ruby/io.c

15902 строки
422 KiB
C

/**********************************************************************
io.c -
$Author$
created at: Fri Oct 15 18:08:59 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/internal/config.h"
#include "ruby/fiber/scheduler.h"
#include "ruby/io/buffer.h"
#include <ctype.h>
#include <errno.h>
#include <stddef.h>
/* non-Linux poll may not work on all FDs */
#if defined(HAVE_POLL)
# if defined(__linux__)
# define USE_POLL 1
# endif
# if defined(__FreeBSD_version) && __FreeBSD_version >= 1100000
# define USE_POLL 1
# endif
#endif
#ifndef USE_POLL
# define USE_POLL 0
#endif
#undef free
#define free(x) xfree(x)
#if defined(DOSISH) || defined(__CYGWIN__)
#include <io.h>
#endif
#include <sys/types.h>
#if defined HAVE_NET_SOCKET_H
# include <net/socket.h>
#elif defined HAVE_SYS_SOCKET_H
# include <sys/socket.h>
#endif
#if defined(__BOW__) || defined(__CYGWIN__) || defined(_WIN32)
# define NO_SAFE_RENAME
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__sun) || defined(_nec_ews)
# define USE_SETVBUF
#endif
#ifdef __QNXNTO__
#include <unix.h>
#endif
#include <sys/types.h>
#if defined(HAVE_SYS_IOCTL_H) && !defined(_WIN32)
#include <sys/ioctl.h>
#endif
#if defined(HAVE_FCNTL_H) || defined(_WIN32)
#include <fcntl.h>
#elif defined(HAVE_SYS_FCNTL_H)
#include <sys/fcntl.h>
#endif
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#include <sys/stat.h>
#if defined(HAVE_SYS_PARAM_H) || defined(__HIUX_MPP__)
# include <sys/param.h>
#endif
#if !defined NOFILE
# define NOFILE 64
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYSCALL_H
#include <syscall.h>
#elif defined HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#ifdef HAVE_SYS_UIO_H
#include <sys/uio.h>
#endif
#ifdef HAVE_SYS_WAIT_H
# include <sys/wait.h> /* for WNOHANG on BSD */
#endif
#ifdef HAVE_COPYFILE_H
# include <copyfile.h>
#endif
#include "ruby/internal/stdbool.h"
#include "ccan/list/list.h"
#include "dln.h"
#include "encindex.h"
#include "id.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/encoding.h"
#include "internal/error.h"
#include "internal/inits.h"
#include "internal/io.h"
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/process.h"
#include "internal/thread.h"
#include "internal/transcode.h"
#include "internal/variable.h"
#include "ruby/io.h"
#include "ruby/io/buffer.h"
#include "ruby/missing.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "ruby_atomic.h"
#include "ruby/ractor.h"
#if !USE_POLL
# include "vm_core.h"
#endif
#include "builtin.h"
#ifndef O_ACCMODE
#define O_ACCMODE (O_RDONLY | O_WRONLY | O_RDWR)
#endif
#ifndef PIPE_BUF
# ifdef _POSIX_PIPE_BUF
# define PIPE_BUF _POSIX_PIPE_BUF
# else
# define PIPE_BUF 512 /* is this ok? */
# endif
#endif
#ifndef EWOULDBLOCK
# define EWOULDBLOCK EAGAIN
#endif
#if defined(HAVE___SYSCALL) && (defined(__APPLE__) || defined(__OpenBSD__))
/* Mac OS X and OpenBSD have __syscall but don't define it in headers */
off_t __syscall(quad_t number, ...);
#endif
#define IO_RBUF_CAPA_MIN 8192
#define IO_CBUF_CAPA_MIN (128*1024)
#define IO_RBUF_CAPA_FOR(fptr) (NEED_READCONV(fptr) ? IO_CBUF_CAPA_MIN : IO_RBUF_CAPA_MIN)
#define IO_WBUF_CAPA_MIN 8192
#define IO_MAX_BUFFER_GROWTH 8 * 1024 * 1024 // 8MB
/* define system APIs */
#ifdef _WIN32
#undef open
#define open rb_w32_uopen
#undef rename
#define rename(f, t) rb_w32_urename((f), (t))
#include "win32/file.h"
#endif
VALUE rb_cIO;
VALUE rb_eEOFError;
VALUE rb_eIOError;
VALUE rb_eIOTimeoutError;
VALUE rb_mWaitReadable;
VALUE rb_mWaitWritable;
static VALUE rb_eEAGAINWaitReadable;
static VALUE rb_eEAGAINWaitWritable;
static VALUE rb_eEWOULDBLOCKWaitReadable;
static VALUE rb_eEWOULDBLOCKWaitWritable;
static VALUE rb_eEINPROGRESSWaitWritable;
static VALUE rb_eEINPROGRESSWaitReadable;
VALUE rb_stdin, rb_stdout, rb_stderr;
static VALUE orig_stdout, orig_stderr;
VALUE rb_output_fs;
VALUE rb_rs;
VALUE rb_output_rs;
VALUE rb_default_rs;
static VALUE argf;
static ID id_write, id_read, id_getc, id_flush, id_readpartial, id_set_encoding, id_fileno;
static VALUE sym_mode, sym_perm, sym_flags, sym_extenc, sym_intenc, sym_encoding, sym_open_args;
static VALUE sym_textmode, sym_binmode, sym_autoclose;
static VALUE sym_SET, sym_CUR, sym_END;
static VALUE sym_wait_readable, sym_wait_writable;
#ifdef SEEK_DATA
static VALUE sym_DATA;
#endif
#ifdef SEEK_HOLE
static VALUE sym_HOLE;
#endif
static VALUE prep_io(int fd, int fmode, VALUE klass, const char *path);
struct argf {
VALUE filename, current_file;
long last_lineno; /* $. */
long lineno;
VALUE argv;
VALUE inplace;
struct rb_io_encoding encs;
int8_t init_p, next_p, binmode;
};
static rb_atomic_t max_file_descriptor = NOFILE;
void
rb_update_max_fd(int fd)
{
rb_atomic_t afd = (rb_atomic_t)fd;
rb_atomic_t max_fd = max_file_descriptor;
int err;
if (fd < 0 || afd <= max_fd)
return;
#if defined(HAVE_FCNTL) && defined(F_GETFL)
err = fcntl(fd, F_GETFL) == -1;
#else
{
struct stat buf;
err = fstat(fd, &buf) != 0;
}
#endif
if (err && errno == EBADF) {
rb_bug("rb_update_max_fd: invalid fd (%d) given.", fd);
}
while (max_fd < afd) {
max_fd = ATOMIC_CAS(max_file_descriptor, max_fd, afd);
}
}
void
rb_maygvl_fd_fix_cloexec(int fd)
{
/* MinGW don't have F_GETFD and FD_CLOEXEC. [ruby-core:40281] */
#if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC)
int flags, flags2, ret;
flags = fcntl(fd, F_GETFD); /* should not fail except EBADF. */
if (flags == -1) {
rb_bug("rb_maygvl_fd_fix_cloexec: fcntl(%d, F_GETFD) failed: %s", fd, strerror(errno));
}
if (fd <= 2)
flags2 = flags & ~FD_CLOEXEC; /* Clear CLOEXEC for standard file descriptors: 0, 1, 2. */
else
flags2 = flags | FD_CLOEXEC; /* Set CLOEXEC for non-standard file descriptors: 3, 4, 5, ... */
if (flags != flags2) {
ret = fcntl(fd, F_SETFD, flags2);
if (ret != 0) {
rb_bug("rb_maygvl_fd_fix_cloexec: fcntl(%d, F_SETFD, %d) failed: %s", fd, flags2, strerror(errno));
}
}
#endif
}
void
rb_fd_fix_cloexec(int fd)
{
rb_maygvl_fd_fix_cloexec(fd);
rb_update_max_fd(fd);
}
/* this is only called once */
static int
rb_fix_detect_o_cloexec(int fd)
{
#if defined(O_CLOEXEC) && defined(F_GETFD)
int flags = fcntl(fd, F_GETFD);
if (flags == -1)
rb_bug("rb_fix_detect_o_cloexec: fcntl(%d, F_GETFD) failed: %s", fd, strerror(errno));
if (flags & FD_CLOEXEC)
return 1;
#endif /* fall through if O_CLOEXEC does not work: */
rb_maygvl_fd_fix_cloexec(fd);
return 0;
}
static inline bool
io_again_p(int e)
{
return (e == EWOULDBLOCK) || (e == EAGAIN);
}
int
rb_cloexec_open(const char *pathname, int flags, mode_t mode)
{
int ret;
static int o_cloexec_state = -1; /* <0: unknown, 0: ignored, >0: working */
static const int retry_interval = 0;
static const int retry_max_count = 10000;
int retry_count = 0;
#ifdef O_CLOEXEC
/* O_CLOEXEC is available since Linux 2.6.23. Linux 2.6.18 silently ignore it. */
flags |= O_CLOEXEC;
#elif defined O_NOINHERIT
flags |= O_NOINHERIT;
#endif
while ((ret = open(pathname, flags, mode)) == -1) {
int e = errno;
if (!io_again_p(e)) break;
if (retry_count++ >= retry_max_count) break;
sleep(retry_interval);
}
if (ret < 0) return ret;
if (ret <= 2 || o_cloexec_state == 0) {
rb_maygvl_fd_fix_cloexec(ret);
}
else if (o_cloexec_state > 0) {
return ret;
}
else {
o_cloexec_state = rb_fix_detect_o_cloexec(ret);
}
return ret;
}
int
rb_cloexec_dup(int oldfd)
{
/* Don't allocate standard file descriptors: 0, 1, 2 */
return rb_cloexec_fcntl_dupfd(oldfd, 3);
}
int
rb_cloexec_dup2(int oldfd, int newfd)
{
int ret;
/* When oldfd == newfd, dup2 succeeds but dup3 fails with EINVAL.
* rb_cloexec_dup2 succeeds as dup2. */
if (oldfd == newfd) {
ret = newfd;
}
else {
#if defined(HAVE_DUP3) && defined(O_CLOEXEC)
static int try_dup3 = 1;
if (2 < newfd && try_dup3) {
ret = dup3(oldfd, newfd, O_CLOEXEC);
if (ret != -1)
return ret;
/* dup3 is available since Linux 2.6.27, glibc 2.9. */
if (errno == ENOSYS) {
try_dup3 = 0;
ret = dup2(oldfd, newfd);
}
}
else {
ret = dup2(oldfd, newfd);
}
#else
ret = dup2(oldfd, newfd);
#endif
if (ret < 0) return ret;
}
rb_maygvl_fd_fix_cloexec(ret);
return ret;
}
static int
rb_fd_set_nonblock(int fd)
{
#ifdef _WIN32
return rb_w32_set_nonblock(fd);
#elif defined(F_GETFL)
int oflags = fcntl(fd, F_GETFL);
if (oflags == -1)
return -1;
if (oflags & O_NONBLOCK)
return 0;
oflags |= O_NONBLOCK;
return fcntl(fd, F_SETFL, oflags);
#endif
return 0;
}
int
rb_cloexec_pipe(int descriptors[2])
{
#ifdef HAVE_PIPE2
int result = pipe2(descriptors, O_CLOEXEC | O_NONBLOCK);
#else
int result = pipe(descriptors);
#endif
if (result < 0)
return result;
#ifdef __CYGWIN__
if (result == 0 && descriptors[1] == -1) {
close(descriptors[0]);
descriptors[0] = -1;
errno = ENFILE;
return -1;
}
#endif
#ifndef HAVE_PIPE2
rb_maygvl_fd_fix_cloexec(descriptors[0]);
rb_maygvl_fd_fix_cloexec(descriptors[1]);
#ifndef _WIN32
rb_fd_set_nonblock(descriptors[0]);
rb_fd_set_nonblock(descriptors[1]);
#endif
#endif
return result;
}
int
rb_cloexec_fcntl_dupfd(int fd, int minfd)
{
int ret;
#if defined(HAVE_FCNTL) && defined(F_DUPFD_CLOEXEC) && defined(F_DUPFD)
static int try_dupfd_cloexec = 1;
if (try_dupfd_cloexec) {
ret = fcntl(fd, F_DUPFD_CLOEXEC, minfd);
if (ret != -1) {
if (ret <= 2)
rb_maygvl_fd_fix_cloexec(ret);
return ret;
}
/* F_DUPFD_CLOEXEC is available since Linux 2.6.24. Linux 2.6.18 fails with EINVAL */
if (errno == EINVAL) {
ret = fcntl(fd, F_DUPFD, minfd);
if (ret != -1) {
try_dupfd_cloexec = 0;
}
}
}
else {
ret = fcntl(fd, F_DUPFD, minfd);
}
#elif defined(HAVE_FCNTL) && defined(F_DUPFD)
ret = fcntl(fd, F_DUPFD, minfd);
#else
ret = dup(fd);
if (ret >= 0 && ret < minfd) {
const int prev_fd = ret;
ret = rb_cloexec_fcntl_dupfd(fd, minfd);
close(prev_fd);
}
return ret;
#endif
if (ret < 0) return ret;
rb_maygvl_fd_fix_cloexec(ret);
return ret;
}
#define argf_of(obj) (*(struct argf *)DATA_PTR(obj))
#define ARGF argf_of(argf)
#define GetWriteIO(io) rb_io_get_write_io(io)
#define READ_DATA_PENDING(fptr) ((fptr)->rbuf.len)
#define READ_DATA_PENDING_COUNT(fptr) ((fptr)->rbuf.len)
#define READ_DATA_PENDING_PTR(fptr) ((fptr)->rbuf.ptr+(fptr)->rbuf.off)
#define READ_DATA_BUFFERED(fptr) READ_DATA_PENDING(fptr)
#define READ_CHAR_PENDING(fptr) ((fptr)->cbuf.len)
#define READ_CHAR_PENDING_COUNT(fptr) ((fptr)->cbuf.len)
#define READ_CHAR_PENDING_PTR(fptr) ((fptr)->cbuf.ptr+(fptr)->cbuf.off)
#if defined(_WIN32)
#define WAIT_FD_IN_WIN32(fptr) \
(rb_w32_io_cancelable_p((fptr)->fd) ? Qnil : rb_io_wait(fptr->self, RB_INT2NUM(RUBY_IO_READABLE), RUBY_IO_TIMEOUT_DEFAULT))
#else
#define WAIT_FD_IN_WIN32(fptr)
#endif
#define READ_CHECK(fptr) do {\
if (!READ_DATA_PENDING(fptr)) {\
WAIT_FD_IN_WIN32(fptr);\
rb_io_check_closed(fptr);\
}\
} while(0)
#ifndef S_ISSOCK
# ifdef _S_ISSOCK
# define S_ISSOCK(m) _S_ISSOCK(m)
# else
# ifdef _S_IFSOCK
# define S_ISSOCK(m) (((m) & S_IFMT) == _S_IFSOCK)
# else
# ifdef S_IFSOCK
# define S_ISSOCK(m) (((m) & S_IFMT) == S_IFSOCK)
# endif
# endif
# endif
#endif
static int io_fflush(rb_io_t *);
static rb_io_t *flush_before_seek(rb_io_t *fptr);
#define FMODE_SIGNAL_ON_EPIPE (1<<17)
#define fptr_signal_on_epipe(fptr) \
(((fptr)->mode & FMODE_SIGNAL_ON_EPIPE) != 0)
#define fptr_set_signal_on_epipe(fptr, flag) \
((flag) ? \
(fptr)->mode |= FMODE_SIGNAL_ON_EPIPE : \
(fptr)->mode &= ~FMODE_SIGNAL_ON_EPIPE)
extern ID ruby_static_id_signo;
NORETURN(static void rb_sys_fail_on_write(rb_io_t *fptr));
static void
rb_sys_fail_on_write(rb_io_t *fptr)
{
int e = errno;
VALUE errinfo = rb_syserr_new_path(e, (fptr)->pathv);
#if defined EPIPE
if (fptr_signal_on_epipe(fptr) && (e == EPIPE)) {
const VALUE sig =
# if defined SIGPIPE
INT2FIX(SIGPIPE) - INT2FIX(0) +
# endif
INT2FIX(0);
rb_ivar_set(errinfo, ruby_static_id_signo, sig);
}
#endif
rb_exc_raise(errinfo);
}
#define NEED_NEWLINE_DECORATOR_ON_READ(fptr) ((fptr)->mode & FMODE_TEXTMODE)
#define NEED_NEWLINE_DECORATOR_ON_WRITE(fptr) ((fptr)->mode & FMODE_TEXTMODE)
#if defined(RUBY_TEST_CRLF_ENVIRONMENT) || defined(_WIN32)
# define RUBY_CRLF_ENVIRONMENT 1
#else
# define RUBY_CRLF_ENVIRONMENT 0
#endif
#if RUBY_CRLF_ENVIRONMENT
/* Windows */
# define DEFAULT_TEXTMODE FMODE_TEXTMODE
# define TEXTMODE_NEWLINE_DECORATOR_ON_WRITE ECONV_CRLF_NEWLINE_DECORATOR
/*
* CRLF newline is set as default newline decorator.
* If only CRLF newline conversion is needed, we use binary IO process
* with OS's text mode for IO performance improvement.
* If encoding conversion is needed or a user sets text mode, we use encoding
* conversion IO process and universal newline decorator by default.
*/
#define NEED_READCONV(fptr) ((fptr)->encs.enc2 != NULL || (fptr)->encs.ecflags & ~ECONV_CRLF_NEWLINE_DECORATOR)
#define WRITECONV_MASK ( \
(ECONV_DECORATOR_MASK & ~ECONV_CRLF_NEWLINE_DECORATOR)|\
ECONV_STATEFUL_DECORATOR_MASK|\
0)
#define NEED_WRITECONV(fptr) ( \
((fptr)->encs.enc != NULL && (fptr)->encs.enc != rb_ascii8bit_encoding()) || \
((fptr)->encs.ecflags & WRITECONV_MASK) || \
0)
#define SET_BINARY_MODE(fptr) setmode((fptr)->fd, O_BINARY)
#define NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr) do {\
if (NEED_NEWLINE_DECORATOR_ON_READ(fptr)) {\
if (((fptr)->mode & FMODE_READABLE) &&\
!((fptr)->encs.ecflags & ECONV_NEWLINE_DECORATOR_MASK)) {\
setmode((fptr)->fd, O_BINARY);\
}\
else {\
setmode((fptr)->fd, O_TEXT);\
}\
}\
} while(0)
#define SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags) do {\
if ((enc2) && ((ecflags) & ECONV_DEFAULT_NEWLINE_DECORATOR)) {\
(ecflags) |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;\
}\
} while(0)
/*
* IO unread with taking care of removed '\r' in text mode.
*/
static void
io_unread(rb_io_t *fptr)
{
rb_off_t r, pos;
ssize_t read_size;
long i;
long newlines = 0;
long extra_max;
char *p;
char *buf;
rb_io_check_closed(fptr);
if (fptr->rbuf.len == 0 || fptr->mode & FMODE_DUPLEX) {
return;
}
errno = 0;
if (!rb_w32_fd_is_text(fptr->fd)) {
r = lseek(fptr->fd, -fptr->rbuf.len, SEEK_CUR);
if (r < 0 && errno) {
if (errno == ESPIPE)
fptr->mode |= FMODE_DUPLEX;
return;
}
fptr->rbuf.off = 0;
fptr->rbuf.len = 0;
return;
}
pos = lseek(fptr->fd, 0, SEEK_CUR);
if (pos < 0 && errno) {
if (errno == ESPIPE)
fptr->mode |= FMODE_DUPLEX;
return;
}
/* add extra offset for removed '\r' in rbuf */
extra_max = (long)(pos - fptr->rbuf.len);
p = fptr->rbuf.ptr + fptr->rbuf.off;
/* if the end of rbuf is '\r', rbuf doesn't have '\r' within rbuf.len */
if (*(fptr->rbuf.ptr + fptr->rbuf.capa - 1) == '\r') {
newlines++;
}
for (i = 0; i < fptr->rbuf.len; i++) {
if (*p == '\n') newlines++;
if (extra_max == newlines) break;
p++;
}
buf = ALLOC_N(char, fptr->rbuf.len + newlines);
while (newlines >= 0) {
r = lseek(fptr->fd, pos - fptr->rbuf.len - newlines, SEEK_SET);
if (newlines == 0) break;
if (r < 0) {
newlines--;
continue;
}
read_size = _read(fptr->fd, buf, fptr->rbuf.len + newlines);
if (read_size < 0) {
int e = errno;
free(buf);
rb_syserr_fail_path(e, fptr->pathv);
}
if (read_size == fptr->rbuf.len) {
lseek(fptr->fd, r, SEEK_SET);
break;
}
else {
newlines--;
}
}
free(buf);
fptr->rbuf.off = 0;
fptr->rbuf.len = 0;
return;
}
/*
* We use io_seek to back cursor position when changing mode from text to binary,
* but stdin and pipe cannot seek back. Stdin and pipe read should use encoding
* conversion for working properly with mode change.
*
* Return previous translation mode.
*/
static inline int
set_binary_mode_with_seek_cur(rb_io_t *fptr)
{
if (!rb_w32_fd_is_text(fptr->fd)) return O_BINARY;
if (fptr->rbuf.len == 0 || fptr->mode & FMODE_DUPLEX) {
return setmode(fptr->fd, O_BINARY);
}
flush_before_seek(fptr);
return setmode(fptr->fd, O_BINARY);
}
#define SET_BINARY_MODE_WITH_SEEK_CUR(fptr) set_binary_mode_with_seek_cur(fptr)
#else
/* Unix */
# define DEFAULT_TEXTMODE 0
#define NEED_READCONV(fptr) ((fptr)->encs.enc2 != NULL || NEED_NEWLINE_DECORATOR_ON_READ(fptr))
#define NEED_WRITECONV(fptr) ( \
((fptr)->encs.enc != NULL && (fptr)->encs.enc != rb_ascii8bit_encoding()) || \
NEED_NEWLINE_DECORATOR_ON_WRITE(fptr) || \
((fptr)->encs.ecflags & (ECONV_DECORATOR_MASK|ECONV_STATEFUL_DECORATOR_MASK)) || \
0)
#define SET_BINARY_MODE(fptr) (void)(fptr)
#define NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr) (void)(fptr)
#define SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags) ((void)(enc2), (void)(ecflags))
#define SET_BINARY_MODE_WITH_SEEK_CUR(fptr) (void)(fptr)
#endif
#if !defined HAVE_SHUTDOWN && !defined shutdown
#define shutdown(a,b) 0
#endif
#if defined(_WIN32)
#define is_socket(fd, path) rb_w32_is_socket(fd)
#elif !defined(S_ISSOCK)
#define is_socket(fd, path) 0
#else
static int
is_socket(int fd, VALUE path)
{
struct stat sbuf;
if (fstat(fd, &sbuf) < 0)
rb_sys_fail_path(path);
return S_ISSOCK(sbuf.st_mode);
}
#endif
static const char closed_stream[] = "closed stream";
static void
io_fd_check_closed(int fd)
{
if (fd < 0) {
rb_thread_check_ints(); /* check for ruby_error_stream_closed */
rb_raise(rb_eIOError, closed_stream);
}
}
void
rb_eof_error(void)
{
rb_raise(rb_eEOFError, "end of file reached");
}
VALUE
rb_io_taint_check(VALUE io)
{
rb_check_frozen(io);
return io;
}
void
rb_io_check_initialized(rb_io_t *fptr)
{
if (!fptr) {
rb_raise(rb_eIOError, "uninitialized stream");
}
}
void
rb_io_check_closed(rb_io_t *fptr)
{
rb_io_check_initialized(fptr);
io_fd_check_closed(fptr->fd);
}
static rb_io_t *
rb_io_get_fptr(VALUE io)
{
rb_io_t *fptr = RFILE(io)->fptr;
rb_io_check_initialized(fptr);
return fptr;
}
VALUE
rb_io_get_io(VALUE io)
{
return rb_convert_type_with_id(io, T_FILE, "IO", idTo_io);
}
VALUE
rb_io_check_io(VALUE io)
{
return rb_check_convert_type_with_id(io, T_FILE, "IO", idTo_io);
}
VALUE
rb_io_get_write_io(VALUE io)
{
VALUE write_io;
write_io = rb_io_get_fptr(io)->tied_io_for_writing;
if (write_io) {
return write_io;
}
return io;
}
VALUE
rb_io_set_write_io(VALUE io, VALUE w)
{
VALUE write_io;
rb_io_t *fptr = rb_io_get_fptr(io);
if (!RTEST(w)) {
w = 0;
}
else {
GetWriteIO(w);
}
write_io = fptr->tied_io_for_writing;
fptr->tied_io_for_writing = w;
return write_io ? write_io : Qnil;
}
/*
* call-seq:
* timeout -> duration or nil
*
* Get the internal timeout duration or nil if it was not set.
*
*/
VALUE
rb_io_timeout(VALUE self)
{
rb_io_t *fptr = rb_io_get_fptr(self);
return fptr->timeout;
}
/*
* call-seq:
* timeout = duration -> duration
* timeout = nil -> nil
*
* Sets the internal timeout to the specified duration or nil. The timeout
* applies to all blocking operations where possible.
*
* When the operation performs longer than the timeout set, IO::TimeoutError
* is raised.
*
* This affects the following methods (but is not limited to): #gets, #puts,
* #read, #write, #wait_readable and #wait_writable. This also affects
* blocking socket operations like Socket#accept and Socket#connect.
*
* Some operations like File#open and IO#close are not affected by the
* timeout. A timeout during a write operation may leave the IO in an
* inconsistent state, e.g. data was partially written. Generally speaking, a
* timeout is a last ditch effort to prevent an application from hanging on
* slow I/O operations, such as those that occur during a slowloris attack.
*/
VALUE
rb_io_set_timeout(VALUE self, VALUE timeout)
{
// Validate it:
if (RTEST(timeout)) {
rb_time_interval(timeout);
}
rb_io_t *fptr = rb_io_get_fptr(self);
fptr->timeout = timeout;
return self;
}
/*
* call-seq:
* IO.try_convert(object) -> new_io or nil
*
* Attempts to convert +object+ into an \IO object via method +to_io+;
* returns the new \IO object if successful, or +nil+ otherwise:
*
* IO.try_convert(STDOUT) # => #<IO:<STDOUT>>
* IO.try_convert(ARGF) # => #<IO:<STDIN>>
* IO.try_convert('STDOUT') # => nil
*
*/
static VALUE
rb_io_s_try_convert(VALUE dummy, VALUE io)
{
return rb_io_check_io(io);
}
#if !RUBY_CRLF_ENVIRONMENT
static void
io_unread(rb_io_t *fptr)
{
rb_off_t r;
rb_io_check_closed(fptr);
if (fptr->rbuf.len == 0 || fptr->mode & FMODE_DUPLEX)
return;
/* xxx: target position may be negative if buffer is filled by ungetc */
errno = 0;
r = lseek(fptr->fd, -fptr->rbuf.len, SEEK_CUR);
if (r < 0 && errno) {
if (errno == ESPIPE)
fptr->mode |= FMODE_DUPLEX;
return;
}
fptr->rbuf.off = 0;
fptr->rbuf.len = 0;
return;
}
#endif
static rb_encoding *io_input_encoding(rb_io_t *fptr);
static void
io_ungetbyte(VALUE str, rb_io_t *fptr)
{
long len = RSTRING_LEN(str);
if (fptr->rbuf.ptr == NULL) {
const int min_capa = IO_RBUF_CAPA_FOR(fptr);
fptr->rbuf.off = 0;
fptr->rbuf.len = 0;
#if SIZEOF_LONG > SIZEOF_INT
if (len > INT_MAX)
rb_raise(rb_eIOError, "ungetbyte failed");
#endif
if (len > min_capa)
fptr->rbuf.capa = (int)len;
else
fptr->rbuf.capa = min_capa;
fptr->rbuf.ptr = ALLOC_N(char, fptr->rbuf.capa);
}
if (fptr->rbuf.capa < len + fptr->rbuf.len) {
rb_raise(rb_eIOError, "ungetbyte failed");
}
if (fptr->rbuf.off < len) {
MEMMOVE(fptr->rbuf.ptr+fptr->rbuf.capa-fptr->rbuf.len,
fptr->rbuf.ptr+fptr->rbuf.off,
char, fptr->rbuf.len);
fptr->rbuf.off = fptr->rbuf.capa-fptr->rbuf.len;
}
fptr->rbuf.off-=(int)len;
fptr->rbuf.len+=(int)len;
MEMMOVE(fptr->rbuf.ptr+fptr->rbuf.off, RSTRING_PTR(str), char, len);
}
static rb_io_t *
flush_before_seek(rb_io_t *fptr)
{
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
io_unread(fptr);
errno = 0;
return fptr;
}
#define io_seek(fptr, ofs, whence) (errno = 0, lseek(flush_before_seek(fptr)->fd, (ofs), (whence)))
#define io_tell(fptr) lseek(flush_before_seek(fptr)->fd, 0, SEEK_CUR)
#ifndef SEEK_CUR
# define SEEK_SET 0
# define SEEK_CUR 1
# define SEEK_END 2
#endif
void
rb_io_check_char_readable(rb_io_t *fptr)
{
rb_io_check_closed(fptr);
if (!(fptr->mode & FMODE_READABLE)) {
rb_raise(rb_eIOError, "not opened for reading");
}
if (fptr->wbuf.len) {
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
}
if (fptr->tied_io_for_writing) {
rb_io_t *wfptr;
GetOpenFile(fptr->tied_io_for_writing, wfptr);
if (io_fflush(wfptr) < 0)
rb_sys_fail_on_write(wfptr);
}
}
void
rb_io_check_byte_readable(rb_io_t *fptr)
{
rb_io_check_char_readable(fptr);
if (READ_CHAR_PENDING(fptr)) {
rb_raise(rb_eIOError, "byte oriented read for character buffered IO");
}
}
void
rb_io_check_readable(rb_io_t *fptr)
{
rb_io_check_byte_readable(fptr);
}
static rb_encoding*
io_read_encoding(rb_io_t *fptr)
{
if (fptr->encs.enc) {
return fptr->encs.enc;
}
return rb_default_external_encoding();
}
static rb_encoding*
io_input_encoding(rb_io_t *fptr)
{
if (fptr->encs.enc2) {
return fptr->encs.enc2;
}
return io_read_encoding(fptr);
}
void
rb_io_check_writable(rb_io_t *fptr)
{
rb_io_check_closed(fptr);
if (!(fptr->mode & FMODE_WRITABLE)) {
rb_raise(rb_eIOError, "not opened for writing");
}
if (fptr->rbuf.len) {
io_unread(fptr);
}
}
int
rb_io_read_pending(rb_io_t *fptr)
{
/* This function is used for bytes and chars. Confusing. */
if (READ_CHAR_PENDING(fptr))
return 1; /* should raise? */
return READ_DATA_PENDING(fptr);
}
void
rb_io_read_check(rb_io_t *fptr)
{
if (!READ_DATA_PENDING(fptr)) {
rb_io_wait(fptr->self, RB_INT2NUM(RUBY_IO_READABLE), RUBY_IO_TIMEOUT_DEFAULT);
}
return;
}
int
rb_gc_for_fd(int err)
{
if (err == EMFILE || err == ENFILE || err == ENOMEM) {
rb_gc();
return 1;
}
return 0;
}
/* try `expr` upto twice while it returns false and `errno`
* is to GC. Each `errno`s are available as `first_errno` and
* `retried_errno` respectively */
#define TRY_WITH_GC(expr) \
for (int first_errno, retried_errno = 0, retried = 0; \
(!retried && \
!(expr) && \
(!rb_gc_for_fd(first_errno = errno) || !(expr)) && \
(retried_errno = errno, 1)); \
(void)retried_errno, retried = 1)
static int
ruby_dup(int orig)
{
int fd = -1;
TRY_WITH_GC((fd = rb_cloexec_dup(orig)) >= 0) {
rb_syserr_fail(first_errno, 0);
}
rb_update_max_fd(fd);
return fd;
}
static VALUE
io_alloc(VALUE klass)
{
NEWOBJ_OF(io, struct RFile, klass, T_FILE, sizeof(struct RFile), 0);
io->fptr = 0;
return (VALUE)io;
}
#ifndef S_ISREG
# define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
#endif
struct io_internal_read_struct {
VALUE th;
rb_io_t *fptr;
int nonblock;
int fd;
void *buf;
size_t capa;
struct timeval *timeout;
};
struct io_internal_write_struct {
VALUE th;
rb_io_t *fptr;
int nonblock;
int fd;
const void *buf;
size_t capa;
struct timeval *timeout;
};
#ifdef HAVE_WRITEV
struct io_internal_writev_struct {
VALUE th;
rb_io_t *fptr;
int nonblock;
int fd;
int iovcnt;
const struct iovec *iov;
struct timeval *timeout;
};
#endif
static int nogvl_wait_for(VALUE th, rb_io_t *fptr, short events, struct timeval *timeout);
/**
* Wait for the given events on the given file descriptor.
* Returns -1 if an error or timeout occurred. +errno+ will be set.
* Returns the event mask if an event occurred.
*/
static inline int
io_internal_wait(VALUE thread, rb_io_t *fptr, int error, int events, struct timeval *timeout)
{
if (!timeout && rb_thread_mn_schedulable(thread)) {
RUBY_ASSERT(errno == EWOULDBLOCK || errno == EAGAIN);
return -1;
}
int ready = nogvl_wait_for(thread, fptr, events, timeout);
if (ready > 0) {
return ready;
}
else if (ready == 0) {
errno = ETIMEDOUT;
return -1;
}
errno = error;
return -1;
}
static VALUE
internal_read_func(void *ptr)
{
struct io_internal_read_struct *iis = ptr;
ssize_t result;
if (iis->timeout && !iis->nonblock) {
if (io_internal_wait(iis->th, iis->fptr, 0, RB_WAITFD_IN, iis->timeout) == -1) {
return -1;
}
}
retry:
result = read(iis->fd, iis->buf, iis->capa);
if (result < 0 && !iis->nonblock) {
if (io_again_p(errno)) {
if (io_internal_wait(iis->th, iis->fptr, errno, RB_WAITFD_IN, iis->timeout) == -1) {
return -1;
}
else {
goto retry;
}
}
}
return result;
}
#if defined __APPLE__
# define do_write_retry(code) do {result = code;} while (result == -1 && errno == EPROTOTYPE)
#else
# define do_write_retry(code) result = code
#endif
static VALUE
internal_write_func(void *ptr)
{
struct io_internal_write_struct *iis = ptr;
ssize_t result;
if (iis->timeout && !iis->nonblock) {
if (io_internal_wait(iis->th, iis->fptr, 0, RB_WAITFD_OUT, iis->timeout) == -1) {
return -1;
}
}
retry:
do_write_retry(write(iis->fd, iis->buf, iis->capa));
if (result < 0 && !iis->nonblock) {
int e = errno;
if (io_again_p(e)) {
if (io_internal_wait(iis->th, iis->fptr, errno, RB_WAITFD_OUT, iis->timeout) == -1) {
return -1;
}
else {
goto retry;
}
}
}
return result;
}
#ifdef HAVE_WRITEV
static VALUE
internal_writev_func(void *ptr)
{
struct io_internal_writev_struct *iis = ptr;
ssize_t result;
if (iis->timeout && !iis->nonblock) {
if (io_internal_wait(iis->th, iis->fptr, 0, RB_WAITFD_OUT, iis->timeout) == -1) {
return -1;
}
}
retry:
do_write_retry(writev(iis->fd, iis->iov, iis->iovcnt));
if (result < 0 && !iis->nonblock) {
if (io_again_p(errno)) {
if (io_internal_wait(iis->th, iis->fptr, errno, RB_WAITFD_OUT, iis->timeout) == -1) {
return -1;
}
else {
goto retry;
}
}
}
return result;
}
#endif
static ssize_t
rb_io_read_memory(rb_io_t *fptr, void *buf, size_t count)
{
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
VALUE result = rb_fiber_scheduler_io_read_memory(scheduler, fptr->self, buf, count, 0);
if (!UNDEF_P(result)) {
return rb_fiber_scheduler_io_result_apply(result);
}
}
struct io_internal_read_struct iis = {
.th = rb_thread_current(),
.fptr = fptr,
.nonblock = 0,
.fd = fptr->fd,
.buf = buf,
.capa = count,
.timeout = NULL,
};
struct timeval timeout_storage;
if (fptr->timeout != Qnil) {
timeout_storage = rb_time_interval(fptr->timeout);
iis.timeout = &timeout_storage;
}
return (ssize_t)rb_thread_io_blocking_call(internal_read_func, &iis, fptr->fd, RB_WAITFD_IN);
}
static ssize_t
rb_io_write_memory(rb_io_t *fptr, const void *buf, size_t count)
{
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
VALUE result = rb_fiber_scheduler_io_write_memory(scheduler, fptr->self, buf, count, 0);
if (!UNDEF_P(result)) {
return rb_fiber_scheduler_io_result_apply(result);
}
}
struct io_internal_write_struct iis = {
.th = rb_thread_current(),
.fptr = fptr,
.nonblock = 0,
.fd = fptr->fd,
.buf = buf,
.capa = count,
.timeout = NULL
};
struct timeval timeout_storage;
if (fptr->timeout != Qnil) {
timeout_storage = rb_time_interval(fptr->timeout);
iis.timeout = &timeout_storage;
}
return (ssize_t)rb_thread_io_blocking_call(internal_write_func, &iis, fptr->fd, RB_WAITFD_OUT);
}
#ifdef HAVE_WRITEV
static ssize_t
rb_writev_internal(rb_io_t *fptr, const struct iovec *iov, int iovcnt)
{
if (!iovcnt) return 0;
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
// This path assumes at least one `iov`:
VALUE result = rb_fiber_scheduler_io_write_memory(scheduler, fptr->self, iov[0].iov_base, iov[0].iov_len, 0);
if (!UNDEF_P(result)) {
return rb_fiber_scheduler_io_result_apply(result);
}
}
struct io_internal_writev_struct iis = {
.th = rb_thread_current(),
.fptr = fptr,
.nonblock = 0,
.fd = fptr->fd,
.iov = iov,
.iovcnt = iovcnt,
.timeout = NULL
};
struct timeval timeout_storage;
if (fptr->timeout != Qnil) {
timeout_storage = rb_time_interval(fptr->timeout);
iis.timeout = &timeout_storage;
}
return (ssize_t)rb_thread_io_blocking_call(internal_writev_func, &iis, fptr->fd, RB_WAITFD_OUT);
}
#endif
static VALUE
io_flush_buffer_sync(void *arg)
{
rb_io_t *fptr = arg;
long l = fptr->wbuf.len;
ssize_t r = write(fptr->fd, fptr->wbuf.ptr+fptr->wbuf.off, (size_t)l);
if (fptr->wbuf.len <= r) {
fptr->wbuf.off = 0;
fptr->wbuf.len = 0;
return 0;
}
if (0 <= r) {
fptr->wbuf.off += (int)r;
fptr->wbuf.len -= (int)r;
errno = EAGAIN;
}
return (VALUE)-1;
}
static VALUE
io_flush_buffer_async(VALUE arg)
{
rb_io_t *fptr = (rb_io_t *)arg;
return rb_thread_io_blocking_call(io_flush_buffer_sync, fptr, fptr->fd, RB_WAITFD_OUT);
}
static inline int
io_flush_buffer(rb_io_t *fptr)
{
if (!NIL_P(fptr->write_lock) && rb_mutex_owned_p(fptr->write_lock)) {
return (int)io_flush_buffer_async((VALUE)fptr);
}
else {
return (int)rb_mutex_synchronize(fptr->write_lock, io_flush_buffer_async, (VALUE)fptr);
}
}
static int
io_fflush(rb_io_t *fptr)
{
rb_io_check_closed(fptr);
if (fptr->wbuf.len == 0)
return 0;
while (fptr->wbuf.len > 0 && io_flush_buffer(fptr) != 0) {
if (!rb_io_maybe_wait_writable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT))
return -1;
rb_io_check_closed(fptr);
}
return 0;
}
VALUE
rb_io_wait(VALUE io, VALUE events, VALUE timeout)
{
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
return rb_fiber_scheduler_io_wait(scheduler, io, events, timeout);
}
rb_io_t * fptr = NULL;
RB_IO_POINTER(io, fptr);
struct timeval tv_storage;
struct timeval *tv = NULL;
if (NIL_OR_UNDEF_P(timeout)) {
timeout = fptr->timeout;
}
if (timeout != Qnil) {
tv_storage = rb_time_interval(timeout);
tv = &tv_storage;
}
int ready = rb_thread_wait_for_single_fd(fptr->fd, RB_NUM2INT(events), tv);
if (ready < 0) {
rb_sys_fail(0);
}
// Not sure if this is necessary:
rb_io_check_closed(fptr);
if (ready) {
return RB_INT2NUM(ready);
}
else {
return Qfalse;
}
}
static VALUE
io_from_fd(int fd)
{
return prep_io(fd, FMODE_EXTERNAL, rb_cIO, NULL);
}
static int
io_wait_for_single_fd(int fd, int events, struct timeval *timeout)
{
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
return RTEST(
rb_fiber_scheduler_io_wait(scheduler, io_from_fd(fd), RB_INT2NUM(events), rb_fiber_scheduler_make_timeout(timeout))
);
}
return rb_thread_wait_for_single_fd(fd, events, timeout);
}
int
rb_io_wait_readable(int f)
{
io_fd_check_closed(f);
VALUE scheduler = rb_fiber_scheduler_current();
switch (errno) {
case EINTR:
#if defined(ERESTART)
case ERESTART:
#endif
rb_thread_check_ints();
return TRUE;
case EAGAIN:
#if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
if (scheduler != Qnil) {
return RTEST(
rb_fiber_scheduler_io_wait_readable(scheduler, io_from_fd(f))
);
}
else {
io_wait_for_single_fd(f, RUBY_IO_READABLE, NULL);
}
return TRUE;
default:
return FALSE;
}
}
int
rb_io_wait_writable(int f)
{
io_fd_check_closed(f);
VALUE scheduler = rb_fiber_scheduler_current();
switch (errno) {
case EINTR:
#if defined(ERESTART)
case ERESTART:
#endif
/*
* In old Linux, several special files under /proc and /sys don't handle
* select properly. Thus we need avoid to call if don't use O_NONBLOCK.
* Otherwise, we face nasty hang up. Sigh.
* e.g. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8
* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8
* In EINTR case, we only need to call RUBY_VM_CHECK_INTS_BLOCKING().
* Then rb_thread_check_ints() is enough.
*/
rb_thread_check_ints();
return TRUE;
case EAGAIN:
#if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
if (scheduler != Qnil) {
return RTEST(
rb_fiber_scheduler_io_wait_writable(scheduler, io_from_fd(f))
);
}
else {
io_wait_for_single_fd(f, RUBY_IO_WRITABLE, NULL);
}
return TRUE;
default:
return FALSE;
}
}
int
rb_wait_for_single_fd(int fd, int events, struct timeval *timeout)
{
return io_wait_for_single_fd(fd, events, timeout);
}
int
rb_thread_wait_fd(int fd)
{
return rb_wait_for_single_fd(fd, RUBY_IO_READABLE, NULL);
}
int
rb_thread_fd_writable(int fd)
{
return rb_wait_for_single_fd(fd, RUBY_IO_WRITABLE, NULL);
}
VALUE
rb_io_maybe_wait(int error, VALUE io, VALUE events, VALUE timeout)
{
// fptr->fd can be set to -1 at any time by another thread when the GVL is
// released. Many code, e.g. `io_bufread` didn't check this correctly and
// instead relies on `read(-1) -> -1` which causes this code path. We then
// check here whether the IO was in fact closed. Probably it's better to
// check that `fptr->fd != -1` before using it in syscall.
rb_io_check_closed(RFILE(io)->fptr);
switch (error) {
// In old Linux, several special files under /proc and /sys don't handle
// select properly. Thus we need avoid to call if don't use O_NONBLOCK.
// Otherwise, we face nasty hang up. Sigh.
// e.g. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8
// https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8
// In EINTR case, we only need to call RUBY_VM_CHECK_INTS_BLOCKING().
// Then rb_thread_check_ints() is enough.
case EINTR:
#if defined(ERESTART)
case ERESTART:
#endif
// We might have pending interrupts since the previous syscall was interrupted:
rb_thread_check_ints();
// The operation was interrupted, so retry it immediately:
return events;
case EAGAIN:
#if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
// The operation would block, so wait for the specified events:
return rb_io_wait(io, events, timeout);
default:
// Non-specific error, no event is ready:
return Qfalse;
}
}
int
rb_io_maybe_wait_readable(int error, VALUE io, VALUE timeout)
{
VALUE result = rb_io_maybe_wait(error, io, RB_INT2NUM(RUBY_IO_READABLE), timeout);
if (RTEST(result)) {
return RB_NUM2INT(result);
}
else {
return 0;
}
}
int
rb_io_maybe_wait_writable(int error, VALUE io, VALUE timeout)
{
VALUE result = rb_io_maybe_wait(error, io, RB_INT2NUM(RUBY_IO_WRITABLE), timeout);
if (RTEST(result)) {
return RB_NUM2INT(result);
}
else {
return 0;
}
}
static void
make_writeconv(rb_io_t *fptr)
{
if (!fptr->writeconv_initialized) {
const char *senc, *denc;
rb_encoding *enc;
int ecflags;
VALUE ecopts;
fptr->writeconv_initialized = 1;
ecflags = fptr->encs.ecflags & ~ECONV_NEWLINE_DECORATOR_READ_MASK;
ecopts = fptr->encs.ecopts;
if (!fptr->encs.enc || (rb_is_ascii8bit_enc(fptr->encs.enc) && !fptr->encs.enc2)) {
/* no encoding conversion */
fptr->writeconv_pre_ecflags = 0;
fptr->writeconv_pre_ecopts = Qnil;
fptr->writeconv = rb_econv_open_opts("", "", ecflags, ecopts);
if (!fptr->writeconv)
rb_exc_raise(rb_econv_open_exc("", "", ecflags));
fptr->writeconv_asciicompat = Qnil;
}
else {
enc = fptr->encs.enc2 ? fptr->encs.enc2 : fptr->encs.enc;
senc = rb_econv_asciicompat_encoding(rb_enc_name(enc));
if (!senc && !(fptr->encs.ecflags & ECONV_STATEFUL_DECORATOR_MASK)) {
/* single conversion */
fptr->writeconv_pre_ecflags = ecflags;
fptr->writeconv_pre_ecopts = ecopts;
fptr->writeconv = NULL;
fptr->writeconv_asciicompat = Qnil;
}
else {
/* double conversion */
fptr->writeconv_pre_ecflags = ecflags & ~ECONV_STATEFUL_DECORATOR_MASK;
fptr->writeconv_pre_ecopts = ecopts;
if (senc) {
denc = rb_enc_name(enc);
fptr->writeconv_asciicompat = rb_str_new2(senc);
}
else {
senc = denc = "";
fptr->writeconv_asciicompat = rb_str_new2(rb_enc_name(enc));
}
ecflags = fptr->encs.ecflags & (ECONV_ERROR_HANDLER_MASK|ECONV_STATEFUL_DECORATOR_MASK);
ecopts = fptr->encs.ecopts;
fptr->writeconv = rb_econv_open_opts(senc, denc, ecflags, ecopts);
if (!fptr->writeconv)
rb_exc_raise(rb_econv_open_exc(senc, denc, ecflags));
}
}
}
}
/* writing functions */
struct binwrite_arg {
rb_io_t *fptr;
const char *ptr;
long length;
};
struct write_arg {
VALUE io;
VALUE str;
int nosync;
};
#ifdef HAVE_WRITEV
static ssize_t
io_binwrite_string_internal(rb_io_t *fptr, const char *ptr, long length)
{
if (fptr->wbuf.len) {
struct iovec iov[2];
iov[0].iov_base = fptr->wbuf.ptr+fptr->wbuf.off;
iov[0].iov_len = fptr->wbuf.len;
iov[1].iov_base = (void*)ptr;
iov[1].iov_len = length;
ssize_t result = rb_writev_internal(fptr, iov, 2);
if (result < 0)
return result;
if (result >= fptr->wbuf.len) {
// We wrote more than the internal buffer:
result -= fptr->wbuf.len;
fptr->wbuf.off = 0;
fptr->wbuf.len = 0;
}
else {
// We only wrote less data than the internal buffer:
fptr->wbuf.off += (int)result;
fptr->wbuf.len -= (int)result;
result = 0;
}
return result;
}
else {
return rb_io_write_memory(fptr, ptr, length);
}
}
#else
static ssize_t
io_binwrite_string_internal(rb_io_t *fptr, const char *ptr, long length)
{
long remaining = length;
if (fptr->wbuf.len) {
if (fptr->wbuf.len+length <= fptr->wbuf.capa) {
if (fptr->wbuf.capa < fptr->wbuf.off+fptr->wbuf.len+length) {
MEMMOVE(fptr->wbuf.ptr, fptr->wbuf.ptr+fptr->wbuf.off, char, fptr->wbuf.len);
fptr->wbuf.off = 0;
}
MEMMOVE(fptr->wbuf.ptr+fptr->wbuf.off+fptr->wbuf.len, ptr, char, length);
fptr->wbuf.len += (int)length;
// We copied the entire incoming data to the internal buffer:
remaining = 0;
}
// Flush the internal buffer:
if (io_fflush(fptr) < 0) {
return -1;
}
// If all the data was buffered, we are done:
if (remaining == 0) {
return length;
}
}
// Otherwise, we should write the data directly:
return rb_io_write_memory(fptr, ptr, length);
}
#endif
static VALUE
io_binwrite_string(VALUE arg)
{
struct binwrite_arg *p = (struct binwrite_arg *)arg;
const char *ptr = p->ptr;
size_t remaining = p->length;
while (remaining) {
// Write as much as possible:
ssize_t result = io_binwrite_string_internal(p->fptr, ptr, remaining);
if (result == 0) {
// If only the internal buffer is written, result will be zero [bytes of given data written]. This means we
// should try again immediately.
}
else if (result > 0) {
if ((size_t)result == remaining) break;
ptr += result;
remaining -= result;
}
// Wait for it to become writable:
else if (rb_io_maybe_wait_writable(errno, p->fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) {
rb_io_check_closed(p->fptr);
}
else {
// The error was unrelated to waiting for it to become writable, so we fail:
return -1;
}
}
return p->length;
}
inline static void
io_allocate_write_buffer(rb_io_t *fptr, int sync)
{
if (fptr->wbuf.ptr == NULL && !(sync && (fptr->mode & FMODE_SYNC))) {
fptr->wbuf.off = 0;
fptr->wbuf.len = 0;
fptr->wbuf.capa = IO_WBUF_CAPA_MIN;
fptr->wbuf.ptr = ALLOC_N(char, fptr->wbuf.capa);
}
if (NIL_P(fptr->write_lock)) {
fptr->write_lock = rb_mutex_new();
rb_mutex_allow_trap(fptr->write_lock, 1);
}
}
static inline int
io_binwrite_requires_flush_write(rb_io_t *fptr, long len, int nosync)
{
// If the requested operation was synchronous and the output mode is synchronous or a TTY:
if (!nosync && (fptr->mode & (FMODE_SYNC|FMODE_TTY)))
return 1;
// If the amount of data we want to write exceeds the internal buffer:
if (fptr->wbuf.ptr && fptr->wbuf.capa <= fptr->wbuf.len + len)
return 1;
// Otherwise, we can append to the internal buffer:
return 0;
}
static long
io_binwrite(const char *ptr, long len, rb_io_t *fptr, int nosync)
{
if (len <= 0) return len;
// Don't write anything if current thread has a pending interrupt:
rb_thread_check_ints();
io_allocate_write_buffer(fptr, !nosync);
if (io_binwrite_requires_flush_write(fptr, len, nosync)) {
struct binwrite_arg arg;
arg.fptr = fptr;
arg.ptr = ptr;
arg.length = len;
if (!NIL_P(fptr->write_lock)) {
return rb_mutex_synchronize(fptr->write_lock, io_binwrite_string, (VALUE)&arg);
}
else {
return io_binwrite_string((VALUE)&arg);
}
}
else {
if (fptr->wbuf.off) {
if (fptr->wbuf.len)
MEMMOVE(fptr->wbuf.ptr, fptr->wbuf.ptr+fptr->wbuf.off, char, fptr->wbuf.len);
fptr->wbuf.off = 0;
}
MEMMOVE(fptr->wbuf.ptr+fptr->wbuf.off+fptr->wbuf.len, ptr, char, len);
fptr->wbuf.len += (int)len;
return len;
}
}
# define MODE_BTMODE(a,b,c) ((fmode & FMODE_BINMODE) ? (b) : \
(fmode & FMODE_TEXTMODE) ? (c) : (a))
#define MODE_BTXMODE(a, b, c, d, e, f) ((fmode & FMODE_EXCL) ? \
MODE_BTMODE(d, e, f) : \
MODE_BTMODE(a, b, c))
static VALUE
do_writeconv(VALUE str, rb_io_t *fptr, int *converted)
{
if (NEED_WRITECONV(fptr)) {
VALUE common_encoding = Qnil;
SET_BINARY_MODE(fptr);
make_writeconv(fptr);
if (fptr->writeconv) {
#define fmode (fptr->mode)
if (!NIL_P(fptr->writeconv_asciicompat))
common_encoding = fptr->writeconv_asciicompat;
else if (MODE_BTMODE(DEFAULT_TEXTMODE,0,1) && !rb_enc_asciicompat(rb_enc_get(str))) {
rb_raise(rb_eArgError, "ASCII incompatible string written for text mode IO without encoding conversion: %s",
rb_enc_name(rb_enc_get(str)));
}
#undef fmode
}
else {
if (fptr->encs.enc2)
common_encoding = rb_enc_from_encoding(fptr->encs.enc2);
else if (fptr->encs.enc != rb_ascii8bit_encoding())
common_encoding = rb_enc_from_encoding(fptr->encs.enc);
}
if (!NIL_P(common_encoding)) {
str = rb_str_encode(str, common_encoding,
fptr->writeconv_pre_ecflags, fptr->writeconv_pre_ecopts);
*converted = 1;
}
if (fptr->writeconv) {
str = rb_econv_str_convert(fptr->writeconv, str, ECONV_PARTIAL_INPUT);
*converted = 1;
}
}
#if RUBY_CRLF_ENVIRONMENT
#define fmode (fptr->mode)
else if (MODE_BTMODE(DEFAULT_TEXTMODE,0,1)) {
if ((fptr->mode & FMODE_READABLE) &&
!(fptr->encs.ecflags & ECONV_NEWLINE_DECORATOR_MASK)) {
setmode(fptr->fd, O_BINARY);
}
else {
setmode(fptr->fd, O_TEXT);
}
if (!rb_enc_asciicompat(rb_enc_get(str))) {
rb_raise(rb_eArgError, "ASCII incompatible string written for text mode IO without encoding conversion: %s",
rb_enc_name(rb_enc_get(str)));
}
}
#undef fmode
#endif
return str;
}
static long
io_fwrite(VALUE str, rb_io_t *fptr, int nosync)
{
int converted = 0;
VALUE tmp;
long n, len;
const char *ptr;
#ifdef _WIN32
if (fptr->mode & FMODE_TTY) {
long len = rb_w32_write_console(str, fptr->fd);
if (len > 0) return len;
}
#endif
str = do_writeconv(str, fptr, &converted);
if (converted)
OBJ_FREEZE(str);
tmp = rb_str_tmp_frozen_no_embed_acquire(str);
RSTRING_GETMEM(tmp, ptr, len);
n = io_binwrite(ptr, len, fptr, nosync);
rb_str_tmp_frozen_release(str, tmp);
return n;
}
ssize_t
rb_io_bufwrite(VALUE io, const void *buf, size_t size)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
rb_io_check_writable(fptr);
return (ssize_t)io_binwrite(buf, (long)size, fptr, 0);
}
static VALUE
io_write(VALUE io, VALUE str, int nosync)
{
rb_io_t *fptr;
long n;
VALUE tmp;
io = GetWriteIO(io);
str = rb_obj_as_string(str);
tmp = rb_io_check_io(io);
if (NIL_P(tmp)) {
/* port is not IO, call write method for it. */
return rb_funcall(io, id_write, 1, str);
}
io = tmp;
if (RSTRING_LEN(str) == 0) return INT2FIX(0);
GetOpenFile(io, fptr);
rb_io_check_writable(fptr);
n = io_fwrite(str, fptr, nosync);
if (n < 0L) rb_sys_fail_on_write(fptr);
return LONG2FIX(n);
}
#ifdef HAVE_WRITEV
struct binwritev_arg {
rb_io_t *fptr;
struct iovec *iov;
int iovcnt;
size_t total;
};
static VALUE
io_binwritev_internal(VALUE arg)
{
struct binwritev_arg *p = (struct binwritev_arg *)arg;
size_t remaining = p->total;
size_t offset = 0;
rb_io_t *fptr = p->fptr;
struct iovec *iov = p->iov;
int iovcnt = p->iovcnt;
while (remaining) {
long result = rb_writev_internal(fptr, iov, iovcnt);
if (result >= 0) {
offset += result;
if (fptr->wbuf.ptr && fptr->wbuf.len) {
if (offset < (size_t)fptr->wbuf.len) {
fptr->wbuf.off += result;
fptr->wbuf.len -= result;
}
else {
offset -= (size_t)fptr->wbuf.len;
fptr->wbuf.off = 0;
fptr->wbuf.len = 0;
}
}
if (offset == p->total) {
return p->total;
}
while (result >= (ssize_t)iov->iov_len) {
/* iovcnt > 0 */
result -= iov->iov_len;
iov->iov_len = 0;
iov++;
if (!--iovcnt) {
// I don't believe this code path can ever occur.
return offset;
}
}
iov->iov_base = (char *)iov->iov_base + result;
iov->iov_len -= result;
}
else if (rb_io_maybe_wait_writable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) {
rb_io_check_closed(fptr);
}
else {
return -1;
}
}
return offset;
}
static long
io_binwritev(struct iovec *iov, int iovcnt, rb_io_t *fptr)
{
// Don't write anything if current thread has a pending interrupt:
rb_thread_check_ints();
if (iovcnt == 0) return 0;
size_t total = 0;
for (int i = 1; i < iovcnt; i++) total += iov[i].iov_len;
io_allocate_write_buffer(fptr, 1);
if (fptr->wbuf.ptr && fptr->wbuf.len) {
// The end of the buffered data:
size_t offset = fptr->wbuf.off + fptr->wbuf.len;
if (offset + total <= (size_t)fptr->wbuf.capa) {
for (int i = 1; i < iovcnt; i++) {
memcpy(fptr->wbuf.ptr+offset, iov[i].iov_base, iov[i].iov_len);
offset += iov[i].iov_len;
}
fptr->wbuf.len += total;
return total;
}
else {
iov[0].iov_base = fptr->wbuf.ptr + fptr->wbuf.off;
iov[0].iov_len = fptr->wbuf.len;
}
}
else {
// The first iov is reserved for the internal buffer, and it's empty.
iov++;
if (!--iovcnt) {
// If there are no other io vectors we are done.
return 0;
}
}
struct binwritev_arg arg;
arg.fptr = fptr;
arg.iov = iov;
arg.iovcnt = iovcnt;
arg.total = total;
if (!NIL_P(fptr->write_lock)) {
return rb_mutex_synchronize(fptr->write_lock, io_binwritev_internal, (VALUE)&arg);
}
else {
return io_binwritev_internal((VALUE)&arg);
}
}
static long
io_fwritev(int argc, const VALUE *argv, rb_io_t *fptr)
{
int i, converted, iovcnt = argc + 1;
long n;
VALUE v1, v2, str, tmp, *tmp_array;
struct iovec *iov;
iov = ALLOCV_N(struct iovec, v1, iovcnt);
tmp_array = ALLOCV_N(VALUE, v2, argc);
for (i = 0; i < argc; i++) {
str = rb_obj_as_string(argv[i]);
converted = 0;
str = do_writeconv(str, fptr, &converted);
if (converted)
OBJ_FREEZE(str);
tmp = rb_str_tmp_frozen_acquire(str);
tmp_array[i] = tmp;
/* iov[0] is reserved for buffer of fptr */
iov[i+1].iov_base = RSTRING_PTR(tmp);
iov[i+1].iov_len = RSTRING_LEN(tmp);
}
n = io_binwritev(iov, iovcnt, fptr);
if (v1) ALLOCV_END(v1);
for (i = 0; i < argc; i++) {
rb_str_tmp_frozen_release(argv[i], tmp_array[i]);
}
if (v2) ALLOCV_END(v2);
return n;
}
static int
iovcnt_ok(int iovcnt)
{
#ifdef IOV_MAX
return iovcnt < IOV_MAX;
#else /* GNU/Hurd has writev, but no IOV_MAX */
return 1;
#endif
}
#endif /* HAVE_WRITEV */
static VALUE
io_writev(int argc, const VALUE *argv, VALUE io)
{
rb_io_t *fptr;
long n;
VALUE tmp, total = INT2FIX(0);
int i, cnt = 1;
io = GetWriteIO(io);
tmp = rb_io_check_io(io);
if (NIL_P(tmp)) {
/* port is not IO, call write method for it. */
return rb_funcallv(io, id_write, argc, argv);
}
io = tmp;
GetOpenFile(io, fptr);
rb_io_check_writable(fptr);
for (i = 0; i < argc; i += cnt) {
#ifdef HAVE_WRITEV
if ((fptr->mode & (FMODE_SYNC|FMODE_TTY)) && iovcnt_ok(cnt = argc - i)) {
n = io_fwritev(cnt, &argv[i], fptr);
}
else
#endif
{
cnt = 1;
/* sync at last item */
n = io_fwrite(rb_obj_as_string(argv[i]), fptr, (i < argc-1));
}
if (n < 0L)
rb_sys_fail_on_write(fptr);
total = rb_fix_plus(LONG2FIX(n), total);
}
return total;
}
/*
* call-seq:
* write(*objects) -> integer
*
* Writes each of the given +objects+ to +self+,
* which must be opened for writing
* (see {Access Modes}[rdoc-ref:File@Access+Modes]);
* returns the total number bytes written;
* each of +objects+ that is not a string is converted via method +to_s+:
*
* $stdout.write('Hello', ', ', 'World!', "\n") # => 14
* $stdout.write('foo', :bar, 2, "\n") # => 8
*
* Output:
*
* Hello, World!
* foobar2
*
* Related: IO#read.
*/
static VALUE
io_write_m(int argc, VALUE *argv, VALUE io)
{
if (argc != 1) {
return io_writev(argc, argv, io);
}
else {
VALUE str = argv[0];
return io_write(io, str, 0);
}
}
VALUE
rb_io_write(VALUE io, VALUE str)
{
return rb_funcallv(io, id_write, 1, &str);
}
static VALUE
rb_io_writev(VALUE io, int argc, const VALUE *argv)
{
if (argc > 1 && rb_obj_method_arity(io, id_write) == 1) {
if (io != rb_ractor_stderr() && RTEST(ruby_verbose)) {
VALUE klass = CLASS_OF(io);
char sep = RCLASS_SINGLETON_P(klass) ? (klass = io, '.') : '#';
rb_category_warning(
RB_WARN_CATEGORY_DEPRECATED, "%+"PRIsVALUE"%c""write is outdated interface"
" which accepts just one argument",
klass, sep
);
}
do rb_io_write(io, *argv++); while (--argc);
return Qnil;
}
return rb_funcallv(io, id_write, argc, argv);
}
/*
* call-seq:
* self << object -> self
*
* Writes the given +object+ to +self+,
* which must be opened for writing (see {Access Modes}[rdoc-ref:File@Access+Modes]);
* returns +self+;
* if +object+ is not a string, it is converted via method +to_s+:
*
* $stdout << 'Hello' << ', ' << 'World!' << "\n"
* $stdout << 'foo' << :bar << 2 << "\n"
*
* Output:
*
* Hello, World!
* foobar2
*
*/
VALUE
rb_io_addstr(VALUE io, VALUE str)
{
rb_io_write(io, str);
return io;
}
#ifdef HAVE_FSYNC
static VALUE
nogvl_fsync(void *ptr)
{
rb_io_t *fptr = ptr;
#ifdef _WIN32
if (GetFileType((HANDLE)rb_w32_get_osfhandle(fptr->fd)) != FILE_TYPE_DISK)
return 0;
#endif
return (VALUE)fsync(fptr->fd);
}
#endif
VALUE
rb_io_flush_raw(VALUE io, int sync)
{
rb_io_t *fptr;
if (!RB_TYPE_P(io, T_FILE)) {
return rb_funcall(io, id_flush, 0);
}
io = GetWriteIO(io);
GetOpenFile(io, fptr);
if (fptr->mode & FMODE_WRITABLE) {
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
}
if (fptr->mode & FMODE_READABLE) {
io_unread(fptr);
}
return io;
}
/*
* call-seq:
* flush -> self
*
* Flushes data buffered in +self+ to the operating system
* (but does not necessarily flush data buffered in the operating system):
*
* $stdout.print 'no newline' # Not necessarily flushed.
* $stdout.flush # Flushed.
*
*/
VALUE
rb_io_flush(VALUE io)
{
return rb_io_flush_raw(io, 1);
}
/*
* call-seq:
* tell -> integer
*
* Returns the current position (in bytes) in +self+
* (see {Position}[rdoc-ref:IO@Position]):
*
* f = File.open('t.txt')
* f.tell # => 0
* f.gets # => "First line\n"
* f.tell # => 12
* f.close
*
* Related: IO#pos=, IO#seek.
*/
static VALUE
rb_io_tell(VALUE io)
{
rb_io_t *fptr;
rb_off_t pos;
GetOpenFile(io, fptr);
pos = io_tell(fptr);
if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);
pos -= fptr->rbuf.len;
return OFFT2NUM(pos);
}
static VALUE
rb_io_seek(VALUE io, VALUE offset, int whence)
{
rb_io_t *fptr;
rb_off_t pos;
pos = NUM2OFFT(offset);
GetOpenFile(io, fptr);
pos = io_seek(fptr, pos, whence);
if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);
return INT2FIX(0);
}
static int
interpret_seek_whence(VALUE vwhence)
{
if (vwhence == sym_SET)
return SEEK_SET;
if (vwhence == sym_CUR)
return SEEK_CUR;
if (vwhence == sym_END)
return SEEK_END;
#ifdef SEEK_DATA
if (vwhence == sym_DATA)
return SEEK_DATA;
#endif
#ifdef SEEK_HOLE
if (vwhence == sym_HOLE)
return SEEK_HOLE;
#endif
return NUM2INT(vwhence);
}
/*
* call-seq:
* seek(offset, whence = IO::SEEK_SET) -> 0
*
* Seeks to the position given by integer +offset+
* (see {Position}[rdoc-ref:IO@Position])
* and constant +whence+, which is one of:
*
* - +:CUR+ or <tt>IO::SEEK_CUR</tt>:
* Repositions the stream to its current position plus the given +offset+:
*
* f = File.open('t.txt')
* f.tell # => 0
* f.seek(20, :CUR) # => 0
* f.tell # => 20
* f.seek(-10, :CUR) # => 0
* f.tell # => 10
* f.close
*
* - +:END+ or <tt>IO::SEEK_END</tt>:
* Repositions the stream to its end plus the given +offset+:
*
* f = File.open('t.txt')
* f.tell # => 0
* f.seek(0, :END) # => 0 # Repositions to stream end.
* f.tell # => 52
* f.seek(-20, :END) # => 0
* f.tell # => 32
* f.seek(-40, :END) # => 0
* f.tell # => 12
* f.close
*
* - +:SET+ or <tt>IO:SEEK_SET</tt>:
* Repositions the stream to the given +offset+:
*
* f = File.open('t.txt')
* f.tell # => 0
* f.seek(20, :SET) # => 0
* f.tell # => 20
* f.seek(40, :SET) # => 0
* f.tell # => 40
* f.close
*
* Related: IO#pos=, IO#tell.
*
*/
static VALUE
rb_io_seek_m(int argc, VALUE *argv, VALUE io)
{
VALUE offset, ptrname;
int whence = SEEK_SET;
if (rb_scan_args(argc, argv, "11", &offset, &ptrname) == 2) {
whence = interpret_seek_whence(ptrname);
}
return rb_io_seek(io, offset, whence);
}
/*
* call-seq:
* pos = new_position -> new_position
*
* Seeks to the given +new_position+ (in bytes);
* see {Position}[rdoc-ref:IO@Position]:
*
* f = File.open('t.txt')
* f.tell # => 0
* f.pos = 20 # => 20
* f.tell # => 20
* f.close
*
* Related: IO#seek, IO#tell.
*
*/
static VALUE
rb_io_set_pos(VALUE io, VALUE offset)
{
rb_io_t *fptr;
rb_off_t pos;
pos = NUM2OFFT(offset);
GetOpenFile(io, fptr);
pos = io_seek(fptr, pos, SEEK_SET);
if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);
return OFFT2NUM(pos);
}
static void clear_readconv(rb_io_t *fptr);
/*
* call-seq:
* rewind -> 0
*
* Repositions the stream to its beginning,
* setting both the position and the line number to zero;
* see {Position}[rdoc-ref:IO@Position]
* and {Line Number}[rdoc-ref:IO@Line+Number]:
*
* f = File.open('t.txt')
* f.tell # => 0
* f.lineno # => 0
* f.gets # => "First line\n"
* f.tell # => 12
* f.lineno # => 1
* f.rewind # => 0
* f.tell # => 0
* f.lineno # => 0
* f.close
*
* Note that this method cannot be used with streams such as pipes, ttys, and sockets.
*
*/
static VALUE
rb_io_rewind(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
if (io_seek(fptr, 0L, 0) < 0 && errno) rb_sys_fail_path(fptr->pathv);
if (io == ARGF.current_file) {
ARGF.lineno -= fptr->lineno;
}
fptr->lineno = 0;
if (fptr->readconv) {
clear_readconv(fptr);
}
return INT2FIX(0);
}
static int
fptr_wait_readable(rb_io_t *fptr)
{
int result = rb_io_maybe_wait_readable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT);
if (result)
rb_io_check_closed(fptr);
return result;
}
static int
io_fillbuf(rb_io_t *fptr)
{
ssize_t r;
if (fptr->rbuf.ptr == NULL) {
fptr->rbuf.off = 0;
fptr->rbuf.len = 0;
fptr->rbuf.capa = IO_RBUF_CAPA_FOR(fptr);
fptr->rbuf.ptr = ALLOC_N(char, fptr->rbuf.capa);
#ifdef _WIN32
fptr->rbuf.capa--;
#endif
}
if (fptr->rbuf.len == 0) {
retry:
r = rb_io_read_memory(fptr, fptr->rbuf.ptr, fptr->rbuf.capa);
if (r < 0) {
if (fptr_wait_readable(fptr))
goto retry;
int e = errno;
VALUE path = rb_sprintf("fd:%d ", fptr->fd);
if (!NIL_P(fptr->pathv)) {
rb_str_append(path, fptr->pathv);
}
rb_syserr_fail_path(e, path);
}
if (r > 0) rb_io_check_closed(fptr);
fptr->rbuf.off = 0;
fptr->rbuf.len = (int)r; /* r should be <= rbuf_capa */
if (r == 0)
return -1; /* EOF */
}
return 0;
}
/*
* call-seq:
* eof -> true or false
*
* Returns +true+ if the stream is positioned at its end, +false+ otherwise;
* see {Position}[rdoc-ref:IO@Position]:
*
* f = File.open('t.txt')
* f.eof # => false
* f.seek(0, :END) # => 0
* f.eof # => true
* f.close
*
* Raises an exception unless the stream is opened for reading;
* see {Mode}[rdoc-ref:File@Access+Modes].
*
* If +self+ is a stream such as pipe or socket, this method
* blocks until the other end sends some data or closes it:
*
* r, w = IO.pipe
* Thread.new { sleep 1; w.close }
* r.eof? # => true # After 1-second wait.
*
* r, w = IO.pipe
* Thread.new { sleep 1; w.puts "a" }
* r.eof? # => false # After 1-second wait.
*
* r, w = IO.pipe
* r.eof? # blocks forever
*
* Note that this method reads data to the input byte buffer. So
* IO#sysread may not behave as you intend with IO#eof?, unless you
* call IO#rewind first (which is not available for some streams).
*/
VALUE
rb_io_eof(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
if (READ_CHAR_PENDING(fptr)) return Qfalse;
if (READ_DATA_PENDING(fptr)) return Qfalse;
READ_CHECK(fptr);
#if RUBY_CRLF_ENVIRONMENT
if (!NEED_READCONV(fptr) && NEED_NEWLINE_DECORATOR_ON_READ(fptr)) {
return RBOOL(eof(fptr->fd));
}
#endif
return RBOOL(io_fillbuf(fptr) < 0);
}
/*
* call-seq:
* sync -> true or false
*
* Returns the current sync mode of the stream.
* When sync mode is true, all output is immediately flushed to the underlying
* operating system and is not buffered by Ruby internally. See also #fsync.
*
* f = File.open('t.tmp', 'w')
* f.sync # => false
* f.sync = true
* f.sync # => true
* f.close
*
*/
static VALUE
rb_io_sync(VALUE io)
{
rb_io_t *fptr;
io = GetWriteIO(io);
GetOpenFile(io, fptr);
return RBOOL(fptr->mode & FMODE_SYNC);
}
#ifdef HAVE_FSYNC
/*
* call-seq:
* sync = boolean -> boolean
*
* Sets the _sync_ _mode_ for the stream to the given value;
* returns the given value.
*
* Values for the sync mode:
*
* - +true+: All output is immediately flushed to the
* underlying operating system and is not buffered internally.
* - +false+: Output may be buffered internally.
*
* Example;
*
* f = File.open('t.tmp', 'w')
* f.sync # => false
* f.sync = true
* f.sync # => true
* f.close
*
* Related: IO#fsync.
*
*/
static VALUE
rb_io_set_sync(VALUE io, VALUE sync)
{
rb_io_t *fptr;
io = GetWriteIO(io);
GetOpenFile(io, fptr);
if (RTEST(sync)) {
fptr->mode |= FMODE_SYNC;
}
else {
fptr->mode &= ~FMODE_SYNC;
}
return sync;
}
/*
* call-seq:
* fsync -> 0
*
* Immediately writes to disk all data buffered in the stream,
* via the operating system's <tt>fsync(2)</tt>.
* Note this difference:
*
* - IO#sync=: Ensures that data is flushed from the stream's internal buffers,
* but does not guarantee that the operating system actually writes the data to disk.
* - IO#fsync: Ensures both that data is flushed from internal buffers,
* and that data is written to disk.
*
* Raises an exception if the operating system does not support <tt>fsync(2)</tt>.
*
*/
static VALUE
rb_io_fsync(VALUE io)
{
rb_io_t *fptr;
io = GetWriteIO(io);
GetOpenFile(io, fptr);
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
if ((int)rb_thread_io_blocking_region(nogvl_fsync, fptr, fptr->fd) < 0)
rb_sys_fail_path(fptr->pathv);
return INT2FIX(0);
}
#else
# define rb_io_fsync rb_f_notimplement
# define rb_io_sync rb_f_notimplement
static VALUE
rb_io_set_sync(VALUE io, VALUE sync)
{
rb_notimplement();
UNREACHABLE;
}
#endif
#ifdef HAVE_FDATASYNC
static VALUE
nogvl_fdatasync(void *ptr)
{
rb_io_t *fptr = ptr;
#ifdef _WIN32
if (GetFileType((HANDLE)rb_w32_get_osfhandle(fptr->fd)) != FILE_TYPE_DISK)
return 0;
#endif
return (VALUE)fdatasync(fptr->fd);
}
/*
* call-seq:
* fdatasync -> 0
*
* Immediately writes to disk all data buffered in the stream,
* via the operating system's: <tt>fdatasync(2)</tt>, if supported,
* otherwise via <tt>fsync(2)</tt>, if supported;
* otherwise raises an exception.
*
*/
static VALUE
rb_io_fdatasync(VALUE io)
{
rb_io_t *fptr;
io = GetWriteIO(io);
GetOpenFile(io, fptr);
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
if ((int)rb_thread_io_blocking_region(nogvl_fdatasync, fptr, fptr->fd) == 0)
return INT2FIX(0);
/* fall back */
return rb_io_fsync(io);
}
#else
#define rb_io_fdatasync rb_io_fsync
#endif
/*
* call-seq:
* fileno -> integer
*
* Returns the integer file descriptor for the stream:
*
* $stdin.fileno # => 0
* $stdout.fileno # => 1
* $stderr.fileno # => 2
* File.open('t.txt').fileno # => 10
* f.close
*
*/
static VALUE
rb_io_fileno(VALUE io)
{
rb_io_t *fptr = RFILE(io)->fptr;
int fd;
rb_io_check_closed(fptr);
fd = fptr->fd;
return INT2FIX(fd);
}
int
rb_io_descriptor(VALUE io)
{
if (RB_TYPE_P(io, T_FILE)) {
rb_io_t *fptr = RFILE(io)->fptr;
rb_io_check_closed(fptr);
return fptr->fd;
}
else {
VALUE fileno = rb_check_funcall(io, id_fileno, 0, NULL);
if (!UNDEF_P(fileno)) {
return RB_NUM2INT(fileno);
}
}
rb_raise(rb_eTypeError, "expected IO or #fileno, %"PRIsVALUE" given", rb_obj_class(io));
UNREACHABLE_RETURN(-1);
}
int
rb_io_mode(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
return fptr->mode;
}
/*
* call-seq:
* pid -> integer or nil
*
* Returns the process ID of a child process associated with the stream,
* which will have been set by IO#popen, or +nil+ if the stream was not
* created by IO#popen:
*
* pipe = IO.popen("-")
* if pipe
* $stderr.puts "In parent, child pid is #{pipe.pid}"
* else
* $stderr.puts "In child, pid is #{$$}"
* end
*
* Output:
*
* In child, pid is 26209
* In parent, child pid is 26209
*
*/
static VALUE
rb_io_pid(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
if (!fptr->pid)
return Qnil;
return PIDT2NUM(fptr->pid);
}
/*
* call-seq:
* path -> string or nil
*
* Returns the path associated with the IO, or +nil+ if there is no path
* associated with the IO. It is not guaranteed that the path exists on
* the filesystem.
*
* $stdin.path # => "<STDIN>"
*
* File.open("testfile") {|f| f.path} # => "testfile"
*/
VALUE
rb_io_path(VALUE io)
{
rb_io_t *fptr = RFILE(io)->fptr;
if (!fptr)
return Qnil;
return rb_obj_dup(fptr->pathv);
}
/*
* call-seq:
* inspect -> string
*
* Returns a string representation of +self+:
*
* f = File.open('t.txt')
* f.inspect # => "#<File:t.txt>"
* f.close
*
*/
static VALUE
rb_io_inspect(VALUE obj)
{
rb_io_t *fptr;
VALUE result;
static const char closed[] = " (closed)";
fptr = RFILE(obj)->fptr;
if (!fptr) return rb_any_to_s(obj);
result = rb_str_new_cstr("#<");
rb_str_append(result, rb_class_name(CLASS_OF(obj)));
rb_str_cat2(result, ":");
if (NIL_P(fptr->pathv)) {
if (fptr->fd < 0) {
rb_str_cat(result, closed+1, strlen(closed)-1);
}
else {
rb_str_catf(result, "fd %d", fptr->fd);
}
}
else {
rb_str_append(result, fptr->pathv);
if (fptr->fd < 0) {
rb_str_cat(result, closed, strlen(closed));
}
}
return rb_str_cat2(result, ">");
}
/*
* call-seq:
* to_io -> self
*
* Returns +self+.
*
*/
static VALUE
rb_io_to_io(VALUE io)
{
return io;
}
/* reading functions */
static long
read_buffered_data(char *ptr, long len, rb_io_t *fptr)
{
int n;
n = READ_DATA_PENDING_COUNT(fptr);
if (n <= 0) return 0;
if (n > len) n = (int)len;
MEMMOVE(ptr, fptr->rbuf.ptr+fptr->rbuf.off, char, n);
fptr->rbuf.off += n;
fptr->rbuf.len -= n;
return n;
}
static long
io_bufread(char *ptr, long len, rb_io_t *fptr)
{
long offset = 0;
long n = len;
long c;
if (READ_DATA_PENDING(fptr) == 0) {
while (n > 0) {
again:
rb_io_check_closed(fptr);
c = rb_io_read_memory(fptr, ptr+offset, n);
if (c == 0) break;
if (c < 0) {
if (fptr_wait_readable(fptr))
goto again;
return -1;
}
offset += c;
if ((n -= c) <= 0) break;
}
return len - n;
}
while (n > 0) {
c = read_buffered_data(ptr+offset, n, fptr);
if (c > 0) {
offset += c;
if ((n -= c) <= 0) break;
}
rb_io_check_closed(fptr);
if (io_fillbuf(fptr) < 0) {
break;
}
}
return len - n;
}
static int io_setstrbuf(VALUE *str, long len);
struct bufread_arg {
char *str_ptr;
long len;
rb_io_t *fptr;
};
static VALUE
bufread_call(VALUE arg)
{
struct bufread_arg *p = (struct bufread_arg *)arg;
p->len = io_bufread(p->str_ptr, p->len, p->fptr);
return Qundef;
}
static long
io_fread(VALUE str, long offset, long size, rb_io_t *fptr)
{
long len;
struct bufread_arg arg;
io_setstrbuf(&str, offset + size);
arg.str_ptr = RSTRING_PTR(str) + offset;
arg.len = size;
arg.fptr = fptr;
rb_str_locktmp_ensure(str, bufread_call, (VALUE)&arg);
len = arg.len;
if (len < 0) rb_sys_fail_path(fptr->pathv);
return len;
}
static long
remain_size(rb_io_t *fptr)
{
struct stat st;
rb_off_t siz = READ_DATA_PENDING_COUNT(fptr);
rb_off_t pos;
if (fstat(fptr->fd, &st) == 0 && S_ISREG(st.st_mode)
#if defined(__HAIKU__)
&& (st.st_dev > 3)
#endif
)
{
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
pos = lseek(fptr->fd, 0, SEEK_CUR);
if (st.st_size >= pos && pos >= 0) {
siz += st.st_size - pos;
if (siz > LONG_MAX) {
rb_raise(rb_eIOError, "file too big for single read");
}
}
}
else {
siz += BUFSIZ;
}
return (long)siz;
}
static VALUE
io_enc_str(VALUE str, rb_io_t *fptr)
{
rb_enc_associate(str, io_read_encoding(fptr));
return str;
}
static rb_encoding *io_read_encoding(rb_io_t *fptr);
static void
make_readconv(rb_io_t *fptr, int size)
{
if (!fptr->readconv) {
int ecflags;
VALUE ecopts;
const char *sname, *dname;
ecflags = fptr->encs.ecflags & ~ECONV_NEWLINE_DECORATOR_WRITE_MASK;
ecopts = fptr->encs.ecopts;
if (fptr->encs.enc2) {
sname = rb_enc_name(fptr->encs.enc2);
dname = rb_enc_name(io_read_encoding(fptr));
}
else {
sname = dname = "";
}
fptr->readconv = rb_econv_open_opts(sname, dname, ecflags, ecopts);
if (!fptr->readconv)
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
fptr->cbuf.off = 0;
fptr->cbuf.len = 0;
if (size < IO_CBUF_CAPA_MIN) size = IO_CBUF_CAPA_MIN;
fptr->cbuf.capa = size;
fptr->cbuf.ptr = ALLOC_N(char, fptr->cbuf.capa);
}
}
#define MORE_CHAR_SUSPENDED Qtrue
#define MORE_CHAR_FINISHED Qnil
static VALUE
fill_cbuf(rb_io_t *fptr, int ec_flags)
{
const unsigned char *ss, *sp, *se;
unsigned char *ds, *dp, *de;
rb_econv_result_t res;
int putbackable;
int cbuf_len0;
VALUE exc;
ec_flags |= ECONV_PARTIAL_INPUT;
if (fptr->cbuf.len == fptr->cbuf.capa)
return MORE_CHAR_SUSPENDED; /* cbuf full */
if (fptr->cbuf.len == 0)
fptr->cbuf.off = 0;
else if (fptr->cbuf.off + fptr->cbuf.len == fptr->cbuf.capa) {
memmove(fptr->cbuf.ptr, fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.len);
fptr->cbuf.off = 0;
}
cbuf_len0 = fptr->cbuf.len;
while (1) {
ss = sp = (const unsigned char *)fptr->rbuf.ptr + fptr->rbuf.off;
se = sp + fptr->rbuf.len;
ds = dp = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.off + fptr->cbuf.len;
de = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.capa;
res = rb_econv_convert(fptr->readconv, &sp, se, &dp, de, ec_flags);
fptr->rbuf.off += (int)(sp - ss);
fptr->rbuf.len -= (int)(sp - ss);
fptr->cbuf.len += (int)(dp - ds);
putbackable = rb_econv_putbackable(fptr->readconv);
if (putbackable) {
rb_econv_putback(fptr->readconv, (unsigned char *)fptr->rbuf.ptr + fptr->rbuf.off - putbackable, putbackable);
fptr->rbuf.off -= putbackable;
fptr->rbuf.len += putbackable;
}
exc = rb_econv_make_exception(fptr->readconv);
if (!NIL_P(exc))
return exc;
if (cbuf_len0 != fptr->cbuf.len)
return MORE_CHAR_SUSPENDED;
if (res == econv_finished) {
return MORE_CHAR_FINISHED;
}
if (res == econv_source_buffer_empty) {
if (fptr->rbuf.len == 0) {
READ_CHECK(fptr);
if (io_fillbuf(fptr) < 0) {
if (!fptr->readconv) {
return MORE_CHAR_FINISHED;
}
ds = dp = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.off + fptr->cbuf.len;
de = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.capa;
res = rb_econv_convert(fptr->readconv, NULL, NULL, &dp, de, 0);
fptr->cbuf.len += (int)(dp - ds);
rb_econv_check_error(fptr->readconv);
break;
}
}
}
}
if (cbuf_len0 != fptr->cbuf.len)
return MORE_CHAR_SUSPENDED;
return MORE_CHAR_FINISHED;
}
static VALUE
more_char(rb_io_t *fptr)
{
VALUE v;
v = fill_cbuf(fptr, ECONV_AFTER_OUTPUT);
if (v != MORE_CHAR_SUSPENDED && v != MORE_CHAR_FINISHED)
rb_exc_raise(v);
return v;
}
static VALUE
io_shift_cbuf(rb_io_t *fptr, int len, VALUE *strp)
{
VALUE str = Qnil;
if (strp) {
str = *strp;
if (NIL_P(str)) {
*strp = str = rb_str_new(fptr->cbuf.ptr+fptr->cbuf.off, len);
}
else {
rb_str_cat(str, fptr->cbuf.ptr+fptr->cbuf.off, len);
}
rb_enc_associate(str, fptr->encs.enc);
}
fptr->cbuf.off += len;
fptr->cbuf.len -= len;
/* xxx: set coderange */
if (fptr->cbuf.len == 0)
fptr->cbuf.off = 0;
else if (fptr->cbuf.capa/2 < fptr->cbuf.off) {
memmove(fptr->cbuf.ptr, fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.len);
fptr->cbuf.off = 0;
}
return str;
}
static int
io_setstrbuf(VALUE *str, long len)
{
#ifdef _WIN32
if (len > 0)
len = (len + 1) & ~1L; /* round up for wide char */
#endif
if (NIL_P(*str)) {
*str = rb_str_new(0, len);
return TRUE;
}
else {
VALUE s = StringValue(*str);
rb_str_modify(s);
long clen = RSTRING_LEN(s);
if (clen >= len) {
return FALSE;
}
len -= clen;
}
if ((rb_str_capacity(*str) - (size_t)RSTRING_LEN(*str)) < (size_t)len) {
rb_str_modify_expand(*str, len);
}
return FALSE;
}
#define MAX_REALLOC_GAP 4096
static void
io_shrink_read_string(VALUE str, long n)
{
if (rb_str_capacity(str) - n > MAX_REALLOC_GAP) {
rb_str_resize(str, n);
}
}
static void
io_set_read_length(VALUE str, long n, int shrinkable)
{
if (RSTRING_LEN(str) != n) {
rb_str_modify(str);
rb_str_set_len(str, n);
if (shrinkable) io_shrink_read_string(str, n);
}
}
static VALUE
read_all(rb_io_t *fptr, long siz, VALUE str)
{
long bytes;
long n;
long pos;
rb_encoding *enc;
int cr;
int shrinkable;
if (NEED_READCONV(fptr)) {
int first = !NIL_P(str);
SET_BINARY_MODE(fptr);
shrinkable = io_setstrbuf(&str,0);
make_readconv(fptr, 0);
while (1) {
VALUE v;
if (fptr->cbuf.len) {
if (first) rb_str_set_len(str, first = 0);
io_shift_cbuf(fptr, fptr->cbuf.len, &str);
}
v = fill_cbuf(fptr, 0);
if (v != MORE_CHAR_SUSPENDED && v != MORE_CHAR_FINISHED) {
if (fptr->cbuf.len) {
if (first) rb_str_set_len(str, first = 0);
io_shift_cbuf(fptr, fptr->cbuf.len, &str);
}
rb_exc_raise(v);
}
if (v == MORE_CHAR_FINISHED) {
clear_readconv(fptr);
if (first) rb_str_set_len(str, first = 0);
if (shrinkable) io_shrink_read_string(str, RSTRING_LEN(str));
return io_enc_str(str, fptr);
}
}
}
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
bytes = 0;
pos = 0;
enc = io_read_encoding(fptr);
cr = 0;
if (siz == 0) siz = BUFSIZ;
shrinkable = io_setstrbuf(&str, siz);
for (;;) {
READ_CHECK(fptr);
n = io_fread(str, bytes, siz - bytes, fptr);
if (n == 0 && bytes == 0) {
rb_str_set_len(str, 0);
break;
}
bytes += n;
rb_str_set_len(str, bytes);
if (cr != ENC_CODERANGE_BROKEN)
pos += rb_str_coderange_scan_restartable(RSTRING_PTR(str) + pos, RSTRING_PTR(str) + bytes, enc, &cr);
if (bytes < siz) break;
siz += BUFSIZ;
size_t capa = rb_str_capacity(str);
if (capa < (size_t)RSTRING_LEN(str) + BUFSIZ) {
if (capa < BUFSIZ) {
capa = BUFSIZ;
}
else if (capa > IO_MAX_BUFFER_GROWTH) {
capa = IO_MAX_BUFFER_GROWTH;
}
rb_str_modify_expand(str, capa);
}
}
if (shrinkable) io_shrink_read_string(str, RSTRING_LEN(str));
str = io_enc_str(str, fptr);
ENC_CODERANGE_SET(str, cr);
return str;
}
void
rb_io_set_nonblock(rb_io_t *fptr)
{
if (rb_fd_set_nonblock(fptr->fd) != 0) {
rb_sys_fail_path(fptr->pathv);
}
}
static VALUE
io_read_memory_call(VALUE arg)
{
struct io_internal_read_struct *iis = (struct io_internal_read_struct *)arg;
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
VALUE result = rb_fiber_scheduler_io_read_memory(scheduler, iis->fptr->self, iis->buf, iis->capa, 0);
if (!UNDEF_P(result)) {
// This is actually returned as a pseudo-VALUE and later cast to a long:
return (VALUE)rb_fiber_scheduler_io_result_apply(result);
}
}
if (iis->nonblock) {
return rb_thread_io_blocking_call(internal_read_func, iis, iis->fptr->fd, 0);
}
else {
return rb_thread_io_blocking_call(internal_read_func, iis, iis->fptr->fd, RB_WAITFD_IN);
}
}
static long
io_read_memory_locktmp(VALUE str, struct io_internal_read_struct *iis)
{
return (long)rb_str_locktmp_ensure(str, io_read_memory_call, (VALUE)iis);
}
#define no_exception_p(opts) !rb_opts_exception_p((opts), TRUE)
static VALUE
io_getpartial(int argc, VALUE *argv, VALUE io, int no_exception, int nonblock)
{
rb_io_t *fptr;
VALUE length, str;
long n, len;
struct io_internal_read_struct iis;
int shrinkable;
rb_scan_args(argc, argv, "11", &length, &str);
if ((len = NUM2LONG(length)) < 0) {
rb_raise(rb_eArgError, "negative length %ld given", len);
}
shrinkable = io_setstrbuf(&str, len);
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
if (len == 0) {
io_set_read_length(str, 0, shrinkable);
return str;
}
if (!nonblock)
READ_CHECK(fptr);
n = read_buffered_data(RSTRING_PTR(str), len, fptr);
if (n <= 0) {
again:
if (nonblock) {
rb_io_set_nonblock(fptr);
}
io_setstrbuf(&str, len);
iis.th = rb_thread_current();
iis.fptr = fptr;
iis.nonblock = nonblock;
iis.fd = fptr->fd;
iis.buf = RSTRING_PTR(str);
iis.capa = len;
iis.timeout = NULL;
n = io_read_memory_locktmp(str, &iis);
if (n < 0) {
int e = errno;
if (!nonblock && fptr_wait_readable(fptr))
goto again;
if (nonblock && (io_again_p(e))) {
if (no_exception)
return sym_wait_readable;
else
rb_readwrite_syserr_fail(RB_IO_WAIT_READABLE,
e, "read would block");
}
rb_syserr_fail_path(e, fptr->pathv);
}
}
io_set_read_length(str, n, shrinkable);
if (n == 0)
return Qnil;
else
return str;
}
/*
* call-seq:
* readpartial(maxlen) -> string
* readpartial(maxlen, out_string) -> out_string
*
* Reads up to +maxlen+ bytes from the stream;
* returns a string (either a new string or the given +out_string+).
* Its encoding is:
*
* - The unchanged encoding of +out_string+, if +out_string+ is given.
* - ASCII-8BIT, otherwise.
*
* - Contains +maxlen+ bytes from the stream, if available.
* - Otherwise contains all available bytes, if any available.
* - Otherwise is an empty string.
*
* With the single non-negative integer argument +maxlen+ given,
* returns a new string:
*
* f = File.new('t.txt')
* f.readpartial(20) # => "First line\nSecond l"
* f.readpartial(20) # => "ine\n\nFourth line\n"
* f.readpartial(20) # => "Fifth line\n"
* f.readpartial(20) # Raises EOFError.
* f.close
*
* With both argument +maxlen+ and string argument +out_string+ given,
* returns modified +out_string+:
*
* f = File.new('t.txt')
* s = 'foo'
* f.readpartial(20, s) # => "First line\nSecond l"
* s = 'bar'
* f.readpartial(0, s) # => ""
* f.close
*
* This method is useful for a stream such as a pipe, a socket, or a tty.
* It blocks only when no data is immediately available.
* This means that it blocks only when _all_ of the following are true:
*
* - The byte buffer in the stream is empty.
* - The content of the stream is empty.
* - The stream is not at EOF.
*
* When blocked, the method waits for either more data or EOF on the stream:
*
* - If more data is read, the method returns the data.
* - If EOF is reached, the method raises EOFError.
*
* When not blocked, the method responds immediately:
*
* - Returns data from the buffer if there is any.
* - Otherwise returns data from the stream if there is any.
* - Otherwise raises EOFError if the stream has reached EOF.
*
* Note that this method is similar to sysread. The differences are:
*
* - If the byte buffer is not empty, read from the byte buffer
* instead of "sysread for buffered IO (IOError)".
* - It doesn't cause Errno::EWOULDBLOCK and Errno::EINTR. When
* readpartial meets EWOULDBLOCK and EINTR by read system call,
* readpartial retries the system call.
*
* The latter means that readpartial is non-blocking-flag insensitive.
* It blocks on the situation IO#sysread causes Errno::EWOULDBLOCK as
* if the fd is blocking mode.
*
* Examples:
*
* # # Returned Buffer Content Pipe Content
* r, w = IO.pipe #
* w << 'abc' # "" "abc".
* r.readpartial(4096) # => "abc" "" ""
* r.readpartial(4096) # (Blocks because buffer and pipe are empty.)
*
* # # Returned Buffer Content Pipe Content
* r, w = IO.pipe #
* w << 'abc' # "" "abc"
* w.close # "" "abc" EOF
* r.readpartial(4096) # => "abc" "" EOF
* r.readpartial(4096) # raises EOFError
*
* # # Returned Buffer Content Pipe Content
* r, w = IO.pipe #
* w << "abc\ndef\n" # "" "abc\ndef\n"
* r.gets # => "abc\n" "def\n" ""
* w << "ghi\n" # "def\n" "ghi\n"
* r.readpartial(4096) # => "def\n" "" "ghi\n"
* r.readpartial(4096) # => "ghi\n" "" ""
*
*/
static VALUE
io_readpartial(int argc, VALUE *argv, VALUE io)
{
VALUE ret;
ret = io_getpartial(argc, argv, io, Qnil, 0);
if (NIL_P(ret))
rb_eof_error();
return ret;
}
static VALUE
io_nonblock_eof(int no_exception)
{
if (!no_exception) {
rb_eof_error();
}
return Qnil;
}
/* :nodoc: */
static VALUE
io_read_nonblock(rb_execution_context_t *ec, VALUE io, VALUE length, VALUE str, VALUE ex)
{
rb_io_t *fptr;
long n, len;
struct io_internal_read_struct iis;
int shrinkable;
if ((len = NUM2LONG(length)) < 0) {
rb_raise(rb_eArgError, "negative length %ld given", len);
}
shrinkable = io_setstrbuf(&str, len);
rb_bool_expected(ex, "exception", TRUE);
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
if (len == 0) {
io_set_read_length(str, 0, shrinkable);
return str;
}
n = read_buffered_data(RSTRING_PTR(str), len, fptr);
if (n <= 0) {
rb_fd_set_nonblock(fptr->fd);
shrinkable |= io_setstrbuf(&str, len);
iis.fptr = fptr;
iis.nonblock = 1;
iis.fd = fptr->fd;
iis.buf = RSTRING_PTR(str);
iis.capa = len;
iis.timeout = NULL;
n = io_read_memory_locktmp(str, &iis);
if (n < 0) {
int e = errno;
if (io_again_p(e)) {
if (!ex) return sym_wait_readable;
rb_readwrite_syserr_fail(RB_IO_WAIT_READABLE,
e, "read would block");
}
rb_syserr_fail_path(e, fptr->pathv);
}
}
io_set_read_length(str, n, shrinkable);
if (n == 0) {
if (!ex) return Qnil;
rb_eof_error();
}
return str;
}
/* :nodoc: */
static VALUE
io_write_nonblock(rb_execution_context_t *ec, VALUE io, VALUE str, VALUE ex)
{
rb_io_t *fptr;
long n;
if (!RB_TYPE_P(str, T_STRING))
str = rb_obj_as_string(str);
rb_bool_expected(ex, "exception", TRUE);
io = GetWriteIO(io);
GetOpenFile(io, fptr);
rb_io_check_writable(fptr);
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
rb_fd_set_nonblock(fptr->fd);
n = write(fptr->fd, RSTRING_PTR(str), RSTRING_LEN(str));
RB_GC_GUARD(str);
if (n < 0) {
int e = errno;
if (io_again_p(e)) {
if (!ex) {
return sym_wait_writable;
}
else {
rb_readwrite_syserr_fail(RB_IO_WAIT_WRITABLE, e, "write would block");
}
}
rb_syserr_fail_path(e, fptr->pathv);
}
return LONG2FIX(n);
}
/*
* call-seq:
* read(maxlen = nil, out_string = nil) -> new_string, out_string, or nil
*
* Reads bytes from the stream; the stream must be opened for reading
* (see {Access Modes}[rdoc-ref:File@Access+Modes]):
*
* - If +maxlen+ is +nil+, reads all bytes using the stream's data mode.
* - Otherwise reads up to +maxlen+ bytes in binary mode.
*
* Returns a string (either a new string or the given +out_string+)
* containing the bytes read.
* The encoding of the string depends on both +maxLen+ and +out_string+:
*
* - +maxlen+ is +nil+: uses internal encoding of +self+
* (regardless of whether +out_string+ was given).
* - +maxlen+ not +nil+:
*
* - +out_string+ given: encoding of +out_string+ not modified.
* - +out_string+ not given: ASCII-8BIT is used.
*
* <b>Without Argument +out_string+</b>
*
* When argument +out_string+ is omitted,
* the returned value is a new string:
*
* f = File.new('t.txt')
* f.read
* # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* f.rewind
* f.read(30) # => "First line\r\nSecond line\r\n\r\nFou"
* f.read(30) # => "rth line\r\nFifth line\r\n"
* f.read(30) # => nil
* f.close
*
* If +maxlen+ is zero, returns an empty string.
*
* <b> With Argument +out_string+</b>
*
* When argument +out_string+ is given,
* the returned value is +out_string+, whose content is replaced:
*
* f = File.new('t.txt')
* s = 'foo' # => "foo"
* f.read(nil, s) # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* s # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* f.rewind
* s = 'bar'
* f.read(30, s) # => "First line\r\nSecond line\r\n\r\nFou"
* s # => "First line\r\nSecond line\r\n\r\nFou"
* s = 'baz'
* f.read(30, s) # => "rth line\r\nFifth line\r\n"
* s # => "rth line\r\nFifth line\r\n"
* s = 'bat'
* f.read(30, s) # => nil
* s # => ""
* f.close
*
* Note that this method behaves like the fread() function in C.
* This means it retries to invoke read(2) system calls to read data
* with the specified maxlen (or until EOF).
*
* This behavior is preserved even if the stream is in non-blocking mode.
* (This method is non-blocking-flag insensitive as other methods.)
*
* If you need the behavior like a single read(2) system call,
* consider #readpartial, #read_nonblock, and #sysread.
*
* Related: IO#write.
*/
static VALUE
io_read(int argc, VALUE *argv, VALUE io)
{
rb_io_t *fptr;
long n, len;
VALUE length, str;
int shrinkable;
#if RUBY_CRLF_ENVIRONMENT
int previous_mode;
#endif
rb_scan_args(argc, argv, "02", &length, &str);
if (NIL_P(length)) {
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
return read_all(fptr, remain_size(fptr), str);
}
len = NUM2LONG(length);
if (len < 0) {
rb_raise(rb_eArgError, "negative length %ld given", len);
}
shrinkable = io_setstrbuf(&str,len);
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
if (len == 0) {
io_set_read_length(str, 0, shrinkable);
return str;
}
READ_CHECK(fptr);
#if RUBY_CRLF_ENVIRONMENT
previous_mode = set_binary_mode_with_seek_cur(fptr);
#endif
n = io_fread(str, 0, len, fptr);
io_set_read_length(str, n, shrinkable);
#if RUBY_CRLF_ENVIRONMENT
if (previous_mode == O_TEXT) {
setmode(fptr->fd, O_TEXT);
}
#endif
if (n == 0) return Qnil;
return str;
}
static void
rscheck(const char *rsptr, long rslen, VALUE rs)
{
if (!rs) return;
if (RSTRING_PTR(rs) != rsptr && RSTRING_LEN(rs) != rslen)
rb_raise(rb_eRuntimeError, "rs modified");
}
static int
appendline(rb_io_t *fptr, int delim, VALUE *strp, long *lp)
{
VALUE str = *strp;
long limit = *lp;
if (NEED_READCONV(fptr)) {
SET_BINARY_MODE(fptr);
make_readconv(fptr, 0);
do {
const char *p, *e;
int searchlen = READ_CHAR_PENDING_COUNT(fptr);
if (searchlen) {
p = READ_CHAR_PENDING_PTR(fptr);
if (0 < limit && limit < searchlen)
searchlen = (int)limit;
e = memchr(p, delim, searchlen);
if (e) {
int len = (int)(e-p+1);
if (NIL_P(str))
*strp = str = rb_str_new(p, len);
else
rb_str_buf_cat(str, p, len);
fptr->cbuf.off += len;
fptr->cbuf.len -= len;
limit -= len;
*lp = limit;
return delim;
}
if (NIL_P(str))
*strp = str = rb_str_new(p, searchlen);
else
rb_str_buf_cat(str, p, searchlen);
fptr->cbuf.off += searchlen;
fptr->cbuf.len -= searchlen;
limit -= searchlen;
if (limit == 0) {
*lp = limit;
return (unsigned char)RSTRING_PTR(str)[RSTRING_LEN(str)-1];
}
}
} while (more_char(fptr) != MORE_CHAR_FINISHED);
clear_readconv(fptr);
*lp = limit;
return EOF;
}
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
do {
long pending = READ_DATA_PENDING_COUNT(fptr);
if (pending > 0) {
const char *p = READ_DATA_PENDING_PTR(fptr);
const char *e;
long last;
if (limit > 0 && pending > limit) pending = limit;
e = memchr(p, delim, pending);
if (e) pending = e - p + 1;
if (!NIL_P(str)) {
last = RSTRING_LEN(str);
rb_str_resize(str, last + pending);
}
else {
last = 0;
*strp = str = rb_str_buf_new(pending);
rb_str_set_len(str, pending);
}
read_buffered_data(RSTRING_PTR(str) + last, pending, fptr); /* must not fail */
limit -= pending;
*lp = limit;
if (e) return delim;
if (limit == 0)
return (unsigned char)RSTRING_PTR(str)[RSTRING_LEN(str)-1];
}
READ_CHECK(fptr);
} while (io_fillbuf(fptr) >= 0);
*lp = limit;
return EOF;
}
static inline int
swallow(rb_io_t *fptr, int term)
{
if (NEED_READCONV(fptr)) {
rb_encoding *enc = io_read_encoding(fptr);
int needconv = rb_enc_mbminlen(enc) != 1;
SET_BINARY_MODE(fptr);
make_readconv(fptr, 0);
do {
size_t cnt;
while ((cnt = READ_CHAR_PENDING_COUNT(fptr)) > 0) {
const char *p = READ_CHAR_PENDING_PTR(fptr);
int i;
if (!needconv) {
if (*p != term) return TRUE;
i = (int)cnt;
while (--i && *++p == term);
}
else {
const char *e = p + cnt;
if (rb_enc_ascget(p, e, &i, enc) != term) return TRUE;
while ((p += i) < e && rb_enc_ascget(p, e, &i, enc) == term);
i = (int)(e - p);
}
io_shift_cbuf(fptr, (int)cnt - i, NULL);
}
} while (more_char(fptr) != MORE_CHAR_FINISHED);
return FALSE;
}
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
do {
size_t cnt;
while ((cnt = READ_DATA_PENDING_COUNT(fptr)) > 0) {
char buf[1024];
const char *p = READ_DATA_PENDING_PTR(fptr);
int i;
if (cnt > sizeof buf) cnt = sizeof buf;
if (*p != term) return TRUE;
i = (int)cnt;
while (--i && *++p == term);
if (!read_buffered_data(buf, cnt - i, fptr)) /* must not fail */
rb_sys_fail_path(fptr->pathv);
}
READ_CHECK(fptr);
} while (io_fillbuf(fptr) == 0);
return FALSE;
}
static VALUE
rb_io_getline_fast(rb_io_t *fptr, rb_encoding *enc, int chomp)
{
VALUE str = Qnil;
int len = 0;
long pos = 0;
int cr = 0;
do {
int pending = READ_DATA_PENDING_COUNT(fptr);
if (pending > 0) {
const char *p = READ_DATA_PENDING_PTR(fptr);
const char *e;
int chomplen = 0;
e = memchr(p, '\n', pending);
if (e) {
pending = (int)(e - p + 1);
if (chomp) {
chomplen = (pending > 1 && *(e-1) == '\r') + 1;
}
}
if (NIL_P(str)) {
str = rb_str_new(p, pending - chomplen);
fptr->rbuf.off += pending;
fptr->rbuf.len -= pending;
}
else {
rb_str_resize(str, len + pending - chomplen);
read_buffered_data(RSTRING_PTR(str)+len, pending - chomplen, fptr);
fptr->rbuf.off += chomplen;
fptr->rbuf.len -= chomplen;
if (pending == 1 && chomplen == 1 && len > 0) {
if (RSTRING_PTR(str)[len-1] == '\r') {
rb_str_resize(str, --len);
break;
}
}
}
len += pending - chomplen;
if (cr != ENC_CODERANGE_BROKEN)
pos += rb_str_coderange_scan_restartable(RSTRING_PTR(str) + pos, RSTRING_PTR(str) + len, enc, &cr);
if (e) break;
}
READ_CHECK(fptr);
} while (io_fillbuf(fptr) >= 0);
if (NIL_P(str)) return Qnil;
str = io_enc_str(str, fptr);
ENC_CODERANGE_SET(str, cr);
fptr->lineno++;
return str;
}
struct getline_arg {
VALUE io;
VALUE rs;
long limit;
unsigned int chomp: 1;
};
static void
extract_getline_opts(VALUE opts, struct getline_arg *args)
{
int chomp = FALSE;
if (!NIL_P(opts)) {
static ID kwds[1];
VALUE vchomp;
if (!kwds[0]) {
kwds[0] = rb_intern_const("chomp");
}
rb_get_kwargs(opts, kwds, 0, -2, &vchomp);
chomp = (!UNDEF_P(vchomp)) && RTEST(vchomp);
}
args->chomp = chomp;
}
static void
extract_getline_args(int argc, VALUE *argv, struct getline_arg *args)
{
VALUE rs = rb_rs, lim = Qnil;
if (argc == 1) {
VALUE tmp = Qnil;
if (NIL_P(argv[0]) || !NIL_P(tmp = rb_check_string_type(argv[0]))) {
rs = tmp;
}
else {
lim = argv[0];
}
}
else if (2 <= argc) {
rs = argv[0], lim = argv[1];
if (!NIL_P(rs))
StringValue(rs);
}
args->rs = rs;
args->limit = NIL_P(lim) ? -1L : NUM2LONG(lim);
}
static void
check_getline_args(VALUE *rsp, long *limit, VALUE io)
{
rb_io_t *fptr;
VALUE rs = *rsp;
if (!NIL_P(rs)) {
rb_encoding *enc_rs, *enc_io;
GetOpenFile(io, fptr);
enc_rs = rb_enc_get(rs);
enc_io = io_read_encoding(fptr);
if (enc_io != enc_rs &&
(!is_ascii_string(rs) ||
(RSTRING_LEN(rs) > 0 && !rb_enc_asciicompat(enc_io)))) {
if (rs == rb_default_rs) {
rs = rb_enc_str_new(0, 0, enc_io);
rb_str_buf_cat_ascii(rs, "\n");
*rsp = rs;
}
else {
rb_raise(rb_eArgError, "encoding mismatch: %s IO with %s RS",
rb_enc_name(enc_io),
rb_enc_name(enc_rs));
}
}
}
}
static void
prepare_getline_args(int argc, VALUE *argv, struct getline_arg *args, VALUE io)
{
VALUE opts;
argc = rb_scan_args(argc, argv, "02:", NULL, NULL, &opts);
extract_getline_args(argc, argv, args);
extract_getline_opts(opts, args);
check_getline_args(&args->rs, &args->limit, io);
}
static VALUE
rb_io_getline_0(VALUE rs, long limit, int chomp, rb_io_t *fptr)
{
VALUE str = Qnil;
int nolimit = 0;
rb_encoding *enc;
rb_io_check_char_readable(fptr);
if (NIL_P(rs) && limit < 0) {
str = read_all(fptr, 0, Qnil);
if (RSTRING_LEN(str) == 0) return Qnil;
}
else if (limit == 0) {
return rb_enc_str_new(0, 0, io_read_encoding(fptr));
}
else if (rs == rb_default_rs && limit < 0 && !NEED_READCONV(fptr) &&
rb_enc_asciicompat(enc = io_read_encoding(fptr))) {
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
return rb_io_getline_fast(fptr, enc, chomp);
}
else {
int c, newline = -1;
const char *rsptr = 0;
long rslen = 0;
int rspara = 0;
int extra_limit = 16;
int chomp_cr = chomp;
SET_BINARY_MODE(fptr);
enc = io_read_encoding(fptr);
if (!NIL_P(rs)) {
rslen = RSTRING_LEN(rs);
if (rslen == 0) {
rsptr = "\n\n";
rslen = 2;
rspara = 1;
swallow(fptr, '\n');
rs = 0;
if (!rb_enc_asciicompat(enc)) {
rs = rb_usascii_str_new(rsptr, rslen);
rs = rb_str_encode(rs, rb_enc_from_encoding(enc), 0, Qnil);
OBJ_FREEZE(rs);
rsptr = RSTRING_PTR(rs);
rslen = RSTRING_LEN(rs);
}
}
else {
rsptr = RSTRING_PTR(rs);
}
newline = (unsigned char)rsptr[rslen - 1];
chomp_cr = chomp && rslen == 1 && newline == '\n';
}
/* MS - Optimization */
while ((c = appendline(fptr, newline, &str, &limit)) != EOF) {
const char *s, *p, *pp, *e;
if (c == newline) {
if (RSTRING_LEN(str) < rslen) continue;
s = RSTRING_PTR(str);
e = RSTRING_END(str);
p = e - rslen;
if (!at_char_boundary(s, p, e, enc)) continue;
if (!rspara) rscheck(rsptr, rslen, rs);
if (memcmp(p, rsptr, rslen) == 0) {
if (chomp) {
if (chomp_cr && p > s && *(p-1) == '\r') --p;
rb_str_set_len(str, p - s);
}
break;
}
}
if (limit == 0) {
s = RSTRING_PTR(str);
p = RSTRING_END(str);
pp = rb_enc_left_char_head(s, p-1, p, enc);
if (extra_limit &&
MBCLEN_NEEDMORE_P(rb_enc_precise_mbclen(pp, p, enc))) {
/* relax the limit while incomplete character.
* extra_limit limits the relax length */
limit = 1;
extra_limit--;
}
else {
nolimit = 1;
break;
}
}
}
if (rspara && c != EOF)
swallow(fptr, '\n');
if (!NIL_P(str))
str = io_enc_str(str, fptr);
}
if (!NIL_P(str) && !nolimit) {
fptr->lineno++;
}
return str;
}
static VALUE
rb_io_getline_1(VALUE rs, long limit, int chomp, VALUE io)
{
rb_io_t *fptr;
int old_lineno, new_lineno;
VALUE str;
GetOpenFile(io, fptr);
old_lineno = fptr->lineno;
str = rb_io_getline_0(rs, limit, chomp, fptr);
if (!NIL_P(str) && (new_lineno = fptr->lineno) != old_lineno) {
if (io == ARGF.current_file) {
ARGF.lineno += new_lineno - old_lineno;
ARGF.last_lineno = ARGF.lineno;
}
else {
ARGF.last_lineno = new_lineno;
}
}
return str;
}
static VALUE
rb_io_getline(int argc, VALUE *argv, VALUE io)
{
struct getline_arg args;
prepare_getline_args(argc, argv, &args, io);
return rb_io_getline_1(args.rs, args.limit, args.chomp, io);
}
VALUE
rb_io_gets(VALUE io)
{
return rb_io_getline_1(rb_default_rs, -1, FALSE, io);
}
VALUE
rb_io_gets_internal(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
return rb_io_getline_0(rb_default_rs, -1, FALSE, fptr);
}
/*
* call-seq:
* gets(sep = $/, chomp: false) -> string or nil
* gets(limit, chomp: false) -> string or nil
* gets(sep, limit, chomp: false) -> string or nil
*
* Reads and returns a line from the stream;
* assigns the return value to <tt>$_</tt>.
* See {Line IO}[rdoc-ref:IO@Line+IO].
*
* With no arguments given, returns the next line
* as determined by line separator <tt>$/</tt>, or +nil+ if none:
*
* f = File.open('t.txt')
* f.gets # => "First line\n"
* $_ # => "First line\n"
* f.gets # => "\n"
* f.gets # => "Fourth line\n"
* f.gets # => "Fifth line\n"
* f.gets # => nil
* f.close
*
* With only string argument +sep+ given,
* returns the next line as determined by line separator +sep+,
* or +nil+ if none;
* see {Line Separator}[rdoc-ref:IO@Line+Separator]:
*
* f = File.new('t.txt')
* f.gets('l') # => "First l"
* f.gets('li') # => "ine\nSecond li"
* f.gets('lin') # => "ne\n\nFourth lin"
* f.gets # => "e\n"
* f.close
*
* The two special values for +sep+ are honored:
*
* f = File.new('t.txt')
* # Get all.
* f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* f.rewind
* # Get paragraph (up to two line separators).
* f.gets('') # => "First line\nSecond line\n\n"
* f.close
*
* With only integer argument +limit+ given,
* limits the number of bytes in the line;
* see {Line Limit}[rdoc-ref:IO@Line+Limit]:
*
* # No more than one line.
* File.open('t.txt') {|f| f.gets(10) } # => "First line"
* File.open('t.txt') {|f| f.gets(11) } # => "First line\n"
* File.open('t.txt') {|f| f.gets(12) } # => "First line\n"
*
* With arguments +sep+ and +limit+ given,
* combines the two behaviors
* (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]).
*
* Optional keyword argument +chomp+ specifies whether line separators
* are to be omitted:
*
* f = File.open('t.txt')
* # Chomp the lines.
* f.gets(chomp: true) # => "First line"
* f.gets(chomp: true) # => "Second line"
* f.gets(chomp: true) # => ""
* f.gets(chomp: true) # => "Fourth line"
* f.gets(chomp: true) # => "Fifth line"
* f.gets(chomp: true) # => nil
* f.close
*
*/
static VALUE
rb_io_gets_m(int argc, VALUE *argv, VALUE io)
{
VALUE str;
str = rb_io_getline(argc, argv, io);
rb_lastline_set(str);
return str;
}
/*
* call-seq:
* lineno -> integer
*
* Returns the current line number for the stream;
* see {Line Number}[rdoc-ref:IO@Line+Number].
*
*/
static VALUE
rb_io_lineno(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
return INT2NUM(fptr->lineno);
}
/*
* call-seq:
* lineno = integer -> integer
*
* Sets and returns the line number for the stream;
* see {Line Number}[rdoc-ref:IO@Line+Number].
*
*/
static VALUE
rb_io_set_lineno(VALUE io, VALUE lineno)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
fptr->lineno = NUM2INT(lineno);
return lineno;
}
/* :nodoc: */
static VALUE
io_readline(rb_execution_context_t *ec, VALUE io, VALUE sep, VALUE lim, VALUE chomp)
{
if (NIL_P(lim)) {
// If sep is specified, but it's not a string and not nil, then assume
// it's the limit (it should be an integer)
if (!NIL_P(sep) && NIL_P(rb_check_string_type(sep))) {
// If the user has specified a non-nil / non-string value
// for the separator, we assume it's the limit and set the
// separator to default: rb_rs.
lim = sep;
sep = rb_rs;
}
}
if (!NIL_P(sep)) {
StringValue(sep);
}
VALUE line = rb_io_getline_1(sep, NIL_P(lim) ? -1L : NUM2LONG(lim), RTEST(chomp), io);
rb_lastline_set_up(line, 1);
if (NIL_P(line)) {
rb_eof_error();
}
return line;
}
static VALUE io_readlines(const struct getline_arg *arg, VALUE io);
/*
* call-seq:
* readlines(sep = $/, chomp: false) -> array
* readlines(limit, chomp: false) -> array
* readlines(sep, limit, chomp: false) -> array
*
* Reads and returns all remaining line from the stream;
* does not modify <tt>$_</tt>.
* See {Line IO}[rdoc-ref:IO@Line+IO].
*
* With no arguments given, returns lines
* as determined by line separator <tt>$/</tt>, or +nil+ if none:
*
* f = File.new('t.txt')
* f.readlines
* # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
* f.readlines # => []
* f.close
*
* With only string argument +sep+ given,
* returns lines as determined by line separator +sep+,
* or +nil+ if none;
* see {Line Separator}[rdoc-ref:IO@Line+Separator]:
*
* f = File.new('t.txt')
* f.readlines('li')
* # => ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"]
* f.close
*
* The two special values for +sep+ are honored:
*
* f = File.new('t.txt')
* # Get all into one string.
* f.readlines(nil)
* # => ["First line\nSecond line\n\nFourth line\nFifth line\n"]
* # Get paragraphs (up to two line separators).
* f.rewind
* f.readlines('')
* # => ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]
* f.close
*
* With only integer argument +limit+ given,
* limits the number of bytes in each line;
* see {Line Limit}[rdoc-ref:IO@Line+Limit]:
*
* f = File.new('t.txt')
* f.readlines(8)
* # => ["First li", "ne\n", "Second l", "ine\n", "\n", "Fourth l", "ine\n", "Fifth li", "ne\n"]
* f.close
*
* With arguments +sep+ and +limit+ given,
* combines the two behaviors
* (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]).
*
* Optional keyword argument +chomp+ specifies whether line separators
* are to be omitted:
*
* f = File.new('t.txt')
* f.readlines(chomp: true)
* # => ["First line", "Second line", "", "Fourth line", "Fifth line"]
* f.close
*
*/
static VALUE
rb_io_readlines(int argc, VALUE *argv, VALUE io)
{
struct getline_arg args;
prepare_getline_args(argc, argv, &args, io);
return io_readlines(&args, io);
}
static VALUE
io_readlines(const struct getline_arg *arg, VALUE io)
{
VALUE line, ary;
if (arg->limit == 0)
rb_raise(rb_eArgError, "invalid limit: 0 for readlines");
ary = rb_ary_new();
while (!NIL_P(line = rb_io_getline_1(arg->rs, arg->limit, arg->chomp, io))) {
rb_ary_push(ary, line);
}
return ary;
}
/*
* call-seq:
* each_line(sep = $/, chomp: false) {|line| ... } -> self
* each_line(limit, chomp: false) {|line| ... } -> self
* each_line(sep, limit, chomp: false) {|line| ... } -> self
* each_line -> enumerator
*
* Calls the block with each remaining line read from the stream;
* returns +self+.
* Does nothing if already at end-of-stream;
* See {Line IO}[rdoc-ref:IO@Line+IO].
*
* With no arguments given, reads lines
* as determined by line separator <tt>$/</tt>:
*
* f = File.new('t.txt')
* f.each_line {|line| p line }
* f.each_line {|line| fail 'Cannot happen' }
* f.close
*
* Output:
*
* "First line\n"
* "Second line\n"
* "\n"
* "Fourth line\n"
* "Fifth line\n"
*
* With only string argument +sep+ given,
* reads lines as determined by line separator +sep+;
* see {Line Separator}[rdoc-ref:IO@Line+Separator]:
*
* f = File.new('t.txt')
* f.each_line('li') {|line| p line }
* f.close
*
* Output:
*
* "First li"
* "ne\nSecond li"
* "ne\n\nFourth li"
* "ne\nFifth li"
* "ne\n"
*
* The two special values for +sep+ are honored:
*
* f = File.new('t.txt')
* # Get all into one string.
* f.each_line(nil) {|line| p line }
* f.close
*
* Output:
*
* "First line\nSecond line\n\nFourth line\nFifth line\n"
*
* f.rewind
* # Get paragraphs (up to two line separators).
* f.each_line('') {|line| p line }
*
* Output:
*
* "First line\nSecond line\n\n"
* "Fourth line\nFifth line\n"
*
* With only integer argument +limit+ given,
* limits the number of bytes in each line;
* see {Line Limit}[rdoc-ref:IO@Line+Limit]:
*
* f = File.new('t.txt')
* f.each_line(8) {|line| p line }
* f.close
*
* Output:
*
* "First li"
* "ne\n"
* "Second l"
* "ine\n"
* "\n"
* "Fourth l"
* "ine\n"
* "Fifth li"
* "ne\n"
*
* With arguments +sep+ and +limit+ given,
* combines the two behaviors
* (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]).
*
* Optional keyword argument +chomp+ specifies whether line separators
* are to be omitted:
*
* f = File.new('t.txt')
* f.each_line(chomp: true) {|line| p line }
* f.close
*
* Output:
*
* "First line"
* "Second line"
* ""
* "Fourth line"
* "Fifth line"
*
* Returns an Enumerator if no block is given.
*/
static VALUE
rb_io_each_line(int argc, VALUE *argv, VALUE io)
{
VALUE str;
struct getline_arg args;
RETURN_ENUMERATOR(io, argc, argv);
prepare_getline_args(argc, argv, &args, io);
if (args.limit == 0)
rb_raise(rb_eArgError, "invalid limit: 0 for each_line");
while (!NIL_P(str = rb_io_getline_1(args.rs, args.limit, args.chomp, io))) {
rb_yield(str);
}
return io;
}
/*
* call-seq:
* each_byte {|byte| ... } -> self
* each_byte -> enumerator
*
* Calls the given block with each byte (0..255) in the stream; returns +self+.
* See {Byte IO}[rdoc-ref:IO@Byte+IO].
*
* f = File.new('t.rus')
* a = []
* f.each_byte {|b| a << b }
* a # => [209, 130, 208, 181, 209, 129, 209, 130]
* f.close
*
* Returns an Enumerator if no block is given.
*
* Related: IO#each_char, IO#each_codepoint.
*
*/
static VALUE
rb_io_each_byte(VALUE io)
{
rb_io_t *fptr;
RETURN_ENUMERATOR(io, 0, 0);
GetOpenFile(io, fptr);
do {
while (fptr->rbuf.len > 0) {
char *p = fptr->rbuf.ptr + fptr->rbuf.off++;
fptr->rbuf.len--;
rb_yield(INT2FIX(*p & 0xff));
rb_io_check_byte_readable(fptr);
errno = 0;
}
READ_CHECK(fptr);
} while (io_fillbuf(fptr) >= 0);
return io;
}
static VALUE
io_getc(rb_io_t *fptr, rb_encoding *enc)
{
int r, n, cr = 0;
VALUE str;
if (NEED_READCONV(fptr)) {
rb_encoding *read_enc = io_read_encoding(fptr);
str = Qnil;
SET_BINARY_MODE(fptr);
make_readconv(fptr, 0);
while (1) {
if (fptr->cbuf.len) {
r = rb_enc_precise_mbclen(fptr->cbuf.ptr+fptr->cbuf.off,
fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len,
read_enc);
if (!MBCLEN_NEEDMORE_P(r))
break;
if (fptr->cbuf.len == fptr->cbuf.capa) {
rb_raise(rb_eIOError, "too long character");
}
}
if (more_char(fptr) == MORE_CHAR_FINISHED) {
if (fptr->cbuf.len == 0) {
clear_readconv(fptr);
return Qnil;
}
/* return an unit of an incomplete character just before EOF */
str = rb_enc_str_new(fptr->cbuf.ptr+fptr->cbuf.off, 1, read_enc);
fptr->cbuf.off += 1;
fptr->cbuf.len -= 1;
if (fptr->cbuf.len == 0) clear_readconv(fptr);
ENC_CODERANGE_SET(str, ENC_CODERANGE_BROKEN);
return str;
}
}
if (MBCLEN_INVALID_P(r)) {
r = rb_enc_mbclen(fptr->cbuf.ptr+fptr->cbuf.off,
fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len,
read_enc);
io_shift_cbuf(fptr, r, &str);
cr = ENC_CODERANGE_BROKEN;
}
else {
io_shift_cbuf(fptr, MBCLEN_CHARFOUND_LEN(r), &str);
cr = ENC_CODERANGE_VALID;
if (MBCLEN_CHARFOUND_LEN(r) == 1 && rb_enc_asciicompat(read_enc) &&
ISASCII(RSTRING_PTR(str)[0])) {
cr = ENC_CODERANGE_7BIT;
}
}
str = io_enc_str(str, fptr);
ENC_CODERANGE_SET(str, cr);
return str;
}
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
if (io_fillbuf(fptr) < 0) {
return Qnil;
}
if (rb_enc_asciicompat(enc) && ISASCII(fptr->rbuf.ptr[fptr->rbuf.off])) {
str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, 1);
fptr->rbuf.off += 1;
fptr->rbuf.len -= 1;
cr = ENC_CODERANGE_7BIT;
}
else {
r = rb_enc_precise_mbclen(fptr->rbuf.ptr+fptr->rbuf.off, fptr->rbuf.ptr+fptr->rbuf.off+fptr->rbuf.len, enc);
if (MBCLEN_CHARFOUND_P(r) &&
(n = MBCLEN_CHARFOUND_LEN(r)) <= fptr->rbuf.len) {
str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, n);
fptr->rbuf.off += n;
fptr->rbuf.len -= n;
cr = ENC_CODERANGE_VALID;
}
else if (MBCLEN_NEEDMORE_P(r)) {
str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, fptr->rbuf.len);
fptr->rbuf.len = 0;
getc_needmore:
if (io_fillbuf(fptr) != -1) {
rb_str_cat(str, fptr->rbuf.ptr+fptr->rbuf.off, 1);
fptr->rbuf.off++;
fptr->rbuf.len--;
r = rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_PTR(str)+RSTRING_LEN(str), enc);
if (MBCLEN_NEEDMORE_P(r)) {
goto getc_needmore;
}
else if (MBCLEN_CHARFOUND_P(r)) {
cr = ENC_CODERANGE_VALID;
}
}
}
else {
str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, 1);
fptr->rbuf.off++;
fptr->rbuf.len--;
}
}
if (!cr) cr = ENC_CODERANGE_BROKEN;
str = io_enc_str(str, fptr);
ENC_CODERANGE_SET(str, cr);
return str;
}
/*
* call-seq:
* each_char {|c| ... } -> self
* each_char -> enumerator
*
* Calls the given block with each character in the stream; returns +self+.
* See {Character IO}[rdoc-ref:IO@Character+IO].
*
* f = File.new('t.rus')
* a = []
* f.each_char {|c| a << c.ord }
* a # => [1090, 1077, 1089, 1090]
* f.close
*
* Returns an Enumerator if no block is given.
*
* Related: IO#each_byte, IO#each_codepoint.
*
*/
static VALUE
rb_io_each_char(VALUE io)
{
rb_io_t *fptr;
rb_encoding *enc;
VALUE c;
RETURN_ENUMERATOR(io, 0, 0);
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
enc = io_input_encoding(fptr);
READ_CHECK(fptr);
while (!NIL_P(c = io_getc(fptr, enc))) {
rb_yield(c);
}
return io;
}
/*
* call-seq:
* each_codepoint {|c| ... } -> self
* each_codepoint -> enumerator
*
* Calls the given block with each codepoint in the stream; returns +self+:
*
* f = File.new('t.rus')
* a = []
* f.each_codepoint {|c| a << c }
* a # => [1090, 1077, 1089, 1090]
* f.close
*
* Returns an Enumerator if no block is given.
*
* Related: IO#each_byte, IO#each_char.
*
*/
static VALUE
rb_io_each_codepoint(VALUE io)
{
rb_io_t *fptr;
rb_encoding *enc;
unsigned int c;
int r, n;
RETURN_ENUMERATOR(io, 0, 0);
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
READ_CHECK(fptr);
if (NEED_READCONV(fptr)) {
SET_BINARY_MODE(fptr);
r = 1; /* no invalid char yet */
for (;;) {
make_readconv(fptr, 0);
for (;;) {
if (fptr->cbuf.len) {
if (fptr->encs.enc)
r = rb_enc_precise_mbclen(fptr->cbuf.ptr+fptr->cbuf.off,
fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len,
fptr->encs.enc);
else
r = ONIGENC_CONSTRUCT_MBCLEN_CHARFOUND(1);
if (!MBCLEN_NEEDMORE_P(r))
break;
if (fptr->cbuf.len == fptr->cbuf.capa) {
rb_raise(rb_eIOError, "too long character");
}
}
if (more_char(fptr) == MORE_CHAR_FINISHED) {
clear_readconv(fptr);
if (!MBCLEN_CHARFOUND_P(r)) {
enc = fptr->encs.enc;
goto invalid;
}
return io;
}
}
if (MBCLEN_INVALID_P(r)) {
enc = fptr->encs.enc;
goto invalid;
}
n = MBCLEN_CHARFOUND_LEN(r);
if (fptr->encs.enc) {
c = rb_enc_codepoint(fptr->cbuf.ptr+fptr->cbuf.off,
fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len,
fptr->encs.enc);
}
else {
c = (unsigned char)fptr->cbuf.ptr[fptr->cbuf.off];
}
fptr->cbuf.off += n;
fptr->cbuf.len -= n;
rb_yield(UINT2NUM(c));
rb_io_check_byte_readable(fptr);
}
}
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
enc = io_input_encoding(fptr);
while (io_fillbuf(fptr) >= 0) {
r = rb_enc_precise_mbclen(fptr->rbuf.ptr+fptr->rbuf.off,
fptr->rbuf.ptr+fptr->rbuf.off+fptr->rbuf.len, enc);
if (MBCLEN_CHARFOUND_P(r) &&
(n = MBCLEN_CHARFOUND_LEN(r)) <= fptr->rbuf.len) {
c = rb_enc_codepoint(fptr->rbuf.ptr+fptr->rbuf.off,
fptr->rbuf.ptr+fptr->rbuf.off+fptr->rbuf.len, enc);
fptr->rbuf.off += n;
fptr->rbuf.len -= n;
rb_yield(UINT2NUM(c));
}
else if (MBCLEN_INVALID_P(r)) {
goto invalid;
}
else if (MBCLEN_NEEDMORE_P(r)) {
char cbuf[8], *p = cbuf;
int more = MBCLEN_NEEDMORE_LEN(r);
if (more > numberof(cbuf)) goto invalid;
more += n = fptr->rbuf.len;
if (more > numberof(cbuf)) goto invalid;
while ((n = (int)read_buffered_data(p, more, fptr)) > 0 &&
(p += n, (more -= n) > 0)) {
if (io_fillbuf(fptr) < 0) goto invalid;
if ((n = fptr->rbuf.len) > more) n = more;
}
r = rb_enc_precise_mbclen(cbuf, p, enc);
if (!MBCLEN_CHARFOUND_P(r)) goto invalid;
c = rb_enc_codepoint(cbuf, p, enc);
rb_yield(UINT2NUM(c));
}
else {
continue;
}
rb_io_check_byte_readable(fptr);
}
return io;
invalid:
rb_raise(rb_eArgError, "invalid byte sequence in %s", rb_enc_name(enc));
UNREACHABLE_RETURN(Qundef);
}
/*
* call-seq:
* getc -> character or nil
*
* Reads and returns the next 1-character string from the stream;
* returns +nil+ if already at end-of-stream.
* See {Character IO}[rdoc-ref:IO@Character+IO].
*
* f = File.open('t.txt')
* f.getc # => "F"
* f.close
* f = File.open('t.rus')
* f.getc.ord # => 1090
* f.close
*
* Related: IO#readchar (may raise EOFError).
*
*/
static VALUE
rb_io_getc(VALUE io)
{
rb_io_t *fptr;
rb_encoding *enc;
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
enc = io_input_encoding(fptr);
READ_CHECK(fptr);
return io_getc(fptr, enc);
}
/*
* call-seq:
* readchar -> string
*
* Reads and returns the next 1-character string from the stream;
* raises EOFError if already at end-of-stream.
* See {Character IO}[rdoc-ref:IO@Character+IO].
*
* f = File.open('t.txt')
* f.readchar # => "F"
* f.close
* f = File.open('t.rus')
* f.readchar.ord # => 1090
* f.close
*
* Related: IO#getc (will not raise EOFError).
*
*/
static VALUE
rb_io_readchar(VALUE io)
{
VALUE c = rb_io_getc(io);
if (NIL_P(c)) {
rb_eof_error();
}
return c;
}
/*
* call-seq:
* getbyte -> integer or nil
*
* Reads and returns the next byte (in range 0..255) from the stream;
* returns +nil+ if already at end-of-stream.
* See {Byte IO}[rdoc-ref:IO@Byte+IO].
*
* f = File.open('t.txt')
* f.getbyte # => 70
* f.close
* f = File.open('t.rus')
* f.getbyte # => 209
* f.close
*
* Related: IO#readbyte (may raise EOFError).
*/
VALUE
rb_io_getbyte(VALUE io)
{
rb_io_t *fptr;
int c;
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
READ_CHECK(fptr);
VALUE r_stdout = rb_ractor_stdout();
if (fptr->fd == 0 && (fptr->mode & FMODE_TTY) && RB_TYPE_P(r_stdout, T_FILE)) {
rb_io_t *ofp;
GetOpenFile(r_stdout, ofp);
if (ofp->mode & FMODE_TTY) {
rb_io_flush(r_stdout);
}
}
if (io_fillbuf(fptr) < 0) {
return Qnil;
}
fptr->rbuf.off++;
fptr->rbuf.len--;
c = (unsigned char)fptr->rbuf.ptr[fptr->rbuf.off-1];
return INT2FIX(c & 0xff);
}
/*
* call-seq:
* readbyte -> integer
*
* Reads and returns the next byte (in range 0..255) from the stream;
* raises EOFError if already at end-of-stream.
* See {Byte IO}[rdoc-ref:IO@Byte+IO].
*
* f = File.open('t.txt')
* f.readbyte # => 70
* f.close
* f = File.open('t.rus')
* f.readbyte # => 209
* f.close
*
* Related: IO#getbyte (will not raise EOFError).
*
*/
static VALUE
rb_io_readbyte(VALUE io)
{
VALUE c = rb_io_getbyte(io);
if (NIL_P(c)) {
rb_eof_error();
}
return c;
}
/*
* call-seq:
* ungetbyte(integer) -> nil
* ungetbyte(string) -> nil
*
* Pushes back ("unshifts") the given data onto the stream's buffer,
* placing the data so that it is next to be read; returns +nil+.
* See {Byte IO}[rdoc-ref:IO@Byte+IO].
*
* Note that:
*
* - Calling the method has no effect with unbuffered reads (such as IO#sysread).
* - Calling #rewind on the stream discards the pushed-back data.
*
* When argument +integer+ is given, uses only its low-order byte:
*
* File.write('t.tmp', '012')
* f = File.open('t.tmp')
* f.ungetbyte(0x41) # => nil
* f.read # => "A012"
* f.rewind
* f.ungetbyte(0x4243) # => nil
* f.read # => "C012"
* f.close
*
* When argument +string+ is given, uses all bytes:
*
* File.write('t.tmp', '012')
* f = File.open('t.tmp')
* f.ungetbyte('A') # => nil
* f.read # => "A012"
* f.rewind
* f.ungetbyte('BCDE') # => nil
* f.read # => "BCDE012"
* f.close
*
*/
VALUE
rb_io_ungetbyte(VALUE io, VALUE b)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
switch (TYPE(b)) {
case T_NIL:
return Qnil;
case T_FIXNUM:
case T_BIGNUM: ;
VALUE v = rb_int_modulo(b, INT2FIX(256));
unsigned char c = NUM2INT(v) & 0xFF;
b = rb_str_new((const char *)&c, 1);
break;
default:
StringValue(b);
}
io_ungetbyte(b, fptr);
return Qnil;
}
/*
* call-seq:
* ungetc(integer) -> nil
* ungetc(string) -> nil
*
* Pushes back ("unshifts") the given data onto the stream's buffer,
* placing the data so that it is next to be read; returns +nil+.
* See {Character IO}[rdoc-ref:IO@Character+IO].
*
* Note that:
*
* - Calling the method has no effect with unbuffered reads (such as IO#sysread).
* - Calling #rewind on the stream discards the pushed-back data.
*
* When argument +integer+ is given, interprets the integer as a character:
*
* File.write('t.tmp', '012')
* f = File.open('t.tmp')
* f.ungetc(0x41) # => nil
* f.read # => "A012"
* f.rewind
* f.ungetc(0x0442) # => nil
* f.getc.ord # => 1090
* f.close
*
* When argument +string+ is given, uses all characters:
*
* File.write('t.tmp', '012')
* f = File.open('t.tmp')
* f.ungetc('A') # => nil
* f.read # => "A012"
* f.rewind
* f.ungetc("\u0442\u0435\u0441\u0442") # => nil
* f.getc.ord # => 1090
* f.getc.ord # => 1077
* f.getc.ord # => 1089
* f.getc.ord # => 1090
* f.close
*
*/
VALUE
rb_io_ungetc(VALUE io, VALUE c)
{
rb_io_t *fptr;
long len;
GetOpenFile(io, fptr);
rb_io_check_char_readable(fptr);
if (FIXNUM_P(c)) {
c = rb_enc_uint_chr(FIX2UINT(c), io_read_encoding(fptr));
}
else if (RB_BIGNUM_TYPE_P(c)) {
c = rb_enc_uint_chr(NUM2UINT(c), io_read_encoding(fptr));
}
else {
StringValue(c);
}
if (NEED_READCONV(fptr)) {
SET_BINARY_MODE(fptr);
len = RSTRING_LEN(c);
#if SIZEOF_LONG > SIZEOF_INT
if (len > INT_MAX)
rb_raise(rb_eIOError, "ungetc failed");
#endif
make_readconv(fptr, (int)len);
if (fptr->cbuf.capa - fptr->cbuf.len < len)
rb_raise(rb_eIOError, "ungetc failed");
if (fptr->cbuf.off < len) {
MEMMOVE(fptr->cbuf.ptr+fptr->cbuf.capa-fptr->cbuf.len,
fptr->cbuf.ptr+fptr->cbuf.off,
char, fptr->cbuf.len);
fptr->cbuf.off = fptr->cbuf.capa-fptr->cbuf.len;
}
fptr->cbuf.off -= (int)len;
fptr->cbuf.len += (int)len;
MEMMOVE(fptr->cbuf.ptr+fptr->cbuf.off, RSTRING_PTR(c), char, len);
}
else {
NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr);
io_ungetbyte(c, fptr);
}
return Qnil;
}
/*
* call-seq:
* isatty -> true or false
*
* Returns +true+ if the stream is associated with a terminal device (tty),
* +false+ otherwise:
*
* f = File.new('t.txt').isatty #=> false
* f.close
* f = File.new('/dev/tty').isatty #=> true
* f.close
*
*/
static VALUE
rb_io_isatty(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
return RBOOL(isatty(fptr->fd) != 0);
}
#if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC)
/*
* call-seq:
* close_on_exec? -> true or false
*
* Returns +true+ if the stream will be closed on exec, +false+ otherwise:
*
* f = File.open('t.txt')
* f.close_on_exec? # => true
* f.close_on_exec = false
* f.close_on_exec? # => false
* f.close
*
*/
static VALUE
rb_io_close_on_exec_p(VALUE io)
{
rb_io_t *fptr;
VALUE write_io;
int fd, ret;
write_io = GetWriteIO(io);
if (io != write_io) {
GetOpenFile(write_io, fptr);
if (fptr && 0 <= (fd = fptr->fd)) {
if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
if (!(ret & FD_CLOEXEC)) return Qfalse;
}
}
GetOpenFile(io, fptr);
if (fptr && 0 <= (fd = fptr->fd)) {
if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
if (!(ret & FD_CLOEXEC)) return Qfalse;
}
return Qtrue;
}
#else
#define rb_io_close_on_exec_p rb_f_notimplement
#endif
#if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC)
/*
* call-seq:
* self.close_on_exec = bool -> true or false
*
* Sets a close-on-exec flag.
*
* f = File.open(File::NULL)
* f.close_on_exec = true
* system("cat", "/proc/self/fd/#{f.fileno}") # cat: /proc/self/fd/3: No such file or directory
* f.closed? #=> false
*
* Ruby sets close-on-exec flags of all file descriptors by default
* since Ruby 2.0.0.
* So you don't need to set by yourself.
* Also, unsetting a close-on-exec flag can cause file descriptor leak
* if another thread use fork() and exec() (via system() method for example).
* If you really needs file descriptor inheritance to child process,
* use spawn()'s argument such as fd=>fd.
*/
static VALUE
rb_io_set_close_on_exec(VALUE io, VALUE arg)
{
int flag = RTEST(arg) ? FD_CLOEXEC : 0;
rb_io_t *fptr;
VALUE write_io;
int fd, ret;
write_io = GetWriteIO(io);
if (io != write_io) {
GetOpenFile(write_io, fptr);
if (fptr && 0 <= (fd = fptr->fd)) {
if ((ret = fcntl(fptr->fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
if ((ret & FD_CLOEXEC) != flag) {
ret = (ret & ~FD_CLOEXEC) | flag;
ret = fcntl(fd, F_SETFD, ret);
if (ret != 0) rb_sys_fail_path(fptr->pathv);
}
}
}
GetOpenFile(io, fptr);
if (fptr && 0 <= (fd = fptr->fd)) {
if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv);
if ((ret & FD_CLOEXEC) != flag) {
ret = (ret & ~FD_CLOEXEC) | flag;
ret = fcntl(fd, F_SETFD, ret);
if (ret != 0) rb_sys_fail_path(fptr->pathv);
}
}
return Qnil;
}
#else
#define rb_io_set_close_on_exec rb_f_notimplement
#endif
#define RUBY_IO_EXTERNAL_P(f) ((f)->mode & FMODE_EXTERNAL)
#define PREP_STDIO_NAME(f) (RSTRING_PTR((f)->pathv))
static VALUE
finish_writeconv(rb_io_t *fptr, int noalloc)
{
unsigned char *ds, *dp, *de;
rb_econv_result_t res;
if (!fptr->wbuf.ptr) {
unsigned char buf[1024];
res = econv_destination_buffer_full;
while (res == econv_destination_buffer_full) {
ds = dp = buf;
de = buf + sizeof(buf);
res = rb_econv_convert(fptr->writeconv, NULL, NULL, &dp, de, 0);
while (dp-ds) {
size_t remaining = dp-ds;
long result = rb_io_write_memory(fptr, ds, remaining);
if (result > 0) {
ds += result;
if ((size_t)result == remaining) break;
}
else if (rb_io_maybe_wait_writable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) {
if (fptr->fd < 0)
return noalloc ? Qtrue : rb_exc_new3(rb_eIOError, rb_str_new_cstr(closed_stream));
}
else {
return noalloc ? Qtrue : INT2NUM(errno);
}
}
if (res == econv_invalid_byte_sequence ||
res == econv_incomplete_input ||
res == econv_undefined_conversion) {
return noalloc ? Qtrue : rb_econv_make_exception(fptr->writeconv);
}
}
return Qnil;
}
res = econv_destination_buffer_full;
while (res == econv_destination_buffer_full) {
if (fptr->wbuf.len == fptr->wbuf.capa) {
if (io_fflush(fptr) < 0) {
return noalloc ? Qtrue : INT2NUM(errno);
}
}
ds = dp = (unsigned char *)fptr->wbuf.ptr + fptr->wbuf.off + fptr->wbuf.len;
de = (unsigned char *)fptr->wbuf.ptr + fptr->wbuf.capa;
res = rb_econv_convert(fptr->writeconv, NULL, NULL, &dp, de, 0);
fptr->wbuf.len += (int)(dp - ds);
if (res == econv_invalid_byte_sequence ||
res == econv_incomplete_input ||
res == econv_undefined_conversion) {
return noalloc ? Qtrue : rb_econv_make_exception(fptr->writeconv);
}
}
return Qnil;
}
struct finish_writeconv_arg {
rb_io_t *fptr;
int noalloc;
};
static VALUE
finish_writeconv_sync(VALUE arg)
{
struct finish_writeconv_arg *p = (struct finish_writeconv_arg *)arg;
return finish_writeconv(p->fptr, p->noalloc);
}
static void*
nogvl_close(void *ptr)
{
int *fd = ptr;
return (void*)(intptr_t)close(*fd);
}
static int
maygvl_close(int fd, int keepgvl)
{
if (keepgvl)
return close(fd);
/*
* close() may block for certain file types (NFS, SO_LINGER sockets,
* inotify), so let other threads run.
*/
return IO_WITHOUT_GVL_INT(nogvl_close, &fd);
}
static void*
nogvl_fclose(void *ptr)
{
FILE *file = ptr;
return (void*)(intptr_t)fclose(file);
}
static int
maygvl_fclose(FILE *file, int keepgvl)
{
if (keepgvl)
return fclose(file);
return IO_WITHOUT_GVL_INT(nogvl_fclose, file);
}
static void free_io_buffer(rb_io_buffer_t *buf);
static void clear_codeconv(rb_io_t *fptr);
static void
fptr_finalize_flush(rb_io_t *fptr, int noraise, int keepgvl,
struct rb_io_close_wait_list *busy)
{
VALUE error = Qnil;
int fd = fptr->fd;
FILE *stdio_file = fptr->stdio_file;
int mode = fptr->mode;
if (fptr->writeconv) {
if (!NIL_P(fptr->write_lock) && !noraise) {
struct finish_writeconv_arg arg;
arg.fptr = fptr;
arg.noalloc = noraise;
error = rb_mutex_synchronize(fptr->write_lock, finish_writeconv_sync, (VALUE)&arg);
}
else {
error = finish_writeconv(fptr, noraise);
}
}
if (fptr->wbuf.len) {
if (noraise) {
io_flush_buffer_sync(fptr);
}
else {
if (io_fflush(fptr) < 0 && NIL_P(error)) {
error = INT2NUM(errno);
}
}
}
int done = 0;
if (RUBY_IO_EXTERNAL_P(fptr) || fd <= 2) {
// Need to keep FILE objects of stdin, stdout and stderr, so we are done:
done = 1;
}
fptr->fd = -1;
fptr->stdio_file = 0;
fptr->mode &= ~(FMODE_READABLE|FMODE_WRITABLE);
// Ensure waiting_fd users do not hit EBADF.
if (busy) {
// Wait for them to exit before we call close().
rb_notify_fd_close_wait(busy);
}
// Disable for now.
// if (!done && fd >= 0) {
// VALUE scheduler = rb_fiber_scheduler_current();
// if (scheduler != Qnil) {
// VALUE result = rb_fiber_scheduler_io_close(scheduler, fptr->self);
// if (!UNDEF_P(result)) done = 1;
// }
// }
if (!done && stdio_file) {
// stdio_file is deallocated anyway even if fclose failed.
if ((maygvl_fclose(stdio_file, noraise) < 0) && NIL_P(error)) {
if (!noraise) {
error = INT2NUM(errno);
}
}
done = 1;
}
if (!done && fd >= 0) {
// fptr->fd may be closed even if close fails. POSIX doesn't specify it.
// We assumes it is closed.
keepgvl |= !(mode & FMODE_WRITABLE);
keepgvl |= noraise;
if ((maygvl_close(fd, keepgvl) < 0) && NIL_P(error)) {
if (!noraise) {
error = INT2NUM(errno);
}
}
done = 1;
}
if (!NIL_P(error) && !noraise) {
if (RB_INTEGER_TYPE_P(error))
rb_syserr_fail_path(NUM2INT(error), fptr->pathv);
else
rb_exc_raise(error);
}
}
static void
fptr_finalize(rb_io_t *fptr, int noraise)
{
fptr_finalize_flush(fptr, noraise, FALSE, 0);
free_io_buffer(&fptr->rbuf);
free_io_buffer(&fptr->wbuf);
clear_codeconv(fptr);
}
static void
rb_io_fptr_cleanup(rb_io_t *fptr, int noraise)
{
if (fptr->finalize) {
(*fptr->finalize)(fptr, noraise);
}
else {
fptr_finalize(fptr, noraise);
}
}
static void
free_io_buffer(rb_io_buffer_t *buf)
{
if (buf->ptr) {
ruby_sized_xfree(buf->ptr, (size_t)buf->capa);
buf->ptr = NULL;
}
}
static void
clear_readconv(rb_io_t *fptr)
{
if (fptr->readconv) {
rb_econv_close(fptr->readconv);
fptr->readconv = NULL;
}
free_io_buffer(&fptr->cbuf);
}
static void
clear_writeconv(rb_io_t *fptr)
{
if (fptr->writeconv) {
rb_econv_close(fptr->writeconv);
fptr->writeconv = NULL;
}
fptr->writeconv_initialized = 0;
}
static void
clear_codeconv(rb_io_t *fptr)
{
clear_readconv(fptr);
clear_writeconv(fptr);
}
static void
rb_io_fptr_cleanup_all(rb_io_t *fptr)
{
fptr->pathv = Qnil;
if (0 <= fptr->fd)
rb_io_fptr_cleanup(fptr, TRUE);
fptr->write_lock = Qnil;
free_io_buffer(&fptr->rbuf);
free_io_buffer(&fptr->wbuf);
clear_codeconv(fptr);
}
void
rb_io_fptr_finalize_internal(void *ptr)
{
if (!ptr) return;
rb_io_fptr_cleanup_all(ptr);
free(ptr);
}
#undef rb_io_fptr_finalize
int
rb_io_fptr_finalize(rb_io_t *fptr)
{
if (!fptr) {
return 0;
}
else {
rb_io_fptr_finalize_internal(fptr);
return 1;
}
}
#define rb_io_fptr_finalize(fptr) rb_io_fptr_finalize_internal(fptr)
size_t
rb_io_memsize(const rb_io_t *fptr)
{
size_t size = sizeof(rb_io_t);
size += fptr->rbuf.capa;
size += fptr->wbuf.capa;
size += fptr->cbuf.capa;
if (fptr->readconv) size += rb_econv_memsize(fptr->readconv);
if (fptr->writeconv) size += rb_econv_memsize(fptr->writeconv);
return size;
}
#ifdef _WIN32
/* keep GVL while closing to prevent crash on Windows */
# define KEEPGVL TRUE
#else
# define KEEPGVL FALSE
#endif
static rb_io_t *
io_close_fptr(VALUE io)
{
rb_io_t *fptr;
VALUE write_io;
rb_io_t *write_fptr;
struct rb_io_close_wait_list busy;
write_io = GetWriteIO(io);
if (io != write_io) {
write_fptr = RFILE(write_io)->fptr;
if (write_fptr && 0 <= write_fptr->fd) {
rb_io_fptr_cleanup(write_fptr, TRUE);
}
}
fptr = RFILE(io)->fptr;
if (!fptr) return 0;
if (fptr->fd < 0) return 0;
if (rb_notify_fd_close(fptr->fd, &busy)) {
/* calls close(fptr->fd): */
fptr_finalize_flush(fptr, FALSE, KEEPGVL, &busy);
}
rb_io_fptr_cleanup(fptr, FALSE);
return fptr;
}
static void
fptr_waitpid(rb_io_t *fptr, int nohang)
{
int status;
if (fptr->pid) {
rb_last_status_clear();
rb_waitpid(fptr->pid, &status, nohang ? WNOHANG : 0);
fptr->pid = 0;
}
}
VALUE
rb_io_close(VALUE io)
{
rb_io_t *fptr = io_close_fptr(io);
if (fptr) fptr_waitpid(fptr, 0);
return Qnil;
}
/*
* call-seq:
* close -> nil
*
* Closes the stream for both reading and writing
* if open for either or both; returns +nil+.
* See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams].
*
* If the stream is open for writing, flushes any buffered writes
* to the operating system before closing.
*
* If the stream was opened by IO.popen, sets global variable <tt>$?</tt>
* (child exit status).
*
* It is not an error to close an IO object that has already been closed.
* It just returns nil.
*
* Example:
*
* IO.popen('ruby', 'r+') do |pipe|
* puts pipe.closed?
* pipe.close
* puts $?
* puts pipe.closed?
* end
*
* Output:
*
* false
* pid 13760 exit 0
* true
*
* Related: IO#close_read, IO#close_write, IO#closed?.
*/
static VALUE
rb_io_close_m(VALUE io)
{
rb_io_t *fptr = rb_io_get_fptr(io);
if (fptr->fd < 0) {
return Qnil;
}
rb_io_close(io);
return Qnil;
}
static VALUE
io_call_close(VALUE io)
{
rb_check_funcall(io, rb_intern("close"), 0, 0);
return io;
}
static VALUE
ignore_closed_stream(VALUE io, VALUE exc)
{
enum {mesg_len = sizeof(closed_stream)-1};
VALUE mesg = rb_attr_get(exc, idMesg);
if (!RB_TYPE_P(mesg, T_STRING) ||
RSTRING_LEN(mesg) != mesg_len ||
memcmp(RSTRING_PTR(mesg), closed_stream, mesg_len)) {
rb_exc_raise(exc);
}
return io;
}
static VALUE
io_close(VALUE io)
{
VALUE closed = rb_check_funcall(io, rb_intern("closed?"), 0, 0);
if (!UNDEF_P(closed) && RTEST(closed)) return io;
rb_rescue2(io_call_close, io, ignore_closed_stream, io,
rb_eIOError, (VALUE)0);
return io;
}
/*
* call-seq:
* closed? -> true or false
*
* Returns +true+ if the stream is closed for both reading and writing,
* +false+ otherwise.
* See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams].
*
* IO.popen('ruby', 'r+') do |pipe|
* puts pipe.closed?
* pipe.close_read
* puts pipe.closed?
* pipe.close_write
* puts pipe.closed?
* end
*
* Output:
*
* false
* false
* true
*
* Related: IO#close_read, IO#close_write, IO#close.
*/
VALUE
rb_io_closed_p(VALUE io)
{
rb_io_t *fptr;
VALUE write_io;
rb_io_t *write_fptr;
write_io = GetWriteIO(io);
if (io != write_io) {
write_fptr = RFILE(write_io)->fptr;
if (write_fptr && 0 <= write_fptr->fd) {
return Qfalse;
}
}
fptr = rb_io_get_fptr(io);
return RBOOL(0 > fptr->fd);
}
/*
* call-seq:
* close_read -> nil
*
* Closes the stream for reading if open for reading;
* returns +nil+.
* See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams].
*
* If the stream was opened by IO.popen and is also closed for writing,
* sets global variable <tt>$?</tt> (child exit status).
*
* Example:
*
* IO.popen('ruby', 'r+') do |pipe|
* puts pipe.closed?
* pipe.close_write
* puts pipe.closed?
* pipe.close_read
* puts $?
* puts pipe.closed?
* end
*
* Output:
*
* false
* false
* pid 14748 exit 0
* true
*
* Related: IO#close, IO#close_write, IO#closed?.
*/
static VALUE
rb_io_close_read(VALUE io)
{
rb_io_t *fptr;
VALUE write_io;
fptr = rb_io_get_fptr(rb_io_taint_check(io));
if (fptr->fd < 0) return Qnil;
if (is_socket(fptr->fd, fptr->pathv)) {
#ifndef SHUT_RD
# define SHUT_RD 0
#endif
if (shutdown(fptr->fd, SHUT_RD) < 0)
rb_sys_fail_path(fptr->pathv);
fptr->mode &= ~FMODE_READABLE;
if (!(fptr->mode & FMODE_WRITABLE))
return rb_io_close(io);
return Qnil;
}
write_io = GetWriteIO(io);
if (io != write_io) {
rb_io_t *wfptr;
wfptr = rb_io_get_fptr(rb_io_taint_check(write_io));
wfptr->pid = fptr->pid;
fptr->pid = 0;
RFILE(io)->fptr = wfptr;
/* bind to write_io temporarily to get rid of memory/fd leak */
fptr->tied_io_for_writing = 0;
RFILE(write_io)->fptr = fptr;
rb_io_fptr_cleanup(fptr, FALSE);
/* should not finalize fptr because another thread may be reading it */
return Qnil;
}
if ((fptr->mode & (FMODE_DUPLEX|FMODE_WRITABLE)) == FMODE_WRITABLE) {
rb_raise(rb_eIOError, "closing non-duplex IO for reading");
}
return rb_io_close(io);
}
/*
* call-seq:
* close_write -> nil
*
* Closes the stream for writing if open for writing;
* returns +nil+.
* See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams].
*
* Flushes any buffered writes to the operating system before closing.
*
* If the stream was opened by IO.popen and is also closed for reading,
* sets global variable <tt>$?</tt> (child exit status).
*
* IO.popen('ruby', 'r+') do |pipe|
* puts pipe.closed?
* pipe.close_read
* puts pipe.closed?
* pipe.close_write
* puts $?
* puts pipe.closed?
* end
*
* Output:
*
* false
* false
* pid 15044 exit 0
* true
*
* Related: IO#close, IO#close_read, IO#closed?.
*/
static VALUE
rb_io_close_write(VALUE io)
{
rb_io_t *fptr;
VALUE write_io;
write_io = GetWriteIO(io);
fptr = rb_io_get_fptr(rb_io_taint_check(write_io));
if (fptr->fd < 0) return Qnil;
if (is_socket(fptr->fd, fptr->pathv)) {
#ifndef SHUT_WR
# define SHUT_WR 1
#endif
if (shutdown(fptr->fd, SHUT_WR) < 0)
rb_sys_fail_path(fptr->pathv);
fptr->mode &= ~FMODE_WRITABLE;
if (!(fptr->mode & FMODE_READABLE))
return rb_io_close(write_io);
return Qnil;
}
if ((fptr->mode & (FMODE_DUPLEX|FMODE_READABLE)) == FMODE_READABLE) {
rb_raise(rb_eIOError, "closing non-duplex IO for writing");
}
if (io != write_io) {
fptr = rb_io_get_fptr(rb_io_taint_check(io));
fptr->tied_io_for_writing = 0;
}
rb_io_close(write_io);
return Qnil;
}
/*
* call-seq:
* sysseek(offset, whence = IO::SEEK_SET) -> integer
*
* Behaves like IO#seek, except that it:
*
* - Uses low-level system functions.
* - Returns the new position.
*
*/
static VALUE
rb_io_sysseek(int argc, VALUE *argv, VALUE io)
{
VALUE offset, ptrname;
int whence = SEEK_SET;
rb_io_t *fptr;
rb_off_t pos;
if (rb_scan_args(argc, argv, "11", &offset, &ptrname) == 2) {
whence = interpret_seek_whence(ptrname);
}
pos = NUM2OFFT(offset);
GetOpenFile(io, fptr);
if ((fptr->mode & FMODE_READABLE) &&
(READ_DATA_BUFFERED(fptr) || READ_CHAR_PENDING(fptr))) {
rb_raise(rb_eIOError, "sysseek for buffered IO");
}
if ((fptr->mode & FMODE_WRITABLE) && fptr->wbuf.len) {
rb_warn("sysseek for buffered IO");
}
errno = 0;
pos = lseek(fptr->fd, pos, whence);
if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv);
return OFFT2NUM(pos);
}
/*
* call-seq:
* syswrite(object) -> integer
*
* Writes the given +object+ to self, which must be opened for writing (see Modes);
* returns the number bytes written.
* If +object+ is not a string is converted via method to_s:
*
* f = File.new('t.tmp', 'w')
* f.syswrite('foo') # => 3
* f.syswrite(30) # => 2
* f.syswrite(:foo) # => 3
* f.close
*
* This methods should not be used with other stream-writer methods.
*
*/
static VALUE
rb_io_syswrite(VALUE io, VALUE str)
{
VALUE tmp;
rb_io_t *fptr;
long n, len;
const char *ptr;
if (!RB_TYPE_P(str, T_STRING))
str = rb_obj_as_string(str);
io = GetWriteIO(io);
GetOpenFile(io, fptr);
rb_io_check_writable(fptr);
if (fptr->wbuf.len) {
rb_warn("syswrite for buffered IO");
}
tmp = rb_str_tmp_frozen_acquire(str);
RSTRING_GETMEM(tmp, ptr, len);
n = rb_io_write_memory(fptr, ptr, len);
if (n < 0) rb_sys_fail_path(fptr->pathv);
rb_str_tmp_frozen_release(str, tmp);
return LONG2FIX(n);
}
/*
* call-seq:
* sysread(maxlen) -> string
* sysread(maxlen, out_string) -> string
*
* Behaves like IO#readpartial, except that it uses low-level system functions.
*
* This method should not be used with other stream-reader methods.
*
*/
static VALUE
rb_io_sysread(int argc, VALUE *argv, VALUE io)
{
VALUE len, str;
rb_io_t *fptr;
long n, ilen;
struct io_internal_read_struct iis;
int shrinkable;
rb_scan_args(argc, argv, "11", &len, &str);
ilen = NUM2LONG(len);
shrinkable = io_setstrbuf(&str, ilen);
if (ilen == 0) return str;
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
if (READ_DATA_BUFFERED(fptr)) {
rb_raise(rb_eIOError, "sysread for buffered IO");
}
rb_io_check_closed(fptr);
io_setstrbuf(&str, ilen);
iis.th = rb_thread_current();
iis.fptr = fptr;
iis.nonblock = 0;
iis.fd = fptr->fd;
iis.buf = RSTRING_PTR(str);
iis.capa = ilen;
iis.timeout = NULL;
n = io_read_memory_locktmp(str, &iis);
if (n < 0) {
rb_sys_fail_path(fptr->pathv);
}
io_set_read_length(str, n, shrinkable);
if (n == 0 && ilen > 0) {
rb_eof_error();
}
return str;
}
struct prdwr_internal_arg {
VALUE io;
int fd;
void *buf;
size_t count;
rb_off_t offset;
};
static VALUE
internal_pread_func(void *_arg)
{
struct prdwr_internal_arg *arg = _arg;
return (VALUE)pread(arg->fd, arg->buf, arg->count, arg->offset);
}
static VALUE
pread_internal_call(VALUE _arg)
{
struct prdwr_internal_arg *arg = (struct prdwr_internal_arg *)_arg;
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
VALUE result = rb_fiber_scheduler_io_pread_memory(scheduler, arg->io, arg->offset, arg->buf, arg->count, 0);
if (!UNDEF_P(result)) {
return rb_fiber_scheduler_io_result_apply(result);
}
}
return rb_thread_io_blocking_call(internal_pread_func, arg, arg->fd, RB_WAITFD_IN);
}
/*
* call-seq:
* pread(maxlen, offset) -> string
* pread(maxlen, offset, out_string) -> string
*
* Behaves like IO#readpartial, except that it:
*
* - Reads at the given +offset+ (in bytes).
* - Disregards, and does not modify, the stream's position
* (see {Position}[rdoc-ref:IO@Position]).
* - Bypasses any user space buffering in the stream.
*
* Because this method does not disturb the stream's state
* (its position, in particular), +pread+ allows multiple threads and processes
* to use the same \IO object for reading at various offsets.
*
* f = File.open('t.txt')
* f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* f.pos # => 52
* # Read 12 bytes at offset 0.
* f.pread(12, 0) # => "First line\n"
* # Read 9 bytes at offset 8.
* f.pread(9, 8) # => "ne\nSecon"
* f.close
*
* Not available on some platforms.
*
*/
static VALUE
rb_io_pread(int argc, VALUE *argv, VALUE io)
{
VALUE len, offset, str;
rb_io_t *fptr;
ssize_t n;
struct prdwr_internal_arg arg = {.io = io};
int shrinkable;
rb_scan_args(argc, argv, "21", &len, &offset, &str);
arg.count = NUM2SIZET(len);
arg.offset = NUM2OFFT(offset);
shrinkable = io_setstrbuf(&str, (long)arg.count);
if (arg.count == 0) return str;
arg.buf = RSTRING_PTR(str);
GetOpenFile(io, fptr);
rb_io_check_byte_readable(fptr);
arg.fd = fptr->fd;
rb_io_check_closed(fptr);
rb_str_locktmp(str);
n = (ssize_t)rb_ensure(pread_internal_call, (VALUE)&arg, rb_str_unlocktmp, str);
if (n < 0) {
rb_sys_fail_path(fptr->pathv);
}
io_set_read_length(str, n, shrinkable);
if (n == 0 && arg.count > 0) {
rb_eof_error();
}
return str;
}
static VALUE
internal_pwrite_func(void *_arg)
{
struct prdwr_internal_arg *arg = _arg;
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
VALUE result = rb_fiber_scheduler_io_pwrite_memory(scheduler, arg->io, arg->offset, arg->buf, arg->count, 0);
if (!UNDEF_P(result)) {
return rb_fiber_scheduler_io_result_apply(result);
}
}
return (VALUE)pwrite(arg->fd, arg->buf, arg->count, arg->offset);
}
/*
* call-seq:
* pwrite(object, offset) -> integer
*
* Behaves like IO#write, except that it:
*
* - Writes at the given +offset+ (in bytes).
* - Disregards, and does not modify, the stream's position
* (see {Position}[rdoc-ref:IO@Position]).
* - Bypasses any user space buffering in the stream.
*
* Because this method does not disturb the stream's state
* (its position, in particular), +pwrite+ allows multiple threads and processes
* to use the same \IO object for writing at various offsets.
*
* f = File.open('t.tmp', 'w+')
* # Write 6 bytes at offset 3.
* f.pwrite('ABCDEF', 3) # => 6
* f.rewind
* f.read # => "\u0000\u0000\u0000ABCDEF"
* f.close
*
* Not available on some platforms.
*
*/
static VALUE
rb_io_pwrite(VALUE io, VALUE str, VALUE offset)
{
rb_io_t *fptr;
ssize_t n;
struct prdwr_internal_arg arg = {.io = io};
VALUE tmp;
if (!RB_TYPE_P(str, T_STRING))
str = rb_obj_as_string(str);
arg.offset = NUM2OFFT(offset);
io = GetWriteIO(io);
GetOpenFile(io, fptr);
rb_io_check_writable(fptr);
arg.fd = fptr->fd;
tmp = rb_str_tmp_frozen_acquire(str);
arg.buf = RSTRING_PTR(tmp);
arg.count = (size_t)RSTRING_LEN(tmp);
n = (ssize_t)rb_thread_io_blocking_call(internal_pwrite_func, &arg, fptr->fd, RB_WAITFD_OUT);
if (n < 0) rb_sys_fail_path(fptr->pathv);
rb_str_tmp_frozen_release(str, tmp);
return SSIZET2NUM(n);
}
VALUE
rb_io_binmode(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
if (fptr->readconv)
rb_econv_binmode(fptr->readconv);
if (fptr->writeconv)
rb_econv_binmode(fptr->writeconv);
fptr->mode |= FMODE_BINMODE;
fptr->mode &= ~FMODE_TEXTMODE;
fptr->writeconv_pre_ecflags &= ~ECONV_NEWLINE_DECORATOR_MASK;
#ifdef O_BINARY
if (!fptr->readconv) {
SET_BINARY_MODE_WITH_SEEK_CUR(fptr);
}
else {
setmode(fptr->fd, O_BINARY);
}
#endif
return io;
}
static void
io_ascii8bit_binmode(rb_io_t *fptr)
{
if (fptr->readconv) {
rb_econv_close(fptr->readconv);
fptr->readconv = NULL;
}
if (fptr->writeconv) {
rb_econv_close(fptr->writeconv);
fptr->writeconv = NULL;
}
fptr->mode |= FMODE_BINMODE;
fptr->mode &= ~FMODE_TEXTMODE;
SET_BINARY_MODE_WITH_SEEK_CUR(fptr);
fptr->encs.enc = rb_ascii8bit_encoding();
fptr->encs.enc2 = NULL;
fptr->encs.ecflags = 0;
fptr->encs.ecopts = Qnil;
clear_codeconv(fptr);
}
VALUE
rb_io_ascii8bit_binmode(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
io_ascii8bit_binmode(fptr);
return io;
}
/*
* call-seq:
* binmode -> self
*
* Sets the stream's data mode as binary
* (see {Data Mode}[rdoc-ref:File@Data+Mode]).
*
* A stream's data mode may not be changed from binary to text.
*
*/
static VALUE
rb_io_binmode_m(VALUE io)
{
VALUE write_io;
rb_io_ascii8bit_binmode(io);
write_io = GetWriteIO(io);
if (write_io != io)
rb_io_ascii8bit_binmode(write_io);
return io;
}
/*
* call-seq:
* binmode? -> true or false
*
* Returns +true+ if the stream is on binary mode, +false+ otherwise.
* See {Data Mode}[rdoc-ref:File@Data+Mode].
*
*/
static VALUE
rb_io_binmode_p(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
return RBOOL(fptr->mode & FMODE_BINMODE);
}
static const char*
rb_io_fmode_modestr(int fmode)
{
if (fmode & FMODE_APPEND) {
if ((fmode & FMODE_READWRITE) == FMODE_READWRITE) {
return MODE_BTMODE("a+", "ab+", "at+");
}
return MODE_BTMODE("a", "ab", "at");
}
switch (fmode & FMODE_READWRITE) {
default:
rb_raise(rb_eArgError, "invalid access fmode 0x%x", fmode);
case FMODE_READABLE:
return MODE_BTMODE("r", "rb", "rt");
case FMODE_WRITABLE:
return MODE_BTXMODE("w", "wb", "wt", "wx", "wbx", "wtx");
case FMODE_READWRITE:
if (fmode & FMODE_CREATE) {
return MODE_BTXMODE("w+", "wb+", "wt+", "w+x", "wb+x", "wt+x");
}
return MODE_BTMODE("r+", "rb+", "rt+");
}
}
static const char bom_prefix[] = "bom|";
static const char utf_prefix[] = "utf-";
enum {bom_prefix_len = (int)sizeof(bom_prefix) - 1};
enum {utf_prefix_len = (int)sizeof(utf_prefix) - 1};
static int
io_encname_bom_p(const char *name, long len)
{
return len > bom_prefix_len && STRNCASECMP(name, bom_prefix, bom_prefix_len) == 0;
}
int
rb_io_modestr_fmode(const char *modestr)
{
int fmode = 0;
const char *m = modestr, *p = NULL;
switch (*m++) {
case 'r':
fmode |= FMODE_READABLE;
break;
case 'w':
fmode |= FMODE_WRITABLE | FMODE_TRUNC | FMODE_CREATE;
break;
case 'a':
fmode |= FMODE_WRITABLE | FMODE_APPEND | FMODE_CREATE;
break;
default:
goto error;
}
while (*m) {
switch (*m++) {
case 'b':
fmode |= FMODE_BINMODE;
break;
case 't':
fmode |= FMODE_TEXTMODE;
break;
case '+':
fmode |= FMODE_READWRITE;
break;
case 'x':
if (modestr[0] != 'w')
goto error;
fmode |= FMODE_EXCL;
break;
default:
goto error;
case ':':
p = strchr(m, ':');
if (io_encname_bom_p(m, p ? (long)(p - m) : (long)strlen(m)))
fmode |= FMODE_SETENC_BY_BOM;
goto finished;
}
}
finished:
if ((fmode & FMODE_BINMODE) && (fmode & FMODE_TEXTMODE))
goto error;
return fmode;
error:
rb_raise(rb_eArgError, "invalid access mode %s", modestr);
UNREACHABLE_RETURN(Qundef);
}
int
rb_io_oflags_fmode(int oflags)
{
int fmode = 0;
switch (oflags & O_ACCMODE) {
case O_RDONLY:
fmode = FMODE_READABLE;
break;
case O_WRONLY:
fmode = FMODE_WRITABLE;
break;
case O_RDWR:
fmode = FMODE_READWRITE;
break;
}
if (oflags & O_APPEND) {
fmode |= FMODE_APPEND;
}
if (oflags & O_TRUNC) {
fmode |= FMODE_TRUNC;
}
if (oflags & O_CREAT) {
fmode |= FMODE_CREATE;
}
if (oflags & O_EXCL) {
fmode |= FMODE_EXCL;
}
#ifdef O_BINARY
if (oflags & O_BINARY) {
fmode |= FMODE_BINMODE;
}
#endif
return fmode;
}
static int
rb_io_fmode_oflags(int fmode)
{
int oflags = 0;
switch (fmode & FMODE_READWRITE) {
case FMODE_READABLE:
oflags |= O_RDONLY;
break;
case FMODE_WRITABLE:
oflags |= O_WRONLY;
break;
case FMODE_READWRITE:
oflags |= O_RDWR;
break;
}
if (fmode & FMODE_APPEND) {
oflags |= O_APPEND;
}
if (fmode & FMODE_TRUNC) {
oflags |= O_TRUNC;
}
if (fmode & FMODE_CREATE) {
oflags |= O_CREAT;
}
if (fmode & FMODE_EXCL) {
oflags |= O_EXCL;
}
#ifdef O_BINARY
if (fmode & FMODE_BINMODE) {
oflags |= O_BINARY;
}
#endif
return oflags;
}
int
rb_io_modestr_oflags(const char *modestr)
{
return rb_io_fmode_oflags(rb_io_modestr_fmode(modestr));
}
static const char*
rb_io_oflags_modestr(int oflags)
{
#ifdef O_BINARY
# define MODE_BINARY(a,b) ((oflags & O_BINARY) ? (b) : (a))
#else
# define MODE_BINARY(a,b) (a)
#endif
int accmode;
if (oflags & O_EXCL) {
rb_raise(rb_eArgError, "exclusive access mode is not supported");
}
accmode = oflags & (O_RDONLY|O_WRONLY|O_RDWR);
if (oflags & O_APPEND) {
if (accmode == O_WRONLY) {
return MODE_BINARY("a", "ab");
}
if (accmode == O_RDWR) {
return MODE_BINARY("a+", "ab+");
}
}
switch (accmode) {
default:
rb_raise(rb_eArgError, "invalid access oflags 0x%x", oflags);
case O_RDONLY:
return MODE_BINARY("r", "rb");
case O_WRONLY:
return MODE_BINARY("w", "wb");
case O_RDWR:
if (oflags & O_TRUNC) {
return MODE_BINARY("w+", "wb+");
}
return MODE_BINARY("r+", "rb+");
}
}
/*
* Convert external/internal encodings to enc/enc2
* NULL => use default encoding
* Qnil => no encoding specified (internal only)
*/
static void
rb_io_ext_int_to_encs(rb_encoding *ext, rb_encoding *intern, rb_encoding **enc, rb_encoding **enc2, int fmode)
{
int default_ext = 0;
if (ext == NULL) {
ext = rb_default_external_encoding();
default_ext = 1;
}
if (rb_is_ascii8bit_enc(ext)) {
/* If external is ASCII-8BIT, no transcoding */
intern = NULL;
}
else if (intern == NULL) {
intern = rb_default_internal_encoding();
}
if (intern == NULL || intern == (rb_encoding *)Qnil ||
(!(fmode & FMODE_SETENC_BY_BOM) && (intern == ext))) {
/* No internal encoding => use external + no transcoding */
*enc = (default_ext && intern != ext) ? NULL : ext;
*enc2 = NULL;
}
else {
*enc = intern;
*enc2 = ext;
}
}
static void
unsupported_encoding(const char *name, rb_encoding *enc)
{
rb_enc_warn(enc, "Unsupported encoding %s ignored", name);
}
static void
parse_mode_enc(const char *estr, rb_encoding *estr_enc,
rb_encoding **enc_p, rb_encoding **enc2_p, int *fmode_p)
{
const char *p;
char encname[ENCODING_MAXNAMELEN+1];
int idx, idx2;
int fmode = fmode_p ? *fmode_p : 0;
rb_encoding *ext_enc, *int_enc;
long len;
/* parse estr as "enc" or "enc2:enc" or "enc:-" */
p = strrchr(estr, ':');
len = p ? (p++ - estr) : (long)strlen(estr);
if ((fmode & FMODE_SETENC_BY_BOM) || io_encname_bom_p(estr, len)) {
estr += bom_prefix_len;
len -= bom_prefix_len;
if (!STRNCASECMP(estr, utf_prefix, utf_prefix_len)) {
fmode |= FMODE_SETENC_BY_BOM;
}
else {
rb_enc_warn(estr_enc, "BOM with non-UTF encoding %s is nonsense", estr);
fmode &= ~FMODE_SETENC_BY_BOM;
}
}
if (len == 0 || len > ENCODING_MAXNAMELEN) {
idx = -1;
}
else {
if (p) {
memcpy(encname, estr, len);
encname[len] = '\0';
estr = encname;
}
idx = rb_enc_find_index(estr);
}
if (fmode_p) *fmode_p = fmode;
if (idx >= 0)
ext_enc = rb_enc_from_index(idx);
else {
if (idx != -2)
unsupported_encoding(estr, estr_enc);
ext_enc = NULL;
}
int_enc = NULL;
if (p) {
if (*p == '-' && *(p+1) == '\0') {
/* Special case - "-" => no transcoding */
int_enc = (rb_encoding *)Qnil;
}
else {
idx2 = rb_enc_find_index(p);
if (idx2 < 0)
unsupported_encoding(p, estr_enc);
else if (!(fmode & FMODE_SETENC_BY_BOM) && (idx2 == idx)) {
int_enc = (rb_encoding *)Qnil;
}
else
int_enc = rb_enc_from_index(idx2);
}
}
rb_io_ext_int_to_encs(ext_enc, int_enc, enc_p, enc2_p, fmode);
}
int
rb_io_extract_encoding_option(VALUE opt, rb_encoding **enc_p, rb_encoding **enc2_p, int *fmode_p)
{
VALUE encoding=Qnil, extenc=Qundef, intenc=Qundef, tmp;
int extracted = 0;
rb_encoding *extencoding = NULL;
rb_encoding *intencoding = NULL;
if (!NIL_P(opt)) {
VALUE v;
v = rb_hash_lookup2(opt, sym_encoding, Qnil);
if (v != Qnil) encoding = v;
v = rb_hash_lookup2(opt, sym_extenc, Qundef);
if (v != Qnil) extenc = v;
v = rb_hash_lookup2(opt, sym_intenc, Qundef);
if (!UNDEF_P(v)) intenc = v;
}
if ((!UNDEF_P(extenc) || !UNDEF_P(intenc)) && !NIL_P(encoding)) {
if (!NIL_P(ruby_verbose)) {
int idx = rb_to_encoding_index(encoding);
if (idx >= 0) encoding = rb_enc_from_encoding(rb_enc_from_index(idx));
rb_warn("Ignoring encoding parameter '%"PRIsVALUE"': %s_encoding is used",
encoding, UNDEF_P(extenc) ? "internal" : "external");
}
encoding = Qnil;
}
if (!UNDEF_P(extenc) && !NIL_P(extenc)) {
extencoding = rb_to_encoding(extenc);
}
if (!UNDEF_P(intenc)) {
if (NIL_P(intenc)) {
/* internal_encoding: nil => no transcoding */
intencoding = (rb_encoding *)Qnil;
}
else if (!NIL_P(tmp = rb_check_string_type(intenc))) {
char *p = StringValueCStr(tmp);
if (*p == '-' && *(p+1) == '\0') {
/* Special case - "-" => no transcoding */
intencoding = (rb_encoding *)Qnil;
}
else {
intencoding = rb_to_encoding(intenc);
}
}
else {
intencoding = rb_to_encoding(intenc);
}
if (extencoding == intencoding) {
intencoding = (rb_encoding *)Qnil;
}
}
if (!NIL_P(encoding)) {
extracted = 1;
if (!NIL_P(tmp = rb_check_string_type(encoding))) {
parse_mode_enc(StringValueCStr(tmp), rb_enc_get(tmp),
enc_p, enc2_p, fmode_p);
}
else {
rb_io_ext_int_to_encs(rb_to_encoding(encoding), NULL, enc_p, enc2_p, 0);
}
}
else if (!UNDEF_P(extenc) || !UNDEF_P(intenc)) {
extracted = 1;
rb_io_ext_int_to_encs(extencoding, intencoding, enc_p, enc2_p, 0);
}
return extracted;
}
static void
validate_enc_binmode(int *fmode_p, int ecflags, rb_encoding *enc, rb_encoding *enc2)
{
int fmode = *fmode_p;
if ((fmode & FMODE_READABLE) &&
!enc2 &&
!(fmode & FMODE_BINMODE) &&
!rb_enc_asciicompat(enc ? enc : rb_default_external_encoding()))
rb_raise(rb_eArgError, "ASCII incompatible encoding needs binmode");
if ((fmode & FMODE_BINMODE) && (ecflags & ECONV_NEWLINE_DECORATOR_MASK)) {
rb_raise(rb_eArgError, "newline decorator with binary mode");
}
if (!(fmode & FMODE_BINMODE) &&
(DEFAULT_TEXTMODE || (ecflags & ECONV_NEWLINE_DECORATOR_MASK))) {
fmode |= FMODE_TEXTMODE;
*fmode_p = fmode;
}
#if !DEFAULT_TEXTMODE
else if (!(ecflags & ECONV_NEWLINE_DECORATOR_MASK)) {
fmode &= ~FMODE_TEXTMODE;
*fmode_p = fmode;
}
#endif
}
static void
extract_binmode(VALUE opthash, int *fmode)
{
if (!NIL_P(opthash)) {
VALUE v;
v = rb_hash_aref(opthash, sym_textmode);
if (!NIL_P(v)) {
if (*fmode & FMODE_TEXTMODE)
rb_raise(rb_eArgError, "textmode specified twice");
if (*fmode & FMODE_BINMODE)
rb_raise(rb_eArgError, "both textmode and binmode specified");
if (RTEST(v))
*fmode |= FMODE_TEXTMODE;
}
v = rb_hash_aref(opthash, sym_binmode);
if (!NIL_P(v)) {
if (*fmode & FMODE_BINMODE)
rb_raise(rb_eArgError, "binmode specified twice");
if (*fmode & FMODE_TEXTMODE)
rb_raise(rb_eArgError, "both textmode and binmode specified");
if (RTEST(v))
*fmode |= FMODE_BINMODE;
}
if ((*fmode & FMODE_BINMODE) && (*fmode & FMODE_TEXTMODE))
rb_raise(rb_eArgError, "both textmode and binmode specified");
}
}
void
rb_io_extract_modeenc(VALUE *vmode_p, VALUE *vperm_p, VALUE opthash,
int *oflags_p, int *fmode_p, struct rb_io_encoding *convconfig_p)
{
VALUE vmode;
int oflags, fmode;
rb_encoding *enc, *enc2;
int ecflags;
VALUE ecopts;
int has_enc = 0, has_vmode = 0;
VALUE intmode;
vmode = *vmode_p;
/* Set to defaults */
rb_io_ext_int_to_encs(NULL, NULL, &enc, &enc2, 0);
vmode_handle:
if (NIL_P(vmode)) {
fmode = FMODE_READABLE;
oflags = O_RDONLY;
}
else if (!NIL_P(intmode = rb_check_to_integer(vmode, "to_int"))) {
vmode = intmode;
oflags = NUM2INT(intmode);
fmode = rb_io_oflags_fmode(oflags);
}
else {
const char *p;
StringValue(vmode);
p = StringValueCStr(vmode);
fmode = rb_io_modestr_fmode(p);
oflags = rb_io_fmode_oflags(fmode);
p = strchr(p, ':');
if (p) {
has_enc = 1;
parse_mode_enc(p+1, rb_enc_get(vmode), &enc, &enc2, &fmode);
}
else {
rb_encoding *e;
e = (fmode & FMODE_BINMODE) ? rb_ascii8bit_encoding() : NULL;
rb_io_ext_int_to_encs(e, NULL, &enc, &enc2, fmode);
}
}
if (NIL_P(opthash)) {
ecflags = (fmode & FMODE_READABLE) ?
MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR,
0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0;
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
ecflags |= (fmode & FMODE_WRITABLE) ?
MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE,
0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0;
#endif
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags);
ecopts = Qnil;
if (fmode & FMODE_BINMODE) {
#ifdef O_BINARY
oflags |= O_BINARY;
#endif
if (!has_enc)
rb_io_ext_int_to_encs(rb_ascii8bit_encoding(), NULL, &enc, &enc2, fmode);
}
#if DEFAULT_TEXTMODE
else if (NIL_P(vmode)) {
fmode |= DEFAULT_TEXTMODE;
}
#endif
}
else {
VALUE v;
if (!has_vmode) {
v = rb_hash_aref(opthash, sym_mode);
if (!NIL_P(v)) {
if (!NIL_P(vmode)) {
rb_raise(rb_eArgError, "mode specified twice");
}
has_vmode = 1;
vmode = v;
goto vmode_handle;
}
}
v = rb_hash_aref(opthash, sym_flags);
if (!NIL_P(v)) {
v = rb_to_int(v);
oflags |= NUM2INT(v);
vmode = INT2NUM(oflags);
fmode = rb_io_oflags_fmode(oflags);
}
extract_binmode(opthash, &fmode);
if (fmode & FMODE_BINMODE) {
#ifdef O_BINARY
oflags |= O_BINARY;
#endif
if (!has_enc)
rb_io_ext_int_to_encs(rb_ascii8bit_encoding(), NULL, &enc, &enc2, fmode);
}
#if DEFAULT_TEXTMODE
else if (NIL_P(vmode)) {
fmode |= DEFAULT_TEXTMODE;
}
#endif
v = rb_hash_aref(opthash, sym_perm);
if (!NIL_P(v)) {
if (vperm_p) {
if (!NIL_P(*vperm_p)) {
rb_raise(rb_eArgError, "perm specified twice");
}
*vperm_p = v;
}
else {
/* perm no use, just ignore */
}
}
ecflags = (fmode & FMODE_READABLE) ?
MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR,
0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0;
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
ecflags |= (fmode & FMODE_WRITABLE) ?
MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE,
0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0;
#endif
if (rb_io_extract_encoding_option(opthash, &enc, &enc2, &fmode)) {
if (has_enc) {
rb_raise(rb_eArgError, "encoding specified twice");
}
}
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags);
ecflags = rb_econv_prepare_options(opthash, &ecopts, ecflags);
}
validate_enc_binmode(&fmode, ecflags, enc, enc2);
*vmode_p = vmode;
*oflags_p = oflags;
*fmode_p = fmode;
convconfig_p->enc = enc;
convconfig_p->enc2 = enc2;
convconfig_p->ecflags = ecflags;
convconfig_p->ecopts = ecopts;
}
struct sysopen_struct {
VALUE fname;
int oflags;
mode_t perm;
};
static void *
sysopen_func(void *ptr)
{
const struct sysopen_struct *data = ptr;
const char *fname = RSTRING_PTR(data->fname);
return (void *)(VALUE)rb_cloexec_open(fname, data->oflags, data->perm);
}
static inline int
rb_sysopen_internal(struct sysopen_struct *data)
{
int fd;
do {
fd = IO_WITHOUT_GVL_INT(sysopen_func, data);
} while (fd < 0 && errno == EINTR);
if (0 <= fd)
rb_update_max_fd(fd);
return fd;
}
static int
rb_sysopen(VALUE fname, int oflags, mode_t perm)
{
int fd = -1;
struct sysopen_struct data;
data.fname = rb_str_encode_ospath(fname);
StringValueCStr(data.fname);
data.oflags = oflags;
data.perm = perm;
TRY_WITH_GC((fd = rb_sysopen_internal(&data)) >= 0) {
rb_syserr_fail_path(first_errno, fname);
}
return fd;
}
static inline FILE *
fdopen_internal(int fd, const char *modestr)
{
FILE *file;
#if defined(__sun)
errno = 0;
#endif
file = fdopen(fd, modestr);
if (!file) {
#ifdef _WIN32
if (errno == 0) errno = EINVAL;
#elif defined(__sun)
if (errno == 0) errno = EMFILE;
#endif
}
return file;
}
FILE *
rb_fdopen(int fd, const char *modestr)
{
FILE *file = 0;
TRY_WITH_GC((file = fdopen_internal(fd, modestr)) != 0) {
rb_syserr_fail(first_errno, 0);
}
/* xxx: should be _IONBF? A buffer in FILE may have trouble. */
#ifdef USE_SETVBUF
if (setvbuf(file, NULL, _IOFBF, 0) != 0)
rb_warn("setvbuf() can't be honoured (fd=%d)", fd);
#endif
return file;
}
static int
io_check_tty(rb_io_t *fptr)
{
int t = isatty(fptr->fd);
if (t)
fptr->mode |= FMODE_TTY|FMODE_DUPLEX;
return t;
}
static VALUE rb_io_internal_encoding(VALUE);
static void io_encoding_set(rb_io_t *, VALUE, VALUE, VALUE);
static int
io_strip_bom(VALUE io)
{
VALUE b1, b2, b3, b4;
rb_io_t *fptr;
GetOpenFile(io, fptr);
if (!(fptr->mode & FMODE_READABLE)) return 0;
if (NIL_P(b1 = rb_io_getbyte(io))) return 0;
switch (b1) {
case INT2FIX(0xEF):
if (NIL_P(b2 = rb_io_getbyte(io))) break;
if (b2 == INT2FIX(0xBB) && !NIL_P(b3 = rb_io_getbyte(io))) {
if (b3 == INT2FIX(0xBF)) {
return rb_utf8_encindex();
}
rb_io_ungetbyte(io, b3);
}
rb_io_ungetbyte(io, b2);
break;
case INT2FIX(0xFE):
if (NIL_P(b2 = rb_io_getbyte(io))) break;
if (b2 == INT2FIX(0xFF)) {
return ENCINDEX_UTF_16BE;
}
rb_io_ungetbyte(io, b2);
break;
case INT2FIX(0xFF):
if (NIL_P(b2 = rb_io_getbyte(io))) break;
if (b2 == INT2FIX(0xFE)) {
b3 = rb_io_getbyte(io);
if (b3 == INT2FIX(0) && !NIL_P(b4 = rb_io_getbyte(io))) {
if (b4 == INT2FIX(0)) {
return ENCINDEX_UTF_32LE;
}
rb_io_ungetbyte(io, b4);
}
rb_io_ungetbyte(io, b3);
return ENCINDEX_UTF_16LE;
}
rb_io_ungetbyte(io, b2);
break;
case INT2FIX(0):
if (NIL_P(b2 = rb_io_getbyte(io))) break;
if (b2 == INT2FIX(0) && !NIL_P(b3 = rb_io_getbyte(io))) {
if (b3 == INT2FIX(0xFE) && !NIL_P(b4 = rb_io_getbyte(io))) {
if (b4 == INT2FIX(0xFF)) {
return ENCINDEX_UTF_32BE;
}
rb_io_ungetbyte(io, b4);
}
rb_io_ungetbyte(io, b3);
}
rb_io_ungetbyte(io, b2);
break;
}
rb_io_ungetbyte(io, b1);
return 0;
}
static rb_encoding *
io_set_encoding_by_bom(VALUE io)
{
int idx = io_strip_bom(io);
rb_io_t *fptr;
rb_encoding *extenc = NULL;
GetOpenFile(io, fptr);
if (idx) {
extenc = rb_enc_from_index(idx);
io_encoding_set(fptr, rb_enc_from_encoding(extenc),
rb_io_internal_encoding(io), Qnil);
}
else {
fptr->encs.enc2 = NULL;
}
return extenc;
}
static VALUE
rb_file_open_generic(VALUE io, VALUE filename, int oflags, int fmode,
const struct rb_io_encoding *convconfig, mode_t perm)
{
VALUE pathv;
rb_io_t *fptr;
struct rb_io_encoding cc;
if (!convconfig) {
/* Set to default encodings */
rb_io_ext_int_to_encs(NULL, NULL, &cc.enc, &cc.enc2, fmode);
cc.ecflags = 0;
cc.ecopts = Qnil;
convconfig = &cc;
}
validate_enc_binmode(&fmode, convconfig->ecflags,
convconfig->enc, convconfig->enc2);
MakeOpenFile(io, fptr);
fptr->mode = fmode;
fptr->encs = *convconfig;
pathv = rb_str_new_frozen(filename);
#ifdef O_TMPFILE
if (!(oflags & O_TMPFILE)) {
fptr->pathv = pathv;
}
#else
fptr->pathv = pathv;
#endif
fptr->fd = rb_sysopen(pathv, oflags, perm);
io_check_tty(fptr);
if (fmode & FMODE_SETENC_BY_BOM) io_set_encoding_by_bom(io);
return io;
}
static VALUE
rb_file_open_internal(VALUE io, VALUE filename, const char *modestr)
{
int fmode = rb_io_modestr_fmode(modestr);
const char *p = strchr(modestr, ':');
struct rb_io_encoding convconfig;
if (p) {
parse_mode_enc(p+1, rb_usascii_encoding(),
&convconfig.enc, &convconfig.enc2, &fmode);
}
else {
rb_encoding *e;
/* Set to default encodings */
e = (fmode & FMODE_BINMODE) ? rb_ascii8bit_encoding() : NULL;
rb_io_ext_int_to_encs(e, NULL, &convconfig.enc, &convconfig.enc2, fmode);
}
convconfig.ecflags = (fmode & FMODE_READABLE) ?
MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR,
0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0;
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
convconfig.ecflags |= (fmode & FMODE_WRITABLE) ?
MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE,
0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0;
#endif
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(convconfig.enc2, convconfig.ecflags);
convconfig.ecopts = Qnil;
return rb_file_open_generic(io, filename,
rb_io_fmode_oflags(fmode),
fmode,
&convconfig,
0666);
}
VALUE
rb_file_open_str(VALUE fname, const char *modestr)
{
FilePathValue(fname);
return rb_file_open_internal(io_alloc(rb_cFile), fname, modestr);
}
VALUE
rb_file_open(const char *fname, const char *modestr)
{
return rb_file_open_internal(io_alloc(rb_cFile), rb_str_new_cstr(fname), modestr);
}
#if defined(__CYGWIN__) || !defined(HAVE_WORKING_FORK)
static struct pipe_list {
rb_io_t *fptr;
struct pipe_list *next;
} *pipe_list;
static void
pipe_add_fptr(rb_io_t *fptr)
{
struct pipe_list *list;
list = ALLOC(struct pipe_list);
list->fptr = fptr;
list->next = pipe_list;
pipe_list = list;
}
static void
pipe_del_fptr(rb_io_t *fptr)
{
struct pipe_list **prev = &pipe_list;
struct pipe_list *tmp;
while ((tmp = *prev) != 0) {
if (tmp->fptr == fptr) {
*prev = tmp->next;
free(tmp);
return;
}
prev = &tmp->next;
}
}
#if defined (_WIN32) || defined(__CYGWIN__)
static void
pipe_atexit(void)
{
struct pipe_list *list = pipe_list;
struct pipe_list *tmp;
while (list) {
tmp = list->next;
rb_io_fptr_finalize(list->fptr);
list = tmp;
}
}
#endif
static void
pipe_finalize(rb_io_t *fptr, int noraise)
{
#if !defined(HAVE_WORKING_FORK) && !defined(_WIN32)
int status = 0;
if (fptr->stdio_file) {
status = pclose(fptr->stdio_file);
}
fptr->fd = -1;
fptr->stdio_file = 0;
rb_last_status_set(status, fptr->pid);
#else
fptr_finalize(fptr, noraise);
#endif
pipe_del_fptr(fptr);
}
#endif
static void
fptr_copy_finalizer(rb_io_t *fptr, const rb_io_t *orig)
{
#if defined(__CYGWIN__) || !defined(HAVE_WORKING_FORK)
void (*const old_finalize)(struct rb_io*,int) = fptr->finalize;
if (old_finalize == orig->finalize) return;
#endif
fptr->finalize = orig->finalize;
#if defined(__CYGWIN__) || !defined(HAVE_WORKING_FORK)
if (old_finalize != pipe_finalize) {
struct pipe_list *list;
for (list = pipe_list; list; list = list->next) {
if (list->fptr == fptr) break;
}
if (!list) pipe_add_fptr(fptr);
}
else {
pipe_del_fptr(fptr);
}
#endif
}
void
rb_io_synchronized(rb_io_t *fptr)
{
rb_io_check_initialized(fptr);
fptr->mode |= FMODE_SYNC;
}
void
rb_io_unbuffered(rb_io_t *fptr)
{
rb_io_synchronized(fptr);
}
int
rb_pipe(int *pipes)
{
int ret;
TRY_WITH_GC((ret = rb_cloexec_pipe(pipes)) >= 0);
if (ret == 0) {
rb_update_max_fd(pipes[0]);
rb_update_max_fd(pipes[1]);
}
return ret;
}
#ifdef _WIN32
#define HAVE_SPAWNV 1
#define spawnv(mode, cmd, args) rb_w32_uaspawn((mode), (cmd), (args))
#define spawn(mode, cmd) rb_w32_uspawn((mode), (cmd), 0)
#endif
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
struct popen_arg {
VALUE execarg_obj;
struct rb_execarg *eargp;
int modef;
int pair[2];
int write_pair[2];
};
#endif
#ifdef HAVE_WORKING_FORK
# ifndef __EMSCRIPTEN__
static void
popen_redirect(struct popen_arg *p)
{
if ((p->modef & FMODE_READABLE) && (p->modef & FMODE_WRITABLE)) {
close(p->write_pair[1]);
if (p->write_pair[0] != 0) {
dup2(p->write_pair[0], 0);
close(p->write_pair[0]);
}
close(p->pair[0]);
if (p->pair[1] != 1) {
dup2(p->pair[1], 1);
close(p->pair[1]);
}
}
else if (p->modef & FMODE_READABLE) {
close(p->pair[0]);
if (p->pair[1] != 1) {
dup2(p->pair[1], 1);
close(p->pair[1]);
}
}
else {
close(p->pair[1]);
if (p->pair[0] != 0) {
dup2(p->pair[0], 0);
close(p->pair[0]);
}
}
}
# endif
#if defined(__linux__)
/* Linux /proc/self/status contains a line: "FDSize:\t<nnn>\n"
* Since /proc may not be available, linux_get_maxfd is just a hint.
* This function, linux_get_maxfd, must be async-signal-safe.
* I.e. opendir() is not usable.
*
* Note that memchr() and memcmp is *not* async-signal-safe in POSIX.
* However they are easy to re-implement in async-signal-safe manner.
* (Also note that there is missing/memcmp.c.)
*/
static int
linux_get_maxfd(void)
{
int fd;
char buf[4096], *p, *np, *e;
ssize_t ss;
fd = rb_cloexec_open("/proc/self/status", O_RDONLY|O_NOCTTY, 0);
if (fd < 0) return fd;
ss = read(fd, buf, sizeof(buf));
if (ss < 0) goto err;
p = buf;
e = buf + ss;
while ((int)sizeof("FDSize:\t0\n")-1 <= e-p &&
(np = memchr(p, '\n', e-p)) != NULL) {
if (memcmp(p, "FDSize:", sizeof("FDSize:")-1) == 0) {
int fdsize;
p += sizeof("FDSize:")-1;
*np = '\0';
fdsize = (int)ruby_strtoul(p, (char **)NULL, 10);
close(fd);
return fdsize;
}
p = np+1;
}
/* fall through */
err:
close(fd);
return (int)ss;
}
#endif
/* This function should be async-signal-safe. */
void
rb_close_before_exec(int lowfd, int maxhint, VALUE noclose_fds)
{
#if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC)
int fd, ret;
int max = (int)max_file_descriptor;
# ifdef F_MAXFD
/* F_MAXFD is available since NetBSD 2.0. */
ret = fcntl(0, F_MAXFD); /* async-signal-safe */
if (ret != -1)
maxhint = max = ret;
# elif defined(__linux__)
ret = linux_get_maxfd();
if (maxhint < ret)
maxhint = ret;
/* maxhint = max = ret; if (ret == -1) abort(); // test */
# endif
if (max < maxhint)
max = maxhint;
for (fd = lowfd; fd <= max; fd++) {
if (!NIL_P(noclose_fds) &&
RTEST(rb_hash_lookup(noclose_fds, INT2FIX(fd)))) /* async-signal-safe */
continue;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret != -1 && !(ret & FD_CLOEXEC)) {
fcntl(fd, F_SETFD, ret|FD_CLOEXEC); /* async-signal-safe */
}
# define CONTIGUOUS_CLOSED_FDS 20
if (ret != -1) {
if (max < fd + CONTIGUOUS_CLOSED_FDS)
max = fd + CONTIGUOUS_CLOSED_FDS;
}
}
#endif
}
# ifndef __EMSCRIPTEN__
static int
popen_exec(void *pp, char *errmsg, size_t errmsg_len)
{
struct popen_arg *p = (struct popen_arg*)pp;
return rb_exec_async_signal_safe(p->eargp, errmsg, errmsg_len);
}
# endif
#endif
#if (defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)) && !defined __EMSCRIPTEN__
static VALUE
rb_execarg_fixup_v(VALUE execarg_obj)
{
rb_execarg_parent_start(execarg_obj);
return Qnil;
}
#else
char *rb_execarg_commandline(const struct rb_execarg *eargp, VALUE *prog);
#endif
#ifndef __EMSCRIPTEN__
static VALUE
pipe_open(VALUE execarg_obj, const char *modestr, int fmode,
const struct rb_io_encoding *convconfig)
{
struct rb_execarg *eargp = NIL_P(execarg_obj) ? NULL : rb_execarg_get(execarg_obj);
VALUE prog = eargp ? (eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name) : Qfalse ;
rb_pid_t pid = 0;
rb_io_t *fptr;
VALUE port;
rb_io_t *write_fptr;
VALUE write_port;
#if defined(HAVE_WORKING_FORK)
int status;
char errmsg[80] = { '\0' };
#endif
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
int state;
struct popen_arg arg;
#endif
int e = 0;
#if defined(HAVE_SPAWNV)
# if defined(HAVE_SPAWNVE)
# define DO_SPAWN(cmd, args, envp) ((args) ? \
spawnve(P_NOWAIT, (cmd), (args), (envp)) : \
spawne(P_NOWAIT, (cmd), (envp)))
# else
# define DO_SPAWN(cmd, args, envp) ((args) ? \
spawnv(P_NOWAIT, (cmd), (args)) : \
spawn(P_NOWAIT, (cmd)))
# endif
# if !defined(HAVE_WORKING_FORK)
char **args = NULL;
# if defined(HAVE_SPAWNVE)
char **envp = NULL;
# endif
# endif
#endif
#if !defined(HAVE_WORKING_FORK)
struct rb_execarg sarg, *sargp = &sarg;
#endif
FILE *fp = 0;
int fd = -1;
int write_fd = -1;
#if !defined(HAVE_WORKING_FORK)
const char *cmd = 0;
if (prog)
cmd = StringValueCStr(prog);
#endif
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
arg.execarg_obj = execarg_obj;
arg.eargp = eargp;
arg.modef = fmode;
arg.pair[0] = arg.pair[1] = -1;
arg.write_pair[0] = arg.write_pair[1] = -1;
# if !defined(HAVE_WORKING_FORK)
if (eargp && !eargp->use_shell) {
args = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str);
}
# endif
switch (fmode & (FMODE_READABLE|FMODE_WRITABLE)) {
case FMODE_READABLE|FMODE_WRITABLE:
if (rb_pipe(arg.write_pair) < 0)
rb_sys_fail_str(prog);
if (rb_pipe(arg.pair) < 0) {
e = errno;
close(arg.write_pair[0]);
close(arg.write_pair[1]);
rb_syserr_fail_str(e, prog);
}
if (eargp) {
rb_execarg_addopt(execarg_obj, INT2FIX(0), INT2FIX(arg.write_pair[0]));
rb_execarg_addopt(execarg_obj, INT2FIX(1), INT2FIX(arg.pair[1]));
}
break;
case FMODE_READABLE:
if (rb_pipe(arg.pair) < 0)
rb_sys_fail_str(prog);
if (eargp)
rb_execarg_addopt(execarg_obj, INT2FIX(1), INT2FIX(arg.pair[1]));
break;
case FMODE_WRITABLE:
if (rb_pipe(arg.pair) < 0)
rb_sys_fail_str(prog);
if (eargp)
rb_execarg_addopt(execarg_obj, INT2FIX(0), INT2FIX(arg.pair[0]));
break;
default:
rb_sys_fail_str(prog);
}
if (!NIL_P(execarg_obj)) {
rb_protect(rb_execarg_fixup_v, execarg_obj, &state);
if (state) {
if (0 <= arg.write_pair[0]) close(arg.write_pair[0]);
if (0 <= arg.write_pair[1]) close(arg.write_pair[1]);
if (0 <= arg.pair[0]) close(arg.pair[0]);
if (0 <= arg.pair[1]) close(arg.pair[1]);
rb_execarg_parent_end(execarg_obj);
rb_jump_tag(state);
}
# if defined(HAVE_WORKING_FORK)
pid = rb_fork_async_signal_safe(&status, popen_exec, &arg, arg.eargp->redirect_fds, errmsg, sizeof(errmsg));
# else
rb_execarg_run_options(eargp, sargp, NULL, 0);
# if defined(HAVE_SPAWNVE)
if (eargp->envp_str) envp = (char **)RSTRING_PTR(eargp->envp_str);
# endif
while ((pid = DO_SPAWN(cmd, args, envp)) < 0) {
/* exec failed */
switch (e = errno) {
case EAGAIN:
# if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
# endif
rb_thread_sleep(1);
continue;
}
break;
}
if (eargp)
rb_execarg_run_options(sargp, NULL, NULL, 0);
# endif
rb_execarg_parent_end(execarg_obj);
}
else {
# if defined(HAVE_WORKING_FORK)
pid = rb_call_proc__fork();
if (pid == 0) { /* child */
popen_redirect(&arg);
rb_io_synchronized(RFILE(orig_stdout)->fptr);
rb_io_synchronized(RFILE(orig_stderr)->fptr);
return Qnil;
}
# else
rb_notimplement();
# endif
}
/* parent */
if (pid < 0) {
# if defined(HAVE_WORKING_FORK)
e = errno;
# endif
close(arg.pair[0]);
close(arg.pair[1]);
if ((fmode & (FMODE_READABLE|FMODE_WRITABLE)) == (FMODE_READABLE|FMODE_WRITABLE)) {
close(arg.write_pair[0]);
close(arg.write_pair[1]);
}
# if defined(HAVE_WORKING_FORK)
if (errmsg[0])
rb_syserr_fail(e, errmsg);
# endif
rb_syserr_fail_str(e, prog);
}
if ((fmode & FMODE_READABLE) && (fmode & FMODE_WRITABLE)) {
close(arg.pair[1]);
fd = arg.pair[0];
close(arg.write_pair[0]);
write_fd = arg.write_pair[1];
}
else if (fmode & FMODE_READABLE) {
close(arg.pair[1]);
fd = arg.pair[0];
}
else {
close(arg.pair[0]);
fd = arg.pair[1];
}
#else
cmd = rb_execarg_commandline(eargp, &prog);
if (!NIL_P(execarg_obj)) {
rb_execarg_parent_start(execarg_obj);
rb_execarg_run_options(eargp, sargp, NULL, 0);
}
fp = popen(cmd, modestr);
e = errno;
if (eargp) {
rb_execarg_parent_end(execarg_obj);
rb_execarg_run_options(sargp, NULL, NULL, 0);
}
if (!fp) rb_syserr_fail_path(e, prog);
fd = fileno(fp);
#endif
port = io_alloc(rb_cIO);
MakeOpenFile(port, fptr);
fptr->fd = fd;
fptr->stdio_file = fp;
fptr->mode = fmode | FMODE_SYNC|FMODE_DUPLEX;
if (convconfig) {
fptr->encs = *convconfig;
#if RUBY_CRLF_ENVIRONMENT
if (fptr->encs.ecflags & ECONV_DEFAULT_NEWLINE_DECORATOR) {
fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
}
#endif
}
else {
if (NEED_NEWLINE_DECORATOR_ON_READ(fptr)) {
fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
}
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
if (NEED_NEWLINE_DECORATOR_ON_WRITE(fptr)) {
fptr->encs.ecflags |= TEXTMODE_NEWLINE_DECORATOR_ON_WRITE;
}
#endif
}
fptr->pid = pid;
if (0 <= write_fd) {
write_port = io_alloc(rb_cIO);
MakeOpenFile(write_port, write_fptr);
write_fptr->fd = write_fd;
write_fptr->mode = (fmode & ~FMODE_READABLE)| FMODE_SYNC|FMODE_DUPLEX;
fptr->mode &= ~FMODE_WRITABLE;
fptr->tied_io_for_writing = write_port;
rb_ivar_set(port, rb_intern("@tied_io_for_writing"), write_port);
}
#if defined (__CYGWIN__) || !defined(HAVE_WORKING_FORK)
fptr->finalize = pipe_finalize;
pipe_add_fptr(fptr);
#endif
return port;
}
#else
static VALUE
pipe_open(VALUE execarg_obj, const char *modestr, int fmode,
const struct rb_io_encoding *convconfig)
{
rb_raise(rb_eNotImpError, "popen() is not available");
}
#endif
static int
is_popen_fork(VALUE prog)
{
if (RSTRING_LEN(prog) == 1 && RSTRING_PTR(prog)[0] == '-') {
#if !defined(HAVE_WORKING_FORK)
rb_raise(rb_eNotImpError,
"fork() function is unimplemented on this machine");
#else
return TRUE;
#endif
}
return FALSE;
}
static VALUE
pipe_open_s(VALUE prog, const char *modestr, int fmode,
const struct rb_io_encoding *convconfig)
{
int argc = 1;
VALUE *argv = &prog;
VALUE execarg_obj = Qnil;
if (!is_popen_fork(prog))
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE);
return pipe_open(execarg_obj, modestr, fmode, convconfig);
}
static VALUE
pipe_close(VALUE io)
{
rb_io_t *fptr = io_close_fptr(io);
if (fptr) {
fptr_waitpid(fptr, rb_thread_to_be_killed(rb_thread_current()));
}
return Qnil;
}
static VALUE popen_finish(VALUE port, VALUE klass);
/*
* call-seq:
* IO.popen(env = {}, cmd, mode = 'r', **opts) -> io
* IO.popen(env = {}, cmd, mode = 'r', **opts) {|io| ... } -> object
*
* Executes the given command +cmd+ as a subprocess
* whose $stdin and $stdout are connected to a new stream +io+.
*
* This method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* If no block is given, returns the new stream,
* which depending on given +mode+ may be open for reading, writing, or both.
* The stream should be explicitly closed (eventually) to avoid resource leaks.
*
* If a block is given, the stream is passed to the block
* (again, open for reading, writing, or both);
* when the block exits, the stream is closed,
* and the block's value is assigned to global variable <tt>$?</tt> and returned.
*
* Optional argument +mode+ may be any valid \IO mode.
* See {Access Modes}[rdoc-ref:File@Access+Modes].
*
* Required argument +cmd+ determines which of the following occurs:
*
* - The process forks.
* - A specified program runs in a shell.
* - A specified program runs with specified arguments.
* - A specified program runs with specified arguments and a specified +argv0+.
*
* Each of these is detailed below.
*
* The optional hash argument +env+ specifies name/value pairs that are to be added
* to the environment variables for the subprocess:
*
* IO.popen({'FOO' => 'bar'}, 'ruby', 'r+') do |pipe|
* pipe.puts 'puts ENV["FOO"]'
* pipe.close_write
* pipe.gets
* end => "bar\n"
*
* Optional keyword arguments +opts+ specify:
*
* - {Open options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
* - Options for Kernel#spawn.
*
* <b>Forked \Process</b>
*
* When argument +cmd+ is the 1-character string <tt>'-'</tt>, causes the process to fork:
* IO.popen('-') do |pipe|
* if pipe
* $stderr.puts "In parent, child pid is #{pipe.pid}\n"
* else
* $stderr.puts "In child, pid is #{$$}\n"
* end
* end
*
* Output:
*
* In parent, child pid is 26253
* In child, pid is 26253
*
* Note that this is not supported on all platforms.
*
* <b>Shell Subprocess</b>
*
* When argument +cmd+ is a single string (but not <tt>'-'</tt>),
* the program named +cmd+ is run as a shell command:
*
* IO.popen('uname') do |pipe|
* pipe.readlines
* end
*
* Output:
*
* ["Linux\n"]
*
* Another example:
*
* IO.popen('/bin/sh', 'r+') do |pipe|
* pipe.puts('ls')
* pipe.close_write
* $stderr.puts pipe.readlines.size
* end
*
* Output:
*
* 213
*
* <b>Program Subprocess</b>
*
* When argument +cmd+ is an array of strings,
* the program named <tt>cmd[0]</tt> is run with all elements of +cmd+ as its arguments:
*
* IO.popen(['du', '..', '.']) do |pipe|
* $stderr.puts pipe.readlines.size
* end
*
* Output:
*
* 1111
*
* <b>Program Subprocess with <tt>argv0</tt></b>
*
* When argument +cmd+ is an array whose first element is a 2-element string array
* and whose remaining elements (if any) are strings:
*
* - <tt>cmd[0][0]</tt> (the first string in the nested array) is the name of a program that is run.
* - <tt>cmd[0][1]</tt> (the second string in the nested array) is set as the program's <tt>argv[0]</tt>.
* - <tt>cmd[1..-1]</tt> (the strings in the outer array) are the program's arguments.
*
* Example (sets <tt>$0</tt> to 'foo'):
*
* IO.popen([['/bin/sh', 'foo'], '-c', 'echo $0']).read # => "foo\n"
*
* <b>Some Special Examples</b>
*
* # Set IO encoding.
* IO.popen("nkf -e filename", :external_encoding=>"EUC-JP") {|nkf_io|
* euc_jp_string = nkf_io.read
* }
*
* # Merge standard output and standard error using Kernel#spawn option. See Kernel#spawn.
* IO.popen(["ls", "/", :err=>[:child, :out]]) do |io|
* ls_result_with_error = io.read
* end
*
* # Use mixture of spawn options and IO options.
* IO.popen(["ls", "/"], :err=>[:child, :out]) do |io|
* ls_result_with_error = io.read
* end
*
* f = IO.popen("uname")
* p f.readlines
* f.close
* puts "Parent is #{Process.pid}"
* IO.popen("date") {|f| puts f.gets }
* IO.popen("-") {|f| $stderr.puts "#{Process.pid} is here, f is #{f.inspect}"}
* p $?
* IO.popen(%w"sed -e s|^|<foo>| -e s&$&;zot;&", "r+") {|f|
* f.puts "bar"; f.close_write; puts f.gets
* }
*
* Output (from last section):
*
* ["Linux\n"]
* Parent is 21346
* Thu Jan 15 22:41:19 JST 2009
* 21346 is here, f is #<IO:fd 3>
* 21352 is here, f is nil
* #<Process::Status: pid 21352 exit 0>
* <foo>bar;zot;
*
* Raises exceptions that IO.pipe and Kernel.spawn raise.
*
*/
static VALUE
rb_io_s_popen(int argc, VALUE *argv, VALUE klass)
{
VALUE pname, pmode = Qnil, opt = Qnil, env = Qnil;
if (argc > 1 && !NIL_P(opt = rb_check_hash_type(argv[argc-1]))) --argc;
if (argc > 1 && !NIL_P(env = rb_check_hash_type(argv[0]))) --argc, ++argv;
switch (argc) {
case 2:
pmode = argv[1];
case 1:
pname = argv[0];
break;
default:
{
int ex = !NIL_P(opt);
rb_error_arity(argc + ex, 1 + ex, 2 + ex);
}
}
return popen_finish(rb_io_popen(pname, pmode, env, opt), klass);
}
VALUE
rb_io_popen(VALUE pname, VALUE pmode, VALUE env, VALUE opt)
{
const char *modestr;
VALUE tmp, execarg_obj = Qnil;
int oflags, fmode;
struct rb_io_encoding convconfig;
tmp = rb_check_array_type(pname);
if (!NIL_P(tmp)) {
long len = RARRAY_LEN(tmp);
#if SIZEOF_LONG > SIZEOF_INT
if (len > INT_MAX) {
rb_raise(rb_eArgError, "too many arguments");
}
#endif
execarg_obj = rb_execarg_new((int)len, RARRAY_CONST_PTR(tmp), FALSE, FALSE);
RB_GC_GUARD(tmp);
}
else {
StringValue(pname);
execarg_obj = Qnil;
if (!is_popen_fork(pname))
execarg_obj = rb_execarg_new(1, &pname, TRUE, FALSE);
}
if (!NIL_P(execarg_obj)) {
if (!NIL_P(opt))
opt = rb_execarg_extract_options(execarg_obj, opt);
if (!NIL_P(env))
rb_execarg_setenv(execarg_obj, env);
}
rb_io_extract_modeenc(&pmode, 0, opt, &oflags, &fmode, &convconfig);
modestr = rb_io_oflags_modestr(oflags);
return pipe_open(execarg_obj, modestr, fmode, &convconfig);
}
static VALUE
popen_finish(VALUE port, VALUE klass)
{
if (NIL_P(port)) {
/* child */
if (rb_block_given_p()) {
rb_yield(Qnil);
rb_io_flush(rb_ractor_stdout());
rb_io_flush(rb_ractor_stderr());
_exit(0);
}
return Qnil;
}
RBASIC_SET_CLASS(port, klass);
if (rb_block_given_p()) {
return rb_ensure(rb_yield, port, pipe_close, port);
}
return port;
}
#if defined(HAVE_WORKING_FORK) && !defined(__EMSCRIPTEN__)
struct popen_writer_arg {
char *const *argv;
struct popen_arg popen;
};
static int
exec_popen_writer(void *arg, char *errmsg, size_t buflen)
{
struct popen_writer_arg *pw = arg;
pw->popen.modef = FMODE_WRITABLE;
popen_redirect(&pw->popen);
execv(pw->argv[0], pw->argv);
strlcpy(errmsg, strerror(errno), buflen);
return -1;
}
#endif
FILE *
ruby_popen_writer(char *const *argv, rb_pid_t *pid)
{
#if (defined(HAVE_WORKING_FORK) && !defined(__EMSCRIPTEN__)) || defined(_WIN32)
# ifdef HAVE_WORKING_FORK
struct popen_writer_arg pw;
int *const write_pair = pw.popen.pair;
# else
int write_pair[2];
# endif
int result = rb_cloexec_pipe(write_pair);
*pid = -1;
if (result == 0) {
# ifdef HAVE_WORKING_FORK
pw.argv = argv;
int status;
char errmsg[80] = {'\0'};
*pid = rb_fork_async_signal_safe(&status, exec_popen_writer, &pw, Qnil, errmsg, sizeof(errmsg));
# else
*pid = rb_w32_uspawn_process(P_NOWAIT, argv[0], argv, write_pair[0], -1, -1, 0);
const char *errmsg = (*pid < 0) ? strerror(errno) : NULL;
# endif
close(write_pair[0]);
if (*pid < 0) {
close(write_pair[1]);
fprintf(stderr, "ruby_popen_writer(%s): %s\n", argv[0], errmsg);
}
else {
return fdopen(write_pair[1], "w");
}
}
#endif
return NULL;
}
static VALUE
rb_open_file(VALUE io, VALUE fname, VALUE vmode, VALUE vperm, VALUE opt)
{
struct rb_io_encoding convconfig;
int oflags, fmode;
mode_t perm;
FilePathValue(fname);
rb_io_extract_modeenc(&vmode, &vperm, opt, &oflags, &fmode, &convconfig);
perm = NIL_P(vperm) ? 0666 : NUM2MODET(vperm);
rb_file_open_generic(io, fname, oflags, fmode, &convconfig, perm);
return io;
}
/*
* Document-method: File::open
*
* call-seq:
* File.open(path, mode = 'r', perm = 0666, **opts) -> file
* File.open(path, mode = 'r', perm = 0666, **opts) {|f| ... } -> object
*
* Creates a new File object, via File.new with the given arguments.
*
* With no block given, returns the File object.
*
* With a block given, calls the block with the File object
* and returns the block's value.
*
*/
/*
* Document-method: IO::open
*
* call-seq:
* IO.open(fd, mode = 'r', **opts) -> io
* IO.open(fd, mode = 'r', **opts) {|io| ... } -> object
*
* Creates a new \IO object, via IO.new with the given arguments.
*
* With no block given, returns the \IO object.
*
* With a block given, calls the block with the \IO object
* and returns the block's value.
*
*/
static VALUE
rb_io_s_open(int argc, VALUE *argv, VALUE klass)
{
VALUE io = rb_class_new_instance_kw(argc, argv, klass, RB_PASS_CALLED_KEYWORDS);
if (rb_block_given_p()) {
return rb_ensure(rb_yield, io, io_close, io);
}
return io;
}
/*
* call-seq:
* IO.sysopen(path, mode = 'r', perm = 0666) -> integer
*
* Opens the file at the given path with the given mode and permissions;
* returns the integer file descriptor.
*
* If the file is to be readable, it must exist;
* if the file is to be writable and does not exist,
* it is created with the given permissions:
*
* File.write('t.tmp', '') # => 0
* IO.sysopen('t.tmp') # => 8
* IO.sysopen('t.tmp', 'w') # => 9
*
*
*/
static VALUE
rb_io_s_sysopen(int argc, VALUE *argv, VALUE _)
{
VALUE fname, vmode, vperm;
VALUE intmode;
int oflags, fd;
mode_t perm;
rb_scan_args(argc, argv, "12", &fname, &vmode, &vperm);
FilePathValue(fname);
if (NIL_P(vmode))
oflags = O_RDONLY;
else if (!NIL_P(intmode = rb_check_to_integer(vmode, "to_int")))
oflags = NUM2INT(intmode);
else {
StringValue(vmode);
oflags = rb_io_modestr_oflags(StringValueCStr(vmode));
}
if (NIL_P(vperm)) perm = 0666;
else perm = NUM2MODET(vperm);
RB_GC_GUARD(fname) = rb_str_new4(fname);
fd = rb_sysopen(fname, oflags, perm);
return INT2NUM(fd);
}
static VALUE
check_pipe_command(VALUE filename_or_command)
{
char *s = RSTRING_PTR(filename_or_command);
long l = RSTRING_LEN(filename_or_command);
char *e = s + l;
int chlen;
if (rb_enc_ascget(s, e, &chlen, rb_enc_get(filename_or_command)) == '|') {
VALUE cmd = rb_str_new(s+chlen, l-chlen);
return cmd;
}
return Qnil;
}
/*
* call-seq:
* open(path, mode = 'r', perm = 0666, **opts) -> io or nil
* open(path, mode = 'r', perm = 0666, **opts) {|io| ... } -> obj
*
* Creates an IO object connected to the given file.
*
* This method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* With no block given, file stream is returned:
*
* open('t.txt') # => #<File:t.txt>
*
* With a block given, calls the block with the open file stream,
* then closes the stream:
*
* open('t.txt') {|f| p f } # => #<File:t.txt (closed)>
*
* Output:
*
* #<File:t.txt>
*
* See File.open for details.
*
*/
static VALUE
rb_f_open(int argc, VALUE *argv, VALUE _)
{
ID to_open = 0;
int redirect = FALSE;
if (argc >= 1) {
CONST_ID(to_open, "to_open");
if (rb_respond_to(argv[0], to_open)) {
redirect = TRUE;
}
else {
VALUE tmp = argv[0];
FilePathValue(tmp);
if (NIL_P(tmp)) {
redirect = TRUE;
}
else {
VALUE cmd = check_pipe_command(tmp);
if (!NIL_P(cmd)) {
// TODO: when removed in 4.0, update command_injection.rdoc
rb_warn_deprecated_to_remove_at(4.0, "Calling Kernel#open with a leading '|'", "IO.popen");
argv[0] = cmd;
return rb_io_s_popen(argc, argv, rb_cIO);
}
}
}
}
if (redirect) {
VALUE io = rb_funcallv_kw(argv[0], to_open, argc-1, argv+1, RB_PASS_CALLED_KEYWORDS);
if (rb_block_given_p()) {
return rb_ensure(rb_yield, io, io_close, io);
}
return io;
}
return rb_io_s_open(argc, argv, rb_cFile);
}
static VALUE rb_io_open_generic(VALUE, VALUE, int, int, const struct rb_io_encoding *, mode_t);
static VALUE
rb_io_open(VALUE io, VALUE filename, VALUE vmode, VALUE vperm, VALUE opt)
{
int oflags, fmode;
struct rb_io_encoding convconfig;
mode_t perm;
rb_io_extract_modeenc(&vmode, &vperm, opt, &oflags, &fmode, &convconfig);
perm = NIL_P(vperm) ? 0666 : NUM2MODET(vperm);
return rb_io_open_generic(io, filename, oflags, fmode, &convconfig, perm);
}
static VALUE
rb_io_open_generic(VALUE klass, VALUE filename, int oflags, int fmode,
const struct rb_io_encoding *convconfig, mode_t perm)
{
VALUE cmd;
if (klass == rb_cIO && !NIL_P(cmd = check_pipe_command(filename))) {
// TODO: when removed in 4.0, update command_injection.rdoc
rb_warn_deprecated_to_remove_at(4.0, "IO process creation with a leading '|'", "IO.popen");
return pipe_open_s(cmd, rb_io_oflags_modestr(oflags), fmode, convconfig);
}
else {
return rb_file_open_generic(io_alloc(klass), filename,
oflags, fmode, convconfig, perm);
}
}
static VALUE
io_reopen(VALUE io, VALUE nfile)
{
rb_io_t *fptr, *orig;
int fd, fd2;
rb_off_t pos = 0;
nfile = rb_io_get_io(nfile);
GetOpenFile(io, fptr);
GetOpenFile(nfile, orig);
if (fptr == orig) return io;
if (RUBY_IO_EXTERNAL_P(fptr)) {
if ((fptr->stdio_file == stdin && !(orig->mode & FMODE_READABLE)) ||
(fptr->stdio_file == stdout && !(orig->mode & FMODE_WRITABLE)) ||
(fptr->stdio_file == stderr && !(orig->mode & FMODE_WRITABLE))) {
rb_raise(rb_eArgError,
"%s can't change access mode from \"%s\" to \"%s\"",
PREP_STDIO_NAME(fptr), rb_io_fmode_modestr(fptr->mode),
rb_io_fmode_modestr(orig->mode));
}
}
if (fptr->mode & FMODE_WRITABLE) {
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
}
else {
flush_before_seek(fptr);
}
if (orig->mode & FMODE_READABLE) {
pos = io_tell(orig);
}
if (orig->mode & FMODE_WRITABLE) {
if (io_fflush(orig) < 0)
rb_sys_fail_on_write(fptr);
}
/* copy rb_io_t structure */
fptr->mode = orig->mode | (fptr->mode & FMODE_EXTERNAL);
fptr->pid = orig->pid;
fptr->lineno = orig->lineno;
if (RTEST(orig->pathv)) fptr->pathv = orig->pathv;
else if (!RUBY_IO_EXTERNAL_P(fptr)) fptr->pathv = Qnil;
fptr_copy_finalizer(fptr, orig);
fd = fptr->fd;
fd2 = orig->fd;
if (fd != fd2) {
if (RUBY_IO_EXTERNAL_P(fptr) || fd <= 2 || !fptr->stdio_file) {
/* need to keep FILE objects of stdin, stdout and stderr */
if (rb_cloexec_dup2(fd2, fd) < 0)
rb_sys_fail_path(orig->pathv);
rb_update_max_fd(fd);
}
else {
fclose(fptr->stdio_file);
fptr->stdio_file = 0;
fptr->fd = -1;
if (rb_cloexec_dup2(fd2, fd) < 0)
rb_sys_fail_path(orig->pathv);
rb_update_max_fd(fd);
fptr->fd = fd;
}
rb_thread_fd_close(fd);
if ((orig->mode & FMODE_READABLE) && pos >= 0) {
if (io_seek(fptr, pos, SEEK_SET) < 0 && errno) {
rb_sys_fail_path(fptr->pathv);
}
if (io_seek(orig, pos, SEEK_SET) < 0 && errno) {
rb_sys_fail_path(orig->pathv);
}
}
}
if (fptr->mode & FMODE_BINMODE) {
rb_io_binmode(io);
}
RBASIC_SET_CLASS(io, rb_obj_class(nfile));
return io;
}
#ifdef _WIN32
int rb_freopen(VALUE fname, const char *mode, FILE *fp);
#else
static int
rb_freopen(VALUE fname, const char *mode, FILE *fp)
{
if (!freopen(RSTRING_PTR(fname), mode, fp)) {
RB_GC_GUARD(fname);
return errno;
}
return 0;
}
#endif
/*
* call-seq:
* reopen(other_io) -> self
* reopen(path, mode = 'r', **opts) -> self
*
* Reassociates the stream with another stream,
* which may be of a different class.
* This method may be used to redirect an existing stream
* to a new destination.
*
* With argument +other_io+ given, reassociates with that stream:
*
* # Redirect $stdin from a file.
* f = File.open('t.txt')
* $stdin.reopen(f)
* f.close
*
* # Redirect $stdout to a file.
* f = File.open('t.tmp', 'w')
* $stdout.reopen(f)
* f.close
*
* With argument +path+ given, reassociates with a new stream to that file path:
*
* $stdin.reopen('t.txt')
* $stdout.reopen('t.tmp', 'w')
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
*/
static VALUE
rb_io_reopen(int argc, VALUE *argv, VALUE file)
{
VALUE fname, nmode, opt;
int oflags;
rb_io_t *fptr;
if (rb_scan_args(argc, argv, "11:", &fname, &nmode, &opt) == 1) {
VALUE tmp = rb_io_check_io(fname);
if (!NIL_P(tmp)) {
return io_reopen(file, tmp);
}
}
FilePathValue(fname);
rb_io_taint_check(file);
fptr = RFILE(file)->fptr;
if (!fptr) {
fptr = RFILE(file)->fptr = ZALLOC(rb_io_t);
}
if (!NIL_P(nmode) || !NIL_P(opt)) {
int fmode;
struct rb_io_encoding convconfig;
rb_io_extract_modeenc(&nmode, 0, opt, &oflags, &fmode, &convconfig);
if (RUBY_IO_EXTERNAL_P(fptr) &&
((fptr->mode & FMODE_READWRITE) & (fmode & FMODE_READWRITE)) !=
(fptr->mode & FMODE_READWRITE)) {
rb_raise(rb_eArgError,
"%s can't change access mode from \"%s\" to \"%s\"",
PREP_STDIO_NAME(fptr), rb_io_fmode_modestr(fptr->mode),
rb_io_fmode_modestr(fmode));
}
fptr->mode = fmode;
fptr->encs = convconfig;
}
else {
oflags = rb_io_fmode_oflags(fptr->mode);
}
fptr->pathv = fname;
if (fptr->fd < 0) {
fptr->fd = rb_sysopen(fptr->pathv, oflags, 0666);
fptr->stdio_file = 0;
return file;
}
if (fptr->mode & FMODE_WRITABLE) {
if (io_fflush(fptr) < 0)
rb_sys_fail_on_write(fptr);
}
fptr->rbuf.off = fptr->rbuf.len = 0;
if (fptr->stdio_file) {
int e = rb_freopen(rb_str_encode_ospath(fptr->pathv),
rb_io_oflags_modestr(oflags),
fptr->stdio_file);
if (e) rb_syserr_fail_path(e, fptr->pathv);
fptr->fd = fileno(fptr->stdio_file);
rb_fd_fix_cloexec(fptr->fd);
#ifdef USE_SETVBUF
if (setvbuf(fptr->stdio_file, NULL, _IOFBF, 0) != 0)
rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv);
#endif
if (fptr->stdio_file == stderr) {
if (setvbuf(fptr->stdio_file, NULL, _IONBF, BUFSIZ) != 0)
rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv);
}
else if (fptr->stdio_file == stdout && isatty(fptr->fd)) {
if (setvbuf(fptr->stdio_file, NULL, _IOLBF, BUFSIZ) != 0)
rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv);
}
}
else {
int tmpfd = rb_sysopen(fptr->pathv, oflags, 0666);
int err = 0;
if (rb_cloexec_dup2(tmpfd, fptr->fd) < 0)
err = errno;
(void)close(tmpfd);
if (err) {
rb_syserr_fail_path(err, fptr->pathv);
}
}
return file;
}
/* :nodoc: */
static VALUE
rb_io_init_copy(VALUE dest, VALUE io)
{
rb_io_t *fptr, *orig;
int fd;
VALUE write_io;
rb_off_t pos;
io = rb_io_get_io(io);
if (!OBJ_INIT_COPY(dest, io)) return dest;
GetOpenFile(io, orig);
MakeOpenFile(dest, fptr);
rb_io_flush(io);
/* copy rb_io_t structure */
fptr->mode = orig->mode & ~FMODE_EXTERNAL;
fptr->encs = orig->encs;
fptr->pid = orig->pid;
fptr->lineno = orig->lineno;
fptr->timeout = orig->timeout;
if (!NIL_P(orig->pathv)) fptr->pathv = orig->pathv;
fptr_copy_finalizer(fptr, orig);
fd = ruby_dup(orig->fd);
fptr->fd = fd;
pos = io_tell(orig);
if (0 <= pos)
io_seek(fptr, pos, SEEK_SET);
if (fptr->mode & FMODE_BINMODE) {
rb_io_binmode(dest);
}
write_io = GetWriteIO(io);
if (io != write_io) {
write_io = rb_obj_dup(write_io);
fptr->tied_io_for_writing = write_io;
rb_ivar_set(dest, rb_intern("@tied_io_for_writing"), write_io);
}
return dest;
}
/*
* call-seq:
* printf(format_string, *objects) -> nil
*
* Formats and writes +objects+ to the stream.
*
* For details on +format_string+, see
* {Format Specifications}[rdoc-ref:format_specifications.rdoc].
*
*/
VALUE
rb_io_printf(int argc, const VALUE *argv, VALUE out)
{
rb_io_write(out, rb_f_sprintf(argc, argv));
return Qnil;
}
/*
* call-seq:
* printf(format_string, *objects) -> nil
* printf(io, format_string, *objects) -> nil
*
* Equivalent to:
*
* io.write(sprintf(format_string, *objects))
*
* For details on +format_string+, see
* {Format Specifications}[rdoc-ref:format_specifications.rdoc].
*
* With the single argument +format_string+, formats +objects+ into the string,
* then writes the formatted string to $stdout:
*
* printf('%4.4d %10s %2.2f', 24, 24, 24.0)
*
* Output (on $stdout):
*
* 0024 24 24.00#
*
* With arguments +io+ and +format_string+, formats +objects+ into the string,
* then writes the formatted string to +io+:
*
* printf($stderr, '%4.4d %10s %2.2f', 24, 24, 24.0)
*
* Output (on $stderr):
*
* 0024 24 24.00# => nil
*
* With no arguments, does nothing.
*
*/
static VALUE
rb_f_printf(int argc, VALUE *argv, VALUE _)
{
VALUE out;
if (argc == 0) return Qnil;
if (RB_TYPE_P(argv[0], T_STRING)) {
out = rb_ractor_stdout();
}
else {
out = argv[0];
argv++;
argc--;
}
rb_io_write(out, rb_f_sprintf(argc, argv));
return Qnil;
}
static void
deprecated_str_setter(VALUE val, ID id, VALUE *var)
{
rb_str_setter(val, id, &val);
if (!NIL_P(val)) {
rb_warn_deprecated("'%s'", NULL, rb_id2name(id));
}
*var = val;
}
/*
* call-seq:
* print(*objects) -> nil
*
* Writes the given objects to the stream; returns +nil+.
* Appends the output record separator <tt>$OUTPUT_RECORD_SEPARATOR</tt>
* (<tt>$\\</tt>), if it is not +nil+.
* See {Line IO}[rdoc-ref:IO@Line+IO].
*
* With argument +objects+ given, for each object:
*
* - Converts via its method +to_s+ if not a string.
* - Writes to the stream.
* - If not the last object, writes the output field separator
* <tt>$OUTPUT_FIELD_SEPARATOR</tt> (<tt>$,</tt>) if it is not +nil+.
*
* With default separators:
*
* f = File.open('t.tmp', 'w+')
* objects = [0, 0.0, Rational(0, 1), Complex(0, 0), :zero, 'zero']
* p $OUTPUT_RECORD_SEPARATOR
* p $OUTPUT_FIELD_SEPARATOR
* f.print(*objects)
* f.rewind
* p f.read
* f.close
*
* Output:
*
* nil
* nil
* "00.00/10+0izerozero"
*
* With specified separators:
*
* $\ = "\n"
* $, = ','
* f.rewind
* f.print(*objects)
* f.rewind
* p f.read
*
* Output:
*
* "0,0.0,0/1,0+0i,zero,zero\n"
*
* With no argument given, writes the content of <tt>$_</tt>
* (which is usually the most recent user input):
*
* f = File.open('t.tmp', 'w+')
* gets # Sets $_ to the most recent user input.
* f.print
* f.close
*
*/
VALUE
rb_io_print(int argc, const VALUE *argv, VALUE out)
{
int i;
VALUE line;
/* if no argument given, print `$_' */
if (argc == 0) {
argc = 1;
line = rb_lastline_get();
argv = &line;
}
if (argc > 1 && !NIL_P(rb_output_fs)) {
rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$, is set to non-nil value");
}
for (i=0; i<argc; i++) {
if (!NIL_P(rb_output_fs) && i>0) {
rb_io_write(out, rb_output_fs);
}
rb_io_write(out, argv[i]);
}
if (argc > 0 && !NIL_P(rb_output_rs)) {
rb_io_write(out, rb_output_rs);
}
return Qnil;
}
/*
* call-seq:
* print(*objects) -> nil
*
* Equivalent to <tt>$stdout.print(*objects)</tt>,
* this method is the straightforward way to write to <tt>$stdout</tt>.
*
* Writes the given objects to <tt>$stdout</tt>; returns +nil+.
* Appends the output record separator <tt>$OUTPUT_RECORD_SEPARATOR</tt>
* <tt>$\\</tt>), if it is not +nil+.
*
* With argument +objects+ given, for each object:
*
* - Converts via its method +to_s+ if not a string.
* - Writes to <tt>stdout</tt>.
* - If not the last object, writes the output field separator
* <tt>$OUTPUT_FIELD_SEPARATOR</tt> (<tt>$,</tt> if it is not +nil+.
*
* With default separators:
*
* objects = [0, 0.0, Rational(0, 1), Complex(0, 0), :zero, 'zero']
* $OUTPUT_RECORD_SEPARATOR
* $OUTPUT_FIELD_SEPARATOR
* print(*objects)
*
* Output:
*
* nil
* nil
* 00.00/10+0izerozero
*
* With specified separators:
*
* $OUTPUT_RECORD_SEPARATOR = "\n"
* $OUTPUT_FIELD_SEPARATOR = ','
* print(*objects)
*
* Output:
*
* 0,0.0,0/1,0+0i,zero,zero
*
* With no argument given, writes the content of <tt>$_</tt>
* (which is usually the most recent user input):
*
* gets # Sets $_ to the most recent user input.
* print # Prints $_.
*
*/
static VALUE
rb_f_print(int argc, const VALUE *argv, VALUE _)
{
rb_io_print(argc, argv, rb_ractor_stdout());
return Qnil;
}
/*
* call-seq:
* putc(object) -> object
*
* Writes a character to the stream.
* See {Character IO}[rdoc-ref:IO@Character+IO].
*
* If +object+ is numeric, converts to integer if necessary,
* then writes the character whose code is the
* least significant byte;
* if +object+ is a string, writes the first character:
*
* $stdout.putc "A"
* $stdout.putc 65
*
* Output:
*
* AA
*
*/
static VALUE
rb_io_putc(VALUE io, VALUE ch)
{
VALUE str;
if (RB_TYPE_P(ch, T_STRING)) {
str = rb_str_substr(ch, 0, 1);
}
else {
char c = NUM2CHR(ch);
str = rb_str_new(&c, 1);
}
rb_io_write(io, str);
return ch;
}
#define forward(obj, id, argc, argv) \
rb_funcallv_kw(obj, id, argc, argv, RB_PASS_CALLED_KEYWORDS)
#define forward_public(obj, id, argc, argv) \
rb_funcallv_public_kw(obj, id, argc, argv, RB_PASS_CALLED_KEYWORDS)
#define forward_current(id, argc, argv) \
forward_public(ARGF.current_file, id, argc, argv)
/*
* call-seq:
* putc(int) -> int
*
* Equivalent to:
*
* $stdout.putc(int)
*
* See IO#putc for important information regarding multi-byte characters.
*
*/
static VALUE
rb_f_putc(VALUE recv, VALUE ch)
{
VALUE r_stdout = rb_ractor_stdout();
if (recv == r_stdout) {
return rb_io_putc(recv, ch);
}
return forward(r_stdout, rb_intern("putc"), 1, &ch);
}
int
rb_str_end_with_asciichar(VALUE str, int c)
{
long len = RSTRING_LEN(str);
const char *ptr = RSTRING_PTR(str);
rb_encoding *enc = rb_enc_from_index(ENCODING_GET(str));
int n;
if (len == 0) return 0;
if ((n = rb_enc_mbminlen(enc)) == 1) {
return ptr[len - 1] == c;
}
return rb_enc_ascget(ptr + ((len - 1) / n) * n, ptr + len, &n, enc) == c;
}
static VALUE
io_puts_ary(VALUE ary, VALUE out, int recur)
{
VALUE tmp;
long i;
if (recur) {
tmp = rb_str_new2("[...]");
rb_io_puts(1, &tmp, out);
return Qtrue;
}
ary = rb_check_array_type(ary);
if (NIL_P(ary)) return Qfalse;
for (i=0; i<RARRAY_LEN(ary); i++) {
tmp = RARRAY_AREF(ary, i);
rb_io_puts(1, &tmp, out);
}
return Qtrue;
}
/*
* call-seq:
* puts(*objects) -> nil
*
* Writes the given +objects+ to the stream, which must be open for writing;
* returns +nil+.\
* Writes a newline after each that does not already end with a newline sequence.
* If called without arguments, writes a newline.
* See {Line IO}[rdoc-ref:IO@Line+IO].
*
* Note that each added newline is the character <tt>"\n"<//tt>,
* not the output record separator (<tt>$\\</tt>).
*
* Treatment for each object:
*
* - String: writes the string.
* - Neither string nor array: writes <tt>object.to_s</tt>.
* - Array: writes each element of the array; arrays may be nested.
*
* To keep these examples brief, we define this helper method:
*
* def show(*objects)
* # Puts objects to file.
* f = File.new('t.tmp', 'w+')
* f.puts(objects)
* # Return file content.
* f.rewind
* p f.read
* f.close
* end
*
* # Strings without newlines.
* show('foo', 'bar', 'baz') # => "foo\nbar\nbaz\n"
* # Strings, some with newlines.
* show("foo\n", 'bar', "baz\n") # => "foo\nbar\nbaz\n"
*
* # Neither strings nor arrays:
* show(0, 0.0, Rational(0, 1), Complex(9, 0), :zero)
* # => "0\n0.0\n0/1\n9+0i\nzero\n"
*
* # Array of strings.
* show(['foo', "bar\n", 'baz']) # => "foo\nbar\nbaz\n"
* # Nested arrays.
* show([[[0, 1], 2, 3], 4, 5]) # => "0\n1\n2\n3\n4\n5\n"
*
*/
VALUE
rb_io_puts(int argc, const VALUE *argv, VALUE out)
{
VALUE line, args[2];
/* if no argument given, print newline. */
if (argc == 0) {
rb_io_write(out, rb_default_rs);
return Qnil;
}
for (int i = 0; i < argc; i++) {
// Convert the argument to a string:
if (RB_TYPE_P(argv[i], T_STRING)) {
line = argv[i];
}
else if (rb_exec_recursive(io_puts_ary, argv[i], out)) {
continue;
}
else {
line = rb_obj_as_string(argv[i]);
}
// Write the line:
int n = 0;
if (RSTRING_LEN(line) == 0) {
args[n++] = rb_default_rs;
}
else {
args[n++] = line;
if (!rb_str_end_with_asciichar(line, '\n')) {
args[n++] = rb_default_rs;
}
}
rb_io_writev(out, n, args);
}
return Qnil;
}
/*
* call-seq:
* puts(*objects) -> nil
*
* Equivalent to
*
* $stdout.puts(objects)
*/
static VALUE
rb_f_puts(int argc, VALUE *argv, VALUE recv)
{
VALUE r_stdout = rb_ractor_stdout();
if (recv == r_stdout) {
return rb_io_puts(argc, argv, recv);
}
return forward(r_stdout, rb_intern("puts"), argc, argv);
}
static VALUE
rb_p_write(VALUE str)
{
VALUE args[2];
args[0] = str;
args[1] = rb_default_rs;
VALUE r_stdout = rb_ractor_stdout();
if (RB_TYPE_P(r_stdout, T_FILE) &&
rb_method_basic_definition_p(CLASS_OF(r_stdout), id_write)) {
io_writev(2, args, r_stdout);
}
else {
rb_io_writev(r_stdout, 2, args);
}
return Qnil;
}
void
rb_p(VALUE obj) /* for debug print within C code */
{
rb_p_write(rb_obj_as_string(rb_inspect(obj)));
}
static VALUE
rb_p_result(int argc, const VALUE *argv)
{
VALUE ret = Qnil;
if (argc == 1) {
ret = argv[0];
}
else if (argc > 1) {
ret = rb_ary_new4(argc, argv);
}
VALUE r_stdout = rb_ractor_stdout();
if (RB_TYPE_P(r_stdout, T_FILE)) {
rb_uninterruptible(rb_io_flush, r_stdout);
}
return ret;
}
/*
* call-seq:
* p(object) -> obj
* p(*objects) -> array of objects
* p -> nil
*
* For each object +obj+, executes:
*
* $stdout.write(obj.inspect, "\n")
*
* With one object given, returns the object;
* with multiple objects given, returns an array containing the objects;
* with no object given, returns +nil+.
*
* Examples:
*
* r = Range.new(0, 4)
* p r # => 0..4
* p [r, r, r] # => [0..4, 0..4, 0..4]
* p # => nil
*
* Output:
*
* 0..4
* [0..4, 0..4, 0..4]
*
* Kernel#p is designed for debugging purposes.
* Ruby implementations may define Kernel#p to be uninterruptible
* in whole or in part.
* On CRuby, Kernel#p's writing of data is uninterruptible.
*/
static VALUE
rb_f_p(int argc, VALUE *argv, VALUE self)
{
int i;
for (i=0; i<argc; i++) {
VALUE inspected = rb_obj_as_string(rb_inspect(argv[i]));
rb_uninterruptible(rb_p_write, inspected);
}
return rb_p_result(argc, argv);
}
/*
* call-seq:
* display(port = $>) -> nil
*
* Writes +self+ on the given port:
*
* 1.display
* "cat".display
* [ 4, 5, 6 ].display
* puts
*
* Output:
*
* 1cat[4, 5, 6]
*
*/
static VALUE
rb_obj_display(int argc, VALUE *argv, VALUE self)
{
VALUE out;
out = (!rb_check_arity(argc, 0, 1) ? rb_ractor_stdout() : argv[0]);
rb_io_write(out, self);
return Qnil;
}
static int
rb_stderr_to_original_p(VALUE err)
{
return (err == orig_stderr || RFILE(orig_stderr)->fptr->fd < 0);
}
void
rb_write_error2(const char *mesg, long len)
{
VALUE out = rb_ractor_stderr();
if (rb_stderr_to_original_p(out)) {
#ifdef _WIN32
if (isatty(fileno(stderr))) {
if (rb_w32_write_console(rb_str_new(mesg, len), fileno(stderr)) > 0) return;
}
#endif
if (fwrite(mesg, sizeof(char), (size_t)len, stderr) < (size_t)len) {
/* failed to write to stderr, what can we do? */
return;
}
}
else {
rb_io_write(out, rb_str_new(mesg, len));
}
}
void
rb_write_error(const char *mesg)
{
rb_write_error2(mesg, strlen(mesg));
}
void
rb_write_error_str(VALUE mesg)
{
VALUE out = rb_ractor_stderr();
/* a stopgap measure for the time being */
if (rb_stderr_to_original_p(out)) {
size_t len = (size_t)RSTRING_LEN(mesg);
#ifdef _WIN32
if (isatty(fileno(stderr))) {
if (rb_w32_write_console(mesg, fileno(stderr)) > 0) return;
}
#endif
if (fwrite(RSTRING_PTR(mesg), sizeof(char), len, stderr) < len) {
RB_GC_GUARD(mesg);
return;
}
}
else {
/* may unlock GVL, and */
rb_io_write(out, mesg);
}
}
int
rb_stderr_tty_p(void)
{
if (rb_stderr_to_original_p(rb_ractor_stderr()))
return isatty(fileno(stderr));
return 0;
}
static void
must_respond_to(ID mid, VALUE val, ID id)
{
if (!rb_respond_to(val, mid)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" must have %"PRIsVALUE" method, %"PRIsVALUE" given",
rb_id2str(id), rb_id2str(mid),
rb_obj_class(val));
}
}
static void
stdin_setter(VALUE val, ID id, VALUE *ptr)
{
rb_ractor_stdin_set(val);
}
static VALUE
stdin_getter(ID id, VALUE *ptr)
{
return rb_ractor_stdin();
}
static void
stdout_setter(VALUE val, ID id, VALUE *ptr)
{
must_respond_to(id_write, val, id);
rb_ractor_stdout_set(val);
}
static VALUE
stdout_getter(ID id, VALUE *ptr)
{
return rb_ractor_stdout();
}
static void
stderr_setter(VALUE val, ID id, VALUE *ptr)
{
must_respond_to(id_write, val, id);
rb_ractor_stderr_set(val);
}
static VALUE
stderr_getter(ID id, VALUE *ptr)
{
return rb_ractor_stderr();
}
static VALUE
allocate_and_open_new_file(VALUE klass)
{
VALUE self = io_alloc(klass);
rb_io_make_open_file(self);
return self;
}
VALUE
rb_io_open_descriptor(VALUE klass, int descriptor, int mode, VALUE path, VALUE timeout, struct rb_io_encoding *encoding)
{
int state;
VALUE self = rb_protect(allocate_and_open_new_file, klass, &state);
if (state) {
/* if we raised an exception allocating an IO object, but the caller
intended to transfer ownership of this FD to us, close the fd before
raising the exception. Otherwise, we would leak a FD - the caller
expects GC to close the file, but we never got around to assigning
it to a rb_io. */
if (!(mode & FMODE_EXTERNAL)) {
maygvl_close(descriptor, 0);
}
rb_jump_tag(state);
}
rb_io_t *io = RFILE(self)->fptr;
io->self = self;
io->fd = descriptor;
io->mode = mode;
/* At this point, Ruby fully owns the descriptor, and will close it when
the IO gets GC'd (unless FMODE_EXTERNAL was set), no matter what happens
in the rest of this method. */
if (NIL_P(path)) {
io->pathv = Qnil;
}
else {
StringValue(path);
io->pathv = rb_str_new_frozen(path);
}
io->timeout = timeout;
if (encoding) {
io->encs = *encoding;
}
rb_update_max_fd(descriptor);
return self;
}
static VALUE
prep_io(int fd, int fmode, VALUE klass, const char *path)
{
VALUE path_value = Qnil;
rb_encoding *e;
struct rb_io_encoding convconfig;
if (path) {
path_value = rb_obj_freeze(rb_str_new_cstr(path));
}
e = (fmode & FMODE_BINMODE) ? rb_ascii8bit_encoding() : NULL;
rb_io_ext_int_to_encs(e, NULL, &convconfig.enc, &convconfig.enc2, fmode);
convconfig.ecflags = (fmode & FMODE_READABLE) ?
MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR,
0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0;
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
convconfig.ecflags |= (fmode & FMODE_WRITABLE) ?
MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE,
0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0;
#endif
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(convconfig.enc2, convconfig.ecflags);
convconfig.ecopts = Qnil;
VALUE self = rb_io_open_descriptor(klass, fd, fmode, path_value, Qnil, &convconfig);
rb_io_t*io = RFILE(self)->fptr;
if (!io_check_tty(io)) {
#ifdef __CYGWIN__
io->mode |= FMODE_BINMODE;
setmode(fd, O_BINARY);
#endif
}
return self;
}
VALUE
rb_io_fdopen(int fd, int oflags, const char *path)
{
VALUE klass = rb_cIO;
if (path && strcmp(path, "-")) klass = rb_cFile;
return prep_io(fd, rb_io_oflags_fmode(oflags), klass, path);
}
static VALUE
prep_stdio(FILE *f, int fmode, VALUE klass, const char *path)
{
rb_io_t *fptr;
VALUE io = prep_io(fileno(f), fmode|FMODE_EXTERNAL|DEFAULT_TEXTMODE, klass, path);
GetOpenFile(io, fptr);
fptr->encs.ecflags |= ECONV_DEFAULT_NEWLINE_DECORATOR;
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
fptr->encs.ecflags |= TEXTMODE_NEWLINE_DECORATOR_ON_WRITE;
if (fmode & FMODE_READABLE) {
fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
}
#endif
fptr->stdio_file = f;
return io;
}
VALUE
rb_io_prep_stdin(void)
{
return prep_stdio(stdin, FMODE_READABLE, rb_cIO, "<STDIN>");
}
VALUE
rb_io_prep_stdout(void)
{
return prep_stdio(stdout, FMODE_WRITABLE|FMODE_SIGNAL_ON_EPIPE, rb_cIO, "<STDOUT>");
}
VALUE
rb_io_prep_stderr(void)
{
return prep_stdio(stderr, FMODE_WRITABLE|FMODE_SYNC, rb_cIO, "<STDERR>");
}
FILE *
rb_io_stdio_file(rb_io_t *fptr)
{
if (!fptr->stdio_file) {
int oflags = rb_io_fmode_oflags(fptr->mode) & ~O_EXCL;
fptr->stdio_file = rb_fdopen(fptr->fd, rb_io_oflags_modestr(oflags));
}
return fptr->stdio_file;
}
static inline void
rb_io_buffer_init(struct rb_io_internal_buffer *buf)
{
buf->ptr = NULL;
buf->off = 0;
buf->len = 0;
buf->capa = 0;
}
static inline rb_io_t *
rb_io_fptr_new(void)
{
rb_io_t *fp = ALLOC(rb_io_t);
fp->self = Qnil;
fp->fd = -1;
fp->stdio_file = NULL;
fp->mode = 0;
fp->pid = 0;
fp->lineno = 0;
fp->pathv = Qnil;
fp->finalize = 0;
rb_io_buffer_init(&fp->wbuf);
rb_io_buffer_init(&fp->rbuf);
rb_io_buffer_init(&fp->cbuf);
fp->readconv = NULL;
fp->writeconv = NULL;
fp->writeconv_asciicompat = Qnil;
fp->writeconv_pre_ecflags = 0;
fp->writeconv_pre_ecopts = Qnil;
fp->writeconv_initialized = 0;
fp->tied_io_for_writing = 0;
fp->encs.enc = NULL;
fp->encs.enc2 = NULL;
fp->encs.ecflags = 0;
fp->encs.ecopts = Qnil;
fp->write_lock = Qnil;
fp->timeout = Qnil;
return fp;
}
rb_io_t *
rb_io_make_open_file(VALUE obj)
{
rb_io_t *fp = 0;
Check_Type(obj, T_FILE);
if (RFILE(obj)->fptr) {
rb_io_close(obj);
rb_io_fptr_finalize(RFILE(obj)->fptr);
RFILE(obj)->fptr = 0;
}
fp = rb_io_fptr_new();
fp->self = obj;
RFILE(obj)->fptr = fp;
return fp;
}
static VALUE io_initialize(VALUE io, VALUE fnum, VALUE vmode, VALUE opt);
/*
* call-seq:
* IO.new(fd, mode = 'r', **opts) -> io
*
* Creates and returns a new \IO object (file stream) from a file descriptor.
*
* \IO.new may be useful for interaction with low-level libraries.
* For higher-level interactions, it may be simpler to create
* the file stream using File.open.
*
* Argument +fd+ must be a valid file descriptor (integer):
*
* path = 't.tmp'
* fd = IO.sysopen(path) # => 3
* IO.new(fd) # => #<IO:fd 3>
*
* The new \IO object does not inherit encoding
* (because the integer file descriptor does not have an encoding):
*
* fd = IO.sysopen('t.rus', 'rb')
* io = IO.new(fd)
* io.external_encoding # => #<Encoding:UTF-8> # Not ASCII-8BIT.
*
* Optional argument +mode+ (defaults to 'r') must specify a valid mode;
* see {Access Modes}[rdoc-ref:File@Access+Modes]:
*
* IO.new(fd, 'w') # => #<IO:fd 3>
* IO.new(fd, File::WRONLY) # => #<IO:fd 3>
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
* Examples:
*
* IO.new(fd, internal_encoding: nil) # => #<IO:fd 3>
* IO.new(fd, autoclose: true) # => #<IO:fd 3>
*
*/
static VALUE
rb_io_initialize(int argc, VALUE *argv, VALUE io)
{
VALUE fnum, vmode;
VALUE opt;
rb_scan_args(argc, argv, "11:", &fnum, &vmode, &opt);
return io_initialize(io, fnum, vmode, opt);
}
static VALUE
io_initialize(VALUE io, VALUE fnum, VALUE vmode, VALUE opt)
{
rb_io_t *fp;
int fd, fmode, oflags = O_RDONLY;
struct rb_io_encoding convconfig;
#if defined(HAVE_FCNTL) && defined(F_GETFL)
int ofmode;
#else
struct stat st;
#endif
rb_io_extract_modeenc(&vmode, 0, opt, &oflags, &fmode, &convconfig);
fd = NUM2INT(fnum);
if (rb_reserved_fd_p(fd)) {
rb_raise(rb_eArgError, "The given fd is not accessible because RubyVM reserves it");
}
#if defined(HAVE_FCNTL) && defined(F_GETFL)
oflags = fcntl(fd, F_GETFL);
if (oflags == -1) rb_sys_fail(0);
#else
if (fstat(fd, &st) < 0) rb_sys_fail(0);
#endif
rb_update_max_fd(fd);
#if defined(HAVE_FCNTL) && defined(F_GETFL)
ofmode = rb_io_oflags_fmode(oflags);
if (NIL_P(vmode)) {
fmode = ofmode;
}
else if ((~ofmode & fmode) & FMODE_READWRITE) {
VALUE error = INT2FIX(EINVAL);
rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
}
#endif
VALUE path = Qnil;
if (!NIL_P(opt)) {
if (rb_hash_aref(opt, sym_autoclose) == Qfalse) {
fmode |= FMODE_EXTERNAL;
}
path = rb_hash_aref(opt, RB_ID2SYM(idPath));
if (!NIL_P(path)) {
StringValue(path);
path = rb_str_new_frozen(path);
}
}
MakeOpenFile(io, fp);
fp->self = io;
fp->fd = fd;
fp->mode = fmode;
fp->encs = convconfig;
fp->pathv = path;
fp->timeout = Qnil;
clear_codeconv(fp);
io_check_tty(fp);
if (fileno(stdin) == fd)
fp->stdio_file = stdin;
else if (fileno(stdout) == fd)
fp->stdio_file = stdout;
else if (fileno(stderr) == fd)
fp->stdio_file = stderr;
if (fmode & FMODE_SETENC_BY_BOM) io_set_encoding_by_bom(io);
return io;
}
/*
* call-seq:
* set_encoding_by_bom -> encoding or nil
*
* If the stream begins with a BOM
* ({byte order marker}[https://en.wikipedia.org/wiki/Byte_order_mark]),
* consumes the BOM and sets the external encoding accordingly;
* returns the result encoding if found, or +nil+ otherwise:
*
* File.write('t.tmp', "\u{FEFF}abc")
* io = File.open('t.tmp', 'rb')
* io.set_encoding_by_bom # => #<Encoding:UTF-8>
* io.close
*
* File.write('t.tmp', 'abc')
* io = File.open('t.tmp', 'rb')
* io.set_encoding_by_bom # => nil
* io.close
*
* Raises an exception if the stream is not binmode
* or its encoding has already been set.
*
*/
static VALUE
rb_io_set_encoding_by_bom(VALUE io)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
if (!(fptr->mode & FMODE_BINMODE)) {
rb_raise(rb_eArgError, "ASCII incompatible encoding needs binmode");
}
if (fptr->encs.enc2) {
rb_raise(rb_eArgError, "encoding conversion is set");
}
else if (fptr->encs.enc && fptr->encs.enc != rb_ascii8bit_encoding()) {
rb_raise(rb_eArgError, "encoding is set to %s already",
rb_enc_name(fptr->encs.enc));
}
if (!io_set_encoding_by_bom(io)) return Qnil;
return rb_enc_from_encoding(fptr->encs.enc);
}
/*
* call-seq:
* File.new(path, mode = 'r', perm = 0666, **opts) -> file
*
* Opens the file at the given +path+ according to the given +mode+;
* creates and returns a new File object for that file.
*
* The new File object is buffered mode (or non-sync mode), unless
* +filename+ is a tty.
* See IO#flush, IO#fsync, IO#fdatasync, and IO#sync=.
*
* Argument +path+ must be a valid file path:
*
* f = File.new('/etc/fstab')
* f.close
* f = File.new('t.txt')
* f.close
*
* Optional argument +mode+ (defaults to 'r') must specify a valid mode;
* see {Access Modes}[rdoc-ref:File@Access+Modes]:
*
* f = File.new('t.tmp', 'w')
* f.close
* f = File.new('t.tmp', File::RDONLY)
* f.close
*
* Optional argument +perm+ (defaults to 0666) must specify valid permissions
* see {File Permissions}[rdoc-ref:File@File+Permissions]:
*
* f = File.new('t.tmp', File::CREAT, 0644)
* f.close
* f = File.new('t.tmp', File::CREAT, 0444)
* f.close
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
*/
static VALUE
rb_file_initialize(int argc, VALUE *argv, VALUE io)
{
if (RFILE(io)->fptr) {
rb_raise(rb_eRuntimeError, "reinitializing File");
}
VALUE fname, vmode, vperm, opt;
int posargc = rb_scan_args(argc, argv, "12:", &fname, &vmode, &vperm, &opt);
if (posargc < 3) { /* perm is File only */
VALUE fd = rb_check_to_int(fname);
if (!NIL_P(fd)) {
return io_initialize(io, fd, vmode, opt);
}
}
return rb_open_file(io, fname, vmode, vperm, opt);
}
/* :nodoc: */
static VALUE
rb_io_s_new(int argc, VALUE *argv, VALUE klass)
{
if (rb_block_given_p()) {
VALUE cname = rb_obj_as_string(klass);
rb_warn("%"PRIsVALUE"::new() does not take block; use %"PRIsVALUE"::open() instead",
cname, cname);
}
return rb_class_new_instance_kw(argc, argv, klass, RB_PASS_CALLED_KEYWORDS);
}
/*
* call-seq:
* IO.for_fd(fd, mode = 'r', **opts) -> io
*
* Synonym for IO.new.
*
*/
static VALUE
rb_io_s_for_fd(int argc, VALUE *argv, VALUE klass)
{
VALUE io = rb_obj_alloc(klass);
rb_io_initialize(argc, argv, io);
return io;
}
/*
* call-seq:
* ios.autoclose? -> true or false
*
* Returns +true+ if the underlying file descriptor of _ios_ will be
* closed at its finalization or at calling #close, otherwise +false+.
*/
static VALUE
rb_io_autoclose_p(VALUE io)
{
rb_io_t *fptr = RFILE(io)->fptr;
rb_io_check_closed(fptr);
return RBOOL(!(fptr->mode & FMODE_EXTERNAL));
}
/*
* call-seq:
* io.autoclose = bool -> true or false
*
* Sets auto-close flag.
*
* f = File.open(File::NULL)
* IO.for_fd(f.fileno).close
* f.gets # raises Errno::EBADF
*
* f = File.open(File::NULL)
* g = IO.for_fd(f.fileno)
* g.autoclose = false
* g.close
* f.gets # won't cause Errno::EBADF
*/
static VALUE
rb_io_set_autoclose(VALUE io, VALUE autoclose)
{
rb_io_t *fptr;
GetOpenFile(io, fptr);
if (!RTEST(autoclose))
fptr->mode |= FMODE_EXTERNAL;
else
fptr->mode &= ~FMODE_EXTERNAL;
return autoclose;
}
static VALUE
io_wait_event(VALUE io, int event, VALUE timeout, int return_io)
{
VALUE result = rb_io_wait(io, RB_INT2NUM(event), timeout);
if (!RB_TEST(result)) {
return Qnil;
}
int mask = RB_NUM2INT(result);
if (mask & event) {
if (return_io)
return io;
else
return result;
}
else {
return Qfalse;
}
}
/*
* call-seq:
* io.wait_readable -> truthy or falsy
* io.wait_readable(timeout) -> truthy or falsy
*
* Waits until IO is readable and returns a truthy value, or a falsy
* value when times out. Returns a truthy value immediately when
* buffered data is available.
*/
static VALUE
io_wait_readable(int argc, VALUE *argv, VALUE io)
{
rb_io_t *fptr;
RB_IO_POINTER(io, fptr);
rb_io_check_readable(fptr);
if (rb_io_read_pending(fptr)) return Qtrue;
rb_check_arity(argc, 0, 1);
VALUE timeout = (argc == 1 ? argv[0] : Qnil);
return io_wait_event(io, RUBY_IO_READABLE, timeout, 1);
}
/*
* call-seq:
* io.wait_writable -> truthy or falsy
* io.wait_writable(timeout) -> truthy or falsy
*
* Waits until IO is writable and returns a truthy value or a falsy
* value when times out.
*/
static VALUE
io_wait_writable(int argc, VALUE *argv, VALUE io)
{
rb_io_t *fptr;
RB_IO_POINTER(io, fptr);
rb_io_check_writable(fptr);
rb_check_arity(argc, 0, 1);
VALUE timeout = (argc == 1 ? argv[0] : Qnil);
return io_wait_event(io, RUBY_IO_WRITABLE, timeout, 1);
}
/*
* call-seq:
* io.wait_priority -> truthy or falsy
* io.wait_priority(timeout) -> truthy or falsy
*
* Waits until IO is priority and returns a truthy value or a falsy
* value when times out. Priority data is sent and received using
* the Socket::MSG_OOB flag and is typically limited to streams.
*/
static VALUE
io_wait_priority(int argc, VALUE *argv, VALUE io)
{
rb_io_t *fptr = NULL;
RB_IO_POINTER(io, fptr);
rb_io_check_readable(fptr);
if (rb_io_read_pending(fptr)) return Qtrue;
rb_check_arity(argc, 0, 1);
VALUE timeout = argc == 1 ? argv[0] : Qnil;
return io_wait_event(io, RUBY_IO_PRIORITY, timeout, 1);
}
static int
wait_mode_sym(VALUE mode)
{
if (mode == ID2SYM(rb_intern("r"))) {
return RB_WAITFD_IN;
}
if (mode == ID2SYM(rb_intern("read"))) {
return RB_WAITFD_IN;
}
if (mode == ID2SYM(rb_intern("readable"))) {
return RB_WAITFD_IN;
}
if (mode == ID2SYM(rb_intern("w"))) {
return RB_WAITFD_OUT;
}
if (mode == ID2SYM(rb_intern("write"))) {
return RB_WAITFD_OUT;
}
if (mode == ID2SYM(rb_intern("writable"))) {
return RB_WAITFD_OUT;
}
if (mode == ID2SYM(rb_intern("rw"))) {
return RB_WAITFD_IN|RB_WAITFD_OUT;
}
if (mode == ID2SYM(rb_intern("read_write"))) {
return RB_WAITFD_IN|RB_WAITFD_OUT;
}
if (mode == ID2SYM(rb_intern("readable_writable"))) {
return RB_WAITFD_IN|RB_WAITFD_OUT;
}
rb_raise(rb_eArgError, "unsupported mode: %"PRIsVALUE, mode);
}
static inline enum rb_io_event
io_event_from_value(VALUE value)
{
int events = RB_NUM2INT(value);
if (events <= 0) rb_raise(rb_eArgError, "Events must be positive integer!");
return events;
}
/*
* call-seq:
* io.wait(events, timeout) -> event mask, false or nil
* io.wait(timeout = nil, mode = :read) -> self, true, or false
*
* Waits until the IO becomes ready for the specified events and returns the
* subset of events that become ready, or a falsy value when times out.
*
* The events can be a bit mask of +IO::READABLE+, +IO::WRITABLE+ or
* +IO::PRIORITY+.
*
* Returns an event mask (truthy value) immediately when buffered data is available.
*
* Optional parameter +mode+ is one of +:read+, +:write+, or
* +:read_write+.
*/
static VALUE
io_wait(int argc, VALUE *argv, VALUE io)
{
VALUE timeout = Qundef;
enum rb_io_event events = 0;
int return_io = 0;
// The documented signature for this method is actually incorrect.
// A single timeout is allowed in any position, and multiple symbols can be given.
// Whether this is intentional or not, I don't know, and as such I consider this to
// be a legacy/slow path.
if (argc != 2 || (RB_SYMBOL_P(argv[0]) || RB_SYMBOL_P(argv[1]))) {
// We'd prefer to return the actual mask, but this form would return the io itself:
return_io = 1;
// Slow/messy path:
for (int i = 0; i < argc; i += 1) {
if (RB_SYMBOL_P(argv[i])) {
events |= wait_mode_sym(argv[i]);
}
else if (UNDEF_P(timeout)) {
rb_time_interval(timeout = argv[i]);
}
else {
rb_raise(rb_eArgError, "timeout given more than once");
}
}
if (UNDEF_P(timeout)) timeout = Qnil;
if (events == 0) {
events = RUBY_IO_READABLE;
}
}
else /* argc == 2 and neither are symbols */ {
// This is the fast path:
events = io_event_from_value(argv[0]);
timeout = argv[1];
}
if (events & RUBY_IO_READABLE) {
rb_io_t *fptr = NULL;
RB_IO_POINTER(io, fptr);
if (rb_io_read_pending(fptr)) {
// This was the original behaviour:
if (return_io) return Qtrue;
// New behaviour always returns an event mask:
else return RB_INT2NUM(RUBY_IO_READABLE);
}
}
return io_wait_event(io, events, timeout, return_io);
}
static void
argf_mark(void *ptr)
{
struct argf *p = ptr;
rb_gc_mark(p->filename);
rb_gc_mark(p->current_file);
rb_gc_mark(p->argv);
rb_gc_mark(p->inplace);
rb_gc_mark(p->encs.ecopts);
}
static size_t
argf_memsize(const void *ptr)
{
const struct argf *p = ptr;
size_t size = sizeof(*p);
return size;
}
static const rb_data_type_t argf_type = {
"ARGF",
{argf_mark, RUBY_TYPED_DEFAULT_FREE, argf_memsize},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static inline void
argf_init(struct argf *p, VALUE v)
{
p->filename = Qnil;
p->current_file = Qnil;
p->lineno = 0;
p->argv = v;
}
static VALUE
argf_alloc(VALUE klass)
{
struct argf *p;
VALUE argf = TypedData_Make_Struct(klass, struct argf, &argf_type, p);
argf_init(p, Qnil);
return argf;
}
#undef rb_argv
/* :nodoc: */
static VALUE
argf_initialize(VALUE argf, VALUE argv)
{
memset(&ARGF, 0, sizeof(ARGF));
argf_init(&ARGF, argv);
return argf;
}
/* :nodoc: */
static VALUE
argf_initialize_copy(VALUE argf, VALUE orig)
{
if (!OBJ_INIT_COPY(argf, orig)) return argf;
ARGF = argf_of(orig);
ARGF.argv = rb_obj_dup(ARGF.argv);
return argf;
}
/*
* call-seq:
* ARGF.lineno = integer -> integer
*
* Sets the line number of ARGF as a whole to the given Integer.
*
* ARGF sets the line number automatically as you read data, so normally
* you will not need to set it explicitly. To access the current line number
* use ARGF.lineno.
*
* For example:
*
* ARGF.lineno #=> 0
* ARGF.readline #=> "This is line 1\n"
* ARGF.lineno #=> 1
* ARGF.lineno = 0 #=> 0
* ARGF.lineno #=> 0
*/
static VALUE
argf_set_lineno(VALUE argf, VALUE val)
{
ARGF.lineno = NUM2INT(val);
ARGF.last_lineno = ARGF.lineno;
return val;
}
/*
* call-seq:
* ARGF.lineno -> integer
*
* Returns the current line number of ARGF as a whole. This value
* can be set manually with ARGF.lineno=.
*
* For example:
*
* ARGF.lineno #=> 0
* ARGF.readline #=> "This is line 1\n"
* ARGF.lineno #=> 1
*/
static VALUE
argf_lineno(VALUE argf)
{
return INT2FIX(ARGF.lineno);
}
static VALUE
argf_forward(int argc, VALUE *argv, VALUE argf)
{
return forward_current(rb_frame_this_func(), argc, argv);
}
#define next_argv() argf_next_argv(argf)
#define ARGF_GENERIC_INPUT_P() \
(ARGF.current_file == rb_stdin && !RB_TYPE_P(ARGF.current_file, T_FILE))
#define ARGF_FORWARD(argc, argv) do {\
if (ARGF_GENERIC_INPUT_P())\
return argf_forward((argc), (argv), argf);\
} while (0)
#define NEXT_ARGF_FORWARD(argc, argv) do {\
if (!next_argv()) return Qnil;\
ARGF_FORWARD((argc), (argv));\
} while (0)
static void
argf_close(VALUE argf)
{
VALUE file = ARGF.current_file;
if (file == rb_stdin) return;
if (RB_TYPE_P(file, T_FILE)) {
rb_io_set_write_io(file, Qnil);
}
io_close(file);
ARGF.init_p = -1;
}
static int
argf_next_argv(VALUE argf)
{
char *fn;
rb_io_t *fptr;
int stdout_binmode = 0;
int fmode;
VALUE r_stdout = rb_ractor_stdout();
if (RB_TYPE_P(r_stdout, T_FILE)) {
GetOpenFile(r_stdout, fptr);
if (fptr->mode & FMODE_BINMODE)
stdout_binmode = 1;
}
if (ARGF.init_p == 0) {
if (!NIL_P(ARGF.argv) && RARRAY_LEN(ARGF.argv) > 0) {
ARGF.next_p = 1;
}
else {
ARGF.next_p = -1;
}
ARGF.init_p = 1;
}
else {
if (NIL_P(ARGF.argv)) {
ARGF.next_p = -1;
}
else if (ARGF.next_p == -1 && RARRAY_LEN(ARGF.argv) > 0) {
ARGF.next_p = 1;
}
}
if (ARGF.next_p == 1) {
if (ARGF.init_p == 1) argf_close(argf);
retry:
if (RARRAY_LEN(ARGF.argv) > 0) {
VALUE filename = rb_ary_shift(ARGF.argv);
FilePathValue(filename);
ARGF.filename = filename;
filename = rb_str_encode_ospath(filename);
fn = StringValueCStr(filename);
if (RSTRING_LEN(filename) == 1 && fn[0] == '-') {
ARGF.current_file = rb_stdin;
if (ARGF.inplace) {
rb_warn("Can't do inplace edit for stdio; skipping");
goto retry;
}
}
else {
VALUE write_io = Qnil;
int fr = rb_sysopen(filename, O_RDONLY, 0);
if (ARGF.inplace) {
struct stat st;
#ifndef NO_SAFE_RENAME
struct stat st2;
#endif
VALUE str;
int fw;
if (RB_TYPE_P(r_stdout, T_FILE) && r_stdout != orig_stdout) {
rb_io_close(r_stdout);
}
fstat(fr, &st);
str = filename;
if (!NIL_P(ARGF.inplace)) {
VALUE suffix = ARGF.inplace;
str = rb_str_dup(str);
if (NIL_P(rb_str_cat_conv_enc_opts(str, RSTRING_LEN(str),
RSTRING_PTR(suffix), RSTRING_LEN(suffix),
rb_enc_get(suffix), 0, Qnil))) {
rb_str_append(str, suffix);
}
#ifdef NO_SAFE_RENAME
(void)close(fr);
(void)unlink(RSTRING_PTR(str));
if (rename(fn, RSTRING_PTR(str)) < 0) {
rb_warn("Can't rename %"PRIsVALUE" to %"PRIsVALUE": %s, skipping file",
filename, str, strerror(errno));
goto retry;
}
fr = rb_sysopen(str, O_RDONLY, 0);
#else
if (rename(fn, RSTRING_PTR(str)) < 0) {
rb_warn("Can't rename %"PRIsVALUE" to %"PRIsVALUE": %s, skipping file",
filename, str, strerror(errno));
close(fr);
goto retry;
}
#endif
}
else {
#ifdef NO_SAFE_RENAME
rb_fatal("Can't do inplace edit without backup");
#else
if (unlink(fn) < 0) {
rb_warn("Can't remove %"PRIsVALUE": %s, skipping file",
filename, strerror(errno));
close(fr);
goto retry;
}
#endif
}
fw = rb_sysopen(filename, O_WRONLY|O_CREAT|O_TRUNC, 0666);
#ifndef NO_SAFE_RENAME
fstat(fw, &st2);
#ifdef HAVE_FCHMOD
fchmod(fw, st.st_mode);
#else
chmod(fn, st.st_mode);
#endif
if (st.st_uid!=st2.st_uid || st.st_gid!=st2.st_gid) {
int err;
#ifdef HAVE_FCHOWN
err = fchown(fw, st.st_uid, st.st_gid);
#else
err = chown(fn, st.st_uid, st.st_gid);
#endif
if (err && getuid() == 0 && st2.st_uid == 0) {
const char *wkfn = RSTRING_PTR(filename);
rb_warn("Can't set owner/group of %"PRIsVALUE" to same as %"PRIsVALUE": %s, skipping file",
filename, str, strerror(errno));
(void)close(fr);
(void)close(fw);
(void)unlink(wkfn);
goto retry;
}
}
#endif
write_io = prep_io(fw, FMODE_WRITABLE, rb_cFile, fn);
rb_ractor_stdout_set(write_io);
if (stdout_binmode) rb_io_binmode(rb_stdout);
}
fmode = FMODE_READABLE;
if (!ARGF.binmode) {
fmode |= DEFAULT_TEXTMODE;
}
ARGF.current_file = prep_io(fr, fmode, rb_cFile, fn);
if (!NIL_P(write_io)) {
rb_io_set_write_io(ARGF.current_file, write_io);
}
RB_GC_GUARD(filename);
}
if (ARGF.binmode) rb_io_ascii8bit_binmode(ARGF.current_file);
GetOpenFile(ARGF.current_file, fptr);
if (ARGF.encs.enc) {
fptr->encs = ARGF.encs;
clear_codeconv(fptr);
}
else {
fptr->encs.ecflags &= ~ECONV_NEWLINE_DECORATOR_MASK;
if (!ARGF.binmode) {
fptr->encs.ecflags |= ECONV_DEFAULT_NEWLINE_DECORATOR;
#ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE
fptr->encs.ecflags |= TEXTMODE_NEWLINE_DECORATOR_ON_WRITE;
#endif
}
}
ARGF.next_p = 0;
}
else {
ARGF.next_p = 1;
return FALSE;
}
}
else if (ARGF.next_p == -1) {
ARGF.current_file = rb_stdin;
ARGF.filename = rb_str_new2("-");
if (ARGF.inplace) {
rb_warn("Can't do inplace edit for stdio");
rb_ractor_stdout_set(orig_stdout);
}
}
if (ARGF.init_p == -1) ARGF.init_p = 1;
return TRUE;
}
static VALUE
argf_getline(int argc, VALUE *argv, VALUE argf)
{
VALUE line;
long lineno = ARGF.lineno;
retry:
if (!next_argv()) return Qnil;
if (ARGF_GENERIC_INPUT_P()) {
line = forward_current(idGets, argc, argv);
}
else {
if (argc == 0 && rb_rs == rb_default_rs) {
line = rb_io_gets(ARGF.current_file);
}
else {
line = rb_io_getline(argc, argv, ARGF.current_file);
}
if (NIL_P(line) && ARGF.next_p != -1) {
argf_close(argf);
ARGF.next_p = 1;
goto retry;
}
}
if (!NIL_P(line)) {
ARGF.lineno = ++lineno;
ARGF.last_lineno = ARGF.lineno;
}
return line;
}
static VALUE
argf_lineno_getter(ID id, VALUE *var)
{
VALUE argf = *var;
return INT2FIX(ARGF.last_lineno);
}
static void
argf_lineno_setter(VALUE val, ID id, VALUE *var)
{
VALUE argf = *var;
int n = NUM2INT(val);
ARGF.last_lineno = ARGF.lineno = n;
}
void
rb_reset_argf_lineno(long n)
{
ARGF.last_lineno = ARGF.lineno = n;
}
static VALUE argf_gets(int, VALUE *, VALUE);
/*
* call-seq:
* gets(sep=$/ [, getline_args]) -> string or nil
* gets(limit [, getline_args]) -> string or nil
* gets(sep, limit [, getline_args]) -> string or nil
*
* Returns (and assigns to <code>$_</code>) the next line from the list
* of files in +ARGV+ (or <code>$*</code>), or from standard input if
* no files are present on the command line. Returns +nil+ at end of
* file. The optional argument specifies the record separator. The
* separator is included with the contents of each record. A separator
* of +nil+ reads the entire contents, and a zero-length separator
* reads the input one paragraph at a time, where paragraphs are
* divided by two consecutive newlines. If the first argument is an
* integer, or optional second argument is given, the returning string
* would not be longer than the given value in bytes. If multiple
* filenames are present in +ARGV+, <code>gets(nil)</code> will read
* the contents one file at a time.
*
* ARGV << "testfile"
* print while gets
*
* <em>produces:</em>
*
* This is line one
* This is line two
* This is line three
* And so on...
*
* The style of programming using <code>$_</code> as an implicit
* parameter is gradually losing favor in the Ruby community.
*/
static VALUE
rb_f_gets(int argc, VALUE *argv, VALUE recv)
{
if (recv == argf) {
return argf_gets(argc, argv, argf);
}
return forward(argf, idGets, argc, argv);
}
/*
* call-seq:
* ARGF.gets(sep=$/ [, getline_args]) -> string or nil
* ARGF.gets(limit [, getline_args]) -> string or nil
* ARGF.gets(sep, limit [, getline_args]) -> string or nil
*
* Returns the next line from the current file in ARGF.
*
* By default lines are assumed to be separated by <code>$/</code>;
* to use a different character as a separator, supply it as a String
* for the _sep_ argument.
*
* The optional _limit_ argument specifies how many characters of each line
* to return. By default all characters are returned.
*
* See IO.readlines for details about getline_args.
*
*/
static VALUE
argf_gets(int argc, VALUE *argv, VALUE argf)
{
VALUE line;
line = argf_getline(argc, argv, argf);
rb_lastline_set(line);
return line;
}
VALUE
rb_gets(void)
{
VALUE line;
if (rb_rs != rb_default_rs) {
return rb_f_gets(0, 0, argf);
}
retry:
if (!next_argv()) return Qnil;
line = rb_io_gets(ARGF.current_file);
if (NIL_P(line) && ARGF.next_p != -1) {
rb_io_close(ARGF.current_file);
ARGF.next_p = 1;
goto retry;
}
rb_lastline_set(line);
if (!NIL_P(line)) {
ARGF.lineno++;
ARGF.last_lineno = ARGF.lineno;
}
return line;
}
static VALUE argf_readline(int, VALUE *, VALUE);
/*
* call-seq:
* readline(sep = $/, chomp: false) -> string
* readline(limit, chomp: false) -> string
* readline(sep, limit, chomp: false) -> string
*
* Equivalent to method Kernel#gets, except that it raises an exception
* if called at end-of-stream:
*
* $ cat t.txt | ruby -e "p readlines; readline"
* ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
* in `readline': end of file reached (EOFError)
*
* Optional keyword argument +chomp+ specifies whether line separators
* are to be omitted.
*/
static VALUE
rb_f_readline(int argc, VALUE *argv, VALUE recv)
{
if (recv == argf) {
return argf_readline(argc, argv, argf);
}
return forward(argf, rb_intern("readline"), argc, argv);
}
/*
* call-seq:
* ARGF.readline(sep=$/) -> string
* ARGF.readline(limit) -> string
* ARGF.readline(sep, limit) -> string
*
* Returns the next line from the current file in ARGF.
*
* By default lines are assumed to be separated by <code>$/</code>;
* to use a different character as a separator, supply it as a String
* for the _sep_ argument.
*
* The optional _limit_ argument specifies how many characters of each line
* to return. By default all characters are returned.
*
* An EOFError is raised at the end of the file.
*/
static VALUE
argf_readline(int argc, VALUE *argv, VALUE argf)
{
VALUE line;
if (!next_argv()) rb_eof_error();
ARGF_FORWARD(argc, argv);
line = argf_gets(argc, argv, argf);
if (NIL_P(line)) {
rb_eof_error();
}
return line;
}
static VALUE argf_readlines(int, VALUE *, VALUE);
/*
* call-seq:
* readlines(sep = $/, chomp: false, **enc_opts) -> array
* readlines(limit, chomp: false, **enc_opts) -> array
* readlines(sep, limit, chomp: false, **enc_opts) -> array
*
* Returns an array containing the lines returned by calling
* Kernel#gets until the end-of-stream is reached;
* (see {Line IO}[rdoc-ref:IO@Line+IO]).
*
* With only string argument +sep+ given,
* returns the remaining lines as determined by line separator +sep+,
* or +nil+ if none;
* see {Line Separator}[rdoc-ref:IO@Line+Separator]:
*
* # Default separator.
* $ cat t.txt | ruby -e "p readlines"
* ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
*
* # Specified separator.
* $ cat t.txt | ruby -e "p readlines 'li'"
* ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"]
*
* # Get-all separator.
* $ cat t.txt | ruby -e "p readlines nil"
* ["First line\nSecond line\n\nFourth line\nFifth line\n"]
*
* # Get-paragraph separator.
* $ cat t.txt | ruby -e "p readlines ''"
* ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]
*
* With only integer argument +limit+ given,
* limits the number of bytes in the line;
* see {Line Limit}[rdoc-ref:IO@Line+Limit]:
*
* $cat t.txt | ruby -e "p readlines 10"
* ["First line", "\n", "Second lin", "e\n", "\n", "Fourth lin", "e\n", "Fifth line", "\n"]
*
* $cat t.txt | ruby -e "p readlines 11"
* ["First line\n", "Second line", "\n", "\n", "Fourth line", "\n", "Fifth line\n"]
*
* $cat t.txt | ruby -e "p readlines 12"
* ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
*
* With arguments +sep+ and +limit+ given,
* combines the two behaviors
* (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]).
*
* Optional keyword argument +chomp+ specifies whether line separators
* are to be omitted:
*
* $ cat t.txt | ruby -e "p readlines(chomp: true)"
* ["First line", "Second line", "", "Fourth line", "Fifth line"]
*
* Optional keyword arguments +enc_opts+ specify encoding options;
* see {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
*/
static VALUE
rb_f_readlines(int argc, VALUE *argv, VALUE recv)
{
if (recv == argf) {
return argf_readlines(argc, argv, argf);
}
return forward(argf, rb_intern("readlines"), argc, argv);
}
/*
* call-seq:
* ARGF.readlines(sep = $/, chomp: false) -> array
* ARGF.readlines(limit, chomp: false) -> array
* ARGF.readlines(sep, limit, chomp: false) -> array
*
* ARGF.to_a(sep = $/, chomp: false) -> array
* ARGF.to_a(limit, chomp: false) -> array
* ARGF.to_a(sep, limit, chomp: false) -> array
*
* Reads each file in ARGF in its entirety, returning an Array containing
* lines from the files. Lines are assumed to be separated by _sep_.
*
* lines = ARGF.readlines
* lines[0] #=> "This is line one\n"
*
* See +IO.readlines+ for a full description of all options.
*/
static VALUE
argf_readlines(int argc, VALUE *argv, VALUE argf)
{
long lineno = ARGF.lineno;
VALUE lines, ary;
ary = rb_ary_new();
while (next_argv()) {
if (ARGF_GENERIC_INPUT_P()) {
lines = forward_current(rb_intern("readlines"), argc, argv);
}
else {
lines = rb_io_readlines(argc, argv, ARGF.current_file);
argf_close(argf);
}
ARGF.next_p = 1;
rb_ary_concat(ary, lines);
ARGF.lineno = lineno + RARRAY_LEN(ary);
ARGF.last_lineno = ARGF.lineno;
}
ARGF.init_p = 0;
return ary;
}
/*
* call-seq:
* `command` -> string
*
* Returns the <tt>$stdout</tt> output from running +command+ in a subshell;
* sets global variable <tt>$?</tt> to the process status.
*
* This method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* Examples:
*
* $ `date` # => "Wed Apr 9 08:56:30 CDT 2003\n"
* $ `echo oops && exit 99` # => "oops\n"
* $ $? # => #<Process::Status: pid 17088 exit 99>
* $ $?.status # => 99>
*
* The built-in syntax <tt>%x{...}</tt> uses this method.
*
*/
static VALUE
rb_f_backquote(VALUE obj, VALUE str)
{
VALUE port;
VALUE result;
rb_io_t *fptr;
StringValue(str);
rb_last_status_clear();
port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL);
if (NIL_P(port)) return rb_str_new(0,0);
GetOpenFile(port, fptr);
result = read_all(fptr, remain_size(fptr), Qnil);
rb_io_close(port);
rb_io_fptr_cleanup_all(fptr);
RB_GC_GUARD(port);
return result;
}
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
static VALUE
select_internal(VALUE read, VALUE write, VALUE except, struct timeval *tp, rb_fdset_t *fds)
{
VALUE res, list;
rb_fdset_t *rp, *wp, *ep;
rb_io_t *fptr;
long i;
int max = 0, n;
int pending = 0;
struct timeval timerec;
if (!NIL_P(read)) {
Check_Type(read, T_ARRAY);
for (i=0; i<RARRAY_LEN(read); i++) {
GetOpenFile(rb_io_get_io(RARRAY_AREF(read, i)), fptr);
rb_fd_set(fptr->fd, &fds[0]);
if (READ_DATA_PENDING(fptr) || READ_CHAR_PENDING(fptr)) { /* check for buffered data */
pending++;
rb_fd_set(fptr->fd, &fds[3]);
}
if (max < fptr->fd) max = fptr->fd;
}
if (pending) { /* no blocking if there's buffered data */
timerec.tv_sec = timerec.tv_usec = 0;
tp = &timerec;
}
rp = &fds[0];
}
else
rp = 0;
if (!NIL_P(write)) {
Check_Type(write, T_ARRAY);
for (i=0; i<RARRAY_LEN(write); i++) {
VALUE write_io = GetWriteIO(rb_io_get_io(RARRAY_AREF(write, i)));
GetOpenFile(write_io, fptr);
rb_fd_set(fptr->fd, &fds[1]);
if (max < fptr->fd) max = fptr->fd;
}
wp = &fds[1];
}
else
wp = 0;
if (!NIL_P(except)) {
Check_Type(except, T_ARRAY);
for (i=0; i<RARRAY_LEN(except); i++) {
VALUE io = rb_io_get_io(RARRAY_AREF(except, i));
VALUE write_io = GetWriteIO(io);
GetOpenFile(io, fptr);
rb_fd_set(fptr->fd, &fds[2]);
if (max < fptr->fd) max = fptr->fd;
if (io != write_io) {
GetOpenFile(write_io, fptr);
rb_fd_set(fptr->fd, &fds[2]);
if (max < fptr->fd) max = fptr->fd;
}
}
ep = &fds[2];
}
else {
ep = 0;
}
max++;
n = rb_thread_fd_select(max, rp, wp, ep, tp);
if (n < 0) {
rb_sys_fail(0);
}
if (!pending && n == 0) return Qnil; /* returns nil on timeout */
res = rb_ary_new2(3);
rb_ary_push(res, rp?rb_ary_new():rb_ary_new2(0));
rb_ary_push(res, wp?rb_ary_new():rb_ary_new2(0));
rb_ary_push(res, ep?rb_ary_new():rb_ary_new2(0));
if (rp) {
list = RARRAY_AREF(res, 0);
for (i=0; i< RARRAY_LEN(read); i++) {
VALUE obj = rb_ary_entry(read, i);
VALUE io = rb_io_get_io(obj);
GetOpenFile(io, fptr);
if (rb_fd_isset(fptr->fd, &fds[0]) ||
rb_fd_isset(fptr->fd, &fds[3])) {
rb_ary_push(list, obj);
}
}
}
if (wp) {
list = RARRAY_AREF(res, 1);
for (i=0; i< RARRAY_LEN(write); i++) {
VALUE obj = rb_ary_entry(write, i);
VALUE io = rb_io_get_io(obj);
VALUE write_io = GetWriteIO(io);
GetOpenFile(write_io, fptr);
if (rb_fd_isset(fptr->fd, &fds[1])) {
rb_ary_push(list, obj);
}
}
}
if (ep) {
list = RARRAY_AREF(res, 2);
for (i=0; i< RARRAY_LEN(except); i++) {
VALUE obj = rb_ary_entry(except, i);
VALUE io = rb_io_get_io(obj);
VALUE write_io = GetWriteIO(io);
GetOpenFile(io, fptr);
if (rb_fd_isset(fptr->fd, &fds[2])) {
rb_ary_push(list, obj);
}
else if (io != write_io) {
GetOpenFile(write_io, fptr);
if (rb_fd_isset(fptr->fd, &fds[2])) {
rb_ary_push(list, obj);
}
}
}
}
return res; /* returns an empty array on interrupt */
}
struct select_args {
VALUE read, write, except;
struct timeval *timeout;
rb_fdset_t fdsets[4];
};
static VALUE
select_call(VALUE arg)
{
struct select_args *p = (struct select_args *)arg;
return select_internal(p->read, p->write, p->except, p->timeout, p->fdsets);
}
static VALUE
select_end(VALUE arg)
{
struct select_args *p = (struct select_args *)arg;
int i;
for (i = 0; i < numberof(p->fdsets); ++i)
rb_fd_term(&p->fdsets[i]);
return Qnil;
}
static VALUE sym_normal, sym_sequential, sym_random,
sym_willneed, sym_dontneed, sym_noreuse;
#ifdef HAVE_POSIX_FADVISE
struct io_advise_struct {
int fd;
int advice;
rb_off_t offset;
rb_off_t len;
};
static VALUE
io_advise_internal(void *arg)
{
struct io_advise_struct *ptr = arg;
return posix_fadvise(ptr->fd, ptr->offset, ptr->len, ptr->advice);
}
static VALUE
io_advise_sym_to_const(VALUE sym)
{
#ifdef POSIX_FADV_NORMAL
if (sym == sym_normal)
return INT2NUM(POSIX_FADV_NORMAL);
#endif
#ifdef POSIX_FADV_RANDOM
if (sym == sym_random)
return INT2NUM(POSIX_FADV_RANDOM);
#endif
#ifdef POSIX_FADV_SEQUENTIAL
if (sym == sym_sequential)
return INT2NUM(POSIX_FADV_SEQUENTIAL);
#endif
#ifdef POSIX_FADV_WILLNEED
if (sym == sym_willneed)
return INT2NUM(POSIX_FADV_WILLNEED);
#endif
#ifdef POSIX_FADV_DONTNEED
if (sym == sym_dontneed)
return INT2NUM(POSIX_FADV_DONTNEED);
#endif
#ifdef POSIX_FADV_NOREUSE
if (sym == sym_noreuse)
return INT2NUM(POSIX_FADV_NOREUSE);
#endif
return Qnil;
}
static VALUE
do_io_advise(rb_io_t *fptr, VALUE advice, rb_off_t offset, rb_off_t len)
{
int rv;
struct io_advise_struct ias;
VALUE num_adv;
num_adv = io_advise_sym_to_const(advice);
/*
* The platform doesn't support this hint. We don't raise exception, instead
* silently ignore it. Because IO::advise is only hint.
*/
if (NIL_P(num_adv))
return Qnil;
ias.fd = fptr->fd;
ias.advice = NUM2INT(num_adv);
ias.offset = offset;
ias.len = len;
rv = (int)rb_thread_io_blocking_region(io_advise_internal, &ias, fptr->fd);
if (rv && rv != ENOSYS) {
/* posix_fadvise(2) doesn't set errno. On success it returns 0; otherwise
it returns the error code. */
VALUE message = rb_sprintf("%"PRIsVALUE" "
"(%"PRI_OFFT_PREFIX"d, "
"%"PRI_OFFT_PREFIX"d, "
"%"PRIsVALUE")",
fptr->pathv, offset, len, advice);
rb_syserr_fail_str(rv, message);
}
return Qnil;
}
#endif /* HAVE_POSIX_FADVISE */
static void
advice_arg_check(VALUE advice)
{
if (!SYMBOL_P(advice))
rb_raise(rb_eTypeError, "advice must be a Symbol");
if (advice != sym_normal &&
advice != sym_sequential &&
advice != sym_random &&
advice != sym_willneed &&
advice != sym_dontneed &&
advice != sym_noreuse) {
rb_raise(rb_eNotImpError, "Unsupported advice: %+"PRIsVALUE, advice);
}
}
/*
* call-seq:
* advise(advice, offset = 0, len = 0) -> nil
*
* Invokes Posix system call
* {posix_fadvise(2)}[https://linux.die.net/man/2/posix_fadvise],
* which announces an intention to access data from the current file
* in a particular manner.
*
* The arguments and results are platform-dependent.
*
* The relevant data is specified by:
*
* - +offset+: The offset of the first byte of data.
* - +len+: The number of bytes to be accessed;
* if +len+ is zero, or is larger than the number of bytes remaining,
* all remaining bytes will be accessed.
*
* Argument +advice+ is one of the following symbols:
*
* - +:normal+: The application has no advice to give
* about its access pattern for the specified data.
* If no advice is given for an open file, this is the default assumption.
* - +:sequential+: The application expects to access the specified data sequentially
* (with lower offsets read before higher ones).
* - +:random+: The specified data will be accessed in random order.
* - +:noreuse+: The specified data will be accessed only once.
* - +:willneed+: The specified data will be accessed in the near future.
* - +:dontneed+: The specified data will not be accessed in the near future.
*
* Not implemented on all platforms.
*
*/
static VALUE
rb_io_advise(int argc, VALUE *argv, VALUE io)
{
VALUE advice, offset, len;
rb_off_t off, l;
rb_io_t *fptr;
rb_scan_args(argc, argv, "12", &advice, &offset, &len);
advice_arg_check(advice);
io = GetWriteIO(io);
GetOpenFile(io, fptr);
off = NIL_P(offset) ? 0 : NUM2OFFT(offset);
l = NIL_P(len) ? 0 : NUM2OFFT(len);
#ifdef HAVE_POSIX_FADVISE
return do_io_advise(fptr, advice, off, l);
#else
((void)off, (void)l); /* Ignore all hint */
return Qnil;
#endif
}
/*
* call-seq:
* IO.select(read_ios, write_ios = [], error_ios = [], timeout = nil) -> array or nil
*
* Invokes system call {select(2)}[https://linux.die.net/man/2/select],
* which monitors multiple file descriptors,
* waiting until one or more of the file descriptors
* becomes ready for some class of I/O operation.
*
* Not implemented on all platforms.
*
* Each of the arguments +read_ios+, +write_ios+, and +error_ios+
* is an array of IO objects.
*
* Argument +timeout+ is a numeric value (such as integer or float) timeout
* interval in seconds.
*
* The method monitors the \IO objects given in all three arrays,
* waiting for some to be ready;
* returns a 3-element array whose elements are:
*
* - An array of the objects in +read_ios+ that are ready for reading.
* - An array of the objects in +write_ios+ that are ready for writing.
* - An array of the objects in +error_ios+ have pending exceptions.
*
* If no object becomes ready within the given +timeout+, +nil+ is returned.
*
* \IO.select peeks the buffer of \IO objects for testing readability.
* If the \IO buffer is not empty, \IO.select immediately notifies
* readability. This "peek" only happens for \IO objects. It does not
* happen for IO-like objects such as OpenSSL::SSL::SSLSocket.
*
* The best way to use \IO.select is invoking it after non-blocking
* methods such as #read_nonblock, #write_nonblock, etc. The methods
* raise an exception which is extended by IO::WaitReadable or
* IO::WaitWritable. The modules notify how the caller should wait
* with \IO.select. If IO::WaitReadable is raised, the caller should
* wait for reading. If IO::WaitWritable is raised, the caller should
* wait for writing.
*
* So, blocking read (#readpartial) can be emulated using
* #read_nonblock and \IO.select as follows:
*
* begin
* result = io_like.read_nonblock(maxlen)
* rescue IO::WaitReadable
* IO.select([io_like])
* retry
* rescue IO::WaitWritable
* IO.select(nil, [io_like])
* retry
* end
*
* Especially, the combination of non-blocking methods and \IO.select is
* preferred for IO like objects such as OpenSSL::SSL::SSLSocket. It
* has #to_io method to return underlying IO object. IO.select calls
* #to_io to obtain the file descriptor to wait.
*
* This means that readability notified by \IO.select doesn't mean
* readability from OpenSSL::SSL::SSLSocket object.
*
* The most likely situation is that OpenSSL::SSL::SSLSocket buffers
* some data. \IO.select doesn't see the buffer. So \IO.select can
* block when OpenSSL::SSL::SSLSocket#readpartial doesn't block.
*
* However, several more complicated situations exist.
*
* SSL is a protocol which is sequence of records.
* The record consists of multiple bytes.
* So, the remote side of SSL sends a partial record, IO.select
* notifies readability but OpenSSL::SSL::SSLSocket cannot decrypt a
* byte and OpenSSL::SSL::SSLSocket#readpartial will block.
*
* Also, the remote side can request SSL renegotiation which forces
* the local SSL engine to write some data.
* This means OpenSSL::SSL::SSLSocket#readpartial may invoke #write
* system call and it can block.
* In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock raises
* IO::WaitWritable instead of blocking.
* So, the caller should wait for ready for writability as above
* example.
*
* The combination of non-blocking methods and \IO.select is also useful
* for streams such as tty, pipe socket socket when multiple processes
* read from a stream.
*
* Finally, Linux kernel developers don't guarantee that
* readability of select(2) means readability of following read(2) even
* for a single process;
* see {select(2)}[https://linux.die.net/man/2/select]
*
* Invoking \IO.select before IO#readpartial works well as usual.
* However it is not the best way to use \IO.select.
*
* The writability notified by select(2) doesn't show
* how many bytes are writable.
* IO#write method blocks until given whole string is written.
* So, <tt>IO#write(two or more bytes)</tt> can block after
* writability is notified by \IO.select. IO#write_nonblock is required
* to avoid the blocking.
*
* Blocking write (#write) can be emulated using #write_nonblock and
* IO.select as follows: IO::WaitReadable should also be rescued for
* SSL renegotiation in OpenSSL::SSL::SSLSocket.
*
* while 0 < string.bytesize
* begin
* written = io_like.write_nonblock(string)
* rescue IO::WaitReadable
* IO.select([io_like])
* retry
* rescue IO::WaitWritable
* IO.select(nil, [io_like])
* retry
* end
* string = string.byteslice(written..-1)
* end
*
* Example:
*
* rp, wp = IO.pipe
* mesg = "ping "
* 100.times {
* # IO.select follows IO#read. Not the best way to use IO.select.
* rs, ws, = IO.select([rp], [wp])
* if r = rs[0]
* ret = r.read(5)
* print ret
* case ret
* when /ping/
* mesg = "pong\n"
* when /pong/
* mesg = "ping "
* end
* end
* if w = ws[0]
* w.write(mesg)
* end
* }
*
* Output:
*
* ping pong
* ping pong
* ping pong
* (snipped)
* ping
*
*/
static VALUE
rb_f_select(int argc, VALUE *argv, VALUE obj)
{
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
// It's optionally supported.
VALUE result = rb_fiber_scheduler_io_selectv(scheduler, argc, argv);
if (!UNDEF_P(result)) return result;
}
VALUE timeout;
struct select_args args;
struct timeval timerec;
int i;
rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout);
if (NIL_P(timeout)) {
args.timeout = 0;
}
else {
timerec = rb_time_interval(timeout);
args.timeout = &timerec;
}
for (i = 0; i < numberof(args.fdsets); ++i)
rb_fd_init(&args.fdsets[i]);
return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args);
}
#ifdef IOCTL_REQ_TYPE
typedef IOCTL_REQ_TYPE ioctl_req_t;
#else
typedef int ioctl_req_t;
# define NUM2IOCTLREQ(num) ((int)NUM2LONG(num))
#endif
#ifdef HAVE_IOCTL
struct ioctl_arg {
int fd;
ioctl_req_t cmd;
long narg;
};
static VALUE
nogvl_ioctl(void *ptr)
{
struct ioctl_arg *arg = ptr;
return (VALUE)ioctl(arg->fd, arg->cmd, arg->narg);
}
static int
do_ioctl(int fd, ioctl_req_t cmd, long narg)
{
int retval;
struct ioctl_arg arg;
arg.fd = fd;
arg.cmd = cmd;
arg.narg = narg;
retval = (int)rb_thread_io_blocking_region(nogvl_ioctl, &arg, fd);
return retval;
}
#endif
#define DEFAULT_IOCTL_NARG_LEN (256)
#if defined(__linux__) && defined(_IOC_SIZE)
static long
linux_iocparm_len(ioctl_req_t cmd)
{
long len;
if ((cmd & 0xFFFF0000) == 0) {
/* legacy and unstructured ioctl number. */
return DEFAULT_IOCTL_NARG_LEN;
}
len = _IOC_SIZE(cmd);
/* paranoia check for silly drivers which don't keep ioctl convention */
if (len < DEFAULT_IOCTL_NARG_LEN)
len = DEFAULT_IOCTL_NARG_LEN;
return len;
}
#endif
#ifdef HAVE_IOCTL
static long
ioctl_narg_len(ioctl_req_t cmd)
{
long len;
#ifdef IOCPARM_MASK
#ifndef IOCPARM_LEN
#define IOCPARM_LEN(x) (((x) >> 16) & IOCPARM_MASK)
#endif
#endif
#ifdef IOCPARM_LEN
len = IOCPARM_LEN(cmd); /* on BSDish systems we're safe */
#elif defined(__linux__) && defined(_IOC_SIZE)
len = linux_iocparm_len(cmd);
#else
/* otherwise guess at what's safe */
len = DEFAULT_IOCTL_NARG_LEN;
#endif
return len;
}
#endif
#ifdef HAVE_FCNTL
#ifdef __linux__
typedef long fcntl_arg_t;
#else
/* posix */
typedef int fcntl_arg_t;
#endif
static long
fcntl_narg_len(ioctl_req_t cmd)
{
long len;
switch (cmd) {
#ifdef F_DUPFD
case F_DUPFD:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_DUP2FD /* bsd specific */
case F_DUP2FD:
len = sizeof(int);
break;
#endif
#ifdef F_DUPFD_CLOEXEC /* linux specific */
case F_DUPFD_CLOEXEC:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_GETFD
case F_GETFD:
len = 1;
break;
#endif
#ifdef F_SETFD
case F_SETFD:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_GETFL
case F_GETFL:
len = 1;
break;
#endif
#ifdef F_SETFL
case F_SETFL:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_GETOWN
case F_GETOWN:
len = 1;
break;
#endif
#ifdef F_SETOWN
case F_SETOWN:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_GETOWN_EX /* linux specific */
case F_GETOWN_EX:
len = sizeof(struct f_owner_ex);
break;
#endif
#ifdef F_SETOWN_EX /* linux specific */
case F_SETOWN_EX:
len = sizeof(struct f_owner_ex);
break;
#endif
#ifdef F_GETLK
case F_GETLK:
len = sizeof(struct flock);
break;
#endif
#ifdef F_SETLK
case F_SETLK:
len = sizeof(struct flock);
break;
#endif
#ifdef F_SETLKW
case F_SETLKW:
len = sizeof(struct flock);
break;
#endif
#ifdef F_READAHEAD /* bsd specific */
case F_READAHEAD:
len = sizeof(int);
break;
#endif
#ifdef F_RDAHEAD /* Darwin specific */
case F_RDAHEAD:
len = sizeof(int);
break;
#endif
#ifdef F_GETSIG /* linux specific */
case F_GETSIG:
len = 1;
break;
#endif
#ifdef F_SETSIG /* linux specific */
case F_SETSIG:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_GETLEASE /* linux specific */
case F_GETLEASE:
len = 1;
break;
#endif
#ifdef F_SETLEASE /* linux specific */
case F_SETLEASE:
len = sizeof(fcntl_arg_t);
break;
#endif
#ifdef F_NOTIFY /* linux specific */
case F_NOTIFY:
len = sizeof(fcntl_arg_t);
break;
#endif
default:
len = 256;
break;
}
return len;
}
#else /* HAVE_FCNTL */
static long
fcntl_narg_len(ioctl_req_t cmd)
{
return 0;
}
#endif /* HAVE_FCNTL */
#define NARG_SENTINEL 17
static long
setup_narg(ioctl_req_t cmd, VALUE *argp, long (*narg_len)(ioctl_req_t))
{
long narg = 0;
VALUE arg = *argp;
if (!RTEST(arg)) {
narg = 0;
}
else if (FIXNUM_P(arg)) {
narg = FIX2LONG(arg);
}
else if (arg == Qtrue) {
narg = 1;
}
else {
VALUE tmp = rb_check_string_type(arg);
if (NIL_P(tmp)) {
narg = NUM2LONG(arg);
}
else {
char *ptr;
long len, slen;
*argp = arg = tmp;
len = narg_len(cmd);
rb_str_modify(arg);
slen = RSTRING_LEN(arg);
/* expand for data + sentinel. */
if (slen < len+1) {
rb_str_resize(arg, len+1);
MEMZERO(RSTRING_PTR(arg)+slen, char, len-slen);
slen = len+1;
}
/* a little sanity check here */
ptr = RSTRING_PTR(arg);
ptr[slen - 1] = NARG_SENTINEL;
narg = (long)(SIGNED_VALUE)ptr;
}
}
return narg;
}
static VALUE
finish_narg(int retval, VALUE arg, const rb_io_t *fptr)
{
if (retval < 0) rb_sys_fail_path(fptr->pathv);
if (RB_TYPE_P(arg, T_STRING)) {
char *ptr;
long slen;
RSTRING_GETMEM(arg, ptr, slen);
if (ptr[slen-1] != NARG_SENTINEL)
rb_raise(rb_eArgError, "return value overflowed string");
ptr[slen-1] = '\0';
}
return INT2NUM(retval);
}
#ifdef HAVE_IOCTL
static VALUE
rb_ioctl(VALUE io, VALUE req, VALUE arg)
{
ioctl_req_t cmd = NUM2IOCTLREQ(req);
rb_io_t *fptr;
long narg;
int retval;
narg = setup_narg(cmd, &arg, ioctl_narg_len);
GetOpenFile(io, fptr);
retval = do_ioctl(fptr->fd, cmd, narg);
return finish_narg(retval, arg, fptr);
}
/*
* call-seq:
* ioctl(integer_cmd, argument) -> integer
*
* Invokes Posix system call {ioctl(2)}[https://linux.die.net/man/2/ioctl],
* which issues a low-level command to an I/O device.
*
* Issues a low-level command to an I/O device.
* The arguments and returned value are platform-dependent.
* The effect of the call is platform-dependent.
*
* If argument +argument+ is an integer, it is passed directly;
* if it is a string, it is interpreted as a binary sequence of bytes.
*
* Not implemented on all platforms.
*
*/
static VALUE
rb_io_ioctl(int argc, VALUE *argv, VALUE io)
{
VALUE req, arg;
rb_scan_args(argc, argv, "11", &req, &arg);
return rb_ioctl(io, req, arg);
}
#else
#define rb_io_ioctl rb_f_notimplement
#endif
#ifdef HAVE_FCNTL
struct fcntl_arg {
int fd;
int cmd;
long narg;
};
static VALUE
nogvl_fcntl(void *ptr)
{
struct fcntl_arg *arg = ptr;
#if defined(F_DUPFD)
if (arg->cmd == F_DUPFD)
return (VALUE)rb_cloexec_fcntl_dupfd(arg->fd, (int)arg->narg);
#endif
return (VALUE)fcntl(arg->fd, arg->cmd, arg->narg);
}
static int
do_fcntl(int fd, int cmd, long narg)
{
int retval;
struct fcntl_arg arg;
arg.fd = fd;
arg.cmd = cmd;
arg.narg = narg;
retval = (int)rb_thread_io_blocking_region(nogvl_fcntl, &arg, fd);
if (retval != -1) {
switch (cmd) {
#if defined(F_DUPFD)
case F_DUPFD:
#endif
#if defined(F_DUPFD_CLOEXEC)
case F_DUPFD_CLOEXEC:
#endif
rb_update_max_fd(retval);
}
}
return retval;
}
static VALUE
rb_fcntl(VALUE io, VALUE req, VALUE arg)
{
int cmd = NUM2INT(req);
rb_io_t *fptr;
long narg;
int retval;
narg = setup_narg(cmd, &arg, fcntl_narg_len);
GetOpenFile(io, fptr);
retval = do_fcntl(fptr->fd, cmd, narg);
return finish_narg(retval, arg, fptr);
}
/*
* call-seq:
* fcntl(integer_cmd, argument) -> integer
*
* Invokes Posix system call {fcntl(2)}[https://linux.die.net/man/2/fcntl],
* which provides a mechanism for issuing low-level commands to control or query
* a file-oriented I/O stream. Arguments and results are platform
* dependent.
*
* If +argument+ is a number, its value is passed directly;
* if it is a string, it is interpreted as a binary sequence of bytes.
* (Array#pack might be a useful way to build this string.)
*
* Not implemented on all platforms.
*
*/
static VALUE
rb_io_fcntl(int argc, VALUE *argv, VALUE io)
{
VALUE req, arg;
rb_scan_args(argc, argv, "11", &req, &arg);
return rb_fcntl(io, req, arg);
}
#else
#define rb_io_fcntl rb_f_notimplement
#endif
#if defined(HAVE_SYSCALL) || defined(HAVE___SYSCALL)
/*
* call-seq:
* syscall(integer_callno, *arguments) -> integer
*
* Invokes Posix system call {syscall(2)}[https://linux.die.net/man/2/syscall],
* which calls a specified function.
*
* Calls the operating system function identified by +integer_callno+;
* returns the result of the function or raises SystemCallError if it failed.
* The effect of the call is platform-dependent.
* The arguments and returned value are platform-dependent.
*
* For each of +arguments+: if it is an integer, it is passed directly;
* if it is a string, it is interpreted as a binary sequence of bytes.
* There may be as many as nine such arguments.
*
* Arguments +integer_callno+ and +argument+, as well as the returned value,
* are platform-dependent.
*
* Note: Method +syscall+ is essentially unsafe and unportable.
* The DL (Fiddle) library is preferred for safer and a bit
* more portable programming.
*
* Not implemented on all platforms.
*
*/
static VALUE
rb_f_syscall(int argc, VALUE *argv, VALUE _)
{
VALUE arg[8];
#if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */
# define SYSCALL __syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
# if SIZEOF_LONG == 8
long num, retval = -1;
# elif SIZEOF_LONG_LONG == 8
long long num, retval = -1;
# else
# error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<----
# endif
#elif defined(__linux__)
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2LONG(x)
# define RETVAL2NUM(x) LONG2NUM(x)
/*
* Linux man page says, syscall(2) function prototype is below.
*
* int syscall(int number, ...);
*
* But, it's incorrect. Actual one takes and returned long. (see unistd.h)
*/
long num, retval = -1;
#else
# define SYSCALL syscall
# define NUM2SYSCALLID(x) NUM2INT(x)
# define RETVAL2NUM(x) INT2NUM(x)
int num, retval = -1;
#endif
int i;
if (RTEST(ruby_verbose)) {
rb_category_warning(RB_WARN_CATEGORY_DEPRECATED,
"We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative.");
}
if (argc == 0)
rb_raise(rb_eArgError, "too few arguments for syscall");
if (argc > numberof(arg))
rb_raise(rb_eArgError, "too many arguments for syscall");
num = NUM2SYSCALLID(argv[0]); ++argv;
for (i = argc - 1; i--; ) {
VALUE v = rb_check_string_type(argv[i]);
if (!NIL_P(v)) {
StringValue(v);
rb_str_modify(v);
arg[i] = (VALUE)StringValueCStr(v);
}
else {
arg[i] = (VALUE)NUM2LONG(argv[i]);
}
}
switch (argc) {
case 1:
retval = SYSCALL(num);
break;
case 2:
retval = SYSCALL(num, arg[0]);
break;
case 3:
retval = SYSCALL(num, arg[0],arg[1]);
break;
case 4:
retval = SYSCALL(num, arg[0],arg[1],arg[2]);
break;
case 5:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]);
break;
case 6:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]);
break;
case 7:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]);
break;
case 8:
retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]);
break;
}
if (retval == -1)
rb_sys_fail(0);
return RETVAL2NUM(retval);
#undef SYSCALL
#undef NUM2SYSCALLID
#undef RETVAL2NUM
}
#else
#define rb_f_syscall rb_f_notimplement
#endif
static VALUE
io_new_instance(VALUE args)
{
return rb_class_new_instance(2, (VALUE*)args+1, *(VALUE*)args);
}
static rb_encoding *
find_encoding(VALUE v)
{
rb_encoding *enc = rb_find_encoding(v);
if (!enc) rb_warn("Unsupported encoding %"PRIsVALUE" ignored", v);
return enc;
}
static void
io_encoding_set(rb_io_t *fptr, VALUE v1, VALUE v2, VALUE opt)
{
rb_encoding *enc, *enc2;
int ecflags = fptr->encs.ecflags;
VALUE ecopts, tmp;
if (!NIL_P(v2)) {
enc2 = find_encoding(v1);
tmp = rb_check_string_type(v2);
if (!NIL_P(tmp)) {
if (RSTRING_LEN(tmp) == 1 && RSTRING_PTR(tmp)[0] == '-') {
/* Special case - "-" => no transcoding */
enc = enc2;
enc2 = NULL;
}
else
enc = find_encoding(v2);
if (enc == enc2) {
/* Special case - "-" => no transcoding */
enc2 = NULL;
}
}
else {
enc = find_encoding(v2);
if (enc == enc2) {
/* Special case - "-" => no transcoding */
enc2 = NULL;
}
}
if (enc2 == rb_ascii8bit_encoding()) {
/* If external is ASCII-8BIT, no transcoding */
enc = enc2;
enc2 = NULL;
}
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags);
ecflags = rb_econv_prepare_options(opt, &ecopts, ecflags);
}
else {
if (NIL_P(v1)) {
/* Set to default encodings */
rb_io_ext_int_to_encs(NULL, NULL, &enc, &enc2, 0);
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags);
ecopts = Qnil;
}
else {
tmp = rb_check_string_type(v1);
if (!NIL_P(tmp) && rb_enc_asciicompat(enc = rb_enc_get(tmp))) {
parse_mode_enc(RSTRING_PTR(tmp), enc, &enc, &enc2, NULL);
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags);
ecflags = rb_econv_prepare_options(opt, &ecopts, ecflags);
}
else {
rb_io_ext_int_to_encs(find_encoding(v1), NULL, &enc, &enc2, 0);
SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags);
ecopts = Qnil;
}
}
}
validate_enc_binmode(&fptr->mode, ecflags, enc, enc2);
fptr->encs.enc = enc;
fptr->encs.enc2 = enc2;
fptr->encs.ecflags = ecflags;
fptr->encs.ecopts = ecopts;
clear_codeconv(fptr);
}
struct io_encoding_set_args {
rb_io_t *fptr;
VALUE v1;
VALUE v2;
VALUE opt;
};
static VALUE
io_encoding_set_v(VALUE v)
{
struct io_encoding_set_args *arg = (struct io_encoding_set_args *)v;
io_encoding_set(arg->fptr, arg->v1, arg->v2, arg->opt);
return Qnil;
}
static VALUE
pipe_pair_close(VALUE rw)
{
VALUE *rwp = (VALUE *)rw;
return rb_ensure(io_close, rwp[0], io_close, rwp[1]);
}
/*
* call-seq:
* IO.pipe(**opts) -> [read_io, write_io]
* IO.pipe(enc, **opts) -> [read_io, write_io]
* IO.pipe(ext_enc, int_enc, **opts) -> [read_io, write_io]
* IO.pipe(**opts) {|read_io, write_io| ...} -> object
* IO.pipe(enc, **opts) {|read_io, write_io| ...} -> object
* IO.pipe(ext_enc, int_enc, **opts) {|read_io, write_io| ...} -> object
*
* Creates a pair of pipe endpoints, +read_io+ and +write_io+,
* connected to each other.
*
* If argument +enc_string+ is given, it must be a string containing one of:
*
* - The name of the encoding to be used as the external encoding.
* - The colon-separated names of two encodings to be used as the external
* and internal encodings.
*
* If argument +int_enc+ is given, it must be an Encoding object
* or encoding name string that specifies the internal encoding to be used;
* if argument +ext_enc+ is also given, it must be an Encoding object
* or encoding name string that specifies the external encoding to be used.
*
* The string read from +read_io+ is tagged with the external encoding;
* if an internal encoding is also specified, the string is converted
* to, and tagged with, that encoding.
*
* If any encoding is specified,
* optional hash arguments specify the conversion option.
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding Options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
* With no block given, returns the two endpoints in an array:
*
* IO.pipe # => [#<IO:fd 4>, #<IO:fd 5>]
*
* With a block given, calls the block with the two endpoints;
* closes both endpoints and returns the value of the block:
*
* IO.pipe {|read_io, write_io| p read_io; p write_io }
*
* Output:
*
* #<IO:fd 6>
* #<IO:fd 7>
*
* Not available on all platforms.
*
* In the example below, the two processes close the ends of the pipe
* that they are not using. This is not just a cosmetic nicety. The
* read end of a pipe will not generate an end of file condition if
* there are any writers with the pipe still open. In the case of the
* parent process, the <tt>rd.read</tt> will never return if it
* does not first issue a <tt>wr.close</tt>:
*
* rd, wr = IO.pipe
*
* if fork
* wr.close
* puts "Parent got: <#{rd.read}>"
* rd.close
* Process.wait
* else
* rd.close
* puts 'Sending message to parent'
* wr.write "Hi Dad"
* wr.close
* end
*
* <em>produces:</em>
*
* Sending message to parent
* Parent got: <Hi Dad>
*
*/
static VALUE
rb_io_s_pipe(int argc, VALUE *argv, VALUE klass)
{
int pipes[2], state;
VALUE r, w, args[3], v1, v2;
VALUE opt;
rb_io_t *fptr, *fptr2;
struct io_encoding_set_args ies_args;
int fmode = 0;
VALUE ret;
argc = rb_scan_args(argc, argv, "02:", &v1, &v2, &opt);
if (rb_pipe(pipes) < 0)
rb_sys_fail(0);
args[0] = klass;
args[1] = INT2NUM(pipes[0]);
args[2] = INT2FIX(O_RDONLY);
r = rb_protect(io_new_instance, (VALUE)args, &state);
if (state) {
close(pipes[0]);
close(pipes[1]);
rb_jump_tag(state);
}
GetOpenFile(r, fptr);
ies_args.fptr = fptr;
ies_args.v1 = v1;
ies_args.v2 = v2;
ies_args.opt = opt;
rb_protect(io_encoding_set_v, (VALUE)&ies_args, &state);
if (state) {
close(pipes[1]);
io_close(r);
rb_jump_tag(state);
}
args[1] = INT2NUM(pipes[1]);
args[2] = INT2FIX(O_WRONLY);
w = rb_protect(io_new_instance, (VALUE)args, &state);
if (state) {
close(pipes[1]);
if (!NIL_P(r)) rb_io_close(r);
rb_jump_tag(state);
}
GetOpenFile(w, fptr2);
rb_io_synchronized(fptr2);
extract_binmode(opt, &fmode);
if ((fmode & FMODE_BINMODE) && NIL_P(v1)) {
rb_io_ascii8bit_binmode(r);
rb_io_ascii8bit_binmode(w);
}
#if DEFAULT_TEXTMODE
if ((fptr->mode & FMODE_TEXTMODE) && (fmode & FMODE_BINMODE)) {
fptr->mode &= ~FMODE_TEXTMODE;
setmode(fptr->fd, O_BINARY);
}
#if RUBY_CRLF_ENVIRONMENT
if (fptr->encs.ecflags & ECONV_DEFAULT_NEWLINE_DECORATOR) {
fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
}
#endif
#endif
fptr->mode |= fmode;
#if DEFAULT_TEXTMODE
if ((fptr2->mode & FMODE_TEXTMODE) && (fmode & FMODE_BINMODE)) {
fptr2->mode &= ~FMODE_TEXTMODE;
setmode(fptr2->fd, O_BINARY);
}
#endif
fptr2->mode |= fmode;
ret = rb_assoc_new(r, w);
if (rb_block_given_p()) {
VALUE rw[2];
rw[0] = r;
rw[1] = w;
return rb_ensure(rb_yield, ret, pipe_pair_close, (VALUE)rw);
}
return ret;
}
struct foreach_arg {
int argc;
VALUE *argv;
VALUE io;
};
static void
open_key_args(VALUE klass, int argc, VALUE *argv, VALUE opt, struct foreach_arg *arg)
{
VALUE path, v;
VALUE vmode = Qnil, vperm = Qnil;
path = *argv++;
argc--;
FilePathValue(path);
arg->io = 0;
arg->argc = argc;
arg->argv = argv;
if (NIL_P(opt)) {
vmode = INT2NUM(O_RDONLY);
vperm = INT2FIX(0666);
}
else if (!NIL_P(v = rb_hash_aref(opt, sym_open_args))) {
int n;
v = rb_to_array_type(v);
n = RARRAY_LENINT(v);
rb_check_arity(n, 0, 3); /* rb_io_open */
rb_scan_args_kw(RB_SCAN_ARGS_LAST_HASH_KEYWORDS, n, RARRAY_CONST_PTR(v), "02:", &vmode, &vperm, &opt);
}
arg->io = rb_io_open(klass, path, vmode, vperm, opt);
}
static VALUE
io_s_foreach(VALUE v)
{
struct getline_arg *arg = (void *)v;
VALUE str;
if (arg->limit == 0)
rb_raise(rb_eArgError, "invalid limit: 0 for foreach");
while (!NIL_P(str = rb_io_getline_1(arg->rs, arg->limit, arg->chomp, arg->io))) {
rb_lastline_set(str);
rb_yield(str);
}
rb_lastline_set(Qnil);
return Qnil;
}
/*
* call-seq:
* IO.foreach(path, sep = $/, **opts) {|line| block } -> nil
* IO.foreach(path, limit, **opts) {|line| block } -> nil
* IO.foreach(path, sep, limit, **opts) {|line| block } -> nil
* IO.foreach(...) -> an_enumerator
*
* Calls the block with each successive line read from the stream.
*
* When called from class \IO (but not subclasses of \IO),
* this method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* The first argument must be a string that is the path to a file.
*
* With only argument +path+ given, parses lines from the file at the given +path+,
* as determined by the default line separator,
* and calls the block with each successive line:
*
* File.foreach('t.txt') {|line| p line }
*
* Output: the same as above.
*
* For both forms, command and path, the remaining arguments are the same.
*
* With argument +sep+ given, parses lines as determined by that line separator
* (see {Line Separator}[rdoc-ref:IO@Line+Separator]):
*
* File.foreach('t.txt', 'li') {|line| p line }
*
* Output:
*
* "First li"
* "ne\nSecond li"
* "ne\n\nThird li"
* "ne\nFourth li"
* "ne\n"
*
* Each paragraph:
*
* File.foreach('t.txt', '') {|paragraph| p paragraph }
*
* Output:
*
* "First line\nSecond line\n\n"
* "Third line\nFourth line\n"
*
* With argument +limit+ given, parses lines as determined by the default
* line separator and the given line-length limit
* (see {Line Separator}[rdoc-ref:IO@Line+Separator] and {Line Limit}[rdoc-ref:IO@Line+Limit]):
*
* File.foreach('t.txt', 7) {|line| p line }
*
* Output:
*
* "First l"
* "ine\n"
* "Second "
* "line\n"
* "\n"
* "Third l"
* "ine\n"
* "Fourth l"
* "line\n"
*
* With arguments +sep+ and +limit+ given,
* combines the two behaviors
* (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]).
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
* - {Line Options}[rdoc-ref:IO@Line+IO].
*
* Returns an Enumerator if no block is given.
*
*/
static VALUE
rb_io_s_foreach(int argc, VALUE *argv, VALUE self)
{
VALUE opt;
int orig_argc = argc;
struct foreach_arg arg;
struct getline_arg garg;
argc = rb_scan_args(argc, argv, "12:", NULL, NULL, NULL, &opt);
RETURN_ENUMERATOR(self, orig_argc, argv);
extract_getline_args(argc-1, argv+1, &garg);
open_key_args(self, argc, argv, opt, &arg);
if (NIL_P(arg.io)) return Qnil;
extract_getline_opts(opt, &garg);
check_getline_args(&garg.rs, &garg.limit, garg.io = arg.io);
return rb_ensure(io_s_foreach, (VALUE)&garg, rb_io_close, arg.io);
}
static VALUE
io_s_readlines(VALUE v)
{
struct getline_arg *arg = (void *)v;
return io_readlines(arg, arg->io);
}
/*
* call-seq:
* IO.readlines(path, sep = $/, **opts) -> array
* IO.readlines(path, limit, **opts) -> array
* IO.readlines(path, sep, limit, **opts) -> array
*
* Returns an array of all lines read from the stream.
*
* When called from class \IO (but not subclasses of \IO),
* this method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* The first argument must be a string that is the path to a file.
*
* With only argument +path+ given, parses lines from the file at the given +path+,
* as determined by the default line separator,
* and returns those lines in an array:
*
* IO.readlines('t.txt')
* # => ["First line\n", "Second line\n", "\n", "Third line\n", "Fourth line\n"]
*
* With argument +sep+ given, parses lines as determined by that line separator
* (see {Line Separator}[rdoc-ref:IO@Line+Separator]):
*
* # Ordinary separator.
* IO.readlines('t.txt', 'li')
* # =>["First li", "ne\nSecond li", "ne\n\nThird li", "ne\nFourth li", "ne\n"]
* # Get-paragraphs separator.
* IO.readlines('t.txt', '')
* # => ["First line\nSecond line\n\n", "Third line\nFourth line\n"]
* # Get-all separator.
* IO.readlines('t.txt', nil)
* # => ["First line\nSecond line\n\nThird line\nFourth line\n"]
*
* With argument +limit+ given, parses lines as determined by the default
* line separator and the given line-length limit
* (see {Line Separator}[rdoc-ref:IO@Line+Separator] and {Line Limit}[rdoc-ref:IO@Line+Limit]:
*
* IO.readlines('t.txt', 7)
* # => ["First l", "ine\n", "Second ", "line\n", "\n", "Third l", "ine\n", "Fourth ", "line\n"]
*
* With arguments +sep+ and +limit+ given,
* combines the two behaviors
* (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]).
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
* - {Line Options}[rdoc-ref:IO@Line+IO].
*
*/
static VALUE
rb_io_s_readlines(int argc, VALUE *argv, VALUE io)
{
VALUE opt;
struct foreach_arg arg;
struct getline_arg garg;
argc = rb_scan_args(argc, argv, "12:", NULL, NULL, NULL, &opt);
extract_getline_args(argc-1, argv+1, &garg);
open_key_args(io, argc, argv, opt, &arg);
if (NIL_P(arg.io)) return Qnil;
extract_getline_opts(opt, &garg);
check_getline_args(&garg.rs, &garg.limit, garg.io = arg.io);
return rb_ensure(io_s_readlines, (VALUE)&garg, rb_io_close, arg.io);
}
static VALUE
io_s_read(VALUE v)
{
struct foreach_arg *arg = (void *)v;
return io_read(arg->argc, arg->argv, arg->io);
}
struct seek_arg {
VALUE io;
VALUE offset;
int mode;
};
static VALUE
seek_before_access(VALUE argp)
{
struct seek_arg *arg = (struct seek_arg *)argp;
rb_io_binmode(arg->io);
return rb_io_seek(arg->io, arg->offset, arg->mode);
}
/*
* call-seq:
* IO.read(path, length = nil, offset = 0, **opts) -> string or nil
*
* Opens the stream, reads and returns some or all of its content,
* and closes the stream; returns +nil+ if no bytes were read.
*
* When called from class \IO (but not subclasses of \IO),
* this method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* The first argument must be a string that is the path to a file.
*
* With only argument +path+ given, reads in text mode and returns the entire content
* of the file at the given path:
*
* IO.read('t.txt')
* # => "First line\nSecond line\n\nThird line\nFourth line\n"
*
* On Windows, text mode can terminate reading and leave bytes in the file
* unread when encountering certain special bytes. Consider using
* IO.binread if all bytes in the file should be read.
*
* With argument +length+, returns +length+ bytes if available:
*
* IO.read('t.txt', 7) # => "First l"
* IO.read('t.txt', 700)
* # => "First line\r\nSecond line\r\n\r\nFourth line\r\nFifth line\r\n"
*
* With arguments +length+ and +offset+, returns +length+ bytes
* if available, beginning at the given +offset+:
*
* IO.read('t.txt', 10, 2) # => "rst line\nS"
* IO.read('t.txt', 10, 200) # => nil
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
*/
static VALUE
rb_io_s_read(int argc, VALUE *argv, VALUE io)
{
VALUE opt, offset;
long off;
struct foreach_arg arg;
argc = rb_scan_args(argc, argv, "13:", NULL, NULL, &offset, NULL, &opt);
if (!NIL_P(offset) && (off = NUM2LONG(offset)) < 0) {
rb_raise(rb_eArgError, "negative offset %ld given", off);
}
open_key_args(io, argc, argv, opt, &arg);
if (NIL_P(arg.io)) return Qnil;
if (!NIL_P(offset)) {
struct seek_arg sarg;
int state = 0;
sarg.io = arg.io;
sarg.offset = offset;
sarg.mode = SEEK_SET;
rb_protect(seek_before_access, (VALUE)&sarg, &state);
if (state) {
rb_io_close(arg.io);
rb_jump_tag(state);
}
if (arg.argc == 2) arg.argc = 1;
}
return rb_ensure(io_s_read, (VALUE)&arg, rb_io_close, arg.io);
}
/*
* call-seq:
* IO.binread(path, length = nil, offset = 0) -> string or nil
*
* Behaves like IO.read, except that the stream is opened in binary mode
* with ASCII-8BIT encoding.
*
* When called from class \IO (but not subclasses of \IO),
* this method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
*/
static VALUE
rb_io_s_binread(int argc, VALUE *argv, VALUE io)
{
VALUE offset;
struct foreach_arg arg;
enum {
fmode = FMODE_READABLE|FMODE_BINMODE,
oflags = O_RDONLY
#ifdef O_BINARY
|O_BINARY
#endif
};
struct rb_io_encoding convconfig = {NULL, NULL, 0, Qnil};
rb_scan_args(argc, argv, "12", NULL, NULL, &offset);
FilePathValue(argv[0]);
convconfig.enc = rb_ascii8bit_encoding();
arg.io = rb_io_open_generic(io, argv[0], oflags, fmode, &convconfig, 0);
if (NIL_P(arg.io)) return Qnil;
arg.argv = argv+1;
arg.argc = (argc > 1) ? 1 : 0;
if (!NIL_P(offset)) {
struct seek_arg sarg;
int state = 0;
sarg.io = arg.io;
sarg.offset = offset;
sarg.mode = SEEK_SET;
rb_protect(seek_before_access, (VALUE)&sarg, &state);
if (state) {
rb_io_close(arg.io);
rb_jump_tag(state);
}
}
return rb_ensure(io_s_read, (VALUE)&arg, rb_io_close, arg.io);
}
static VALUE
io_s_write0(VALUE v)
{
struct write_arg *arg = (void *)v;
return io_write(arg->io,arg->str,arg->nosync);
}
static VALUE
io_s_write(int argc, VALUE *argv, VALUE klass, int binary)
{
VALUE string, offset, opt;
struct foreach_arg arg;
struct write_arg warg;
rb_scan_args(argc, argv, "21:", NULL, &string, &offset, &opt);
if (NIL_P(opt)) opt = rb_hash_new();
else opt = rb_hash_dup(opt);
if (NIL_P(rb_hash_aref(opt,sym_mode))) {
int mode = O_WRONLY|O_CREAT;
#ifdef O_BINARY
if (binary) mode |= O_BINARY;
#endif
if (NIL_P(offset)) mode |= O_TRUNC;
rb_hash_aset(opt,sym_mode,INT2NUM(mode));
}
open_key_args(klass, argc, argv, opt, &arg);
#ifndef O_BINARY
if (binary) rb_io_binmode_m(arg.io);
#endif
if (NIL_P(arg.io)) return Qnil;
if (!NIL_P(offset)) {
struct seek_arg sarg;
int state = 0;
sarg.io = arg.io;
sarg.offset = offset;
sarg.mode = SEEK_SET;
rb_protect(seek_before_access, (VALUE)&sarg, &state);
if (state) {
rb_io_close(arg.io);
rb_jump_tag(state);
}
}
warg.io = arg.io;
warg.str = string;
warg.nosync = 0;
return rb_ensure(io_s_write0, (VALUE)&warg, rb_io_close, arg.io);
}
/*
* call-seq:
* IO.write(path, data, offset = 0, **opts) -> integer
*
* Opens the stream, writes the given +data+ to it,
* and closes the stream; returns the number of bytes written.
*
* When called from class \IO (but not subclasses of \IO),
* this method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* The first argument must be a string that is the path to a file.
*
* With only argument +path+ given, writes the given +data+ to the file at that path:
*
* IO.write('t.tmp', 'abc') # => 3
* File.read('t.tmp') # => "abc"
*
* If +offset+ is zero (the default), the file is overwritten:
*
* IO.write('t.tmp', 'A') # => 1
* File.read('t.tmp') # => "A"
*
* If +offset+ in within the file content, the file is partly overwritten:
*
* IO.write('t.tmp', 'abcdef') # => 3
* File.read('t.tmp') # => "abcdef"
* # Offset within content.
* IO.write('t.tmp', '012', 2) # => 3
* File.read('t.tmp') # => "ab012f"
*
* If +offset+ is outside the file content,
* the file is padded with null characters <tt>"\u0000"</tt>:
*
* IO.write('t.tmp', 'xyz', 10) # => 3
* File.read('t.tmp') # => "ab012f\u0000\u0000\u0000\u0000xyz"
*
* Optional keyword arguments +opts+ specify:
*
* - {Open Options}[rdoc-ref:IO@Open+Options].
* - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
*/
static VALUE
rb_io_s_write(int argc, VALUE *argv, VALUE io)
{
return io_s_write(argc, argv, io, 0);
}
/*
* call-seq:
* IO.binwrite(path, string, offset = 0) -> integer
*
* Behaves like IO.write, except that the stream is opened in binary mode
* with ASCII-8BIT encoding.
*
* When called from class \IO (but not subclasses of \IO),
* this method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
*/
static VALUE
rb_io_s_binwrite(int argc, VALUE *argv, VALUE io)
{
return io_s_write(argc, argv, io, 1);
}
struct copy_stream_struct {
VALUE src;
VALUE dst;
rb_off_t copy_length; /* (rb_off_t)-1 if not specified */
rb_off_t src_offset; /* (rb_off_t)-1 if not specified */
rb_io_t *src_fptr;
rb_io_t *dst_fptr;
unsigned close_src : 1;
unsigned close_dst : 1;
int error_no;
rb_off_t total;
const char *syserr;
const char *notimp;
VALUE th;
struct stat src_stat;
struct stat dst_stat;
#ifdef HAVE_FCOPYFILE
copyfile_state_t copyfile_state;
#endif
};
static void *
exec_interrupts(void *arg)
{
VALUE th = (VALUE)arg;
rb_thread_execute_interrupts(th);
return NULL;
}
/*
* returns TRUE if the preceding system call was interrupted
* so we can continue. If the thread was interrupted, we
* reacquire the GVL to execute interrupts before continuing.
*/
static int
maygvl_copy_stream_continue_p(int has_gvl, struct copy_stream_struct *stp)
{
switch (errno) {
case EINTR:
#if defined(ERESTART)
case ERESTART:
#endif
if (rb_thread_interrupted(stp->th)) {
if (has_gvl)
rb_thread_execute_interrupts(stp->th);
else
rb_thread_call_with_gvl(exec_interrupts, (void *)stp->th);
}
return TRUE;
}
return FALSE;
}
struct fiber_scheduler_wait_for_arguments {
VALUE scheduler;
rb_io_t *fptr;
short events;
VALUE result;
};
static void *
fiber_scheduler_wait_for(void * _arguments)
{
struct fiber_scheduler_wait_for_arguments *arguments = (struct fiber_scheduler_wait_for_arguments *)_arguments;
arguments->result = rb_fiber_scheduler_io_wait(arguments->scheduler, arguments->fptr->self, INT2NUM(arguments->events), RUBY_IO_TIMEOUT_DEFAULT);
return NULL;
}
#if USE_POLL
# define IOWAIT_SYSCALL "poll"
STATIC_ASSERT(pollin_expected, POLLIN == RB_WAITFD_IN);
STATIC_ASSERT(pollout_expected, POLLOUT == RB_WAITFD_OUT);
static int
nogvl_wait_for(VALUE th, rb_io_t *fptr, short events, struct timeval *timeout)
{
VALUE scheduler = rb_fiber_scheduler_current_for_thread(th);
if (scheduler != Qnil) {
struct fiber_scheduler_wait_for_arguments args = {.scheduler = scheduler, .fptr = fptr, .events = events};
rb_thread_call_with_gvl(fiber_scheduler_wait_for, &args);
return RTEST(args.result);
}
int fd = fptr->fd;
if (fd == -1) return 0;
struct pollfd fds;
fds.fd = fd;
fds.events = events;
int timeout_milliseconds = -1;
if (timeout) {
timeout_milliseconds = (int)(timeout->tv_sec * 1000) + (int)(timeout->tv_usec / 1000);
}
return poll(&fds, 1, timeout_milliseconds);
}
#else /* !USE_POLL */
# define IOWAIT_SYSCALL "select"
static int
nogvl_wait_for(VALUE th, rb_io_t *fptr, short events, struct timeval *timeout)
{
VALUE scheduler = rb_fiber_scheduler_current_for_thread(th);
if (scheduler != Qnil) {
struct fiber_scheduler_wait_for_arguments args = {.scheduler = scheduler, .fptr = fptr, .events = events};
rb_thread_call_with_gvl(fiber_scheduler_wait_for, &args);
return RTEST(args.result);
}
int fd = fptr->fd;
if (fd == -1) {
errno = EBADF;
return -1;
}
rb_fdset_t fds;
int ret;
rb_fd_init(&fds);
rb_fd_set(fd, &fds);
switch (events) {
case RB_WAITFD_IN:
ret = rb_fd_select(fd + 1, &fds, 0, 0, timeout);
break;
case RB_WAITFD_OUT:
ret = rb_fd_select(fd + 1, 0, &fds, 0, timeout);
break;
default:
VM_UNREACHABLE(nogvl_wait_for);
}
rb_fd_term(&fds);
// On timeout, this returns 0.
return ret;
}
#endif /* !USE_POLL */
static int
maygvl_copy_stream_wait_read(int has_gvl, struct copy_stream_struct *stp)
{
int ret;
do {
if (has_gvl) {
ret = RB_NUM2INT(rb_io_wait(stp->src, RB_INT2NUM(RUBY_IO_READABLE), Qnil));
}
else {
ret = nogvl_wait_for(stp->th, stp->src_fptr, RB_WAITFD_IN, NULL);
}
} while (ret < 0 && maygvl_copy_stream_continue_p(has_gvl, stp));
if (ret < 0) {
stp->syserr = IOWAIT_SYSCALL;
stp->error_no = errno;
return ret;
}
return 0;
}
static int
nogvl_copy_stream_wait_write(struct copy_stream_struct *stp)
{
int ret;
do {
ret = nogvl_wait_for(stp->th, stp->dst_fptr, RB_WAITFD_OUT, NULL);
} while (ret < 0 && maygvl_copy_stream_continue_p(0, stp));
if (ret < 0) {
stp->syserr = IOWAIT_SYSCALL;
stp->error_no = errno;
return ret;
}
return 0;
}
#ifdef USE_COPY_FILE_RANGE
static ssize_t
simple_copy_file_range(int in_fd, rb_off_t *in_offset, int out_fd, rb_off_t *out_offset, size_t count, unsigned int flags)
{
#ifdef HAVE_COPY_FILE_RANGE
return copy_file_range(in_fd, in_offset, out_fd, out_offset, count, flags);
#else
return syscall(__NR_copy_file_range, in_fd, in_offset, out_fd, out_offset, count, flags);
#endif
}
static int
nogvl_copy_file_range(struct copy_stream_struct *stp)
{
ssize_t ss;
rb_off_t src_size;
rb_off_t copy_length, src_offset, *src_offset_ptr;
if (!S_ISREG(stp->src_stat.st_mode))
return 0;
src_size = stp->src_stat.st_size;
src_offset = stp->src_offset;
if (src_offset >= (rb_off_t)0) {
src_offset_ptr = &src_offset;
}
else {
src_offset_ptr = NULL; /* if src_offset_ptr is NULL, then bytes are read from in_fd starting from the file offset */
}
copy_length = stp->copy_length;
if (copy_length < (rb_off_t)0) {
if (src_offset < (rb_off_t)0) {
rb_off_t current_offset;
errno = 0;
current_offset = lseek(stp->src_fptr->fd, 0, SEEK_CUR);
if (current_offset < (rb_off_t)0 && errno) {
stp->syserr = "lseek";
stp->error_no = errno;
return (int)current_offset;
}
copy_length = src_size - current_offset;
}
else {
copy_length = src_size - src_offset;
}
}
retry_copy_file_range:
# if SIZEOF_OFF_T > SIZEOF_SIZE_T
/* we are limited by the 32-bit ssize_t return value on 32-bit */
ss = (copy_length > (rb_off_t)SSIZE_MAX) ? SSIZE_MAX : (ssize_t)copy_length;
# else
ss = (ssize_t)copy_length;
# endif
ss = simple_copy_file_range(stp->src_fptr->fd, src_offset_ptr, stp->dst_fptr->fd, NULL, ss, 0);
if (0 < ss) {
stp->total += ss;
copy_length -= ss;
if (0 < copy_length) {
goto retry_copy_file_range;
}
}
if (ss < 0) {
if (maygvl_copy_stream_continue_p(0, stp)) {
goto retry_copy_file_range;
}
switch (errno) {
case EINVAL:
case EPERM: /* copy_file_range(2) doesn't exist (may happen in
docker container) */
#ifdef ENOSYS
case ENOSYS:
#endif
#ifdef EXDEV
case EXDEV: /* in_fd and out_fd are not on the same filesystem */
#endif
return 0;
case EAGAIN:
#if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
{
int ret = nogvl_copy_stream_wait_write(stp);
if (ret < 0) return ret;
}
goto retry_copy_file_range;
case EBADF:
{
int e = errno;
int flags = fcntl(stp->dst_fptr->fd, F_GETFL);
if (flags != -1 && flags & O_APPEND) {
return 0;
}
errno = e;
}
}
stp->syserr = "copy_file_range";
stp->error_no = errno;
return (int)ss;
}
return 1;
}
#endif
#ifdef HAVE_FCOPYFILE
static int
nogvl_fcopyfile(struct copy_stream_struct *stp)
{
rb_off_t cur, ss = 0;
const rb_off_t src_offset = stp->src_offset;
int ret;
if (stp->copy_length >= (rb_off_t)0) {
/* copy_length can't be specified in fcopyfile(3) */
return 0;
}
if (!S_ISREG(stp->src_stat.st_mode))
return 0;
if (!S_ISREG(stp->dst_stat.st_mode))
return 0;
if (lseek(stp->dst_fptr->fd, 0, SEEK_CUR) > (rb_off_t)0) /* if dst IO was already written */
return 0;
if (fcntl(stp->dst_fptr->fd, F_GETFL) & O_APPEND) {
/* fcopyfile(3) appends src IO to dst IO and then truncates
* dst IO to src IO's original size. */
rb_off_t end = lseek(stp->dst_fptr->fd, 0, SEEK_END);
lseek(stp->dst_fptr->fd, 0, SEEK_SET);
if (end > (rb_off_t)0) return 0;
}
if (src_offset > (rb_off_t)0) {
rb_off_t r;
/* get current offset */
errno = 0;
cur = lseek(stp->src_fptr->fd, 0, SEEK_CUR);
if (cur < (rb_off_t)0 && errno) {
stp->error_no = errno;
return 1;
}
errno = 0;
r = lseek(stp->src_fptr->fd, src_offset, SEEK_SET);
if (r < (rb_off_t)0 && errno) {
stp->error_no = errno;
return 1;
}
}
stp->copyfile_state = copyfile_state_alloc(); /* this will be freed by copy_stream_finalize() */
ret = fcopyfile(stp->src_fptr->fd, stp->dst_fptr->fd, stp->copyfile_state, COPYFILE_DATA);
copyfile_state_get(stp->copyfile_state, COPYFILE_STATE_COPIED, &ss); /* get copied bytes */
if (ret == 0) { /* success */
stp->total = ss;
if (src_offset > (rb_off_t)0) {
rb_off_t r;
errno = 0;
/* reset offset */
r = lseek(stp->src_fptr->fd, cur, SEEK_SET);
if (r < (rb_off_t)0 && errno) {
stp->error_no = errno;
return 1;
}
}
}
else {
switch (errno) {
case ENOTSUP:
case EPERM:
case EINVAL:
return 0;
}
stp->syserr = "fcopyfile";
stp->error_no = errno;
return (int)ret;
}
return 1;
}
#endif
#ifdef HAVE_SENDFILE
# ifdef __linux__
# define USE_SENDFILE
# ifdef HAVE_SYS_SENDFILE_H
# include <sys/sendfile.h>
# endif
static ssize_t
simple_sendfile(int out_fd, int in_fd, rb_off_t *offset, rb_off_t count)
{
return sendfile(out_fd, in_fd, offset, (size_t)count);
}
# elif 0 /* defined(__FreeBSD__) || defined(__DragonFly__) */ || defined(__APPLE__)
/* This runs on FreeBSD8.1 r30210, but sendfiles blocks its execution
* without cpuset -l 0.
*/
# define USE_SENDFILE
static ssize_t
simple_sendfile(int out_fd, int in_fd, rb_off_t *offset, rb_off_t count)
{
int r;
rb_off_t pos = offset ? *offset : lseek(in_fd, 0, SEEK_CUR);
rb_off_t sbytes;
# ifdef __APPLE__
r = sendfile(in_fd, out_fd, pos, &count, NULL, 0);
sbytes = count;
# else
r = sendfile(in_fd, out_fd, pos, (size_t)count, NULL, &sbytes, 0);
# endif
if (r != 0 && sbytes == 0) return r;
if (offset) {
*offset += sbytes;
}
else {
lseek(in_fd, sbytes, SEEK_CUR);
}
return (ssize_t)sbytes;
}
# endif
#endif
#ifdef USE_SENDFILE
static int
nogvl_copy_stream_sendfile(struct copy_stream_struct *stp)
{
ssize_t ss;
rb_off_t src_size;
rb_off_t copy_length;
rb_off_t src_offset;
int use_pread;
if (!S_ISREG(stp->src_stat.st_mode))
return 0;
src_size = stp->src_stat.st_size;
#ifndef __linux__
if ((stp->dst_stat.st_mode & S_IFMT) != S_IFSOCK)
return 0;
#endif
src_offset = stp->src_offset;
use_pread = src_offset >= (rb_off_t)0;
copy_length = stp->copy_length;
if (copy_length < (rb_off_t)0) {
if (use_pread)
copy_length = src_size - src_offset;
else {
rb_off_t cur;
errno = 0;
cur = lseek(stp->src_fptr->fd, 0, SEEK_CUR);
if (cur < (rb_off_t)0 && errno) {
stp->syserr = "lseek";
stp->error_no = errno;
return (int)cur;
}
copy_length = src_size - cur;
}
}
retry_sendfile:
# if SIZEOF_OFF_T > SIZEOF_SIZE_T
/* we are limited by the 32-bit ssize_t return value on 32-bit */
ss = (copy_length > (rb_off_t)SSIZE_MAX) ? SSIZE_MAX : (ssize_t)copy_length;
# else
ss = (ssize_t)copy_length;
# endif
if (use_pread) {
ss = simple_sendfile(stp->dst_fptr->fd, stp->src_fptr->fd, &src_offset, ss);
}
else {
ss = simple_sendfile(stp->dst_fptr->fd, stp->src_fptr->fd, NULL, ss);
}
if (0 < ss) {
stp->total += ss;
copy_length -= ss;
if (0 < copy_length) {
goto retry_sendfile;
}
}
if (ss < 0) {
if (maygvl_copy_stream_continue_p(0, stp))
goto retry_sendfile;
switch (errno) {
case EINVAL:
#ifdef ENOSYS
case ENOSYS:
#endif
#ifdef EOPNOTSUP
/* some RedHat kernels may return EOPNOTSUP on an NFS mount.
see also: [Feature #16965] */
case EOPNOTSUP:
#endif
return 0;
case EAGAIN:
#if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
{
int ret;
#ifndef __linux__
/*
* Linux requires stp->src_fptr->fd to be a mmap-able (regular) file,
* select() reports regular files to always be "ready", so
* there is no need to select() on it.
* Other OSes may have the same limitation for sendfile() which
* allow us to bypass maygvl_copy_stream_wait_read()...
*/
ret = maygvl_copy_stream_wait_read(0, stp);
if (ret < 0) return ret;
#endif
ret = nogvl_copy_stream_wait_write(stp);
if (ret < 0) return ret;
}
goto retry_sendfile;
}
stp->syserr = "sendfile";
stp->error_no = errno;
return (int)ss;
}
return 1;
}
#endif
static ssize_t
maygvl_read(int has_gvl, rb_io_t *fptr, void *buf, size_t count)
{
if (has_gvl)
return rb_io_read_memory(fptr, buf, count);
else
return read(fptr->fd, buf, count);
}
static ssize_t
maygvl_copy_stream_read(int has_gvl, struct copy_stream_struct *stp, char *buf, size_t len, rb_off_t offset)
{
ssize_t ss;
retry_read:
if (offset < (rb_off_t)0) {
ss = maygvl_read(has_gvl, stp->src_fptr, buf, len);
}
else {
ss = pread(stp->src_fptr->fd, buf, len, offset);
}
if (ss == 0) {
return 0;
}
if (ss < 0) {
if (maygvl_copy_stream_continue_p(has_gvl, stp))
goto retry_read;
switch (errno) {
case EAGAIN:
#if EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
{
int ret = maygvl_copy_stream_wait_read(has_gvl, stp);
if (ret < 0) return ret;
}
goto retry_read;
#ifdef ENOSYS
case ENOSYS:
stp->notimp = "pread";
return ss;
#endif
}
stp->syserr = offset < (rb_off_t)0 ? "read" : "pread";
stp->error_no = errno;
}
return ss;
}
static int
nogvl_copy_stream_write(struct copy_stream_struct *stp, char *buf, size_t len)
{
ssize_t ss;
int off = 0;
while (len) {
ss = write(stp->dst_fptr->fd, buf+off, len);
if (ss < 0) {
if (maygvl_copy_stream_continue_p(0, stp))
continue;
if (io_again_p(errno)) {
int ret = nogvl_copy_stream_wait_write(stp);
if (ret < 0) return ret;
continue;
}
stp->syserr = "write";
stp->error_no = errno;
return (int)ss;
}
off += (int)ss;
len -= (int)ss;
stp->total += ss;
}
return 0;
}
static void
nogvl_copy_stream_read_write(struct copy_stream_struct *stp)
{
char buf[1024*16];
size_t len;
ssize_t ss;
int ret;
rb_off_t copy_length;
rb_off_t src_offset;
int use_eof;
int use_pread;
copy_length = stp->copy_length;
use_eof = copy_length < (rb_off_t)0;
src_offset = stp->src_offset;
use_pread = src_offset >= (rb_off_t)0;
if (use_pread && stp->close_src) {
rb_off_t r;
errno = 0;
r = lseek(stp->src_fptr->fd, src_offset, SEEK_SET);
if (r < (rb_off_t)0 && errno) {
stp->syserr = "lseek";
stp->error_no = errno;
return;
}
src_offset = (rb_off_t)-1;
use_pread = 0;
}
while (use_eof || 0 < copy_length) {
if (!use_eof && copy_length < (rb_off_t)sizeof(buf)) {
len = (size_t)copy_length;
}
else {
len = sizeof(buf);
}
if (use_pread) {
ss = maygvl_copy_stream_read(0, stp, buf, len, src_offset);
if (0 < ss)
src_offset += ss;
}
else {
ss = maygvl_copy_stream_read(0, stp, buf, len, (rb_off_t)-1);
}
if (ss <= 0) /* EOF or error */
return;
ret = nogvl_copy_stream_write(stp, buf, ss);
if (ret < 0)
return;
if (!use_eof)
copy_length -= ss;
}
}
static void *
nogvl_copy_stream_func(void *arg)
{
struct copy_stream_struct *stp = (struct copy_stream_struct *)arg;
#if defined(USE_SENDFILE) || defined(USE_COPY_FILE_RANGE) || defined(HAVE_FCOPYFILE)
int ret;
#endif
#ifdef USE_COPY_FILE_RANGE
ret = nogvl_copy_file_range(stp);
if (ret != 0)
goto finish; /* error or success */
#endif
#ifdef HAVE_FCOPYFILE
ret = nogvl_fcopyfile(stp);
if (ret != 0)
goto finish; /* error or success */
#endif
#ifdef USE_SENDFILE
ret = nogvl_copy_stream_sendfile(stp);
if (ret != 0)
goto finish; /* error or success */
#endif
nogvl_copy_stream_read_write(stp);
#if defined(USE_SENDFILE) || defined(USE_COPY_FILE_RANGE) || defined(HAVE_FCOPYFILE)
finish:
#endif
return 0;
}
static VALUE
copy_stream_fallback_body(VALUE arg)
{
struct copy_stream_struct *stp = (struct copy_stream_struct *)arg;
const int buflen = 16*1024;
VALUE n;
VALUE buf = rb_str_buf_new(buflen);
rb_off_t rest = stp->copy_length;
rb_off_t off = stp->src_offset;
ID read_method = id_readpartial;
if (!stp->src_fptr) {
if (!rb_respond_to(stp->src, read_method)) {
read_method = id_read;
}
}
while (1) {
long numwrote;
long l;
if (stp->copy_length < (rb_off_t)0) {
l = buflen;
}
else {
if (rest == 0) {
rb_str_resize(buf, 0);
break;
}
l = buflen < rest ? buflen : (long)rest;
}
if (!stp->src_fptr) {
VALUE rc = rb_funcall(stp->src, read_method, 2, INT2FIX(l), buf);
if (read_method == id_read && NIL_P(rc))
break;
}
else {
ssize_t ss;
rb_str_resize(buf, buflen);
ss = maygvl_copy_stream_read(1, stp, RSTRING_PTR(buf), l, off);
rb_str_resize(buf, ss > 0 ? ss : 0);
if (ss < 0)
return Qnil;
if (ss == 0)
rb_eof_error();
if (off >= (rb_off_t)0)
off += ss;
}
n = rb_io_write(stp->dst, buf);
numwrote = NUM2LONG(n);
stp->total += numwrote;
rest -= numwrote;
if (read_method == id_read && RSTRING_LEN(buf) == 0) {
break;
}
}
return Qnil;
}
static VALUE
copy_stream_fallback(struct copy_stream_struct *stp)
{
if (!stp->src_fptr && stp->src_offset >= (rb_off_t)0) {
rb_raise(rb_eArgError, "cannot specify src_offset for non-IO");
}
rb_rescue2(copy_stream_fallback_body, (VALUE)stp,
(VALUE (*) (VALUE, VALUE))0, (VALUE)0,
rb_eEOFError, (VALUE)0);
return Qnil;
}
static VALUE
copy_stream_body(VALUE arg)
{
struct copy_stream_struct *stp = (struct copy_stream_struct *)arg;
VALUE src_io = stp->src, dst_io = stp->dst;
const int common_oflags = 0
#ifdef O_NOCTTY
| O_NOCTTY
#endif
;
stp->th = rb_thread_current();
stp->total = 0;
if (src_io == argf ||
!(RB_TYPE_P(src_io, T_FILE) ||
RB_TYPE_P(src_io, T_STRING) ||
rb_respond_to(src_io, rb_intern("to_path")))) {
stp->src_fptr = NULL;
}
else {
int stat_ret;
VALUE tmp_io = rb_io_check_io(src_io);
if (!NIL_P(tmp_io)) {
src_io = tmp_io;
}
else if (!RB_TYPE_P(src_io, T_FILE)) {
VALUE args[2];
FilePathValue(src_io);
args[0] = src_io;
args[1] = INT2NUM(O_RDONLY|common_oflags);
src_io = rb_class_new_instance(2, args, rb_cFile);
stp->src = src_io;
stp->close_src = 1;
}
RB_IO_POINTER(src_io, stp->src_fptr);
rb_io_check_byte_readable(stp->src_fptr);
stat_ret = fstat(stp->src_fptr->fd, &stp->src_stat);
if (stat_ret < 0) {
stp->syserr = "fstat";
stp->error_no = errno;
return Qnil;
}
}
if (dst_io == argf ||
!(RB_TYPE_P(dst_io, T_FILE) ||
RB_TYPE_P(dst_io, T_STRING) ||
rb_respond_to(dst_io, rb_intern("to_path")))) {
stp->dst_fptr = NULL;
}
else {
int stat_ret;
VALUE tmp_io = rb_io_check_io(dst_io);
if (!NIL_P(tmp_io)) {
dst_io = GetWriteIO(tmp_io);
}
else if (!RB_TYPE_P(dst_io, T_FILE)) {
VALUE args[3];
FilePathValue(dst_io);
args[0] = dst_io;
args[1] = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC|common_oflags);
args[2] = INT2FIX(0666);
dst_io = rb_class_new_instance(3, args, rb_cFile);
stp->dst = dst_io;
stp->close_dst = 1;
}
else {
dst_io = GetWriteIO(dst_io);
stp->dst = dst_io;
}
RB_IO_POINTER(dst_io, stp->dst_fptr);
rb_io_check_writable(stp->dst_fptr);
stat_ret = fstat(stp->dst_fptr->fd, &stp->dst_stat);
if (stat_ret < 0) {
stp->syserr = "fstat";
stp->error_no = errno;
return Qnil;
}
}
#ifdef O_BINARY
if (stp->src_fptr)
SET_BINARY_MODE_WITH_SEEK_CUR(stp->src_fptr);
#endif
if (stp->dst_fptr)
io_ascii8bit_binmode(stp->dst_fptr);
if (stp->src_offset < (rb_off_t)0 && stp->src_fptr && stp->src_fptr->rbuf.len) {
size_t len = stp->src_fptr->rbuf.len;
VALUE str;
if (stp->copy_length >= (rb_off_t)0 && stp->copy_length < (rb_off_t)len) {
len = (size_t)stp->copy_length;
}
str = rb_str_buf_new(len);
rb_str_resize(str,len);
read_buffered_data(RSTRING_PTR(str), len, stp->src_fptr);
if (stp->dst_fptr) { /* IO or filename */
if (io_binwrite(RSTRING_PTR(str), RSTRING_LEN(str), stp->dst_fptr, 0) < 0)
rb_sys_fail_on_write(stp->dst_fptr);
}
else /* others such as StringIO */
rb_io_write(dst_io, str);
rb_str_resize(str, 0);
stp->total += len;
if (stp->copy_length >= (rb_off_t)0)
stp->copy_length -= len;
}
if (stp->dst_fptr && io_fflush(stp->dst_fptr) < 0) {
rb_raise(rb_eIOError, "flush failed");
}
if (stp->copy_length == 0)
return Qnil;
if (stp->src_fptr == NULL || stp->dst_fptr == NULL) {
return copy_stream_fallback(stp);
}
IO_WITHOUT_GVL(nogvl_copy_stream_func, stp);
return Qnil;
}
static VALUE
copy_stream_finalize(VALUE arg)
{
struct copy_stream_struct *stp = (struct copy_stream_struct *)arg;
#ifdef HAVE_FCOPYFILE
if (stp->copyfile_state) {
copyfile_state_free(stp->copyfile_state);
}
#endif
if (stp->close_src) {
rb_io_close_m(stp->src);
}
if (stp->close_dst) {
rb_io_close_m(stp->dst);
}
if (stp->syserr) {
rb_syserr_fail(stp->error_no, stp->syserr);
}
if (stp->notimp) {
rb_raise(rb_eNotImpError, "%s() not implemented", stp->notimp);
}
return Qnil;
}
/*
* call-seq:
* IO.copy_stream(src, dst, src_length = nil, src_offset = 0) -> integer
*
* Copies from the given +src+ to the given +dst+,
* returning the number of bytes copied.
*
* - The given +src+ must be one of the following:
*
* - The path to a readable file, from which source data is to be read.
* - An \IO-like object, opened for reading and capable of responding
* to method +:readpartial+ or method +:read+.
*
* - The given +dst+ must be one of the following:
*
* - The path to a writable file, to which data is to be written.
* - An \IO-like object, opened for writing and capable of responding
* to method +:write+.
*
* The examples here use file <tt>t.txt</tt> as source:
*
* File.read('t.txt')
* # => "First line\nSecond line\n\nThird line\nFourth line\n"
* File.read('t.txt').size # => 47
*
* If only arguments +src+ and +dst+ are given,
* the entire source stream is copied:
*
* # Paths.
* IO.copy_stream('t.txt', 't.tmp') # => 47
*
* # IOs (recall that a File is also an IO).
* src_io = File.open('t.txt', 'r') # => #<File:t.txt>
* dst_io = File.open('t.tmp', 'w') # => #<File:t.tmp>
* IO.copy_stream(src_io, dst_io) # => 47
* src_io.close
* dst_io.close
*
* With argument +src_length+ a non-negative integer,
* no more than that many bytes are copied:
*
* IO.copy_stream('t.txt', 't.tmp', 10) # => 10
* File.read('t.tmp') # => "First line"
*
* With argument +src_offset+ also given,
* the source stream is read beginning at that offset:
*
* IO.copy_stream('t.txt', 't.tmp', 11, 11) # => 11
* IO.read('t.tmp') # => "Second line"
*
*/
static VALUE
rb_io_s_copy_stream(int argc, VALUE *argv, VALUE io)
{
VALUE src, dst, length, src_offset;
struct copy_stream_struct st;
MEMZERO(&st, struct copy_stream_struct, 1);
rb_scan_args(argc, argv, "22", &src, &dst, &length, &src_offset);
st.src = src;
st.dst = dst;
st.src_fptr = NULL;
st.dst_fptr = NULL;
if (NIL_P(length))
st.copy_length = (rb_off_t)-1;
else
st.copy_length = NUM2OFFT(length);
if (NIL_P(src_offset))
st.src_offset = (rb_off_t)-1;
else
st.src_offset = NUM2OFFT(src_offset);
rb_ensure(copy_stream_body, (VALUE)&st, copy_stream_finalize, (VALUE)&st);
return OFFT2NUM(st.total);
}
/*
* call-seq:
* external_encoding -> encoding or nil
*
* Returns the Encoding object that represents the encoding of the stream,
* or +nil+ if the stream is in write mode and no encoding is specified.
*
* See {Encodings}[rdoc-ref:File@Encodings].
*
*/
static VALUE
rb_io_external_encoding(VALUE io)
{
rb_io_t *fptr = RFILE(rb_io_taint_check(io))->fptr;
if (fptr->encs.enc2) {
return rb_enc_from_encoding(fptr->encs.enc2);
}
if (fptr->mode & FMODE_WRITABLE) {
if (fptr->encs.enc)
return rb_enc_from_encoding(fptr->encs.enc);
return Qnil;
}
return rb_enc_from_encoding(io_read_encoding(fptr));
}
/*
* call-seq:
* internal_encoding -> encoding or nil
*
* Returns the Encoding object that represents the encoding of the internal string,
* if conversion is specified,
* or +nil+ otherwise.
*
* See {Encodings}[rdoc-ref:File@Encodings].
*
*/
static VALUE
rb_io_internal_encoding(VALUE io)
{
rb_io_t *fptr = RFILE(rb_io_taint_check(io))->fptr;
if (!fptr->encs.enc2) return Qnil;
return rb_enc_from_encoding(io_read_encoding(fptr));
}
/*
* call-seq:
* set_encoding(ext_enc) -> self
* set_encoding(ext_enc, int_enc, **enc_opts) -> self
* set_encoding('ext_enc:int_enc', **enc_opts) -> self
*
* See {Encodings}[rdoc-ref:File@Encodings].
*
* Argument +ext_enc+, if given, must be an Encoding object
* or a String with the encoding name;
* it is assigned as the encoding for the stream.
*
* Argument +int_enc+, if given, must be an Encoding object
* or a String with the encoding name;
* it is assigned as the encoding for the internal string.
*
* Argument <tt>'ext_enc:int_enc'</tt>, if given, is a string
* containing two colon-separated encoding names;
* corresponding Encoding objects are assigned as the external
* and internal encodings for the stream.
*
* If the external encoding of a string is binary/ASCII-8BIT,
* the internal encoding of the string is set to nil, since no
* transcoding is needed.
*
* Optional keyword arguments +enc_opts+ specify
* {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options].
*
*/
static VALUE
rb_io_set_encoding(int argc, VALUE *argv, VALUE io)
{
rb_io_t *fptr;
VALUE v1, v2, opt;
if (!RB_TYPE_P(io, T_FILE)) {
return forward(io, id_set_encoding, argc, argv);
}
argc = rb_scan_args(argc, argv, "11:", &v1, &v2, &opt);
GetOpenFile(io, fptr);
io_encoding_set(fptr, v1, v2, opt);
return io;
}
void
rb_stdio_set_default_encoding(void)
{
VALUE val = Qnil;
#ifdef _WIN32
if (isatty(fileno(stdin))) {
rb_encoding *external = rb_locale_encoding();
rb_encoding *internal = rb_default_internal_encoding();
if (!internal) internal = rb_default_external_encoding();
io_encoding_set(RFILE(rb_stdin)->fptr,
rb_enc_from_encoding(external),
rb_enc_from_encoding(internal),
Qnil);
}
else
#endif
rb_io_set_encoding(1, &val, rb_stdin);
rb_io_set_encoding(1, &val, rb_stdout);
rb_io_set_encoding(1, &val, rb_stderr);
}
static inline int
global_argf_p(VALUE arg)
{
return arg == argf;
}
typedef VALUE (*argf_encoding_func)(VALUE io);
static VALUE
argf_encoding(VALUE argf, argf_encoding_func func)
{
if (!RTEST(ARGF.current_file)) {
return rb_enc_default_external();
}
return func(rb_io_check_io(ARGF.current_file));
}
/*
* call-seq:
* ARGF.external_encoding -> encoding
*
* Returns the external encoding for files read from ARGF as an Encoding
* object. The external encoding is the encoding of the text as stored in a
* file. Contrast with ARGF.internal_encoding, which is the encoding used to
* represent this text within Ruby.
*
* To set the external encoding use ARGF.set_encoding.
*
* For example:
*
* ARGF.external_encoding #=> #<Encoding:UTF-8>
*
*/
static VALUE
argf_external_encoding(VALUE argf)
{
return argf_encoding(argf, rb_io_external_encoding);
}
/*
* call-seq:
* ARGF.internal_encoding -> encoding
*
* Returns the internal encoding for strings read from ARGF as an
* Encoding object.
*
* If ARGF.set_encoding has been called with two encoding names, the second
* is returned. Otherwise, if +Encoding.default_external+ has been set, that
* value is returned. Failing that, if a default external encoding was
* specified on the command-line, that value is used. If the encoding is
* unknown, +nil+ is returned.
*/
static VALUE
argf_internal_encoding(VALUE argf)
{
return argf_encoding(argf, rb_io_internal_encoding);
}
/*
* call-seq:
* ARGF.set_encoding(ext_enc) -> ARGF
* ARGF.set_encoding("ext_enc:int_enc") -> ARGF
* ARGF.set_encoding(ext_enc, int_enc) -> ARGF
* ARGF.set_encoding("ext_enc:int_enc", opt) -> ARGF
* ARGF.set_encoding(ext_enc, int_enc, opt) -> ARGF
*
* If single argument is specified, strings read from ARGF are tagged with
* the encoding specified.
*
* If two encoding names separated by a colon are given, e.g. "ascii:utf-8",
* the read string is converted from the first encoding (external encoding)
* to the second encoding (internal encoding), then tagged with the second
* encoding.
*
* If two arguments are specified, they must be encoding objects or encoding
* names. Again, the first specifies the external encoding; the second
* specifies the internal encoding.
*
* If the external encoding and the internal encoding are specified, the
* optional Hash argument can be used to adjust the conversion process. The
* structure of this hash is explained in the String#encode documentation.
*
* For example:
*
* ARGF.set_encoding('ascii') # Tag the input as US-ASCII text
* ARGF.set_encoding(Encoding::UTF_8) # Tag the input as UTF-8 text
* ARGF.set_encoding('utf-8','ascii') # Transcode the input from US-ASCII
* # to UTF-8.
*/
static VALUE
argf_set_encoding(int argc, VALUE *argv, VALUE argf)
{
rb_io_t *fptr;
if (!next_argv()) {
rb_raise(rb_eArgError, "no stream to set encoding");
}
rb_io_set_encoding(argc, argv, ARGF.current_file);
GetOpenFile(ARGF.current_file, fptr);
ARGF.encs = fptr->encs;
return argf;
}
/*
* call-seq:
* ARGF.tell -> Integer
* ARGF.pos -> Integer
*
* Returns the current offset (in bytes) of the current file in ARGF.
*
* ARGF.pos #=> 0
* ARGF.gets #=> "This is line one\n"
* ARGF.pos #=> 17
*
*/
static VALUE
argf_tell(VALUE argf)
{
if (!next_argv()) {
rb_raise(rb_eArgError, "no stream to tell");
}
ARGF_FORWARD(0, 0);
return rb_io_tell(ARGF.current_file);
}
/*
* call-seq:
* ARGF.seek(amount, whence=IO::SEEK_SET) -> 0
*
* Seeks to offset _amount_ (an Integer) in the ARGF stream according to
* the value of _whence_. See IO#seek for further details.
*/
static VALUE
argf_seek_m(int argc, VALUE *argv, VALUE argf)
{
if (!next_argv()) {
rb_raise(rb_eArgError, "no stream to seek");
}
ARGF_FORWARD(argc, argv);
return rb_io_seek_m(argc, argv, ARGF.current_file);
}
/*
* call-seq:
* ARGF.pos = position -> Integer
*
* Seeks to the position given by _position_ (in bytes) in ARGF.
*
* For example:
*
* ARGF.pos = 17
* ARGF.gets #=> "This is line two\n"
*/
static VALUE
argf_set_pos(VALUE argf, VALUE offset)
{
if (!next_argv()) {
rb_raise(rb_eArgError, "no stream to set position");
}
ARGF_FORWARD(1, &offset);
return rb_io_set_pos(ARGF.current_file, offset);
}
/*
* call-seq:
* ARGF.rewind -> 0
*
* Positions the current file to the beginning of input, resetting
* ARGF.lineno to zero.
*
* ARGF.readline #=> "This is line one\n"
* ARGF.rewind #=> 0
* ARGF.lineno #=> 0
* ARGF.readline #=> "This is line one\n"
*/
static VALUE
argf_rewind(VALUE argf)
{
VALUE ret;
int old_lineno;
if (!next_argv()) {
rb_raise(rb_eArgError, "no stream to rewind");
}
ARGF_FORWARD(0, 0);
old_lineno = RFILE(ARGF.current_file)->fptr->lineno;
ret = rb_io_rewind(ARGF.current_file);
if (!global_argf_p(argf)) {
ARGF.last_lineno = ARGF.lineno -= old_lineno;
}
return ret;
}
/*
* call-seq:
* ARGF.fileno -> integer
* ARGF.to_i -> integer
*
* Returns an integer representing the numeric file descriptor for
* the current file. Raises an ArgumentError if there isn't a current file.
*
* ARGF.fileno #=> 3
*/
static VALUE
argf_fileno(VALUE argf)
{
if (!next_argv()) {
rb_raise(rb_eArgError, "no stream");
}
ARGF_FORWARD(0, 0);
return rb_io_fileno(ARGF.current_file);
}
/*
* call-seq:
* ARGF.to_io -> IO
*
* Returns an IO object representing the current file. This will be a
* File object unless the current file is a stream such as STDIN.
*
* For example:
*
* ARGF.to_io #=> #<File:glark.txt>
* ARGF.to_io #=> #<IO:<STDIN>>
*/
static VALUE
argf_to_io(VALUE argf)
{
next_argv();
ARGF_FORWARD(0, 0);
return ARGF.current_file;
}
/*
* call-seq:
* ARGF.eof? -> true or false
* ARGF.eof -> true or false
*
* Returns true if the current file in ARGF is at end of file, i.e. it has
* no data to read. The stream must be opened for reading or an IOError
* will be raised.
*
* $ echo "eof" | ruby argf.rb
*
* ARGF.eof? #=> false
* 3.times { ARGF.readchar }
* ARGF.eof? #=> false
* ARGF.readchar #=> "\n"
* ARGF.eof? #=> true
*/
static VALUE
argf_eof(VALUE argf)
{
next_argv();
if (RTEST(ARGF.current_file)) {
if (ARGF.init_p == 0) return Qtrue;
next_argv();
ARGF_FORWARD(0, 0);
if (rb_io_eof(ARGF.current_file)) {
return Qtrue;
}
}
return Qfalse;
}
/*
* call-seq:
* ARGF.read([length [, outbuf]]) -> string, outbuf, or nil
*
* Reads _length_ bytes from ARGF. The files named on the command line
* are concatenated and treated as a single file by this method, so when
* called without arguments the contents of this pseudo file are returned in
* their entirety.
*
* _length_ must be a non-negative integer or +nil+.
*
* If _length_ is a positive integer, +read+ tries to read
* _length_ bytes without any conversion (binary mode).
* It returns +nil+ if an EOF is encountered before anything can be read.
* Fewer than _length_ bytes are returned if an EOF is encountered during
* the read.
* In the case of an integer _length_, the resulting string is always
* in ASCII-8BIT encoding.
*
* If _length_ is omitted or is +nil+, it reads until EOF
* and the encoding conversion is applied, if applicable.
* A string is returned even if EOF is encountered before any data is read.
*
* If _length_ is zero, it returns an empty string (<code>""</code>).
*
* If the optional _outbuf_ argument is present,
* it must reference a String, which will receive the data.
* The _outbuf_ will contain only the received data after the method call
* even if it is not empty at the beginning.
*
* For example:
*
* $ echo "small" > small.txt
* $ echo "large" > large.txt
* $ ./glark.rb small.txt large.txt
*
* ARGF.read #=> "small\nlarge"
* ARGF.read(200) #=> "small\nlarge"
* ARGF.read(2) #=> "sm"
* ARGF.read(0) #=> ""
*
* Note that this method behaves like the fread() function in C.
* This means it retries to invoke read(2) system calls to read data
* with the specified length.
* If you need the behavior like a single read(2) system call,
* consider ARGF#readpartial or ARGF#read_nonblock.
*/
static VALUE
argf_read(int argc, VALUE *argv, VALUE argf)
{
VALUE tmp, str, length;
long len = 0;
rb_scan_args(argc, argv, "02", &length, &str);
if (!NIL_P(length)) {
len = NUM2LONG(argv[0]);
}
if (!NIL_P(str)) {
StringValue(str);
rb_str_resize(str,0);
argv[1] = Qnil;
}
retry:
if (!next_argv()) {
return str;
}
if (ARGF_GENERIC_INPUT_P()) {
tmp = argf_forward(argc, argv, argf);
}
else {
tmp = io_read(argc, argv, ARGF.current_file);
}
if (NIL_P(str)) str = tmp;
else if (!NIL_P(tmp)) rb_str_append(str, tmp);
if (NIL_P(tmp) || NIL_P(length)) {
if (ARGF.next_p != -1) {
argf_close(argf);
ARGF.next_p = 1;
goto retry;
}
}
else if (argc >= 1) {
long slen = RSTRING_LEN(str);
if (slen < len) {
argv[0] = LONG2NUM(len - slen);
goto retry;
}
}
return str;
}
struct argf_call_arg {
int argc;
VALUE *argv;
VALUE argf;
};
static VALUE
argf_forward_call(VALUE arg)
{
struct argf_call_arg *p = (struct argf_call_arg *)arg;
argf_forward(p->argc, p->argv, p->argf);
return Qnil;
}
static VALUE argf_getpartial(int argc, VALUE *argv, VALUE argf, VALUE opts,
int nonblock);
/*
* call-seq:
* ARGF.readpartial(maxlen) -> string
* ARGF.readpartial(maxlen, outbuf) -> outbuf
*
* Reads at most _maxlen_ bytes from the ARGF stream.
*
* If the optional _outbuf_ argument is present,
* it must reference a String, which will receive the data.
* The _outbuf_ will contain only the received data after the method call
* even if it is not empty at the beginning.
*
* It raises EOFError on end of ARGF stream.
* Since ARGF stream is a concatenation of multiple files,
* internally EOF is occur for each file.
* ARGF.readpartial returns empty strings for EOFs except the last one and
* raises EOFError for the last one.
*
*/
static VALUE
argf_readpartial(int argc, VALUE *argv, VALUE argf)
{
return argf_getpartial(argc, argv, argf, Qnil, 0);
}
/*
* call-seq:
* ARGF.read_nonblock(maxlen[, options]) -> string
* ARGF.read_nonblock(maxlen, outbuf[, options]) -> outbuf
*
* Reads at most _maxlen_ bytes from the ARGF stream in non-blocking mode.
*/
static VALUE
argf_read_nonblock(int argc, VALUE *argv, VALUE argf)
{
VALUE opts;
rb_scan_args(argc, argv, "11:", NULL, NULL, &opts);
if (!NIL_P(opts))
argc--;
return argf_getpartial(argc, argv, argf, opts, 1);
}
static VALUE
argf_getpartial(int argc, VALUE *argv, VALUE argf, VALUE opts, int nonblock)
{
VALUE tmp, str, length;
int no_exception;
rb_scan_args(argc, argv, "11", &length, &str);
if (!NIL_P(str)) {
StringValue(str);
argv[1] = str;
}
no_exception = no_exception_p(opts);
if (!next_argv()) {
if (!NIL_P(str)) {
rb_str_resize(str, 0);
}
rb_eof_error();
}
if (ARGF_GENERIC_INPUT_P()) {
VALUE (*const rescue_does_nothing)(VALUE, VALUE) = 0;
struct argf_call_arg arg;
arg.argc = argc;
arg.argv = argv;
arg.argf = argf;
tmp = rb_rescue2(argf_forward_call, (VALUE)&arg,
rescue_does_nothing, Qnil, rb_eEOFError, (VALUE)0);
}
else {
tmp = io_getpartial(argc, argv, ARGF.current_file, no_exception, nonblock);
}
if (NIL_P(tmp)) {
if (ARGF.next_p == -1) {
return io_nonblock_eof(no_exception);
}
argf_close(argf);
ARGF.next_p = 1;
if (RARRAY_LEN(ARGF.argv) == 0) {
return io_nonblock_eof(no_exception);
}
if (NIL_P(str))
str = rb_str_new(NULL, 0);
return str;
}
return tmp;
}
/*
* call-seq:
* ARGF.getc -> String or nil
*
* Reads the next character from ARGF and returns it as a String. Returns
* +nil+ at the end of the stream.
*
* ARGF treats the files named on the command line as a single file created
* by concatenating their contents. After returning the last character of the
* first file, it returns the first character of the second file, and so on.
*
* For example:
*
* $ echo "foo" > file
* $ ruby argf.rb file
*
* ARGF.getc #=> "f"
* ARGF.getc #=> "o"
* ARGF.getc #=> "o"
* ARGF.getc #=> "\n"
* ARGF.getc #=> nil
* ARGF.getc #=> nil
*/
static VALUE
argf_getc(VALUE argf)
{
VALUE ch;
retry:
if (!next_argv()) return Qnil;
if (ARGF_GENERIC_INPUT_P()) {
ch = forward_current(rb_intern("getc"), 0, 0);
}
else {
ch = rb_io_getc(ARGF.current_file);
}
if (NIL_P(ch) && ARGF.next_p != -1) {
argf_close(argf);
ARGF.next_p = 1;
goto retry;
}
return ch;
}
/*
* call-seq:
* ARGF.getbyte -> Integer or nil
*
* Gets the next 8-bit byte (0..255) from ARGF. Returns +nil+ if called at
* the end of the stream.
*
* For example:
*
* $ echo "foo" > file
* $ ruby argf.rb file
*
* ARGF.getbyte #=> 102
* ARGF.getbyte #=> 111
* ARGF.getbyte #=> 111
* ARGF.getbyte #=> 10
* ARGF.getbyte #=> nil
*/
static VALUE
argf_getbyte(VALUE argf)
{
VALUE ch;
retry:
if (!next_argv()) return Qnil;
if (!RB_TYPE_P(ARGF.current_file, T_FILE)) {
ch = forward_current(rb_intern("getbyte"), 0, 0);
}
else {
ch = rb_io_getbyte(ARGF.current_file);
}
if (NIL_P(ch) && ARGF.next_p != -1) {
argf_close(argf);
ARGF.next_p = 1;
goto retry;
}
return ch;
}
/*
* call-seq:
* ARGF.readchar -> String or nil
*
* Reads the next character from ARGF and returns it as a String. Raises
* an EOFError after the last character of the last file has been read.
*
* For example:
*
* $ echo "foo" > file
* $ ruby argf.rb file
*
* ARGF.readchar #=> "f"
* ARGF.readchar #=> "o"
* ARGF.readchar #=> "o"
* ARGF.readchar #=> "\n"
* ARGF.readchar #=> end of file reached (EOFError)
*/
static VALUE
argf_readchar(VALUE argf)
{
VALUE ch;
retry:
if (!next_argv()) rb_eof_error();
if (!RB_TYPE_P(ARGF.current_file, T_FILE)) {
ch = forward_current(rb_intern("getc"), 0, 0);
}
else {
ch = rb_io_getc(ARGF.current_file);
}
if (NIL_P(ch) && ARGF.next_p != -1) {
argf_close(argf);
ARGF.next_p = 1;
goto retry;
}
return ch;
}
/*
* call-seq:
* ARGF.readbyte -> Integer
*
* Reads the next 8-bit byte from ARGF and returns it as an Integer. Raises
* an EOFError after the last byte of the last file has been read.
*
* For example:
*
* $ echo "foo" > file
* $ ruby argf.rb file
*
* ARGF.readbyte #=> 102
* ARGF.readbyte #=> 111
* ARGF.readbyte #=> 111
* ARGF.readbyte #=> 10
* ARGF.readbyte #=> end of file reached (EOFError)
*/
static VALUE
argf_readbyte(VALUE argf)
{
VALUE c;
NEXT_ARGF_FORWARD(0, 0);
c = argf_getbyte(argf);
if (NIL_P(c)) {
rb_eof_error();
}
return c;
}
#define FOREACH_ARGF() while (next_argv())
static VALUE
argf_block_call_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, argf))
{
const VALUE current = ARGF.current_file;
rb_yield_values2(argc, argv);
if (ARGF.init_p == -1 || current != ARGF.current_file) {
rb_iter_break_value(Qundef);
}
return Qnil;
}
#define ARGF_block_call(mid, argc, argv, func, argf) \
rb_block_call_kw(ARGF.current_file, mid, argc, argv, \
func, argf, rb_keyword_given_p())
static void
argf_block_call(ID mid, int argc, VALUE *argv, VALUE argf)
{
VALUE ret = ARGF_block_call(mid, argc, argv, argf_block_call_i, argf);
if (!UNDEF_P(ret)) ARGF.next_p = 1;
}
static VALUE
argf_block_call_line_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, argf))
{
if (!global_argf_p(argf)) {
ARGF.last_lineno = ++ARGF.lineno;
}
return argf_block_call_i(i, argf, argc, argv, blockarg);
}
static void
argf_block_call_line(ID mid, int argc, VALUE *argv, VALUE argf)
{
VALUE ret = ARGF_block_call(mid, argc, argv, argf_block_call_line_i, argf);
if (!UNDEF_P(ret)) ARGF.next_p = 1;
}
/*
* call-seq:
* ARGF.each(sep=$/) {|line| block } -> ARGF
* ARGF.each(sep=$/, limit) {|line| block } -> ARGF
* ARGF.each(...) -> an_enumerator
*
* ARGF.each_line(sep=$/) {|line| block } -> ARGF
* ARGF.each_line(sep=$/, limit) {|line| block } -> ARGF
* ARGF.each_line(...) -> an_enumerator
*
* Returns an enumerator which iterates over each line (separated by _sep_,
* which defaults to your platform's newline character) of each file in
* +ARGV+. If a block is supplied, each line in turn will be yielded to the
* block, otherwise an enumerator is returned.
* The optional _limit_ argument is an Integer specifying the maximum
* length of each line; longer lines will be split according to this limit.
*
* This method allows you to treat the files supplied on the command line as
* a single file consisting of the concatenation of each named file. After
* the last line of the first file has been returned, the first line of the
* second file is returned. The ARGF.filename and ARGF.lineno methods can be
* used to determine the filename of the current line and line number of the
* whole input, respectively.
*
* For example, the following code prints out each line of each named file
* prefixed with its line number, displaying the filename once per file:
*
* ARGF.each_line do |line|
* puts ARGF.filename if ARGF.file.lineno == 1
* puts "#{ARGF.file.lineno}: #{line}"
* end
*
* While the following code prints only the first file's name at first, and
* the contents with line number counted through all named files.
*
* ARGF.each_line do |line|
* puts ARGF.filename if ARGF.lineno == 1
* puts "#{ARGF.lineno}: #{line}"
* end
*/
static VALUE
argf_each_line(int argc, VALUE *argv, VALUE argf)
{
RETURN_ENUMERATOR(argf, argc, argv);
FOREACH_ARGF() {
argf_block_call_line(rb_intern("each_line"), argc, argv, argf);
}
return argf;
}
/*
* call-seq:
* ARGF.each_byte {|byte| block } -> ARGF
* ARGF.each_byte -> an_enumerator
*
* Iterates over each byte of each file in +ARGV+.
* A byte is returned as an Integer in the range 0..255.
*
* This method allows you to treat the files supplied on the command line as
* a single file consisting of the concatenation of each named file. After
* the last byte of the first file has been returned, the first byte of the
* second file is returned. The ARGF.filename method can be used to
* determine the filename of the current byte.
*
* If no block is given, an enumerator is returned instead.
*
* For example:
*
* ARGF.bytes.to_a #=> [35, 32, ... 95, 10]
*
*/
static VALUE
argf_each_byte(VALUE argf)
{
RETURN_ENUMERATOR(argf, 0, 0);
FOREACH_ARGF() {
argf_block_call(rb_intern("each_byte"), 0, 0, argf);
}
return argf;
}
/*
* call-seq:
* ARGF.each_char {|char| block } -> ARGF
* ARGF.each_char -> an_enumerator
*
* Iterates over each character of each file in ARGF.
*
* This method allows you to treat the files supplied on the command line as
* a single file consisting of the concatenation of each named file. After
* the last character of the first file has been returned, the first
* character of the second file is returned. The ARGF.filename method can
* be used to determine the name of the file in which the current character
* appears.
*
* If no block is given, an enumerator is returned instead.
*/
static VALUE
argf_each_char(VALUE argf)
{
RETURN_ENUMERATOR(argf, 0, 0);
FOREACH_ARGF() {
argf_block_call(rb_intern("each_char"), 0, 0, argf);
}
return argf;
}
/*
* call-seq:
* ARGF.each_codepoint {|codepoint| block } -> ARGF
* ARGF.each_codepoint -> an_enumerator
*
* Iterates over each codepoint of each file in ARGF.
*
* This method allows you to treat the files supplied on the command line as
* a single file consisting of the concatenation of each named file. After
* the last codepoint of the first file has been returned, the first
* codepoint of the second file is returned. The ARGF.filename method can
* be used to determine the name of the file in which the current codepoint
* appears.
*
* If no block is given, an enumerator is returned instead.
*/
static VALUE
argf_each_codepoint(VALUE argf)
{
RETURN_ENUMERATOR(argf, 0, 0);
FOREACH_ARGF() {
argf_block_call(rb_intern("each_codepoint"), 0, 0, argf);
}
return argf;
}
/*
* call-seq:
* ARGF.filename -> String
* ARGF.path -> String
*
* Returns the current filename. "-" is returned when the current file is
* STDIN.
*
* For example:
*
* $ echo "foo" > foo
* $ echo "bar" > bar
* $ echo "glark" > glark
*
* $ ruby argf.rb foo bar glark
*
* ARGF.filename #=> "foo"
* ARGF.read(5) #=> "foo\nb"
* ARGF.filename #=> "bar"
* ARGF.skip
* ARGF.filename #=> "glark"
*/
static VALUE
argf_filename(VALUE argf)
{
next_argv();
return ARGF.filename;
}
static VALUE
argf_filename_getter(ID id, VALUE *var)
{
return argf_filename(*var);
}
/*
* call-seq:
* ARGF.file -> IO or File object
*
* Returns the current file as an IO or File object.
* <code>$stdin</code> is returned when the current file is STDIN.
*
* For example:
*
* $ echo "foo" > foo
* $ echo "bar" > bar
*
* $ ruby argf.rb foo bar
*
* ARGF.file #=> #<File:foo>
* ARGF.read(5) #=> "foo\nb"
* ARGF.file #=> #<File:bar>
*/
static VALUE
argf_file(VALUE argf)
{
next_argv();
return ARGF.current_file;
}
/*
* call-seq:
* ARGF.binmode -> ARGF
*
* Puts ARGF into binary mode. Once a stream is in binary mode, it cannot
* be reset to non-binary mode. This option has the following effects:
*
* * Newline conversion is disabled.
* * Encoding conversion is disabled.
* * Content is treated as ASCII-8BIT.
*/
static VALUE
argf_binmode_m(VALUE argf)
{
ARGF.binmode = 1;
next_argv();
ARGF_FORWARD(0, 0);
rb_io_ascii8bit_binmode(ARGF.current_file);
return argf;
}
/*
* call-seq:
* ARGF.binmode? -> true or false
*
* Returns true if ARGF is being read in binary mode; false otherwise.
* To enable binary mode use ARGF.binmode.
*
* For example:
*
* ARGF.binmode? #=> false
* ARGF.binmode
* ARGF.binmode? #=> true
*/
static VALUE
argf_binmode_p(VALUE argf)
{
return RBOOL(ARGF.binmode);
}
/*
* call-seq:
* ARGF.skip -> ARGF
*
* Sets the current file to the next file in ARGV. If there aren't any more
* files it has no effect.
*
* For example:
*
* $ ruby argf.rb foo bar
* ARGF.filename #=> "foo"
* ARGF.skip
* ARGF.filename #=> "bar"
*/
static VALUE
argf_skip(VALUE argf)
{
if (ARGF.init_p && ARGF.next_p == 0) {
argf_close(argf);
ARGF.next_p = 1;
}
return argf;
}
/*
* call-seq:
* ARGF.close -> ARGF
*
* Closes the current file and skips to the next file in ARGV. If there are
* no more files to open, just closes the current file. STDIN will not be
* closed.
*
* For example:
*
* $ ruby argf.rb foo bar
*
* ARGF.filename #=> "foo"
* ARGF.close
* ARGF.filename #=> "bar"
* ARGF.close
*/
static VALUE
argf_close_m(VALUE argf)
{
next_argv();
argf_close(argf);
if (ARGF.next_p != -1) {
ARGF.next_p = 1;
}
ARGF.lineno = 0;
return argf;
}
/*
* call-seq:
* ARGF.closed? -> true or false
*
* Returns _true_ if the current file has been closed; _false_ otherwise. Use
* ARGF.close to actually close the current file.
*/
static VALUE
argf_closed(VALUE argf)
{
next_argv();
ARGF_FORWARD(0, 0);
return rb_io_closed_p(ARGF.current_file);
}
/*
* call-seq:
* ARGF.to_s -> String
*
* Returns "ARGF".
*/
static VALUE
argf_to_s(VALUE argf)
{
return rb_str_new2("ARGF");
}
/*
* call-seq:
* ARGF.inplace_mode -> String
*
* Returns the file extension appended to the names of backup copies of
* modified files under in-place edit mode. This value can be set using
* ARGF.inplace_mode= or passing the +-i+ switch to the Ruby binary.
*/
static VALUE
argf_inplace_mode_get(VALUE argf)
{
if (!ARGF.inplace) return Qnil;
if (NIL_P(ARGF.inplace)) return rb_str_new(0, 0);
return rb_str_dup(ARGF.inplace);
}
static VALUE
opt_i_get(ID id, VALUE *var)
{
return argf_inplace_mode_get(*var);
}
/*
* call-seq:
* ARGF.inplace_mode = ext -> ARGF
*
* Sets the filename extension for in-place editing mode to the given String.
* The backup copy of each file being edited has this value appended to its
* filename.
*
* For example:
*
* $ ruby argf.rb file.txt
*
* ARGF.inplace_mode = '.bak'
* ARGF.each_line do |line|
* print line.sub("foo","bar")
* end
*
* First, _file.txt.bak_ is created as a backup copy of _file.txt_.
* Then, each line of _file.txt_ has the first occurrence of "foo" replaced with
* "bar".
*/
static VALUE
argf_inplace_mode_set(VALUE argf, VALUE val)
{
if (!RTEST(val)) {
ARGF.inplace = Qfalse;
}
else if (StringValueCStr(val), !RSTRING_LEN(val)) {
ARGF.inplace = Qnil;
}
else {
ARGF.inplace = rb_str_new_frozen(val);
}
return argf;
}
static void
opt_i_set(VALUE val, ID id, VALUE *var)
{
argf_inplace_mode_set(*var, val);
}
void
ruby_set_inplace_mode(const char *suffix)
{
ARGF.inplace = !suffix ? Qfalse : !*suffix ? Qnil : rb_str_new(suffix, strlen(suffix));
}
/*
* call-seq:
* ARGF.argv -> ARGV
*
* Returns the +ARGV+ array, which contains the arguments passed to your
* script, one per element.
*
* For example:
*
* $ ruby argf.rb -v glark.txt
*
* ARGF.argv #=> ["-v", "glark.txt"]
*
*/
static VALUE
argf_argv(VALUE argf)
{
return ARGF.argv;
}
static VALUE
argf_argv_getter(ID id, VALUE *var)
{
return argf_argv(*var);
}
VALUE
rb_get_argv(void)
{
return ARGF.argv;
}
/*
* call-seq:
* ARGF.to_write_io -> io
*
* Returns IO instance tied to _ARGF_ for writing if inplace mode is
* enabled.
*/
static VALUE
argf_write_io(VALUE argf)
{
if (!RTEST(ARGF.current_file)) {
rb_raise(rb_eIOError, "not opened for writing");
}
return GetWriteIO(ARGF.current_file);
}
/*
* call-seq:
* ARGF.write(*objects) -> integer
*
* Writes each of the given +objects+ if inplace mode.
*/
static VALUE
argf_write(int argc, VALUE *argv, VALUE argf)
{
return rb_io_writev(argf_write_io(argf), argc, argv);
}
void
rb_readwrite_sys_fail(enum rb_io_wait_readwrite waiting, const char *mesg)
{
rb_readwrite_syserr_fail(waiting, errno, mesg);
}
void
rb_readwrite_syserr_fail(enum rb_io_wait_readwrite waiting, int n, const char *mesg)
{
VALUE arg, c = Qnil;
arg = mesg ? rb_str_new2(mesg) : Qnil;
switch (waiting) {
case RB_IO_WAIT_WRITABLE:
switch (n) {
case EAGAIN:
c = rb_eEAGAINWaitWritable;
break;
#if EAGAIN != EWOULDBLOCK
case EWOULDBLOCK:
c = rb_eEWOULDBLOCKWaitWritable;
break;
#endif
case EINPROGRESS:
c = rb_eEINPROGRESSWaitWritable;
break;
default:
rb_mod_syserr_fail_str(rb_mWaitWritable, n, arg);
}
break;
case RB_IO_WAIT_READABLE:
switch (n) {
case EAGAIN:
c = rb_eEAGAINWaitReadable;
break;
#if EAGAIN != EWOULDBLOCK
case EWOULDBLOCK:
c = rb_eEWOULDBLOCKWaitReadable;
break;
#endif
case EINPROGRESS:
c = rb_eEINPROGRESSWaitReadable;
break;
default:
rb_mod_syserr_fail_str(rb_mWaitReadable, n, arg);
}
break;
default:
rb_bug("invalid read/write type passed to rb_readwrite_sys_fail: %d", waiting);
}
rb_exc_raise(rb_class_new_instance(1, &arg, c));
}
static VALUE
get_LAST_READ_LINE(ID _x, VALUE *_y)
{
return rb_lastline_get();
}
static void
set_LAST_READ_LINE(VALUE val, ID _x, VALUE *_y)
{
rb_lastline_set(val);
}
/*
* Document-class: IOError
*
* Raised when an IO operation fails.
*
* File.open("/etc/hosts") {|f| f << "example"}
* #=> IOError: not opened for writing
*
* File.open("/etc/hosts") {|f| f.close; f.read }
* #=> IOError: closed stream
*
* Note that some IO failures raise <code>SystemCallError</code>s
* and these are not subclasses of IOError:
*
* File.open("does/not/exist")
* #=> Errno::ENOENT: No such file or directory - does/not/exist
*/
/*
* Document-class: EOFError
*
* Raised by some IO operations when reaching the end of file. Many IO
* methods exist in two forms,
*
* one that returns +nil+ when the end of file is reached, the other
* raises EOFError.
*
* EOFError is a subclass of IOError.
*
* file = File.open("/etc/hosts")
* file.read
* file.gets #=> nil
* file.readline #=> EOFError: end of file reached
* file.close
*/
/*
* Document-class: ARGF
*
* == \ARGF and +ARGV+
*
* The \ARGF object works with the array at global variable +ARGV+
* to make <tt>$stdin</tt> and file streams available in the Ruby program:
*
* - **ARGV** may be thought of as the <b>argument vector</b> array.
*
* Initially, it contains the command-line arguments and options
* that are passed to the Ruby program;
* the program can modify that array as it likes.
*
* - **ARGF** may be thought of as the <b>argument files</b> object.
*
* It can access file streams and/or the <tt>$stdin</tt> stream,
* based on what it finds in +ARGV+.
* This provides a convenient way for the command line
* to specify streams for a Ruby program to read.
*
* == Reading
*
* \ARGF may read from _source_ streams,
* which at any particular time are determined by the content of +ARGV+.
*
* === Simplest Case
*
* When the <i>very first</i> \ARGF read occurs with an empty +ARGV+ (<tt>[]</tt>),
* the source is <tt>$stdin</tt>:
*
* - \File +t.rb+:
*
* p ['ARGV', ARGV]
* p ['ARGF.read', ARGF.read]
*
* - Commands and outputs
* (see below for the content of files +foo.txt+ and +bar.txt+):
*
* $ echo "Open the pod bay doors, Hal." | ruby t.rb
* ["ARGV", []]
* ["ARGF.read", "Open the pod bay doors, Hal.\n"]
*
* $ cat foo.txt bar.txt | ruby t.rb
* ["ARGV", []]
* ["ARGF.read", "Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n"]
*
* === About the Examples
*
* Many examples here assume the existence of files +foo.txt+ and +bar.txt+:
*
* $ cat foo.txt
* Foo 0
* Foo 1
* $ cat bar.txt
* Bar 0
* Bar 1
* Bar 2
* Bar 3
*
* === Sources in +ARGV+
*
* For any \ARGF read _except_ the {simplest case}[rdoc-ref:ARGF@Simplest+Case]
* (that is, _except_ for the <i>very first</i> \ARGF read with an empty +ARGV+),
* the sources are found in +ARGV+.
*
* \ARGF assumes that each element in array +ARGV+ is a potential source,
* and is one of:
*
* - The string path to a file that may be opened as a stream.
* - The character <tt>'-'</tt>, meaning stream <tt>$stdin</tt>.
*
* Each element that is _not_ one of these
* should be removed from +ARGV+ before \ARGF accesses that source.
*
* In the following example:
*
* - Filepaths +foo.txt+ and +bar.txt+ may be retained as potential sources.
* - Options <tt>--xyzzy</tt> and <tt>--mojo</tt> should be removed.
*
* Example:
*
* - \File +t.rb+:
*
* # Print arguments (and options, if any) found on command line.
* p ['ARGV', ARGV]
*
* - Command and output:
*
* $ ruby t.rb --xyzzy --mojo foo.txt bar.txt
* ["ARGV", ["--xyzzy", "--mojo", "foo.txt", "bar.txt"]]
*
* \ARGF's stream access considers the elements of +ARGV+, left to right:
*
* - \File +t.rb+:
*
* p "ARGV: #{ARGV}"
* p "Line: #{ARGF.read}" # Read everything from all specified streams.
*
* - Command and output:
*
* $ ruby t.rb foo.txt bar.txt
* "ARGV: [\"foo.txt\", \"bar.txt\"]"
* "Read: Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n"
*
* Because the value at +ARGV+ is an ordinary array,
* you can manipulate it to control which sources \ARGF considers:
*
* - If you remove an element from +ARGV+, \ARGF will not consider the corresponding source.
* - If you add an element to +ARGV+, \ARGF will consider the corresponding source.
*
* Each element in +ARGV+ is removed when its corresponding source is accessed;
* when all sources have been accessed, the array is empty:
*
* - \File +t.rb+:
*
* until ARGV.empty? && ARGF.eof?
* p "ARGV: #{ARGV}"
* p "Line: #{ARGF.readline}" # Read each line from each specified stream.
* end
*
* - Command and output:
*
* $ ruby t.rb foo.txt bar.txt
* "ARGV: [\"foo.txt\", \"bar.txt\"]"
* "Line: Foo 0\n"
* "ARGV: [\"bar.txt\"]"
* "Line: Foo 1\n"
* "ARGV: [\"bar.txt\"]"
* "Line: Bar 0\n"
* "ARGV: []"
* "Line: Bar 1\n"
* "ARGV: []"
* "Line: Bar 2\n"
* "ARGV: []"
* "Line: Bar 3\n"
*
* ==== Filepaths in +ARGV+
*
* The +ARGV+ array may contain filepaths the specify sources for \ARGF reading.
*
* This program prints what it reads from files at the paths specified
* on the command line:
*
* - \File +t.rb+:
*
* p ['ARGV', ARGV]
* # Read and print all content from the specified sources.
* p ['ARGF.read', ARGF.read]
*
* - Command and output:
*
* $ ruby t.rb foo.txt bar.txt
* ["ARGV", [foo.txt, bar.txt]
* ["ARGF.read", "Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n"]
*
* ==== Specifying <tt>$stdin</tt> in +ARGV+
*
* To specify stream <tt>$stdin</tt> in +ARGV+, us the character <tt>'-'</tt>:
*
* - \File +t.rb+:
*
* p ['ARGV', ARGV]
* p ['ARGF.read', ARGF.read]
*
* - Command and output:
*
* $ echo "Open the pod bay doors, Hal." | ruby t.rb -
* ["ARGV", ["-"]]
* ["ARGF.read", "Open the pod bay doors, Hal.\n"]
*
* When no character <tt>'-'</tt> is given, stream <tt>$stdin</tt> is ignored
* (exception:
* see {Specifying $stdin in ARGV}[rdoc-ref:ARGF@Specifying+-24stdin+in+ARGV]):
*
* - Command and output:
*
* $ echo "Open the pod bay doors, Hal." | ruby t.rb foo.txt bar.txt
* "ARGV: [\"foo.txt\", \"bar.txt\"]"
* "Read: Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n"
*
* ==== Mixtures and Repetitions in +ARGV+
*
* For an \ARGF reader, +ARGV+ may contain any mixture of filepaths
* and character <tt>'-'</tt>, including repetitions.
*
* ==== Modifications to +ARGV+
*
* The running Ruby program may make any modifications to the +ARGV+ array;
* the current value of +ARGV+ affects \ARGF reading.
*
* ==== Empty +ARGV+
*
* For an empty +ARGV+, an \ARGF read method either returns +nil+
* or raises an exception, depending on the specific method.
*
* === More Read Methods
*
* As seen above, method ARGF#read reads the content of all sources
* into a single string.
* Other \ARGF methods provide other ways to access that content;
* these include:
*
* - Byte access: #each_byte, #getbyte, #readbyte.
* - Character access: #each_char, #getc, #readchar.
* - Codepoint access: #each_codepoint.
* - Line access: #each_line, #gets, #readline, #readlines.
* - Source access: #read, #read_nonblock, #readpartial.
*
* === About \Enumerable
*
* \ARGF includes module Enumerable.
* Virtually all methods in \Enumerable call method <tt>#each</tt> in the including class.
*
* <b>Note well</b>: In \ARGF, method #each returns data from the _sources_,
* _not_ from +ARGV+;
* therefore, for example, <tt>ARGF#entries</tt> returns an array of lines from the sources,
* not an array of the strings from +ARGV+:
*
* - \File +t.rb+:
*
* p ['ARGV', ARGV]
* p ['ARGF.entries', ARGF.entries]
*
* - Command and output:
*
* $ ruby t.rb foo.txt bar.txt
* ["ARGV", ["foo.txt", "bar.txt"]]
* ["ARGF.entries", ["Foo 0\n", "Foo 1\n", "Bar 0\n", "Bar 1\n", "Bar 2\n", "Bar 3\n"]]
*
* == Writing
*
* If <i>inplace mode</i> is in effect,
* \ARGF may write to target streams,
* which at any particular time are determined by the content of ARGV.
*
* Methods about inplace mode:
*
* - #inplace_mode
* - #inplace_mode=
* - #to_write_io
*
* Methods for writing:
*
* - #print
* - #printf
* - #putc
* - #puts
* - #write
*
*/
/*
* An instance of class \IO (commonly called a _stream_)
* represents an input/output stream in the underlying operating system.
* \Class \IO is the basis for input and output in Ruby.
*
* \Class File is the only class in the Ruby core that is a subclass of \IO.
* Some classes in the Ruby standard library are also subclasses of \IO;
* these include TCPSocket and UDPSocket.
*
* The global constant ARGF (also accessible as <tt>$<</tt>)
* provides an IO-like stream that allows access to all file paths
* found in ARGV (or found in STDIN if ARGV is empty).
* ARGF is not itself a subclass of \IO.
*
* \Class StringIO provides an IO-like stream that handles a String.
* StringIO is not itself a subclass of \IO.
*
* Important objects based on \IO include:
*
* - $stdin.
* - $stdout.
* - $stderr.
* - Instances of class File.
*
* An instance of \IO may be created using:
*
* - IO.new: returns a new \IO object for the given integer file descriptor.
* - IO.open: passes a new \IO object to the given block.
* - IO.popen: returns a new \IO object that is connected to the $stdin and $stdout
* of a newly-launched subprocess.
* - Kernel#open: Returns a new \IO object connected to a given source:
* stream, file, or subprocess.
*
* Like a File stream, an \IO stream has:
*
* - A read/write mode, which may be read-only, write-only, or read/write;
* see {Read/Write Mode}[rdoc-ref:File@Read-2FWrite+Mode].
* - A data mode, which may be text-only or binary;
* see {Data Mode}[rdoc-ref:File@Data+Mode].
* - Internal and external encodings;
* see {Encodings}[rdoc-ref:File@Encodings].
*
* And like other \IO streams, it has:
*
* - A position, which determines where in the stream the next
* read or write is to occur;
* see {Position}[rdoc-ref:IO@Position].
* - A line number, which is a special, line-oriented, "position"
* (different from the position mentioned above);
* see {Line Number}[rdoc-ref:IO@Line+Number].
*
* == Extension <tt>io/console</tt>
*
* Extension <tt>io/console</tt> provides numerous methods
* for interacting with the console;
* requiring it adds numerous methods to class \IO.
*
* == Example Files
*
* Many examples here use these variables:
*
* :include: doc/examples/files.rdoc
*
* == Open Options
*
* A number of \IO methods accept optional keyword arguments
* that determine how a new stream is to be opened:
*
* - +:mode+: Stream mode.
* - +:flags+: Integer file open flags;
* If +mode+ is also given, the two are bitwise-ORed.
* - +:external_encoding+: External encoding for the stream.
* - +:internal_encoding+: Internal encoding for the stream.
* <tt>'-'</tt> is a synonym for the default internal encoding.
* If the value is +nil+ no conversion occurs.
* - +:encoding+: Specifies external and internal encodings as <tt>'extern:intern'</tt>.
* - +:textmode+: If a truthy value, specifies the mode as text-only, binary otherwise.
* - +:binmode+: If a truthy value, specifies the mode as binary, text-only otherwise.
* - +:autoclose+: If a truthy value, specifies that the +fd+ will close
* when the stream closes; otherwise it remains open.
* - +:path:+ If a string value is provided, it is used in #inspect and is available as
* #path method.
*
* Also available are the options offered in String#encode,
* which may control conversion between external and internal encoding.
*
* == Basic \IO
*
* You can perform basic stream \IO with these methods,
* which typically operate on multi-byte strings:
*
* - IO#read: Reads and returns some or all of the remaining bytes from the stream.
* - IO#write: Writes zero or more strings to the stream;
* each given object that is not already a string is converted via +to_s+.
*
* === Position
*
* An \IO stream has a nonnegative integer _position_,
* which is the byte offset at which the next read or write is to occur.
* A new stream has position zero (and line number zero);
* method +rewind+ resets the position (and line number) to zero.
*
* The relevant methods:
*
* - IO#tell (aliased as +#pos+): Returns the current position (in bytes) in the stream.
* - IO#pos=: Sets the position of the stream to a given integer +new_position+ (in bytes).
* - IO#seek: Sets the position of the stream to a given integer +offset+ (in bytes),
* relative to a given position +whence+
* (indicating the beginning, end, or current position).
* - IO#rewind: Positions the stream at the beginning (also resetting the line number).
*
* === Open and Closed Streams
*
* A new \IO stream may be open for reading, open for writing, or both.
*
* A stream is automatically closed when claimed by the garbage collector.
*
* Attempted reading or writing on a closed stream raises an exception.
*
* The relevant methods:
*
* - IO#close: Closes the stream for both reading and writing.
* - IO#close_read: Closes the stream for reading.
* - IO#close_write: Closes the stream for writing.
* - IO#closed?: Returns whether the stream is closed.
*
* === End-of-Stream
*
* You can query whether a stream is positioned at its end:
*
* - IO#eof? (also aliased as +#eof+): Returns whether the stream is at end-of-stream.
*
* You can reposition to end-of-stream by using method IO#seek:
*
* f = File.new('t.txt')
* f.eof? # => false
* f.seek(0, :END)
* f.eof? # => true
* f.close
*
* Or by reading all stream content (which is slower than using IO#seek):
*
* f.rewind
* f.eof? # => false
* f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* f.eof? # => true
*
* == Line \IO
*
* \Class \IO supports line-oriented
* {input}[rdoc-ref:IO@Line+Input] and {output}[rdoc-ref:IO@Line+Output]
*
* === Line Input
*
* \Class \IO supports line-oriented input for
* {files}[rdoc-ref:IO@File+Line+Input] and {IO streams}[rdoc-ref:IO@Stream+Line+Input]
*
* ==== \File Line Input
*
* You can read lines from a file using these methods:
*
* - IO.foreach: Reads each line and passes it to the given block.
* - IO.readlines: Reads and returns all lines in an array.
*
* For each of these methods:
*
* - You can specify {open options}[rdoc-ref:IO@Open+Options].
* - Line parsing depends on the effective <i>line separator</i>;
* see {Line Separator}[rdoc-ref:IO@Line+Separator].
* - The length of each returned line depends on the effective <i>line limit</i>;
* see {Line Limit}[rdoc-ref:IO@Line+Limit].
*
* ==== Stream Line Input
*
* You can read lines from an \IO stream using these methods:
*
* - IO#each_line: Reads each remaining line, passing it to the given block.
* - IO#gets: Returns the next line.
* - IO#readline: Like #gets, but raises an exception at end-of-stream.
* - IO#readlines: Returns all remaining lines in an array.
*
* For each of these methods:
*
* - Reading may begin mid-line,
* depending on the stream's _position_;
* see {Position}[rdoc-ref:IO@Position].
* - Line parsing depends on the effective <i>line separator</i>;
* see {Line Separator}[rdoc-ref:IO@Line+Separator].
* - The length of each returned line depends on the effective <i>line limit</i>;
* see {Line Limit}[rdoc-ref:IO@Line+Limit].
*
* ===== Line Separator
*
* Each of the {line input methods}[rdoc-ref:IO@Line+Input] uses a <i>line separator</i>:
* the string that determines what is considered a line;
* it is sometimes called the <i>input record separator</i>.
*
* The default line separator is taken from global variable <tt>$/</tt>,
* whose initial value is <tt>"\n"</tt>.
*
* Generally, the line to be read next is all data
* from the current {position}[rdoc-ref:IO@Position]
* to the next line separator
* (but see {Special Line Separator Values}[rdoc-ref:IO@Special+Line+Separator+Values]):
*
* f = File.new('t.txt')
* # Method gets with no sep argument returns the next line, according to $/.
* f.gets # => "First line\n"
* f.gets # => "Second line\n"
* f.gets # => "\n"
* f.gets # => "Fourth line\n"
* f.gets # => "Fifth line\n"
* f.close
*
* You can use a different line separator by passing argument +sep+:
*
* f = File.new('t.txt')
* f.gets('l') # => "First l"
* f.gets('li') # => "ine\nSecond li"
* f.gets('lin') # => "ne\n\nFourth lin"
* f.gets # => "e\n"
* f.close
*
* Or by setting global variable <tt>$/</tt>:
*
* f = File.new('t.txt')
* $/ = 'l'
* f.gets # => "First l"
* f.gets # => "ine\nSecond l"
* f.gets # => "ine\n\nFourth l"
* f.close
*
* ===== Special Line Separator Values
*
* Each of the {line input methods}[rdoc-ref:IO@Line+Input]
* accepts two special values for parameter +sep+:
*
* - +nil+: The entire stream is to be read ("slurped") into a single string:
*
* f = File.new('t.txt')
* f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n"
* f.close
*
* - <tt>''</tt> (the empty string): The next "paragraph" is to be read
* (paragraphs being separated by two consecutive line separators):
*
* f = File.new('t.txt')
* f.gets('') # => "First line\nSecond line\n\n"
* f.gets('') # => "Fourth line\nFifth line\n"
* f.close
*
* ===== Line Limit
*
* Each of the {line input methods}[rdoc-ref:IO@Line+Input]
* uses an integer <i>line limit</i>,
* which restricts the number of bytes that may be returned.
* (A multi-byte character will not be split, and so a returned line may be slightly longer
* than the limit).
*
* The default limit value is <tt>-1</tt>;
* any negative limit value means that there is no limit.
*
* If there is no limit, the line is determined only by +sep+.
*
* # Text with 1-byte characters.
* File.open('t.txt') {|f| f.gets(1) } # => "F"
* File.open('t.txt') {|f| f.gets(2) } # => "Fi"
* File.open('t.txt') {|f| f.gets(3) } # => "Fir"
* File.open('t.txt') {|f| f.gets(4) } # => "Firs"
* # No more than one line.
* File.open('t.txt') {|f| f.gets(10) } # => "First line"
* File.open('t.txt') {|f| f.gets(11) } # => "First line\n"
* File.open('t.txt') {|f| f.gets(12) } # => "First line\n"
*
* # Text with 2-byte characters, which will not be split.
* File.open('t.rus') {|f| f.gets(1).size } # => 1
* File.open('t.rus') {|f| f.gets(2).size } # => 1
* File.open('t.rus') {|f| f.gets(3).size } # => 2
* File.open('t.rus') {|f| f.gets(4).size } # => 2
*
* ===== Line Separator and Line Limit
*
* With arguments +sep+ and +limit+ given, combines the two behaviors:
*
* - Returns the next line as determined by line separator +sep+.
* - But returns no more bytes than are allowed by the limit +limit+.
*
* Example:
*
* File.open('t.txt') {|f| f.gets('li', 20) } # => "First li"
* File.open('t.txt') {|f| f.gets('li', 2) } # => "Fi"
*
* ===== Line Number
*
* A readable \IO stream has a non-negative integer <i>line number</i>:
*
* - IO#lineno: Returns the line number.
* - IO#lineno=: Resets and returns the line number.
*
* Unless modified by a call to method IO#lineno=,
* the line number is the number of lines read
* by certain line-oriented methods,
* according to the effective {line separator}[rdoc-ref:IO@Line+Separator]:
*
* - IO.foreach: Increments the line number on each call to the block.
* - IO#each_line: Increments the line number on each call to the block.
* - IO#gets: Increments the line number.
* - IO#readline: Increments the line number.
* - IO#readlines: Increments the line number for each line read.
*
* A new stream is initially has line number zero (and position zero);
* method +rewind+ resets the line number (and position) to zero:
*
* f = File.new('t.txt')
* f.lineno # => 0
* f.gets # => "First line\n"
* f.lineno # => 1
* f.rewind
* f.lineno # => 0
* f.close
*
* Reading lines from a stream usually changes its line number:
*
* f = File.new('t.txt', 'r')
* f.lineno # => 0
* f.readline # => "This is line one.\n"
* f.lineno # => 1
* f.readline # => "This is the second line.\n"
* f.lineno # => 2
* f.readline # => "Here's the third line.\n"
* f.lineno # => 3
* f.eof? # => true
* f.close
*
* Iterating over lines in a stream usually changes its line number:
*
* File.open('t.txt') do |f|
* f.each_line do |line|
* p "position=#{f.pos} eof?=#{f.eof?} lineno=#{f.lineno}"
* end
* end
*
* Output:
*
* "position=11 eof?=false lineno=1"
* "position=23 eof?=false lineno=2"
* "position=24 eof?=false lineno=3"
* "position=36 eof?=false lineno=4"
* "position=47 eof?=true lineno=5"
*
* Unlike the stream's {position}[rdoc-ref:IO@Position],
* the line number does not affect where the next read or write will occur:
*
* f = File.new('t.txt')
* f.lineno = 1000
* f.lineno # => 1000
* f.gets # => "First line\n"
* f.lineno # => 1001
* f.close
*
* Associated with the line number is the global variable <tt>$.</tt>:
*
* - When a stream is opened, <tt>$.</tt> is not set;
* its value is left over from previous activity in the process:
*
* $. = 41
* f = File.new('t.txt')
* $. = 41
* # => 41
* f.close
*
* - When a stream is read, <tt>$.</tt> is set to the line number for that stream:
*
* f0 = File.new('t.txt')
* f1 = File.new('t.dat')
* f0.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
* $. # => 5
* f1.readlines # => ["\xFE\xFF\x99\x90\x99\x91\x99\x92\x99\x93\x99\x94"]
* $. # => 1
* f0.close
* f1.close
*
* - Methods IO#rewind and IO#seek do not affect <tt>$.</tt>:
*
* f = File.new('t.txt')
* f.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
* $. # => 5
* f.rewind
* f.seek(0, :SET)
* $. # => 5
* f.close
*
* === Line Output
*
* You can write to an \IO stream line-by-line using this method:
*
* - IO#puts: Writes objects to the stream.
*
* == Character \IO
*
* You can process an \IO stream character-by-character using these methods:
*
* - IO#getc: Reads and returns the next character from the stream.
* - IO#readchar: Like #getc, but raises an exception at end-of-stream.
* - IO#ungetc: Pushes back ("unshifts") a character or integer onto the stream.
* - IO#putc: Writes a character to the stream.
* - IO#each_char: Reads each remaining character in the stream,
* passing the character to the given block.
* == Byte \IO
*
* You can process an \IO stream byte-by-byte using these methods:
*
* - IO#getbyte: Returns the next 8-bit byte as an integer in range 0..255.
* - IO#readbyte: Like #getbyte, but raises an exception if at end-of-stream.
* - IO#ungetbyte: Pushes back ("unshifts") a byte back onto the stream.
* - IO#each_byte: Reads each remaining byte in the stream,
* passing the byte to the given block.
*
* == Codepoint \IO
*
* You can process an \IO stream codepoint-by-codepoint:
*
* - IO#each_codepoint: Reads each remaining codepoint, passing it to the given block.
*
* == What's Here
*
* First, what's elsewhere. \Class \IO:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
* which provides dozens of additional methods.
*
* Here, class \IO provides methods that are useful for:
*
* - {Creating}[rdoc-ref:IO@Creating]
* - {Reading}[rdoc-ref:IO@Reading]
* - {Writing}[rdoc-ref:IO@Writing]
* - {Positioning}[rdoc-ref:IO@Positioning]
* - {Iterating}[rdoc-ref:IO@Iterating]
* - {Settings}[rdoc-ref:IO@Settings]
* - {Querying}[rdoc-ref:IO@Querying]
* - {Buffering}[rdoc-ref:IO@Buffering]
* - {Low-Level Access}[rdoc-ref:IO@Low-Level+Access]
* - {Other}[rdoc-ref:IO@Other]
*
* === Creating
*
* - ::new (aliased as ::for_fd): Creates and returns a new \IO object for the given
* integer file descriptor.
* - ::open: Creates a new \IO object.
* - ::pipe: Creates a connected pair of reader and writer \IO objects.
* - ::popen: Creates an \IO object to interact with a subprocess.
* - ::select: Selects which given \IO instances are ready for reading,
* writing, or have pending exceptions.
*
* === Reading
*
* - ::binread: Returns a binary string with all or a subset of bytes
* from the given file.
* - ::read: Returns a string with all or a subset of bytes from the given file.
* - ::readlines: Returns an array of strings, which are the lines from the given file.
* - #getbyte: Returns the next 8-bit byte read from +self+ as an integer.
* - #getc: Returns the next character read from +self+ as a string.
* - #gets: Returns the line read from +self+.
* - #pread: Returns all or the next _n_ bytes read from +self+,
* not updating the receiver's offset.
* - #read: Returns all remaining or the next _n_ bytes read from +self+
* for a given _n_.
* - #read_nonblock: the next _n_ bytes read from +self+ for a given _n_,
* in non-block mode.
* - #readbyte: Returns the next byte read from +self+;
* same as #getbyte, but raises an exception on end-of-stream.
* - #readchar: Returns the next character read from +self+;
* same as #getc, but raises an exception on end-of-stream.
* - #readline: Returns the next line read from +self+;
* same as #getline, but raises an exception of end-of-stream.
* - #readlines: Returns an array of all lines read read from +self+.
* - #readpartial: Returns up to the given number of bytes from +self+.
*
* === Writing
*
* - ::binwrite: Writes the given string to the file at the given filepath,
* in binary mode.
* - ::write: Writes the given string to +self+.
* - #<<: Appends the given string to +self+.
* - #print: Prints last read line or given objects to +self+.
* - #printf: Writes to +self+ based on the given format string and objects.
* - #putc: Writes a character to +self+.
* - #puts: Writes lines to +self+, making sure line ends with a newline.
* - #pwrite: Writes the given string at the given offset,
* not updating the receiver's offset.
* - #write: Writes one or more given strings to +self+.
* - #write_nonblock: Writes one or more given strings to +self+ in non-blocking mode.
*
* === Positioning
*
* - #lineno: Returns the current line number in +self+.
* - #lineno=: Sets the line number is +self+.
* - #pos (aliased as #tell): Returns the current byte offset in +self+.
* - #pos=: Sets the byte offset in +self+.
* - #reopen: Reassociates +self+ with a new or existing \IO stream.
* - #rewind: Positions +self+ to the beginning of input.
* - #seek: Sets the offset for +self+ relative to given position.
*
* === Iterating
*
* - ::foreach: Yields each line of given file to the block.
* - #each (aliased as #each_line): Calls the given block
* with each successive line in +self+.
* - #each_byte: Calls the given block with each successive byte in +self+
* as an integer.
* - #each_char: Calls the given block with each successive character in +self+
* as a string.
* - #each_codepoint: Calls the given block with each successive codepoint in +self+
* as an integer.
*
* === Settings
*
* - #autoclose=: Sets whether +self+ auto-closes.
* - #binmode: Sets +self+ to binary mode.
* - #close: Closes +self+.
* - #close_on_exec=: Sets the close-on-exec flag.
* - #close_read: Closes +self+ for reading.
* - #close_write: Closes +self+ for writing.
* - #set_encoding: Sets the encoding for +self+.
* - #set_encoding_by_bom: Sets the encoding for +self+, based on its
* Unicode byte-order-mark.
* - #sync=: Sets the sync-mode to the given value.
*
* === Querying
*
* - #autoclose?: Returns whether +self+ auto-closes.
* - #binmode?: Returns whether +self+ is in binary mode.
* - #close_on_exec?: Returns the close-on-exec flag for +self+.
* - #closed?: Returns whether +self+ is closed.
* - #eof? (aliased as #eof): Returns whether +self+ is at end-of-stream.
* - #external_encoding: Returns the external encoding object for +self+.
* - #fileno (aliased as #to_i): Returns the integer file descriptor for +self+
* - #internal_encoding: Returns the internal encoding object for +self+.
* - #pid: Returns the process ID of a child process associated with +self+,
* if +self+ was created by ::popen.
* - #stat: Returns the File::Stat object containing status information for +self+.
* - #sync: Returns whether +self+ is in sync-mode.
* - #tty? (aliased as #isatty): Returns whether +self+ is a terminal.
*
* === Buffering
*
* - #fdatasync: Immediately writes all buffered data in +self+ to disk.
* - #flush: Flushes any buffered data within +self+ to the underlying
* operating system.
* - #fsync: Immediately writes all buffered data and attributes in +self+ to disk.
* - #ungetbyte: Prepends buffer for +self+ with given integer byte or string.
* - #ungetc: Prepends buffer for +self+ with given string.
*
* === Low-Level Access
*
* - ::sysopen: Opens the file given by its path,
* returning the integer file descriptor.
* - #advise: Announces the intention to access data from +self+ in a specific way.
* - #fcntl: Passes a low-level command to the file specified
* by the given file descriptor.
* - #ioctl: Passes a low-level command to the device specified
* by the given file descriptor.
* - #sysread: Returns up to the next _n_ bytes read from self using a low-level read.
* - #sysseek: Sets the offset for +self+.
* - #syswrite: Writes the given string to +self+ using a low-level write.
*
* === Other
*
* - ::copy_stream: Copies data from a source to a destination,
* each of which is a filepath or an \IO-like object.
* - ::try_convert: Returns a new \IO object resulting from converting
* the given object.
* - #inspect: Returns the string representation of +self+.
*
*/
void
Init_IO(void)
{
VALUE rb_cARGF;
#ifdef __CYGWIN__
#include <sys/cygwin.h>
static struct __cygwin_perfile pf[] =
{
{"", O_RDONLY | O_BINARY},
{"", O_WRONLY | O_BINARY},
{"", O_RDWR | O_BINARY},
{"", O_APPEND | O_BINARY},
{NULL, 0}
};
cygwin_internal(CW_PERFILE, pf);
#endif
rb_eIOError = rb_define_class("IOError", rb_eStandardError);
rb_eEOFError = rb_define_class("EOFError", rb_eIOError);
id_write = rb_intern_const("write");
id_read = rb_intern_const("read");
id_getc = rb_intern_const("getc");
id_flush = rb_intern_const("flush");
id_readpartial = rb_intern_const("readpartial");
id_set_encoding = rb_intern_const("set_encoding");
id_fileno = rb_intern_const("fileno");
rb_define_global_function("syscall", rb_f_syscall, -1);
rb_define_global_function("open", rb_f_open, -1);
rb_define_global_function("printf", rb_f_printf, -1);
rb_define_global_function("print", rb_f_print, -1);
rb_define_global_function("putc", rb_f_putc, 1);
rb_define_global_function("puts", rb_f_puts, -1);
rb_define_global_function("gets", rb_f_gets, -1);
rb_define_global_function("readline", rb_f_readline, -1);
rb_define_global_function("select", rb_f_select, -1);
rb_define_global_function("readlines", rb_f_readlines, -1);
rb_define_global_function("`", rb_f_backquote, 1);
rb_define_global_function("p", rb_f_p, -1);
rb_define_method(rb_mKernel, "display", rb_obj_display, -1);
rb_cIO = rb_define_class("IO", rb_cObject);
rb_include_module(rb_cIO, rb_mEnumerable);
/* Can be raised by IO operations when IO#timeout= is set. */
rb_eIOTimeoutError = rb_define_class_under(rb_cIO, "TimeoutError", rb_eIOError);
/* Readable event mask for IO#wait. */
rb_define_const(rb_cIO, "READABLE", INT2NUM(RUBY_IO_READABLE));
/* Writable event mask for IO#wait. */
rb_define_const(rb_cIO, "WRITABLE", INT2NUM(RUBY_IO_WRITABLE));
/* Priority event mask for IO#wait. */
rb_define_const(rb_cIO, "PRIORITY", INT2NUM(RUBY_IO_PRIORITY));
/* exception to wait for reading. see IO.select. */
rb_mWaitReadable = rb_define_module_under(rb_cIO, "WaitReadable");
/* exception to wait for writing. see IO.select. */
rb_mWaitWritable = rb_define_module_under(rb_cIO, "WaitWritable");
/* exception to wait for reading by EAGAIN. see IO.select. */
rb_eEAGAINWaitReadable = rb_define_class_under(rb_cIO, "EAGAINWaitReadable", rb_eEAGAIN);
rb_include_module(rb_eEAGAINWaitReadable, rb_mWaitReadable);
/* exception to wait for writing by EAGAIN. see IO.select. */
rb_eEAGAINWaitWritable = rb_define_class_under(rb_cIO, "EAGAINWaitWritable", rb_eEAGAIN);
rb_include_module(rb_eEAGAINWaitWritable, rb_mWaitWritable);
#if EAGAIN == EWOULDBLOCK
rb_eEWOULDBLOCKWaitReadable = rb_eEAGAINWaitReadable;
/* same as IO::EAGAINWaitReadable */
rb_define_const(rb_cIO, "EWOULDBLOCKWaitReadable", rb_eEAGAINWaitReadable);
rb_eEWOULDBLOCKWaitWritable = rb_eEAGAINWaitWritable;
/* same as IO::EAGAINWaitWritable */
rb_define_const(rb_cIO, "EWOULDBLOCKWaitWritable", rb_eEAGAINWaitWritable);
#else
/* exception to wait for reading by EWOULDBLOCK. see IO.select. */
rb_eEWOULDBLOCKWaitReadable = rb_define_class_under(rb_cIO, "EWOULDBLOCKWaitReadable", rb_eEWOULDBLOCK);
rb_include_module(rb_eEWOULDBLOCKWaitReadable, rb_mWaitReadable);
/* exception to wait for writing by EWOULDBLOCK. see IO.select. */
rb_eEWOULDBLOCKWaitWritable = rb_define_class_under(rb_cIO, "EWOULDBLOCKWaitWritable", rb_eEWOULDBLOCK);
rb_include_module(rb_eEWOULDBLOCKWaitWritable, rb_mWaitWritable);
#endif
/* exception to wait for reading by EINPROGRESS. see IO.select. */
rb_eEINPROGRESSWaitReadable = rb_define_class_under(rb_cIO, "EINPROGRESSWaitReadable", rb_eEINPROGRESS);
rb_include_module(rb_eEINPROGRESSWaitReadable, rb_mWaitReadable);
/* exception to wait for writing by EINPROGRESS. see IO.select. */
rb_eEINPROGRESSWaitWritable = rb_define_class_under(rb_cIO, "EINPROGRESSWaitWritable", rb_eEINPROGRESS);
rb_include_module(rb_eEINPROGRESSWaitWritable, rb_mWaitWritable);
#if 0
/* This is necessary only for forcing rdoc handle File::open */
rb_define_singleton_method(rb_cFile, "open", rb_io_s_open, -1);
#endif
rb_define_alloc_func(rb_cIO, io_alloc);
rb_define_singleton_method(rb_cIO, "new", rb_io_s_new, -1);
rb_define_singleton_method(rb_cIO, "open", rb_io_s_open, -1);
rb_define_singleton_method(rb_cIO, "sysopen", rb_io_s_sysopen, -1);
rb_define_singleton_method(rb_cIO, "for_fd", rb_io_s_for_fd, -1);
rb_define_singleton_method(rb_cIO, "popen", rb_io_s_popen, -1);
rb_define_singleton_method(rb_cIO, "foreach", rb_io_s_foreach, -1);
rb_define_singleton_method(rb_cIO, "readlines", rb_io_s_readlines, -1);
rb_define_singleton_method(rb_cIO, "read", rb_io_s_read, -1);
rb_define_singleton_method(rb_cIO, "binread", rb_io_s_binread, -1);
rb_define_singleton_method(rb_cIO, "write", rb_io_s_write, -1);
rb_define_singleton_method(rb_cIO, "binwrite", rb_io_s_binwrite, -1);
rb_define_singleton_method(rb_cIO, "select", rb_f_select, -1);
rb_define_singleton_method(rb_cIO, "pipe", rb_io_s_pipe, -1);
rb_define_singleton_method(rb_cIO, "try_convert", rb_io_s_try_convert, 1);
rb_define_singleton_method(rb_cIO, "copy_stream", rb_io_s_copy_stream, -1);
rb_define_method(rb_cIO, "initialize", rb_io_initialize, -1);
rb_output_fs = Qnil;
rb_define_hooked_variable("$,", &rb_output_fs, 0, deprecated_str_setter);
rb_default_rs = rb_fstring_lit("\n"); /* avoid modifying RS_default */
rb_vm_register_global_object(rb_default_rs);
rb_rs = rb_default_rs;
rb_output_rs = Qnil;
rb_define_hooked_variable("$/", &rb_rs, 0, deprecated_str_setter);
rb_define_hooked_variable("$-0", &rb_rs, 0, deprecated_str_setter);
rb_define_hooked_variable("$\\", &rb_output_rs, 0, deprecated_str_setter);
rb_define_virtual_variable("$_", get_LAST_READ_LINE, set_LAST_READ_LINE);
rb_gvar_ractor_local("$_");
rb_define_method(rb_cIO, "initialize_copy", rb_io_init_copy, 1);
rb_define_method(rb_cIO, "reopen", rb_io_reopen, -1);
rb_define_method(rb_cIO, "print", rb_io_print, -1);
rb_define_method(rb_cIO, "putc", rb_io_putc, 1);
rb_define_method(rb_cIO, "puts", rb_io_puts, -1);
rb_define_method(rb_cIO, "printf", rb_io_printf, -1);
rb_define_method(rb_cIO, "each", rb_io_each_line, -1);
rb_define_method(rb_cIO, "each_line", rb_io_each_line, -1);
rb_define_method(rb_cIO, "each_byte", rb_io_each_byte, 0);
rb_define_method(rb_cIO, "each_char", rb_io_each_char, 0);
rb_define_method(rb_cIO, "each_codepoint", rb_io_each_codepoint, 0);
rb_define_method(rb_cIO, "syswrite", rb_io_syswrite, 1);
rb_define_method(rb_cIO, "sysread", rb_io_sysread, -1);
rb_define_method(rb_cIO, "pread", rb_io_pread, -1);
rb_define_method(rb_cIO, "pwrite", rb_io_pwrite, 2);
rb_define_method(rb_cIO, "fileno", rb_io_fileno, 0);
rb_define_alias(rb_cIO, "to_i", "fileno");
rb_define_method(rb_cIO, "to_io", rb_io_to_io, 0);
rb_define_method(rb_cIO, "timeout", rb_io_timeout, 0);
rb_define_method(rb_cIO, "timeout=", rb_io_set_timeout, 1);
rb_define_method(rb_cIO, "fsync", rb_io_fsync, 0);
rb_define_method(rb_cIO, "fdatasync", rb_io_fdatasync, 0);
rb_define_method(rb_cIO, "sync", rb_io_sync, 0);
rb_define_method(rb_cIO, "sync=", rb_io_set_sync, 1);
rb_define_method(rb_cIO, "lineno", rb_io_lineno, 0);
rb_define_method(rb_cIO, "lineno=", rb_io_set_lineno, 1);
rb_define_method(rb_cIO, "readlines", rb_io_readlines, -1);
rb_define_method(rb_cIO, "readpartial", io_readpartial, -1);
rb_define_method(rb_cIO, "read", io_read, -1);
rb_define_method(rb_cIO, "write", io_write_m, -1);
rb_define_method(rb_cIO, "gets", rb_io_gets_m, -1);
rb_define_method(rb_cIO, "getc", rb_io_getc, 0);
rb_define_method(rb_cIO, "getbyte", rb_io_getbyte, 0);
rb_define_method(rb_cIO, "readchar", rb_io_readchar, 0);
rb_define_method(rb_cIO, "readbyte", rb_io_readbyte, 0);
rb_define_method(rb_cIO, "ungetbyte",rb_io_ungetbyte, 1);
rb_define_method(rb_cIO, "ungetc",rb_io_ungetc, 1);
rb_define_method(rb_cIO, "<<", rb_io_addstr, 1);
rb_define_method(rb_cIO, "flush", rb_io_flush, 0);
rb_define_method(rb_cIO, "tell", rb_io_tell, 0);
rb_define_method(rb_cIO, "seek", rb_io_seek_m, -1);
/* Set I/O position from the beginning */
rb_define_const(rb_cIO, "SEEK_SET", INT2FIX(SEEK_SET));
/* Set I/O position from the current position */
rb_define_const(rb_cIO, "SEEK_CUR", INT2FIX(SEEK_CUR));
/* Set I/O position from the end */
rb_define_const(rb_cIO, "SEEK_END", INT2FIX(SEEK_END));
#ifdef SEEK_DATA
/* Set I/O position to the next location containing data */
rb_define_const(rb_cIO, "SEEK_DATA", INT2FIX(SEEK_DATA));
#endif
#ifdef SEEK_HOLE
/* Set I/O position to the next hole */
rb_define_const(rb_cIO, "SEEK_HOLE", INT2FIX(SEEK_HOLE));
#endif
rb_define_method(rb_cIO, "rewind", rb_io_rewind, 0);
rb_define_method(rb_cIO, "pos", rb_io_tell, 0);
rb_define_method(rb_cIO, "pos=", rb_io_set_pos, 1);
rb_define_method(rb_cIO, "eof", rb_io_eof, 0);
rb_define_method(rb_cIO, "eof?", rb_io_eof, 0);
rb_define_method(rb_cIO, "close_on_exec?", rb_io_close_on_exec_p, 0);
rb_define_method(rb_cIO, "close_on_exec=", rb_io_set_close_on_exec, 1);
rb_define_method(rb_cIO, "close", rb_io_close_m, 0);
rb_define_method(rb_cIO, "closed?", rb_io_closed_p, 0);
rb_define_method(rb_cIO, "close_read", rb_io_close_read, 0);
rb_define_method(rb_cIO, "close_write", rb_io_close_write, 0);
rb_define_method(rb_cIO, "isatty", rb_io_isatty, 0);
rb_define_method(rb_cIO, "tty?", rb_io_isatty, 0);
rb_define_method(rb_cIO, "binmode", rb_io_binmode_m, 0);
rb_define_method(rb_cIO, "binmode?", rb_io_binmode_p, 0);
rb_define_method(rb_cIO, "sysseek", rb_io_sysseek, -1);
rb_define_method(rb_cIO, "advise", rb_io_advise, -1);
rb_define_method(rb_cIO, "ioctl", rb_io_ioctl, -1);
rb_define_method(rb_cIO, "fcntl", rb_io_fcntl, -1);
rb_define_method(rb_cIO, "pid", rb_io_pid, 0);
rb_define_method(rb_cIO, "path", rb_io_path, 0);
rb_define_method(rb_cIO, "to_path", rb_io_path, 0);
rb_define_method(rb_cIO, "inspect", rb_io_inspect, 0);
rb_define_method(rb_cIO, "external_encoding", rb_io_external_encoding, 0);
rb_define_method(rb_cIO, "internal_encoding", rb_io_internal_encoding, 0);
rb_define_method(rb_cIO, "set_encoding", rb_io_set_encoding, -1);
rb_define_method(rb_cIO, "set_encoding_by_bom", rb_io_set_encoding_by_bom, 0);
rb_define_method(rb_cIO, "autoclose?", rb_io_autoclose_p, 0);
rb_define_method(rb_cIO, "autoclose=", rb_io_set_autoclose, 1);
rb_define_method(rb_cIO, "wait", io_wait, -1);
rb_define_method(rb_cIO, "wait_readable", io_wait_readable, -1);
rb_define_method(rb_cIO, "wait_writable", io_wait_writable, -1);
rb_define_method(rb_cIO, "wait_priority", io_wait_priority, -1);
rb_define_virtual_variable("$stdin", stdin_getter, stdin_setter);
rb_define_virtual_variable("$stdout", stdout_getter, stdout_setter);
rb_define_virtual_variable("$>", stdout_getter, stdout_setter);
rb_define_virtual_variable("$stderr", stderr_getter, stderr_setter);
rb_gvar_ractor_local("$stdin");
rb_gvar_ractor_local("$stdout");
rb_gvar_ractor_local("$>");
rb_gvar_ractor_local("$stderr");
rb_global_variable(&rb_stdin);
rb_stdin = rb_io_prep_stdin();
rb_global_variable(&rb_stdout);
rb_stdout = rb_io_prep_stdout();
rb_global_variable(&rb_stderr);
rb_stderr = rb_io_prep_stderr();
orig_stdout = rb_stdout;
orig_stderr = rb_stderr;
/* Holds the original stdin */
rb_define_global_const("STDIN", rb_stdin);
/* Holds the original stdout */
rb_define_global_const("STDOUT", rb_stdout);
/* Holds the original stderr */
rb_define_global_const("STDERR", rb_stderr);
#if 0
/* Hack to get rdoc to regard ARGF as a class: */
rb_cARGF = rb_define_class("ARGF", rb_cObject);
#endif
rb_cARGF = rb_class_new(rb_cObject);
rb_set_class_path(rb_cARGF, rb_cObject, "ARGF.class");
rb_define_alloc_func(rb_cARGF, argf_alloc);
rb_include_module(rb_cARGF, rb_mEnumerable);
rb_define_method(rb_cARGF, "initialize", argf_initialize, -2);
rb_define_method(rb_cARGF, "initialize_copy", argf_initialize_copy, 1);
rb_define_method(rb_cARGF, "to_s", argf_to_s, 0);
rb_define_alias(rb_cARGF, "inspect", "to_s");
rb_define_method(rb_cARGF, "argv", argf_argv, 0);
rb_define_method(rb_cARGF, "fileno", argf_fileno, 0);
rb_define_method(rb_cARGF, "to_i", argf_fileno, 0);
rb_define_method(rb_cARGF, "to_io", argf_to_io, 0);
rb_define_method(rb_cARGF, "to_write_io", argf_write_io, 0);
rb_define_method(rb_cARGF, "each", argf_each_line, -1);
rb_define_method(rb_cARGF, "each_line", argf_each_line, -1);
rb_define_method(rb_cARGF, "each_byte", argf_each_byte, 0);
rb_define_method(rb_cARGF, "each_char", argf_each_char, 0);
rb_define_method(rb_cARGF, "each_codepoint", argf_each_codepoint, 0);
rb_define_method(rb_cARGF, "read", argf_read, -1);
rb_define_method(rb_cARGF, "readpartial", argf_readpartial, -1);
rb_define_method(rb_cARGF, "read_nonblock", argf_read_nonblock, -1);
rb_define_method(rb_cARGF, "readlines", argf_readlines, -1);
rb_define_method(rb_cARGF, "to_a", argf_readlines, -1);
rb_define_method(rb_cARGF, "gets", argf_gets, -1);
rb_define_method(rb_cARGF, "readline", argf_readline, -1);
rb_define_method(rb_cARGF, "getc", argf_getc, 0);
rb_define_method(rb_cARGF, "getbyte", argf_getbyte, 0);
rb_define_method(rb_cARGF, "readchar", argf_readchar, 0);
rb_define_method(rb_cARGF, "readbyte", argf_readbyte, 0);
rb_define_method(rb_cARGF, "tell", argf_tell, 0);
rb_define_method(rb_cARGF, "seek", argf_seek_m, -1);
rb_define_method(rb_cARGF, "rewind", argf_rewind, 0);
rb_define_method(rb_cARGF, "pos", argf_tell, 0);
rb_define_method(rb_cARGF, "pos=", argf_set_pos, 1);
rb_define_method(rb_cARGF, "eof", argf_eof, 0);
rb_define_method(rb_cARGF, "eof?", argf_eof, 0);
rb_define_method(rb_cARGF, "binmode", argf_binmode_m, 0);
rb_define_method(rb_cARGF, "binmode?", argf_binmode_p, 0);
rb_define_method(rb_cARGF, "write", argf_write, -1);
rb_define_method(rb_cARGF, "print", rb_io_print, -1);
rb_define_method(rb_cARGF, "putc", rb_io_putc, 1);
rb_define_method(rb_cARGF, "puts", rb_io_puts, -1);
rb_define_method(rb_cARGF, "printf", rb_io_printf, -1);
rb_define_method(rb_cARGF, "filename", argf_filename, 0);
rb_define_method(rb_cARGF, "path", argf_filename, 0);
rb_define_method(rb_cARGF, "file", argf_file, 0);
rb_define_method(rb_cARGF, "skip", argf_skip, 0);
rb_define_method(rb_cARGF, "close", argf_close_m, 0);
rb_define_method(rb_cARGF, "closed?", argf_closed, 0);
rb_define_method(rb_cARGF, "lineno", argf_lineno, 0);
rb_define_method(rb_cARGF, "lineno=", argf_set_lineno, 1);
rb_define_method(rb_cARGF, "inplace_mode", argf_inplace_mode_get, 0);
rb_define_method(rb_cARGF, "inplace_mode=", argf_inplace_mode_set, 1);
rb_define_method(rb_cARGF, "external_encoding", argf_external_encoding, 0);
rb_define_method(rb_cARGF, "internal_encoding", argf_internal_encoding, 0);
rb_define_method(rb_cARGF, "set_encoding", argf_set_encoding, -1);
argf = rb_class_new_instance(0, 0, rb_cARGF);
rb_define_readonly_variable("$<", &argf);
/*
* ARGF is a stream designed for use in scripts that process files given
* as command-line arguments or passed in via STDIN.
*
* See ARGF (the class) for more details.
*/
rb_define_global_const("ARGF", argf);
rb_define_hooked_variable("$.", &argf, argf_lineno_getter, argf_lineno_setter);
rb_define_hooked_variable("$FILENAME", &argf, argf_filename_getter, rb_gvar_readonly_setter);
ARGF.filename = rb_str_new2("-");
rb_define_hooked_variable("$-i", &argf, opt_i_get, opt_i_set);
rb_gvar_ractor_local("$-i");
rb_define_hooked_variable("$*", &argf, argf_argv_getter, rb_gvar_readonly_setter);
#if defined (_WIN32) || defined(__CYGWIN__)
atexit(pipe_atexit);
#endif
Init_File();
rb_define_method(rb_cFile, "initialize", rb_file_initialize, -1);
sym_mode = ID2SYM(rb_intern_const("mode"));
sym_perm = ID2SYM(rb_intern_const("perm"));
sym_flags = ID2SYM(rb_intern_const("flags"));
sym_extenc = ID2SYM(rb_intern_const("external_encoding"));
sym_intenc = ID2SYM(rb_intern_const("internal_encoding"));
sym_encoding = ID2SYM(rb_id_encoding());
sym_open_args = ID2SYM(rb_intern_const("open_args"));
sym_textmode = ID2SYM(rb_intern_const("textmode"));
sym_binmode = ID2SYM(rb_intern_const("binmode"));
sym_autoclose = ID2SYM(rb_intern_const("autoclose"));
sym_normal = ID2SYM(rb_intern_const("normal"));
sym_sequential = ID2SYM(rb_intern_const("sequential"));
sym_random = ID2SYM(rb_intern_const("random"));
sym_willneed = ID2SYM(rb_intern_const("willneed"));
sym_dontneed = ID2SYM(rb_intern_const("dontneed"));
sym_noreuse = ID2SYM(rb_intern_const("noreuse"));
sym_SET = ID2SYM(rb_intern_const("SET"));
sym_CUR = ID2SYM(rb_intern_const("CUR"));
sym_END = ID2SYM(rb_intern_const("END"));
#ifdef SEEK_DATA
sym_DATA = ID2SYM(rb_intern_const("DATA"));
#endif
#ifdef SEEK_HOLE
sym_HOLE = ID2SYM(rb_intern_const("HOLE"));
#endif
sym_wait_readable = ID2SYM(rb_intern_const("wait_readable"));
sym_wait_writable = ID2SYM(rb_intern_const("wait_writable"));
}
#include "io.rbinc"