crypto/ssh/common.go

365 строки
9.9 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"errors"
"fmt"
"math/big"
"sync"
)
// These are string constants in the SSH protocol.
const (
keyAlgoDH1SHA1 = "diffie-hellman-group1-sha1"
kexAlgoDH14SHA1 = "diffie-hellman-group14-sha1"
hostAlgoRSA = "ssh-rsa"
hostAlgoDSA = "ssh-dss"
compressionNone = "none"
serviceUserAuth = "ssh-userauth"
serviceSSH = "ssh-connection"
)
var supportedKexAlgos = []string{kexAlgoDH14SHA1, keyAlgoDH1SHA1}
var supportedHostKeyAlgos = []string{hostAlgoRSA}
var supportedCompressions = []string{compressionNone}
// dhGroup is a multiplicative group suitable for implementing Diffie-Hellman key agreement.
type dhGroup struct {
g, p *big.Int
}
func (group *dhGroup) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, error) {
if theirPublic.Sign() <= 0 || theirPublic.Cmp(group.p) >= 0 {
return nil, errors.New("ssh: DH parameter out of bounds")
}
return new(big.Int).Exp(theirPublic, myPrivate, group.p), nil
}
// dhGroup1 is the group called diffie-hellman-group1-sha1 in RFC 4253 and
// Oakley Group 2 in RFC 2409.
var dhGroup1 *dhGroup
var dhGroup1Once sync.Once
func initDHGroup1() {
p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF", 16)
dhGroup1 = &dhGroup{
g: new(big.Int).SetInt64(2),
p: p,
}
}
// dhGroup14 is the group called diffie-hellman-group14-sha1 in RFC 4253 and
// Oakley Group 14 in RFC 3526.
var dhGroup14 *dhGroup
var dhGroup14Once sync.Once
func initDHGroup14() {
p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)
dhGroup14 = &dhGroup{
g: new(big.Int).SetInt64(2),
p: p,
}
}
// UnexpectedMessageError results when the SSH message that we received didn't
// match what we wanted.
type UnexpectedMessageError struct {
expected, got uint8
}
func (u UnexpectedMessageError) Error() string {
return fmt.Sprintf("ssh: unexpected message type %d (expected %d)", u.got, u.expected)
}
// ParseError results from a malformed SSH message.
type ParseError struct {
msgType uint8
}
func (p ParseError) Error() string {
return fmt.Sprintf("ssh: parse error in message type %d", p.msgType)
}
type handshakeMagics struct {
clientVersion, serverVersion []byte
clientKexInit, serverKexInit []byte
}
func findCommonAlgorithm(clientAlgos []string, serverAlgos []string) (commonAlgo string, ok bool) {
for _, clientAlgo := range clientAlgos {
for _, serverAlgo := range serverAlgos {
if clientAlgo == serverAlgo {
return clientAlgo, true
}
}
}
return
}
func findCommonCipher(clientCiphers []string, serverCiphers []string) (commonCipher string, ok bool) {
for _, clientCipher := range clientCiphers {
for _, serverCipher := range serverCiphers {
// reject the cipher if we have no cipherModes definition
if clientCipher == serverCipher && cipherModes[clientCipher] != nil {
return clientCipher, true
}
}
}
return
}
func findAgreedAlgorithms(transport *transport, clientKexInit, serverKexInit *kexInitMsg) (kexAlgo, hostKeyAlgo string, ok bool) {
kexAlgo, ok = findCommonAlgorithm(clientKexInit.KexAlgos, serverKexInit.KexAlgos)
if !ok {
return
}
hostKeyAlgo, ok = findCommonAlgorithm(clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos)
if !ok {
return
}
transport.writer.cipherAlgo, ok = findCommonCipher(clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer)
if !ok {
return
}
transport.reader.cipherAlgo, ok = findCommonCipher(clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient)
if !ok {
return
}
transport.writer.macAlgo, ok = findCommonAlgorithm(clientKexInit.MACsClientServer, serverKexInit.MACsClientServer)
if !ok {
return
}
transport.reader.macAlgo, ok = findCommonAlgorithm(clientKexInit.MACsServerClient, serverKexInit.MACsServerClient)
if !ok {
return
}
transport.writer.compressionAlgo, ok = findCommonAlgorithm(clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer)
if !ok {
return
}
transport.reader.compressionAlgo, ok = findCommonAlgorithm(clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient)
if !ok {
return
}
ok = true
return
}
// Cryptographic configuration common to both ServerConfig and ClientConfig.
type CryptoConfig struct {
// The allowed cipher algorithms. If unspecified then DefaultCipherOrder is
// used.
Ciphers []string
// The allowed MAC algorithms. If unspecified then DefaultMACOrder is used.
MACs []string
}
func (c *CryptoConfig) ciphers() []string {
if c.Ciphers == nil {
return DefaultCipherOrder
}
return c.Ciphers
}
func (c *CryptoConfig) macs() []string {
if c.MACs == nil {
return DefaultMACOrder
}
return c.MACs
}
// serialize a signed slice according to RFC 4254 6.6.
func serializeSignature(algoname string, sig []byte) []byte {
switch algoname {
// The corresponding private key to a public certificate is always a normal
// private key. For signature serialization purposes, ensure we use the
// proper key algorithm name in case the public cert algorithm name is passed.
case CertAlgoRSAv01:
algoname = KeyAlgoRSA
case CertAlgoDSAv01:
algoname = KeyAlgoDSA
case CertAlgoECDSA256v01:
algoname = KeyAlgoECDSA256
case CertAlgoECDSA384v01:
algoname = KeyAlgoECDSA384
case CertAlgoECDSA521v01:
algoname = KeyAlgoECDSA521
}
length := stringLength(len(algoname))
length += stringLength(len(sig))
ret := make([]byte, length)
r := marshalString(ret, []byte(algoname))
r = marshalString(r, sig)
return ret
}
// serialize a *rsa.PublicKey or *dsa.PublicKey according to RFC 4253 6.6.
func serializePublickey(key interface{}) []byte {
var pubKeyBytes []byte
algoname := algoName(key)
switch key := key.(type) {
case *rsa.PublicKey:
pubKeyBytes = marshalPubRSA(key)
case *dsa.PublicKey:
pubKeyBytes = marshalPubDSA(key)
case *ecdsa.PublicKey:
pubKeyBytes = marshalPubECDSA(key)
case *OpenSSHCertV01:
pubKeyBytes = marshalOpenSSHCertV01(key)
default:
panic("unexpected key type")
}
length := stringLength(len(algoname))
length += len(pubKeyBytes)
ret := make([]byte, length)
r := marshalString(ret, []byte(algoname))
copy(r, pubKeyBytes)
return ret
}
func algoName(key interface{}) string {
switch key.(type) {
case *rsa.PublicKey:
return KeyAlgoRSA
case *dsa.PublicKey:
return KeyAlgoDSA
case *ecdsa.PublicKey:
switch key.(*ecdsa.PublicKey).Params().BitSize {
case 256:
return KeyAlgoECDSA256
case 384:
return KeyAlgoECDSA384
case 521:
return KeyAlgoECDSA521
}
case *OpenSSHCertV01:
return algoName(key.(*OpenSSHCertV01).Key) + "-cert-v01@openssh.com"
}
panic("unexpected key type")
}
// buildDataSignedForAuth returns the data that is signed in order to prove
// posession of a private key. See RFC 4252, section 7.
func buildDataSignedForAuth(sessionId []byte, req userAuthRequestMsg, algo, pubKey []byte) []byte {
user := []byte(req.User)
service := []byte(req.Service)
method := []byte(req.Method)
length := stringLength(len(sessionId))
length += 1
length += stringLength(len(user))
length += stringLength(len(service))
length += stringLength(len(method))
length += 1
length += stringLength(len(algo))
length += stringLength(len(pubKey))
ret := make([]byte, length)
r := marshalString(ret, sessionId)
r[0] = msgUserAuthRequest
r = r[1:]
r = marshalString(r, user)
r = marshalString(r, service)
r = marshalString(r, method)
r[0] = 1
r = r[1:]
r = marshalString(r, algo)
r = marshalString(r, pubKey)
return ret
}
// safeString sanitises s according to RFC 4251, section 9.2.
// All control characters except tab, carriage return and newline are
// replaced by 0x20.
func safeString(s string) string {
out := []byte(s)
for i, c := range out {
if c < 0x20 && c != 0xd && c != 0xa && c != 0x9 {
out[i] = 0x20
}
}
return string(out)
}
func appendU16(buf []byte, n uint16) []byte {
return append(buf, byte(n>>8), byte(n))
}
func appendU32(buf []byte, n uint32) []byte {
return append(buf, byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
}
func appendInt(buf []byte, n int) []byte {
return appendU32(buf, uint32(n))
}
// newCond is a helper to hide the fact that there is no usable zero
// value for sync.Cond.
func newCond() *sync.Cond { return sync.NewCond(new(sync.Mutex)) }
// window represents the buffer available to clients
// wishing to write to a channel.
type window struct {
*sync.Cond
win uint32 // RFC 4254 5.2 says the window size can grow to 2^32-1
}
// add adds win to the amount of window available
// for consumers.
func (w *window) add(win uint32) bool {
// a zero sized window adjust is a noop.
if win == 0 {
return true
}
w.L.Lock()
if w.win+win < win {
w.L.Unlock()
return false
}
w.win += win
// It is unusual that multiple goroutines would be attempting to reserve
// window space, but not guaranteed. Use broadcast to notify all waiters
// that additional window is available.
w.Broadcast()
w.L.Unlock()
return true
}
// reserve reserves win from the available window capacity.
// If no capacity remains, reserve will block. reserve may
// return less than requested.
func (w *window) reserve(win uint32) uint32 {
w.L.Lock()
for w.win == 0 {
w.Wait()
}
if w.win < win {
win = w.win
}
w.win -= win
w.L.Unlock()
return win
}