зеркало из https://github.com/microsoft/CCF.git
Shamir Secret Sharing library in CCF (#810)
This commit is contained in:
Родитель
7f7657fe95
Коммит
6729fc0b4f
|
@ -0,0 +1,21 @@
|
|||
The MIT License
|
||||
|
||||
Copyright (c) 2017 Daan Sprenkels <hello@dsprenkels.com>
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
|
@ -0,0 +1,29 @@
|
|||
CFLAGS = -Wall -g -O2
|
||||
SRCS = hazmat.c randombytes.c sss.c tweetnacl.c
|
||||
OBJS := ${SRCS:.c=.o}
|
||||
|
||||
all: libsss.a
|
||||
|
||||
libsss.a: randombytes/librandombytes.a $(OBJS)
|
||||
$(AR) -rcs libsss.a $^
|
||||
|
||||
randombytes/librandombytes.a:
|
||||
$(MAKE) -C randombytes librandombytes.a
|
||||
|
||||
# Force unrolling loops on hazmat.c
|
||||
hazmat.o: CFLAGS += -funroll-loops
|
||||
|
||||
%.out: %.o randombytes/librandombytes.a
|
||||
$(CC) -o $@ $(CFLAGS) $(LDFLAGS) $^ $(LOADLIBES) $(LDLIBS)
|
||||
$(MEMCHECK) ./$@
|
||||
|
||||
test_hazmat.out: $(OBJS)
|
||||
test_sss.out: $(OBJS)
|
||||
|
||||
.PHONY: check
|
||||
check: test_hazmat.out test_sss.out
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
$(MAKE) -C randombytes $@
|
||||
$(RM) *.o *.gch *.a *.out
|
|
@ -0,0 +1,170 @@
|
|||
# Shamir secret sharing library
|
||||
|
||||
[![Build Status](https://travis-ci.org/dsprenkels/sss.svg?branch=master)](https://travis-ci.org/dsprenkels/sss)
|
||||
|
||||
`sss` is a library that exposes an API to split secret data buffers into
|
||||
a number of different _shares_. With the possession of some or all of these
|
||||
shares, the original secret can be restored. It is the schoolbook example of
|
||||
a cryptographic _threshold scheme_. ([demo])
|
||||
|
||||
## Table of contents
|
||||
|
||||
1. [Introduction](#introduction)
|
||||
2. [Download](#download)
|
||||
3. [Usage](#usage)
|
||||
1. [Example](#example)
|
||||
4. [Bindings](#bindings)
|
||||
5. [Technical details](#technical-details)
|
||||
6. [Comparison of secret sharing libraries](#comparison-of-secret-sharing-libraries)
|
||||
7. [Questions](#questions)
|
||||
|
||||
## Introduction
|
||||
|
||||
An example use case is a beer brewery which has a vault which contains their
|
||||
precious super secret recipe. The 5 board members of this brewery do not trust
|
||||
all the others well enough that they won't secretly break into the vault and
|
||||
sell the recipe to a competitor. So they split the code into 5 shares, and
|
||||
allow 4 shares to restore the original code. Now they are sure that the
|
||||
majority of the staff will know when the vault is opened, but they can still
|
||||
open the vault when one of the staff members is abroad or sick at home.
|
||||
|
||||
As often with crypto libraries, there is a lot of Shamir secret sharing code
|
||||
around that *does not meet cryptographic standards* (a.k.a. is insecure).
|
||||
Some details—like integrity checks and side-channel resistance—are often
|
||||
forgotten. But these slip-ups can often fully compromise the security of the
|
||||
scheme.
|
||||
With this in mind, I have made this library to:
|
||||
- Be side channel resistant
|
||||
- Secure the shared secret with a MAC
|
||||
- Use the platform (OS) randomness source
|
||||
|
||||
It should be safe to use this library in "the real world", but note that until
|
||||
the release of version 1.0 the API may be changed without backward
|
||||
compatibility.
|
||||
|
||||
## Download
|
||||
|
||||
Currently, I have not packaged this library yet, but I expect to do so very
|
||||
soon. If you are planning to use the library, please drop me an email and I will
|
||||
freeze the API spec. So for now you should use the following command to get the
|
||||
code:
|
||||
|
||||
```shell
|
||||
git clone --recursive https://github.com/dsprenkels/sss.git
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Secrets are provided as arrays of 64 bytes long. This should be big enough to
|
||||
store generally small secrets. If you wish to split larger chunks of data, you
|
||||
can use symmetric encryption and split the key instead. Shares are generated
|
||||
from secret data using `sss_create_shares` and shares can be combined again
|
||||
using the `sss_combine_shares` functions. The shares are a octet strings of
|
||||
113 bytes each.
|
||||
|
||||
### Example
|
||||
|
||||
```c
|
||||
#include "sss.h"
|
||||
#include "randombytes.h"
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
int main()
|
||||
{
|
||||
uint8_t data[sss_MLEN], restored[sss_MLEN];
|
||||
sss_Share shares[5];
|
||||
size_t idx;
|
||||
int tmp;
|
||||
|
||||
/* Create a message [42, 42, ..., 42] */
|
||||
for (idx = 0; idx < sizeof(data), ++idx) {
|
||||
data[idx] = 42;
|
||||
}
|
||||
|
||||
/* Split the secret into 5 shares (with a recombination theshold of 4) */
|
||||
sss_create_shares(shares, data, 5, 4);
|
||||
|
||||
/* Combine some of the shares to restore the original secret */
|
||||
tmp = sss_combine_shares(restored, shares, 4);
|
||||
assert(tmp == 0);
|
||||
assert(memcmp(restored, data, sss_MLEN) == 0);
|
||||
}
|
||||
```
|
||||
|
||||
## Bindings
|
||||
|
||||
I have currently written bindings for the following languages:
|
||||
|
||||
- [Node.js](https://github.com/dsprenkels/sss-node)
|
||||
- [Go](https://github.com/dsprenkels/sss-go)
|
||||
- [Rust](https://github.com/dsprenkels/sss-rs)
|
||||
|
||||
## Technical details
|
||||
|
||||
Shamir secret sharing works by generating a polynomial (e.g. _33x³ + 8x² + 29x +
|
||||
42_). The lowest term is the term is the secret and is just filled in. All the
|
||||
other terms are generated randomly. Then we can pick points on the polynomial
|
||||
by filling in values for _x_. Each point is put in a share. Afterwards, with _k_
|
||||
points we can use interpolation to restore a _k_-degree polynomial.
|
||||
|
||||
In practice there is a wrapper around the secret-sharing part (this is
|
||||
done because of crypto-technical reasons). This wrapper uses the
|
||||
Salsa20/Poly1305 authenticated encryption scheme. Because of this, the
|
||||
shares are always a little bit larger than the original data.
|
||||
|
||||
This library uses a custom [`randombytes`][randombytes] function to generate a
|
||||
random encapsulation key, which talks directly to the operating system. When
|
||||
using the high level API, you are not allowed to choose your own key. It _must_
|
||||
be uniformly random, because regularities in secret-shared can be exploited.
|
||||
|
||||
With the low level API (`hazmat.h`) you _can_ choose to secret-share a piece of
|
||||
data of exactly 32 bytes. This produces a set of shares that are much shorter
|
||||
than the high-level shares (namely 33 bytes each). However, keep in mind that
|
||||
this module is called `hazmat.h` (for "hazardous materials") for a reason.
|
||||
Please only use this if you _really_ know what you are doing. Raw "textbook"
|
||||
Shamir secret sharing is only safe when using a uniformly random secret (with
|
||||
128 bits of entropy). Note also that it is entirely insecure for integrity.
|
||||
Please do not use the low-level API unless you _really_ have no other choice.
|
||||
|
||||
## Comparison of secret-sharing libraries
|
||||
|
||||
If you would like your library to be added here, please open a pull request. :)
|
||||
|
||||
| Library | Side-channels | Tamper-resistant | Secret length |
|
||||
|-----------------|---------------|------------------|---------------|
|
||||
| [B. Poettering] | Insecure¹ | Insecure | 128 bytes |
|
||||
| [libgfshare] | Insecure² | Insecure | ∞ |
|
||||
| [blockstack] | ??³ | Insecure | 160 bytes |
|
||||
| [sssa-golang] | Secure | Secure⁴ | ∞ |
|
||||
| [sssa-ruby] | ??³ | Secure⁴ | ∞ |
|
||||
| [snipsco] | Secure | Insecure | Note⁶ |
|
||||
| [dsprenkels] | Secure | Secure⁵ | 64 bytes |
|
||||
|
||||
### Notes
|
||||
|
||||
1. Uses the GNU gmp library.
|
||||
2. Uses lookup tables for GF(256) multiplication.
|
||||
3. This library is implemented in a high level scripting library which does not
|
||||
guarantee that its basic operators execute in constant-time.
|
||||
4. Uses randomized *x*-coordinates.
|
||||
5. Uses randomized *y*-coordinates.
|
||||
6. When using the [snipsco] library you will have to specify your own prime.
|
||||
Computation time is _O(p²)_, so on a normal computer you will be limited to
|
||||
a secret size of ~1024 bytes.
|
||||
|
||||
[B. Poettering]: http://point-at-infinity.org/ssss/
|
||||
[libgfshare]: http://www.digital-scurf.org/software/libgfshare
|
||||
[blockstack]: https://github.com/blockstack/secret-sharing
|
||||
[sssa-golang]: https://github.com/SSSaaS/sssa-golang
|
||||
[sssa-ruby]: https://github.com/SSSaaS/sssa-ruby
|
||||
[snipsco]: https://github.com/snipsco/rust-threshold-secret-sharing
|
||||
[dsprenkels]: https://github.com/dsprenkels/sss
|
||||
|
||||
|
||||
## Questions
|
||||
|
||||
Feel free to send me an email on my Github associated e-mail address.
|
||||
|
||||
[demo]: https://dsprenkels.com/sss/
|
||||
[randombytes]: https://github.com/dsprenkels/randombytes
|
|
@ -0,0 +1,359 @@
|
|||
/*
|
||||
* Implementation of the hazardous parts of the SSS library
|
||||
*
|
||||
* Author: Daan Sprenkels <hello@dsprenkels.com>
|
||||
*
|
||||
* This code contains the actual Shamir secret sharing functionality. The
|
||||
* implementation of this code is based on the idea that the user likes to
|
||||
* generate/combine 32 shares (in GF(2^8) at the same time, because a 256 bit
|
||||
* key will be exactly 32 bytes. Therefore we bitslice all the input and
|
||||
* unbitslice the output right before returning.
|
||||
*
|
||||
* This bitslice approach optimizes natively on all architectures that are 32
|
||||
* bit or more. Care is taken to use not too many registers, to ensure that no
|
||||
* values have to be leaked to the stack.
|
||||
*
|
||||
* All functions in this module are implemented constant time and constant
|
||||
* lookup operations, as all proper crypto code must be.
|
||||
*/
|
||||
|
||||
|
||||
#include "randombytes.h"
|
||||
#include "hazmat.h"
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
typedef struct {
|
||||
uint8_t x;
|
||||
uint8_t y;
|
||||
} ByteShare;
|
||||
|
||||
|
||||
extern void
|
||||
FIPS202_SHAKE256(const unsigned char *in, unsigned long long inLen,
|
||||
unsigned char *out, unsigned long long outLen);
|
||||
|
||||
|
||||
|
||||
static void
|
||||
bitslice(uint32_t r[8], const uint8_t x[32])
|
||||
{
|
||||
size_t bit_idx, arr_idx;
|
||||
uint32_t cur;
|
||||
|
||||
memset(r, 0, sizeof(uint32_t[8]));
|
||||
for (arr_idx = 0; arr_idx < 32; arr_idx++) {
|
||||
cur = (uint32_t) x[arr_idx];
|
||||
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
|
||||
r[bit_idx] |= ((cur & (1 << bit_idx)) >> bit_idx) << arr_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
unbitslice(uint8_t r[32], const uint32_t x[8])
|
||||
{
|
||||
size_t bit_idx, arr_idx;
|
||||
uint32_t cur;
|
||||
|
||||
memset(r, 0, sizeof(uint8_t[32]));
|
||||
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
|
||||
cur = (uint32_t) x[bit_idx];
|
||||
for (arr_idx = 0; arr_idx < 32; arr_idx++) {
|
||||
r[arr_idx] |= ((cur & (1 << arr_idx)) >> arr_idx) << bit_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
bitslice_setall(uint32_t r[8], const uint8_t x)
|
||||
{
|
||||
size_t idx;
|
||||
for (idx = 0; idx < 8; idx++) {
|
||||
r[idx] = ((int32_t) ((x & (1 << idx)) << (31 - idx))) >> 31;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Add (XOR) `r` with `x` and store the result in `r`.
|
||||
*/
|
||||
static void
|
||||
gf256_add(uint32_t r[8], const uint32_t x[8])
|
||||
{
|
||||
size_t idx;
|
||||
for (idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Safely multiply two bitsliced polynomials in GF(2^8) reduced by
|
||||
* x^8 + x^4 + x^3 + x + 1. `r` and `a` may overlap, but overlapping of `r`
|
||||
* and `b` will produce an incorrect result! If you need to square a polynomial
|
||||
* use `gf256_square` instead.
|
||||
*/
|
||||
static void
|
||||
gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8])
|
||||
{
|
||||
/* This function implements Russian Peasant multiplication on two
|
||||
* bitsliced polynomials.
|
||||
*
|
||||
* I personally think that these kinds of long lists of operations
|
||||
* are often a bit ugly. A double for loop would be nicer and would
|
||||
* take up a lot less lines of code.
|
||||
* However, some compilers seem to fail in optimizing these kinds of
|
||||
* loops. So we will just have to do this by hand.
|
||||
*/
|
||||
uint32_t a2[8];
|
||||
memcpy(a2, a, sizeof(uint32_t[8]));
|
||||
|
||||
r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
|
||||
r[1] = a2[1] & b[0];
|
||||
r[2] = a2[2] & b[0];
|
||||
r[3] = a2[3] & b[0];
|
||||
r[4] = a2[4] & b[0];
|
||||
r[5] = a2[5] & b[0];
|
||||
r[6] = a2[6] & b[0];
|
||||
r[7] = a2[7] & b[0];
|
||||
a2[0] ^= a2[7]; /* reduce */
|
||||
a2[2] ^= a2[7];
|
||||
a2[3] ^= a2[7];
|
||||
|
||||
r[0] ^= a2[7] & b[1]; /* add */
|
||||
r[1] ^= a2[0] & b[1];
|
||||
r[2] ^= a2[1] & b[1];
|
||||
r[3] ^= a2[2] & b[1];
|
||||
r[4] ^= a2[3] & b[1];
|
||||
r[5] ^= a2[4] & b[1];
|
||||
r[6] ^= a2[5] & b[1];
|
||||
r[7] ^= a2[6] & b[1];
|
||||
a2[7] ^= a2[6]; /* reduce */
|
||||
a2[1] ^= a2[6];
|
||||
a2[2] ^= a2[6];
|
||||
|
||||
r[0] ^= a2[6] & b[2]; /* add */
|
||||
r[1] ^= a2[7] & b[2];
|
||||
r[2] ^= a2[0] & b[2];
|
||||
r[3] ^= a2[1] & b[2];
|
||||
r[4] ^= a2[2] & b[2];
|
||||
r[5] ^= a2[3] & b[2];
|
||||
r[6] ^= a2[4] & b[2];
|
||||
r[7] ^= a2[5] & b[2];
|
||||
a2[6] ^= a2[5]; /* reduce */
|
||||
a2[0] ^= a2[5];
|
||||
a2[1] ^= a2[5];
|
||||
|
||||
r[0] ^= a2[5] & b[3]; /* add */
|
||||
r[1] ^= a2[6] & b[3];
|
||||
r[2] ^= a2[7] & b[3];
|
||||
r[3] ^= a2[0] & b[3];
|
||||
r[4] ^= a2[1] & b[3];
|
||||
r[5] ^= a2[2] & b[3];
|
||||
r[6] ^= a2[3] & b[3];
|
||||
r[7] ^= a2[4] & b[3];
|
||||
a2[5] ^= a2[4]; /* reduce */
|
||||
a2[7] ^= a2[4];
|
||||
a2[0] ^= a2[4];
|
||||
|
||||
r[0] ^= a2[4] & b[4]; /* add */
|
||||
r[1] ^= a2[5] & b[4];
|
||||
r[2] ^= a2[6] & b[4];
|
||||
r[3] ^= a2[7] & b[4];
|
||||
r[4] ^= a2[0] & b[4];
|
||||
r[5] ^= a2[1] & b[4];
|
||||
r[6] ^= a2[2] & b[4];
|
||||
r[7] ^= a2[3] & b[4];
|
||||
a2[4] ^= a2[3]; /* reduce */
|
||||
a2[6] ^= a2[3];
|
||||
a2[7] ^= a2[3];
|
||||
|
||||
r[0] ^= a2[3] & b[5]; /* add */
|
||||
r[1] ^= a2[4] & b[5];
|
||||
r[2] ^= a2[5] & b[5];
|
||||
r[3] ^= a2[6] & b[5];
|
||||
r[4] ^= a2[7] & b[5];
|
||||
r[5] ^= a2[0] & b[5];
|
||||
r[6] ^= a2[1] & b[5];
|
||||
r[7] ^= a2[2] & b[5];
|
||||
a2[3] ^= a2[2]; /* reduce */
|
||||
a2[5] ^= a2[2];
|
||||
a2[6] ^= a2[2];
|
||||
|
||||
r[0] ^= a2[2] & b[6]; /* add */
|
||||
r[1] ^= a2[3] & b[6];
|
||||
r[2] ^= a2[4] & b[6];
|
||||
r[3] ^= a2[5] & b[6];
|
||||
r[4] ^= a2[6] & b[6];
|
||||
r[5] ^= a2[7] & b[6];
|
||||
r[6] ^= a2[0] & b[6];
|
||||
r[7] ^= a2[1] & b[6];
|
||||
a2[2] ^= a2[1]; /* reduce */
|
||||
a2[4] ^= a2[1];
|
||||
a2[5] ^= a2[1];
|
||||
|
||||
r[0] ^= a2[1] & b[7]; /* add */
|
||||
r[1] ^= a2[2] & b[7];
|
||||
r[2] ^= a2[3] & b[7];
|
||||
r[3] ^= a2[4] & b[7];
|
||||
r[4] ^= a2[5] & b[7];
|
||||
r[5] ^= a2[6] & b[7];
|
||||
r[6] ^= a2[7] & b[7];
|
||||
r[7] ^= a2[0] & b[7];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Square `x` in GF(2^8) and write the result to `r`. `r` and `x` may overlap.
|
||||
*/
|
||||
static void
|
||||
gf256_square(uint32_t r[8], const uint32_t x[8])
|
||||
{
|
||||
uint32_t r8, r10, r12, r14;
|
||||
/* Use the Freshman's Dream rule to square the polynomial
|
||||
* Assignments are done from 7 downto 0, because this allows the user
|
||||
* to execute this function in-place (e.g. `gf256_square(r, r);`).
|
||||
*/
|
||||
r14 = x[7];
|
||||
r12 = x[6];
|
||||
r10 = x[5];
|
||||
r8 = x[4];
|
||||
r[6] = x[3];
|
||||
r[4] = x[2];
|
||||
r[2] = x[1];
|
||||
r[0] = x[0];
|
||||
|
||||
/* Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8 */
|
||||
r[7] = r14; /* r[7] was 0 */
|
||||
r[6] ^= r14;
|
||||
r10 ^= r14;
|
||||
/* Skip, because r13 is always 0 */
|
||||
r[4] ^= r12;
|
||||
r[5] = r12; /* r[5] was 0 */
|
||||
r[7] ^= r12;
|
||||
r8 ^= r12;
|
||||
/* Skip, because r11 is always 0 */
|
||||
r[2] ^= r10;
|
||||
r[3] = r10; /* r[3] was 0 */
|
||||
r[5] ^= r10;
|
||||
r[6] ^= r10;
|
||||
r[1] = r14; /* r[1] was 0 */
|
||||
r[2] ^= r14; /* Substitute r9 by r14 because they will always be equal*/
|
||||
r[4] ^= r14;
|
||||
r[5] ^= r14;
|
||||
r[0] ^= r8;
|
||||
r[1] ^= r8;
|
||||
r[3] ^= r8;
|
||||
r[4] ^= r8;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Invert `x` in GF(2^8) and write the result to `r`
|
||||
*/
|
||||
static void
|
||||
gf256_inv(uint32_t r[8], uint32_t x[8])
|
||||
{
|
||||
uint32_t y[8], z[8];
|
||||
|
||||
gf256_square(y, x); // y = x^2
|
||||
gf256_square(y, y); // y = x^4
|
||||
gf256_square(r, y); // r = x^8
|
||||
gf256_mul(z, r, x); // z = x^9
|
||||
gf256_square(r, r); // r = x^16
|
||||
gf256_mul(r, r, z); // r = x^25
|
||||
gf256_square(r, r); // r = x^50
|
||||
gf256_square(z, r); // z = x^100
|
||||
gf256_square(z, z); // z = x^200
|
||||
gf256_mul(r, r, z); // r = x^250
|
||||
gf256_mul(r, r, y); // r = x^254
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create `k` key shares of the key given in `key`. The caller has to ensure
|
||||
* that the array `out` has enough space to hold at least `n` sss_Keyshare
|
||||
* structs.
|
||||
*/
|
||||
void
|
||||
sss_create_keyshares(sss_Keyshare *out,
|
||||
const uint8_t key[32],
|
||||
uint8_t n,
|
||||
uint8_t k)
|
||||
{
|
||||
/* Check if the parameters are valid */
|
||||
assert(n != 0);
|
||||
assert(k != 0);
|
||||
assert(k <= n);
|
||||
|
||||
uint8_t share_idx, coeff_idx, unbitsliced_x;
|
||||
uint32_t poly0[8], poly[k-1][8], x[8], y[8], xpow[8], tmp[8];
|
||||
|
||||
/* Put the secret in the bottom part of the polynomial */
|
||||
bitslice(poly0, key);
|
||||
|
||||
/* Generate the other terms of the polynomial */
|
||||
randombytes((void*) poly, sizeof(poly));
|
||||
|
||||
for (share_idx = 0; share_idx < n; share_idx++) {
|
||||
/* x value is in 1..n */
|
||||
unbitsliced_x = share_idx + 1;
|
||||
out[share_idx][0] = unbitsliced_x;
|
||||
bitslice_setall(x, unbitsliced_x);
|
||||
|
||||
/* Calculate y */
|
||||
memset(y, 0, sizeof(y));
|
||||
memset(xpow, 0, sizeof(xpow));
|
||||
xpow[0] = ~0;
|
||||
gf256_add(y, poly0);
|
||||
for (coeff_idx = 0; coeff_idx < (k-1); coeff_idx++) {
|
||||
gf256_mul(xpow, xpow, x);
|
||||
gf256_mul(tmp, xpow, poly[coeff_idx]);
|
||||
gf256_add(y, tmp);
|
||||
}
|
||||
unbitslice(&out[share_idx][1], y);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Restore the `k` sss_Keyshare structs given in `shares` and write the result
|
||||
* to `key`.
|
||||
*/
|
||||
void sss_combine_keyshares(uint8_t key[32],
|
||||
const sss_Keyshare *key_shares,
|
||||
uint8_t k)
|
||||
{
|
||||
size_t share_idx, idx1, idx2;
|
||||
uint32_t xs[k][8], ys[k][8];
|
||||
uint32_t num[8], denom[8], tmp[8];
|
||||
uint32_t secret[8] = {0};
|
||||
|
||||
/* Collect the x and y values */
|
||||
for (share_idx = 0; share_idx < k; share_idx++) {
|
||||
bitslice_setall(xs[share_idx], key_shares[share_idx][0]);
|
||||
bitslice(ys[share_idx], &key_shares[share_idx][1]);
|
||||
}
|
||||
|
||||
/* Use Lagrange basis polynomials to calculate the secret coefficient */
|
||||
for (idx1 = 0; idx1 < k; idx1++) {
|
||||
memset(num, 0, sizeof(num));
|
||||
memset(denom, 0, sizeof(denom));
|
||||
num[0] = ~0; /* num is the numerator (=1) */
|
||||
denom[0] = ~0; /* denom is the numerator (=1) */
|
||||
for (idx2 = 0; idx2 < k; idx2++) {
|
||||
if (idx1 == idx2) continue;
|
||||
gf256_mul(num, num, xs[idx2]);
|
||||
memcpy(tmp, xs[idx1], sizeof(uint32_t[8]));
|
||||
gf256_add(tmp, xs[idx2]);
|
||||
gf256_mul(denom, denom, tmp);
|
||||
}
|
||||
gf256_inv(tmp, denom); /* inverted denominator */
|
||||
gf256_mul(num, num, tmp); /* basis polynomial */
|
||||
gf256_mul(num, num, ys[idx1]); /* scaled coefficient */
|
||||
gf256_add(secret, num);
|
||||
}
|
||||
unbitslice(key, secret);
|
||||
}
|
|
@ -0,0 +1,70 @@
|
|||
/*
|
||||
* Low level API for Daan Sprenkels' Shamir secret sharing library
|
||||
* Copyright (c) 2017 Daan Sprenkels <hello@dsprenkels.com>
|
||||
*
|
||||
* Usage of this API is hazardous and is only reserved for beings with a
|
||||
* good understanding of the Shamir secret sharing scheme and who know how
|
||||
* crypto code is implemented. If you are unsure about this, use the
|
||||
* intermediate level API. You have been warned!
|
||||
*/
|
||||
|
||||
|
||||
#ifndef sss_HAZMAT_H_
|
||||
#define sss_HAZMAT_H_
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
|
||||
#define sss_KEYSHARE_LEN 33 /* 1 + 32 */
|
||||
|
||||
|
||||
/*
|
||||
* One share of a cryptographic key which is shared using Shamir's
|
||||
* the `sss_create_keyshares` function.
|
||||
*/
|
||||
typedef uint8_t sss_Keyshare[sss_KEYSHARE_LEN];
|
||||
|
||||
|
||||
/*
|
||||
* Share the secret given in `key` into `n` shares with a treshold value given
|
||||
* in `k`. The resulting shares are written to `out`.
|
||||
*
|
||||
* The share generation that is done in this function is only secure if the key
|
||||
* that is given is indeed a cryptographic key. This means that it should be
|
||||
* randomly and uniformly generated string of 32 bytes.
|
||||
*
|
||||
* Also, for performance reasons, this function assumes that both `n` and `k`
|
||||
* are *public* values.
|
||||
*
|
||||
* If you are looking for a function that *just* creates shares of arbitrary
|
||||
* data, you should use the `sss_create_shares` function in `sss.h`.
|
||||
*/
|
||||
void sss_create_keyshares(sss_Keyshare *out,
|
||||
const uint8_t key[32],
|
||||
uint8_t n,
|
||||
uint8_t k);
|
||||
|
||||
|
||||
/*
|
||||
* Combine the `k` shares provided in `shares` and write the resulting key to
|
||||
* `key`. The amount of shares used to restore a secret may be larger than the
|
||||
* threshold needed to restore them.
|
||||
*
|
||||
* This function does *not* do *any* checking for integrity. If any of the
|
||||
* shares not original, this will result in an invalid resored value.
|
||||
* All values written to `key` should be treated as secret. Even if some of the
|
||||
* shares that were provided as input were incorrect, the resulting key *still*
|
||||
* allows an attacker to gain information about the real key.
|
||||
*
|
||||
* This function treats `shares` and `key` as secret values. `k` is treated as
|
||||
* a public value (for performance reasons).
|
||||
*
|
||||
* If you are looking for a function that combines shares of arbitrary
|
||||
* data, you should use the `sss_combine_shares` function in `sss.h`.
|
||||
*/
|
||||
void sss_combine_keyshares(uint8_t key[32],
|
||||
const sss_Keyshare *shares,
|
||||
uint8_t k);
|
||||
|
||||
|
||||
#endif /* sss_HAZMAT_H_ */
|
|
@ -0,0 +1,8 @@
|
|||
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
// Licensed under the Apache 2.0 License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
extern int randombytes(unsigned char* data, size_t len);
|
|
@ -0,0 +1,133 @@
|
|||
/*
|
||||
* AEAD wrapper around the Secret shared data
|
||||
*
|
||||
* Author: Daan Sprenkels <hello@dsprenkels.com>
|
||||
*
|
||||
* This module implements a AEAD wrapper around some secret shared data,
|
||||
* allowing the data to be in any format. (Directly secret-sharing requires the
|
||||
* message to be picked uniformly in the message space.)
|
||||
*
|
||||
* The NaCl cryptographic library is used for the encryption. The encryption
|
||||
* scheme that is used for wrapping the message is salsa20/poly1305. Because
|
||||
* we are using an ephemeral key, we are using a zero'd nonce.
|
||||
*/
|
||||
|
||||
|
||||
#include "randombytes.h"
|
||||
#include "tweetnacl.h"
|
||||
#include "sss.h"
|
||||
#include "tweetnacl.h"
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
/*
|
||||
* These assertions may be considered overkill, but would if the tweetnacl API
|
||||
* ever change we *really* want to prevent buffer overflow vulnerabilities.
|
||||
*/
|
||||
#if crypto_secretbox_KEYBYTES != 32
|
||||
# error "crypto_secretbox_KEYBYTES size is invalid"
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Nonce for the `crypto_secretbox` authenticated encryption.
|
||||
* The nonce is constant (zero), because we are using an ephemeral key.
|
||||
*/
|
||||
static const unsigned char nonce[crypto_secretbox_NONCEBYTES] = { 0 };
|
||||
|
||||
|
||||
/*
|
||||
* Return a pointer to the ciphertext part of this Share
|
||||
*/
|
||||
static uint8_t* get_ciphertext(const sss_Share *share)
|
||||
{
|
||||
return (uint8_t*) &(*share)[sss_KEYSHARE_LEN];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Return a pointer to the Keyshare part of this Share
|
||||
*/
|
||||
static sss_Keyshare* get_keyshare(const sss_Share *share)
|
||||
{
|
||||
return (sss_Keyshare*) &share[0];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create `n` shares with theshold `k` and write them to `out`
|
||||
*/
|
||||
void sss_create_shares(sss_Share *out, const unsigned char *data,
|
||||
uint8_t n, uint8_t k)
|
||||
{
|
||||
unsigned char key[32];
|
||||
unsigned char m[crypto_secretbox_ZEROBYTES + sss_MLEN] = { 0 };
|
||||
unsigned long long mlen = sizeof(m); /* length includes zero-bytes */
|
||||
unsigned char c[mlen];
|
||||
int tmp;
|
||||
sss_Keyshare keyshares[n];
|
||||
size_t idx;
|
||||
|
||||
/* Generate a random encryption key */
|
||||
randombytes(key, sizeof(key));
|
||||
|
||||
/* AEAD encrypt the data with the key */
|
||||
memcpy(&m[crypto_secretbox_ZEROBYTES], data, sss_MLEN);
|
||||
tmp = crypto_secretbox(c, m, mlen, nonce, key);
|
||||
assert(tmp == 0); /* should always happen */
|
||||
|
||||
/* Generate KeyShares */
|
||||
sss_create_keyshares(keyshares, key, n, k);
|
||||
|
||||
/* Build regular shares */
|
||||
for (idx = 0; idx < n; idx++) {
|
||||
memcpy(get_keyshare(&out[idx]), &keyshares[idx][0],
|
||||
sss_KEYSHARE_LEN);
|
||||
memcpy(get_ciphertext(&out[idx]),
|
||||
&c[crypto_secretbox_BOXZEROBYTES], sss_CLEN);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Combine `k` shares pointed to by `shares` and write the result to `data`
|
||||
*
|
||||
* This function returns -1 if any of the shares were corrupted or if the number
|
||||
* of shares was too low. It is not possible to detect which of these errors
|
||||
* did occur.
|
||||
*/
|
||||
int sss_combine_shares(uint8_t *data, const sss_Share *shares, uint8_t k)
|
||||
{
|
||||
unsigned char key[crypto_secretbox_KEYBYTES];
|
||||
unsigned char c[crypto_secretbox_BOXZEROBYTES + sss_CLEN] = { 0 };
|
||||
unsigned long long clen = sizeof(c);
|
||||
unsigned char m[clen];
|
||||
sss_Keyshare keyshares[k];
|
||||
size_t idx;
|
||||
int ret = 0;
|
||||
|
||||
/* Check if all ciphertexts are the same */
|
||||
if (k < 1) return -1;
|
||||
for (idx = 1; idx < k; idx++) {
|
||||
if (memcmp(get_ciphertext(&shares[0]),
|
||||
get_ciphertext(&shares[idx]), sss_CLEN) != 0) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Restore the key */
|
||||
for (idx = 0; idx < k; idx++) {
|
||||
memcpy(&keyshares[idx], get_keyshare(&shares[idx]),
|
||||
sss_KEYSHARE_LEN);
|
||||
}
|
||||
sss_combine_keyshares(key, keyshares, k);
|
||||
|
||||
/* Decrypt the ciphertext */
|
||||
memcpy(&c[crypto_secretbox_BOXZEROBYTES],
|
||||
&shares[0][sss_KEYSHARE_LEN], sss_CLEN);
|
||||
ret |= crypto_secretbox_open(m, c, clen, nonce, key);
|
||||
memcpy(data, &m[crypto_secretbox_ZEROBYTES], sss_MLEN);
|
||||
|
||||
return ret;
|
||||
}
|
|
@ -0,0 +1,70 @@
|
|||
/*
|
||||
* Intermediate level API for Daan Sprenkels' Shamir secret sharing library
|
||||
* Copyright (c) 2017 Daan Sprenkels <hello@dsprenkels.com>
|
||||
*/
|
||||
|
||||
|
||||
#ifndef sss_SSS_H_
|
||||
#define sss_SSS_H_
|
||||
|
||||
#include "hazmat.h"
|
||||
#include "tweetnacl.h"
|
||||
#include <inttypes.h>
|
||||
|
||||
|
||||
#ifndef sss_MLEN
|
||||
/*
|
||||
Length of the message (must be known at compile-time)
|
||||
*/
|
||||
#define sss_MLEN sizeof(uint8_t[64])
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Length of the ciphertext, including the message authentication code
|
||||
*/
|
||||
#define sss_CLEN (sss_MLEN + 16)
|
||||
|
||||
|
||||
/*
|
||||
* Length of a SSS share
|
||||
*/
|
||||
#define sss_SHARE_LEN (sss_CLEN + sss_KEYSHARE_LEN)
|
||||
|
||||
|
||||
/*
|
||||
* One share of a secret which is shared using Shamir's
|
||||
* the `sss_create_shares` function.
|
||||
*/
|
||||
typedef uint8_t sss_Share[sss_SHARE_LEN];
|
||||
|
||||
|
||||
/*
|
||||
* Create `n` shares of the secret data `data`. Share such that `k` or more
|
||||
* shares will be able to restore the secret.
|
||||
*
|
||||
* This function will put the resulting shares in the array pointed to by
|
||||
* `out`. The caller has to guarantee that this array will fit at least `n`
|
||||
* instances of `sss_Share`.
|
||||
*/
|
||||
void sss_create_shares(sss_Share *out,
|
||||
const uint8_t *data,
|
||||
uint8_t n,
|
||||
uint8_t k);
|
||||
|
||||
|
||||
/*
|
||||
* Combine the `k` shares pointed to by `shares` and put the resulting secret
|
||||
* data in `data`. The caller has to ensure that the `data` array will fit
|
||||
* at least `sss_MLEN` (default: 64) bytes.
|
||||
*
|
||||
* On success, this function will return 0. If combining the secret fails,
|
||||
* this function will return a nonzero return code. On failure, the value
|
||||
* in `data` may have been altered, but must still be considered secret.
|
||||
*/
|
||||
int sss_combine_shares(uint8_t *data,
|
||||
const sss_Share *shares,
|
||||
uint8_t k);
|
||||
|
||||
|
||||
#endif /* sss_SSS_H_ */
|
|
@ -0,0 +1,38 @@
|
|||
#include "hazmat.h"
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
static void test_key_shares()
|
||||
{
|
||||
uint8_t key[32], restored[32];
|
||||
sss_Keyshare key_shares[256];
|
||||
size_t idx;
|
||||
|
||||
for (idx = 0; idx < 32; idx++) {
|
||||
key[idx] = idx;
|
||||
}
|
||||
|
||||
sss_create_keyshares(key_shares, key, 1, 1);
|
||||
sss_combine_keyshares(restored, key_shares, 1);
|
||||
assert(memcmp(key, restored, 32) == 0);
|
||||
|
||||
sss_create_keyshares(key_shares, key, 3, 2);
|
||||
sss_combine_keyshares(restored, &key_shares[1], 2);
|
||||
assert(memcmp(key, restored, 32) == 0);
|
||||
|
||||
sss_create_keyshares(key_shares, key, 255, 127);
|
||||
sss_combine_keyshares(restored, &key_shares[128], 127);
|
||||
assert(memcmp(key, restored, 32) == 0);
|
||||
|
||||
sss_create_keyshares(key_shares, key, 255, 255);
|
||||
sss_combine_keyshares(restored, key_shares, 255);
|
||||
assert(memcmp(key, restored, 32) == 0);
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
test_key_shares();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,35 @@
|
|||
#include "sss.h"
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
int main()
|
||||
{
|
||||
unsigned char data[sss_MLEN] = { 42 }, restored[sss_MLEN];
|
||||
sss_Share shares[256];
|
||||
int tmp;
|
||||
|
||||
/* Normal operation */
|
||||
sss_create_shares(shares, data, 1, 1);
|
||||
tmp = sss_combine_shares(restored, shares, 1);
|
||||
assert(tmp == 0);
|
||||
assert(memcmp(restored, data, sss_MLEN) == 0);
|
||||
|
||||
/* A lot of shares */
|
||||
sss_create_shares(shares, data, 255, 255);
|
||||
tmp = sss_combine_shares(restored, shares, 255);
|
||||
assert(tmp == 0);
|
||||
assert(memcmp(restored, data, sss_MLEN) == 0);
|
||||
|
||||
/* Not enough shares to restore secret */
|
||||
sss_create_shares(shares, data, 100, 100);
|
||||
tmp = sss_combine_shares(restored, shares, 99);
|
||||
assert(tmp == -1);
|
||||
|
||||
/* Too many secrets should also restore the secret */
|
||||
sss_create_shares(shares, data, 200, 100);
|
||||
tmp = sss_combine_shares(restored, shares, 200);
|
||||
assert(tmp == 0);
|
||||
assert(memcmp(restored, data, sss_MLEN) == 0);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,810 @@
|
|||
#include "tweetnacl.h"
|
||||
|
||||
#define FOR(i,n) for (i = 0;i < n;++i)
|
||||
#define sv static void
|
||||
|
||||
typedef unsigned char u8;
|
||||
typedef unsigned long u32;
|
||||
typedef unsigned long long u64;
|
||||
typedef long long i64;
|
||||
typedef i64 gf[16];
|
||||
extern void randombytes(u8 *,u64);
|
||||
|
||||
static const u8
|
||||
_0[16],
|
||||
_9[32] = {9};
|
||||
static const gf
|
||||
gf0,
|
||||
gf1 = {1},
|
||||
_121665 = {0xDB41,1},
|
||||
D = {0x78a3, 0x1359, 0x4dca, 0x75eb, 0xd8ab, 0x4141, 0x0a4d, 0x0070, 0xe898, 0x7779, 0x4079, 0x8cc7, 0xfe73, 0x2b6f, 0x6cee, 0x5203},
|
||||
D2 = {0xf159, 0x26b2, 0x9b94, 0xebd6, 0xb156, 0x8283, 0x149a, 0x00e0, 0xd130, 0xeef3, 0x80f2, 0x198e, 0xfce7, 0x56df, 0xd9dc, 0x2406},
|
||||
X = {0xd51a, 0x8f25, 0x2d60, 0xc956, 0xa7b2, 0x9525, 0xc760, 0x692c, 0xdc5c, 0xfdd6, 0xe231, 0xc0a4, 0x53fe, 0xcd6e, 0x36d3, 0x2169},
|
||||
Y = {0x6658, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666, 0x6666},
|
||||
I = {0xa0b0, 0x4a0e, 0x1b27, 0xc4ee, 0xe478, 0xad2f, 0x1806, 0x2f43, 0xd7a7, 0x3dfb, 0x0099, 0x2b4d, 0xdf0b, 0x4fc1, 0x2480, 0x2b83};
|
||||
|
||||
static u32 L32(u32 x,int c) { return (x << c) | ((x&0xffffffff) >> (32 - c)); }
|
||||
|
||||
static u32 ld32(const u8 *x)
|
||||
{
|
||||
u32 u = x[3];
|
||||
u = (u<<8)|x[2];
|
||||
u = (u<<8)|x[1];
|
||||
return (u<<8)|x[0];
|
||||
}
|
||||
|
||||
static u64 dl64(const u8 *x)
|
||||
{
|
||||
u64 i,u=0;
|
||||
FOR(i,8) u=(u<<8)|x[i];
|
||||
return u;
|
||||
}
|
||||
|
||||
sv st32(u8 *x,u32 u)
|
||||
{
|
||||
int i;
|
||||
FOR(i,4) { x[i] = u; u >>= 8; }
|
||||
}
|
||||
|
||||
sv ts64(u8 *x,u64 u)
|
||||
{
|
||||
int i;
|
||||
for (i = 7;i >= 0;--i) { x[i] = u; u >>= 8; }
|
||||
}
|
||||
|
||||
static int vn(const u8 *x,const u8 *y,int n)
|
||||
{
|
||||
u32 i,d = 0;
|
||||
FOR(i,n) d |= x[i]^y[i];
|
||||
return (1 & ((d - 1) >> 8)) - 1;
|
||||
}
|
||||
|
||||
int crypto_verify_16(const u8 *x,const u8 *y)
|
||||
{
|
||||
return vn(x,y,16);
|
||||
}
|
||||
|
||||
int crypto_verify_32(const u8 *x,const u8 *y)
|
||||
{
|
||||
return vn(x,y,32);
|
||||
}
|
||||
|
||||
sv core(u8 *out,const u8 *in,const u8 *k,const u8 *c,int h)
|
||||
{
|
||||
u32 w[16],x[16],y[16],t[4];
|
||||
int i,j,m;
|
||||
|
||||
FOR(i,4) {
|
||||
x[5*i] = ld32(c+4*i);
|
||||
x[1+i] = ld32(k+4*i);
|
||||
x[6+i] = ld32(in+4*i);
|
||||
x[11+i] = ld32(k+16+4*i);
|
||||
}
|
||||
|
||||
FOR(i,16) y[i] = x[i];
|
||||
|
||||
FOR(i,20) {
|
||||
FOR(j,4) {
|
||||
FOR(m,4) t[m] = x[(5*j+4*m)%16];
|
||||
t[1] ^= L32(t[0]+t[3], 7);
|
||||
t[2] ^= L32(t[1]+t[0], 9);
|
||||
t[3] ^= L32(t[2]+t[1],13);
|
||||
t[0] ^= L32(t[3]+t[2],18);
|
||||
FOR(m,4) w[4*j+(j+m)%4] = t[m];
|
||||
}
|
||||
FOR(m,16) x[m] = w[m];
|
||||
}
|
||||
|
||||
if (h) {
|
||||
FOR(i,16) x[i] += y[i];
|
||||
FOR(i,4) {
|
||||
x[5*i] -= ld32(c+4*i);
|
||||
x[6+i] -= ld32(in+4*i);
|
||||
}
|
||||
FOR(i,4) {
|
||||
st32(out+4*i,x[5*i]);
|
||||
st32(out+16+4*i,x[6+i]);
|
||||
}
|
||||
} else
|
||||
FOR(i,16) st32(out + 4 * i,x[i] + y[i]);
|
||||
}
|
||||
|
||||
int crypto_core_salsa20(u8 *out,const u8 *in,const u8 *k,const u8 *c)
|
||||
{
|
||||
core(out,in,k,c,0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crypto_core_hsalsa20(u8 *out,const u8 *in,const u8 *k,const u8 *c)
|
||||
{
|
||||
core(out,in,k,c,1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const u8 sigma[16] = "expand 32-byte k";
|
||||
|
||||
int crypto_stream_salsa20_xor(u8 *c,const u8 *m,u64 b,const u8 *n,const u8 *k)
|
||||
{
|
||||
u8 z[16],x[64];
|
||||
u32 u,i;
|
||||
if (!b) return 0;
|
||||
FOR(i,16) z[i] = 0;
|
||||
FOR(i,8) z[i] = n[i];
|
||||
while (b >= 64) {
|
||||
crypto_core_salsa20(x,z,k,sigma);
|
||||
FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];
|
||||
u = 1;
|
||||
for (i = 8;i < 16;++i) {
|
||||
u += (u32) z[i];
|
||||
z[i] = u;
|
||||
u >>= 8;
|
||||
}
|
||||
b -= 64;
|
||||
c += 64;
|
||||
if (m) m += 64;
|
||||
}
|
||||
if (b) {
|
||||
crypto_core_salsa20(x,z,k,sigma);
|
||||
FOR(i,b) c[i] = (m?m[i]:0) ^ x[i];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crypto_stream_salsa20(u8 *c,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
return crypto_stream_salsa20_xor(c,0,d,n,k);
|
||||
}
|
||||
|
||||
int crypto_stream(u8 *c,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
u8 s[32];
|
||||
crypto_core_hsalsa20(s,n,k,sigma);
|
||||
return crypto_stream_salsa20(c,d,n+16,s);
|
||||
}
|
||||
|
||||
int crypto_stream_xor(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
u8 s[32];
|
||||
crypto_core_hsalsa20(s,n,k,sigma);
|
||||
return crypto_stream_salsa20_xor(c,m,d,n+16,s);
|
||||
}
|
||||
|
||||
sv add1305(u32 *h,const u32 *c)
|
||||
{
|
||||
u32 j,u = 0;
|
||||
FOR(j,17) {
|
||||
u += h[j] + c[j];
|
||||
h[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
}
|
||||
|
||||
static const u32 minusp[17] = {
|
||||
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 252
|
||||
} ;
|
||||
|
||||
int crypto_onetimeauth(u8 *out,const u8 *m,u64 n,const u8 *k)
|
||||
{
|
||||
u32 s,i,j,u,x[17],r[17],h[17],c[17],g[17];
|
||||
|
||||
FOR(j,17) r[j]=h[j]=0;
|
||||
FOR(j,16) r[j]=k[j];
|
||||
r[3]&=15;
|
||||
r[4]&=252;
|
||||
r[7]&=15;
|
||||
r[8]&=252;
|
||||
r[11]&=15;
|
||||
r[12]&=252;
|
||||
r[15]&=15;
|
||||
|
||||
while (n > 0) {
|
||||
FOR(j,17) c[j] = 0;
|
||||
for (j = 0;(j < 16) && (j < n);++j) c[j] = m[j];
|
||||
c[j] = 1;
|
||||
m += j; n -= j;
|
||||
add1305(h,c);
|
||||
FOR(i,17) {
|
||||
x[i] = 0;
|
||||
FOR(j,17) x[i] += h[j] * ((j <= i) ? r[i - j] : 320 * r[i + 17 - j]);
|
||||
}
|
||||
FOR(i,17) h[i] = x[i];
|
||||
u = 0;
|
||||
FOR(j,16) {
|
||||
u += h[j];
|
||||
h[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
u += h[16]; h[16] = u & 3;
|
||||
u = 5 * (u >> 2);
|
||||
FOR(j,16) {
|
||||
u += h[j];
|
||||
h[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
u += h[16]; h[16] = u;
|
||||
}
|
||||
|
||||
FOR(j,17) g[j] = h[j];
|
||||
add1305(h,minusp);
|
||||
s = -(h[16] >> 7);
|
||||
FOR(j,17) h[j] ^= s & (g[j] ^ h[j]);
|
||||
|
||||
FOR(j,16) c[j] = k[j + 16];
|
||||
c[16] = 0;
|
||||
add1305(h,c);
|
||||
FOR(j,16) out[j] = h[j];
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crypto_onetimeauth_verify(const u8 *h,const u8 *m,u64 n,const u8 *k)
|
||||
{
|
||||
u8 x[16];
|
||||
crypto_onetimeauth(x,m,n,k);
|
||||
return crypto_verify_16(h,x);
|
||||
}
|
||||
|
||||
int crypto_secretbox(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
int i;
|
||||
if (d < 32) return -1;
|
||||
crypto_stream_xor(c,m,d,n,k);
|
||||
crypto_onetimeauth(c + 16,c + 32,d - 32,c);
|
||||
FOR(i,16) c[i] = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crypto_secretbox_open(u8 *m,const u8 *c,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
int i;
|
||||
u8 x[32];
|
||||
if (d < 32) return -1;
|
||||
crypto_stream(x,32,n,k);
|
||||
if (crypto_onetimeauth_verify(c + 16,c + 32,d - 32,x) != 0) return -1;
|
||||
crypto_stream_xor(m,c,d,n,k);
|
||||
FOR(i,32) m[i] = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
sv set25519(gf r, const gf a)
|
||||
{
|
||||
int i;
|
||||
FOR(i,16) r[i]=a[i];
|
||||
}
|
||||
|
||||
sv car25519(gf o)
|
||||
{
|
||||
int i;
|
||||
i64 c;
|
||||
FOR(i,16) {
|
||||
o[i]+=(1LL<<16);
|
||||
c=o[i]>>16;
|
||||
o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);
|
||||
o[i]-=c<<16;
|
||||
}
|
||||
}
|
||||
|
||||
sv sel25519(gf p,gf q,int b)
|
||||
{
|
||||
i64 t,i,c=~(b-1);
|
||||
FOR(i,16) {
|
||||
t= c&(p[i]^q[i]);
|
||||
p[i]^=t;
|
||||
q[i]^=t;
|
||||
}
|
||||
}
|
||||
|
||||
sv pack25519(u8 *o,const gf n)
|
||||
{
|
||||
int i,j,b;
|
||||
gf m,t;
|
||||
FOR(i,16) t[i]=n[i];
|
||||
car25519(t);
|
||||
car25519(t);
|
||||
car25519(t);
|
||||
FOR(j,2) {
|
||||
m[0]=t[0]-0xffed;
|
||||
for(i=1;i<15;i++) {
|
||||
m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
|
||||
m[i-1]&=0xffff;
|
||||
}
|
||||
m[15]=t[15]-0x7fff-((m[14]>>16)&1);
|
||||
b=(m[15]>>16)&1;
|
||||
m[14]&=0xffff;
|
||||
sel25519(t,m,1-b);
|
||||
}
|
||||
FOR(i,16) {
|
||||
o[2*i]=t[i]&0xff;
|
||||
o[2*i+1]=t[i]>>8;
|
||||
}
|
||||
}
|
||||
|
||||
static int neq25519(const gf a, const gf b)
|
||||
{
|
||||
u8 c[32],d[32];
|
||||
pack25519(c,a);
|
||||
pack25519(d,b);
|
||||
return crypto_verify_32(c,d);
|
||||
}
|
||||
|
||||
static u8 par25519(const gf a)
|
||||
{
|
||||
u8 d[32];
|
||||
pack25519(d,a);
|
||||
return d[0]&1;
|
||||
}
|
||||
|
||||
sv unpack25519(gf o, const u8 *n)
|
||||
{
|
||||
int i;
|
||||
FOR(i,16) o[i]=n[2*i]+((i64)n[2*i+1]<<8);
|
||||
o[15]&=0x7fff;
|
||||
}
|
||||
|
||||
sv A(gf o,const gf a,const gf b)
|
||||
{
|
||||
int i;
|
||||
FOR(i,16) o[i]=a[i]+b[i];
|
||||
}
|
||||
|
||||
sv Z(gf o,const gf a,const gf b)
|
||||
{
|
||||
int i;
|
||||
FOR(i,16) o[i]=a[i]-b[i];
|
||||
}
|
||||
|
||||
sv M(gf o,const gf a,const gf b)
|
||||
{
|
||||
i64 i,j,t[31];
|
||||
FOR(i,31) t[i]=0;
|
||||
FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
|
||||
FOR(i,15) t[i]+=38*t[i+16];
|
||||
FOR(i,16) o[i]=t[i];
|
||||
car25519(o);
|
||||
car25519(o);
|
||||
}
|
||||
|
||||
sv S(gf o,const gf a)
|
||||
{
|
||||
M(o,a,a);
|
||||
}
|
||||
|
||||
sv inv25519(gf o,const gf i)
|
||||
{
|
||||
gf c;
|
||||
int a;
|
||||
FOR(a,16) c[a]=i[a];
|
||||
for(a=253;a>=0;a--) {
|
||||
S(c,c);
|
||||
if(a!=2&&a!=4) M(c,c,i);
|
||||
}
|
||||
FOR(a,16) o[a]=c[a];
|
||||
}
|
||||
|
||||
sv pow2523(gf o,const gf i)
|
||||
{
|
||||
gf c;
|
||||
int a;
|
||||
FOR(a,16) c[a]=i[a];
|
||||
for(a=250;a>=0;a--) {
|
||||
S(c,c);
|
||||
if(a!=1) M(c,c,i);
|
||||
}
|
||||
FOR(a,16) o[a]=c[a];
|
||||
}
|
||||
|
||||
int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
|
||||
{
|
||||
u8 z[32];
|
||||
i64 x[80],r,i;
|
||||
gf a,b,c,d,e,f;
|
||||
FOR(i,31) z[i]=n[i];
|
||||
z[31]=(n[31]&127)|64;
|
||||
z[0]&=248;
|
||||
unpack25519(x,p);
|
||||
FOR(i,16) {
|
||||
b[i]=x[i];
|
||||
d[i]=a[i]=c[i]=0;
|
||||
}
|
||||
a[0]=d[0]=1;
|
||||
for(i=254;i>=0;--i) {
|
||||
r=(z[i>>3]>>(i&7))&1;
|
||||
sel25519(a,b,r);
|
||||
sel25519(c,d,r);
|
||||
A(e,a,c);
|
||||
Z(a,a,c);
|
||||
A(c,b,d);
|
||||
Z(b,b,d);
|
||||
S(d,e);
|
||||
S(f,a);
|
||||
M(a,c,a);
|
||||
M(c,b,e);
|
||||
A(e,a,c);
|
||||
Z(a,a,c);
|
||||
S(b,a);
|
||||
Z(c,d,f);
|
||||
M(a,c,_121665);
|
||||
A(a,a,d);
|
||||
M(c,c,a);
|
||||
M(a,d,f);
|
||||
M(d,b,x);
|
||||
S(b,e);
|
||||
sel25519(a,b,r);
|
||||
sel25519(c,d,r);
|
||||
}
|
||||
FOR(i,16) {
|
||||
x[i+16]=a[i];
|
||||
x[i+32]=c[i];
|
||||
x[i+48]=b[i];
|
||||
x[i+64]=d[i];
|
||||
}
|
||||
inv25519(x+32,x+32);
|
||||
M(x+16,x+16,x+32);
|
||||
pack25519(q,x+16);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crypto_scalarmult_base(u8 *q,const u8 *n)
|
||||
{
|
||||
return crypto_scalarmult(q,n,_9);
|
||||
}
|
||||
|
||||
int crypto_box_keypair(u8 *y,u8 *x)
|
||||
{
|
||||
randombytes(x,32);
|
||||
return crypto_scalarmult_base(y,x);
|
||||
}
|
||||
|
||||
int crypto_box_beforenm(u8 *k,const u8 *y,const u8 *x)
|
||||
{
|
||||
u8 s[32];
|
||||
crypto_scalarmult(s,x,y);
|
||||
return crypto_core_hsalsa20(k,_0,s,sigma);
|
||||
}
|
||||
|
||||
int crypto_box_afternm(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
return crypto_secretbox(c,m,d,n,k);
|
||||
}
|
||||
|
||||
int crypto_box_open_afternm(u8 *m,const u8 *c,u64 d,const u8 *n,const u8 *k)
|
||||
{
|
||||
return crypto_secretbox_open(m,c,d,n,k);
|
||||
}
|
||||
|
||||
int crypto_box(u8 *c,const u8 *m,u64 d,const u8 *n,const u8 *y,const u8 *x)
|
||||
{
|
||||
u8 k[32];
|
||||
crypto_box_beforenm(k,y,x);
|
||||
return crypto_box_afternm(c,m,d,n,k);
|
||||
}
|
||||
|
||||
int crypto_box_open(u8 *m,const u8 *c,u64 d,const u8 *n,const u8 *y,const u8 *x)
|
||||
{
|
||||
u8 k[32];
|
||||
crypto_box_beforenm(k,y,x);
|
||||
return crypto_box_open_afternm(m,c,d,n,k);
|
||||
}
|
||||
|
||||
static u64 R(u64 x,int c) { return (x >> c) | (x << (64 - c)); }
|
||||
static u64 Ch(u64 x,u64 y,u64 z) { return (x & y) ^ (~x & z); }
|
||||
static u64 Maj(u64 x,u64 y,u64 z) { return (x & y) ^ (x & z) ^ (y & z); }
|
||||
static u64 Sigma0(u64 x) { return R(x,28) ^ R(x,34) ^ R(x,39); }
|
||||
static u64 Sigma1(u64 x) { return R(x,14) ^ R(x,18) ^ R(x,41); }
|
||||
static u64 sigma0(u64 x) { return R(x, 1) ^ R(x, 8) ^ (x >> 7); }
|
||||
static u64 sigma1(u64 x) { return R(x,19) ^ R(x,61) ^ (x >> 6); }
|
||||
|
||||
static const u64 K[80] =
|
||||
{
|
||||
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
||||
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
||||
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
||||
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
||||
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
||||
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
||||
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
||||
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
||||
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
||||
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
||||
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
||||
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
||||
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
||||
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
||||
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
||||
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
||||
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
||||
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
||||
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
||||
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
||||
};
|
||||
|
||||
int crypto_hashblocks(u8 *x,const u8 *m,u64 n)
|
||||
{
|
||||
u64 z[8],b[8],a[8],w[16],t;
|
||||
int i,j;
|
||||
|
||||
FOR(i,8) z[i] = a[i] = dl64(x + 8 * i);
|
||||
|
||||
while (n >= 128) {
|
||||
FOR(i,16) w[i] = dl64(m + 8 * i);
|
||||
|
||||
FOR(i,80) {
|
||||
FOR(j,8) b[j] = a[j];
|
||||
t = a[7] + Sigma1(a[4]) + Ch(a[4],a[5],a[6]) + K[i] + w[i%16];
|
||||
b[7] = t + Sigma0(a[0]) + Maj(a[0],a[1],a[2]);
|
||||
b[3] += t;
|
||||
FOR(j,8) a[(j+1)%8] = b[j];
|
||||
if (i%16 == 15)
|
||||
FOR(j,16)
|
||||
w[j] += w[(j+9)%16] + sigma0(w[(j+1)%16]) + sigma1(w[(j+14)%16]);
|
||||
}
|
||||
|
||||
FOR(i,8) { a[i] += z[i]; z[i] = a[i]; }
|
||||
|
||||
m += 128;
|
||||
n -= 128;
|
||||
}
|
||||
|
||||
FOR(i,8) ts64(x+8*i,z[i]);
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
static const u8 iv[64] = {
|
||||
0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08,
|
||||
0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b,
|
||||
0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b,
|
||||
0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1,
|
||||
0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1,
|
||||
0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f,
|
||||
0x1f,0x83,0xd9,0xab,0xfb,0x41,0xbd,0x6b,
|
||||
0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79
|
||||
} ;
|
||||
|
||||
int crypto_hash(u8 *out,const u8 *m,u64 n)
|
||||
{
|
||||
u8 h[64],x[256];
|
||||
u64 i,b = n;
|
||||
|
||||
FOR(i,64) h[i] = iv[i];
|
||||
|
||||
crypto_hashblocks(h,m,n);
|
||||
m += n;
|
||||
n &= 127;
|
||||
m -= n;
|
||||
|
||||
FOR(i,256) x[i] = 0;
|
||||
FOR(i,n) x[i] = m[i];
|
||||
x[n] = 128;
|
||||
|
||||
n = 256-128*(n<112);
|
||||
x[n-9] = b >> 61;
|
||||
ts64(x+n-8,b<<3);
|
||||
crypto_hashblocks(h,x,n);
|
||||
|
||||
FOR(i,64) out[i] = h[i];
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
sv add(gf p[4],gf q[4])
|
||||
{
|
||||
gf a,b,c,d,t,e,f,g,h;
|
||||
|
||||
Z(a, p[1], p[0]);
|
||||
Z(t, q[1], q[0]);
|
||||
M(a, a, t);
|
||||
A(b, p[0], p[1]);
|
||||
A(t, q[0], q[1]);
|
||||
M(b, b, t);
|
||||
M(c, p[3], q[3]);
|
||||
M(c, c, D2);
|
||||
M(d, p[2], q[2]);
|
||||
A(d, d, d);
|
||||
Z(e, b, a);
|
||||
Z(f, d, c);
|
||||
A(g, d, c);
|
||||
A(h, b, a);
|
||||
|
||||
M(p[0], e, f);
|
||||
M(p[1], h, g);
|
||||
M(p[2], g, f);
|
||||
M(p[3], e, h);
|
||||
}
|
||||
|
||||
sv cswap(gf p[4],gf q[4],u8 b)
|
||||
{
|
||||
int i;
|
||||
FOR(i,4)
|
||||
sel25519(p[i],q[i],b);
|
||||
}
|
||||
|
||||
sv pack(u8 *r,gf p[4])
|
||||
{
|
||||
gf tx, ty, zi;
|
||||
inv25519(zi, p[2]);
|
||||
M(tx, p[0], zi);
|
||||
M(ty, p[1], zi);
|
||||
pack25519(r, ty);
|
||||
r[31] ^= par25519(tx) << 7;
|
||||
}
|
||||
|
||||
sv scalarmult(gf p[4],gf q[4],const u8 *s)
|
||||
{
|
||||
int i;
|
||||
set25519(p[0],gf0);
|
||||
set25519(p[1],gf1);
|
||||
set25519(p[2],gf1);
|
||||
set25519(p[3],gf0);
|
||||
for (i = 255;i >= 0;--i) {
|
||||
u8 b = (s[i/8]>>(i&7))&1;
|
||||
cswap(p,q,b);
|
||||
add(q,p);
|
||||
add(p,p);
|
||||
cswap(p,q,b);
|
||||
}
|
||||
}
|
||||
|
||||
sv scalarbase(gf p[4],const u8 *s)
|
||||
{
|
||||
gf q[4];
|
||||
set25519(q[0],X);
|
||||
set25519(q[1],Y);
|
||||
set25519(q[2],gf1);
|
||||
M(q[3],X,Y);
|
||||
scalarmult(p,q,s);
|
||||
}
|
||||
|
||||
int crypto_sign_keypair(u8 *pk, u8 *sk)
|
||||
{
|
||||
u8 d[64];
|
||||
gf p[4];
|
||||
int i;
|
||||
|
||||
randombytes(sk, 32);
|
||||
crypto_hash(d, sk, 32);
|
||||
d[0] &= 248;
|
||||
d[31] &= 127;
|
||||
d[31] |= 64;
|
||||
|
||||
scalarbase(p,d);
|
||||
pack(pk,p);
|
||||
|
||||
FOR(i,32) sk[32 + i] = pk[i];
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const u64 L[32] = {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x10};
|
||||
|
||||
sv modL(u8 *r,i64 x[64])
|
||||
{
|
||||
i64 carry,i,j;
|
||||
for (i = 63;i >= 32;--i) {
|
||||
carry = 0;
|
||||
for (j = i - 32;j < i - 12;++j) {
|
||||
x[j] += carry - 16 * x[i] * L[j - (i - 32)];
|
||||
carry = (x[j] + 128) >> 8;
|
||||
x[j] -= carry << 8;
|
||||
}
|
||||
x[j] += carry;
|
||||
x[i] = 0;
|
||||
}
|
||||
carry = 0;
|
||||
FOR(j,32) {
|
||||
x[j] += carry - (x[31] >> 4) * L[j];
|
||||
carry = x[j] >> 8;
|
||||
x[j] &= 255;
|
||||
}
|
||||
FOR(j,32) x[j] -= carry * L[j];
|
||||
FOR(i,32) {
|
||||
x[i+1] += x[i] >> 8;
|
||||
r[i] = x[i] & 255;
|
||||
}
|
||||
}
|
||||
|
||||
sv reduce(u8 *r)
|
||||
{
|
||||
i64 x[64],i;
|
||||
FOR(i,64) x[i] = (u64) r[i];
|
||||
FOR(i,64) r[i] = 0;
|
||||
modL(r,x);
|
||||
}
|
||||
|
||||
int crypto_sign(u8 *sm,u64 *smlen,const u8 *m,u64 n,const u8 *sk)
|
||||
{
|
||||
u8 d[64],h[64],r[64];
|
||||
i64 i,j,x[64];
|
||||
gf p[4];
|
||||
|
||||
crypto_hash(d, sk, 32);
|
||||
d[0] &= 248;
|
||||
d[31] &= 127;
|
||||
d[31] |= 64;
|
||||
|
||||
*smlen = n+64;
|
||||
FOR(i,n) sm[64 + i] = m[i];
|
||||
FOR(i,32) sm[32 + i] = d[32 + i];
|
||||
|
||||
crypto_hash(r, sm+32, n+32);
|
||||
reduce(r);
|
||||
scalarbase(p,r);
|
||||
pack(sm,p);
|
||||
|
||||
FOR(i,32) sm[i+32] = sk[i+32];
|
||||
crypto_hash(h,sm,n + 64);
|
||||
reduce(h);
|
||||
|
||||
FOR(i,64) x[i] = 0;
|
||||
FOR(i,32) x[i] = (u64) r[i];
|
||||
FOR(i,32) FOR(j,32) x[i+j] += h[i] * (u64) d[j];
|
||||
modL(sm + 32,x);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int unpackneg(gf r[4],const u8 p[32])
|
||||
{
|
||||
gf t, chk, num, den, den2, den4, den6;
|
||||
set25519(r[2],gf1);
|
||||
unpack25519(r[1],p);
|
||||
S(num,r[1]);
|
||||
M(den,num,D);
|
||||
Z(num,num,r[2]);
|
||||
A(den,r[2],den);
|
||||
|
||||
S(den2,den);
|
||||
S(den4,den2);
|
||||
M(den6,den4,den2);
|
||||
M(t,den6,num);
|
||||
M(t,t,den);
|
||||
|
||||
pow2523(t,t);
|
||||
M(t,t,num);
|
||||
M(t,t,den);
|
||||
M(t,t,den);
|
||||
M(r[0],t,den);
|
||||
|
||||
S(chk,r[0]);
|
||||
M(chk,chk,den);
|
||||
if (neq25519(chk, num)) M(r[0],r[0],I);
|
||||
|
||||
S(chk,r[0]);
|
||||
M(chk,chk,den);
|
||||
if (neq25519(chk, num)) return -1;
|
||||
|
||||
if (par25519(r[0]) == (p[31]>>7)) Z(r[0],gf0,r[0]);
|
||||
|
||||
M(r[3],r[0],r[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crypto_sign_open(u8 *m,u64 *mlen,const u8 *sm,u64 n,const u8 *pk)
|
||||
{
|
||||
int i;
|
||||
u8 t[32],h[64];
|
||||
gf p[4],q[4];
|
||||
|
||||
*mlen = -1;
|
||||
if (n < 64) return -1;
|
||||
|
||||
if (unpackneg(q,pk)) return -1;
|
||||
|
||||
FOR(i,n) m[i] = sm[i];
|
||||
FOR(i,32) m[i+32] = pk[i];
|
||||
crypto_hash(h,m,n);
|
||||
reduce(h);
|
||||
scalarmult(p,q,h);
|
||||
|
||||
scalarbase(q,sm + 32);
|
||||
add(p,q);
|
||||
pack(t,p);
|
||||
|
||||
n -= 64;
|
||||
if (crypto_verify_32(sm, t)) {
|
||||
FOR(i,n) m[i] = 0;
|
||||
return -1;
|
||||
}
|
||||
|
||||
FOR(i,n) m[i] = sm[i + 64];
|
||||
*mlen = n;
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,272 @@
|
|||
#ifndef TWEETNACL_H
|
||||
#define TWEETNACL_H
|
||||
#define crypto_auth_PRIMITIVE "hmacsha512256"
|
||||
#define crypto_auth crypto_auth_hmacsha512256
|
||||
#define crypto_auth_verify crypto_auth_hmacsha512256_verify
|
||||
#define crypto_auth_BYTES crypto_auth_hmacsha512256_BYTES
|
||||
#define crypto_auth_KEYBYTES crypto_auth_hmacsha512256_KEYBYTES
|
||||
#define crypto_auth_IMPLEMENTATION crypto_auth_hmacsha512256_IMPLEMENTATION
|
||||
#define crypto_auth_VERSION crypto_auth_hmacsha512256_VERSION
|
||||
#define crypto_auth_hmacsha512256_tweet_BYTES 32
|
||||
#define crypto_auth_hmacsha512256_tweet_KEYBYTES 32
|
||||
extern int crypto_auth_hmacsha512256_tweet(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *);
|
||||
extern int crypto_auth_hmacsha512256_tweet_verify(const unsigned char *,const unsigned char *,unsigned long long,const unsigned char *);
|
||||
#define crypto_auth_hmacsha512256_tweet_VERSION "-"
|
||||
#define crypto_auth_hmacsha512256 crypto_auth_hmacsha512256_tweet
|
||||
#define crypto_auth_hmacsha512256_verify crypto_auth_hmacsha512256_tweet_verify
|
||||
#define crypto_auth_hmacsha512256_BYTES crypto_auth_hmacsha512256_tweet_BYTES
|
||||
#define crypto_auth_hmacsha512256_KEYBYTES crypto_auth_hmacsha512256_tweet_KEYBYTES
|
||||
#define crypto_auth_hmacsha512256_VERSION crypto_auth_hmacsha512256_tweet_VERSION
|
||||
#define crypto_auth_hmacsha512256_IMPLEMENTATION "crypto_auth/hmacsha512256/tweet"
|
||||
#define crypto_box_PRIMITIVE "curve25519xsalsa20poly1305"
|
||||
#define crypto_box crypto_box_curve25519xsalsa20poly1305
|
||||
#define crypto_box_open crypto_box_curve25519xsalsa20poly1305_open
|
||||
#define crypto_box_keypair crypto_box_curve25519xsalsa20poly1305_keypair
|
||||
#define crypto_box_beforenm crypto_box_curve25519xsalsa20poly1305_beforenm
|
||||
#define crypto_box_afternm crypto_box_curve25519xsalsa20poly1305_afternm
|
||||
#define crypto_box_open_afternm crypto_box_curve25519xsalsa20poly1305_open_afternm
|
||||
#define crypto_box_PUBLICKEYBYTES crypto_box_curve25519xsalsa20poly1305_PUBLICKEYBYTES
|
||||
#define crypto_box_SECRETKEYBYTES crypto_box_curve25519xsalsa20poly1305_SECRETKEYBYTES
|
||||
#define crypto_box_BEFORENMBYTES crypto_box_curve25519xsalsa20poly1305_BEFORENMBYTES
|
||||
#define crypto_box_NONCEBYTES crypto_box_curve25519xsalsa20poly1305_NONCEBYTES
|
||||
#define crypto_box_ZEROBYTES crypto_box_curve25519xsalsa20poly1305_ZEROBYTES
|
||||
#define crypto_box_BOXZEROBYTES crypto_box_curve25519xsalsa20poly1305_BOXZEROBYTES
|
||||
#define crypto_box_IMPLEMENTATION crypto_box_curve25519xsalsa20poly1305_IMPLEMENTATION
|
||||
#define crypto_box_VERSION crypto_box_curve25519xsalsa20poly1305_VERSION
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_PUBLICKEYBYTES 32
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_SECRETKEYBYTES 32
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_BEFORENMBYTES 32
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_NONCEBYTES 24
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_ZEROBYTES 32
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_BOXZEROBYTES 16
|
||||
extern int crypto_box_curve25519xsalsa20poly1305_tweet(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_box_curve25519xsalsa20poly1305_tweet_open(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_box_curve25519xsalsa20poly1305_tweet_keypair(unsigned char *,unsigned char *);
|
||||
extern int crypto_box_curve25519xsalsa20poly1305_tweet_beforenm(unsigned char *,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_box_curve25519xsalsa20poly1305_tweet_afternm(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_box_curve25519xsalsa20poly1305_tweet_open_afternm(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
#define crypto_box_curve25519xsalsa20poly1305_tweet_VERSION "-"
|
||||
#define crypto_box_curve25519xsalsa20poly1305 crypto_box_curve25519xsalsa20poly1305_tweet
|
||||
#define crypto_box_curve25519xsalsa20poly1305_open crypto_box_curve25519xsalsa20poly1305_tweet_open
|
||||
#define crypto_box_curve25519xsalsa20poly1305_keypair crypto_box_curve25519xsalsa20poly1305_tweet_keypair
|
||||
#define crypto_box_curve25519xsalsa20poly1305_beforenm crypto_box_curve25519xsalsa20poly1305_tweet_beforenm
|
||||
#define crypto_box_curve25519xsalsa20poly1305_afternm crypto_box_curve25519xsalsa20poly1305_tweet_afternm
|
||||
#define crypto_box_curve25519xsalsa20poly1305_open_afternm crypto_box_curve25519xsalsa20poly1305_tweet_open_afternm
|
||||
#define crypto_box_curve25519xsalsa20poly1305_PUBLICKEYBYTES crypto_box_curve25519xsalsa20poly1305_tweet_PUBLICKEYBYTES
|
||||
#define crypto_box_curve25519xsalsa20poly1305_SECRETKEYBYTES crypto_box_curve25519xsalsa20poly1305_tweet_SECRETKEYBYTES
|
||||
#define crypto_box_curve25519xsalsa20poly1305_BEFORENMBYTES crypto_box_curve25519xsalsa20poly1305_tweet_BEFORENMBYTES
|
||||
#define crypto_box_curve25519xsalsa20poly1305_NONCEBYTES crypto_box_curve25519xsalsa20poly1305_tweet_NONCEBYTES
|
||||
#define crypto_box_curve25519xsalsa20poly1305_ZEROBYTES crypto_box_curve25519xsalsa20poly1305_tweet_ZEROBYTES
|
||||
#define crypto_box_curve25519xsalsa20poly1305_BOXZEROBYTES crypto_box_curve25519xsalsa20poly1305_tweet_BOXZEROBYTES
|
||||
#define crypto_box_curve25519xsalsa20poly1305_VERSION crypto_box_curve25519xsalsa20poly1305_tweet_VERSION
|
||||
#define crypto_box_curve25519xsalsa20poly1305_IMPLEMENTATION "crypto_box/curve25519xsalsa20poly1305/tweet"
|
||||
#define crypto_core_PRIMITIVE "salsa20"
|
||||
#define crypto_core crypto_core_salsa20
|
||||
#define crypto_core_OUTPUTBYTES crypto_core_salsa20_OUTPUTBYTES
|
||||
#define crypto_core_INPUTBYTES crypto_core_salsa20_INPUTBYTES
|
||||
#define crypto_core_KEYBYTES crypto_core_salsa20_KEYBYTES
|
||||
#define crypto_core_CONSTBYTES crypto_core_salsa20_CONSTBYTES
|
||||
#define crypto_core_IMPLEMENTATION crypto_core_salsa20_IMPLEMENTATION
|
||||
#define crypto_core_VERSION crypto_core_salsa20_VERSION
|
||||
#define crypto_core_salsa20_tweet_OUTPUTBYTES 64
|
||||
#define crypto_core_salsa20_tweet_INPUTBYTES 16
|
||||
#define crypto_core_salsa20_tweet_KEYBYTES 32
|
||||
#define crypto_core_salsa20_tweet_CONSTBYTES 16
|
||||
extern int crypto_core_salsa20_tweet(unsigned char *,const unsigned char *,const unsigned char *,const unsigned char *);
|
||||
#define crypto_core_salsa20_tweet_VERSION "-"
|
||||
#define crypto_core_salsa20 crypto_core_salsa20_tweet
|
||||
#define crypto_core_salsa20_OUTPUTBYTES crypto_core_salsa20_tweet_OUTPUTBYTES
|
||||
#define crypto_core_salsa20_INPUTBYTES crypto_core_salsa20_tweet_INPUTBYTES
|
||||
#define crypto_core_salsa20_KEYBYTES crypto_core_salsa20_tweet_KEYBYTES
|
||||
#define crypto_core_salsa20_CONSTBYTES crypto_core_salsa20_tweet_CONSTBYTES
|
||||
#define crypto_core_salsa20_VERSION crypto_core_salsa20_tweet_VERSION
|
||||
#define crypto_core_salsa20_IMPLEMENTATION "crypto_core/salsa20/tweet"
|
||||
#define crypto_core_hsalsa20_tweet_OUTPUTBYTES 32
|
||||
#define crypto_core_hsalsa20_tweet_INPUTBYTES 16
|
||||
#define crypto_core_hsalsa20_tweet_KEYBYTES 32
|
||||
#define crypto_core_hsalsa20_tweet_CONSTBYTES 16
|
||||
extern int crypto_core_hsalsa20_tweet(unsigned char *,const unsigned char *,const unsigned char *,const unsigned char *);
|
||||
#define crypto_core_hsalsa20_tweet_VERSION "-"
|
||||
#define crypto_core_hsalsa20 crypto_core_hsalsa20_tweet
|
||||
#define crypto_core_hsalsa20_OUTPUTBYTES crypto_core_hsalsa20_tweet_OUTPUTBYTES
|
||||
#define crypto_core_hsalsa20_INPUTBYTES crypto_core_hsalsa20_tweet_INPUTBYTES
|
||||
#define crypto_core_hsalsa20_KEYBYTES crypto_core_hsalsa20_tweet_KEYBYTES
|
||||
#define crypto_core_hsalsa20_CONSTBYTES crypto_core_hsalsa20_tweet_CONSTBYTES
|
||||
#define crypto_core_hsalsa20_VERSION crypto_core_hsalsa20_tweet_VERSION
|
||||
#define crypto_core_hsalsa20_IMPLEMENTATION "crypto_core/hsalsa20/tweet"
|
||||
#define crypto_hashblocks_PRIMITIVE "sha512"
|
||||
#define crypto_hashblocks crypto_hashblocks_sha512
|
||||
#define crypto_hashblocks_STATEBYTES crypto_hashblocks_sha512_STATEBYTES
|
||||
#define crypto_hashblocks_BLOCKBYTES crypto_hashblocks_sha512_BLOCKBYTES
|
||||
#define crypto_hashblocks_IMPLEMENTATION crypto_hashblocks_sha512_IMPLEMENTATION
|
||||
#define crypto_hashblocks_VERSION crypto_hashblocks_sha512_VERSION
|
||||
#define crypto_hashblocks_sha512_tweet_STATEBYTES 64
|
||||
#define crypto_hashblocks_sha512_tweet_BLOCKBYTES 128
|
||||
extern int crypto_hashblocks_sha512_tweet(unsigned char *,const unsigned char *,unsigned long long);
|
||||
#define crypto_hashblocks_sha512_tweet_VERSION "-"
|
||||
#define crypto_hashblocks_sha512 crypto_hashblocks_sha512_tweet
|
||||
#define crypto_hashblocks_sha512_STATEBYTES crypto_hashblocks_sha512_tweet_STATEBYTES
|
||||
#define crypto_hashblocks_sha512_BLOCKBYTES crypto_hashblocks_sha512_tweet_BLOCKBYTES
|
||||
#define crypto_hashblocks_sha512_VERSION crypto_hashblocks_sha512_tweet_VERSION
|
||||
#define crypto_hashblocks_sha512_IMPLEMENTATION "crypto_hashblocks/sha512/tweet"
|
||||
#define crypto_hashblocks_sha256_tweet_STATEBYTES 32
|
||||
#define crypto_hashblocks_sha256_tweet_BLOCKBYTES 64
|
||||
extern int crypto_hashblocks_sha256_tweet(unsigned char *,const unsigned char *,unsigned long long);
|
||||
#define crypto_hashblocks_sha256_tweet_VERSION "-"
|
||||
#define crypto_hashblocks_sha256 crypto_hashblocks_sha256_tweet
|
||||
#define crypto_hashblocks_sha256_STATEBYTES crypto_hashblocks_sha256_tweet_STATEBYTES
|
||||
#define crypto_hashblocks_sha256_BLOCKBYTES crypto_hashblocks_sha256_tweet_BLOCKBYTES
|
||||
#define crypto_hashblocks_sha256_VERSION crypto_hashblocks_sha256_tweet_VERSION
|
||||
#define crypto_hashblocks_sha256_IMPLEMENTATION "crypto_hashblocks/sha256/tweet"
|
||||
#define crypto_hash_PRIMITIVE "sha512"
|
||||
#define crypto_hash crypto_hash_sha512
|
||||
#define crypto_hash_BYTES crypto_hash_sha512_BYTES
|
||||
#define crypto_hash_IMPLEMENTATION crypto_hash_sha512_IMPLEMENTATION
|
||||
#define crypto_hash_VERSION crypto_hash_sha512_VERSION
|
||||
#define crypto_hash_sha512_tweet_BYTES 64
|
||||
extern int crypto_hash_sha512_tweet(unsigned char *,const unsigned char *,unsigned long long);
|
||||
#define crypto_hash_sha512_tweet_VERSION "-"
|
||||
#define crypto_hash_sha512 crypto_hash_sha512_tweet
|
||||
#define crypto_hash_sha512_BYTES crypto_hash_sha512_tweet_BYTES
|
||||
#define crypto_hash_sha512_VERSION crypto_hash_sha512_tweet_VERSION
|
||||
#define crypto_hash_sha512_IMPLEMENTATION "crypto_hash/sha512/tweet"
|
||||
#define crypto_hash_sha256_tweet_BYTES 32
|
||||
extern int crypto_hash_sha256_tweet(unsigned char *,const unsigned char *,unsigned long long);
|
||||
#define crypto_hash_sha256_tweet_VERSION "-"
|
||||
#define crypto_hash_sha256 crypto_hash_sha256_tweet
|
||||
#define crypto_hash_sha256_BYTES crypto_hash_sha256_tweet_BYTES
|
||||
#define crypto_hash_sha256_VERSION crypto_hash_sha256_tweet_VERSION
|
||||
#define crypto_hash_sha256_IMPLEMENTATION "crypto_hash/sha256/tweet"
|
||||
#define crypto_onetimeauth_PRIMITIVE "poly1305"
|
||||
#define crypto_onetimeauth crypto_onetimeauth_poly1305
|
||||
#define crypto_onetimeauth_verify crypto_onetimeauth_poly1305_verify
|
||||
#define crypto_onetimeauth_BYTES crypto_onetimeauth_poly1305_BYTES
|
||||
#define crypto_onetimeauth_KEYBYTES crypto_onetimeauth_poly1305_KEYBYTES
|
||||
#define crypto_onetimeauth_IMPLEMENTATION crypto_onetimeauth_poly1305_IMPLEMENTATION
|
||||
#define crypto_onetimeauth_VERSION crypto_onetimeauth_poly1305_VERSION
|
||||
#define crypto_onetimeauth_poly1305_tweet_BYTES 16
|
||||
#define crypto_onetimeauth_poly1305_tweet_KEYBYTES 32
|
||||
extern int crypto_onetimeauth_poly1305_tweet(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *);
|
||||
extern int crypto_onetimeauth_poly1305_tweet_verify(const unsigned char *,const unsigned char *,unsigned long long,const unsigned char *);
|
||||
#define crypto_onetimeauth_poly1305_tweet_VERSION "-"
|
||||
#define crypto_onetimeauth_poly1305 crypto_onetimeauth_poly1305_tweet
|
||||
#define crypto_onetimeauth_poly1305_verify crypto_onetimeauth_poly1305_tweet_verify
|
||||
#define crypto_onetimeauth_poly1305_BYTES crypto_onetimeauth_poly1305_tweet_BYTES
|
||||
#define crypto_onetimeauth_poly1305_KEYBYTES crypto_onetimeauth_poly1305_tweet_KEYBYTES
|
||||
#define crypto_onetimeauth_poly1305_VERSION crypto_onetimeauth_poly1305_tweet_VERSION
|
||||
#define crypto_onetimeauth_poly1305_IMPLEMENTATION "crypto_onetimeauth/poly1305/tweet"
|
||||
#define crypto_scalarmult_PRIMITIVE "curve25519"
|
||||
#define crypto_scalarmult crypto_scalarmult_curve25519
|
||||
#define crypto_scalarmult_base crypto_scalarmult_curve25519_base
|
||||
#define crypto_scalarmult_BYTES crypto_scalarmult_curve25519_BYTES
|
||||
#define crypto_scalarmult_SCALARBYTES crypto_scalarmult_curve25519_SCALARBYTES
|
||||
#define crypto_scalarmult_IMPLEMENTATION crypto_scalarmult_curve25519_IMPLEMENTATION
|
||||
#define crypto_scalarmult_VERSION crypto_scalarmult_curve25519_VERSION
|
||||
#define crypto_scalarmult_curve25519_tweet_BYTES 32
|
||||
#define crypto_scalarmult_curve25519_tweet_SCALARBYTES 32
|
||||
extern int crypto_scalarmult_curve25519_tweet(unsigned char *,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_scalarmult_curve25519_tweet_base(unsigned char *,const unsigned char *);
|
||||
#define crypto_scalarmult_curve25519_tweet_VERSION "-"
|
||||
#define crypto_scalarmult_curve25519 crypto_scalarmult_curve25519_tweet
|
||||
#define crypto_scalarmult_curve25519_base crypto_scalarmult_curve25519_tweet_base
|
||||
#define crypto_scalarmult_curve25519_BYTES crypto_scalarmult_curve25519_tweet_BYTES
|
||||
#define crypto_scalarmult_curve25519_SCALARBYTES crypto_scalarmult_curve25519_tweet_SCALARBYTES
|
||||
#define crypto_scalarmult_curve25519_VERSION crypto_scalarmult_curve25519_tweet_VERSION
|
||||
#define crypto_scalarmult_curve25519_IMPLEMENTATION "crypto_scalarmult/curve25519/tweet"
|
||||
#define crypto_secretbox_PRIMITIVE "xsalsa20poly1305"
|
||||
#define crypto_secretbox crypto_secretbox_xsalsa20poly1305
|
||||
#define crypto_secretbox_open crypto_secretbox_xsalsa20poly1305_open
|
||||
#define crypto_secretbox_KEYBYTES crypto_secretbox_xsalsa20poly1305_KEYBYTES
|
||||
#define crypto_secretbox_NONCEBYTES crypto_secretbox_xsalsa20poly1305_NONCEBYTES
|
||||
#define crypto_secretbox_ZEROBYTES crypto_secretbox_xsalsa20poly1305_ZEROBYTES
|
||||
#define crypto_secretbox_BOXZEROBYTES crypto_secretbox_xsalsa20poly1305_BOXZEROBYTES
|
||||
#define crypto_secretbox_IMPLEMENTATION crypto_secretbox_xsalsa20poly1305_IMPLEMENTATION
|
||||
#define crypto_secretbox_VERSION crypto_secretbox_xsalsa20poly1305_VERSION
|
||||
#define crypto_secretbox_xsalsa20poly1305_tweet_KEYBYTES 32
|
||||
#define crypto_secretbox_xsalsa20poly1305_tweet_NONCEBYTES 24
|
||||
#define crypto_secretbox_xsalsa20poly1305_tweet_ZEROBYTES 32
|
||||
#define crypto_secretbox_xsalsa20poly1305_tweet_BOXZEROBYTES 16
|
||||
extern int crypto_secretbox_xsalsa20poly1305_tweet(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_secretbox_xsalsa20poly1305_tweet_open(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
#define crypto_secretbox_xsalsa20poly1305_tweet_VERSION "-"
|
||||
#define crypto_secretbox_xsalsa20poly1305 crypto_secretbox_xsalsa20poly1305_tweet
|
||||
#define crypto_secretbox_xsalsa20poly1305_open crypto_secretbox_xsalsa20poly1305_tweet_open
|
||||
#define crypto_secretbox_xsalsa20poly1305_KEYBYTES crypto_secretbox_xsalsa20poly1305_tweet_KEYBYTES
|
||||
#define crypto_secretbox_xsalsa20poly1305_NONCEBYTES crypto_secretbox_xsalsa20poly1305_tweet_NONCEBYTES
|
||||
#define crypto_secretbox_xsalsa20poly1305_ZEROBYTES crypto_secretbox_xsalsa20poly1305_tweet_ZEROBYTES
|
||||
#define crypto_secretbox_xsalsa20poly1305_BOXZEROBYTES crypto_secretbox_xsalsa20poly1305_tweet_BOXZEROBYTES
|
||||
#define crypto_secretbox_xsalsa20poly1305_VERSION crypto_secretbox_xsalsa20poly1305_tweet_VERSION
|
||||
#define crypto_secretbox_xsalsa20poly1305_IMPLEMENTATION "crypto_secretbox/xsalsa20poly1305/tweet"
|
||||
#define crypto_sign_PRIMITIVE "ed25519"
|
||||
#define crypto_sign crypto_sign_ed25519
|
||||
#define crypto_sign_open crypto_sign_ed25519_open
|
||||
#define crypto_sign_keypair crypto_sign_ed25519_keypair
|
||||
#define crypto_sign_BYTES crypto_sign_ed25519_BYTES
|
||||
#define crypto_sign_PUBLICKEYBYTES crypto_sign_ed25519_PUBLICKEYBYTES
|
||||
#define crypto_sign_SECRETKEYBYTES crypto_sign_ed25519_SECRETKEYBYTES
|
||||
#define crypto_sign_IMPLEMENTATION crypto_sign_ed25519_IMPLEMENTATION
|
||||
#define crypto_sign_VERSION crypto_sign_ed25519_VERSION
|
||||
#define crypto_sign_ed25519_tweet_BYTES 64
|
||||
#define crypto_sign_ed25519_tweet_PUBLICKEYBYTES 32
|
||||
#define crypto_sign_ed25519_tweet_SECRETKEYBYTES 64
|
||||
extern int crypto_sign_ed25519_tweet(unsigned char *,unsigned long long *,const unsigned char *,unsigned long long,const unsigned char *);
|
||||
extern int crypto_sign_ed25519_tweet_open(unsigned char *,unsigned long long *,const unsigned char *,unsigned long long,const unsigned char *);
|
||||
extern int crypto_sign_ed25519_tweet_keypair(unsigned char *,unsigned char *);
|
||||
#define crypto_sign_ed25519_tweet_VERSION "-"
|
||||
#define crypto_sign_ed25519 crypto_sign_ed25519_tweet
|
||||
#define crypto_sign_ed25519_open crypto_sign_ed25519_tweet_open
|
||||
#define crypto_sign_ed25519_keypair crypto_sign_ed25519_tweet_keypair
|
||||
#define crypto_sign_ed25519_BYTES crypto_sign_ed25519_tweet_BYTES
|
||||
#define crypto_sign_ed25519_PUBLICKEYBYTES crypto_sign_ed25519_tweet_PUBLICKEYBYTES
|
||||
#define crypto_sign_ed25519_SECRETKEYBYTES crypto_sign_ed25519_tweet_SECRETKEYBYTES
|
||||
#define crypto_sign_ed25519_VERSION crypto_sign_ed25519_tweet_VERSION
|
||||
#define crypto_sign_ed25519_IMPLEMENTATION "crypto_sign/ed25519/tweet"
|
||||
#define crypto_stream_PRIMITIVE "xsalsa20"
|
||||
#define crypto_stream crypto_stream_xsalsa20
|
||||
#define crypto_stream_xor crypto_stream_xsalsa20_xor
|
||||
#define crypto_stream_KEYBYTES crypto_stream_xsalsa20_KEYBYTES
|
||||
#define crypto_stream_NONCEBYTES crypto_stream_xsalsa20_NONCEBYTES
|
||||
#define crypto_stream_IMPLEMENTATION crypto_stream_xsalsa20_IMPLEMENTATION
|
||||
#define crypto_stream_VERSION crypto_stream_xsalsa20_VERSION
|
||||
#define crypto_stream_xsalsa20_tweet_KEYBYTES 32
|
||||
#define crypto_stream_xsalsa20_tweet_NONCEBYTES 24
|
||||
extern int crypto_stream_xsalsa20_tweet(unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_stream_xsalsa20_tweet_xor(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
#define crypto_stream_xsalsa20_tweet_VERSION "-"
|
||||
#define crypto_stream_xsalsa20 crypto_stream_xsalsa20_tweet
|
||||
#define crypto_stream_xsalsa20_xor crypto_stream_xsalsa20_tweet_xor
|
||||
#define crypto_stream_xsalsa20_KEYBYTES crypto_stream_xsalsa20_tweet_KEYBYTES
|
||||
#define crypto_stream_xsalsa20_NONCEBYTES crypto_stream_xsalsa20_tweet_NONCEBYTES
|
||||
#define crypto_stream_xsalsa20_VERSION crypto_stream_xsalsa20_tweet_VERSION
|
||||
#define crypto_stream_xsalsa20_IMPLEMENTATION "crypto_stream/xsalsa20/tweet"
|
||||
#define crypto_stream_salsa20_tweet_KEYBYTES 32
|
||||
#define crypto_stream_salsa20_tweet_NONCEBYTES 8
|
||||
extern int crypto_stream_salsa20_tweet(unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
extern int crypto_stream_salsa20_tweet_xor(unsigned char *,const unsigned char *,unsigned long long,const unsigned char *,const unsigned char *);
|
||||
#define crypto_stream_salsa20_tweet_VERSION "-"
|
||||
#define crypto_stream_salsa20 crypto_stream_salsa20_tweet
|
||||
#define crypto_stream_salsa20_xor crypto_stream_salsa20_tweet_xor
|
||||
#define crypto_stream_salsa20_KEYBYTES crypto_stream_salsa20_tweet_KEYBYTES
|
||||
#define crypto_stream_salsa20_NONCEBYTES crypto_stream_salsa20_tweet_NONCEBYTES
|
||||
#define crypto_stream_salsa20_VERSION crypto_stream_salsa20_tweet_VERSION
|
||||
#define crypto_stream_salsa20_IMPLEMENTATION "crypto_stream/salsa20/tweet"
|
||||
#define crypto_verify_PRIMITIVE "16"
|
||||
#define crypto_verify crypto_verify_16
|
||||
#define crypto_verify_BYTES crypto_verify_16_BYTES
|
||||
#define crypto_verify_IMPLEMENTATION crypto_verify_16_IMPLEMENTATION
|
||||
#define crypto_verify_VERSION crypto_verify_16_VERSION
|
||||
#define crypto_verify_16_tweet_BYTES 16
|
||||
extern int crypto_verify_16_tweet(const unsigned char *,const unsigned char *);
|
||||
#define crypto_verify_16_tweet_VERSION "-"
|
||||
#define crypto_verify_16 crypto_verify_16_tweet
|
||||
#define crypto_verify_16_BYTES crypto_verify_16_tweet_BYTES
|
||||
#define crypto_verify_16_VERSION crypto_verify_16_tweet_VERSION
|
||||
#define crypto_verify_16_IMPLEMENTATION "crypto_verify/16/tweet"
|
||||
#define crypto_verify_32_tweet_BYTES 32
|
||||
extern int crypto_verify_32_tweet(const unsigned char *,const unsigned char *);
|
||||
#define crypto_verify_32_tweet_VERSION "-"
|
||||
#define crypto_verify_32 crypto_verify_32_tweet
|
||||
#define crypto_verify_32_BYTES crypto_verify_32_tweet_BYTES
|
||||
#define crypto_verify_32_VERSION crypto_verify_32_tweet_VERSION
|
||||
#define crypto_verify_32_IMPLEMENTATION "crypto_verify/32/tweet"
|
||||
#endif
|
|
@ -82,6 +82,7 @@ if("sgx" IN_LIST TARGET)
|
|||
http_parser.enclave
|
||||
lua.enclave
|
||||
secp256k1.enclave
|
||||
sss.enclave
|
||||
)
|
||||
|
||||
set_property(TARGET ccf.enclave PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
|
@ -138,6 +139,7 @@ if("virtual" IN_LIST TARGET)
|
|||
http_parser.host
|
||||
lua.host
|
||||
secp256k1.host
|
||||
sss.host
|
||||
${CMAKE_THREAD_LIBS_INIT}
|
||||
)
|
||||
|
||||
|
|
|
@ -137,6 +137,15 @@
|
|||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"component": {
|
||||
"type": "git",
|
||||
"git": {
|
||||
"repositoryUrl": "https://github.com/dsprenkels/sss",
|
||||
"commitHash": "dc8c3a9a1089e962b32ecdcc940ae11bd2b69e4b"
|
||||
}
|
||||
}
|
||||
},
|
||||
],
|
||||
"Version": 1
|
||||
}
|
|
@ -242,6 +242,7 @@ endfunction()
|
|||
include(${CCF_DIR}/cmake/crypto.cmake)
|
||||
include(${CCF_DIR}/cmake/secp256k1.cmake)
|
||||
include(${CCF_DIR}/cmake/quickjs.cmake)
|
||||
include(${CCF_DIR}/cmake/sss.cmake)
|
||||
|
||||
find_package(CURL REQUIRED)
|
||||
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the Apache 2.0 License.
|
||||
|
||||
set(SSS_PREFIX
|
||||
${CCF_DIR}/3rdparty/sss
|
||||
CACHE PATH "Prefix to the Shamir Secret Sharing (sss) library"
|
||||
)
|
||||
message(STATUS "Using sss at ${SSS_PREFIX}")
|
||||
|
||||
set(SSS_SRC ${SSS_PREFIX}/sss.c ${SSS_PREFIX}/hazmat.c
|
||||
${SSS_PREFIX}/tweetnacl.c
|
||||
)
|
||||
|
||||
if("sgx" IN_LIST TARGET)
|
||||
add_library(sss.enclave STATIC ${SSS_SRC})
|
||||
set_property(TARGET sss.enclave PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
install(
|
||||
TARGETS sss.enclave
|
||||
EXPORT ccf
|
||||
DESTINATION lib
|
||||
)
|
||||
endif()
|
||||
|
||||
add_library(sss.host STATIC ${SSS_SRC})
|
||||
set_property(TARGET sss.host PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
install(
|
||||
TARGETS sss.host
|
||||
EXPORT ccf
|
||||
DESTINATION lib
|
||||
)
|
|
@ -35,6 +35,13 @@
|
|||
#include <chrono>
|
||||
#include <fmt/format_header_only.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
extern "C"
|
||||
{
|
||||
#include "tls/randombytes.h"
|
||||
|
||||
#include <sss/sss.h>
|
||||
}
|
||||
|
||||
#include <stdexcept>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
|
|
@ -48,6 +48,12 @@ namespace tls
|
|||
return data;
|
||||
}
|
||||
|
||||
void random(unsigned char* data, size_t len) override
|
||||
{
|
||||
if (mbedtls_ctr_drbg_random(&drbg, data, len) != 0)
|
||||
throw std::logic_error("Couldn't create random data");
|
||||
}
|
||||
|
||||
static int rng(void* ctx, unsigned char* output, size_t len)
|
||||
{
|
||||
return mbedtls_ctr_drbg_random(ctx, output, len);
|
||||
|
|
|
@ -33,6 +33,7 @@ namespace tls
|
|||
virtual void* get_data() = 0;
|
||||
virtual rng_func_t get_rng() = 0;
|
||||
virtual std::vector<uint8_t> random(size_t len) = 0;
|
||||
virtual void random(unsigned char* data, size_t len) = 0;
|
||||
virtual ~Entropy() {}
|
||||
};
|
||||
|
||||
|
@ -274,6 +275,12 @@ namespace tls
|
|||
return std::vector<uint8_t>(buf, buf + len);
|
||||
}
|
||||
|
||||
void random(unsigned char* data, size_t len) override
|
||||
{
|
||||
if (rdrand_get_bytes(len, data) < len)
|
||||
throw std::logic_error("Couldn't create random data");
|
||||
}
|
||||
|
||||
static int rng(void*, unsigned char* output, size_t len)
|
||||
{
|
||||
if (rdrand_get_bytes(len, output) < len)
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
// Licensed under the Apache 2.0 License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "entropy.h"
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
void randombytes(void* buf, size_t n)
|
||||
{
|
||||
auto entropy = tls::create_entropy();
|
||||
entropy->random((unsigned char*)buf, n);
|
||||
}
|
Загрузка…
Ссылка в новой задаче