This commit is contained in:
nchandhi 2022-01-07 15:16:19 -08:00
Родитель 90e17e7b0b
Коммит 1f3093e94c
2 изменённых файлов: 6 добавлений и 39 удалений

Просмотреть файл

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "3a71c651",
"metadata": {},
"outputs": [],
@ -16,43 +16,10 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "ab074296",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Uploading an estimated of 7 files\n",
"Uploading ./data/Customer.csv\n",
"Uploaded ./data/Customer.csv, 1 files out of an estimated total of 7\n",
"Uploading ./data/residents_source1.csv\n",
"Uploaded ./data/residents_source1.csv, 2 files out of an estimated total of 7\n",
"Uploading ./data/residents_source2.csv\n",
"Uploaded ./data/residents_source2.csv, 3 files out of an estimated total of 7\n",
"Uploading ./data/payments.csv\n",
"Uploaded ./data/payments.csv, 4 files out of an estimated total of 7\n",
"Uploading ./data/surveys.csv\n",
"Uploaded ./data/surveys.csv, 5 files out of an estimated total of 7\n",
"Uploading ./data/leases.csv\n",
"Uploaded ./data/leases.csv, 6 files out of an estimated total of 7\n",
"Uploading ./data/workorders.csv\n",
"Uploaded ./data/workorders.csv, 7 files out of an estimated total of 7\n",
"Uploaded 7 files\n"
]
},
{
"data": {
"text/plain": [
"$AZUREML_DATAREFERENCE_00e69dcf1f8540929c62cd32383b38f6"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"# Get the default datastore\n",
"default_ds = ws.get_default_datastore()\n",
@ -66,7 +33,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "f3323dac",
"metadata": {},
"outputs": [],
@ -78,7 +45,7 @@
" 'surveytype': DataType.to_string(),\n",
" 'surverydate': DataType.to_datetime(),\n",
" 'question': DataType.to_string(),\n",
" 'answer': DataType.to_long(),\n",
" 'answer': DataType.to_float(),\n",
" 'FirstName': DataType.to_string(),\n",
" 'LastName': DataType.to_string(),\n",
" 'Name': DataType.to_string(),\n",

Просмотреть файл

@ -120,7 +120,7 @@ In order to perform the necessary actions in Customer Insights, you will need to
# Step 6: Set Up AML Pipeline
1. Launch the Azure Machine Learning studio [AML Studio](https://ml.azure.com/)
2. Go to the `Notebooks` tab in the AML Studio and upload the folder `AML Notebooks` folder and `Data` folder
2. Go to the `Notebooks` tab in the AML Studio and upload the `AML Notebooks` folder
3. Go to the `Compute` tab in the AML Studio and click on the `Compute Instances`
4. Click `New` and create a new compute instance
5. Click `Jupyter` and launch the compute instance