This commit is contained in:
Dan Ciborowski 2019-11-12 10:51:07 -05:00
Родитель e33e108885 8914aa1591
Коммит 80843fb478
8 изменённых файлов: 31 добавлений и 4 удалений

Просмотреть файл

@ -60,7 +60,7 @@ steps:
scriptLocation: inlineScript
inlineScript: |
source activate ${{parameters.conda}}
pip install azure azure-cli azure-keyvault python-dotenv
pip install -U azure azure-cli==2.0.75 azure-keyvault==1.1.0 python-dotenv
python ${{parameters.python_secret_root}}.ci/scripts/set_secret.py -n "${{parameters.ENVIRONMENT_PREFIX}}-key"

15
.gitmodules поставляемый
Просмотреть файл

@ -70,3 +70,18 @@
[submodule "ai100-samples/cognitive-services-samples"]
path = ai100-samples/cognitive-services-samples
url = https://github.com/Azure-Samples/cognitive-services-python-sdk-samples
[submodule "ai200-architectures/DeployRMLModelBatch"]
path = ai200-architectures/DeployRMLModelBatch
url = https://github.com/Azure/RBatchScoring
[submodule "ai200-architectures/RealtimeRDeployment"]
path = ai200-architectures/DeployRMLModelKubernetes
url = https://github.com/Azure/RealtimeRDeployment
[submodule "ai200-architectures/BatchSparkScoringPredictiveMaintenance"]
path = ai200-architectures/DeploySparkMLModelDatabricks
url = https://github.com/Azure/BatchSparkScoringPredictiveMaintenance
[submodule "ai200-architectures/TrainDistributedDeepModel"]
path = ai200-architectures/TrainDistributedDeepModel
url = https://github.com/Azure/DistributedDeepLearning
[submodule "ai200-architectures/TrainMLModelHyperdrive"]
path = ai200-architectures/TrainMLModelHyperdrive
url = https://github.com/microsoft/MLHyperparameterTuning

Просмотреть файл

@ -29,13 +29,20 @@ git submodule update
|[Computer Vision](https://github.com/microsoft/computervision)| Accelerate the development of computer vision applications with examples and best practice guidelines for building computer vision systems
|[Natural Language Processing](https://github.com/microsoft/nlp)|State-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language.|
|[Recommenders](https://github.com/microsoft/recommenders)| Examples and best practices for building recommendation systems, provided as Jupyter notebooks.|
|[MLOps](https://github.com/microsoft/MLOps)| MLOps empowers data scientists and app developers to help bring ML models to production. |
# Reference Architectures <a name="Reference Architectures"></a>
| Title | Language | Environment | Design | Description | Status |
|----------------------------------------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Deploy Classic ML Model on Kubernetes](https://github.com/dciborow/AIArchitecturesAndPractices/tree/master/architectures/Python-ML-RealTimeServing) | Python | CPU | Real-Time Scoring| Train LightGBM model locally using Azure ML, deploy on Kubernetes or IoT Edge for _real-time_ scoring | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-ML-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=21&branchName=master)
| [Deploy Deep Learning Model on Kubernetes](https://github.com/dciborow/AIArchitecturesAndPractices/tree/master/architectures/Python-Keras-RealTimeServing) | Python | Keras | Real-Time Scoring| Deploy image classification model on Kubernetes or IoT Edge for _real-time_ scoring using Azure ML | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-Keras-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=17&branchName=master)
| [Deploy Classic ML Model on Kubernetes](https://github.com/microsoft/MLAKSDeployAML) | Python | CPU | Real-Time Scoring| Train LightGBM model locally using Azure ML, deploy on Kubernetes or IoT Edge for _real-time_ scoring | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-ML-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=21&branchName=master)
| [Deploy Deep Learning Model on Kubernetes](https://github.com/microsoft/AKSDeploymentTutorialAML) | Python | Keras | Real-Time Scoring| Deploy image classification model on Kubernetes or IoT Edge for _real-time_ scoring using Azure ML | [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AI%20CAT/Python-Keras-RealTimeServing?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=17&branchName=master)
| [Hyperparameter Tuning of Classical ML Models](https://github.com/Microsoft/MLHyperparameterTuning) | Python | CPU | Training | Train LightGBM model locally and run Hyperparameter tuning using Hyperdrive in Azure ML | ![](https://dev.azure.com/customai/MLHyperparameterTuningPipeline/_apis/build/status/Microsoft.MLHyperparameterTuning?branchName=master) |
| [Deploy Deep Learning Model on Pipelines](https://github.com/Azure/Batch-Scoring-Deep-Learning-Models-With-AML) | Python | GPU | Scoring | Deploy PyTorch style transfer model for _batch_ scoring using Azure ML Pipelines | [![Build Status](https://dev.azure.com/customai/BatchScoringDeepLearningModelsWithAMLPipeline/_apis/build/status/Azure.Batch-Scoring-Deep-Learning-Models-With-AML?branchName=master)](https://dev.azure.com/customai/BatchScoringDeepLearningModelsWithAMLPipeline/_build/latest?definitionId=9&branchName=master) |
| [Deploy Classic ML Model on Pipelines](https://github.com/Microsoft/AMLBatchScoringPipeline) | Python | CPU | Scoring | Deploy one-class SVM for _batch_ scoring anomaly detection using Azure ML Pipelines | ![](https://dev.azure.com/customai/AMLBatchScoringPipeline/_apis/build/status/Microsoft.AMLBatchScoringPipeline?branchName=master) |
| [Deploy R ML Model on Kubernetes](https://github.com/Azure/RealtimeRDeployment) | R | CPU | Real-Time Serving | Deploy ML model for _real-time_ scoring on Kubernetes | |
| [Deploy R ML Model on Batch](https://github.com/Azure/RBatchScoring) | R | CPU | Scoring | Deploy forecasting model for _batch_ scoring using Azure Batch and doAzureParallel | |
| [Deploy Spark ML Model on Databricks](https://github.com/Azure/BatchSparkScoringPredictiveMaintenance) | Python | Spark | Scoring | Deploy a classification model for _batch_ scoring using Databricks | |
| [Train Distributed Deep Leaning Model](https://github.com/Azure/DistributedDeepLearning/) | Python | GPU | Training | Distributed training of ResNet50 model using Batch AI | |
## Recommend a Scenario
If there is a particular scenario you are interested in seeing a tutorial for please fill in a [scenario suggestion](https://github.com/Microsoft/AIReferenceArchitectures/issues/new?assignees=&labels=&template=scenario_request.md&title=%5BSCENARIO%5D)

@ -0,0 +1 @@
Subproject commit b4ab51168caaf67af5a563123606eb3a37855fe7

@ -0,0 +1 @@
Subproject commit 7c83efc858243b997297fd660692645602584a8b

@ -0,0 +1 @@
Subproject commit d8858be5e9fc28a475f7ea300d14f75a86f39df4

@ -0,0 +1 @@
Subproject commit d037c568bbd4394fbf2f668937d32122ae5a1a37

@ -0,0 +1 @@
Subproject commit 38026e460310a1f972f2d06e3edeb3d627585bed