Bringing-Old-Photos-Back-to.../Face_Enhancement/options/base_options.py

295 строки
11 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import sys
import argparse
import os
from util import util
import torch
import models
import data
import pickle
class BaseOptions:
def __init__(self):
self.initialized = False
def initialize(self, parser):
# experiment specifics
parser.add_argument(
"--name",
type=str,
default="label2coco",
help="name of the experiment. It decides where to store samples and models",
)
parser.add_argument(
"--gpu_ids", type=str, default="0", help="gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU"
)
parser.add_argument(
"--checkpoints_dir", type=str, default="./checkpoints", help="models are saved here"
)
parser.add_argument("--model", type=str, default="pix2pix", help="which model to use")
parser.add_argument(
"--norm_G",
type=str,
default="spectralinstance",
help="instance normalization or batch normalization",
)
parser.add_argument(
"--norm_D",
type=str,
default="spectralinstance",
help="instance normalization or batch normalization",
)
parser.add_argument(
"--norm_E",
type=str,
default="spectralinstance",
help="instance normalization or batch normalization",
)
parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc")
# input/output sizes
parser.add_argument("--batchSize", type=int, default=1, help="input batch size")
parser.add_argument(
"--preprocess_mode",
type=str,
default="scale_width_and_crop",
help="scaling and cropping of images at load time.",
choices=(
"resize_and_crop",
"crop",
"scale_width",
"scale_width_and_crop",
"scale_shortside",
"scale_shortside_and_crop",
"fixed",
"none",
"resize",
),
)
parser.add_argument(
"--load_size",
type=int,
default=1024,
help="Scale images to this size. The final image will be cropped to --crop_size.",
)
parser.add_argument(
"--crop_size",
type=int,
default=512,
help="Crop to the width of crop_size (after initially scaling the images to load_size.)",
)
parser.add_argument(
"--aspect_ratio",
type=float,
default=1.0,
help="The ratio width/height. The final height of the load image will be crop_size/aspect_ratio",
)
parser.add_argument(
"--label_nc",
type=int,
default=182,
help="# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.",
)
parser.add_argument(
"--contain_dontcare_label",
action="store_true",
help="if the label map contains dontcare label (dontcare=255)",
)
parser.add_argument("--output_nc", type=int, default=3, help="# of output image channels")
# for setting inputs
parser.add_argument("--dataroot", type=str, default="./datasets/cityscapes/")
parser.add_argument("--dataset_mode", type=str, default="coco")
parser.add_argument(
"--serial_batches",
action="store_true",
help="if true, takes images in order to make batches, otherwise takes them randomly",
)
parser.add_argument(
"--no_flip",
action="store_true",
help="if specified, do not flip the images for data argumentation",
)
parser.add_argument("--nThreads", default=0, type=int, help="# threads for loading data")
parser.add_argument(
"--max_dataset_size",
type=int,
default=sys.maxsize,
help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.",
)
parser.add_argument(
"--load_from_opt_file",
action="store_true",
help="load the options from checkpoints and use that as default",
)
parser.add_argument(
"--cache_filelist_write",
action="store_true",
help="saves the current filelist into a text file, so that it loads faster",
)
parser.add_argument(
"--cache_filelist_read", action="store_true", help="reads from the file list cache"
)
# for displays
parser.add_argument("--display_winsize", type=int, default=400, help="display window size")
# for generator
parser.add_argument(
"--netG", type=str, default="spade", help="selects model to use for netG (pix2pixhd | spade)"
)
parser.add_argument("--ngf", type=int, default=64, help="# of gen filters in first conv layer")
parser.add_argument(
"--init_type",
type=str,
default="xavier",
help="network initialization [normal|xavier|kaiming|orthogonal]",
)
parser.add_argument(
"--init_variance", type=float, default=0.02, help="variance of the initialization distribution"
)
parser.add_argument("--z_dim", type=int, default=256, help="dimension of the latent z vector")
parser.add_argument(
"--no_parsing_map", action="store_true", help="During training, we do not use the parsing map"
)
# for instance-wise features
parser.add_argument(
"--no_instance", action="store_true", help="if specified, do *not* add instance map as input"
)
parser.add_argument(
"--nef", type=int, default=16, help="# of encoder filters in the first conv layer"
)
parser.add_argument("--use_vae", action="store_true", help="enable training with an image encoder.")
parser.add_argument(
"--tensorboard_log", action="store_true", help="use tensorboard to record the resutls"
)
# parser.add_argument('--img_dir',)
parser.add_argument(
"--old_face_folder", type=str, default="", help="The folder name of input old face"
)
parser.add_argument(
"--old_face_label_folder", type=str, default="", help="The folder name of input old face label"
)
parser.add_argument("--injection_layer", type=str, default="all", help="")
self.initialized = True
return parser
def gather_options(self):
# initialize parser with basic options
if not self.initialized:
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
# get the basic options
opt, unknown = parser.parse_known_args()
# modify model-related parser options
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
# modify dataset-related parser options
# dataset_mode = opt.dataset_mode
# dataset_option_setter = data.get_option_setter(dataset_mode)
# parser = dataset_option_setter(parser, self.isTrain)
opt, unknown = parser.parse_known_args()
# if there is opt_file, load it.
# The previous default options will be overwritten
if opt.load_from_opt_file:
parser = self.update_options_from_file(parser, opt)
opt = parser.parse_args()
self.parser = parser
return opt
def print_options(self, opt):
message = ""
message += "----------------- Options ---------------\n"
for k, v in sorted(vars(opt).items()):
comment = ""
default = self.parser.get_default(k)
if v != default:
comment = "\t[default: %s]" % str(default)
message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment)
message += "----------------- End -------------------"
# print(message)
def option_file_path(self, opt, makedir=False):
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
if makedir:
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, "opt")
return file_name
def save_options(self, opt):
file_name = self.option_file_path(opt, makedir=True)
with open(file_name + ".txt", "wt") as opt_file:
for k, v in sorted(vars(opt).items()):
comment = ""
default = self.parser.get_default(k)
if v != default:
comment = "\t[default: %s]" % str(default)
opt_file.write("{:>25}: {:<30}{}\n".format(str(k), str(v), comment))
with open(file_name + ".pkl", "wb") as opt_file:
pickle.dump(opt, opt_file)
def update_options_from_file(self, parser, opt):
new_opt = self.load_options(opt)
for k, v in sorted(vars(opt).items()):
if hasattr(new_opt, k) and v != getattr(new_opt, k):
new_val = getattr(new_opt, k)
parser.set_defaults(**{k: new_val})
return parser
def load_options(self, opt):
file_name = self.option_file_path(opt, makedir=False)
new_opt = pickle.load(open(file_name + ".pkl", "rb"))
return new_opt
def parse(self, save=False):
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
opt.contain_dontcare_label = False
self.print_options(opt)
if opt.isTrain:
self.save_options(opt)
# Set semantic_nc based on the option.
# This will be convenient in many places
opt.semantic_nc = (
opt.label_nc + (1 if opt.contain_dontcare_label else 0) + (0 if opt.no_instance else 1)
)
# set gpu ids
str_ids = opt.gpu_ids.split(",")
opt.gpu_ids = []
for str_id in str_ids:
int_id = int(str_id)
if int_id >= 0:
opt.gpu_ids.append(int_id)
if len(opt.gpu_ids) > 0:
print("The main GPU is ")
print(opt.gpu_ids[0])
torch.cuda.set_device(opt.gpu_ids[0])
assert (
len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0
), "Batch size %d is wrong. It must be a multiple of # GPUs %d." % (opt.batchSize, len(opt.gpu_ids))
self.opt = opt
return self.opt