зеркало из https://github.com/golang/freetype.git
484 строки
15 KiB
Go
484 строки
15 KiB
Go
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
|
||
// Use of this source code is governed by your choice of either the
|
||
// FreeType License or the GNU General Public License version 2 (or
|
||
// any later version), both of which can be found in the LICENSE file.
|
||
|
||
package raster
|
||
|
||
import (
|
||
"golang.org/x/image/math/fixed"
|
||
)
|
||
|
||
// Two points are considered practically equal if the square of the distance
|
||
// between them is less than one quarter (i.e. 1024 / 4096).
|
||
const epsilon = fixed.Int52_12(1024)
|
||
|
||
// A Capper signifies how to begin or end a stroked path.
|
||
type Capper interface {
|
||
// Cap adds a cap to p given a pivot point and the normal vector of a
|
||
// terminal segment. The normal's length is half of the stroke width.
|
||
Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
|
||
}
|
||
|
||
// The CapperFunc type adapts an ordinary function to be a Capper.
|
||
type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
|
||
|
||
func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
|
||
f(p, halfWidth, pivot, n1)
|
||
}
|
||
|
||
// A Joiner signifies how to join interior nodes of a stroked path.
|
||
type Joiner interface {
|
||
// Join adds a join to the two sides of a stroked path given a pivot
|
||
// point and the normal vectors of the trailing and leading segments.
|
||
// Both normals have length equal to half of the stroke width.
|
||
Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
|
||
}
|
||
|
||
// The JoinerFunc type adapts an ordinary function to be a Joiner.
|
||
type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
|
||
|
||
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
|
||
f(lhs, rhs, halfWidth, pivot, n0, n1)
|
||
}
|
||
|
||
// RoundCapper adds round caps to a stroked path.
|
||
var RoundCapper Capper = CapperFunc(roundCapper)
|
||
|
||
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
|
||
// The cubic Bézier approximation to a circle involves the magic number
|
||
// (√2 - 1) * 4/3, which is approximately 35/64.
|
||
const k = 35
|
||
e := pRot90CCW(n1)
|
||
side := pivot.Add(e)
|
||
start, end := pivot.Sub(n1), pivot.Add(n1)
|
||
d, e := n1.Mul(k), e.Mul(k)
|
||
p.Add3(start.Add(e), side.Sub(d), side)
|
||
p.Add3(side.Add(d), end.Add(e), end)
|
||
}
|
||
|
||
// ButtCapper adds butt caps to a stroked path.
|
||
var ButtCapper Capper = CapperFunc(buttCapper)
|
||
|
||
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
|
||
p.Add1(pivot.Add(n1))
|
||
}
|
||
|
||
// SquareCapper adds square caps to a stroked path.
|
||
var SquareCapper Capper = CapperFunc(squareCapper)
|
||
|
||
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
|
||
e := pRot90CCW(n1)
|
||
side := pivot.Add(e)
|
||
p.Add1(side.Sub(n1))
|
||
p.Add1(side.Add(n1))
|
||
p.Add1(pivot.Add(n1))
|
||
}
|
||
|
||
// RoundJoiner adds round joins to a stroked path.
|
||
var RoundJoiner Joiner = JoinerFunc(roundJoiner)
|
||
|
||
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
|
||
dot := pDot(pRot90CW(n0), n1)
|
||
if dot >= 0 {
|
||
addArc(lhs, pivot, n0, n1)
|
||
rhs.Add1(pivot.Sub(n1))
|
||
} else {
|
||
lhs.Add1(pivot.Add(n1))
|
||
addArc(rhs, pivot, pNeg(n0), pNeg(n1))
|
||
}
|
||
}
|
||
|
||
// BevelJoiner adds bevel joins to a stroked path.
|
||
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
|
||
|
||
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
|
||
lhs.Add1(pivot.Add(n1))
|
||
rhs.Add1(pivot.Sub(n1))
|
||
}
|
||
|
||
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
|
||
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
|
||
// two vectors n0 and n1 must be of equal length.
|
||
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
|
||
// r2 is the square of the length of n0.
|
||
r2 := pDot(n0, n0)
|
||
if r2 < epsilon {
|
||
// The arc radius is so small that we collapse to a straight line.
|
||
p.Add1(pivot.Add(n1))
|
||
return
|
||
}
|
||
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
|
||
// a final quadratic segment from s to n1. Each 45-degree segment has
|
||
// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
|
||
// rotated and translated. tan(π/8) is approximately 27/64.
|
||
const tpo8 = 27
|
||
var s fixed.Point26_6
|
||
// We determine which octant the angle between n0 and n1 is in via three
|
||
// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
|
||
// degrees.
|
||
m0 := pRot45CW(n0)
|
||
m1 := pRot90CW(n0)
|
||
m2 := pRot90CW(m0)
|
||
if pDot(m1, n1) >= 0 {
|
||
if pDot(n0, n1) >= 0 {
|
||
if pDot(m2, n1) <= 0 {
|
||
// n1 is between 0 and 45 degrees clockwise of n0.
|
||
s = n0
|
||
} else {
|
||
// n1 is between 45 and 90 degrees clockwise of n0.
|
||
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
|
||
s = m0
|
||
}
|
||
} else {
|
||
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
|
||
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
|
||
p.Add2(pm1.Add(n0t), pm1)
|
||
if pDot(m0, n1) >= 0 {
|
||
// n1 is between 90 and 135 degrees clockwise of n0.
|
||
s = m1
|
||
} else {
|
||
// n1 is between 135 and 180 degrees clockwise of n0.
|
||
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
|
||
s = m2
|
||
}
|
||
}
|
||
} else {
|
||
if pDot(n0, n1) >= 0 {
|
||
if pDot(m0, n1) >= 0 {
|
||
// n1 is between 0 and 45 degrees counter-clockwise of n0.
|
||
s = n0
|
||
} else {
|
||
// n1 is between 45 and 90 degrees counter-clockwise of n0.
|
||
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
|
||
s = pNeg(m2)
|
||
}
|
||
} else {
|
||
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
|
||
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
|
||
p.Add2(pm1.Add(n0t), pm1)
|
||
if pDot(m2, n1) <= 0 {
|
||
// n1 is between 90 and 135 degrees counter-clockwise of n0.
|
||
s = pNeg(m1)
|
||
} else {
|
||
// n1 is between 135 and 180 degrees counter-clockwise of n0.
|
||
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
|
||
s = pNeg(m0)
|
||
}
|
||
}
|
||
}
|
||
// The final quadratic segment has two endpoints s and n1 and the middle
|
||
// control point is a multiple of s.Add(n1), i.e. it is on the angle
|
||
// bisector of those two points. The multiple ranges between 128/256 and
|
||
// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
|
||
//
|
||
// When the angle is 0 degrees (i.e. s and n1 are coincident) then
|
||
// s.Add(n1) is twice s and so the middle control point of the degenerate
|
||
// quadratic segment should be half s.Add(n1), and half = 128/256.
|
||
//
|
||
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
|
||
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
|
||
//
|
||
// d is the normalized dot product between s and n1. Since the angle ranges
|
||
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
|
||
d := 256 * pDot(s, n1) / r2
|
||
multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
|
||
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
|
||
}
|
||
|
||
// midpoint returns the midpoint of two Points.
|
||
func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
|
||
return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
|
||
}
|
||
|
||
// angleGreaterThan45 returns whether the angle between two vectors is more
|
||
// than 45 degrees.
|
||
func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
|
||
v := pRot45CCW(v0)
|
||
return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
|
||
}
|
||
|
||
// interpolate returns the point (1-t)*a + t*b.
|
||
func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
|
||
s := 1<<12 - t
|
||
x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
|
||
y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
|
||
return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
|
||
}
|
||
|
||
// curviest2 returns the value of t for which the quadratic parametric curve
|
||
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
|
||
//
|
||
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
|
||
// |x′y″-y′x″| / (x′²+y′²)^(3/2).
|
||
//
|
||
// Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e.
|
||
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
|
||
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
|
||
//
|
||
// Thus, curvature is extreme where the denominator is extreme, i.e. where
|
||
// (x′²+y′²) is extreme. The first order condition is that
|
||
// 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
|
||
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
|
||
func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
|
||
dx := int64(b.X - a.X)
|
||
dy := int64(b.Y - a.Y)
|
||
ex := int64(c.X - 2*b.X + a.X)
|
||
ey := int64(c.Y - 2*b.Y + a.Y)
|
||
if ex == 0 && ey == 0 {
|
||
return 2048
|
||
}
|
||
return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
|
||
}
|
||
|
||
// A stroker holds state for stroking a path.
|
||
type stroker struct {
|
||
// p is the destination that records the stroked path.
|
||
p Adder
|
||
// u is the half-width of the stroke.
|
||
u fixed.Int26_6
|
||
// cr and jr specify how to end and connect path segments.
|
||
cr Capper
|
||
jr Joiner
|
||
// r is the reverse path. Stroking a path involves constructing two
|
||
// parallel paths 2*u apart. The first path is added immediately to p,
|
||
// the second path is accumulated in r and eventually added in reverse.
|
||
r Path
|
||
// a is the most recent segment point. anorm is the segment normal of
|
||
// length u at that point.
|
||
a, anorm fixed.Point26_6
|
||
}
|
||
|
||
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
|
||
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
|
||
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
|
||
// We repeatedly divide the segment at its middle until it is straight
|
||
// enough to approximate the stroke by just translating the control points.
|
||
// ds and ps are stacks of depths and points. t is the top of the stack.
|
||
const maxDepth = 5
|
||
var (
|
||
ds [maxDepth + 1]int
|
||
ps [2*maxDepth + 3]fixed.Point26_6
|
||
t int
|
||
)
|
||
// Initially the ps stack has one quadratic segment of depth zero.
|
||
ds[0] = 0
|
||
ps[2] = k.a
|
||
ps[1] = b
|
||
ps[0] = c
|
||
anorm := k.anorm
|
||
var cnorm fixed.Point26_6
|
||
|
||
for {
|
||
depth := ds[t]
|
||
a := ps[2*t+2]
|
||
b := ps[2*t+1]
|
||
c := ps[2*t+0]
|
||
ab := b.Sub(a)
|
||
bc := c.Sub(b)
|
||
abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
|
||
bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
|
||
if abIsSmall && bcIsSmall {
|
||
// Approximate the segment by a circular arc.
|
||
cnorm = pRot90CCW(pNorm(bc, k.u))
|
||
mac := midpoint(a, c)
|
||
addArc(k.p, mac, anorm, cnorm)
|
||
addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
|
||
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
|
||
// Divide the segment in two and push both halves on the stack.
|
||
mab := midpoint(a, b)
|
||
mbc := midpoint(b, c)
|
||
t++
|
||
ds[t+0] = depth + 1
|
||
ds[t-1] = depth + 1
|
||
ps[2*t+2] = a
|
||
ps[2*t+1] = mab
|
||
ps[2*t+0] = midpoint(mab, mbc)
|
||
ps[2*t-1] = mbc
|
||
continue
|
||
} else {
|
||
// Translate the control points.
|
||
bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
|
||
cnorm = pRot90CCW(pNorm(bc, k.u))
|
||
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
|
||
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
|
||
}
|
||
if t == 0 {
|
||
k.a, k.anorm = c, cnorm
|
||
return
|
||
}
|
||
t--
|
||
anorm = cnorm
|
||
}
|
||
panic("unreachable")
|
||
}
|
||
|
||
// Add1 adds a linear segment to the stroker.
|
||
func (k *stroker) Add1(b fixed.Point26_6) {
|
||
bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
|
||
if len(k.r) == 0 {
|
||
k.p.Start(k.a.Add(bnorm))
|
||
k.r.Start(k.a.Sub(bnorm))
|
||
} else {
|
||
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
|
||
}
|
||
k.p.Add1(b.Add(bnorm))
|
||
k.r.Add1(b.Sub(bnorm))
|
||
k.a, k.anorm = b, bnorm
|
||
}
|
||
|
||
// Add2 adds a quadratic segment to the stroker.
|
||
func (k *stroker) Add2(b, c fixed.Point26_6) {
|
||
ab := b.Sub(k.a)
|
||
bc := c.Sub(b)
|
||
abnorm := pRot90CCW(pNorm(ab, k.u))
|
||
if len(k.r) == 0 {
|
||
k.p.Start(k.a.Add(abnorm))
|
||
k.r.Start(k.a.Sub(abnorm))
|
||
} else {
|
||
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
|
||
}
|
||
|
||
// Approximate nearly-degenerate quadratics by linear segments.
|
||
abIsSmall := pDot(ab, ab) < epsilon
|
||
bcIsSmall := pDot(bc, bc) < epsilon
|
||
if abIsSmall || bcIsSmall {
|
||
acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
|
||
k.p.Add1(c.Add(acnorm))
|
||
k.r.Add1(c.Sub(acnorm))
|
||
k.a, k.anorm = c, acnorm
|
||
return
|
||
}
|
||
|
||
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
|
||
// If this occurs at an end point, we process the segment as a whole.
|
||
t := curviest2(k.a, b, c)
|
||
if t <= 0 || 4096 <= t {
|
||
k.addNonCurvy2(b, c)
|
||
return
|
||
}
|
||
|
||
// Otherwise, we perform a de Casteljau decomposition at the point of
|
||
// maximum curvature and process the two straighter parts.
|
||
mab := interpolate(k.a, b, t)
|
||
mbc := interpolate(b, c, t)
|
||
mabc := interpolate(mab, mbc, t)
|
||
|
||
// If the vectors ab and bc are close to being in opposite directions,
|
||
// then the decomposition can become unstable, so we approximate the
|
||
// quadratic segment by two linear segments joined by an arc.
|
||
bcnorm := pRot90CCW(pNorm(bc, k.u))
|
||
if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
|
||
pArc := pDot(abnorm, bc) < 0
|
||
|
||
k.p.Add1(mabc.Add(abnorm))
|
||
if pArc {
|
||
z := pRot90CW(abnorm)
|
||
addArc(k.p, mabc, abnorm, z)
|
||
addArc(k.p, mabc, z, bcnorm)
|
||
}
|
||
k.p.Add1(mabc.Add(bcnorm))
|
||
k.p.Add1(c.Add(bcnorm))
|
||
|
||
k.r.Add1(mabc.Sub(abnorm))
|
||
if !pArc {
|
||
z := pRot90CW(abnorm)
|
||
addArc(&k.r, mabc, pNeg(abnorm), z)
|
||
addArc(&k.r, mabc, z, pNeg(bcnorm))
|
||
}
|
||
k.r.Add1(mabc.Sub(bcnorm))
|
||
k.r.Add1(c.Sub(bcnorm))
|
||
|
||
k.a, k.anorm = c, bcnorm
|
||
return
|
||
}
|
||
|
||
// Process the decomposed parts.
|
||
k.addNonCurvy2(mab, mabc)
|
||
k.addNonCurvy2(mbc, c)
|
||
}
|
||
|
||
// Add3 adds a cubic segment to the stroker.
|
||
func (k *stroker) Add3(b, c, d fixed.Point26_6) {
|
||
panic("freetype/raster: stroke unimplemented for cubic segments")
|
||
}
|
||
|
||
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
|
||
func (k *stroker) stroke(q Path) {
|
||
// Stroking is implemented by deriving two paths each k.u apart from q.
|
||
// The left-hand-side path is added immediately to k.p; the right-hand-side
|
||
// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
|
||
// we add the RHS in reverse order.
|
||
k.r = make(Path, 0, len(q))
|
||
k.a = fixed.Point26_6{q[1], q[2]}
|
||
for i := 4; i < len(q); {
|
||
switch q[i] {
|
||
case 1:
|
||
k.Add1(
|
||
fixed.Point26_6{q[i+1], q[i+2]},
|
||
)
|
||
i += 4
|
||
case 2:
|
||
k.Add2(
|
||
fixed.Point26_6{q[i+1], q[i+2]},
|
||
fixed.Point26_6{q[i+3], q[i+4]},
|
||
)
|
||
i += 6
|
||
case 3:
|
||
k.Add3(
|
||
fixed.Point26_6{q[i+1], q[i+2]},
|
||
fixed.Point26_6{q[i+3], q[i+4]},
|
||
fixed.Point26_6{q[i+5], q[i+6]},
|
||
)
|
||
i += 8
|
||
default:
|
||
panic("freetype/raster: bad path")
|
||
}
|
||
}
|
||
if len(k.r) == 0 {
|
||
return
|
||
}
|
||
// TODO(nigeltao): if q is a closed curve then we should join the first and
|
||
// last segments instead of capping them.
|
||
k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
|
||
addPathReversed(k.p, k.r)
|
||
pivot := q.firstPoint()
|
||
k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
|
||
}
|
||
|
||
// Stroke adds q stroked with the given width to p. The result is typically
|
||
// self-intersecting and should be rasterized with UseNonZeroWinding.
|
||
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
|
||
func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
|
||
if len(q) == 0 {
|
||
return
|
||
}
|
||
if cr == nil {
|
||
cr = RoundCapper
|
||
}
|
||
if jr == nil {
|
||
jr = RoundJoiner
|
||
}
|
||
if q[0] != 0 {
|
||
panic("freetype/raster: bad path")
|
||
}
|
||
s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
|
||
i := 0
|
||
for j := 4; j < len(q); {
|
||
switch q[j] {
|
||
case 0:
|
||
s.stroke(q[i:j])
|
||
i, j = j, j+4
|
||
case 1:
|
||
j += 4
|
||
case 2:
|
||
j += 6
|
||
case 3:
|
||
j += 8
|
||
default:
|
||
panic("freetype/raster: bad path")
|
||
}
|
||
}
|
||
s.stroke(q[i:])
|
||
}
|