ruby/proc.c

1611 строки
39 KiB
C

/**********************************************************************
proc.c - Proc, Bindng, Env
$Author: ko1 $
$Date: $
created at: Wed Jan 17 12:13:14 2007
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#include "eval_intern.h"
#include "gc.h"
struct METHOD {
VALUE klass, rklass;
VALUE recv;
ID id, oid;
NODE *body;
};
VALUE rb_cUnboundMethod;
VALUE rb_cMethod;
VALUE rb_cBinding;
VALUE rb_cProc;
VALUE rb_cEnv;
static VALUE bmcall(VALUE, VALUE);
static int method_arity(VALUE);
static VALUE rb_obj_is_method(VALUE m);
/* Env */
static void
env_free(void *ptr)
{
yarv_env_t *env;
FREE_REPORT_ENTER("env");
if (ptr) {
env = ptr;
FREE_UNLESS_NULL(env->env);
ruby_xfree(ptr);
}
FREE_REPORT_LEAVE("env");
}
static void
env_mark(void *ptr)
{
yarv_env_t *env;
MARK_REPORT_ENTER("env");
if (ptr) {
env = ptr;
if (env->env) {
/* TODO: should mark more restricted range */
GC_INFO("env->env\n");
rb_gc_mark_locations(env->env, env->env + env->env_size);
}
GC_INFO("env->prev_envval\n");
MARK_UNLESS_NULL(env->prev_envval);
if (env->block.iseq) {
if (BUILTIN_TYPE(env->block.iseq) == T_NODE) {
MARK_UNLESS_NULL((VALUE)env->block.iseq);
}
else {
MARK_UNLESS_NULL(env->block.iseq->self);
}
}
}
MARK_REPORT_LEAVE("env");
}
VALUE
yarv_env_alloc(void)
{
VALUE obj;
yarv_env_t *env;
obj = Data_Make_Struct(rb_cEnv, yarv_env_t, env_mark, env_free, env);
env->env = 0;
env->prev_envval = 0;
env->block.iseq = 0;
return obj;
}
/* Proc */
static void
proc_free(void *ptr)
{
FREE_REPORT_ENTER("proc");
if (ptr) {
ruby_xfree(ptr);
}
FREE_REPORT_LEAVE("proc");
}
static void
proc_mark(void *ptr)
{
yarv_proc_t *proc;
MARK_REPORT_ENTER("proc");
if (ptr) {
proc = ptr;
MARK_UNLESS_NULL(proc->envval);
MARK_UNLESS_NULL(proc->blockprocval);
MARK_UNLESS_NULL((VALUE)proc->special_cref_stack);
if (proc->block.iseq && YARV_IFUNC_P(proc->block.iseq)) {
MARK_UNLESS_NULL((VALUE)(proc->block.iseq));
}
}
MARK_REPORT_LEAVE("proc");
}
static VALUE
proc_alloc(VALUE klass)
{
VALUE obj;
yarv_proc_t *proc;
obj = Data_Make_Struct(klass, yarv_proc_t, proc_mark, proc_free, proc);
MEMZERO(proc, yarv_proc_t, 1);
return obj;
}
VALUE
yarv_proc_alloc(void)
{
proc_alloc(rb_cProc);
}
VALUE
yarv_obj_is_proc(VALUE proc)
{
if (TYPE(proc) == T_DATA &&
RDATA(proc)->dfree == (RUBY_DATA_FUNC) proc_free) {
return Qtrue;
}
else {
return Qfalse;
}
}
static VALUE
proc_dup(VALUE self)
{
VALUE procval = proc_alloc(rb_cProc);
yarv_proc_t *src, *dst;
GetProcPtr(self, src);
GetProcPtr(procval, dst);
dst->block = src->block;
dst->envval = src->envval;
dst->safe_level = dst->safe_level;
dst->special_cref_stack = src->special_cref_stack;
return procval;
}
VALUE yarv_proc_dup(VALUE self)
{
return proc_dup(self);
}
static VALUE
proc_clone(VALUE self)
{
VALUE procval = proc_dup(self);
CLONESETUP(procval, self);
return procval;
}
/* Binding */
static void
binding_free(void *ptr)
{
yarv_binding_t *bind;
FREE_REPORT_ENTER("binding");
if (ptr) {
bind = ptr;
ruby_xfree(ptr);
}
FREE_REPORT_LEAVE("binding");
}
static void
binding_mark(void *ptr)
{
yarv_binding_t *bind;
MARK_REPORT_ENTER("binding");
if (ptr) {
bind = ptr;
MARK_UNLESS_NULL(bind->env);
MARK_UNLESS_NULL((VALUE)bind->cref_stack);
}
MARK_REPORT_LEAVE("binding");
}
static VALUE
binding_alloc(VALUE klass)
{
VALUE obj;
yarv_binding_t *bind;
obj = Data_Make_Struct(klass, yarv_binding_t,
binding_mark, binding_free, bind);
MEMZERO(bind, yarv_binding_t, 1);
return obj;
}
static VALUE
binding_dup(VALUE self)
{
VALUE bindval = binding_alloc(rb_cBinding);
yarv_binding_t *src, *dst;
GetBindingPtr(self, src);
GetBindingPtr(bindval, dst);
dst->env = src->env;
dst->cref_stack = src->cref_stack;
return bindval;
}
static VALUE
binding_clone(VALUE self)
{
VALUE bindval = binding_dup(self);
CLONESETUP(bindval, self);
return bindval;
}
VALUE
rb_binding_new(void)
{
yarv_thread_t *th = GET_THREAD();
yarv_control_frame_t *cfp = th_get_ruby_level_cfp(th, th->cfp);
VALUE bindval = binding_alloc(rb_cBinding);
yarv_binding_t *bind;
GetBindingPtr(bindval, bind);
bind->env = th_make_env_object(th, cfp);
bind->cref_stack = ruby_cref();
return bindval;
}
/*
* call-seq:
* binding -> a_binding
*
* Returns a +Binding+ object, describing the variable and
* method bindings at the point of call. This object can be used when
* calling +eval+ to execute the evaluated command in this
* environment. Also see the description of class +Binding+.
*
* def getBinding(param)
* return binding
* end
* b = getBinding("hello")
* eval("param", b) #=> "hello"
*/
static VALUE
rb_f_binding(VALUE self)
{
return rb_binding_new();
}
/*
* call-seq:
* binding.eval(string [, filename [,lineno]]) => obj
*
* Evaluates the Ruby expression(s) in <em>string</em>, in the
* <em>binding</em>'s context. If the optional <em>filename</em> and
* <em>lineno</em> parameters are present, they will be used when
* reporting syntax errors.
*
* def getBinding(param)
* return binding
* end
* b = getBinding("hello")
* b.eval("param") #=> "hello"
*/
static VALUE
bind_eval(int argc, VALUE *argv, VALUE bind)
{
UNSUPPORTED(bind_eval);
return Qnil;
}
#define PROC_TSHIFT (FL_USHIFT+1)
#define PROC_TMASK (FL_USER1|FL_USER2|FL_USER3)
#define PROC_TMAX (PROC_TMASK >> PROC_TSHIFT)
#define PROC_NOSAFE FL_USER4
#define SAFE_LEVEL_MAX PROC_TMASK
static VALUE
proc_new(VALUE klass, int is_lambda)
{
VALUE procval = Qnil;
yarv_thread_t *th = GET_THREAD();
yarv_control_frame_t *cfp = th->cfp;
yarv_block_t *block;
if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0 &&
!YARV_CLASS_SPECIAL_P(cfp->lfp[0])) {
block = GC_GUARDED_PTR_REF(cfp->lfp[0]);
}
else {
cfp = YARV_PREVIOUS_CONTROL_FRAME(cfp);
if ((GC_GUARDED_PTR_REF(cfp->lfp[0])) != 0 &&
!YARV_CLASS_SPECIAL_P(cfp->lfp[0])) {
block = GC_GUARDED_PTR_REF(cfp->lfp[0]);
if (is_lambda) {
rb_warn("tried to create Proc object without a block");
}
}
else {
rb_raise(rb_eArgError,
"tried to create Proc object without a block");
}
}
cfp = YARV_PREVIOUS_CONTROL_FRAME(cfp);
procval = th_make_proc(th, cfp, block);
if (is_lambda) {
yarv_proc_t *proc;
GetProcPtr(procval, proc);
proc->is_lambda = Qtrue;
}
return procval;
}
/*
* call-seq:
* Proc.new {|...| block } => a_proc
* Proc.new => a_proc
*
* Creates a new <code>Proc</code> object, bound to the current
* context. <code>Proc::new</code> may be called without a block only
* within a method with an attached block, in which case that block is
* converted to the <code>Proc</code> object.
*
* def proc_from
* Proc.new
* end
* proc = proc_from { "hello" }
* proc.call #=> "hello"
*/
static VALUE
rb_proc_s_new(VALUE klass)
{
return proc_new(klass, Qfalse);
}
/*
* call-seq:
* proc { |...| block } => a_proc
*
* Equivalent to <code>Proc.new</code>.
*/
VALUE
rb_block_proc(void)
{
return proc_new(rb_cProc, Qfalse);
}
VALUE
rb_block_lambda(void)
{
return proc_new(rb_cProc, Qtrue);
}
VALUE
rb_f_lambda(void)
{
rb_warn("rb_f_lambda() is deprecated; use rb_block_proc() instead");
return rb_block_lambda();
}
/*
* call-seq:
* lambda { |...| block } => a_proc
*
* Equivalent to <code>Proc.new</code>, except the resulting Proc objects
* check the number of parameters passed when called.
*/
static VALUE
proc_lambda(void)
{
return rb_block_lambda();
}
VALUE
proc_invoke(VALUE self, VALUE args, VALUE alt_self, VALUE alt_klass)
{
yarv_proc_t *proc;
GetProcPtr(self, proc);
/* ignore self and klass */
return th_invoke_proc(GET_THREAD(), proc, proc->block.self,
RARRAY_LEN(args), RARRAY_PTR(args));
}
/* CHECKME: are the argument checking semantics correct? */
/*
* call-seq:
* prc.call(params,...) => obj
* prc[params,...] => obj
*
* Invokes the block, setting the block's parameters to the values in
* <i>params</i> using something close to method calling semantics.
* Generates a warning if multiple values are passed to a proc that
* expects just one (previously this silently converted the parameters
* to an array).
*
* For procs created using <code>Kernel.proc</code>, generates an
* error if the wrong number of parameters
* are passed to a proc with multiple parameters. For procs created using
* <code>Proc.new</code>, extra parameters are silently discarded.
*
* Returns the value of the last expression evaluated in the block. See
* also <code>Proc#yield</code>.
*
* a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
* a_proc = Proc.new {|a,b| a}
* a_proc.call(1,2,3)
*
* <em>produces:</em>
*
* prog.rb:5: wrong number of arguments (3 for 2) (ArgumentError)
* from prog.rb:4:in `call'
* from prog.rb:5
*/
static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
yarv_proc_t *proc;
GetProcPtr(procval, proc);
return th_invoke_proc(GET_THREAD(), proc, proc->block.self, argc, argv);
}
static VALUE
proc_yield(int argc, VALUE *argv, VALUE procval)
{
yarv_proc_t *proc;
GetProcPtr(procval, proc);
return th_invoke_proc(GET_THREAD(), proc, proc->block.self, argc, argv);
}
VALUE
rb_proc_call(VALUE proc, VALUE args)
{
return proc_invoke(proc, args, Qundef, 0);
}
/*
* call-seq:
* prc.arity -> fixnum
*
* Returns the number of arguments that would not be ignored. If the block
* is declared to take no arguments, returns 0. If the block is known
* to take exactly n arguments, returns n. If the block has optional
* arguments, return -n-1, where n is the number of mandatory
* arguments. A <code>proc</code> with no argument declarations
* is the same a block declaring <code>||</code> as its arguments.
*
* Proc.new {}.arity #=> 0
* Proc.new {||}.arity #=> 0
* Proc.new {|a|}.arity #=> 1
* Proc.new {|a,b|}.arity #=> 2
* Proc.new {|a,b,c|}.arity #=> 3
* Proc.new {|*a|}.arity #=> -1
* Proc.new {|a,*b|}.arity #=> -2
*/
static VALUE
proc_arity(VALUE self)
{
yarv_proc_t *proc;
yarv_iseq_t *iseq;
GetProcPtr(self, proc);
iseq = proc->block.iseq;
if (iseq && BUILTIN_TYPE(iseq) != T_NODE) {
if (iseq->arg_rest == 0 && iseq->arg_opts == 0) {
return INT2FIX(iseq->argc);
}
else {
return INT2FIX(-iseq->argc - 1);
}
}
else {
return INT2FIX(-1);
}
}
int
rb_proc_arity(VALUE proc)
{
return FIX2INT(proc_arity(proc));
}
/*
* call-seq:
* prc == other_proc => true or false
*
* Return <code>true</code> if <i>prc</i> is the same object as
* <i>other_proc</i>, or if they are both procs with the same body.
*/
static VALUE
proc_eq(VALUE self, VALUE other)
{
if (self == other) {
return Qtrue;
}
else {
if (TYPE(other) == T_DATA &&
RBASIC(other)->klass == rb_cProc &&
CLASS_OF(self) == CLASS_OF(other)) {
yarv_proc_t *p1, *p2;
GetProcPtr(self, p1);
GetProcPtr(other, p2);
if (p1->block.iseq == p2->block.iseq && p1->envval == p2->envval) {
return Qtrue;
}
}
}
return Qfalse;
}
/*
* call-seq:
* prc.hash => integer
*
* Return hash value corresponding to proc body.
*/
static VALUE
proc_hash(VALUE self)
{
int hash;
yarv_proc_t *proc;
GetProcPtr(self, proc);
hash = (long)proc->block.iseq;
hash ^= (long)proc->envval;
hash ^= (long)proc->block.lfp >> 16;
return INT2FIX(hash);
}
/*
* call-seq:
* prc.to_s => string
*
* Shows the unique identifier for this proc, along with
* an indication of where the proc was defined.
*/
static VALUE
proc_to_s(VALUE self)
{
VALUE str = 0;
yarv_proc_t *proc;
char *cname = rb_obj_classname(self);
yarv_iseq_t *iseq;
GetProcPtr(self, proc);
iseq = proc->block.iseq;
if (YARV_NORMAL_ISEQ_P(iseq)) {
int line_no = 0;
if (iseq->insn_info_tbl) {
line_no = iseq->insn_info_tbl[0].line_no;
}
str = rb_sprintf("#<%s:%lx@%s:%d>", cname, self,
RSTRING_PTR(iseq->file_name),
line_no);
}
else {
str = rb_sprintf("#<%s:%p>", cname, proc->block.iseq);
}
if (OBJ_TAINTED(self)) {
OBJ_TAINT(str);
}
return str;
}
/*
* call-seq:
* prc.to_proc -> prc
*
* Part of the protocol for converting objects to <code>Proc</code>
* objects. Instances of class <code>Proc</code> simply return
* themselves.
*/
static VALUE
proc_to_proc(VALUE self)
{
return self;
}
/*
* call-seq:
* prc.binding => binding
*
* Returns the binding associated with <i>prc</i>. Note that
* <code>Kernel#eval</code> accepts either a <code>Proc</code> or a
* <code>Binding</code> object as its second parameter.
*
* def fred(param)
* proc {}
* end
*
* b = fred(99)
* eval("param", b.binding) #=> 99
* eval("param", b) #=> 99
*/
void
bm_mark(struct METHOD *data)
{
rb_gc_mark(data->rklass);
rb_gc_mark(data->klass);
rb_gc_mark(data->recv);
rb_gc_mark((VALUE)data->body);
}
NODE *rb_get_method_body(VALUE klass, ID id, ID *idp);
static VALUE
mnew(VALUE klass, VALUE obj, ID id, VALUE mklass)
{
VALUE method;
NODE *body;
struct METHOD *data;
VALUE rklass = klass;
ID oid = id;
again:
if ((body = rb_get_method_body(klass, id, 0)) == 0) {
print_undef(rklass, oid);
}
klass = body->nd_clss;
body = body->nd_body;
if (nd_type(body) == NODE_ZSUPER) {
klass = RCLASS(klass)->super;
goto again;
}
while (rklass != klass &&
(FL_TEST(rklass, FL_SINGLETON) || TYPE(rklass) == T_ICLASS)) {
rklass = RCLASS(rklass)->super;
}
if (TYPE(klass) == T_ICLASS)
klass = RBASIC(klass)->klass;
method = Data_Make_Struct(mklass, struct METHOD, bm_mark, -1, data);
data->klass = klass;
data->recv = obj;
data->id = id;
data->body = body;
data->rklass = rklass;
data->oid = oid;
OBJ_INFECT(method, klass);
return method;
}
/**********************************************************************
*
* Document-class : Method
*
* Method objects are created by <code>Object#method</code>, and are
* associated with a particular object (not just with a class). They
* may be used to invoke the method within the object, and as a block
* associated with an iterator. They may also be unbound from one
* object (creating an <code>UnboundMethod</code>) and bound to
* another.
*
* class Thing
* def square(n)
* n*n
* end
* end
* thing = Thing.new
* meth = thing.method(:square)
*
* meth.call(9) #=> 81
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
*
*/
/*
* call-seq:
* meth == other_meth => true or false
*
* Two method objects are equal if that are bound to the same
* object and contain the same body.
*/
static VALUE
method_eq(method, other)
VALUE method, other;
{
struct METHOD *m1, *m2;
if (TYPE(other) != T_DATA
|| RDATA(other)->dmark != (RUBY_DATA_FUNC) bm_mark)
return Qfalse;
if (CLASS_OF(method) != CLASS_OF(other))
return Qfalse;
Data_Get_Struct(method, struct METHOD, m1);
Data_Get_Struct(other, struct METHOD, m2);
if (m1->klass != m2->klass || m1->rklass != m2->rklass ||
m1->recv != m2->recv || m1->body != m2->body)
return Qfalse;
return Qtrue;
}
/*
* call-seq:
* meth.hash => integer
*
* Return a hash value corresponding to the method object.
*/
static VALUE
method_hash(method)
VALUE method;
{
struct METHOD *m;
long hash;
Data_Get_Struct(method, struct METHOD, m);
hash = (long)m->klass;
hash ^= (long)m->rklass;
hash ^= (long)m->recv;
hash ^= (long)m->body;
return INT2FIX(hash);
}
/*
* call-seq:
* meth.unbind => unbound_method
*
* Dissociates <i>meth</i> from it's current receiver. The resulting
* <code>UnboundMethod</code> can subsequently be bound to a new object
* of the same class (see <code>UnboundMethod</code>).
*/
static VALUE
method_unbind(obj)
VALUE obj;
{
VALUE method;
struct METHOD *orig, *data;
Data_Get_Struct(obj, struct METHOD, orig);
method =
Data_Make_Struct(rb_cUnboundMethod, struct METHOD, bm_mark, free,
data);
data->klass = orig->klass;
data->recv = Qundef;
data->id = orig->id;
data->body = orig->body;
data->rklass = orig->rklass;
data->oid = orig->oid;
OBJ_INFECT(method, obj);
return method;
}
/*
* call-seq:
* meth.receiver => object
*
* Returns the bound receiver of the method object.
*/
static VALUE
method_receiver(VALUE obj)
{
struct METHOD *data;
Data_Get_Struct(obj, struct METHOD, data);
return data->recv;
}
/*
* call-seq:
* meth.name => string
*
* Returns the name of the method.
*/
static VALUE
method_name(VALUE obj)
{
struct METHOD *data;
Data_Get_Struct(obj, struct METHOD, data);
return rb_str_new2(rb_id2name(data->id));
}
/*
* call-seq:
* meth.owner => class_or_module
*
* Returns the class or module that defines the method.
*/
static VALUE
method_owner(VALUE obj)
{
struct METHOD *data;
Data_Get_Struct(obj, struct METHOD, data);
return data->klass;
}
/*
* call-seq:
* obj.method(sym) => method
*
* Looks up the named method as a receiver in <i>obj</i>, returning a
* <code>Method</code> object (or raising <code>NameError</code>). The
* <code>Method</code> object acts as a closure in <i>obj</i>'s object
* instance, so instance variables and the value of <code>self</code>
* remain available.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* m = k.method(:hello)
* m.call #=> "Hello, @iv = 99"
*
* l = Demo.new('Fred')
* m = l.method("hello")
* m.call #=> "Hello, @iv = Fred"
*/
VALUE
rb_obj_method(obj, vid)
VALUE obj;
VALUE vid;
{
return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod);
}
/*
* call-seq:
* mod.instance_method(symbol) => unbound_method
*
* Returns an +UnboundMethod+ representing the given
* instance method in _mod_.
*
* class Interpreter
* def do_a() print "there, "; end
* def do_d() print "Hello "; end
* def do_e() print "!\n"; end
* def do_v() print "Dave"; end
* Dispatcher = {
* ?a => instance_method(:do_a),
* ?d => instance_method(:do_d),
* ?e => instance_method(:do_e),
* ?v => instance_method(:do_v)
* }
* def interpret(string)
* string.each_byte {|b| Dispatcher[b].bind(self).call }
* end
* end
*
*
* interpreter = Interpreter.new
* interpreter.interpret('dave')
*
* <em>produces:</em>
*
* Hello there, Dave!
*/
static VALUE
rb_mod_method(mod, vid)
VALUE mod;
VALUE vid;
{
return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod);
}
/*
* call-seq:
* define_method(symbol, method) => new_method
* define_method(symbol) { block } => proc
*
* Defines an instance method in the receiver. The _method_
* parameter can be a +Proc+ or +Method+ object.
* If a block is specified, it is used as the method body. This block
* is evaluated using <code>instance_eval</code>, a point that is
* tricky to demonstrate because <code>define_method</code> is private.
* (This is why we resort to the +send+ hack in this example.)
*
* class A
* def fred
* puts "In Fred"
* end
* def create_method(name, &block)
* self.class.send(:define_method, name, &block)
* end
* define_method(:wilma) { puts "Charge it!" }
* end
* class B < A
* define_method(:barney, instance_method(:fred))
* end
* a = B.new
* a.barney
* a.wilma
* a.create_method(:betty) { p self }
* a.betty
*
* <em>produces:</em>
*
* In Fred
* Charge it!
* #<B:0x401b39e8>
*/
VALUE yarv_proc_dup(VALUE self);
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
NODE *node;
int noex = NOEX_PUBLIC;
if (argc == 1) {
id = rb_to_id(argv[0]);
body = rb_block_lambda();
}
else if (argc == 2) {
id = rb_to_id(argv[0]);
body = argv[1];
if (!rb_obj_is_method(body) && !yarv_obj_is_proc(body)) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method)",
rb_obj_classname(body));
}
}
else {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc);
}
if (RDATA(body)->dmark == (RUBY_DATA_FUNC) bm_mark) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
VALUE rklass = method->rklass;
if (rklass != mod) {
if (FL_TEST(rklass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
if (!RTEST(rb_class_inherited_p(mod, rklass))) {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of %s",
rb_class2name(rklass));
}
}
node = method->body;
}
else if (yarv_obj_is_proc(body)) {
yarv_proc_t *proc;
body = yarv_proc_dup(body);
GetProcPtr(body, proc);
if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
proc->block.iseq->defined_method_id = id;
proc->block.iseq->klass = mod;
proc->is_lambda = Qtrue;
}
node = NEW_BMETHOD(body);
}
else {
/* type error */
rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
}
/* TODO: visibility */
rb_add_method(mod, id, node, noex);
return body;
}
/*
* MISSING: documentation
*/
static VALUE
method_clone(self)
VALUE self;
{
VALUE clone;
struct METHOD *orig, *data;
Data_Get_Struct(self, struct METHOD, orig);
clone =
Data_Make_Struct(CLASS_OF(self), struct METHOD, bm_mark, free, data);
CLONESETUP(clone, self);
*data = *orig;
return clone;
}
/*
* call-seq:
* meth.call(args, ...) => obj
* meth[args, ...] => obj
*
* Invokes the <i>meth</i> with the specified arguments, returning the
* method's return value.
*
* m = 12.method("+")
* m.call(3) #=> 15
* m.call(20) #=> 32
*/
VALUE
rb_method_call(int argc, VALUE *argv, VALUE method)
{
VALUE result = Qnil; /* OK */
struct METHOD *data;
int state;
volatile int safe = -1;
Data_Get_Struct(method, struct METHOD, data);
if (data->recv == Qundef) {
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
}
PUSH_TAG(PROT_NONE);
if (OBJ_TAINTED(method)) {
safe = rb_safe_level();
if (rb_safe_level() < 4) {
rb_set_safe_level_force(4);
}
}
if ((state = EXEC_TAG()) == 0) {
PASS_PASSED_BLOCK();
result = th_call0(GET_THREAD(),
data->klass, data->recv, data->id, data->oid,
argc, argv, data->body, 0);
}
POP_TAG();
if (safe >= 0)
rb_set_safe_level_force(safe);
if (state)
JUMP_TAG(state);
return result;
}
/**********************************************************************
*
* Document-class: UnboundMethod
*
* Ruby supports two forms of objectified methods. Class
* <code>Method</code> is used to represent methods that are associated
* with a particular object: these method objects are bound to that
* object. Bound method objects for an object can be created using
* <code>Object#method</code>.
*
* Ruby also supports unbound methods; methods objects that are not
* associated with a particular object. These can be created either by
* calling <code>Module#instance_method</code> or by calling
* <code>unbind</code> on a bound method object. The result of both of
* these is an <code>UnboundMethod</code> object.
*
* Unbound methods can only be called after they are bound to an
* object. That object must be be a kind_of? the method's original
* class.
*
* class Square
* def area
* @side * @side
* end
* def initialize(side)
* @side = side
* end
* end
*
* area_un = Square.instance_method(:area)
*
* s = Square.new(12)
* area = area_un.bind(s)
* area.call #=> 144
*
* Unbound methods are a reference to the method at the time it was
* objectified: subsequent changes to the underlying class will not
* affect the unbound method.
*
* class Test
* def test
* :original
* end
* end
* um = Test.instance_method(:test)
* class Test
* def test
* :modified
* end
* end
* t = Test.new
* t.test #=> :modified
* um.bind(t).call #=> :original
*
*/
/*
* call-seq:
* umeth.bind(obj) -> method
*
* Bind <i>umeth</i> to <i>obj</i>. If <code>Klass</code> was the class
* from which <i>umeth</i> was obtained,
* <code>obj.kind_of?(Klass)</code> must be true.
*
* class A
* def test
* puts "In test, class = #{self.class}"
* end
* end
* class B < A
* end
* class C < B
* end
*
*
* um = B.instance_method(:test)
* bm = um.bind(C.new)
* bm.call
* bm = um.bind(B.new)
* bm.call
* bm = um.bind(A.new)
* bm.call
*
* <em>produces:</em>
*
* In test, class = C
* In test, class = B
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
* from prog.rb:16
*/
static VALUE
umethod_bind(method, recv)
VALUE method, recv;
{
struct METHOD *data, *bound;
Data_Get_Struct(method, struct METHOD, data);
if (data->rklass != CLASS_OF(recv)) {
if (FL_TEST(data->rklass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"singleton method called for a different object");
}
if (!rb_obj_is_kind_of(recv, data->rklass)) {
rb_raise(rb_eTypeError, "bind argument must be an instance of %s",
rb_class2name(data->rklass));
}
}
method =
Data_Make_Struct(rb_cMethod, struct METHOD, bm_mark, free, bound);
*bound = *data;
bound->recv = recv;
bound->rklass = CLASS_OF(recv);
return method;
}
int
rb_node_arity(NODE * body)
{
int n;
switch (nd_type(body)) {
case NODE_CFUNC:
if (body->nd_argc < 0)
return -1;
return body->nd_argc;
case NODE_ZSUPER:
return -1;
case NODE_ATTRSET:
return 1;
case NODE_IVAR:
return 0;
case NODE_BMETHOD:
return rb_proc_arity(body->nd_cval);
case NODE_SCOPE:
body = body->nd_next; /* skip NODE_SCOPE */
if (nd_type(body) == NODE_BLOCK)
body = body->nd_head;
if (!body)
return 0;
n = body->nd_frml ? RARRAY_LEN(body->nd_frml) : 0;
if (body->nd_opt || body->nd_rest)
n = -n - 1;
return n;
case YARV_METHOD_NODE:{
yarv_iseq_t *iseq;
GetISeqPtr((VALUE)body->nd_body, iseq);
if (iseq->arg_rest == 0 && iseq->arg_opts == 0) {
return iseq->argc;
}
else {
return -iseq->argc - 1;
}
}
default:
rb_raise(rb_eArgError, "invalid node 0x%x", nd_type(body));
}
}
/*
* call-seq:
* meth.arity => fixnum
*
* Returns an indication of the number of arguments accepted by a
* method. Returns a nonnegative integer for methods that take a fixed
* number of arguments. For Ruby methods that take a variable number of
* arguments, returns -n-1, where n is the number of required
* arguments. For methods written in C, returns -1 if the call takes a
* variable number of arguments.
*
* class C
* def one; end
* def two(a); end
* def three(*a); end
* def four(a, b); end
* def five(a, b, *c); end
* def six(a, b, *c, &d); end
* end
* c = C.new
* c.method(:one).arity #=> 0
* c.method(:two).arity #=> 1
* c.method(:three).arity #=> -1
* c.method(:four).arity #=> 2
* c.method(:five).arity #=> -3
* c.method(:six).arity #=> -3
*
* "cat".method(:size).arity #=> 0
* "cat".method(:replace).arity #=> 1
* "cat".method(:squeeze).arity #=> -1
* "cat".method(:count).arity #=> -1
*/
static VALUE
method_arity_m(method)
VALUE method;
{
int n = method_arity(method);
return INT2FIX(n);
}
static int
method_arity(method)
VALUE method;
{
struct METHOD *data;
Data_Get_Struct(method, struct METHOD, data);
return rb_node_arity(data->body);
}
int
rb_mod_method_arity(mod, id)
VALUE mod;
ID id;
{
NODE *node = rb_method_node(mod, id);
return rb_node_arity(node);
}
int
rb_obj_method_arity(obj, id)
VALUE obj;
ID id;
{
return rb_mod_method_arity(CLASS_OF(obj), id);
}
/*
* call-seq:
* meth.to_s => string
* meth.inspect => string
*
* Show the name of the underlying method.
*
* "cat".method(:count).inspect #=> "#<Method: String#count>"
*/
static VALUE
method_inspect(VALUE method)
{
struct METHOD *data;
VALUE str;
const char *s;
char *sharp = "#";
Data_Get_Struct(method, struct METHOD, data);
str = rb_str_buf_new2("#<");
s = rb_obj_classname(method);
rb_str_buf_cat2(str, s);
rb_str_buf_cat2(str, ": ");
if (FL_TEST(data->klass, FL_SINGLETON)) {
VALUE v = rb_iv_get(data->klass, "__attached__");
if (data->recv == Qundef) {
rb_str_buf_append(str, rb_inspect(data->klass));
}
else if (data->recv == v) {
rb_str_buf_append(str, rb_inspect(v));
sharp = ".";
}
else {
rb_str_buf_append(str, rb_inspect(data->recv));
rb_str_buf_cat2(str, "(");
rb_str_buf_append(str, rb_inspect(v));
rb_str_buf_cat2(str, ")");
sharp = ".";
}
}
else {
rb_str_buf_cat2(str, rb_class2name(data->rklass));
if (data->rklass != data->klass) {
rb_str_buf_cat2(str, "(");
rb_str_buf_cat2(str, rb_class2name(data->klass));
rb_str_buf_cat2(str, ")");
}
}
rb_str_buf_cat2(str, sharp);
rb_str_buf_cat2(str, rb_id2name(data->oid));
rb_str_buf_cat2(str, ">");
return str;
}
static VALUE
mproc(VALUE method)
{
return rb_funcall(Qnil, rb_intern("proc"), 0);
}
static VALUE
bmcall(VALUE args, VALUE method)
{
volatile VALUE a;
if (CLASS_OF(args) != rb_cArray) {
args = rb_ary_new3(1, args);
}
a = args;
return rb_method_call(RARRAY_LEN(a), RARRAY_PTR(a), method);
}
VALUE
rb_proc_new(
VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
VALUE val)
{
yarv_proc_t *proc;
VALUE procval = rb_iterate((VALUE(*)(VALUE))mproc, 0, func, val);
GetProcPtr(procval, proc);
((NODE*)proc->block.iseq)->u3.state = 1;
return procval;
}
/*
* call-seq:
* meth.to_proc => prc
*
* Returns a <code>Proc</code> object corresponding to this method.
*/
static VALUE
method_proc(VALUE method)
{
VALUE proc;
/*
* class Method
* def to_proc
* proc{|*args|
* self.call(*args)
* }
* end
* end
*/
proc = rb_iterate((VALUE (*)(VALUE))mproc, 0, bmcall, method);
return proc;
}
static VALUE
rb_obj_is_method(VALUE m)
{
if (TYPE(m) == T_DATA && RDATA(m)->dmark == (RUBY_DATA_FUNC) bm_mark) {
return Qtrue;
}
return Qfalse;
}
/*
* call_seq:
* local_jump_error.exit_value => obj
*
* Returns the exit value associated with this +LocalJumpError+.
*/
static VALUE
localjump_xvalue(VALUE exc)
{
return rb_iv_get(exc, "@exit_value");
}
/*
* call-seq:
* local_jump_error.reason => symbol
*
* The reason this block was terminated:
* :break, :redo, :retry, :next, :return, or :noreason.
*/
static VALUE
localjump_reason(VALUE exc)
{
return rb_iv_get(exc, "@reason");
}
/*
* <code>Proc</code> objects are blocks of code that have been bound to
* a set of local variables. Once bound, the code may be called in
* different contexts and still access those variables.
*
* def gen_times(factor)
* return Proc.new {|n| n*factor }
* end
*
* times3 = gen_times(3)
* times5 = gen_times(5)
*
* times3.call(12) #=> 36
* times5.call(5) #=> 25
* times3.call(times5.call(4)) #=> 60
*
*/
void
Init_Proc()
{
/* Env */
rb_cVM = rb_define_class("VM", rb_cObject); /* TODO: should be moved to suitable place */
rb_cEnv = rb_define_class_under(rb_cVM, "Env", rb_cObject);
rb_undef_alloc_func(rb_cEnv);
/* Proc */
rb_cProc = rb_define_class("Proc", rb_cObject);
rb_undef_alloc_func(rb_cProc);
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, 0);
rb_define_method(rb_cProc, "call", proc_call, -1);
rb_define_method(rb_cProc, "[]", proc_call, -1);
rb_define_method(rb_cProc, "yield", proc_yield, -1);
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
rb_define_method(rb_cProc, "arity", proc_arity, 0);
rb_define_method(rb_cProc, "clone", proc_clone, 0);
rb_define_method(rb_cProc, "dup", proc_dup, 0);
rb_define_method(rb_cProc, "==", proc_eq, 1);
rb_define_method(rb_cProc, "eql?", proc_eq, 1);
rb_define_method(rb_cProc, "hash", proc_hash, 0);
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
/* Binding */
rb_cBinding = rb_define_class("Binding", rb_cObject);
rb_undef_alloc_func(rb_cBinding);
rb_undef_method(CLASS_OF(rb_cBinding), "new");
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
rb_define_global_function("binding", rb_f_binding, 0);
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
/* Exceptions */
exception_error = rb_exc_new2(rb_eFatal, "exception reentered");
rb_register_mark_object(exception_error);
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
sysstack_error = rb_exc_new2(rb_eSysStackError, "stack level too deep");
OBJ_TAINT(sysstack_error);
rb_register_mark_object(sysstack_error);
/* utility functions */
rb_define_global_function("proc", rb_block_proc, 0);
rb_define_global_function("lambda", proc_lambda, 0);
/* Method */
rb_cMethod = rb_define_class("Method", rb_cObject);
rb_undef_alloc_func(rb_cMethod);
rb_undef_method(CLASS_OF(rb_cMethod), "new");
rb_define_method(rb_cMethod, "==", method_eq, 1);
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
rb_define_method(rb_cMethod, "hash", method_hash, 0);
rb_define_method(rb_cMethod, "clone", method_clone, 0);
rb_define_method(rb_cMethod, "call", rb_method_call, -1);
rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cMethod, "to_proc", method_proc, 0);
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
rb_define_method(rb_cMethod, "name", method_name, 0);
rb_define_method(rb_cMethod, "owner", method_owner, 0);
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
/* UnboundMethod */
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
rb_undef_alloc_func(rb_cUnboundMethod);
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
/* Module#*_method */
rb_define_method(rb_cModule, "instance_method", rb_mod_method, 1);
rb_define_private_method(rb_cModule, "define_method",
rb_mod_define_method, -1);
}
/*
* Objects of class <code>Binding</code> encapsulate the execution
* context at some particular place in the code and retain this context
* for future use. The variables, methods, value of <code>self</code>,
* and possibly an iterator block that can be accessed in this context
* are all retained. Binding objects can be created using
* <code>Kernel#binding</code>, and are made available to the callback
* of <code>Kernel#set_trace_func</code>.
*
* These binding objects can be passed as the second argument of the
* <code>Kernel#eval</code> method, establishing an environment for the
* evaluation.
*
* class Demo
* def initialize(n)
* @secret = n
* end
* def getBinding
* return binding()
* end
* end
*
* k1 = Demo.new(99)
* b1 = k1.getBinding
* k2 = Demo.new(-3)
* b2 = k2.getBinding
*
* eval("@secret", b1) #=> 99
* eval("@secret", b2) #=> -3
* eval("@secret") #=> nil
*
* Binding objects have no class-specific methods.
*
*/
void
Init_Binding()
{
}