supplemental
* group access list.
*
* Process.maxgroups #=> 32
*/
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups);
}
/*
* call-seq:
* Process.maxgroups= fixnum => fixnum
*
* Sets the maximum number of gids allowed in the supplemental group
* access list.
*/
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
size_t ngroups = FIX2INT(val);
if (ngroups > 4096)
ngroups = 4096;
maxgroups = ngroups;
return INT2FIX(maxgroups);
}
/*
* call-seq:
* Process.daemon() => fixnum
* Process.daemon(nochdir=nil,noclose=nil) => fixnum
*
* Detach the process from controlling terminal and run in
* the background as system daemon. Unless the argument
* nochdir is true (i.e. non false), it changes the current
* working directory to the root ("/"). Unless the argument
* noclose is true, daemon() will redirect standard input,
* standard output and standard error to /dev/null.
*/
static VALUE
proc_daemon(int argc, VALUE *argv)
{
VALUE nochdir, noclose;
#if defined(HAVE_DAEMON) || defined(HAVE_FORK)
int n;
#endif
rb_secure(2);
rb_scan_args(argc, argv, "02", &nochdir, &noclose);
#if defined(HAVE_DAEMON)
n = daemon(RTEST(nochdir), RTEST(noclose));
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
#elif defined(HAVE_FORK)
switch (rb_fork(0, 0, 0, Qnil)) {
case -1:
return (-1);
case 0:
break;
default:
_exit(0);
}
proc_setsid();
if (!RTEST(nochdir))
(void)chdir("/");
if (!RTEST(noclose) && (n = open("/dev/null", O_RDWR, 0)) != -1) {
(void)dup2(n, 0);
(void)dup2(n, 1);
(void)dup2(n, 2);
if (n > 2)
(void)close (n);
}
return INT2FIX(0);
#else
rb_notimplement();
#endif
}
/********************************************************************
*
* Document-class: Process::GID
*
* The <code>Process::GID</code> module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved group IDs.
*
*/
static int SAVED_GROUP_ID = -1;
#ifdef BROKEN_SETREGID
int
setregid(rb_gid_t rgid, rb_gid_t egid)
{
if (rgid != -1 && rgid != getgid()) {
if (egid == -1) egid = getegid();
if (setgid(rgid) < 0) return -1;
}
if (egid != -1 && egid != getegid()) {
if (setegid(egid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::GID.change_privilege(integer) => fixnum
*
* Change the current process's real and effective group ID to that
* specified by _integer_. Returns the new group ID. Not
* available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.change_privilege(33) #=> 33
* [Process.gid, Process.egid] #=> [33, 33]
*/
static VALUE
p_gid_change_privilege(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = NUM2GIDT(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESGID)
if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined HAVE_SETGID
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setregid(-1, gid) < 0) rb_sys_fail(0);
} else {
if (gid == 0) { /* (r,e,s) == (root, y, x) */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else { /* (r,e,s) == (z, y, x) */
if (setregid(0, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
} else {
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
} else {
if (gid == 0) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setrgid(0) < 0) rb_sys_fail(0);
} else {
if (setrgid(0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
} else {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#else
rb_notimplement();
#endif
} else { /* unprivileged user */
#if defined(HAVE_SETRESGID)
if (setresgid((getgid() == gid)? -1: gid,
(getegid() == gid)? -1: gid,
(SAVED_GROUP_ID == gid)? -1: gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (SAVED_GROUP_ID == gid) {
if (setregid((getgid() == gid)? -1: gid,
(getegid() == gid)? -1: gid) < 0) rb_sys_fail(0);
} else if (getgid() != gid) {
if (setregid(gid, (getegid() == gid)? -1: gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else if (/* getgid() == gid && */ getegid() != gid) {
if (setregid(getegid(), gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
} else { /* getgid() == gid && getegid() == gid */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID)
if (SAVED_GROUP_ID == gid) {
if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0);
if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0);
} else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) {
if (getgid() != gid) {
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else {
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
}
} else if (/* getegid() != gid && */ getgid() == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_44BSD_SETGID
if (getgid() == gid) {
/* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETEGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#else
rb_notimplement();
#endif
}
return id;
}
/*
* call-seq:
* Process.euid => fixnum
* Process::UID.eid => fixnum
* Process::Sys.geteuid => fixnum
*
* Returns the effective user ID for this process.
*
* Process.euid #=> 501
*/
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
/*
* call-seq:
* Process.euid= integer
*
* Sets the effective user ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_seteuid(VALUE obj, VALUE euid)
{
rb_uid_t uid;
check_uid_switch();
uid = NUM2UIDT(euid);
#if defined(HAVE_SETRESUID) && !defined(__CHECKER__)
if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEUID
if (seteuid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (uid == getuid()) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
return euid;
}
static rb_uid_t
rb_seteuid_core(rb_uid_t euid)
{
rb_uid_t uid;
check_uid_switch();
uid = getuid();
#if defined(HAVE_SETRESUID) && !defined(__CHECKER__)
if (uid != euid) {
if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
} else {
if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(-1, euid) < 0) rb_sys_fail(0);
if (uid != euid) {
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
if (setreuid(uid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
}
#elif defined HAVE_SETEUID
if (seteuid(euid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (geteuid() == 0) rb_sys_fail(0);
if (setuid(euid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return euid;
}
/*
* call-seq:
* Process::UID.grant_privilege(integer) => fixnum
* Process::UID.eid= integer => fixnum
*
* Set the effective user ID, and if possible, the saved user ID of
* the process to the given _integer_. Returns the new
* effective user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.grant_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [0, 31]
*/
static VALUE
p_uid_grant_privilege(VALUE obj, VALUE id)
{
rb_seteuid_core(NUM2UIDT(id));
return id;
}
/*
* call-seq:
* Process.egid => fixnum
* Process::GID.eid => fixnum
* Process::Sys.geteid => fixnum
*
* Returns the effective group ID for this process. Not available on
* all platforms.
*
* Process.egid #=> 500
*/
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
/*
* call-seq:
* Process.egid = fixnum => fixnum
*
* Sets the effective group ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_setegid(VALUE obj, VALUE egid)
{
rb_gid_t gid;
check_gid_switch();
gid = NUM2GIDT(egid);
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(-1, gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEGID
if (setegid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (gid == getgid()) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
return egid;
}
static rb_gid_t
rb_setegid_core(rb_gid_t egid)
{
rb_gid_t gid;
check_gid_switch();
gid = getgid();
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
if (gid != egid) {
if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
} else {
if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(-1, egid) < 0) rb_sys_fail(0);
if (gid != egid) {
if (setregid(egid,gid) < 0) rb_sys_fail(0);
if (setregid(gid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
}
#elif defined HAVE_SETEGID
if (setegid(egid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (geteuid() == 0 /* root user */) rb_sys_fail(0);
if (setgid(egid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return egid;
}
/*
* call-seq:
* Process::GID.grant_privilege(integer) => fixnum
* Process::GID.eid = integer => fixnum
*
* Set the effective group ID, and if possible, the saved group ID of
* the process to the given _integer_. Returns the new
* effective group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.grant_privilege(31) #=> 33
* [Process.gid, Process.egid] #=> [0, 33]
*/
static VALUE
p_gid_grant_privilege(VALUE obj, VALUE id)
{
rb_setegid_core(NUM2GIDT(id));
return id;
}
/*
* call-seq:
* Process::UID.re_exchangeable? => true or false
*
* Returns +true+ if the real and effective user IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_uid_exchangeable(void)
{
#if defined(HAVE_SETRESUID) && !defined(__CHECKER__)
return Qtrue;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::UID.re_exchange => fixnum
*
* Exchange real and effective user IDs and return the new effective
* user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 31]
* Process::UID.re_exchange #=> 0
* [Process.uid, Process.euid] #=> [31, 0]
*/
static VALUE
p_uid_exchange(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
#if defined(HAVE_SETRESUID) && !defined(__CHECKER__)
if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#else
rb_notimplement();
#endif
return UIDT2NUM(uid);
}
/*
* call-seq:
* Process::GID.re_exchangeable? => true or false
*
* Returns +true+ if the real and effective group IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_gid_exchangeable(void)
{
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
return Qtrue;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::GID.re_exchange => fixnum
*
* Exchange real and effective group IDs and return the new effective
* group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 33]
* Process::GID.re_exchange #=> 0
* [Process.gid, Process.egid] #=> [33, 0]
*/
static VALUE
p_gid_exchange(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(egid,gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#else
rb_notimplement();
#endif
return GIDT2NUM(gid);
}
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::UID.sid_available? => true or false
*
* Returns +true+ if the current platform has saved user
* ID functionality.
*
*/
static VALUE
p_uid_have_saved_id(void)
{
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_uid_sw_ensure(rb_uid_t id)
{
under_uid_switch = 0;
id = rb_seteuid_core(id);
return UIDT2NUM(id);
}
/*
* call-seq:
* Process::UID.switch => fixnum
* Process::UID.switch {|| block} => object
*
* Switch the effective and real user IDs of the current process. If
* a <em>block</em> is given, the user IDs will be switched back
* after the block is executed. Returns the new effective user ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid != euid) {
proc_seteuid(obj, UIDT2NUM(uid));
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID);
} else {
return UIDT2NUM(euid);
}
} else if (euid != SAVED_USER_ID) {
proc_seteuid(obj, UIDT2NUM(SAVED_USER_ID));
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid);
} else {
return UIDT2NUM(uid);
}
} else {
errno = EPERM;
rb_sys_fail(0);
}
}
#else
static VALUE
p_uid_sw_ensure(VALUE obj)
{
under_uid_switch = 0;
return p_uid_exchange(obj);
}
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid == euid) {
errno = EPERM;
rb_sys_fail(0);
}
p_uid_exchange(obj);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj);
} else {
return UIDT2NUM(euid);
}
}
#endif
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::GID.sid_available? => true or false
*
* Returns +true+ if the current platform has saved group
* ID functionality.
*
*/
static VALUE
p_gid_have_saved_id(void)
{
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_gid_sw_ensure(rb_gid_t id)
{
under_gid_switch = 0;
id = rb_setegid_core(id);
return GIDT2NUM(id);
}
/*
* call-seq:
* Process::GID.switch => fixnum
* Process::GID.switch {|| block} => object
*
* Switch the effective and real group IDs of the current process. If
* a <em>block</em> is given, the group IDs will be switched back
* after the block is executed. Returns the new effective group ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_gid_switch(VALUE obj)
{
int gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid != egid) {
proc_setegid(obj, GIDT2NUM(gid));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID);
} else {
return GIDT2NUM(egid);
}
} else if (egid != SAVED_GROUP_ID) {
proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid);
} else {
return GIDT2NUM(gid);
}
} else {
errno = EPERM;
rb_sys_fail(0);
}
}
#else
static VALUE
p_gid_sw_ensure(VALUE obj)
{
under_gid_switch = 0;
return p_gid_exchange(obj);
}
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid == egid) {
errno = EPERM;
rb_sys_fail(0);
}
p_gid_exchange(obj);
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj);
} else {
return GIDT2NUM(egid);
}
}
#endif
/*
* call-seq:
* Process.times => aStructTms
*
* Returns a <code>Tms</code> structure (see <code>Struct::Tms</code>
* on page 388) that contains user and system CPU times for this
* process.
*
* t = Process.times
* [ t.utime, t.stime ] #=> [0.0, 0.02]
*/
VALUE
rb_proc_times(VALUE obj)
{
#if defined(HAVE_TIMES) && !defined(__CHECKER__)
const double hertz =
#ifdef HAVE__SC_CLK_TCK
(double)sysconf(_SC_CLK_TCK);
#else
#ifndef HZ
# ifdef CLK_TCK
# define HZ CLK_TCK
# else
# define HZ 60
# endif
#endif /* HZ */
HZ;
#endif
struct tms buf;
volatile VALUE utime, stime, cutime, sctime;
times(&buf);
return rb_struct_new(rb_cProcessTms,
utime = DOUBLE2NUM(buf.tms_utime / hertz),
stime = DOUBLE2NUM(buf.tms_stime / hertz),
cutime = DOUBLE2NUM(buf.tms_cutime / hertz),
sctime = DOUBLE2NUM(buf.tms_cstime / hertz));
#else
rb_notimplement();
#endif
}
VALUE rb_mProcess;
VALUE rb_mProcUID;
VALUE rb_mProcGID;
VALUE rb_mProcID_Syscall;
/*
* The <code>Process</code> module is a collection of methods used to
* manipulate processes.
*/
void
Init_process(void)
{
rb_define_virtual_variable("$?", rb_last_status_get, 0);
rb_define_virtual_variable("$$", get_pid, 0);
rb_define_global_function("exec", rb_f_exec, -1);
rb_define_global_function("fork", rb_f_fork, 0);
rb_define_global_function("exit!", rb_f_exit_bang, -1);
rb_define_global_function("system", rb_f_system, -1);
rb_define_global_function("spawn", rb_f_spawn, -1);
rb_define_global_function("sleep", rb_f_sleep, -1);
rb_define_global_function("exit", rb_f_exit, -1);
rb_define_global_function("abort", rb_f_abort, -1);
rb_mProcess = rb_define_module("Process");
#ifdef WNOHANG
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG));
#else
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0));
#endif
#ifdef WUNTRACED
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED));
#else
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0));
#endif
rb_define_singleton_method(rb_mProcess, "exec", rb_f_exec, -1);
rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0);
rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1);
rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1);
rb_define_singleton_method(rb_mProcess, "exit", rb_f_exit, -1);
rb_define_singleton_method(rb_mProcess, "abort", rb_f_abort, -1);
rb_define_module_function(rb_mProcess, "kill", rb_f_kill, -1); /* in signal.c */
rb_define_module_function(rb_mProcess, "wait", proc_wait, -1);
rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitpid", proc_wait, -1);
rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0);
rb_define_module_function(rb_mProcess, "detach", proc_detach, 1);
rb_cProcessStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject);
rb_undef_method(CLASS_OF(rb_cProcessStatus), "new");
rb_define_method(rb_cProcessStatus, "==", pst_equal, 1);
rb_define_method(rb_cProcessStatus, "&", pst_bitand, 1);
rb_define_method(rb_cProcessStatus, ">>", pst_rshift, 1);
rb_define_method(rb_cProcessStatus, "to_i", pst_to_i, 0);
rb_define_method(rb_cProcessStatus, "to_int", pst_to_i, 0);
rb_define_method(rb_cProcessStatus, "to_s", pst_to_s, 0);
rb_define_method(rb_cProcessStatus, "inspect", pst_inspect, 0);
rb_define_method(rb_cProcessStatus, "pid", pst_pid, 0);
rb_define_method(rb_cProcessStatus, "stopped?", pst_wifstopped, 0);
rb_define_method(rb_cProcessStatus, "stopsig", pst_wstopsig, 0);
rb_define_method(rb_cProcessStatus, "signaled?", pst_wifsignaled, 0);
rb_define_method(rb_cProcessStatus, "termsig", pst_wtermsig, 0);
rb_define_method(rb_cProcessStatus, "exited?", pst_wifexited, 0);
rb_define_method(rb_cProcessStatus, "exitstatus", pst_wexitstatus, 0);
rb_define_method(rb_cProcessStatus, "success?", pst_success_p, 0);
rb_define_method(rb_cProcessStatus, "coredump?", pst_wcoredump, 0);
rb_define_module_function(rb_mProcess, "pid", get_pid, 0);
rb_define_module_function(rb_mProcess, "ppid", get_ppid, 0);
rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0);
rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0);
rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1);
rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2);
rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0);
rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2);
rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3);
#ifdef HAVE_GETPRIORITY
rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS));
rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP));
rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER));
#endif
rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1);
rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1);
#ifdef RLIM2NUM
{
VALUE inf = RLIM2NUM(RLIM_INFINITY), v;
rb_define_const(rb_mProcess, "RLIM_INFINITY", inf);
#ifdef RLIM_SAVED_MAX
v = RLIM_INFINITY == RLIM_SAVED_MAX ? inf : RLIM2NUM(RLIM_SAVED_MAX);
rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", v);
#endif
#ifdef RLIM_SAVED_CUR
v = RLIM_INFINITY == RLIM_SAVED_CUR ? inf : RLIM2NUM(RLIM_SAVED_CUR);
rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", v);
#endif
}
#ifdef RLIMIT_CORE
rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE));
#endif
#ifdef RLIMIT_CPU
rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU));
#endif
#ifdef RLIMIT_DATA
rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA));
#endif
#ifdef RLIMIT_FSIZE
rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE));
#endif
#ifdef RLIMIT_NOFILE
rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE));
#endif
#ifdef RLIMIT_STACK
rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK));
#endif
#ifdef RLIMIT_AS
rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS));
#endif
#ifdef RLIMIT_MEMLOCK
rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK));
#endif
#ifdef RLIMIT_NPROC
rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC));
#endif
#ifdef RLIMIT_RSS
rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS));
#endif
#ifdef RLIMIT_SBSIZE
rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE));
#endif
#endif
rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0);
rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1);
rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0);
rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1);
rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0);
rb_define_module_function(rb_mProcess, "euid=", proc_seteuid, 1);
rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0);
rb_define_module_function(rb_mProcess, "egid=", proc_setegid, 1);
rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2);
rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0);
rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1);
rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0);
rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1);
rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1);
rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0);
#if defined(HAVE_TIMES) || defined(_WIN32)
rb_cProcessTms = rb_struct_define("Tms", "utime", "stime", "cutime", "cstime", NULL);
#endif
SAVED_USER_ID = geteuid();
SAVED_GROUP_ID = getegid();
rb_mProcUID = rb_define_module_under(rb_mProcess, "UID");
rb_mProcGID = rb_define_module_under(rb_mProcess, "GID");
rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0);
rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0);
rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0);
rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0);
rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1);
rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1);
rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1);
rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1);
rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege");
rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege");
rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0);
rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0);
rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0);
rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0);
rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0);
rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0);
rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0);
rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0);
rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys");
rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0);
rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3);
rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3);
rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0);
}