1
0
Форкнуть 0
This commit is contained in:
Matt Savarino 2021-07-20 12:24:44 -07:00
Родитель 2bcc1e851a
Коммит e493818b8d
3 изменённых файлов: 49 добавлений и 36 удалений

Просмотреть файл

@ -16,6 +16,16 @@
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (c) Microsoft Corporation.\n",
"# Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -27,8 +37,7 @@
"2. Load the datasets\n",
"3. Convert string to list and remove punctuations from text\n",
"4. Store datasets\n",
"\n",
""
"\n"
]
},
{
@ -49,8 +58,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define variables (input folder, datasets, ....)\n",
""
"### Define variables (input folder, datasets, ....)\n"
]
},
{
@ -72,8 +80,7 @@
"\n",
"# Azure Storage path\n",
"adls_path = \"abfss://%s@%s.dfs.core.windows.net/MicrosoftNewsDataset/\" % (container, account_name)\n",
"\n",
""
"\n"
]
},
{
@ -253,16 +260,14 @@
" df_preprocess = df_preprocess.dropna()\n",
"\n",
" # Keep results in dictionary\n",
" results[key] = df_preprocess\n",
""
" results[key] = df_preprocess\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Store datasets\n",
""
"## Store datasets\n"
]
},
{
@ -274,8 +279,7 @@
"# Write dataset to spark table\n",
"results['train'].write.mode('overwrite').saveAsTable('default.ActivityTrain')\n",
"results['test'].write.mode('overwrite').saveAsTable('default.ActivityTest')\n",
"results['dev'].write.mode('overwrite').saveAsTable('default.ActivityDev')\n",
""
"results['dev'].write.mode('overwrite').saveAsTable('default.ActivityDev')\n"
]
}
]

Просмотреть файл

@ -16,6 +16,16 @@
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (c) Microsoft Corporation.\n",
"# Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -29,8 +39,7 @@
"4. Train model\n",
"5. Test model\n",
"6. Store model and transformer\n",
"\n",
""
"\n"
]
},
{
@ -58,8 +67,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define variables (input folder, datasets, ....)\n",
""
"## Define variables (input folder, datasets, ....)\n"
]
},
{
@ -187,8 +195,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define and Train the model\n",
""
"## Define and Train the model\n"
]
},
{
@ -277,16 +284,14 @@
"f1, weightedPrecision, weightedRecall, auc = evaluate_model(model,df_dev_feature)\n",
"print('DEV AUC:', auc)\n",
"print('DEV F1:', f1)\n",
"print('DEV Precision:', weightedPrecision, 'DEV Recall:',weightedRecall)\n",
""
"print('DEV Precision:', weightedPrecision, 'DEV Recall:',weightedRecall)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Store fitted feature processor and model\n",
""
"## Store fitted feature processor and model\n"
]
},
{
@ -297,8 +302,7 @@
"source": [
"# store model\n",
"fitted_processor.write().overwrite().save(feature_processor_name)\n",
"model.write().overwrite().save(model_name)\n",
""
"model.write().overwrite().save(model_name)\n"
]
}
]

Просмотреть файл

@ -16,6 +16,16 @@
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (c) Microsoft Corporation.\n",
"# Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -29,8 +39,7 @@
"3. Apply model to dataset\n",
"4. Cleanup results and store model\n",
"5. Sample queries\n",
"\n",
""
"\n"
]
},
{
@ -49,8 +58,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define variables \n",
""
"## Define variables \n"
]
},
{
@ -65,16 +73,14 @@
"feature_processor_name = 'feature_proprecssor.mml'\n",
"col_user = 'User_ID'\n",
"col_item = 'Article_ID'\n",
"dataset_test = 'default.activitytest'\n",
""
"dataset_test = 'default.activitytest'\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load dataset, feature processor and model\n",
""
"## Load dataset, feature processor and model\n"
]
},
{
@ -104,8 +110,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Apply feature processor and model to dataset\n",
""
"## Apply feature processor and model to dataset\n"
]
},
{