зеркало из https://github.com/microsoft/AzureTRE.git
Tessferrandez/fix more doc issues (#1013)
* fix post workspace-template screenshot * fix json in workspace creation sample * add guacamole image tag to docs * clean up register bundles
This commit is contained in:
Родитель
6eb1ca177f
Коммит
919a6947e3
Двоичные данные
docs/assets/post-template.png
Двоичные данные
docs/assets/post-template.png
Двоичный файл не отображается.
До Ширина: | Высота: | Размер: 17 KiB После Ширина: | Высота: | Размер: 9.2 KiB |
|
@ -4,39 +4,45 @@ To enable users to deploy Workspaces, Workspace Services or User Resources, we n
|
|||
|
||||
## Porter Bundles
|
||||
|
||||
Templates are encapsulated in [Porter](https://porter.sh) bundles. Porter bundles can either be registered interactively using the Swagger UI or automatically using the utility script (useful in CI/CD scenarios). The script is provided at `/devops/scripts/publish_register_bundle.sh`.
|
||||
Templates are encapsulated in [Porter](https://porter.sh) bundles. Porter bundles can either be registered interactively using the Swagger UI or automatically using the `/devops/scripts/publish_register_bundle.sh` script (useful in CI/CD scenarios).
|
||||
|
||||
The script can also be used to generate the payload required by the API without actually calling the API. The script carries out the following actions:
|
||||
This script can also be used to generate the payload required by the API without actually calling the API.
|
||||
|
||||
It carries out the following actions:
|
||||
|
||||
1. Publishes the bundle to the Azure Container Registry specified.
|
||||
1. Extracts the parameters from the bundle using `porter explain`.
|
||||
|
||||
### Registration using Swagger UI
|
||||
|
||||
1. We will use the utility script to generate the payload. The script needs to be executed from within the bundle directory, for example `/templates/workspaces/base/`. This script can be used as follows:
|
||||
1. Build the porter bundle
|
||||
|
||||
```cmd
|
||||
porter build
|
||||
```
|
||||
|
||||
1. Use the utility script to generate the payload. The script needs to be executed from within the bundle directory, for example `/templates/workspaces/base/`
|
||||
|
||||
```cmd
|
||||
../../../devops/scripts/publish_register_bundle.sh -r <acr_name> -i -t workspace
|
||||
```
|
||||
|
||||
Copy the resulting payload json.
|
||||
Copy the resulting JSON payload.
|
||||
|
||||
1. Navigate to the Swagger UI at `/docs`
|
||||
1. Log into the Swagger UI by clicking `Authorize`, then `Authorize` again. You will be redirected to the login page.
|
||||
1. Once logged in. Click `Try it out` on the `POST` `/api/workspace-templates` operation:
|
||||
1. Navigate to the Swagger UI at `/api/docs`
|
||||
1. Log into the Swagger UI using `Authorize`
|
||||
1. Click `Try it out` on the `POST` `/api/workspace-templates` operation:
|
||||
|
||||
![Post Workspace Template](../assets/post-template.png)
|
||||
![Post Workspace Template](../assets/post-template.png)
|
||||
|
||||
1. Paste the payload json generated earlier into the `Request body` field, then click `Execute`. Review the server response.
|
||||
1. To verify registration of the template do `GET` operation on `/api/workspace-templates`. The name of the template should now be listed.
|
||||
1. Verify the template registration using the `GET` operation on `/api/workspace-templates`. The name of the template should now be listed.
|
||||
|
||||
### Registration using script
|
||||
|
||||
To use the script to automatically register the template, a user that does not require an interactive login must be created as per the [e2e test user documentation here](../tre-admins/auth.md#tre-e2e-test).
|
||||
To use the script to automatically register the template, you must create a user that does not require an interactive login per the [e2e test user documentation here](../tre-admins/auth.md#tre-e2e-test).
|
||||
|
||||
The script needs to be executed from within the bundle directory, for example `/templates/workspaces/base/`.
|
||||
|
||||
This script can be used as follows:
|
||||
The script needs to be executed from within the bundle directory, for example `/templates/workspaces/base/`
|
||||
|
||||
```cmd
|
||||
Usage: ../../../devops/scripts/publish_register_bundle.sh [-u --tre_url] [-c --current] [-i --insecure]
|
||||
|
|
|
@ -37,15 +37,11 @@ Go to ``azure_tre_fqdn/docs`` and use POST /api/workspaces with the sample body
|
|||
|
||||
```json
|
||||
{
|
||||
"displayName": "manual-from-swagger",
|
||||
"description": "workspace for team X",
|
||||
"workspaceType": "tre-workspace-base",
|
||||
"parameters": {},
|
||||
"authConfig": {
|
||||
"provider": "AAD",
|
||||
"data": {
|
||||
"app_id": "app id created above"
|
||||
}
|
||||
"properties": {
|
||||
"display_name": "manual-from-swagger",
|
||||
"description": "workspace for team X",
|
||||
"app_id": "app id created above"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
|
|
@ -22,6 +22,7 @@ Service Tags:
|
|||
| ------------------------- | ----------- |
|
||||
| `ID` | A GUID to identify the workspace service. The last 4 characters of this `ID` can be found in the resource names of the workspace service resources. |
|
||||
| `WORKSPACE_ID` | The GUID identifier used when deploying the base workspace bundle. |
|
||||
| `GUACAMOLE_IMAGE_TAG` | The tag of the Guacamole Image to use - the tag will be the version (you can find the version in `templates\workspace\services\guacamole\version.txt`) |
|
||||
|
||||
1. Build and install the Guacamole Service bundle
|
||||
|
||||
|
|
|
@ -24,39 +24,39 @@ URLs:
|
|||
|
||||
1. Create a copy of `templates/workspace_services/innereye_deeplearning/.env.sample` with the name `.env` and update the variables with the appropriate values.
|
||||
|
||||
| Environment variable name | Description |
|
||||
| ------------------------- | ----------- |
|
||||
| `ID` | A GUID to identify the workspace service. The last 4 characters of this `ID` can be found in the resource names of the workspace service resources. |
|
||||
| `WORKSPACE_ID` | The GUID identifier used when deploying the base workspace bundle. |
|
||||
| `INFERENCE_SP_CLIENT_ID` | Service principal client ID used by the inference service to connect to Azure ML. Use the output from the step above. |
|
||||
| `INFERENCE_SP_CLIENT_SECRET` | Service principal client secret used by the inference service to connect to Azure ML. Use the output from the step above. |
|
||||
| Environment variable name | Description |
|
||||
| ------------------------- | ----------- |
|
||||
| `ID` | A GUID to identify the workspace service. The last 4 characters of this `ID` can be found in the resource names of the workspace service resources. |
|
||||
| `WORKSPACE_ID` | The GUID identifier used when deploying the base workspace bundle. |
|
||||
| `INFERENCE_SP_CLIENT_ID` | Service principal client ID used by the inference service to connect to Azure ML. Use the output from the step above. |
|
||||
| `INFERENCE_SP_CLIENT_SECRET` | Service principal client secret used by the inference service to connect to Azure ML. Use the output from the step above. |
|
||||
|
||||
1. Build and install the InnerEye Deep Learning Service bundle
|
||||
|
||||
```cmd
|
||||
make porter-build DIR=./templates/workspace_services/innereye
|
||||
make porter-publish DIR=./templates/workspace_services/innereye
|
||||
make porter-install DIR=./templates/workspace_services/innereye
|
||||
```
|
||||
```cmd
|
||||
make porter-build DIR=./templates/workspace_services/innereye
|
||||
make porter-publish DIR=./templates/workspace_services/innereye
|
||||
make porter-install DIR=./templates/workspace_services/innereye
|
||||
```
|
||||
|
||||
## Running the InnerEye HelloWorld on AML Compute Cluster
|
||||
|
||||
1. Log onto a VM in the workspace, open PowerShell and run:
|
||||
|
||||
```cmd
|
||||
git clone https://github.com/microsoft/InnerEye-DeepLearning
|
||||
cd InnerEye-DeepLearning
|
||||
git lfs install
|
||||
git lfs pull
|
||||
conda init
|
||||
conda env create --file environment.yml
|
||||
```
|
||||
```cmd
|
||||
git clone https://github.com/microsoft/InnerEye-DeepLearning
|
||||
cd InnerEye-DeepLearning
|
||||
git lfs install
|
||||
git lfs pull
|
||||
conda init
|
||||
conda env create --file environment.yml
|
||||
```
|
||||
|
||||
1. Restart PowerShell and navigate to the "InnerEye-DeepLearning" folder
|
||||
|
||||
```cmd
|
||||
conda activate InnerEye
|
||||
```
|
||||
```cmd
|
||||
conda activate InnerEye
|
||||
```
|
||||
|
||||
1. Open Azure Storage Explorer and connect to your Storage Account using name and access key
|
||||
1. On the storage account create a container with name ```datasets``` and a folder named ```hello_world```
|
||||
|
@ -79,11 +79,11 @@ The workspace service provisions an App Service Plan and an App Service for host
|
|||
|
||||
1. Log onto a VM in the workspace and run:
|
||||
|
||||
```cmd
|
||||
git clone https://github.com/microsoft/InnerEye-Inference
|
||||
cd InnerEye-Inference
|
||||
az webapp up --name <inference-app-name> -g <resource-group-name>
|
||||
```
|
||||
```cmd
|
||||
git clone https://github.com/microsoft/InnerEye-Inference
|
||||
cd InnerEye-Inference
|
||||
az webapp up --name <inference-app-name> -g <resource-group-name>
|
||||
```
|
||||
|
||||
1. Create a new container in your storage account for storing inference images called `inferencedatastore`.
|
||||
1. Create a new folder in that container called `imagedata`.
|
||||
|
|
Загрузка…
Ссылка в новой задаче