changes to keras readme and 04_DeployOnAKS

This commit is contained in:
Fidan Boylu Uz 2018-04-10 17:39:59 +00:00
Родитель 0c17eca155
Коммит e94a18decd
2 изменённых файлов: 19 добавлений и 8 удалений

Просмотреть файл

@ -889,6 +889,13 @@
"!kubectl get service azure-dl"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we will [test our web application deployed on AKS](05_TestWebApp.ipynb). Once, we are done with all the notebooks of the tutorial, below instructions can be used to delete the cluster and free resources."
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -954,13 +961,6 @@
"source": [
"!az group delete --name $resource_group -y"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we will [test our web application deployed on AKS](05_TestWebApp.ipynb)."
]
}
],
"metadata": {

Просмотреть файл

@ -1,2 +1,13 @@
# Deploy ResNet 152 model on GPU enaled Kubernetes cluster using Keras with Tensorflow
In this folder are the tutorials for deploying a Keras model (with Tensorflow backend) on a Kubernetes cluster.
The tutorial is made up of seven notebooks:
* [Model development](00_DevelopModel.ipynb) where we load the pretrained model and test it by using it to score images
* [Developing the interface](01_DevelopModelDriver.ipynb) our Flask app will use to load and call the model
* [Building the Docker Image](02_BuildImage.ipynb) with our Flask REST API and model
* [Testing our Docker image](03_TestLocally.ipynb) before deployment
* [Creating our Kubernetes cluster](04_DeployOnAKS.ipynb) and deploying our application to it
* [Testing the deployed model](05_TestWebApp.ipynb)
* [Testing the throughput](06_SpeedTestWebApp.ipynb) of our model