|
|
|
@ -29,13 +29,20 @@ git submodule update
|
|
|
|
|
|[Computer Vision](https://github.com/microsoft/computervision)| Accelerate the development of computer vision applications with examples and best practice guidelines for building computer vision systems
|
|
|
|
|
|[Natural Language Processing](https://github.com/microsoft/nlp)|State-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language.|
|
|
|
|
|
|[Recommenders](https://github.com/microsoft/recommenders)| Examples and best practices for building recommendation systems, provided as Jupyter notebooks.|
|
|
|
|
|
|[MLOps](https://github.com/microsoft/MLOps)| MLOps empowers data scientists and app developers to help bring ML models to production. |
|
|
|
|
|
|
|
|
|
|
# Reference Architectures <a name="Reference Architectures"></a>
|
|
|
|
|
| Title | Language | Environment | Design | Description | Status |
|
|
|
|
|
|----------------------------------------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
|
|
| [Deploy Classic ML Model on Kubernetes](https://github.com/dciborow/AIArchitecturesAndPractices/tree/master/architectures/Python-ML-RealTimeServing) | Python | CPU | Real-Time Scoring| Train LightGBM model locally using Azure ML, deploy on Kubernetes or IoT Edge for _real-time_ scoring | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-ML-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=21&branchName=master)
|
|
|
|
|
| [Deploy Deep Learning Model on Kubernetes](https://github.com/dciborow/AIArchitecturesAndPractices/tree/master/architectures/Python-Keras-RealTimeServing) | Python | Keras | Real-Time Scoring| Deploy image classification model on Kubernetes or IoT Edge for _real-time_ scoring using Azure ML | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-Keras-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=17&branchName=master)
|
|
|
|
|
|
|
|
|
|
| [Deploy Classic ML Model on Kubernetes](https://github.com/microsoft/MLAKSDeployAML) | Python | CPU | Real-Time Scoring| Train LightGBM model locally using Azure ML, deploy on Kubernetes or IoT Edge for _real-time_ scoring | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-ML-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=21&branchName=master)
|
|
|
|
|
| [Deploy Deep Learning Model on Kubernetes](https://github.com/microsoft/AKSDeploymentTutorialAML) | Python | Keras | Real-Time Scoring| Deploy image classification model on Kubernetes or IoT Edge for _real-time_ scoring using Azure ML | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-Keras-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=17&branchName=master)
|
|
|
|
|
| [Hyperparameter Tuning of Classical ML Models](https://github.com/Microsoft/MLHyperparameterTuning) | Python | CPU | Training | Train LightGBM model locally and run Hyperparameter tuning using Hyperdrive in Azure ML | ![](https://dev.azure.com/customai/MLHyperparameterTuningPipeline/_apis/build/status/Microsoft.MLHyperparameterTuning?branchName=master) |
|
|
|
|
|
| [Deploy Deep Learning Model on Pipelines](https://github.com/Azure/Batch-Scoring-Deep-Learning-Models-With-AML) | Python | GPU | Scoring | Deploy PyTorch style transfer model for _batch_ scoring using Azure ML Pipelines | [![Build Status](https://dev.azure.com/customai/BatchScoringDeepLearningModelsWithAMLPipeline/_apis/build/status/Azure.Batch-Scoring-Deep-Learning-Models-With-AML?branchName=master)](https://dev.azure.com/customai/BatchScoringDeepLearningModelsWithAMLPipeline/_build/latest?definitionId=9&branchName=master) |
|
|
|
|
|
| [Deploy Classic ML Model on Pipelines](https://github.com/Microsoft/AMLBatchScoringPipeline) | Python | CPU | Scoring | Deploy one-class SVM for _batch_ scoring anomaly detection using Azure ML Pipelines | ![](https://dev.azure.com/customai/AMLBatchScoringPipeline/_apis/build/status/Microsoft.AMLBatchScoringPipeline?branchName=master) |
|
|
|
|
|
| [Deploy R ML Model on Kubernetes](https://github.com/Azure/RealtimeRDeployment) | R | CPU | Real-Time Serving | Deploy ML model for _real-time_ scoring on Kubernetes | |
|
|
|
|
|
| [Deploy R ML Model on Batch](https://github.com/Azure/RBatchScoring) | R | CPU | Scoring | Deploy forecasting model for _batch_ scoring using Azure Batch and doAzureParallel | |
|
|
|
|
|
| [Deploy Spark ML Model on Databricks](https://github.com/Azure/BatchSparkScoringPredictiveMaintenance) | Python | Spark | Scoring | Deploy a classification model for _batch_ scoring using Databricks | |
|
|
|
|
|
| [Train Distributed Deep Leaning Model](https://github.com/Azure/DistributedDeepLearning/) | Python | GPU | Training | Distributed training of ResNet50 model using Batch AI | |
|
|
|
|
|
|
|
|
|
|
## Recommend a Scenario
|
|
|
|
|
If there is a particular scenario you are interested in seeing a tutorial for please fill in a [scenario suggestion](https://github.com/Microsoft/AIReferenceArchitectures/issues/new?assignees=&labels=&template=scenario_request.md&title=%5BSCENARIO%5D)
|
|
|
|
|