зеркало из https://github.com/golang/tools.git
620 строки
13 KiB
Go
620 строки
13 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
package main // import "golang.org/x/tools/cmd/digraph"
|
|
|
|
// TODO(adonovan):
|
|
// - support input files other than stdin
|
|
// - support alternative formats (AT&T GraphViz, CSV, etc),
|
|
// a comment syntax, etc.
|
|
// - allow queries to nest, like Blaze query language.
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
_ "embed"
|
|
"errors"
|
|
"flag"
|
|
"fmt"
|
|
"io"
|
|
"os"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
func usage() {
|
|
// Extract the content of the /* ... */ comment in doc.go.
|
|
_, after, _ := strings.Cut(doc, "/*")
|
|
doc, _, _ := strings.Cut(after, "*/")
|
|
io.WriteString(flag.CommandLine.Output(), doc)
|
|
flag.PrintDefaults()
|
|
|
|
os.Exit(2)
|
|
}
|
|
|
|
//go:embed doc.go
|
|
var doc string
|
|
|
|
func main() {
|
|
flag.Usage = usage
|
|
flag.Parse()
|
|
|
|
args := flag.Args()
|
|
if len(args) == 0 {
|
|
usage()
|
|
}
|
|
|
|
if err := digraph(args[0], args[1:]); err != nil {
|
|
fmt.Fprintf(os.Stderr, "digraph: %s\n", err)
|
|
os.Exit(1)
|
|
}
|
|
}
|
|
|
|
type nodelist []string
|
|
|
|
func (l nodelist) println(sep string) {
|
|
for i, node := range l {
|
|
if i > 0 {
|
|
fmt.Fprint(stdout, sep)
|
|
}
|
|
fmt.Fprint(stdout, node)
|
|
}
|
|
fmt.Fprintln(stdout)
|
|
}
|
|
|
|
type nodeset map[string]bool
|
|
|
|
func (s nodeset) sort() nodelist {
|
|
nodes := make(nodelist, len(s))
|
|
var i int
|
|
for node := range s {
|
|
nodes[i] = node
|
|
i++
|
|
}
|
|
sort.Strings(nodes)
|
|
return nodes
|
|
}
|
|
|
|
func (s nodeset) addAll(x nodeset) {
|
|
for node := range x {
|
|
s[node] = true
|
|
}
|
|
}
|
|
|
|
// A graph maps nodes to the non-nil set of their immediate successors.
|
|
type graph map[string]nodeset
|
|
|
|
func (g graph) addNode(node string) nodeset {
|
|
edges := g[node]
|
|
if edges == nil {
|
|
edges = make(nodeset)
|
|
g[node] = edges
|
|
}
|
|
return edges
|
|
}
|
|
|
|
func (g graph) addEdges(from string, to ...string) {
|
|
edges := g.addNode(from)
|
|
for _, to := range to {
|
|
g.addNode(to)
|
|
edges[to] = true
|
|
}
|
|
}
|
|
|
|
func (g graph) nodelist() nodelist {
|
|
nodes := make(nodeset)
|
|
for node := range g {
|
|
nodes[node] = true
|
|
}
|
|
return nodes.sort()
|
|
}
|
|
|
|
func (g graph) reachableFrom(roots nodeset) nodeset {
|
|
seen := make(nodeset)
|
|
var visit func(node string)
|
|
visit = func(node string) {
|
|
if !seen[node] {
|
|
seen[node] = true
|
|
for e := range g[node] {
|
|
visit(e)
|
|
}
|
|
}
|
|
}
|
|
for root := range roots {
|
|
visit(root)
|
|
}
|
|
return seen
|
|
}
|
|
|
|
func (g graph) transpose() graph {
|
|
rev := make(graph)
|
|
for node, edges := range g {
|
|
rev.addNode(node)
|
|
for succ := range edges {
|
|
rev.addEdges(succ, node)
|
|
}
|
|
}
|
|
return rev
|
|
}
|
|
|
|
func (g graph) sccs() []nodeset {
|
|
// Kosaraju's algorithm---Tarjan is overkill here.
|
|
|
|
// Forward pass.
|
|
S := make(nodelist, 0, len(g)) // postorder stack
|
|
seen := make(nodeset)
|
|
var visit func(node string)
|
|
visit = func(node string) {
|
|
if !seen[node] {
|
|
seen[node] = true
|
|
for e := range g[node] {
|
|
visit(e)
|
|
}
|
|
S = append(S, node)
|
|
}
|
|
}
|
|
for node := range g {
|
|
visit(node)
|
|
}
|
|
|
|
// Reverse pass.
|
|
rev := g.transpose()
|
|
var scc nodeset
|
|
seen = make(nodeset)
|
|
var rvisit func(node string)
|
|
rvisit = func(node string) {
|
|
if !seen[node] {
|
|
seen[node] = true
|
|
scc[node] = true
|
|
for e := range rev[node] {
|
|
rvisit(e)
|
|
}
|
|
}
|
|
}
|
|
var sccs []nodeset
|
|
for len(S) > 0 {
|
|
top := S[len(S)-1]
|
|
S = S[:len(S)-1] // pop
|
|
if !seen[top] {
|
|
scc = make(nodeset)
|
|
rvisit(top)
|
|
if len(scc) == 1 && !g[top][top] {
|
|
continue
|
|
}
|
|
sccs = append(sccs, scc)
|
|
}
|
|
}
|
|
return sccs
|
|
}
|
|
|
|
func (g graph) allpaths(from, to string) error {
|
|
// Mark all nodes to "to".
|
|
seen := make(nodeset) // value of seen[x] indicates whether x is on some path to "to"
|
|
var visit func(node string) bool
|
|
visit = func(node string) bool {
|
|
reachesTo, ok := seen[node]
|
|
if !ok {
|
|
reachesTo = node == to
|
|
seen[node] = reachesTo
|
|
for e := range g[node] {
|
|
if visit(e) {
|
|
reachesTo = true
|
|
}
|
|
}
|
|
if reachesTo && node != to {
|
|
seen[node] = true
|
|
}
|
|
}
|
|
return reachesTo
|
|
}
|
|
visit(from)
|
|
|
|
// For each marked node, collect its marked successors.
|
|
var edges []string
|
|
for n := range seen {
|
|
for succ := range g[n] {
|
|
if seen[succ] {
|
|
edges = append(edges, n+" "+succ)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort (so that this method is deterministic) and print edges.
|
|
sort.Strings(edges)
|
|
for _, e := range edges {
|
|
fmt.Fprintln(stdout, e)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (g graph) somepath(from, to string) error {
|
|
// Search breadth-first so that we return a minimal path.
|
|
|
|
// A path is a linked list whose head is a candidate "to" node
|
|
// and whose tail is the path ending in the "from" node.
|
|
type path struct {
|
|
node string
|
|
tail *path
|
|
}
|
|
|
|
seen := nodeset{from: true}
|
|
|
|
var queue []*path
|
|
queue = append(queue, &path{node: from, tail: nil})
|
|
for len(queue) > 0 {
|
|
p := queue[0]
|
|
queue = queue[1:]
|
|
|
|
if p.node == to {
|
|
// Found a path. Print, tail first.
|
|
var print func(p *path)
|
|
print = func(p *path) {
|
|
if p.tail != nil {
|
|
print(p.tail)
|
|
fmt.Fprintln(stdout, p.tail.node+" "+p.node)
|
|
}
|
|
}
|
|
print(p)
|
|
return nil
|
|
}
|
|
|
|
for succ := range g[p.node] {
|
|
if !seen[succ] {
|
|
seen[succ] = true
|
|
queue = append(queue, &path{node: succ, tail: p})
|
|
}
|
|
}
|
|
}
|
|
return fmt.Errorf("no path from %q to %q", from, to)
|
|
}
|
|
|
|
func (g graph) toDot(w *bytes.Buffer) {
|
|
fmt.Fprintln(w, "digraph {")
|
|
for _, src := range g.nodelist() {
|
|
for _, dst := range g[src].sort() {
|
|
// Dot's quoting rules appear to align with Go's for escString,
|
|
// which is the syntax of node IDs. Labels require significantly
|
|
// more quoting, but that appears not to be necessary if the node ID
|
|
// is implicitly used as the label.
|
|
fmt.Fprintf(w, "\t%q -> %q;\n", src, dst)
|
|
}
|
|
}
|
|
fmt.Fprintln(w, "}")
|
|
}
|
|
|
|
func parse(rd io.Reader) (graph, error) {
|
|
g := make(graph)
|
|
|
|
var linenum int
|
|
// We avoid bufio.Scanner as it imposes a (configurable) limit
|
|
// on line length, whereas Reader.ReadString does not.
|
|
in := bufio.NewReader(rd)
|
|
for {
|
|
linenum++
|
|
line, err := in.ReadString('\n')
|
|
eof := false
|
|
if err == io.EOF {
|
|
eof = true
|
|
} else if err != nil {
|
|
return nil, err
|
|
}
|
|
// Split into words, honoring double-quotes per Go spec.
|
|
words, err := split(line)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("at line %d: %v", linenum, err)
|
|
}
|
|
if len(words) > 0 {
|
|
g.addEdges(words[0], words[1:]...)
|
|
}
|
|
if eof {
|
|
break
|
|
}
|
|
}
|
|
return g, nil
|
|
}
|
|
|
|
// Overridable for redirection.
|
|
var stdin io.Reader = os.Stdin
|
|
var stdout io.Writer = os.Stdout
|
|
|
|
func digraph(cmd string, args []string) error {
|
|
// Parse the input graph.
|
|
g, err := parse(stdin)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Parse the command line.
|
|
switch cmd {
|
|
case "nodes":
|
|
if len(args) != 0 {
|
|
return fmt.Errorf("usage: digraph nodes")
|
|
}
|
|
g.nodelist().println("\n")
|
|
|
|
case "degree":
|
|
if len(args) != 0 {
|
|
return fmt.Errorf("usage: digraph degree")
|
|
}
|
|
nodes := make(nodeset)
|
|
for node := range g {
|
|
nodes[node] = true
|
|
}
|
|
rev := g.transpose()
|
|
for _, node := range nodes.sort() {
|
|
fmt.Fprintf(stdout, "%d\t%d\t%s\n", len(rev[node]), len(g[node]), node)
|
|
}
|
|
|
|
case "transpose":
|
|
if len(args) != 0 {
|
|
return fmt.Errorf("usage: digraph transpose")
|
|
}
|
|
var revEdges []string
|
|
for node, succs := range g.transpose() {
|
|
for succ := range succs {
|
|
revEdges = append(revEdges, fmt.Sprintf("%s %s", node, succ))
|
|
}
|
|
}
|
|
sort.Strings(revEdges) // make output deterministic
|
|
for _, e := range revEdges {
|
|
fmt.Fprintln(stdout, e)
|
|
}
|
|
|
|
case "succs", "preds":
|
|
if len(args) == 0 {
|
|
return fmt.Errorf("usage: digraph %s <node> ... ", cmd)
|
|
}
|
|
g := g
|
|
if cmd == "preds" {
|
|
g = g.transpose()
|
|
}
|
|
result := make(nodeset)
|
|
for _, root := range args {
|
|
edges := g[root]
|
|
if edges == nil {
|
|
return fmt.Errorf("no such node %q", root)
|
|
}
|
|
result.addAll(edges)
|
|
}
|
|
result.sort().println("\n")
|
|
|
|
case "forward", "reverse":
|
|
if len(args) == 0 {
|
|
return fmt.Errorf("usage: digraph %s <node> ... ", cmd)
|
|
}
|
|
roots := make(nodeset)
|
|
for _, root := range args {
|
|
if g[root] == nil {
|
|
return fmt.Errorf("no such node %q", root)
|
|
}
|
|
roots[root] = true
|
|
}
|
|
g := g
|
|
if cmd == "reverse" {
|
|
g = g.transpose()
|
|
}
|
|
g.reachableFrom(roots).sort().println("\n")
|
|
|
|
case "somepath":
|
|
if len(args) != 2 {
|
|
return fmt.Errorf("usage: digraph somepath <from> <to>")
|
|
}
|
|
from, to := args[0], args[1]
|
|
if g[from] == nil {
|
|
return fmt.Errorf("no such 'from' node %q", from)
|
|
}
|
|
if g[to] == nil {
|
|
return fmt.Errorf("no such 'to' node %q", to)
|
|
}
|
|
if err := g.somepath(from, to); err != nil {
|
|
return err
|
|
}
|
|
|
|
case "allpaths":
|
|
if len(args) != 2 {
|
|
return fmt.Errorf("usage: digraph allpaths <from> <to>")
|
|
}
|
|
from, to := args[0], args[1]
|
|
if g[from] == nil {
|
|
return fmt.Errorf("no such 'from' node %q", from)
|
|
}
|
|
if g[to] == nil {
|
|
return fmt.Errorf("no such 'to' node %q", to)
|
|
}
|
|
if err := g.allpaths(from, to); err != nil {
|
|
return err
|
|
}
|
|
|
|
case "sccs":
|
|
if len(args) != 0 {
|
|
return fmt.Errorf("usage: digraph sccs")
|
|
}
|
|
buf := new(bytes.Buffer)
|
|
oldStdout := stdout
|
|
stdout = buf
|
|
for _, scc := range g.sccs() {
|
|
scc.sort().println(" ")
|
|
}
|
|
lines := strings.SplitAfter(buf.String(), "\n")
|
|
sort.Strings(lines)
|
|
stdout = oldStdout
|
|
io.WriteString(stdout, strings.Join(lines, ""))
|
|
|
|
case "scc":
|
|
if len(args) != 1 {
|
|
return fmt.Errorf("usage: digraph scc <node>")
|
|
}
|
|
node := args[0]
|
|
if g[node] == nil {
|
|
return fmt.Errorf("no such node %q", node)
|
|
}
|
|
for _, scc := range g.sccs() {
|
|
if scc[node] {
|
|
scc.sort().println("\n")
|
|
break
|
|
}
|
|
}
|
|
|
|
case "focus":
|
|
if len(args) != 1 {
|
|
return fmt.Errorf("usage: digraph focus <node>")
|
|
}
|
|
node := args[0]
|
|
if g[node] == nil {
|
|
return fmt.Errorf("no such node %q", node)
|
|
}
|
|
|
|
edges := make(map[string]struct{})
|
|
for from := range g.reachableFrom(nodeset{node: true}) {
|
|
for to := range g[from] {
|
|
edges[fmt.Sprintf("%s %s", from, to)] = struct{}{}
|
|
}
|
|
}
|
|
|
|
gtrans := g.transpose()
|
|
for from := range gtrans.reachableFrom(nodeset{node: true}) {
|
|
for to := range gtrans[from] {
|
|
edges[fmt.Sprintf("%s %s", to, from)] = struct{}{}
|
|
}
|
|
}
|
|
|
|
edgesSorted := make([]string, 0, len(edges))
|
|
for e := range edges {
|
|
edgesSorted = append(edgesSorted, e)
|
|
}
|
|
sort.Strings(edgesSorted)
|
|
fmt.Fprintln(stdout, strings.Join(edgesSorted, "\n"))
|
|
|
|
case "to":
|
|
if len(args) != 1 || args[0] != "dot" {
|
|
return fmt.Errorf("usage: digraph to dot")
|
|
}
|
|
var b bytes.Buffer
|
|
g.toDot(&b)
|
|
stdout.Write(b.Bytes())
|
|
|
|
default:
|
|
return fmt.Errorf("no such command %q", cmd)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// -- Utilities --------------------------------------------------------
|
|
|
|
// split splits a line into words, which are generally separated by
|
|
// spaces, but Go-style double-quoted string literals are also supported.
|
|
// (This approximates the behaviour of the Bourne shell.)
|
|
//
|
|
// `one "two three"` -> ["one" "two three"]
|
|
// `a"\n"b` -> ["a\nb"]
|
|
func split(line string) ([]string, error) {
|
|
var (
|
|
words []string
|
|
inWord bool
|
|
current bytes.Buffer
|
|
)
|
|
|
|
for len(line) > 0 {
|
|
r, size := utf8.DecodeRuneInString(line)
|
|
if unicode.IsSpace(r) {
|
|
if inWord {
|
|
words = append(words, current.String())
|
|
current.Reset()
|
|
inWord = false
|
|
}
|
|
} else if r == '"' {
|
|
var ok bool
|
|
size, ok = quotedLength(line)
|
|
if !ok {
|
|
return nil, errors.New("invalid quotation")
|
|
}
|
|
s, err := strconv.Unquote(line[:size])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
current.WriteString(s)
|
|
inWord = true
|
|
} else {
|
|
current.WriteRune(r)
|
|
inWord = true
|
|
}
|
|
line = line[size:]
|
|
}
|
|
if inWord {
|
|
words = append(words, current.String())
|
|
}
|
|
return words, nil
|
|
}
|
|
|
|
// quotedLength returns the length in bytes of the prefix of input that
|
|
// contain a possibly-valid double-quoted Go string literal.
|
|
//
|
|
// On success, n is at least two (""); input[:n] may be passed to
|
|
// strconv.Unquote to interpret its value, and input[n:] contains the
|
|
// rest of the input.
|
|
//
|
|
// On failure, quotedLength returns false, and the entire input can be
|
|
// passed to strconv.Unquote if an informative error message is desired.
|
|
//
|
|
// quotedLength does not and need not detect all errors, such as
|
|
// invalid hex or octal escape sequences, since it assumes
|
|
// strconv.Unquote will be applied to the prefix. It guarantees only
|
|
// that if there is a prefix of input containing a valid string literal,
|
|
// its length is returned.
|
|
//
|
|
// TODO(adonovan): move this into a strconv-like utility package.
|
|
func quotedLength(input string) (n int, ok bool) {
|
|
var offset int
|
|
|
|
// next returns the rune at offset, or -1 on EOF.
|
|
// offset advances to just after that rune.
|
|
next := func() rune {
|
|
if offset < len(input) {
|
|
r, size := utf8.DecodeRuneInString(input[offset:])
|
|
offset += size
|
|
return r
|
|
}
|
|
return -1
|
|
}
|
|
|
|
if next() != '"' {
|
|
return // error: not a quotation
|
|
}
|
|
|
|
for {
|
|
r := next()
|
|
if r == '\n' || r < 0 {
|
|
return // error: string literal not terminated
|
|
}
|
|
if r == '"' {
|
|
return offset, true // success
|
|
}
|
|
if r == '\\' {
|
|
var skip int
|
|
switch next() {
|
|
case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', '"':
|
|
skip = 0
|
|
case '0', '1', '2', '3', '4', '5', '6', '7':
|
|
skip = 2
|
|
case 'x':
|
|
skip = 2
|
|
case 'u':
|
|
skip = 4
|
|
case 'U':
|
|
skip = 8
|
|
default:
|
|
return // error: invalid escape
|
|
}
|
|
|
|
for i := 0; i < skip; i++ {
|
|
next()
|
|
}
|
|
}
|
|
}
|
|
}
|